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Linear Estimation of Correlated Data in
Wireless Sensor Networks with Optimum Power

Allocation and Analog Modulation
Israfil Bahceci and Amir K. Khandani

Abstract—In this paper, we study the energy-efficient dis-
tributed estimation problem for a wireless sensor network where
a physical phenomena that produces correlated data is sensed
by a set of spatially distributed sensor nodes and the resulting
noisy observations are transmitted to a fusion center via noise-
corrupted channels. We assume a Gaussian network model
where (i) the data samples being sensed at different sensors
have a correlated Gaussian distribution and the correlation
matrix is known at the fusion center, (ii) the links between
the local sensors and the fusion center are subject to fading
and additive white Gaussian noise (AWGN), and the fading
gains are known at the fusion center, and (iii) the central
node uses the squared error distortion metric. We consider two
different distortion criteria: (i) individual distortion constraints
at each node, and (ii) average mean square error distortion
constraint across the network. We determine the achievable
power-distortion regions under each distortion constraint. Taking
the delay constraint into account, we investigate the performance
of an uncoded transmission strategy where the noisy observations
are only scaled and transmitted to the fusion center. At the
fusion center, two different estimators are considered: (i) the
best linear unbiased estimator (BLUE) that does not require
knowledge of the correlation matrix, and (ii) the minimum mean-
square error (MMSE) estimator that exploits the correlations.
For each estimation method, we determine the optimal power
allocation that results in a minimum total transmission power
while satisfying some distortion level for the estimate (under both
distortion criteria). The numerical comparisons between the two
schemes indicate that the MMSE estimator requires less power
to attain the same distortion provided by the BLUE and this
performance gap becomes more dramatic as correlations between
the observations increase. Furthermore, comparisons between
power-distortion region achieved by the theoretically optimum
system and that achieved by the uncoded system indicate that
the performance gap between the two systems becomes small
for low levels of correlation between the sensor observations. If
observations at all sensor nodes are uncorrelated, the uncoded
system with MMSE estimator attains the theoretically optimum
system performance.

Index Terms—Distributed estimation, wireless sensor network,
power-distortion region, MMSE, BLUE.
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I. INTRODUCTION

W IRELESS sensor networking (WSN) is an emerging
technology in many application areas including en-

vironment monitoring, health, security and surveillance, and
robotic exploration [1]. Networks of sensor systems allow for
many distributed processing and cooperative communication
techniques including distributed data compression [2], tracking
and classification [3], and distributed detection [4], [5] and
distributed estimation [6]. In this paper, we focus on an
estimation problem where each sensor sends its observation
to a fusion center where a global estimation is made. Because
of hard energy limitations, a significant research problem is to
develop schemes that minimize the transmission energy while
satisfying a certain distortion level.

Various approaches can be followed to solve this problem.
For instance, one can digitize all observed data at the lo-
cal sensors using distributed compression/coding algorithms
and transmit the digitized data to the fusion center. This is
suggested by the aforementioned source-channel separation
theorem of Shannon [7]. Here, the problem falls into the area
of multiterminal source coding where the main issue is to
characterize the rate-distortion region. More specifically, the
goal is to determine all rate vectors (R1, . . . , RK) at which
the source samples at all K sensors can be encoded separately
and then decoded jointly at the fusion center attaining a
prespecified distortion level (D1, . . . , DK). Coding for mul-
titerminal source-channel communications and the associated
rate-distortion region is extensively studied in the literature
and several partial solutions are reported to date [8–15]. In
[8], Slepian and Wolf consider lossless coding of discrete
memoryless correlated sources and show that it is possible
to attain the rate-distortion region of joint encoding/decoding
by a scheme in which the sources are encoded separately
while decoded jointly. In [9], Wyner and Ziv initiate the
research on lossy source coding where they determine the
rate-distortion region for source coding with side information.
Berger [10] and Tung [11] determined tight inner bounds to
the rate distortion region for a finite-alphabet source. Among
other results, for a two-terminal Gaussian source coding case,
tight inner and outer bounds on the rate-distortion region are
reported by Oohama [13] and Zamir and Berger [15]; and
recently, a complete solution is obtained by Wagner et. al.
[16]. Recent work on multiterminal source coding problem
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with more general cases subsuming many special cases include
[17] by Wagner et. al. and [18] by Servetto where tighter
inner and outer bounds are provided. An important class of
the multi-terminal source/channel coding problem is the Chief
Executive Officer (CEO) problem where a set of separate
agents make noisy observations of a common source and
transmit a summary (encoded version) to the CEO where the
final decision (e.g., estimation) is made [19–23]. In addition
to the theoretical results mentioned above, several distributed
estimation schemes have also been proposed, for example
[6,24–26].

The separate source-channel coding generally incurs large
delays. However in some cases, such as point-to-point com-
munication over an additive white Gaussian noise channel,
it is possible to use a simple amplify-and-forward approach
[27–29] to achieve optimum performance. For multitermi-
nal source-channel communications, however, it is not clear
whether this approach performs well [23], [30]. Although
in some special cases, an optimal quantization followed by
a Slepian-Wolf coding achieves optimality [15], since the
information in sensor networks is, in general, delay sensi-
tive, and because of the bandwidth and energy constraints,
one requires simple coding/processing methods, rather than
relying on the source-channel separation theorem. In [31],
Cui et al. study an uncoded analog transmission method for
estimation in sensor networks where it is assumed that the
noisy version of the same signal is observed at the local
nodes and single-side band analog modulation is employed to
transmit the real-valued observations to the fusion center over
orthogonal channels. This analog approach is simple since
it relies on an amplify-and-forward technique. Gastpar and
Vetterli [30] study a similar problem for a network where
sensors communicate over a multiaccess channel to a central
node. They show that, for a Gaussian source, the decay rate of
the distortion attained by uncoded transmission is larger than
that attained by the best coding scheme based on the source-
channel separation theorem. As the number of sensor nodes
increases to infinity, this system attains optimum performance.

In sensor networks, the sensor observations are likely to
vary from one sensor to the other. However, especially for
dense sensor networks, the observations might be strongly
correlated [32], [33]. Gastpar and Vetterli [34] study a similar
network monitoring an L dimensional Gaussian source and
determine lower bounds for the end-to-end distortion. Nowak
and Sayeed [35–37] recently investigated the estimation of a
two-dimensional piece-wise linear spatial field. In this paper,
we also study the estimation problem for a network where
the sensor nodes observe spatially correlated data with an
emphasis on linear transmission and estimation along with
optimum power allocation. This problem is similar to the
Quadratic Gaussian CEO problem e.g., [20,21,23,34], with the
exception that, in our model, the agents (sensor nodes) observe
independently corrupted samples of a spatially correlated data
field. We assume that at each observation instant, the source
samples are jointly Gaussian, and the noise corrupting these
samples are spatially independent additive white Gaussian
noise (AWGN). The transmissions from sensor nodes to the
fusion center take place over orthogonal channels (e.g., by
TDMA/FDMA) that are subject to fading and additive channel

noise which is also Gaussian. Using the signals gathered
from all sensor nodes, the fusion center estimates the source
vector according to some distortion criterion. In this paper, we
study two different measures to characterize the distortion: (i)
individual mean squared error for estimation quality of the
signal at each sensor node, and (ii) the mean-squared error
distortion averaged across the sensor nodes. For each distor-
tion measure, we determine the achievable power-distortion
pairs that can be attained by the theoretically optimum system.
Taking the delay constraint into account, we next study the
amplify-and-forward-based uncoded transmission strategy for
this network. This transmission approach can be imagined as
a rate-1 joint source-channel coding with separate encoders
at different sensor nodes and the estimation can be viewed
as a joint decoding at the fusion center. The estimation
method depends critically on the information available to the
fusion center about the statistics of the source. We consider
two situations: (i) where there is no statistical knowledge of
the source, and (ii) where the autocorrelation matrix of the
source vector is known at the fusion center, and therefore,
the optimum estimator is the minimum mean-squared error
estimator (MMSE). In situation (i), we study the best linear
unbiased estimator (BLUE) that does not require any statistical
information. For both cases, we determine the optimum power
allocation schemes that minimize the total power required to
satisfy a certain distortion level. We note that the estimation
problem considered in [31] is different from the one we
consider since we study the estimation of a spatially correlated
field, while [31] considers the estimation of a common source.
As we see in Section III, the solutions to these two problems
differ significantly from each other.

In Section II of this paper, we describe the sensor network
model and specify the parameters for analog transmission.
We study in Section III the estimation based on the uncoded
analog forwarding strategy where we solve the optimum power
allocation problems for various schemes. In Section IV, we
present numerical examples for the optimum power allocation
and compare the performance between various schemes. Fi-
nally, in Section V, we summarize the results and list future
directions.

II. SYSTEM MODEL

Assume that there are K sensors and the observation at the
kth sensor at time t, xk(t), k = 1, . . . , K , is a random signal
given by

xk(t) = θk(t) + wk(t), t = 1, 2, . . . (1)

where θk(t) is the value of the observed field and wk(t) ∼
C(0, σ2

k) is the additive white Gaussian (AWGN) noise
at node k. Let θ(t) = [θ1(t), . . . , θk(t)] and w(t) =
[w1(t), . . . , wK(t)]. We assume that θ(t) is an independently
and identically distributed Gaussian vector whose autocor-
relation matrix is given by (for brevity, we drop the time
parameter)

Rθ = E{θθH}.
The transmitted signal from sensor node k, k = 1, . . . , K,

is given by
yk(t) =

√
αkxk(t)
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Fig. 1. Network model. Encoder k, k = 1, . . . , K , corresponds to an
amplify-and-forward scheme for the uncoded transmission strategy. With
source-channel separation theorem, Encoder k collects a long sequence of
xk(t) and generates another sequence yk(t), t = 1, 2, . . ., in which case the
estimator may experience a large delay.

where αk is power scaling parameter. Thus, the average
transmit power at node k is given by

E{y2
k(t)} = αk

(
[Rθ]k,k + σ2

k

)
where E{·} denotes the expectation operator and [A]i,j de-
notes (i, j)th entry of the matrix A. We assume that some
form of orthogonal multiple access technique such as time
or frequency division multiple access (TDMA/FDMA) can be
employed to realize the access to the fusion center [23], [31].
Assuming a Rayleigh flat fading channel with a gain factor
of gk between the kth node and the fusion center†, we can
express the received signal as

rk(t) =
√

αkgkθk(t) +
√

αkgkwk(t) + nk(t)

where nk(t) ∼ C(0, ξ2
k) denotes the additive white Gaussian

channel noise for the transmission from the kth node. In vector
form, we have the input-output relation (we drop the time
parameter)

r = Hθ + v (2)

where

r = [r1, . . . , rK ]T and θ = [θ1, . . . , θK ],
H = diag(

√
α1g1, . . . ,

√
αKgK),

v = (
√

α1g1w1 + n1, . . . ,
√

αKgKwK + nK)

and diag(·) denotes a diagonal matrix formed from its vector
argument. Since w = [w1, . . . , wK ] and n = [n1, . . . , nK ]
are independently distributed vectors with independently dis-
tributed entries, v is also a Gaussian vector whose covariance
matrix is given by

Rv = diag(α1g1σ
2
1 + ξ2

1 , . . . , αKgKσ2
K + ξ2

K)

Let θ̂ = f(θ) denote any estimate of θ. The error covariance
matrix is defined by

Rε = E{(θ − θ̂)(θ − θ̂)T }.
The Cramer-Rao bound on Rε for the signal model in (2) is

†The probability density is given by fgk (g) = 2ge−g2
.

given by [39]

Rε � (HT R−1
v H + R−1

θ
)−1, (3)

which can be attained by the linear minimum mean square
error estimator (MMSE) for a Gaussian signal model‡. The
Cramer-Rao bound in (3) specifies the best error-covariance
matrix attainable by any estimator for the prescribed signal
model in (2). Note that the kth diagonal entry of the error
covariance matrix, [Rε]k,k, is the squared error distortion at
node k. In this paper, we consider two distortion measures:
(i) an individual distortion measure for each node

d = [d1, . . . , dK ] (4)

where dk = E{|θk − θ̂k|2} = [Rε]k,k , and (ii) an average
distortion measure

ds =
1

K
E
{
(θ − θ̂)T (θ − θ̂)

}
=

1

K
tr
(
E{(θ − θ̂)(θ − θ̂)T }

)
=

1

K
tr(Rε) (5)

where tr(·) denotes the trace operator. This latter distortion
is a measure of average mean squared-error in the estimation
across all sensor nodes. These two distortion measures can be
employed depending on the sensor network application.

The amplify-and-forward strategy described above can be
imagined as a single-letter rate-1 joint source channel code.
In general, longer source and channel codes may be required
to achieve better performance. The theoretically optimum
performance bounds for achievable power-distortion pairs in
such a system can be derived using Shannon rate-distortion
bounds and channel capacity formula [28], which is obtained
in Appendix A.

III. UNCODED ANALOG TRANSMISSION

In this section, we study a rate-1 joint source channel code,
the amplify-and-forward strategy along with the minimum
power consumption and optimum power allocation under some
distortion constraint. The optimal estimator differs depending
on the availability of the source statistics at the receiver.
We study the best linear unbiased estimator (BLUE) and the
minimum mean square error (MMSE) estimator.

A. Analog Transmission with Best Linear Unbiased Estima-
tion

Assume that the source statistics, e.g., the correlation ma-
trix, is not available to the receiver. Since MMSE estimator
requires knowledge of the autocorrelation matrix Rθ , it can
not be employed. In this case, the best linear unbiased esti-
mator (BLUE) is the optimal choice and it is given by [39]

θ̂ =
[
HT R−1

v H
]−1

HR−1
v y.

The mean-squared error for this estimator can be obtained as

Rε =
[
HT R−1

v H
]−1

= diag{σ2
1 +

ξ2
1

α1g1
, . . . , σ2

K +
ξ2
K

αKgK
}

‡The matrix inequality A � B (A � B) denotes that A − B is a
nonnegative (positive) definite matrix.
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We will solve the optimum power allocation problem for the
two distortion criteria discussed above.

1) Individual Power Constraint: Let us denote the average
power of the observed signal at node k by W 2

k = [Rθ]k,k+σ2
k.

Then, the transmit power at node k is Pk = W 2
k αk (αk will be

determined soon), and the minimum-energy power allocation
problem based on the BLUE can be expressed as

min
∑K

k=1 W 2
k αk

s.t. σ2
k + ξ2

k

gkαk
≤ dk, k = 1, . . . , K

for αk ≥ 0, k = 1, . . . , K . By defining rk = σ2
k + ξ2

k

gkαk
, we

obtain a convex optimization problem over rk:

min
∑K

k=1 W 2
k

ξ2
k

gk(rk−σ2
k)

s.t. rk ≤ dk, rk ≥ σ2
k, k = 1, . . . , K.

for rk ≥ 0, k = 1, . . . , K . (Note that the objective function
and the constraints are all convex.) The Lagrangian cost
function is given by

J(λ1, . . . , λK , μ1, . . . , μK , r) =
K∑

k=1

W 2
k

ξ2
k

gk(rk − σ2
k)

+
K∑

k=1

λk(σ2
k − rk) +

K∑
k=1

μk (rk − dk)

and the KKT conditions follow as

−W 2
k

ξ2
k

gk(rk − σ2
k)2

− λk + μk = 0 (6)

μk (rk − dk) = 0, λk(−rk + σ2
k) = 0 (7)

rk − dk ≤ 0, −rk + σ2
k ≤ 0 (8)

for k = 1, . . . , K . Since −rk + σ2
k has to be strictly negative

(otherwise, the total power becomes infinity), we have λk = 0,
k = 1, . . . , K . By simple algebra, we find the optimal power
allocation coefficients

αk =
ξ2
k

gk(dk − σ2
k)

(9)

Note that dk lies in the interval (σ2
k,∞) because of observation

noise.

2) Average Distortion Constraint: The minimum-energy
power allocation problem for this case can be expressed as

min
∑K

k=1 W 2
k αk

s.t. 1
K

∑K
k=1 σ2

k + ξ2
k

gkαk
≤ ds

for αk ≥ 0, k = 1, . . . , K . Using rk = σ2
k + ξ2

k

gkαk
we have

the equivalent problem

min
∑K

k=1 W 2
k

ξ2
k

gk(rk−σ2
k)

s.t. 1
K

∑K
k=1 rk ≤ ds, rk ≥ σ2

k, k = 1, . . . , K

for rk ≥ 0, k = 1, . . . , K . The Lagrangian for this problem
is given by

J(λ1, . . . , λK , μ, r) =
K∑

k=1

W 2
k

ξ2
k

gk(rk − σ2
k)

+

K∑
k=1

λk(σ2
k − rk) + μ

(
1

K

K∑
k=1

rk − ds

)

and the KKT conditions follow as

−W 2
k

ξ2
k

gk(rk − σ2
k)2

− λk +
μ

K
= 0 (10)

μ

(
1
K

K∑
k=1

rk − ds

)
= 0, λk(−rk + σ2

k) = 0 (11)

1
K

K∑
k=1

rk − ds ≤ 0, −rk + σ2
k ≤ 0 (12)

for k = 1, . . . , K . As in the previous case, −rk + σ2
k has to

be strictly negative, so λk = 0. After some manipulations, we
have

αopt
k =

√
ξ2

k

W 2
k gk

∑K
k=1

√
W 2

k ξ2
k

gk

Kds −
∑K

k=1 σ2
k

(13)

We note that the estimation problem described here is
different from the one considered in [31]. In [31], the data
observed at each sensor node is assumed to be exactly the
same while here we consider spatially varying data. As a
result, the optimized power allocations for these two problems
have different solutions. In [31], the optimal power allocation
might result in turning off some of the sensors, while in the
case of spatially varying data, each sensor has to transmit its
observation with power proportional to the inverse of square
root of the channel SNR, where SNR = W 2

k gk/ξ2
k.

B. Analog Transmission with Minimum Mean Square Error
Estimation

We now assume that Rθ is known at the receiver and
therefore, we can use MMSE estimator.

1) Individual Distortion Constraint: First, we assume that
the estimation error for the sample observed at node k is
constrained to be no more than dk, k = 1, . . . , K . The MMSE
estimation for θ in (1) is given by [39]

θ̂ = RθHT (HRθHT + Rv)−1y

and the minimum mean-squared error covariance matrix for
this estimator is given by

Rε = Rθ − RθHT (HRθHT + Rv)−1HRθ (14)

=
(
HT R−1

v H + R−1

θ

)−1

where ε = θ − θ̂, and the second equality follows by using
the Matrix Inversion Lemma. We can express the power
optimization problem as follows:

min
∑K

k=1 W 2
k αk

s.t. [Rε]k,k ≤ dk, k = 1, . . . , K. (15)

The optimization in (15) finds the power gain allocations that
result in minimum total transmit power such that a maximum
distortion level of dk is allowed for node k, k = 1, . . . , K .
Let us define the K × 1 vector ej = [e1, . . . , eK ], j =
1, . . . , K , such that ek = 1 for k = j and ek = 0 for
k �= j, k = 1, . . . , K . Then, (i, j)th entry of A can be
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expressed as [A]i,j = eT
i Aej . Thus, we can rewrite (15) as

min
∑K

k=1 W 2
k αk

s.t. eT
k

[
(Γ + R−1

θ
)−1

]
ek ≤ dk, k = 1, . . . , K

where Γ = HT R−1
v H = diag

(
α1g1

α1g1σ2
1+ξ2

1
, . . . , αKgK

αKgKσ2
K+ξ2

K

)
.

Let us define
rk =

αkgk

αkgkσ2
k + ξ2

k

and make a change of variable to obtain an equivalent opti-
mization problem over r1, . . . , rK :

min
∑K

k=1

W2
k ξ2

k
gk

(
rk

1−rkσ2
k

)
(16)

s.t. eT
k (R + R−1

θ
)−1ek ≤ dk, 0 ≤ rk < 1

σ2
k
, k = 1, . . . , K

where R = diag{r1, . . . , rk}.

Observing that R and R−1

θ
are both symmetric positive

definite matrices, their sum is also a symmetric positive
definite matrix. Therefore, all K constraints in (16) defines a
convex set over r1, . . . , rK [40]. Since the objective function
is also a convex function, the optimization problem in (16) is
convex and it can be solved by Lagrange multipliers method.
The Lagrangian cost function is given by

J(λ1, . . . , λK ,R) =

K∑
k=1

W 2
k ξ2

k

gk

(
rk

1 − rkσ2
k

)
+

K∑
l=1

λl

(
eT

l (R + R−1

θ )−1el − dl

)
+

K∑
k=1

μk(rk − 1

σ2
k

) −
K∑

k=1

γkrk.

Using ∂X−1

∂[X]r,s
= −X−1ErsX−1 and ereT

s = Ers, we obtain
the gradient of the Lagrangian as

∂J(λ1, . . . , λK ,R)
∂rk

=
W 2

k ξ2
k

gk

(
1

1 − rkσ2
k

)2

−
K∑

l=1

λl

[
eT

l (R + R−1

θ
)−1ek

]2

+ μk − γk

(17)

Thus, we have the following KKT conditions:

W2
k

ξ2
k

gk

⎛
⎝ 1

1 − rkσ2
k

⎞
⎠2

−
K∑

l=1
λl

[
eT

l (R + R
−1
θ

)−1ek

]2
+ μk − γk = 0, (18)

e
T
k (R + R

−1
θ

)−1
ek = dk, μk(rk − 1/σ

2
k) = 0, γk(−rk) = 0 (19)

rk − 1/σ
2
k ≤ 0, rk ≥ 0 (20)

for k = 1, . . . , K . A closed form expression for this problem
is not tractable, but we can resort to numerical techniques to
solve for r1, . . . , rK . A simple and straightforward solution
exists for the case where local observations are independent,
i.e., Rθ is diagonal. For a general correlation model, we
present several numerical results in Section IV.

Example 1: Independent Observations: Let us assume
that the source samples at the sensor nodes are mutually
independent from each other, i.e., Rθ = diag(χ2

1, . . . , χ
2
K),

where χ2
k is the variance of the source sample at node k,

k = 1, . . . , K. After some manipulations, the KKT conditions

in (18)-(20) can be simplified to

W 2
k

ξ2
k

gk

(
1

1 − rkσ2
k

)2

=
λk

(rk + χ−2
k )2

, k = 1, . . . , K (21)

1
rk + χ−2

k

= dk, k = 1, . . . , K. (22)

From (22), we have

ropt
k =

(
1
dk

− 1
χ2

k

)+

for dk ≤ χ2
k, and

αopt
k =

ξ2
kropt

k

gk(1 − ropt
k σ2

k)

Note that because of the observation noise, dk is lower
bounded by σ2

kχ2
k

σ2
k+χ2

k
, k = 1, . . . , K . �

2) Average Distortion Constraint: If we wish to satisfy an
average square error distortion across all sensor nodes, we can
express the power optimization problem as follows:

min
∑K

k=1 W 2
k αk

s.t. 1
K tr(Γ + R−1

θ
)−1 ≤ ds

where Γ = HT R−1
v H, which can be rewritten as

min
∑K

k=1
W 2

k ξ2
k

gk

(
rk

1−rkσ2
k

)
s.t. 1

K tr(R + R−1

θ
)−1 ≤ d0, 0 ≤ rk < 1

σ2
k

(23)

where R = diag{r1, . . . , rk}, and rk = αkgk

αkgkσ2
k+ξ2

k
, k =

1, . . . , K.

Noting that tr(X−1) is convex over the set of symmetric
positive definite matrices [40] and observing that R+R−1

θ
	

0, (e.g., the sum of two symmetric positive definite matrices
is also a symmetric positive definite matrix), we conclude that
the constraint in (23) defines a convex set. Thus, we can use
the Lagrangian method where the cost function is given by

J(λ0,R) =
K∑

k=1

W 2
k ξ2

k

gk

(
rk

1 − rkσ2
k

)
+

λ0

(
1

K
tr(R + R−1

θ )−1 − ds

)
+

K∑
k=1

μk(rk − 1

σ2
k

) −
K∑

k=1

γkrk.

Using ∂
∂[X]r,s

tr(X) = tr ∂X
∂[X]rs

, we obtain the gradient of the
Lagrangian as

∂J(λ0, R)

∂rk

=
W2

k ξ2
k

gk

⎛
⎝ 1

1 − rkσ2
k

⎞
⎠2

− λ0
1

K

[
e

T
k (R + R

−1
θ

)−2
ek

]
+ μk − γk (24)

for k = 1, . . . , K . Thus, we have the following KKT condi-
tions:

W
2
k

ξ2
k

gk

⎛
⎝ 1

1 − rkσ2
k

⎞
⎠2

− λ0
1

K

[
e

T
k (R + R

−1
θ

)−2
ek

]
= 0, k = 1, . . . , K (25)

1

K
tr(R + R

−1
θ

)−1 = ds, μk(rk − 1/σ
2
k) = 0, γk(−rk) = 0 (26)

rk − 1/σ
2
k ≤ 0, rk ≥ 0 (27)

for 0 ≤ rk ≤ 1/σ2
k, k = 1, . . . , K . One can solve for the

unknowns with numerical techniques. If the local observations
are independent, i.e., Rθ is diagonal, the optimization in (23)
assumes a closed form solution as shown in the example
below. For a general correlation model, we resort to numerical
techniques.
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Example 2: Independent Observations: Let Rθ =
diag(χ2

1, . . . , χ
2
K), and without loss of generality, assume that

W1ξ1√
g1χ2

1
≤ . . . ≤ WKξK√

gKχ2
K

. We define

A(J) =
Kds − tr(Rθ) +

∑J
j=1

χ4
j

χ2
j+σ2

j∑J
j=1

χ2
jWjξj

(χ2
j+σ2

j )
√

gj

and
f(J) =

WJξJ√
gJχ2

J

A(J),

and then determine the unique J1 such that f(J1) ≤ 1 and
f(J1 + 1) > 1. Simplifying the KKT conditions in (25) and
(26) and solving for rj , we finally arrive at

ropt
j =

⎧⎪⎨
⎪⎩

1− Wjξj√
gjχ2

j

A(J1)

σ2
j +

Wjξj√
gj

A(J1)
j = 1, . . . , J1

0 j = J1 + 1, . . . , K

(28)

Therefore, we have the optimal power gains

α
opt
j =

ξ2
j

gj

ropt
j

1 − ropt
j σ2

j

(29)

Note that for this case, some of the sensor nodes may be shut
down depending on the noise variances and channel gains. �

A power-distortion region, in a similar fashion to the
theoretically optimum power distortion region described in
Appendix A, can also be defined for the uncoded transmission
system using the MMSE at the fusion center. For example, for
the average distortion characterization, we have

PMMSE(ds) =
{

P1, . . . , PK : ds ≥ 1
K

tr(Γ + R−1

θ
)−1

}
(30)

where Pk = αk([Rθ]kk + σ2
k), k = 1, . . . , K . In Section

IV, several comparisons between the power-distortion regions
achieved by different schemes are provided. We note that
if the observations at different sensor nodes are uncorre-
lated Gaussian random variables, it is easy to show that
PMMSE(ds) = P(ds), i.e., using the uncoded forwarding
strategy and employing the MMSE at the receiver achieves
the theoretically optimum performance.

C. Asymptotic Performance for Large Networks

We next study asymptotic performance of analog transmis-
sion in large networks, e.g., K → ∞. For tractable analysis,
we assume independent and identically distributed observation
samples e.g., Rθ = diag(χ2, . . . , χ2), identical observation
noise variances, e.g., σ2

k = σ2, and identical channel noise
variances, e.g., ξ2

k = ξ2, for k = 1, . . . , K . We define by
P̄ (d) the minimum transmit power per sensor node, e.g.,
P̄ (d) = 1

K

∑
k Pk(d), that is required to attain a distortion

dk = d, k = 1, . . . , K at each node, or an average distortion
d = 1

K

∑
k dk across all nodes. We can show that with BLUE,

we have P̄ (d) for individual and average power constraints as,
respectively,

P̄individual(d) =
(χ2 + σ2)ξ2

d − σ2
EG

{
1

g

}
=

(χ2 + σ2)ξ2

d − σ2
√

π (31)

P̄average(d) =
(χ2 + σ2)ξ2

d − σ2

(
EG

{
1

√
g

})2
=

(χ2 + σ2)ξ2

d − σ2
1.5 (32)

where EG {·} denotes the expectation over the distribution
of the fading coefficients. If we use MMSE estimator at the
receiver, we have

P̄individual(d) =
(χ2 + σ2)ξ2

χ2d
χ2−d − σ2

√
π (33)

P̄average(d) =
J2

1 χ4ξ2

K2(d − χ2)(χ2 + σ2) + J1Kχ4

(
1

J1

J1∑
j=1

1√
gj

)2

−

J1ξ
2

K

(
1

J1

J1∑
j=1

1

gj

)

(34)

where the P̄average(d) in (34) can be calculated using Monte
Carlo simulation.

IV. NUMERICAL EXAMPLES

In this section, we present numerical examples for the
power allocation problems and the achievable power-distortion
regions studied in the paper. The power allocation problem
with the MMSE does not allow for a closed form expression,
so we resort to numerical techniques to solve for optimal rk

and then find the optimal αk, k = 1, . . . , K . The optimization
for the distributed BLUE has a closed from solution and the
optimum power gains are given by (9) or (13).

We consider the spatial correlation model defined by a
correlation matrix

[Rθ]i,j = ρ|j−i|, ρ < 1. (35)

This matrix has a symmetric tridiagonal inverse that can be
computed by

[R−1

θ
]i,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
1−ρ2 i = j = 1, K
1+ρ2

1−ρ2 2 ≤ i = j ≤ K − 1
−ρ

1−ρ2 |i − j| = 1
0 |i − j| > 1

(36)

Hence, the matrix Γ+R−1

θ
in (23) also has a symmetric tridi-

agonal structure and can be analytically inverted by the method
described in [41]. The analytic evaluation of the gradient in
(17) and (24) improves the accuracy of the optimization.

In Figures 2 and 3, for a network with two sensors, we
depict the power-distortion regions that can be achieved by
the theoretically optimum system and the uncoded system with
the MMSE estimator and the BLUE under various observation
and channel noise variances. In Figure 2, we consider the
average individual distortion criterion. For the fading scenario,
we study two cases: (i) both links have equal gain (2.a and 2.c),
and (ii) the link to the fusion center for one of the sensor nodes
is 10 dB worse than that of the other one. From the plots, we
observe that the MMSE estimator performs significantly better
than the BLUE estimator for all ρ values. It is also clear that
P (ds) ⊇ P MMSE(ds) ⊇ P BLUE(ds). For higher correlations,
e.g., ρ = 0.9, or ρ = 0.99, we observe that it possible to satisfy
an average distortion level if the transmit power for one of
the sensor node is sufficiently large, and this can be achieved
by an uncoded transmission with the MMSE at the receiver.
This implies that by exploiting the correlation between the
observations we can estimate one from the other to attain a
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Fig. 2. Comparison of power-distortion regions attained by the theoretically optimum system and the uncoded transmission for the average distortion case.
Simulation parameters are K = 2, ρ = 0.5, 0.9 and 0.99, a) σ2

1 = σ2
2 = 0.1, ds = 0.2, g1 = g2 = 1, b) σ2

1 = σ2
2 = 0.1, ds = 0.2, g1 = 0.1, g2 = 1 c)

σ2
1 = σ2

2 = 0.01, ds = 0.1, g1 = g2 = 1 d) σ2
1 = σ2

2 = 0.01, ds = 0.1, g1 = 0.1, g2 = 1

certain average distortion level. Furthermore, it is also seen
that for larger values of ρ, it is possible to attain a prescribed
distortion level with less power.

In Figure 3, we depict power-distortion regions for the same
system assuming individual distortion levels of d = [0.2 0.2].
For this case, we also have P (d) ⊇ P MMSE(d) ⊇ P BLUE(d).
The power-distortion region exhibits similar properties as
those in the average distortion case as the correlation levels
or link qualities is varied.

Next, we study the total power (normalized by the number
of sensor nodes) versus reconstruction quality performance.
In Figure 4, we study K = 2 sensor systems and compare
the MMSE estimation and BLUE against the theoretically

optimum system performance. Curves in Figure 4.a and Figure
4.b are for the average distortion and individual distortion
constraints, respectively. In the latter case, we assume d1 = d2.
The performance is averaged over Rayleigh fading using
Monte Carlo simulation. It is seen that performance in both
cases are very close to each other. The MMSE estimator
performance is always superior to the BLUE and the im-
provement is larger especially at higher source correlation.
Furthermore, at lower source SNR, i.e., 10 dB, the MMSE
estimation performance is about 10 dB better. The theoretically
optimum system performance is about 3.4 dB better than that
of the MMSE when ρ = 0.99 and source SNR is 20 dB. The
gap is about 2.4 dB when ρ = 0.9.
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Fig. 3. Comparison of power-distortion regions attained by the theoretically optimum system and the uncoded transmission for the individual distortion case.
Simulation parameters are K = 2, σ2

1 = σ2
2 = 0.1, d = [0.2 0.2], ρ = 0.9 and 0.99, a) g1 = g2 = 1, b) g1 = 0.1, g2 = 1
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Fig. 4. Average channel SNR per sensor node vs. reconstruction SNR attained by the theoretically optimum system and the uncoded transmissions. Simulation
parameters are K = 2, χ2

1/σ2
1 = χ2

2/σ2
2 = 20 dB for dashed curves, χ2

1/σ2
1 = χ2

2/σ2
2 = 10 dB for solid curves, ρ = 0.9 and 0.99, a) Average distortion

constraint b) Individual distortion constraint such that d1 = d2 = d. Performance in both cases are close to each other.

Figures 5.a and 5.b study larger networks with 10 and 100
sensor nodes, respectively. In this case, it is formidable to
compute the theoretically optimum performance, therefore, we
study the performance of analog transmission only. In Figure
5, we consider a network of K = 10 (in 5.a) and K = 100 (in
5.b) sensor nodes. We plot the reconstruction SNR against the
average power per node required (normalized by the channel
noise). It is seen that for both sizes of the network, we have
very similar performance trend. In the figures, the dashed
curves are for observation SNR of 20 dB at each node, while
the solid curves are for 10 dB observation SNR. In particular,
for the observation SNR of 10 dB, the performance of MMSE

estimator is again about 10 dB better than that of the MMSE
when ρ = 0.9 while the relative gain with MMSE compared
to the BLUE increases to more than 20 dB when ρ = 0.99.
The gains with MMSE become less for higher observation
SNR, however, as the correlations become higher, we observe
much better performance with MMSE. This suggests we better
utilize the correlation structure of the observed field.

In the last example, we consider the asymptotic perfor-
mance of analog estimation assuming that the observations
are independent identical and the channels from sensor nodes
to the fusion center is Rayleigh fading (See Section III-C).
Figure 6 plots the relative gain between the MMSE estimation
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Fig. 5. Power vs. reconstruction SNR performance comparison for distributed estimation of a correlated field with optimal power allocation with the MMSE
and the BLUE. Simulation parameters: ρ = 0.9 and 0.99, dashed curves: χ2/σ2

k = 20 dB, solid curves: χ2/σ2
k = 10 dB. Average power per node is

normalized by channel noise variance. a) K = 10 sensor nodes, b) K=100 sensor nodes
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Fig. 6. Power gain with MMSE estimator compared to the BLUE for large networks when observations are interdependent. a) Average distortion criterion
d, b) same individual distortion criterion d for each node

and the BLUE estimation with optimal power allocations (for
both average and individual distortion criteria). Note that,
the analog transmission with MMSE estimation is also the
theoretically optimum system for this case. Again, the MMSE
estimation is superior. The gain is more if we wish to attain
very good reconstruction quality, e.g., the gains are more than
10 dB if a reconstruction quality close to the observation
quality at the sensor nodes is desired.

V. CONCLUSIONS

In this paper, we addressed energy-efficient estimation of
correlated data in a wireless sensor network where spatially
distributed sensor nodes observe independently corrupted ver-

sions of a correlated Gaussian vector source and transmit
their observations over orthogonal multiple access channels
to a fusion center where a final estimate is obtained. We
assumed that the communication between the sensor nodes and
the fusion center is subject to fading and additive Gaussian
noise. For this network model, we derived the achievable
power-distortion region. We considered two different distor-
tion characterization: (i) an individual distortion measure to
assess the estimation quality at individual sensor nodes, and
(ii) an average distortion measure to characterize the distortion
on an average basis across sensor nodes. For both distor-
tion measures, we studied an uncoded analog transmission
strategy where the noise-corrupted sensor observations are
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simply amplified and forwarded. Based on the availability
of the correlation matrix of the Gaussian vector source, we
considered two different estimation techniques: (i) the mini-
mum mean-square error estimation, which requires knowledge
of the correlation matrix, and (ii) minimum linear unbiased
estimation, which does not require any statistical knowledge.
For both estimation techniques, we determined the optimal
power allocation scheme and the minimum required power
with which one can satisfy a certain mean-squared error dis-
tortion level. Performance comparisons of the various schemes
indicate that one needs to exploit the intersensor correlations
for better energy efficiency. Comparison with optimal schemes
indicate that as correlations between the sensor observation
becomes small, the performance gap between the uncoded
scheme and the theoretically optimum scheme decreases.
Furthermore, performance comparisons between the MMSE
and the BLUE indicate that exploiting the correlation among
sensor observations (by the MMSE) reduces the required
power to attain some distortion level.

In this work, we assumed that no bandwidth expansion
is allowed, e.g. κ = 1. An extension to the current work
includes the design and analysis of analog error-correcting
techniques for coding of noisy observations at the local sensors
prior to the transmission to the fusion center. Furthermore, in
this paper, we assumed that there is no temporal correlation.
However, in many cases, the consecutive observations at each
node are likely to have correlations. One needs to exploit these
correlations for a better energy performance.

APPENDIX A: ACHIEVABLE POWER-DISTORTION REGION

The achievable power-distortion region for our problem can
be determined using the methods described in [21], [23], [38]
for the case where a common source in noise is observed at
all nodes. While separation theorem is not optimal in multiple
access channel, it is shown in [23] that if the multiple access
is via orthogonal channels, the separate source-channel coding
attains all possible power-distortion pairs. Note that although
the separation theorem generally requires infinite length source
and channel codes to achieve the theoretical limits, it will
be useful to compare these limits with that of the proposed
uncoded scheme.

We first obtain the rate-distortion region for the network
shown in Figure 1 via the auxiliary Gaussian test channels
[23], [28]:

z = x + n (37)

where n is a zero mean Gaussian noise vector with covariance
matrix Rn = diag(η2

1 , . . . , η
2
K) and x = θ+w is the observa-

tion vector. The set of variances η2
k, k = 1, . . . , K, for which

the mean square error distortion at node k, k = 1, . . . , K, is
less than dk is given by

ΨM (d) �
{

(η2
1 , . . . , η2

K) : dk ≥
[(

(Rn + Rw)−1 + R−1

θ

)−1
]

k,k

,

k = 1, . . . , K} .
(38)

Then, the rate-distortion region follows as [21], [22], [38]

R(d) =
⋃

(η2
1,...,η2

K)∈ΨM (d)

R(d; η2
1 , . . . , η2

K) (39)

such that R(d; η2
1 , . . . , η2

K) ={
(R1, . . . , RK) :

∑
i∈A Ri ≥ I(XA; ZA|ZAc), ∀A ⊆ IK

}
where IK = {1, . . . , K}, A denotes subsets of IK , Ac

is the complementary set of A, and XA and I(·) denote
the set {Xk : k ∈ A} and the mutual information,
respectively. XA and ZA denote the random variables whose
realizations are given described by (37). Note that for the
special case of K = 2 sensors, we can show that setting
σ2

k = 0, k = 1, . . . , K , e.g., Rw = 0, the rate-distortion
region given by (39) reduces to the region given by [16]. The
rate-distortion region in (39) provides the minimal required
rate-tuples (R1, . . . , Rk) to achieve distortion d regardless of
the channels between the sensor nodes and the fusion center.
As long as the capacity of the channels are greater than the
required rates, one can attain d by using sufficiently long
source codes and channel codes.

Combining the rate-distortion region with the Shannon
channel capacity for each sensor node (assuming a zero-
mean unit-variance additive white Gaussian channel noise),
Rk ≤ 1

2 log(1 + Pkgk), we obtain the power-distortion region

P(d) =
⋃

(η2
1 ,...,η2

K)∈ΨM(d)

P(d; η2
1 , . . . , η

2
K) (40)

where

P(d; η2
1 , . . . , η2

K) =

{
(P1, . . . , PK) :

∏
i∈A

(1 + Pkgk) ≥
( |RXAZAc ||RZ |
|RXAZ ||RZAc |

)κ

,∀A ⊆ IK

} (41)

and κ is the source/channel code rate (e.g., for uncoded
transmission, κ = 1), XA1ZA2 denotes the vector formed by
stacking the elements of XA1 and ZA2 , and RXA1ZA2

denotes
the corresponding covariance matrix. The matrix RXA1ZA2

can be evaluated using (37), e.g., E{XiXj} = [Rθ]i,j ,
E{XiZj} = [Rθ]i,j + σ2

i δi,j , and E{ZiZj} = [Rθ]i,j +
(σ2

i + η2
i )δi,j

†.
The obtain the achievable region under the

average distortion metric, we only need to
replace the region ΨM (d) in (38) by ΨS(ds) �{

(η2
1 , . . . , η

2
K) : ds ≥ 1

K tr
(
(Rn + Rw)−1 + R−1

θ

)−1
}

,

and d by ds in all subsequent equations (39)-(41)
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