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Abstract

A general framework is provided to derive analytic error bounds for the effect
of perturbations and inaccuracies of nonexponential service or arrival distributions
in single- and multi-server queues. The general framework is worked out in detail
for the three types of finite or infinite buffer queues: GI/G/1/N , M/G/c/N , and
GI/M/c/N .

First, for the standard GI/G/1/N queue, it is illustrated how the general error
bound result can lead to error bounds for different performance measures like the
throughput, mean queue length and stationary queue length distribution. Next, for
the M/G/c/N queue, an error bound and monotonicity result are established for
the throughput. M/G/c/N queues can so be compared even when hazard rates are
not ordered. Finally, for the GI/M/c/N queue, a similar result is obtained with a
perturbation of the inter-arrival time distribution.

The error bound results are supported by asymptotic expressions for the M/M/c/N

queue and numerical results for the GI/G/1/N queue.
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1. Introduction

As nonexponential stochastic service systems such as M/G/c/N and GI/G/c/N -queues

cannot be solved analytically, there has been a huge number of studies on approximations

for characteristics of interests. Reviews of such approximations can be found, among

others, in Tijms [18] for single server queues (see also [8] for the GI/G/1/N queue) and

Kimura [6] for multi-server queues. These approximations are often based on closed form

expressions that are analytically tractable (see, e.g., [9]). However, approximations can

still be limited, complicated and computationally expensive. It thus remains of interest to

compare nonexponential stochastic service systems under (slightly) different parameter

and service assumptions, most notably,:
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(i) To compare it with service cases that are more tractable, either analytically or

numerically,

(ii) To compare its performance, most notably to quantify its difference, with that for

the simple exponential case,

(iii) To take into account the natural feature that the underlying parameter estimates

and service form assumption are usually based on data and thus involve some

amount of imprecision or ‘mis-specification’.

Stochastic comparison approach For M/G/c/N -queues, there has been enormous

literature on closed form expressions and accurate approximations. Amazingly enough,

relatively little attention has been paid to accuracy or sensitivity questions for (i), (ii) and

(iii). One positive exception in this direction has been set by the extensive interest over

the last three decades for stochastic comparison results (see, e.g., [5, 7]). Early stochastic

comparison results for GI/G/c-queues can already be found in Daley and Moran [2]

(single server), Stidham [15] (single server), Jacobs and Schach [4] (multi-servers), and

Yu [28] (multi-Erlangian servers).

An elegant survey of bounds and approximations for GI/G/c-queues along this line

is given in Stoyan [16], followed by a more extensive treatment of stochastic comparison

results in his excellent book [17] (see also [11, 27] for more recent accounts). In these

references infinite buffer queues were considered. Extensions for the finite buffer case can

be found in Sonderman [13, 14] based on his thesis [12]. In [13] the effect of strongly

stochastically ordered interarrival and service time distributions is studied with coun-

terexamples referred to for specific cases. In [14] the effect of changing the number of

servers is investigated.

In those stochastic comparisons, sample path and weak coupling arguments have

been used extensively. Despite the elegance of such a sample path approach, a price

to be paid here is that (strong) stochastic ordering conditions may have to be imposed.

These may be hard to verify. Particularly, service distributions that are not stochastically

ordered can not be considered. A second even more important drawback of a stochastic

comparison approach is that no quantification or error bound is provided for the difference

of characteristics to be compared such as the throughput or response time.

Error bound approach In Van Dijk and Puterman [23], a Markovian reward approach

was introduced and applied to provide error bounds for the effect of perturbations or im-

precisions such as in M/M/ · /· queues with different arrival and service rates. This

reward approach has meanwhile been applied in a variety of non-solvable queueing net-

work cases. For example, analytic error bounds are provided for truncating or expanding

finite capacity networks (cf. [20, 22]).

So far, however, this approach has only been applied to exponential queues for es-

tablishing bounds and error bounds when modifying the system parameters or protocols
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(buffer sizes, number of servers, arrival rates, blocking protocol). Here, by exponential

queue, it is meant that the inter-arrivals and service times are exponentially distributed.

In Miyazawa and Van Dijk [10] a first step has been set to extend the Markov reward

approach to nonexponential service systems. Error bounds were obtained for changing

the buffer sizes in GI/M/c/N queues. However, the arrival and service distributions were

kept unchanged.

Extension In the present paper, the Markov reward approach is extended to also

investigate the effect of changes in nonexponential arrival and service distributions in

multi-server queues. More precisely, analytic error bounds are derived for the effect

of different nonexponential distributions. This extension involves two essentially new

technicalities:

1. A Markovian reward approach which also deals with states that change continuously

in time in stead of only at discrete times.

2. The bounding of so-called bias-terms, as essential step of the Markov reward ap-

proach, with a continuous-state variable.

Neither of these two aspects has been dealt with before nor seems evident. As technical

restriction, the service distributions are assumed to have bounded hazard rates. Nev-

ertheless, these distributions are wide enough in the sense that they cover any phase

type distribution with a finite state space. These in turn are dense within the set of all

distributions.

The error bound results that will be obtained are not meant or can not be expected

to be accurate. They are developed to provide secure bounds, orders of magnitude and

comparison results also for queues that are not stochastically ordered.

x
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Figure 1: Comparison of non-ordered hazard rate functions

Example As an example, compare two M/G/c/N queues with different service distri-

butions G1 and G2. These distributions or rather their hazard rates h1 and h2 may not

be ordered (see Figure 1). Nevertheless, a comparison will be made up to an inaccuracy

(error bound) which can be expressed analytically by the difference in bounding hazard

rates h3 and h4.
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Results In order to develop, apply and illustrate these extensions as well as to show

the quality of the error bounds, this paper contains three types of results:

1. A general error bound for the effect of changes in nonexponential distributions for

multi-server queues.

2. An application of this result for a number of nonexponential service systems (single

server case, nonexponential arrival and nonexponential service case).

3. Support by analytic asymptotic expressions and numerical results for a number of

situations.

The technical details of these applications are highly complex and even in compact form

constitute a substantial part of the paper. A comparison with some analytic cases illus-

trates that the (analytic) error bounds have the order that can at best be expected.

Outline and detailed results First we develop a general framework and derive a

general error bound under certain technical conditions in Section 2. Next we consider its

applications to the GI/G/1/N , M/G/c/N and GI/M/c/N queues in Sections 3, 4 and

5 respectively. In these sections, the technical conditions are verified. Particularly, error

bounds for the so-called bias-terms are established. Analytic error bounds are obtained

for perturbations in the service or arrival distribution. Different measures of interest are

considered: the throughput, the steady state queue length distribution, and the mean

queue length for the GI/G/1/N case (Theorems 3.1, 3.2 and 3.3), the throughput for

the M/G/c/N case (Theorem 4.1) and the mean queue length for the GI/M/c/N case

(Theorem 5.1). As side results, Theorems 3.3 and 3.4 also include monotonicity results

that could also have been concluded by stochastic comparison results, provided the queues

are ordered. Moreover, in Corollary 4.2, a monotonicity result is established for queues

that are not ordered. Some numerical support is provided in Section 6. An evaluation

of the error bound results and some remarks on their limitations and possible extensions

conclude the paper.

2. Nonexponential perturbation and error bound results

This section contains the general framework and the basic error bound result. In the sub-

sequent sections, error bound results will be concluded for a number of specific situations

and performance measures by verifying the technical conditions.

2.1 Formulation and notation

Consider a multi-server queue with a nonexponential arrival stream, nonexponential ser-

vices and a finite or infinite capacity. More precisely, a GI/G/c/N queue is considered,
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in which the interarrival and service times are independent and identically distributed

with an arrival distribution function F (t) and a service distribution G(t), respectively,

and there are c servers and a waiting room of size M ≡ N − c. Here, N may be infinite.

When the waiting room is fully occupied, arriving jobs are rejected and lost. Servers

are numbered as 1, 2, . . . , c, and jobs are processed in First Come First Served order. As

we need to keep track of the individual services and their evolution, for convenience we

make the following assumptions. When ` jobs are in service with ` ≤ c, servers 1, 2, . . . , `

are occupied. When a job arrives, it is assigned to server ` + 1 if ` < c, and otherwise

added to the end of the waiting line. When the job at server i ≤ c completes service,

the first job in the waiting line instantaneously moves to server i. If there are no waiting

jobs, the jobs at servers i + 1, . . . , ` shift to servers i, . . . , ` − 1. This service policy is

referred to as a packing rule. Note that this packing rule is equivalent to renumbering

servers upon arrivals and service completions, since service speeds are identical for all the

servers. However, the packing rule is more convenient for our purposes.

Furthermore, we impose the assumption that both the arrival and service distributions

F (t) and G(t) are absolutely continuous with density functions f(t) and g(t), and have

bounded hazard rate functions λ(t) and h(t). That is, for some finite constants Hf and

Hg,

λ(t) =
f(t)

1− F (t)
≤ Hf , t ≥ 0,

h(t) =
g(t)

1−G(t)
≤ Hg, t ≥ 0.

Since this class of distributions is dense in the class of one dimensional distributions on

the nonnegative half line, the assumption is not very restrictive. For instance, it includes

any phase type distribution with a finite state space.

In order to present a Markovian description in continuous time, we need to keep track

of the state x = (n, a, s) with

n : the total number of jobs present which includes the jobs in service,

a : the elapsed time since the last arrival,

s = (s1, s2, . . . , s`): the `-dimensional vector with ` ≤ c with by si denoting the

attained service time of the job that is presently at server i. If ` = 0, equivalently,

n = 0, s is a null vector with no component. We denoted it by the number 0 for

convenience.

Performance measures Let {X(t)|t ≥ 0} be the corresponding Markov process. Let ν(t)

be the number of the state changes up to time t due to arrivals or service completions.

We will distinguish two types of possible reward functions.

r1(x) : a reward rate when the system state is x,
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r2(x,y) : an instantaneous reward when the system state changes from x to y.

The average performance measures A of interest can then be expressed by

A = lim
t→∞

1

t
E

[ ∫ t

0

r1(X(u))du+

∫ t

0

r2(X(u−), X(u+))dν(u)
∣∣∣X(0) = x0

]
. (2.1)

Here, E denotes an expectation, and the limit is assumed to exist and to be independent

of the initial state x0. As usual, X(u−) and X(u+) are the value of X(u) just before

and just after time t, respectively.

The distinction of the reward functions r1 and r2 is convenient for representing differ-

ent performance measures. For example, A represents the mean queue length by setting

r1(n, a, s) = n

and r2 ≡ 0. A represents the throughput of the system by setting r1 ≡ 0 and

r2((n, a, s), (n′, a′, s′)) =
c∑

`=1

1(n′ = n− 1 ≥ c, a′ = a, s′` = 0, s′j = sj > 0 for j 6= `)

+1(c > n′ = n− 1 ≥ 0, a′ = a, s′n = 0, s′j = sj > 0 for j < n),

where 1(S) is the indicator function of the statement S. In most applications, either

r1 ≡ 0 or r2 ≡ 0. But, this is not necessary for the general case.

We are interested in the effects on these performance measures when the system, more

precisely the hazard rate function λ or h, is perturbed. In order to study these effects,

we will present a general error bound (Lemma 2.2). First, let us introduce some notation

and reformulate the continuous time Markov process as a discrete time Markov process.

Notation We use the following operations for vectors. For s = (s1, · · · , s`) and for

x ≥ 0, define operations ⊕,ª and ∨ by




s⊕ uj(x) = (s1, · · · , sj−1, x, sj, · · · , s`) for j ≤ `+ 1

sª ui = (s1, · · · , si−1, si+1, · · · , s`) for i ≤ `

sª (ui ∨ uj) = (s1, · · · , si−1, si+1, · · · , sj−1, sj+1, · · · , s`) for i < j ≤ ` ,

particularly, if ` < c, then

s⊕ u`+1(x) = (s1, · · · , · · · , s`, x) .

The operation ⊕ presents to add a job in service, and ª presents to remove a job from

service. Those operations are always performed from the left to the right, so parentheses

for multiple operations are omitted unless it causes any confusion. For instance, with

i < j < `:

sª ui ⊕ ui(x) = (s1, · · · , si−1, x, si+1, · · · , s`)

s⊕ ui(x)⊕ uj(y) = (s1, · · · , si−1, x, si+1, · · · , sj−2, y, sj−1, · · · , s`) .
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Note that the order of these operations can not be changed. For instance, for s = (1, 2, 3)

with n = 3, we have

s⊕ u1(0)⊕ u3(0) = (0, 1, 0, 2, 3) 6= (0, 1, 2, 0, 3) = s⊕ u3(0)⊕ u1(0) .

Furthermore, for any v > 0 and vector s = (s1, . . . , s`), let

sv = (s1 + v, s2 + v, . . . , s` + v).

Uniformization In our arguments, we will evaluate the error bounds by induction based

upon discrete-time cumulative reward functions. To this end, we first transform the con-

tinuous time Markov process into a discrete-time Markov chain in line with an extended

uniformization result obtained in [19].

Consider an alternative Markov process, denoted by {Y (t)|t ≥ 0}, which has jumps

according to a Poisson process with rate Q, where Q is any number such that

Hf + cHg ≤ Q.

This Markov process has state description (n, a, s). The transition kernel is as follows.

Given that the state just before the jump is (n, a, s), at the jump the state will change

into (n′, a′, s′) with probability:

P ((n, a, s), (n′, a′, s′)) =





Q−1λ(a),





n′ = n+ 1 ≤ c, a′ = 0, s′ = s⊕ un+1,

n′ = n+ 1 ≥ c+ 1, a′ = 0, s′ = s,

n′ = n = N, a′ = 0, s′ = s,

Q−1h(si)





n′ = n− 1 < c, a′ = a, s′ = sª ui,

n′ = n− 1 ≥ c, a′ = a, s′ = sª ui ⊕ ui(0),

(i = 1, 2, . . . ,min(n, c)),

1−Q−1[λ(a) +
∑min(n,c)

i=1 h(si)], (n′, a′, s′) = (n, a, s).

For instance, the third case, i.e., n′ = n = N, a′ = 0, s′ = s, represents that a customer

arrives but finds no space to enter. Between the jumps, the continuous components of

Y (t) are assumed to increase at rate 1. That is, if the system is in state (n, a, s) just after

the jump and if there is no jump during a time interval of length v, then the system will

be in state (n, a+v, sv) at time v after the jump. The following fact is then an immediate

consequence of [19], of which the proof is based upon showing that both processes have

the same infinitesimal generators.

Lemma 2.1 The processes {X(t)|t ≥ 0} and {Y (t)|t ≥ 0} are stochastically equivalent,

i.e., they have the same joint probability distributions.

As a direct consequence of this equivalence result, we can evaluate the average values

A in a discrete manner by just using the jump transition probability function P . To this

end, define functions Vk(n, a, s) for k = 0, 1, . . . as

Vk(n, a, s) = E
( ∫ τk

0

r1(X(u))du+
k∑

i=1

r2(X(τi−), X(τi+))
∣∣∣X(0) = (n, a, s)

)
,
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where τi is the i-th transition epoch under the uniformization. In words, Vk collects the

rewards up to the k-th state change at rate r1 and instantaneous rewards r2. We therefore

refer to Vk as a cumulative reward function. Let Rv(n, a, s) be the expected reward up

to time v since the last jump instant, given that the system was in state (n, a, s) directly

after this jump instant and that the next jump takes place after time v. That is, Rv is

defined as

Rv(n, a, s) =

∫ v

0

r1(n, a+ u, su)du

+
∑

(n′,a′,s′)
P ((n, a+ v, sv), (n

′, a′, s′))r2((n, a+ v, sv), (n
′, a′, s′)). (2.2)

The cumulative rewards Vk can then be computed iteratively by V0(·) ≡ 0 and, for

k = 1, 2, . . .,

Vk(n, a, s) =

∫ ∞

0

dvQe−Qv
[
Rv(n, a, s)

+
∑

(n′,a′,s′)
P ((n, a+ v, sv), (n

′, a′, s′))Vk−1(n
′, a′, s′)

]
. (2.3)

Here, Vk has the stochastic interpretation of the expected cumulative reward over

k-steps where each step requires an exponential time with parameter Q, and thus with

expected step time Q−1. This also explains the factor Q in (2.4) below. Based upon the

equivalence result by Lemma 2.1, the average reward A can then be computed by

A = lim
k→∞

Vk(n, a, s)

E(τk)
= lim

k→∞
Q

k
Vk(n, a, s), (2.4)

for an arbitrary initial state (n, a, s). Note that the right-hand side of (2.4) does not

depend on Q, because A does not depend on Q by Lemma 2.1.

2.2 General error bound result

Now let the arrival and service hazard rates, λ(t) and h(t), of the multi-server queue

described above be perturbed into hazard rates λ(t) and h(t), respectively. Here, we

assume that also λ and h are bounded, say by constants Hf and Hg, respectively, and

that Q is chosen in such a way that

Hf +Hg ≤ Q.

For simplicity, the capacity N is kept unchanged. But it is easy to implement such a

perturbation as well (see, e.g., [20]). We refer to this modified system as the perturbed

system, and all notation and symbols are carried over for the perturbed system with an

upper bar symbol, e.g., P , A and V k.
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We aim to establish error bounds for |A − A|. To this end, we impose the natural

assumption that both the original and perturbed systems have stationary distributions

with multi-dimensional distribution functions:

Π(n, a, s) and Π(n, a, s).

By π and π, we denote the marginal mass functions with respect to the first components

of Π and Π, i.e.,

π(n) = Π(n,+∞,+∞)− Π(n− 1,+∞,+∞)1(n ≥ 1),

π(n) = Π(n,+∞,+∞)− Π(n− 1,+∞,+∞)1(n ≥ 1).

Furthermore, for a nonnegative function ψ in (n, a, s), we define the scalar 〈Π, ψ〉 by

〈Π, ψ〉 =

∫
dΠ(n, a, s)ψ(n, a, s),

and, for all v > 0, we define the operators Mv for ψ by

Mvψ(n, a, s) =
∑

n′

∫

a′,s′
P ((n, a+ v, sv), (n

′, da′, ds′))ψ(n′, a′, s′).

Clearly, the operator Mv are linear and bounded under the sup norm. For k = 0, 1, . . .

and v ≥ 0, define the difference function Zk
v as

Zk
v (n, a, s) = [Rv −Rv](n, a, s) + [M v −Mv]Vk(n, a, s). (2.5)

Lemma 2.2 (i) If, for some nonnegative function δ,

|Zk
v (n, a, s)| < δ(n, a+ v, sv)Q

−1 for all k, v, and (n, a, s), (2.6)

then

|A− A| ≤ 〈Π, δ〉. (2.7)

(ii) If Zk
v (n, a, s) ≥ 0 for all k, v and (n, a, s), then

A ≤ A.

Remark 2.1 (a) To bound Zk
v (n, a, s), δ(n, a + v, sv) instead of δ(n, a, sv) is used in

(2.6). As will be apparent from the proof below, this enables one to express the error

bound (2.7) in terms of Π instead of the embedded distribution just after a jump instant,

which will be denoted by Π
+
. The latter distribution is more difficult to get than Π. The

bounding functions in our applications will fit the form (2.6).

(b) It may look strange that the bound in (2.7) needs Π of the perturbed system. However,

by using symmetry arguments in Π and Π, we can replace Π by Π. Furthermore, full

information on Π (or Π) may not be required.
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Proof. By comparing the one step relation (2.3) for the original and perturbed system,

for any k, we obtain

(V k+1 − Vk+1)(n, a, s)

=

∫ ∞

0

dvQe−Qv
[
(Rv −Rv)(n, a, s) + (M vV k −MvVk)(n, a, s)

]

=

∫ ∞

0

dvQe−Qv
[
(Rv −Rv)(n, a, s) + (M v −Mv)Vk(n, a, s)

]

+

∫ ∞

0

dvQe−QvM v(V k − Vk)(n, a, s). (2.8)

Let {Y (t)|t ≥ 0} be the uniformized Markov process for the perturbed system, corre-

sponding with {Y (t)|t ≥ 0} of the original system. Let Π
+

be the stationary distribution

of {Y (τ i+)|i = 0, 1, 2, . . .}, where τ i is the i-th jump instant of Y (t). Since those jump in-

stants constitute a Poisson process, the stationary distribution Π of Y (t) is identical with

the one just before the jump instants due to the well known property PASTA (Poisson

Arrivals See Time Average). Hence, we have

Π
+
(n, a, s) =

∫

(n′,a′,s′)
dΠ(n′, a′, s′)P ((n′, a′, s′), (n, a, s)).

Then, for any function ψ,
∫

(n,a,s)

dΠ
+
(n, a, s)

∫ ∞

0

dvQe−QvM vψ(n, a, s) =

∫

(n,a,s)

dΠ
+
(n, a, s)ψ(n, a, s),

∫

(n,a,s)

dΠ
+
(n, a, s)

∫ ∞

0

dvQe−Qvψ(n, a+ v, sv) =

∫

(n,a,s)

dΠ(n, a, s)ψ(n, a, s),

where the second equation is obtained again by PASTA. So taking absolute values of

both sides of (2.8) and integrating with respect to Π
+

yield

〈Π+
, |V k+1 − Vk+1|〉 ≤ Q−1〈Π, δ〉+ 〈Π+

, |V k − Vk|〉.

Summing for k = 0, 1, . . . ,m− 1 yields

〈Π+
, |V m − Vm|〉 ≤ mQ−1〈Π, δ〉, m = 1, 2, . . . .

Multiplying both sides by Q/m, letting m→∞, and applying Fatou’s lemma gives

〈Π+
, lim inf

m→∞
Q

m
|V m − Vm|〉 ≤ lim inf

m→∞
〈Π+

,
Q

m
|V m − Vm|〉 ≤ 〈Π, δ〉.

By the definitions of A and A and the assumption that A and A are independent of the

initial values, this proves part (i) of Lemma 2.2. Part (ii) follows similarly by not taking

absolute values.

Lemma 2.2 may seem impractical as Vk(n, a, s) will generally grow linearly in k while

the bound δ(n, a + v, sv) in (2.6) must be independent of k. However, by using the fact
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that P v and Pv are transition probability functions, we can write

Zk
v (n, a, s) = [Rv −Rv](n, a, s)

+Q−1
[
λ(a+ v)− λ(a+ v)

]{
1(n < c)

[
Vk(n+ 1, 0, sv ⊕ un+1(0))− Vk(n, a+ v, sv)

]

+1(c ≤ n < N)
[
Vk(n+ 1, 0, sv)− Vk(n, a+ v, sv)

]

+1(c = N)
[
Vk(n, 0, sv)− Vk(n, a+ v, sv)

]}

+Q−1

min(n,c)∑
i=1

[
h(si + v)− h(si + v)

]

×
{

1(n ≤ c)
[
Vk(n− 1, a+ v, sv ª ui)− Vk(n, a+ v, sv)

]

+1(n > c)
[
Vk(n− 1, a+ v, sv ª ui ⊕ ui(0))− Vk(n, a+ v, sv)

]}
. (2.9)

Expression (2.9) more explicitly shows the effect of a perturbation. More importantly,

it enables one to transform conditions on Vk, which are generally unbounded in k, into

conditions on difference terms (so called bias terms) of Vk. These difference terms, in

turn, are generally uniformly bounded in k, as will be proved in the subsequent sections.

In fact, in what follows, the main focus will be to obtain explicit analytic bounds for

these difference terms.

Remark 2.2 As is directly seen from the proof of Lemma 2.2, the role of the original

and modified systems can be interchanged. This observation can be useful when relative

errors are considered.

3. GI/G/1/N queue

In this section we will investigate a single server queue with a perturbation of the service

distribution. The more general s-server case will be dealt with in the next section.

However, the single server case is dealt with separately first to illustrate the technicalities

of interest. Furthermore, both asymptotic and numerical results can best be evaluated

for the single server case.

Throughout this and subsequent sections it is assumed that h(t) nondecreasing in

t. By a symmetry of arguments, this can be replaced by a monotonicity assumption of

h(t). This monotonicity assumption is one of prices to be paid to obtain analytical error

bounds.

3.1 Bias terms

Consider an original and perturbed GI/G/1/N in which the hazard rate of the service

times is perturbed from h(t) to h(t). By writing out Zv(n, a, s) as per (2.9) with c = 1

11



and λ(t) = λ(t), where in the notation the vector s becomes a scalar s which represents

the attained service time for the job in service, we find

Zv(n, a, s) = [Rv(n, a, s)−Rv(n, a, s)]

+Q−1[h(s+ v)− h(s+ v)]1(n > 0)[Vk(n− 1, a, 0)− Vk(n, a, s+ v)]. (3.1)

In order to apply the error bound result, it would be sufficient to bound the bias terms

Vk(n− 1, a, 0))−Vk(n, a, s+ v). We evaluate these differences using recursive expressions

in k as by (2.3). This in turn also requires to consider differences Vk(n−1, a, 0))−Vk(n−
1, a, z). We introduce the following notation.

∆zVk(n, a, s) =





Vk(n+ 1, a, s+ z)− Vk(n, a, s), n > 0,

Vk(1, a, z)− Vk(0, a, 0), n = 0, s = 0

0 otherwise,

(3.2)

δzVk(n, a, s) =

{
Vk(n, a, s+ z)− Vk(n, a, s), n > 0,

0 otherwise,
(3.3)

To derive recursive expressions for the bias terms in (3.2), now consider a state (n, a, s)

and value k. Let α = 1/Q. Then by virtue of (2.3), we obtain

Vk(n, a, s) =

∫ ∞

0

dvQe−Qv
[
Rv(n, a, s)

+αλ(a+ v)1(n < N)Vk−1(n+ 1, 0, s+ v)

+αλ(a+ v)1(n = N)Vk−1(n, 0, s+ v)

+αh(s+ v)1(n > 0)Vk−1(n− 1, a+ v, 0)

+[1− αλ(a+ v)− αh(s+ v)]1(n > 0)Vk−1(n, a+ v, s+ v)

+[1− αλ(a+ v)]1(n = 0)Vk−1(0, a+ v, 0)
]
. (3.4)

Similarly, for state (n+ 1, a, s+ z), we find

Vk(n+ 1, a, s+ z) =

∫ ∞

0

dvQe−Qv
[
Rv(n+ 1, a, s+ z)

+αλ(a+ v)1(n+ 1 < N)Vk−1(n+ 2, 0, s+ v + z)

+αλ(a+ v)1(n+ 1 = N)Vk−1(n+ 1, 0, s+ v + z)

+αh(s+ v + z)Vk−1(n, a+ v, 0)

+[1− αλ(a+ v)− αh(s+ v + z)]Vk−1(n+ 1, a+ v, s+ v + z)
]
. (3.5)

Now in order to subtract (3.4) from (3.5), it would be convenient if transitions from (3.4)

and (3.5) could be paired. To this end, first note that we only need to consider n < N as

n+ 1 ≤ N . Therefore, in (3.4), we can rewrite the second term in the right hand side as

αλ(a+ v)1(n < N)Vk−1(n+ 1, 0, s+ v)

= αλ(a+ v)
[
1(n+ 1 < N)Vk−1(n+ 1, 0, s+ v) + 1(n+ 1 = N)Vk−1(n+ 1, 0, s+ v)

]
,

12



and the last two terms as

[1− αλ(a+ v)− αh(s+ v)]1(n > 0)Vk−1(n, a+ v, s+ v)

+[1− αλ(a+ v)]1(n = 0)Vk−1(0, a+ v, 0)

= [1− αλ(a+ v)− αh(s+ v + z)]Vk−1(n, a+ v, s+ v)

+α
[
h(s+ v + z)− h(s+ v)

]
1(n > 0)Vk−1(n, a+ v, s+ v)

+αh(s+ v + z)1(n = 0)Vk−1(0, a+ v, 0).

Then, after these substitutions have been made and by subtracting (3.4) from (3.5), we

find the following expression after pairwise arranging terms with the same coefficients,

while the one but last term is indeed equal to 0 but left in for clarity of the derivation.

Vk(n+ 1, a, s+ z)− Vk(n, a, s)

=

∫ ∞

0

dvQe−Qv
{[
Rv(n+ 1, a, s+ z)−Rv(n, a, s)

]

+αλ(a+ v)1(n+ 1 < N)
[
Vk−1(n+ 2, 0, s+ v + z)− Vk−1(n+ 1, 0, s+ v)

]

+αλ(a+ v)1(n+ 1 = N)
[
Vk−1(n+ 1, 0, s+ v + z)− Vk(n+ 1, 0, s+ v)

]

+αh(s+ v)1(n > 0)
[
Vk−1(n, a+ v, 0)− Vk−1(n− 1, a+ v, 0)

]

+α
[
h(s+ v + z)− h(s+ v)

]
1(n > 0)

[
Vk−1(n, a+ v, 0)− Vk−1(n, a+ v, s+ v)

]

+αh(s+ v + z)1(n = 0)
[
Vk−1(0, a+ v, 0)− Vk−1(0, a+ v, 0)

]

+[1− αλ(a+ v)− αh(s+ v + z)]

×
[
Vk−1(n+ 1, a+ v, s+ v + z)− Vk−1(n, a+ v, s+ v)1(n > 0)

]}
. (3.6)

By using the notation from (3.2) and (3.3), the bias (or difference) term ∆zVk can be

expressed, in the bias terms ∆zVk−1 and δsVk−1 in an exact manner. More precisely,

∆zVk(n, a, s) =

∫ ∞

0

dvQe−Qv
{[
Rv(n+ 1, a, s+ z)−Rv(n, a, s)

]

+αλ(a+ v)1(n+ 1 < N)∆zVk−1(n+ 1, 0, s+ v)

+αλ(a+ v)1(n+ 1 = N)δzVk−1(n+ 1, 0, s+ v)

+αh(s+ v)1(n > 0)∆0Vk−1(n− 1, a+ v, 0)

+α
[
h(s+ v + z)− h(s+ v)

]
1(n > 0)

[
− δs+vVk−1(n, a+ v, 0)

]

+[1− αλ(a+ v)− αh(s+ v + z)]∆zVk−1(n, a+ v, s+ v)
}
. (3.7)

Note here, as announced in Section 3.1 that a difference of the form ∆kVk, that is in

number of jobs, also necessarily leads to a difference of the form δzVk−1, that is, in

attained times. We thus necessarily have to analyze both.
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To this end, along the same lines and leaving the details of the various steps to the

reader, we can also derive a recursion relation for δzVk, which becomes

δzVk(n, a, s) =

∫ ∞

0

dvQe−Qv
{[
Rv(n+ 1, a, s+ z)−Rv(n, a, s)

]

+αλ(a+ v)1(n < N)δzVk−1(n+ 1, 0, s+ v)

+αλ(a+ v)1(n = N)δzVk−1(n, 0, s+ v)

+α
[
h(s+ v + z)− h(s+ v)

]
1(n > 0)

[
−∆s+vVk−1(n− 1, a+ v, 0)

]

+[1− αλ(a+ v)− αh(s+ v + z)1(n > 0)]δzVk−1(n, a+ v, s+ v)
}
. (3.8)

3.2 Error bounds

In principle, by (3.7) and (3.8) we have exact expressions to evaluate the effect of per-

turbations in the arrival or service distribution, as based upon Lemma 2.2. However,

this would require the exact (recursive) computation of (3.7) and (3.8) for sufficiently

large k and all possible states (n, a, s). Clearly, this is of at least the same complexity as

computing the stationary distribution Π itself, which is generally impossible.

We therefore aim to use the recursive expressions (3.7) and (3.8) to inductively prove

bounds. In this section this will be illustrated for different performance measures of

interest, as determined by different reward functions. Though the steps are similar for

different measures, different technicalities are involved and require attention for each of

the cases separately as conflicting terms appear (see the minus signs in (3.7) and (3.8)).

The following cases will be considered.

Mean queue length Reward rate: r1(n, a, s) = n,

Tail probabilities Reward rate: r1(n, a, s) = 1(n ≥ `), for a given `,

Throughput Instantaneous reward:

r2((n, a, s), (n
′, a′, s′)) = 1(n′ = n− 1 ≥ 0, a′ = a, s′ = 0).

In what follows, in addition to the nondecreasing assumption on h, we frequently need

further assumptions. To this end, we introduce the following two symbols.

λ∗max ≡ sup
a>0

∫ ∞

0

λ(a+ v)Qe−Qvdv (3.9)

hQ ≡
∫ ∞

0

h(v)Qe−Qvdv (3.10)

and assume that

λ∗max < hQ. (3.11)

This condition seems to be stronger than the stability condition,

λ ≡
(∫ ∞

0

vf(v)dv

)−1

< µ ≡
(∫ ∞

0

vg(v)dv

)−1

, (3.12)
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for the infinite capacity queue, i.e., N = ∞. More specifically, we conjecture that, if h is

nondecreasing, then, for hQ defined by (3.10),

hQ ≤ µ. (3.13)

For instance, it can be proved that, if h is a single step function, i.e., h(t) = h1 + (h2 −
h1)1(t ≥ a) for constants a > 0 and h2 > h1 > 0, then (3.13) holds true (see Appendix

A). In our experience, hQ is relatively close to µ in many cases (e.g., see Section 6 and

Appendix C). Condition (3.11) will thus be somehow stronger than the stability condition

(3.12), and is thus somewhat restrictive for finite capacity queues. This is a cost to be

paid for deriving analytical error bounds.

3.2.1 Mean queue length

Lemma 3.1 Let r1(n, a, s) ≡ n, and suppose that condition (3.11) holds. Then,

|∆zVk(n, a, s)| ≤ (n+ 1)C, n ≤ N − 1, (3.14)

|δzVk(n, a, s)| ≤ nC, n ≤ N, (3.15)

where

C =
1

hQ − λ∗max

. (3.16)

Proof. First note that Rv as per (2.2) with r1(n, a, s) = n is given by

Rv(n, a, s) =

∫ v

0

ndu = nv.

Now let us apply induction in k. Clearly (3.14) and (3.15) hold for k = 0. Suppose that

(3.14) and (3.15) are satisfied for k = m. Since
∫ ∞

0

vdvQe−Qv = 1/Q = α, (3.17)

by substituting (3.14) and (3.15) for k = m into (3.7), we find

|∆zVm+1(n, a, s)| ≤
∫ ∞

0

dvQe−Qv
{
α(n+ 1)− αn

+αλ(a+ v)1(n+ 1 < N)(n+ 2)C

+αλ(a+ v)1(n+ 1 = N)(n+ 1)C

+αh(s+ v)1(n > 0)nC

+α
[
h(s+ v + z)− h(s+ v)

]
1(n > 0)nC

+[1− αλ(a+ v)− αh(s+ v + z)](n+ 1)C
}

≤ (n+ 1)C +

∫ ∞

0

dvQe−Qvα[1 + λ(a+ v)C − h(s+ v + z)C]

≤ (n+ 1)C +

∫ ∞

0

dvQe−Qvα[1 + λ(a+ v)C − h(v)C]

≤ (n+ 1)C, (3.18)
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where the last inequality follows from (3.16) and the assumption that λ∗max < hQ. Simi-

larly, by substituting (3.14) and (3.15) for k = m into (3.8) yields, for n > 0,

|δzVm+1(n, a, s)| ≤
∫ ∞

0

dvQe−Qv
{
α(n+ 1)− αn

+αλ(a+ v)1(n < N)(n+ 1)C

+αλ(a+ v)1(n = N)nC

+α
[
h(s+ v + z)− h(s+ v)

]
1(n > 0)nC

+[1− αλ(a+ v)− αh(s+ v + z)1(n > 0)]nC
}

≤ nC +

∫ ∞

0

dvQe−Qvα[1 + λ(a+ v)C − h(s+ v)nC]

≤ nC + α

∫ ∞

0

dvQe−Qv[1 + λ(a+ v)C − h(v)nC]

≤ nC. (3.19)

As (3.15) trivially holds for n = 0 by definition of δz, we have thus proven (3.14) and

(3.15) also for k = m+ 1. Induction completes the proof.

We are now able to apply Lemma 2.2. This leads to the following result.

Theorem 3.1 Let L and L be the mean queue lengths (including a customer in service)

of the GI/G/1/N queues with hazard rates h and h, respectively. Assume that the

queues are stable and that L and L are finite. Let h be nondecreasing and λ∗max < hQ.

Then

|L− L| ≤ C

∫

(n,a,s),n>0

(n+ 1)δ(s)dΠ(n, a, s), (3.20)

where C is given by (3.16), and δ(t) = |h(t)−h(t)|. Furthermore, if h(t) is nondecreasing

and if δ(t) ≤ δ0 for all t ≥ 0, then

|L− L|
L

≤ Cδ0

(
1 +

1− π(0)

L

)
, (3.21)

where C = (hQ − λ
∗
max)

−1.

Proof. Note that Rv(n, a, s) = nv = Rv(n, a, s) for all (n, a, s). First suppose that

(3.11) is satisfied. Then inequality (3.20) follows immediately from (3.1), (3.14) and

Lemma 2.2. The remaining part is easily seen by applying the setting in Remark 2.2.

Quality of the error bound for the M/M/1, M/M/1/N and M/G/1 cases The error bound

of (3.21) is numerically examined in Section 6. Below we investigate the error bounds
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analytically for the infinite and finite M/M/1 cases. First we study the infinite capacity

case. Let h(t) = µ and h(t) = µ+ δ0. Then, as is well-known, L = λ
µ−λ

. Hence, we find

lim
δ0↓0

L− L

δ0
=

∂

∂µ

λ

µ− λ
= − 1

µ− λ
L.

Since λ∗max = λ and hQ = µ, we thus get

lim
δ0↓0

1

δ 0

|L− L|
L

=
1

µ− λ
= C.

On the other hand, the corresponding ratio in (3.21) is bounded by

lim
δ0↓0

C

(
1 +

1− π(0)

L

)
= lim

δ0↓0
1

µ+ δ0 − λ

(
1 +

µ− λ

µ

)
= C

(
2− λ

µ

)
.

Thus, for ρ = λ/µ sufficiently close to 1, the error bound in (3.21) has the same asymptotic

ratio as δ0 goes to zero.

Next consider a similar perturbation for the M/M/1/N case with finite N ≥ 1. Then,

similar computations are in order. Let ρ = λ/µ. To apply the error bound results, we

assume that ρ < 1. The mean queue length L then becomes:

L =
ρ

1− ρ
− (N + 1)ρN+1

1− ρN+1
.

Hence,

− 1

L

∂L

dµ
=

1

µ− λ

ρ

1− ρ
− (N + 1)ρN+1

1− ρN+1

(N + 1)(1− ρ)

1− ρN+1

ρ

1− ρ
− (N + 1)ρN+1

1− ρN+1

. (3.22)

The limiting error bound is thus given by the right-hand side of (3.22). Since 1− ρN+1 =

(1− ρ)(1 + ρ+ . . .+ ρN), it is not hard to see that

(N + 1)ρN+1

1− ρN+1
≤ (N + 1)ρN+1

1− ρN+1

(N + 1)(1− ρ)

1− ρN+1
≤ ρ

1− ρ
.

Hence,

0 ≤ − lim
δ0↓0

1

δ 0

L− L

L
≤ 1

µ− λ
= C,

where 0 is attained as ρ goes to 1, while C is attained as ρ goes to 0. Thus, we still have

a nice asymptotics, in particular, for small ρ.

Similar but somehow degraded quality is obtained for the M/G/1/∞ queue. Since

the computations are routine, we defer its consideration to Appendix B.
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3.2.2 Tail probabilities of queue length distribution

Next, consider the tail probability Πc(`) ≡ ∑∞
n=` π(n) for a given ` ≥ 1 with λ∗max and

hQ as before.

Lemma 3.2 Let hQ > λ∗max. Then, for all k and (n, a, s),

|∆zVk(n, a, s)| ≤ φ(n), (3.23)

|δzVk(n, a, s)| ≤ φ(n), (3.24)

where

φ(n) =

{
C1ρ

`−n
Q , n < `,

C2, n ≥ `,
(3.25)

with

ρQ =
λ∗max

hQ

< 1, C1 =
1

hQρQ(1− ρQ)
, and C2 = ρQC1.

Proof. Again we use induction in k as in the proof of Lemma 3.1. First note that

Rv(n, a, s) as defined by (2.2) is given by

Rv(n, a, s) = v1(n ≥ `).

Assume that (3.23) holds for k ≤ m. Consider expression (3.7) together with the identity

(3.17) for the induction. We need to distinguish four cases. Note that φ(`−1) = C1ρQ =

C2. Hence, for n ≥ `, (3.23) is directly verified for any C2 by

|∆zVm+1(n, a, s)| ≤
∫ ∞

0

dvQe−Qv
{
αλ(a+ v)1(n+ 1 < N)C2

+αλ(a+ v)1(n+ 1 = N)C2

+αh(s+ v)C2

+α
[
h(s+ v + z)− h(s+ v)

]
C2

+[1− αλ(a+ v)− αh(s+ v + z)]C2

}
≤ C2.

For n = `− 1, we find

|∆zVm+1(n, a, s)| ≤
∫ ∞

0

dvQe−Qv
{
α+ αλ(a+ v)C2

+αh(s+ v)C1ρ
2
Q

+α
[
h(s+ v + z)− h(s+ v)

]
C1ρQ

+[1− αλ(a+ v)− αh(s+ v + z)]C1ρQ

}

≤ C1ρQ +

∫ ∞

0

dvQe−Qvα[1 + λ(a+ v)(C2 − C1ρQ)− h(s+ v)C1ρQ(1− ρQ)]

≤ C1ρQ + α(1− hQC1ρQ(1− ρQ)) = C1ρQ.
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For 1 ≤ n < `− 1, we similarly derive

|∆zVm+1(n, a, s)| ≤
∫ ∞

0

dvQe−Qv
{
αλ(a+ v)C1ρ

`−n−1
Q

+αh(s+ v)C1ρ
`−n+1
Q

+α
[
h(s+ v + z)− h(s+ v)

]
C1ρ

`−n
Q

+[1− αλ(a+ v)− αh(s+ v + z)]C1ρ
`−n
Q

}

≤ C1ρ
`−n
Q + C1ρ

`−n
Q

∫ ∞

0

dvQe−Qvα[λ(a+ v)(1− ρQ)ρ−1
Q − h(s+ v)(1− ρQ)]

≤ C1ρ
`−n
Q + αC1ρ

`−n
Q (1− ρQ)(λ∗maxρ

−1
Q − hQ) = C1ρ

`−n
Q ,

since ρQ = λ∗max/hQ. Finally, for n = 0, we find

|∆zVm+1(0, a, s)| ≤
∫ ∞

0

dvQe−Qv
{
αλ(a+ v)C1ρ

`−1
Q

+α
[
h(s+ v + z)− h(s+ v)

]
C1ρ

`
Q

+[1− αλ(a+ v)− αh(s+ v + z)]C1ρ
`
Q

}

≤ C1ρ
`
Q + C1ρ

`
Q

∫ ∞

0

dvQe−Qvα[λ(a+ v)(1− ρQ)ρ−1
Q − h(s+ v)]

≤ C1ρ
`
Q + αC1ρ

`
Q(λ∗max(1− ρQ)ρ−1

Q − hQ)

= C1ρ
`
Q + αC1ρ

`
Q(hQ(1− ρQ)− hQ) ≤ C1ρ

`
Q.

By induction the proof of (3.23) is hereby completed. Note that, in the above compu-

tation, we never explicitly used the condition that ρQ < 1. However, the condition is

required for C1 > 0.

To verify (3.24), the proofs for n ≥ ` as well as n ≤ `−1 are checked more directly by

noting that there is no reward rate difference in the two states to compare and by using

that λ∗max(1− ρQ)ρ−1
Q = hQ(1− ρQ).

Theorem 3.2 Let Πc(`) and Π
c
(`) be the steady state tail probabilities of theGI/G/1/N

queues with service hazard rate functions h and h, respectively. Let δ(t) = |h(t)− h(t)|
and δ0 = supt>0 |h(t)− h(t)|. Then, if h(t) is nondecreasing in t and if λ∗max < hQ, then

∣∣Πc
(`)− Πc(`)

∣∣ ≤
∫

n,a,s

dΠ(n, a, s)φ(n)δ(s),

≤ δ0C1

[ `−1∑

k=0

π(k)ρ`−k
Q + ρQΠ

c
(`)

]
, (3.26)

where φ is given by (3.25), ρQ = λ∗max/hQ and C1 = 1/hQ[ρQ(1− ρQ)].

Proof. Again, this is immediate by combining Lemma 2.2, the difference relation

(3.1) and the inequalities (3.23) and (3.24).
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Quality of the error bound for the M/M/1 and M/M/1/N cases Also here we test the

quality of the error bound for the M/M/1/∞ case. Let h(t) ≡ µ and h(t) = µ + δ(t)

with |δ(t)| ≤ δ0. In this case, λ∗max = λ, hQ = µ and ρQ = λ/µ = ρ. Since Πc(`) = ρ`, we

find

lim
δ0↓0

|Πc
(`)− Πc(`)|

δ0
=

∣∣∣∣∣
∂

∂µ

(
λ

µ

)`
∣∣∣∣∣ =

`

µ
ρ`.

On the other hand, from (3.26) and fact that π(k) = (1 − ρ)ρk, the corresponding rate

of the error bound is

lim
δ0↓0

C1

[ `−1∑

k=0

π(k)ρ`−k + ρΠ
c
(`)

]
=

1

µρ(1− ρ)
(`(1− ρ) + ρ)ρ`

=
`ρ`−1

µ

(
1 +

ρ

`(1− ρ)

)
.

The error bound is thus degraded by the factor ρ−1 from the exact rate for either large

` or small ρ. However, it still reveals the exact proportionality with respect to `ρ`.

We next consider the same perturbation for the M/M/1/N with finite N . Since

Π(`) =
ρ`(1− ρN−`+1)

1− ρN+1
,

we have

− ∂

∂µ
Π(`) = − ∂

∂µ

µN+1−`λ` − λN+1

µN+1 − λN+1

=
`ρ`

µ(1− ρN+1)
− (N + 1)(1− ρ`)ρN+1

µ(1− ρN+1)2
.

On the other hand, the error bound of (3.26) is

lim
δ0↓0

C1

[ `−1∑

k=0

π(k)ρ`−k + ρΠ
c
(`)

]
=

`ρ`−1

µ(1− ρN+1)

(
1 +

ρ(1− ρN+1−`)

`(1− ρ)

)
.

Thus, for the finite capacity case, the quality of the asymptotic error bound is degraded,

but still keep a similar property to the infinite case.

3.2.3 Throughput

Finally, let us consider the throughput by setting

r2((n, a, s), (n
′, a′, s′)) = 1(n′ = n− 1 ≥ 0).

Then with Rv(n, a, s) of (2.2) we find, using α = Q−1,

Rv(n, a, s) = h(s+ v)α1(n > 0).
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Lemma 3.3 For all k, z and (n, a, s), we have

0 ≤ ∆zVk(n, a, s) ≤ 1, (3.27)

0 ≤ δzVk(n, a, s) ≤ 1. (3.28)

Proof. Again, the steps of the proof of Lemma 3.1 are followed. That is, by assuming

(3.27) and (3.28) for k = m, we obtain, for k = m+ 1,

∆zVm+1(n, a, s) ≤
∫ ∞

0

dvQe−Qv
{

[h(s+ v + z)− h(s+ v)]α

+αλ(a+ v) + αh(s+ v)

+[1− αλ(a+ v)− αh(s+ v + z)]
}
≤ 1.

Here, it is used that −δs+vVm(n, a, s) ≤ 0 by (3.28). Conversely, also the lower bound 0

of (3.27) can be proven for k = m+ 1, by noting that, for n > 0,

[h(s+ v + z)− h(s+ v)]/Q

+α
[
h(s+ v + z)− h(s+ v)

]
[−δs+vVm(n, a+ v, 0)]

= α
[
h(s+ v + z)− h(s+ v)

]
[1− δs+vVm(n, a+ v, 0)] ≥ 0.

The proof of (3.28) for k = m + 1 goes similarly by noting the fact that for n > 0 (see

(3.8))

[h(s+ v + z)− h(s+ v)]/Q

+α
[
h(s+ v + z)− h(s+ v)

]
[−∆s+vVm(n, a+ v, 0)] ≥ 0.

The induction in m then completes the proof.

Remark 3.1 (Estimates for bias terms) The lower estimates 0 in (3.27) and (3.28)

are not developed to obtain monotonicity results but purely to establish the upper bounds

1 in (3.27) and (3.28). The monotonicity is simply a side result.

Theorem 3.3 Let T and T be the throughputs of the GI/G/1/N queues with service

hazard rate functions h and h, respectively. Let δ(t) = |h(t)−h(t)| and δ0 = supt>0 |h(t)−
h(t)|. Then, if h(t) is nondecreasing in t, then

|T − T | ≤
∫

n>0,a,s

dΠ(n, a, s)δ(t)

≤ δ0(1− π(0)). (3.29)

Furthermore, if h ≥ (≤)h, then

T ≥ (≤)T. (3.30)
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Proof. First recall that Rv(n, a, s) = 1(n > 0)h(s + v)/Q. Hence, Zv(n, a, s) as per

(3.1) becomes

Zv(n, a, s) = [h(s+ v)− h(s+ v)]Q−1{1−∆s+vVk(n, a, s)}.

The proof now follows immediately from Lemmas 2.2 and 3.3.

Remark 3.2 By assuming |h(t)− h(t)| ≤ δ1h(t) and that h(t) instead of h(t) is nonde-

creasing in t, Lemma 2.2 implies that (3.29) can be replaced by

|T − T |
T

≤ δ1. (3.31)

Quality of the error bound for the M/M/1/N case As before, to investigate the quality

of the error bound, we consider the M/M/1/N case. Let h(t) ≡ µ and h(t) = µ(1+ δ(t))

with |δ(t)| ≤ δ1. Let ρ = λ/µ. Since

T = λ
1− ρN

1− ρN+1
.

we find, for ρ 6= 1,

lim
δ1↓0

|T − T |
δ1

= λ
∂

∂x

(x+ 1)N+1 − (x+ 1)ρN

(x+ 1)N+1 − ρN+1

∣∣∣∣
x=0

=
λρN

(1− ρN+1)2

(
(N + 1)(1− ρ)− (1− ρN+1)

)

= T
ρN

(1− ρN)(1− ρN+1)

(
(N + 1)(1− ρ)− (1− ρN+1)

)
. (3.32)

Comparing (3.32) with (3.31), it is easy to see that the general error bound result is not

tight for small ρ. However, the error bound (3.31) becomes asymptotically tight as either

ρ goes to infinity or N goes to infinity for ρ > 1, since the last term of the above equation

converges to T .

Consequently, the error bound (3.31) is not generally tight. This is intuitively clear,

since the throughput becomes insensitive with respect to the hazard rate when the loss

probability is small. The sensitive part may be detected by the loss probability, which

determines the throughput. In other words, to get the error bound on T , it is as hard

as to get an error bound for the loss probability. Therefore, let us check how the error

bound is changed if we use the error bound for the tail probability. From (3.26) for the

M/M/1/N queue, we derive

∣∣T − T
∣∣ = λ

∣∣Πc
(N)− Πc(N)

∣∣ ≤ λδ0C1

[ N−1∑

k=0

π(k)ρN−k + ρπ(N)
]
.
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Hence, the asymptotic ratio of the error bound under the perturbation h(t) = µ(1+ δ(t))

with |δ(t)| ≤ δ1 is, for ρ < 1, noting the relation δ0 = µδ1,

lim
δ1↓0

λ
δ0
δ1
C1

[ N−1∑

k=0

π(k)ρN−k + ρπ(N)
]

= lim
δ1↓0

λ

ρ(1− ρ)

[ N−1∑

k=0

π(k)ρN−k + ρπ(N)
]

= T
ρN−1(N + ρ)

(1− ρN)(1− ρ)
. (3.33)

Comparing (3.33) result with (3.32), we see that the error bound for the tail probability

improves the error bound on the throughput when ρ is small.

The advantage of the error bound (3.31) is its simplicity and generality, where the

extra condition (3.11) is not required, while still keeping the nice asymptotic tightness

for some special cases. These are the type of properties that will be studied in the next

section.

4. M/G/c/N queues

With reference to the discussion at the beginning of Section 3, in this section we will

investigate a more complex nonexponential multi-server queue case with a perturbation of

the service time distribution. In this section, the arrival process is assumed to be Poisson.

Furthermore, we restrict ourselves to the throughput for the following two reasons. In

the first place, as it is a most natural measure of practical interest. In the second place,

it keeps the technical details as transparent as possible, because the bounding functions

will appear to be constant as in Lemma 3.3. We follow the steps from Section 3.

4.1 Formulation and perturbation

Consider an M/G/c/N -queue with Poisson arrival rate λ, c servers and a finite constraint

for at most N jobs (customers) in total. We are interested in the throughput of the queue:

T = λ(1−B)

where B is the loss probability of arriving jobs, or equivalently, the expected number of

service completions per unit time in the long run. As in Section 3, we aim to investigate

the effect on T when the service distribution is perturbed.

Perturbation

Now consider the M/G/c/N queue with the service hazard rate h perturbed into h, while

the arrival rate λ and queue capacity N are assumed to be the same.

As we do not need to keep track of the elapsed interarrival time while it is also more

convenient to keep track of how many jobs are waiting, instead of the notation (n, a, s)

we use the notation
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(s, w) with w = (n− c)+; the number of waiting jobs.

All notation from Section 2 is adopted accordingly, e.g., Vk(s, w), Rv(s, w) and

P ((s, w), (s′, w′)). As in Section 3.2.3, in order to evaluate the throughput we use the

instantaneous reward

r2((s, w), (s′, w′)) = 1(w′ = w − 1 ≥ 0, s′ = sª ui ⊕ ui(0) for some i = 1, 2, . . . , `)

+1(w′ = w = 0, s′ = sª ui for some i = 1, 2, . . . , `).

Hence, by (2.2), Rv(s, w) becomes

Rv(s, w) =
∑̀
i=1

h(si + v)/Q.

By writing out Zv(s, w) as per (2.9) with the modified notation (s, w), we then obtain

Zv(s, w) =
∑̀
i=1

[h(si + v)− h(si + v)]Q−1

×
{

1 + 1(w = 0)[Vk(sv ª ui, 0)− Vk(sv, 0)]

+1(w > 0)[Vk(sv ª ui ⊕ ui(0), w − 1)− Vk(sv, w)]
}
. (4.1)

To estimate or bound the bias terms, other bias terms will get involved too, as will be

expressed in detail in the next section. Once these bias terms are estimated, the error

bound theorem can be applied.

4.2 Error bound for throughput

As in Section 3, the second and major step is to bound the bias terms. This is established

in the next lemma.

Lemma 4.1 Assume that h is nondecreasing. Then, for all (s, w), s, i and k ≥ 0,

0 ≤ 1∆k
i (s, 0) := Vk(s, 0)− Vk(sª ui, 0) ≤ 1 (n ≤ c) (4.2)

0 ≤ 2∆k
i (s, w)[t] := Vk(s, w)− Vk(sª ui ⊕ ui(t), w) ≤ 1 (t ≤ si) (4.3)

0 ≤ 3∆k
i (s, w)[t] := Vk(s, w)− Vk(sª ui ⊕ ui(t), w − 1) ≤ 1 (t ≤ si, w > 0) . (4.4)

Inequalities (4.2)-(4.4) reflect that the expected total number of departing customers

is neither decreased nor increased more than one, if the initial state is altered by either

one of the following changes. One customer is reduced, one attained service time is

reduced, or both of them occurs. Since h is nondecreasing, inequalities (4.2) and (4.3)

may seem intuitively obvious. However, because of the finite capacity, one has to be most

24



careful (for example, standard sample path arguments will fail due to overtaking), and

formal proofs are needed. Furthermore, (4.4) is not obvious even intuitively. We defer

their proofs to Appendix C, since they are highly technical.

Let G be the service time distribution of the modified queue, and suppose that G has

a hazard rate function h.

With ` the dimension of the vector s, i.e., the number of busy servers, as implicitly

assumed throughout this section, let, for a real valued function δ,

(σ ◦ δ)(s) = 1(` > 0)
∑̀
j=1

δ(sj).

Theorem 4.1 Assume that the service time distribution has a nondecreasing hazard

rate function h for the M/G/c/N queue, and a hazard rate function h for the modified

M/G/c/N queue. Let T be the throughput of the original system and T of the modified

system. Then,

i) h(t) ≥ (≤) h(t), t ≥ 0, =⇒ T ≥ (≤) T .

ii) |h(t)− h(t)| ≤ δ(t), t ≥ 0, for some δ : IR→ IR =⇒ |T − T | ≤ 〈Π, σ ◦ δ〉.

Proof. Consider expression (4.1) for Zv(s, w). Now note that by Lemma 4.1 the

term between the braces in (4.1) is bounded between 0 and 1 as the difference terms are

bounded between -1 and 0. Lemma 2.2 and (4.1) then complete the proof.

Remark 4.1 The monotonicity result in i) is also proven in [13].

Corollary 4.1 With nondecreasing hazard rate function h and nonnegative number δ1,

∣∣h(t)− h(t)
∣∣ ≤ δ1h(t) for all t ≥ 0 =⇒

∣∣∣∣
T − T

T

∣∣∣∣ ≤ δ1 . (4.5)

Proof. Immediate from Theorem 4.1 by changing the roles of the original and perturbed

models (see Remark 2.2).

The following corollary is of interest when service time distributions are compared

which are not purely ordered or monotone in hazard rate but up to some (small) discrep-

ancy (function). This corollary can be seen as a relaxation of strict comparison results

such as in [13].

Corollary 4.2 Under the setting of Theorem 4.1 without assuming h to be nondecreas-

ing, if h+ δ is nonnegative and nondecreasing for some function δ, then

h ≥ h+ δ =⇒ T ≥ T − 〈Π, σ ◦ |δ|〉,
h ≤ h+ δ =⇒ T ≤ T + 〈Π, σ ◦ |δ|〉. (4.6)
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Proof. Define h̃ = h+δ, then we can apply Theorem 4.1 for this h̃ instead of h and for

h instead of h. Thus, i) of Theorem 4.1 leads to T ≥ (≤) T̃ , where T̃ is the throughput

for the service time distribution with hazard rate h̃. We next apply Theorem 4.1 for h̃

and h. Then, by ii), we have |T̃ −T | ≤ 〈Π, σ ◦ |δ|〉. Combining these two inequalities, we

have (4.6).

Quality of the error bound for the M/M/c/c case As already discussed for the single

server queue in Section 3.2.3, the error bound (4.5) is not generally tight. For the

M/M/c/c loss system under the perturbation of Corollary 4.1, we have

lim
δ1↓0

|T − T |
δ1

= T
ρc

c!
(cB(c− 1)− ρB(c− 2))

B(c)B(c− 1)
, (4.7)

where ρ = λ/µ and B(n) =
∑n

i=0
ρi

i!
. However, for the M/M/c/N with ρ > c, if N goes

to infinity, we can still check that the error bound (4.5) is asymptotically exact as a ratio

with respect to δ1. This situation is similar to the single server case.

5. GI/M/c/N

5.1 Perturbation

As last application, we aim to show that also a perturbation for a nonexponential arrival

distribution can be dealt with by the results from Section 2. To merely focus on this

aspect, we consider a GI/M/c/N queue, with arrival distribution F with hazard rate

function λ(t) and exponential service distribution with mean 1/µ. We perturb this arrival

rate function λ(t), and denote the perturbed arrival rate function by λ(t). Since the

service distribution is assumed to be exponential, we can omit the attained service times in

the system state description. The state can thus be denoted by (n, a), where n represents

the number of customers in the system and a the attained interarrival time. Then, in the

setting of Section 2;

P ((n, a), (n′, a′)) =





Q−1λ(a),

{
n′ = n+ 1 ≤ N, a′ = 0,

n′ = n = N, a′ = 0,

Q−1 min(n, c)µ

{
n′ = n = 0, a′ = a,

n′ = n− 1 ≥ 0, a′ = a,

1−Q−1[λ(a) + min(n, c)µ], (n′, a′) = (n, a).

Accordingly, Zk
v of (2.9) here becomes

Zk
v (n, a) = [Rv −Rv](n, a)

+Q−1
[
λ(a+ v)− λ(a)

][
Vk(n+ 1, 0)− Vk(n, a+ v)

]
1(n < N)

+Q−1
[
λ(a+ v)− λ(a)

][
Vk(n, 0)− Vk(n, a+ v)

]
1(n = N). (5.1)
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As before, in order to apply Lemma 2.2, we will first derive bounds for the bias terms

Vk(n+ 1, 0)− Vk(n, a+ v) as well as Vk(n, a)− Vk(n, a+ v).

5.2 Bias terms

We only consider the mean queue length. The throughput and tail probabilities can be

obtained similarly. In all three cases, under the assumption that λ(t) is nondecreasing in

t, we can establish the following bounds for the bias terms if a function Φ is appropriately

chosen.

0 ≤ ∆∗
zVk(n, a) ≡ Vk(n+ 1, a)− Vk(n, a+ z) ≤ Φ(n), n ≤ N − 1, (5.2)

0 ≤ δ∗zVk(n, a) ≡ Vk(n, a+ z)− Vk(n, a) ≤ Φ(n), n ≤ N. (5.3)

Here, the lower bounds 0 are easily seen by the stochastic monotonicity of the queue

length process with respect to the interarrival times, which can be formally proved in a

standard way by sample path arguments. We therefore verify only the upper bounds.

As in Sections 3 and 4, the first step for the verification is to establish recursive

relations for the bias terms. These will be used in the subsequent section. For n < N ,

we have

Vk(n+ 1, a) =

∫ ∞

0

dvQe−Qv
[
Rv(n+ 1, a+ v)

+αλ(a+ v)1(n+ 1 < N)Vk−1(n+ 2, 0)

+αλ(a+ v)1(n+ 1 = N)Vk−1(n+ 1, 0)

+αmin(n+ 1, c)µVk−1(n, a+ v)

+[1− αλ(a+ v)−min(n+ 1, c)µ]Vk−1(n+ 1, a+ v)
]
, (5.4)

and

Vk(n, a+ z) =

∫ ∞

0

dvQe−Qv
[
Rv(n, a+ v + z)

+αλ(a+ v + z)1(n < N)Vk−1(n+ 1, 0)

+αλ(a+ v + z)1(n = N)Vk−1(n, 0)

+αmin(n, c)µVk−1(n− 1, a+ v + z)

+[1− αλ(a+ v + z)−min(n, c)µ]Vk−1(n, a+ v + z)
]
. (5.5)
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Subtracting (5.5) from (5.4) leads to, for n < N ,

∆∗
zVk(n, a) = Vk(n+ 1, a)− Vk(n, a+ z)

=

∫ ∞

0

dvQe−Qv
[
Rv(n+ 1, a+ v)−Rv(n, a+ v + z)

+αλ(a+ v + z)1(n+ 1 < N)∆∗
zVk−1(n+ 1, 0)

+α(λ(a+ v + z)− λ(a+ v))δ∗a+vVk−1(n+ 1, 0)

+αmin(n, c)µ∆∗
zVk−1(n− 1, a+ v)

−αµ1(n ≤ c− 1)δ∗zVk−1(n, a+ v)

+[1− αλ(a+ v + z)−min(n+ 1, c)µ]∆∗
zVk−1(n, a+ v)

]
. (5.6)

Taking the difference of (5.5) with z > 0 and with z = 0, we obtain, for n ≤ N ,

δ∗zVk(n, a) = Vk(n, a+ z)− Vk(n, a)

=

∫ ∞

0

dvQe−Qv
[
Rv(n, a+ v + z)−Rv(n, a+ v)

+α(λ(a+ v + z)− λ(a+ v))1(n < N)∆∗
a+vVk−1(n, 0)

+αmin(n, c)µδ∗zVk−1(n− 1, a+ v)

+[1− αλ(a+ v + z)−min(n, c)µ]δ∗zVk−1(n, a+ v)
]
. (5.7)

5.3 Error bound

Let λmax = supt≥0 λ(t). Then, for the queue length, we have the following result.

Lemma 5.1 Assume that λ(t) is nondecreasing in t, and cµ > λmax. Let r1(n, a) ≡ n,

then (5.2) and (5.3) hold with

Φ(n) =

{
D1, n < c,

D1 + (n− c+ 1)D2, n ≥ c,
(5.8)

where D1 = c/(cµ− λmax) and D2 = 1/(cµ− λmax).

Remark 5.1 The condition cµ > λmax is stronger than the stability condition cµ > λ∗

for the infinite capacity queue, where (λ∗)−1 =
∫∞

0
f(v)/λ(v)dv, so λ∗max ≥ λ∗. Of course,

such a stability condition is not needed for the stability of the finite capacity queue. Here,

we again have to pay a price to obtain analytical error bounds.

Proof. Instead of Φ given above, to seek a better bound, we first set

Φ(n) =

{
D1, n < c,

D1 +D3 + (n− c)D2, n ≥ c,
(5.9)
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with arbitrary nonnegative numbers D1, D2 and D3. It will turn out that D3 = D2 and

the given D1 and D2 are only possible choices. As before, we prove (5.2) and (5.3) by

induction in k. They trivially hold for k = 0. Assume that (5.2) and (5.3) hold for

k = m. Below we only check (5.2), since (5.3) can be obtained similarly. To this end, we

substitute the bound of (5.9) into (5.6) with k = m+ 1. We need to consider four cases

separately.

i) n ≥ c+ 1

∆∗
zVm+1(n, a) ≤

∫ ∞

0

dvQeQvdv
[
α

+αλ(a+ v + z) (D1 +D3 + (n+ 1− c)D2)

+α(λ(a+ v + z)− λ(a+ v)) (D1 +D3 + (n+ 1− c)D2)

+αcµ (D1 +D3 + (n− 1− c)D2)

+(1− αλ(a+ v + z)− αcµ) (D1 +D3 + (n− c)D2)
]

=

∫ ∞

0

dvQeQvdv
[
α(1 + λ(a+ v + z)D2 − cµD2) +D1 +D3 + (n− c)D2

]

≤ D1 +D3 + (n− c)D2 + α(1− cµD2 + λmaxD2).

Thus, the bound is established only if D2 ≥ 1/(cµ− λmax).

ii) n = c Similarly to case i), we have

∆∗
zVm+1(n, a) ≤

∫ ∞

0

dvQeQvdv
[
α

+αλ(a+ v + z) (D1 +D3 +D2)

+α(λ(a+ v + z)− λ(a+ v)) (D1 +D3 +D2)

+αcµD1

+(1− αλ(a+ v + z)− αcµ) (D1 +D3)
]

≤ D1 +D3 + α(1− cµD3 + λmaxD2).

Thus, the bound is established only if

D3 ≥ 1 + λmaxD2

cµ
≥ 1

cµ− λmax

= D2.

iii) n = c− 1

∆∗
zVm+1(n, a) ≤

∫ ∞

0

dvQeQvdv
[
α

+αλ(a+ v + z) (D1 +D3)

+α(λ(a+ v + z)− λ(a+ v)) (D1 +D3)

+α(c− 1)µD1

+(1− αλ(a+ v + z)− αcµ)D1

]

≤ D1 + α(1− cµD1 + λmaxD3).
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Thus, the bound is established only if

D1 ≥ 1 + λmaxD2

µ
≥ c

cµ− λmax

.

iv) n ≤ c− 1

∆∗
zVm+1(n, a) ≤

∫ ∞

0

dvQeQvdv
[
α

+αλ(a+ v + z)D1

+α(λ(a+ v + z)− λ(a+ v))D1

+αnµD1

+(1− α(n+ 1)µ)D1

]

≤ D1 + α(1− (n+ 1)µD1).

Thus, the bound is established only if D1 ≥ 1/µ ≥ c/(cµ − λmax). Consequently, the

induction hypotheses (5.2) with Φ of (5.8) is verified for k = m + 1. This completes the

proof.

Lemma 5.1 together with the error bound result of Lemma 2.2 leads to the following

error bound results.

Theorem 5.1 Under the conditions of Lemma 5.1, for L and L the mean queue length

of the GI/M/c/N queue with arrival hazard rates λ and λ, respectively, and with δ(t) =

|λ(t)− λ(t)|, we have

|L− L| ≤ D1

∫

(n,a)

δ(a)dΠ(n, a) +D2

∫

(n,a)

(n− c+ 1)δ(a)dΠ(n, a). (5.10)

Furthermore, if λ(t) is nondecreasing and if δ(t) ≤ δ0 for all t ≥ 0, then

|L− L| ≤ δ0
(
D1 +D2(Lq + Π

c
(c))

)
. (5.11)

As one may expect, the error bounds of (5.10) and (5.11) are not as sharp as in Section

3. The technical reason for this is that in the induction proof of Lemma 5.1 we have to

omit the negative bias term that appears in the one before the last term in the right hand

side of (5.6) if c ≥ 2. This apparently degrades the upper bounds for the bias terms.

We finally note an error bound for the throughput. In this case, we can choose Φ(n) ≡
1. Hence, with the notation from Theorem 5.1 and Section 4, if λ(t) is nondecreasing in

t, then

|T − T | ≤
∫

(n,a)

δ(a)dΠ(n, a) =
1

mF

∫ ∞

0

δ(a)(1− F (a))da, (5.12)

where mF is the mean interarrival time of the perturbed system, where we use the fact

that the marginal distribution of the attained arrival time in steady state is known to be

the stationary forward recurrence time distribution. This simple bound seems intuitively

obvious. Nevertheless, its formal verification was not obvious.
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6. Some numerical results

In addition to the qualitative and asymptotic investigations of the quality of the error

bounds as in Sections 3.2.1, 3.2.2 and 3.2.4 for the GI/G/1/N case, and in Section 4.2

for the M/G/c/N case, in this section also some numerical support will be provided. We

aim to investigate the value of the error bound such as to see

• how it relates to the exact error in order,

• whether it can be of practical use.

To this end, we consider a perturbation of the service distribution G and for a few

different situations of the arrival distribution F . Let F and G have hazard rates hf and

hg, respectively. Assume that hf and hg are step functions as specified by, for different

values (a, u0, u1):

hf (t) = u01(0 ≤ t < a) + u11(t ≥ a),

hg(t) =
3∑

i=0

vi1(bi < t ≤ bi+1),

with (b0, b1, b2, b3, b4) = (0, 0.1, 0.3, 1,∞) and (v0, v1, v2, v3) = (8, 10, 15, 20), which implies

that mean service rate µ ' 8.949. We consider the perturbed hazard rate hg given by

hg(t) =
3∑

i=0

(vi + kε)1(bi < t ≤ bi+1),

for ε = 0.1 and for each k = 1, 2, 3, 4, 5. Four different arrival distributions are considered

for each of the above models. They are:

(i) (a, u0, u1) = (0.3, 2, 3): λ ' 2.448,

(ii) (a, u0, u1) = (0.3, 3, 4): λ ' 3.339,

(iii) (a, u0, u1) = (0.3, 4, 5): λ ' 4.256,

(iv) (a, u0, u1) = (0.3, 6, 4): λ ' 5.542.

For example, in the case of (i), we let Hf = 3, Hg = 20+0.1k, and Q = Hf +Hg. the

mean service rates µ for hg and the corresponding values hQ are for each k = 1, 2, 3, 4, 5:

µ ' 9.038, 9.126, 9.215, 9.304, 9.393,

hQ ' 8.303, 8.401, 8.499, 8.597, 8.695.

The cases of (i)-(iv) cover various traffic intensities ρ ranging from approximately

0.26 to 0.74. Furthermore, we consider two buffer sizes N = 5 and 10, and restrict our

attention to the mean queue length L.
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These models are simulated, which gives exact errors. The corresponding error bounds

are computed by (3.21). The simulation program is coded by language C, and executed

on a personal computer. Each simulation is executed up to 9 × 107 events, and the

accuracy of simulation is about four digits. The results are shown in Table 6.1.

Table 6.1: Numerical results for the GI/G/1/N queue, Analytic error bound as by (3.21)

and exact error in parenthesis for the mean queue length L.

N L δ0 = 0.1 0.2 0.3 0.4 0.5

(i) 5 0.344 0.034 (0.010) 0.066 (0.024) 0.098 (0.037) 0.128 (0.048) 0.158 (0.064)
10 0.346 0.034 (0.012) 0.066 (0.025) 0.098 (0.037) 0.128 (0.048) 0.157 (0.060)

(ii) 5 0.538 0.040 (0.016) 0.077 (0.026) 0.114 (0.039) 0.148 (0.050) 0.181 (0.068)
10 0.542 0.039 (0.015) 0.077 (0.028) 0.113 (0.038) 0.148 (0.052) 0.181 (0.065)

(iii) 5 0.778 0.049 (0.009) 0.095 (0.024) 0.139 (0.031) 0.180 (0.049) 0.219 (0.061)
10 0.822 0.048 (0.018) 0.094 (0.038) 0.137 (0.043) 0.178 (0.046) 0.216 (0.071)

(iv) 5 1.283 0.065 (0.023) 0.125 (0.036) 0.179 (0.051) 0.230 (0.068) 0.277 (0.077)
10 1.591 0.062 (0.019) 0.118 (0.058) 0.170 (0.068) 0.218 (0.088) 0.263 (0.101)

The following observations are made as based on the particular examples.

• Overall the analytic error bounds as according to (3.21) are in the order of no more

than a factor of 3 to 4 times the exact numerical error.

• When δ0 = maxt>0 |hg(t) − hg(t)| increases, the exact errors grow linearly in the

same linear order as expressed by (3.21).

Clearly, these observations are rather specific for the performance measure used, and the

type of hazard functions. For example, with (a, u0, u1) = (0.3, 7, 5) and hence a traffic

intensity ρ ' 0.74, N = 5 and δ0 = 0.10, we find the probability of an empty system

π(0) = 0.305 with exact error 0.006 (2%) and analytic error 0.081 (27%). However, even

in this case the analytic error bound can still be practically useful as a secure sensitivity

bound for a measure π(0) that couldn’t be obtained easily.

7. Concluding remarks

This concluding section contains an evaluation of the results, a brief discussion on the

differences with stochastic comparison, and a brief discussion on limitations and possible

extensions.

Evaluation of results In this paper, the Markov reward approach is applied for non-

exponential service systems. Error bounds are derived for single and multi-server queues
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when the arrival or service distribution is perturbed. As side result, ordering results could

be concluded also when systems are not ordered.

The results are essentially based on bounding so-called bias terms for specific perfor-

mance measures of interest such as a mean queue length or steady state tail probability.

The technical details of this step are rather complex and rely upon discrete-time in-

duction. Once this step is established, the error bounds and comparison results can be

concluded rather easily for different applications.

Both analytic and numerical results seem to support the results for practical purposes:

To provide secure bounds and orders of magnitude.

Stochastic comparison The primary purpose of the Markov reward approach is to obtain

error bound rather than just ordering results. This is the major advantage over the

stochastic comparisons approach. As side results, it may also lead to ordering results.

As disadvantage though, the proofs by the Markov reward approach are generally less

elegant and depend on the specific performance measures of interest. Most importantly,

sample path arguments do not generally require exponentiality assumptions unless in-

terchangeability arguments are used such as for finite queues. It has been this major

disadvantage of exponentiality that the current paper has dealt with under the limitation

of bounded hazard rates.

Limitations and extensions The error bounds will have some practical limitations. For

one thing, either one of distributions Π or Π is needed to evaluate the error bounds (see

(b) of Remark 2.1). Fortunately, in most cases, we only need characteristics determined

by marginal distributions or moments. If these characteristics are unknown with respect

to both of Π and Π, one way to overcome this limitation is to use upper or lower bounds

for the characteristics required. Clearly, this will degrade the quality of the error bounds.

Another limitation is the assumption that the hazard rates are bounded, which may be

too restrictive in specific situations. This assumption might be relaxed in two ways: by an

extended uniformization technique as developed in [20] or by a general framework such as

GSMP (Generalized Semi-Markov Process). Both extensions, however, will still require

a number of technical steps to be resolved. This seems to be a challenging problem.

Another challenging problem for future research is to extend the current approach

to networks of nonexponential service systems. For the exponential service cases, the

Markov reward approach has been successfully applied in a number of network situations

(e.g., see [21, 24, 25]). But for perturbing the service distributions a more extended

framework will be required in line with the present paper.
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Appendix A

We prove (3.13) for h(t) = h1 + (h2 − h1)1(t ≥ a) with constants h2 > h1 > 0 and a > 0.

Since

1−G(t) =

{
e−h1t, 0 ≤ t < a,

e(h2−h1)a−h2t, a ≤ t,

it is easy to see that

hQ = h1 + (h2 − h1)e
−Qa, µ =

h1h2

h2 − (h2 − h1)e−h1a
.

Hence, (3.13) is equivalent to

(
1 +

(
h2

h1

− 1

)
e−Qa

)(
1 +

(
h1

h2

− 1

)
e−h1a

)
≤ 1 .

This is further equivalent to

η(a) ≡
(
h2

h1

+
h1

h2

− 2

)
e−Qa −

(
h2

h1

− 1

)
e−(Q−h1)a − h1

h2

+ 1 ≥ 0, a ≥ 0 ,

for each h1, h2 and Q such that 0 < h1 < h2 < Q. Clearly f(0) = 0, and

η′(a) =

(
h2 − h1

h1

(Q− h1)e
h1a − (h2 − h1)

2

h1h2

Q

)
e−Qa

=
h2 − h1

h1

(
(Q− h1)e

h1a − (h2 − h1)

h2

Q

)
e−Qa > 0, a ≥ 0,

since h2(Q− h1) > (h2 − h1)Q. Hence, f(a) ≥ 0 for all a ≥ 0. Thus we get (3.13).

Appendix B (Quality of (3.21))

Consider quality of the error bound (3.21) for the M/G/1/∞ queue. In this case, the

mean queue length L is well known as the Pollaczek-Khinchine formula. Let H(t) =∫ t

0
h(v)dv. Then, under the perturbation that h(t) = h(t) + δ0, the asymptotic ratio is

computed as

lim
δ0↓0

L− L

δ0
=

∂

∂δ0

(
λ2

∫∞
0
te−H(t)−δ0t

1− λ
∫∞

0
e−H(t)−δ0tdt

+ λ

∫ ∞

0

e−H(t)−δ0tdt

)∣∣∣
δ0=0

= −λ
2E(S3)(1− ρ)/3 + λ3E2(S2)/4

(1− ρ)2
− λE(S2)/2,

where S is a random variable which represents the service time. In general, it is too

complicated to compare this with the error bound in (3.21). So, we just consider the case
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that the service distribution is the 2nd order Erlang distribution, i.e., its density g and

hazard rate h are given by

g(t) = (2µ)2te−2µt, h(t) =
(2µ)2t

1 + 2µt
.

In this case, E(S2) = 3/2µ2, E(S3) = 3/µ3 and

L =
ρ(1− 1

4
ρ)

1− ρ
.

Using the notation ρ = λ/µ, the asymptotic ratio is thus computed as

lim
δ0↓0

1

δ 0

|L− L|
L

=
ρ

µ(1− ρ)2

(
3

4
+

1

4
ρ− 7

16
ρ2

)
1− ρ

ρ(1− 1
4
ρ)

=
1

µ− λ

3 + ρ− 7
4
ρ2

4− ρ
.

On the other hand, choosing Q = (ρ+ 2)µ,

hQ =

∫ ∞

0

(2µ)2t

1 + 2µt
(ρ+ 2)µe−(ρ+2)µtdt

= 4(ρ+ 2)µ

∫ ∞

0

x

1 + 2x
e−(ρ+2)xdx.

Since hQ is decreasing in ρ, we compute the maximum ρ such that hQ − ρ > 0, which is

about ρ0 ' 0.694527 (computed by Mathematica 4.0). Then, we have

hQ > ρ0µ, for ρ < ρ0

where the upper lower bound is attained as ρ goes to ρ0, while hQ goes up to about

0.807305 as ρ goes down to 0. Hence, the asymptotic ratio for the error bound in (3.21)

is bounded by

lim
δ0↓0

C

(
1 +

1− π(0)

L

)
< lim

δ0↓0
1

ρ0µ+ δ0 − λ

(
1 +

4− 4ρ

4− ρ

)

=
1

ρ0µ− λ

(
1 +

4− 4ρ

4− ρ

)
.

Though this error bound is not as good as in the M/M/1/∞ case, it still remains a

constant for ρ < ρ0.

Appendix C (Proof of Lemma 4.1)

Before proving Lemma 4.1, we note the following fact, which will be used in an induction

procedure.
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Lemma C.1 If (4.2)-(4.4) hold for all possible s, w, s and c = n for each fixed k, then

1∆k
i (s, 0)−2∆k

i (s, w)[t] ≥ 0, (C.1)
3∆k

i (s, w)[t]− 2∆k
i (s, w)[t] ≥ 0. (C.2)

Proof. From (4.2)-(4.4), we have

1∆k
i (s, 0)−2∆k

i (s, w)[t] = Vk(sª ui ⊕ ui(t), w)− Vk(sª ui, 0)

= Vk(sª ui ⊕ ui(t), w)− Vk(sª ui ⊕ ui(0), w − 1)

+Vk(sª ui ⊕ ui(0), w − 1)− Vk(sª ui, 0)

· · ·
= 3∆k

i (sª ui ⊕ ui(t), w)[0]

+
w−1∑

`=1

3∆k
i (sª ui ⊕ ui(0), `)[0] + 1∆k

i (sª ui ⊕ ui(0), 0) ≥ 0 ,

and, similarly,

3∆k
i (s, w)[t]− 2∆k

i (s, w)[t] = 3∆k
i (sª ui ⊕ ui(t), w)[t] ≥ 0 .

(Proof of Lemma 4.1 The lemma will be proved by induction on k. Clearly, (4.2)-(4.4)

hold for k = 0 as V0(·) ≡ 0. Assume that they holds for k = m. Then we need to verify

(4.2)-(4.4) for k = m + 1. We will do so for (4.2), (4.3) and (4.4) separately, under i),

ii) and iii) below. Herein, we let α = 1/Q and we note in advance that this α is kept

in the expression below, while it could be canceled with Q, both for its probabilistic

interpretation and a corresponding usage later on.

i) By comparing (2.3) in states (n, a, s) and (n, a, sª ui) with n ≤ c, which correspond

with (s, 0) and (s ª ui, 0) in the notation of Section 4, while substituting P of Section

2.1, we find

Vm+1(s, 0) =

∫ ∞

0

dvQe−vQ
{
α

∑
j

h(sj + v) + αλ1(n < c)Vm(sv ⊕ un+1(0), 0)

+αλ1(n = c)Vm(sv, 1)

+α
∑

j

h(sj + v)Vm(sv ª uj, 0)

+
[
1− αλ− α

∑
j

h(sj + v)
]
Vm(sv, 0)

}
(C.3)

Vm+1(sª ui, 0) =

∫ ∞

0

dvQe−vQ
{
α

∑

j 6=i

h(sj + v) + αλVm(sv ª ui ⊕ un(0), 0)

+α
∑

j 6=i

h(sj + v)Vm(sv ª (ui ∨ uj), 0)

+
[
1− αλ− α

∑

j 6=i

h(sj + v)
]
Vm(sv ª ui, 0)

}
. (C.4)
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To compare the subtraction of (C.4) from (C.3) in a transition wise manner, the following

steps are convenient. In (C.4), write;

αλVm(sv ª ui ⊕ un(0), w) = αλ1(n < c)Vm(sv ª ui ⊕ un(0), w)

+αλ1(n = c)Vm(sv ª ui ⊕ un(0), w) .

Artificially add but also subtract the term also in (C.4):

αh(si + v)Vm(sv ª ui) .

Then, after these steps and subtracting (C.4) from (C.3), the following expression is

obtained, where the one but last term is indeed equal to 0 but kept in for clarity as well

as an argument below.

Vm+1(s, 0)− Vm+1(sª ui, 0) =

∫ ∞

0

dvQe−vQ
{
αh(si + v)

+αλ1(n < c)
[
Vm(sv ⊕ un+1(0), 0)− Vm(sv ª ui ⊕ un(0), 0)

]

+αλ1(n = c)
[
Vm(sv, 1)− Vm(sv ª ui ⊕ un(0), 0)

]

+α
∑

j 6=i

h(sj + v)
[
Vm(sv ª uj, 0)− Vm(sv ª (ui ∨ uj), 0)

]

+αh(si + v)
[
Vm(sv ª ui, 0)− Vm(sv ª ui, 0)

]

+
[
1− αλ− α

∑

j 6=i

h(sj + v)− αh(si + v)
][
Vm(sv, 0)− Vm(sv ª ui, 0)

]}
(C.5)

Now note that for the term with coefficient αλ1(n = c), we could write:

Vm(sv, 1)− Vm(sv ª ui ⊕ un(0), 0) = Vm(sv, 1)− Vm(sv ª ui ⊕ ui(0), 0) ,

as the actual stochastic behavior and expected rewards do not depend on the actual

positioning of the jobs but only their attained times. By recalling the notation as per

(4.2) and (4.4), we have so obtained:

1∆m+1
i (s, 0) =

∫ ∞

0

dvQe−vQ
{
αh(si + v)

+αλ1(n < c) 1∆m
i (sv ⊕ un+1(0), 0)

+αλ1(n = c) 3∆m
i (sv, 0)[0]

+α
∑

j 6=i

h(sj + v) 1∆m
i (sv ª uj, 0)

+αh(si + v)× 0

+
[
1− αλ− α

∑
j

h(sj + v)
]

1∆m
i (sv, 0)

}
(C.6)

Now we can directly substitute the induction hypothesis (4.2) and (4.4) for k = m to

conclude the lower estimate 1∆m+1
i (sv, 0) ≥ 0. Similarly, to conclude the upper estimate
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1 in (4.2) for k = m+1, substitute the upper estimates from (4.2) and (4.4) for k = m and

note that all coefficients represent probabilities and thus sum up to 1. Furthermore, the

first additional term αh(si + v) is compensated by the 0-term with coefficient αh(si + v).

Accordingly, we concludes: 1∆m+1
i (sv, 0) ≤ 1.

ii) By similar steps, by writing out (2.3) in states (s, w) and sª ui ⊕ ui(t), w), we have

Vm+1(s, w) =

∫ ∞

0

dvQe−vQ
{
α

∑
j

h(sj + v)

+αλ1(n < c, w = 0)Vm(sv ⊕ un+1(0), w)

+αλ1(n = c, c+ w < N)Vm(sv, w + 1)

+αλ1(n = c, c+ w = N)Vm(sv, w)

+α
∑

j

h(sj + v)1(w = 0)Vm(sv ª uj, 0)

+α
∑

j

h(sj + v)1(w > 0)Vm(sv ª uj ⊕ uj(0), w − 1)

+
[
1− αλ− α

∑
j

h(sj + v)
]
Vm(sv, w)

}
. (C.7)

Vm+1(sª ui ⊕ ui(t), w) =

∫ ∞

0

dvQe−vQ
{
α

∑

j 6=i

h(sj + v) + αh(t+ v)

+αλ1(n < c, w = 0)Vm(sv ª ui ⊕ ui(t+ v)⊕ un+1(0), w)

+αλ1(n = c, c+ w < N)Vm(sv ª ui ⊕ ui(t+ v), w + 1)

+αλ1(n = c, c+ w = N)Vm(sv ª ui ⊕ ui(t+ v), w)

+α
∑

j 6=i

h(sj + v)1(w = 0)Vm(sv ª ui ⊕ ui(t+ v)ª uj, 0)

+αh(t+ v)1(w = 0)Vm(sv ª ui, 0)

+α
∑

j 6=i

h(sj + v)1(w > 0)Vm(sv ª ui ⊕ ui(t+ v)ª uj ⊕ uj(0), w − 1)

+αh(t+ v)1(w > 0)Vm(sv ª ui ⊕ ui(0), w − 1)

+
[
1− αλ− α

∑

j 6=i

h(sj + v)− αh(t+ v)
]
Vm(sv ª ui ⊕ ui(t), w)

}
.(C.8)

Hence, taking the difference of (C.7) and (C.8), we find the following result after recalling

the notation for 2∆m
i .

2∆m+1
i (s, w)[t] =

∫ ∞

0

dvQe−vQ
{
α[h(si + v)− h(t+ v)]

+αλ1(n < c) 2∆m
i (sv ⊕ un+1, 0)[t+ v]

+αλ1(n = c, n+ w < N) 2∆m
i (sv, w + 1)[t+ v]

+αλ1(n = c, n+ w = N) 2∆m
i (sv, w)[t+ v]

+α
∑

j 6=i

h(sj + v)1(w = 0) 2∆m
i (sv ª uj, 0)[t+ v]

40



+α
∑

j 6=i

h(sj + v)1(w > 0) 2∆m
i (sv ª uj ⊕ uj(0), w − 1)[t+ v]

+α(h(si + v)− h(t+ v))1(w = 0)Vm(sv ª ui, 0)

+α(h(si + v)− h(t+ v))1(w > 0)Vm(sv ª ui ⊕ ui(0), w − 1)

+
[
1− αλ− α

∑
j

h(sj + v)
]

2∆m
i (sv, w)[t]

}

−α(h(si + v)− h(t+ v))Vm(sv ª ui ⊕ ui(t+ v), w) . (C.9)

Now first note that the terms with coefficient α[h(si + v)− h(t+ v)] can be written as:

α[h(si + v)− h(t+ v)]
{
− 1(w = 0) 1∆m

i (sv ª ui ⊕ ui(t+ v), 0)

−1(w > 0) 3∆m
i (sv ª ui ⊕ ui(t+ v), w)[0]

}
,

which by virtue of the induction hypothesis (4.2) and (4.4) for k = m can thus by

estimated from below by −α[h(si + v) − h(t + v)] and from above by 0. Consequently,

by taking into account the first additional term −α[h(si + v)− h(t+ v)], by substituting

the lower estimates 0 from (4.2) -(4.4) for k = m, we conclude: 2∆m+1
i (s, w)[t] ≥ 0.

Conversely, by deleting the one but last nonpositive term and noting that its probability

coefficient is equal to the additional first term −α[h(si + v) − h(t + v)], substituting

the upper estimates 1 from (4.3) and recalling thus all coefficients sum up to 1, we also

conclude: 2∆m+1
i (s, w)[t] ≤ 1.

iii) For 0 < w ≤ N , we get the following expression from (2.3) similarly to (C.8).

Vm+1(sª ui ⊕ ui(t), w − 1) =

∫ ∞

0

dvQe−vQ
{
α

∑

j 6=i

h(sj + v) + αh(t+ v)

+αλ1(n = c, c+ w ≤ N)Vm(sv ª ui ⊕ ui(t+ v), w)

+α
∑

j 6=i

h(sj + v)1(w = 1)Vm(sv ª ui ⊕ ui(t+ v)ª uj, 0)

+αh(t+ v)1(w = 1)Vm(sv ª ui, 0)

+α
∑

j 6=i

h(sj + v)1(w > 1)Vm(sv ª ui ⊕ ui(t+ v)ª uj ⊕ uj(0), w − 2)

+αh(t+ v)1(w > 1)Vm(sv ª ui ⊕ ui(0), w − 2)

+
[
1− αλ− α

∑

j 6=i

h(sj + v)− αh(t+ v)
]
Vm(sv ª ui ⊕ ui(t), w − 1)

}
. (C.10)
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Taking the difference of (C.7) and (C.10) and appropriately arranging some terms similar

to (C.9), we obtain, for 0 < w ≤ N and c = n,

3∆m+1
i (s, w)[t] =

∫ ∞

0

dvQe−vQ
{
α[h(si + v)− h(t+ v)]

+αλ1(n+ w < N) 3∆m
i (sv, w + 1)[t+ v]

+αλ1(n+ w = N)2∆m
i (sv, w + 1)[t+ v]

+α
∑

j 6=i

h(sj + v)1(w = 1)
[
Vm(sv ª uj ⊕ uj(0), 0))

−Vm(sv ª ui ⊕ ui(t+ v)ª uj, 0)
]

+α
∑

j 6=i

h(sj + v)1(w > 1) 3∆m
i (sv ª uj ⊕ uj(0), w − 1)[t+ v]

+αh(si + v)1(w = 1)Vm(sv ª ui ⊕ ui(0), 0)

−αh(t+ v)1(w = 1)Vm(sv ª ui, 0)

+αh(si + v)1(w > 1)Vm(sv ª ui ⊕ ui(0), w − 1)

−αh(t+ v)1(w > 1)Vm(sv ª ui ⊕ ui(0), w − 2)

+
[
1− αλ− α

∑
j

h(sj + v)
]

3∆m
i (sv, w)[t+ v]

}

+αh(t+ v)Vm(sv ª ui ⊕ ui(t+ v), w − 1)

−αh(si + v)Vm(sv ª ui ⊕ ui(t+ v), w − 1) . (C.11)

First, collecting the terms with coefficient αh(si + v) in (C.11), we have

−αh(si + v) (Vm(sv ª ui ⊕ ui(0), w − 1)− Vm(sv ª ui ⊕ ui(t+ v), w − 1))

= −αh(si + v) 2∆m
i (sv ª ui ⊕ ui(t+ v), w − 1)[0] ,

and, similarly, the terms with coefficient αh(si + v) becomes

+αh(t+ v)
(
1(w = 1) 1∆m

i (sv ª ui ⊕ ui(t+ v), 0)

+1(w > 1) 3∆m
i (sv ª ui ⊕ ui(t+ v), w − 1)[0]

)
.

Hence, from (C.1)) and (C.2) of Lemma C.1, the sum of these two collected terms is

bounded from below by

−α(h(si + v)− h(t+ v)) 2∆m
i (sv ª ui ⊕ ui(t+ v), w − 1)[0]

≥ −α(h(si + v)− h(t+ v)) , (C.12)

where the last inequality follows from the induction hypothesis (4.3) for k = m. On the

other hand, using (4.2) and (4.4), the same sum is bounded from above by

αh(t+ v) .
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Secondly, for the term with i < j and coefficient αh(sj +v)1(w = 1) with yv = svª (ui∨
uj), for s ≤ si we can write:

Vm(sv ª uj ⊕ uj(0), 0))− Vm(sv ª ui ⊕ ui(t+ v)ª uj, 0)

= Vm(yv ⊕ ui(si + v)⊕ uj(0), 0))− Vm(yv ⊕ ui(t+ v), 0) . (C.13)

Clearly, by applying the induction hypotheses (4.2) and (4.3) for k = m, this difference

is directly estimated from below by 0. To estimate this difference from above, now note

that

Vm(yv ⊕ ui(0)⊕ uj(si + v), 0) ,

since the actual position of the jobs does not influence the stochastic behavior and thus

the expected number of completions. Hence, we can also rewrite this difference from

(C.13) as:

Vm(yv ⊕ ui(si + v)⊕ uj(0), 0)− Vm(yv ⊕ ui(t+ v), 0)

= Vm(yv ⊕ ui(si + v)⊕ uj(0), 0)− Vm(yv ⊕ ui(0), 0)

+Vm(yv ⊕ ui(0), 0)− Vm(yv ⊕ ui(t+ v), 0)

= 1∆m
i (yv ⊕ ui(si + v)⊕ uj(0), 0)− 2∆m

i (yv ⊕ ui(t+ v), 0)[0] .

By substituting the induction hypotheses (4.2) and (4.3) for k = m, the latter difference

is bounded from above by 1 and thus also the difference in (C.4) by 0 and 1.

Finally, by combining (C.11)-(C.13) and collecting these arguments, by using the

induction hypotheses (4.2) -(4.4) for k = m in relation (C.11), by similar arguments as

before, we have also shown (4.4) for k = m + 1. Induction now completes the proof of

Lemma 4.1.
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