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Abstract

Systems Biology is an emerging research area, which considers mathematical representations
of inter- and intra-cellular dynamics. Among the many research problems that have been ad-
dressed, dynamic modelling of signal transduction pathways has received increasing attention.
The usual approach to represent intra-cellular dynamics are nonlinear, usually ordinary, dif-
ferential equations. The purpose of the models is to test and generate hypothesis of specific
pathways and it is therefore required to estimate model parameters from experimental data.
The experiments to generate data are complex and expensive, as a consequence of which the
time series available are usually rather short, with few if any replicates. Almost certainly, not
all variables one would like to include in a model can be measured. Parameter estimation is
therefore an important research problem in Systems Biology and the focus of this paper. We
are first going to investigate numerical aspects of the multiple-shooting approach to parameter
estimation. In particular a discussion on forward and backward integration is provided. The
numerical analysis of the algorithm suggests an approach for optimal sampling time selection.
With few sampling points feasible, their selection is of practical importance in experimental
design.

Keywords: systems biology, dynamic pathway modelling, experimental design, multiple shooting,

nonlinear ordinary differential equations, parameter estimation

1 Introduction

Systems Biology investigates how genes, proteins, metabolites and cells interact and react to changes

in their environment (Wolkenhauer, Kitano and Cho 2003, Wolkenhauer, Kolch and Cho 2003).

Modelling the dynamics of signal transduction pathways has received increasing attention in the last

three years. Cell signaling, or ‘signal transduction’, is the study of the mechanisms by which this

transfer of biological information comes about. Signaling impinges on all aspects of biology, from
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development to disease. Many diseases, such as cancer, involve malfunction of signal transduction

pathways (Downward 2001).

In (Asthagiri and Lauffenburger 2001) feedback effects on signal dynamics in a MAPK pathway

model are investigated. In (Schoeberl et al. 2002) the focus is on surface and internalized EGF recep-

tors. The simulation of signal cascades induced by EGF showed good agreement with experimental

data despite the need to complement experimental data for parameter estimation with information

from the literature. The work described in (Swameye et al. 2003) is another example where math-

ematical modelling and parameter estimation have been successful in studying signal transduction

pathways. Like the models of the TNFα mediated NF-κB pathway described in (Cho, Shin, Lee and

Wolkenhauer 2003, Cho, Shin, Kim, Wolkenhauer, McFerran and Kolch 2003), most approaches to

this day, use nonlinear ordinary differential equations (ODEs) to describe cellular dynamics. Al-

ternative representations that have been proposed are process algebras such as π-calculus (Regeve

et al. 2001). Although the estimation of parameters for nonlinear, delayed differential equations is

in itself an active research area, the multiple-shooting method (MSM) (Bock 1983, Bock 1981) has

been shown to work well in various applications (Timmer 1998, Müller 2002, Müller et al. 2002) and

therefore forms the basis of this paper. The principal aim of this paper is to gain insight into the

numerical properties of the multiple shooting approach by providing a comparison of forward and

backward integration. From this investigation, an approach to chose sampling time to optimally

reduce the variation of parameter estimates is developed. Because the experiments to generate

data for parameter estimation are time consuming and expensive, an optimal choice of sampling

times has practical value in experimental design.

Ordinary differential equations are the basis for modelling bio-reactions. The inverse problem

is to identify the parameters of a particular system from experimental time series data. A ma-

jor challenge to dynamic pathway modelling is that data for only few time points are available.

Replicate experiments (which could help us to establish a noise model) are the subject of hard

fought negotiations between dry-lab and wet-lab collaborators. One approach to improve parame-

ter estimates is to increase the accuracy of the numerical methods used and to handle the noise in

measurements more efficiently. Multiple shooting is one approach to parameter estimation which

has been successfully applied to a range of applications. The idea is derived from the numer-

ical solution for the boundary value problem with known parameters as described in (Stoer and

Bulirsch 2002) and has been extended to the case when as well the parameters of the system are un-
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known (Müller 2002, Bock 1983, Bock 1981). Here we are to investigate the numerical performance

of the MSM by comparing forward and backward numerical integration. Moreover, we develop a

concept of an improved experimental design to enhance parameter estimation. Baltes et al. (1994)

introduced a control function into the system to reduce the variance of the parameter estimates. In

contrast, we focus on the proper choice of sampling times to optimally reduce the variation of the

parameter estimates. The proposed method is illustrated with a simple set of bio-kinetic reactions.

The outline of this paper is as follows. In Section 2, we provide a short summary of parameter

estimation for modelling of signal transduction pathways. This is followed by a theoretical com-

parison of forward and backward integration in multiple shooting methods in Section 3. Section 4

introduces the proposed approach to experimental design. The summary of the results and discus-

sion are in Section 5 and Section 6 respectively. All algorithms were implemented in Matlab and

are available upon request from the authors.

2 Signal transduction pathway modeling and parameter estima-

tion

To develop the idea of multiple shooting in general setting, we consider a dynamic system modelled

by ODEs. Given the function f : R
n+1 → R

n let us assume that function x : R→ R
n satisfies the

following system of ODEs∗

ẋ(t) = f(t, x(t),k0), x(T0) = x0 , p0 =
(
x0

k0

)
, t ∈ [T0, T1] , (1)

where k0 ∈ R
m are the parameters of the differential equation and x0 ∈ R

n are the initial values

of the system. For simplicity, we assume that the system x(t,p0) is measured directly at certain

time points, t1, . . . , tN ∈ [T0, T1]. Allowing for measurement noise, we have

xO
j (ti) = xj(ti) + εij , i = 1, . . . , N j = 1, . . . , n (2)

where

εij ∼ N (0, σ2). (3)

Müller (2002) and Baltes et al. (1994) describe the more general situation in which the states are not

directly observable, introducing an observation function g, for which only the g(x(t)) values were

∗In the present paper we will use the following notation: ẋ, ẍ, x(3) refer to the first, second and third time derivatives
of function x, respectively. On the other hand f ′ is used for the derivative (matrix) of vector-valued functions of
several variable. The components of the vector-valued function f are (f1, . . . , fn)�. The regular partial derivatives
are defined as usual ∂1f = ∂

∂t
f(t, x) and ∂2f = ∂

∂x
f(t, x). Vectors will be denoted by bold fonts, while vector valued

functions are in normal type face.
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accessible. In the present paper the noise, εij is assumed to be normally distributed with common

variance, σ2. We thereby simplify the original approach (Müller 2002, Swameye et al. 2003) to learn

more about the information carried in the choice of time points of the measurement, rather than

complicating the case with different variance of noise occurring in the experiment. Our goal is to

identify the true parameter values, most importantly k0, from noisy data, and therefore to provide

an optimal set of time points to reduce the absolute value of the relative error of the estimate

|(p̂0 − p0)/p0|. To this end one has to to approximate the covariance matrix of the estimated

parameters.

2.1 Variance of the estimated parameters

Maximum likelihood estimation is one of the most robust statistical approaches to parameter esti-

mation. When the noise is assumed to be normally distributed the maximization problem reduces

to the minimization of the following function

χ2(p) =
N∑

i=1

n∑
j=1

(
xO

j (ti)− xj(ti,p)
σ

)2

. (4)

Rather than minimizing (4) directly, we linearize function xj(ti, ·) around p0, and minimize this

simpler function. Using the Taylor series expansion (Rudin 1976) of xj(ti,p) around p0

xj(ti,p) = xj(ti,p0) +∇pxj(ti,p0)�∆p + o(∆p), (5)

where ∆p = p− p0 and ∇ is the so-called nabla differential operator, i.e.,

∇p =
(

∂

∂p1
, . . . ,

∂

∂pn+m

)�
.

o(hk) refers to a family of functions w(h) for which

lim
h→0

w(h)
hk

= 0.

Substituting (5) to (4) yields

χ2(p) =
1
σ2

N∑
i=1

n∑
j=1

(
ε2
ij − 2εij∇pxj(ti,p0)�∆p + ∆p�

(
∇pxj(ti,p0)∇pxj(ti,p0)�

)
∆p
)

+ o(∆p).

(6)

The o(∆p) component is assumed to be negligible and the minimization of (6) can thus be solved

explicitly for ∆p, yielding

∆p = F−1
N∑

i=1

n∑
j=1

εij

σ2
∇pxj(ti,p0) (7)
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to obtain the minimum of (4). In this equation

F =


 1

σ2

N∑
i=1

n∑
j=1

∇pxj(ti,p0)∇pxj(ti,p0)�


 (8)

is the so-called Fischer information matrix (Walter and Pronzato 1997, Baltes et al. 1994). From

the solution one can compute the covariance matrix of the parameter vector as

Σ = E[∆p∆p�] = F−1. (9)

To measure the accuracy of the estimate we like to summarise the information about the variability

in the covariance matrix into a single number. Here we use the determinant of the matrix as the

function that transforms a matrix into a scalar. This is quite informative as in fact it relates to the

volume of the multidimensional simplex defined by the column/row vectors of the matrix. Baltes

et al. (1994) suggested to use the ratio of the largest and the smallest eigenvalue of the matrix.

As the determinant is the product of the eigenvalues, these two measures bear common roots.

Comparing these functionals (det and λmax/λmin) lies outside the scope of this paper.

To put the theory developed to this point into practice, a robust solution to the minimization

problem (4) is summarized in the next section.

2.2 Numerical methods for parameter estimation

Here we are concentrating on the MSM (Stoer and Bulirsch 2002, Bock 1983, Bock 1981). However,

since extended multiple shooting has been shown outperform the usual multiple shooting (Müller

2002), our focus is primarily not on the numerical part of parameter estimation, but on the optimal

sampling time selection. What follows is a brief introduction to the MSM.

Our aim is to minimize the function χ2(p) defined in (4). We treat the given data as N − 1

boundary value problems. Starting off with initial estimates for the unknown parameters, k0
0 and

for the initial estimates for the system {x0(ti)}Ni=1, in the u-th iteration we compute the following

quantities

yu(ti) =




yu(ti) = xu(ti) : i = 1,

xu(ti−1) +
ti∫

ti−1

f(t, xu(t),ku
0 )dt : i = 2, . . . , N,

(10)

Fi

(
ku

0 , xu(t1), . . . , xu(tN )
)

= yu(ti)− x0(ti) i = 1, . . . , N, (11)

Gi

(
ku

0 , xu(t1), . . . , xu(tN )
)

= yu(ti)− xu(ti) i = 2, . . . , N, (12)

where F : R
nN+m → R

nN and G : R
nN+m → R

n(N−1). The integration in (10) is carried out

numerically. In our implementation the Runge-Kutta method was used. A noteworthy remark on
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Figure 1: The convergence of multiple shooting algorithm for noisy Lotka-Volterra differential equations. The thin

dark line is the real solution, dark dots represent the measurements used for parameter estimation, while thick grey

line is the fitted curve in each step of the algorithm.

the numerical integration is to be mentioned in Section 3. Having computed these functions one

faces the following constrained minimization problem

min
v∈RnN+m

‖F (v)‖2 subject to ‖G(v)‖2 = 0. (13)

Function G describes the continuity constraints which guarantee that the curve is continuous. The

idea not to treat this condition as strictly as the single shooting method, but keeping in mind

that the curve has to be close to the measurement points, as controlled by the minimization of

function F . Various methods have been designed to perform this optimization in (13) (Stoer

and Bulirsch 2002, Gill and Murray 1974, Bertsekas 1982, Bock 1981). We followed (Stoer and

Bulirsch 2002, Bock 1981) by locally linearizing the functions F and G. For the linearly constrained

least squares optimization we used the lsqlin function in Matlab’s optimization toolbox. The

optimization of (13) yields new values for the parameters

{xu+1(ti)}Ni=1 and ku+1
0 ,

which are then used for the initialization of the (u + 1)-th iteration step. Iterations continue until

the termination criterion ‖G‖2 < δ is met. The initial, the fourth, and the twelfth steps of the

6



algorithm are illustrated in Figure 1. One can see how both continuity and the accuracy (in a least

squares sense) of the data improve as the algorithm converges.

As mentioned earlier, a very important problem for the development of parameter estimation

methods is to improve the numerical recipe used. In the following section a comparative analysis

will be carried out between the use of forward and backward integration as a subroutine in the

MSM. This is going to provide us with a better understanding of the parameter estimation problem

and is to lead us to a novel approach for sampling time selection in experimental design.

3 Numerical integration: Forward vs. backward

The inaccuracy of the parameter estimation can be attributed to at least two sources. One is the

noise inherent in the experiment (measurement) and the other is the inaccuracy of the numerical

integration. In this section we discuss the accuracy of parameter estimates related to numerical

integration of the differential equations, which represent the system under consideration.

In what follows, we are to derive two expressions for forward and backward integration. We

then compare the errors and describe cases for which either method is preferable. Suppose that

the dynamic system under consideration satisfies the following equations, which are a special case

of (1)

ẋ(t) = f
(
x(t)
)
, x(T0) = x0, t ∈ [T0, T1], (14)

where x : R→ R
n, f : R

n → R
n. Then x(T1) is to be computed by

x(T1) = x0 +

T1∫
T0

f
(
x(t)
)

dt. (15)

The first order, forward, one-step numerical integration is given by

h = (T1 − T0)/L,

x̂(T0 + h) = x(T0) + h · f(x(T0))

x̂(T0 + (i + 1)h) = x̂(T0 + i · h) + h · f(x̂(T0 + i · h)
)
, i = 0, . . . , L− 1

where L is a fixed constant which describes the accuracy of the integration. The larger value is

assigned to L the better the accuracy achieved. Denote the error of the approximation by

∆i = x(T0 + i · h)− x̂(T0 + i · h) (16)
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and therefore compute the error by second order Taylor expansion (Rudin 1976) iteratively starting

off with

x(T0 + h) = x(T0) + hẋ(T0) +
h2

2
ẍ(ξ0), where ẍ(ξ0) =

(
ẍ1(ξ0

1), . . . , ẍn(ξ0
n)
)�

(ξ0
1 , . . . , ξ0

n)� ∈ [T0, T0 + h]n

thus

∆0 =
h2

2
ẍ(ξ0)

and in step i

x
(
T0 + (i + 1)h

)
= [x̂(T0 + i · h) + ∆i] + [h · f(x̂(T0 + i · h)) + h · f ′(ζi)∆i] +

h2

2
ẍ(ξi).

Here

f ′(ζi) =
(∇f1(ζi

1), . . . ,∇fn(ζi
n)
)�

,

ẍ(ξi) = (ẍ1(ξi
1), . . . , ẍn(ξi

n))�,

ξi
j ∈ [T0 + i · h, T0 + (i + 1)h], i = 0, . . . , L− 1 j = 1, . . . , n

ζi
j ∈ [

min
(
x̂j(T0 + i · h), xj(T0 + i · h)),max(x̂j(T0 + i · h), xj(T0 + i · h)

)]
,

i = 1, . . . , L− 1 j = 1, . . . , n.

Therefore the recursion for ∆i is

∆0 =
h2

2
ẍ(ξ0),

∆i+1 = ∆i +
h2

2
ẍ(ξi+1) + hf ′(ζi+1)∆i i = 0, . . . , L− 2,

leading to

∆FWD
L−1 = x(T1)− x̂(T1) =

h2

2

L−1∑
i=0


 i∏

j=1

(
I + h · f ′(ζL−j)

) ẍ(ξL−1−i) (17)

here I ∈ R
n×n is the identity matrix. Next, we derive a similar expression for backward integration

before we compare the two cases. Let

ẋ(t) = f(x(t)), x(T1) = x1, t ∈ [T0, T1], (18)

and x(T0) is to be determined. The iterative numerical solution is computed as follows

h = (T1 − T0)/L,

x̂(T1 − h) = x(T1)− h · f(x(T1))

x̂(T1 − (i + 1)h) = x̂(T1 − i · h)− h · f(x̂(T1 − i · h)), i = 0, . . . , L− 1.
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Similarly the same lines one can obtain the error formula

∆BWD
L−1 = x(T0)− x̂(T0) =

h2

2

L−1∑
i=0


 i∏

j=1

(
I − h · f ′(ϑL−j)

) ẍ(ηL−1−i) (19)

where f ′(ϑi), ẍ(ηi), ϑi and ηi are defined as

f ′(ϑi) = (∇f1(ϑi
1), . . . ,∇fn(ϑi

n))�

ẍ(ηi) = (ẍ1(ηi
1), . . . , ẍn(ηi

n))�

ηi
j ∈ [T1 − i · h, T1 − (i + 1)h], i = 0, . . . , L− 1 j = 1, . . . , n

ϑi
j ∈ [

min
(
x̂j(T1 − i · h), xj(T1 − i · h)),max(x̂j(T1 − i · h), xj(T1 − i · h)

)]
,

i = 1, . . . , L− 1 j = 1, . . . , n.

Now pick the interval [T0, T1] such that none of the following functions changes its sign:
{
ẍj

}n

j=1
,{

∂fj

∂i

}n

i,j=1
. From formulae (17), (19) it is obvious that in case h is small enough the components

of ∆i will not change its sign, i.e. the sign depends only on the convexity of functions x1, . . . , xn.

To compute the difference between the forward and the backward formulae, i.e. (17) and (19), we

split the difference into two major parts

∆FWD −∆BWD =
h2

2

L−1∑
i=0


 i∏

j=1

(
I + h · f ′(ζL−j)

) ẍ(ξL−1−i)−

− h2

2

L−1∑
i=0


 i∏

j=1

(
I − h · f ′(ϑL−j)

) ẍ(ηL−1−i)

=
h2

2

L−1∑
i=0


 i∏

j=1

(
I + h · f ′(ζL−j)

) (ẍ(ξL−1−i)− ẍ(ηi)
)

+

+
h2

2

L−1∑
i=0




 i∏

j=1

(
I + h · f ′(ζL−j)

)−

 i∏

j=1

(
I − h · f ′(ϑj)

)

 ẍ(ηi). (20)

In Appendix A we will show that the first term in (20) is o(h) in magnitude, thus

∆FWD −∆BWD =
h2

2

L−1∑
i=0




 i∏

j=1

(
I + h · f ′(ζL−j)

)−

 i∏

j=1

(
I − h · f ′(ϑj)

)

 ẍ(ηi) + o(h)

= h
1
2

L−1∑
i=0

h




exp


h ·

i∑
j=1

f ′(ϑj)


− exp


−h ·

i∑
j=1

f ′(ζL−j)




 ẍ(ηi)


+ o(h)

where exp(A) for matrix A ∈ R
n×n is defined as

exp(A) =
∞∑
i=0

Ai

i!
.
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Denote therefore the constant∗ vector c ∈ R
n

c =
1
2

L−1∑
i=0

h




exp


h ·

i∑
j=1

f ′(ϑj)


− exp


−h ·

i∑
j=1

f ′(ζL−j)




 ẍ(ηi)


 , (21)

leading to the difference between the two integration methods described by

∆FWD −∆BWD = hc + o(h) . (22)

Monotonicity Convexity Direction
increasing convex BWD
decreasing convex FWD
increasing concave FWD
decreasing concave BWD

Table 1: This table summarizes which direction of numerical integration is more accurate depending on the proper-

ties of function x in case of one dimension (i.e. n = 1). FWD refers to forward, while BWD to backward integration.

Therefore when h is chosen small enough from (22) we find that the sign of the components of

c will decide which direction of the numerical integration is more accurate in the corresponding

component of function x. Namely, when the cl is positive the backward numerical integration

will boast with more accuracy at the component xl, while in the case cl is negative the forward

numerical integration will lead to better results at the component xl. However, in general the

determination of the sign of c is computationally expensive but in one dimension, i.e. when n = 1

(21) simplifies to

sgn(c) = sgn(f ′) · sgn(ẍ) (23)

where sgn is the signum function, i.e.

sgn(q) =




1 : q > 0,
0 : q = 0,
−1 : q < 0.

The consequences of (23) are summarized in Table 1. This shows for example that for mono-

tone increasing, convex solutions (ẋ > 0, ẍ > 0), the backward integration improves the accuracy

compared to the commonly used forward integration. More concisely, as ẍ = f ′(x)ẋ, when f ′ is

positive it is suggested to use backward and when negative, forward integration. Furthermore, the

integration accuracy for both directions of integration is o(h), whilst the difference between the

two types of integration is o(h) as well. To visualize the difference we refer to Figure 2. For the

∗c is constant in the sense that limh→0 c(h) = c0 ∈ R, i.e. c = c0 + o(1). o(1) is defined as o(h0). This guarantees
that the sign of c will be independent of h in case h is small enough.
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Figure 2: The difference between forward and backward integration.

ODE ẋ(t) = x(t), T0 = 0, T1 = 1, with solution x(t) = et, we carried out forward and backward

integration. In case of MS the difference between the two methods can lead to significantly different

solutions for the parameters, as will be shown in Section 5.

In this section we considered the inaccuracies of parameter estimates as a result of numerical

optimization. The aim was to gain insight into the numerical algorithms and MSM. In param-

eter estimation a more important error arises from the uncertainty associated with noise in the

observation of a system. This error can be reduced or at least accounted for through a statistical

model. The design of experiments plays then an important role, especially if the costs and logistics

of experiments in signal transduction studies prevent us from measuring at a large number of sam-

pling points. In the following section we therefore focus on experimental design, and specifically

investigate the possibility to choose sampling instances in an optimal way.

4 Optimal experimental design

Time course experiments in molecular biology are rarely producing large and accurate data sets.

These experiments are time consuming and expensive. Despite the availability of increasingly

sophisticated technology to identify protein interactions, data usually provide an indirect reflection

of the true intra-cellular processes. The design of experiments is subsequently an important issue

and covers various aspects. Unfortunately, we cannot provide an entirely optimal solution and in
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fact require for our approach that a simple data set is already available before a new design of

experiments is considered.

For signal transduction studies a relatively small number of time points are used for sampling.

The sampling intervals are usually not evenly spaced and based on heuristics. Here we are to

investigate an approach to guide the process of selecting time points in an optimal way to minimize

the variance of parameter estimates. In our study we first define a time interval from which we are

going to select a fixed number of time points. Naturally, for sampling points that are very close,

replicate experiments should be considered.

As can be seen in (9) the standard deviation of the parameters is a linear function of the stan-

dard deviation of the noise σ. The information transferred from the experiment will be expressed

by det(F ), where matrix F was introduced in (8). The larger the determinant of F , the more

information can be extracted about the parameters. Let us denote by z(·) the determinant of F as

a function of the sampling time points:

z(t1, . . . , tN ) = det
(
F (t1, . . . , tN )

)
.

We then have the following maximization problem to solve

max
(
z(t1, . . . , tN )

)
subject to {ti}Ni=1 ∈ [T0, T1]N ⊆ R

N . (24)

Without the constraints in (24) one would use differential calculus to find the maximum. Let

m ∈ {1, . . . , N} and compute the partial derivatives of function z

∂

∂tm
z(t1, . . . , tN ) =

∂

∂tm
det


 N∑

i=1

n∑
j=1

∇pxj(ti,p0)∇pxj(ti,p0)�




=
∂

∂tm
det


∑

i�=m

n∑
j=1

∇pxj(ti,p0)∇pxj(ti,p0)� +
n∑

j=1

∇pxj(tm,p0)∇pxj(tm,p0)�


 .

Let us denote

A =
∑
i�=m

n∑
j=1

∇pxj(ti,p0)∇pxj(ti,p0)�.

Therefore

∂

∂tm
z(t) = 2 · det (A)

n∑
j=1

∇pfj(tm, x(tm,p0))�A−1∇pxj(tm,p0) (25)

where fj is the j-th component of function f , introduced in (1). To obtain this we used the following

property of the determinant of sums of special matrices

det(A + xx�) = det(A)(1 + x�A−1x),
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which is proven in Appendix B. Let H(t1, . . . , tN ) denote the Hessian of z, i.e., H(l,m)(t1, . . . , tN ) =

∂2

∂tltm
z(t1, . . . , tN ). By differentiation of (25) the diagonal of the Hessian is

∂2

∂tmtm
z(t) = 2 · det(A)

n∑
j=1

∇p
∂

∂tm
fj(tm, x(tm,p0))�A−1∇pxj(tm,p0) +

+ 2 · det(A)
n∑

j=1

∇pfj(tm, x(tm,p0))�A−1∇pfj(tm, x(tm,p0)), (26)

where

∂

∂tm
fj(tm, x(tm,p0)) = ∂1fj(tm, x(tm,p0)) + ∂2fj(tm, x(tm,p0)) · f(tm, x(tm,p0))

and the non-diagonal elements are (l �= m)

∂2

∂tltm
z(t) =

2 · det(B)


 n∑

j=1

∇pfj(tl, x(tl,p0))�B−1∇pxj(tl,p0)




 n∑

j=1

∇pfj(tm, x(tm,p0))�A−1∇pxj(tm,p0)




+ 2 · det(A)
n∑

j=1

∇pfj(tm, x(tm,p0))�
[

∂

∂tl
A−1

]
∇pxj(tm,p0) (27)

where

∂

∂tl
A−1 = A−1


 n∑

j=1

∇pfj(tl, x(tl,p0))∇pxj(tl,p0)� +∇pxj(tl,p0)∇pfj(tl, x(tl,p0))�


A−1

and

B =
∑

i�=m,l

n∑
j=1

∇pxj(ti,p0)∇pxj(ti,p0)�.

Having these quantities one can use Newton’s method to find the maximum. This iterative method

is carried out as follows. An initial guess for the maximum is denoted by t0 and the next point is

obtained by

ts+1 = ts − λsvs (28)

where

vs = H(ts)−1∇tz(ts) (29)

and λs is defined as suggested in (Stoer and Bulirsch 2002, Bock 1981). This computation is rather

cumbersome and the constraints make it even more difficult to handle.

Alternatively, we can use Powell’s quadratically convergent method (Press et al. 1987). Al-

though this method yields only a suboptimum due to the reduction in the dimensionality of the

13
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Figure 3: A three-dimensional section of the (17-dimensional) surface to be maximized. The thick black line shows

how Powell’s algorithm approaches the maximum point.

search space, this suboptimum commonly coincides with the optimum. The reason for this is that

the optimum point usually occurs on the boundary of the multidimensional rectangle [T0, T1]N .

Figure 3 illustrates this in three dimensions. Originally all 16 time points were picked equidis-

tantly. Looking at the figure, we start with the 15-th measurement fixed at 9.39min and begin

to decrease the location of the 10th time point, beginning at 6 minutes. The determinant of the

inverse covariance matrix increases nearly 1.5 times (in other words, the determinant of the co-

variance matrix reduces to two-third). The thick black line shows how Powell’s algorithm evolves

to find the maximum. The maximization can radically increase the determinant of the inverse

covariance matrix, which will be demonstrated in Section 5.

One could argue that in practice we do not know the true parameters, without which how can

we construct the covariance matrix? Here we assume an experiment was carried out before with

a few equidistant time points. From this we obtain an estimate for the parameter values by using

MSM described in the last part of Section 2. Using these estimates to reconstruct the covariance

matrix provides similarly good results, since the reconstructed function x used in the covariance

matrix closely agrees with the exact solution even if the parameter estimates are relatively poor.

Therefore, after an initial trial, one can elaborate the main experimental design for more time

points. The efficiency of this approach is discussed in the following section.
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5 Simulation studies for a single step signal transduction module

To provide a simple example for our investigation, we are going to model a single step in a signal

transduction pathway cascade and represent this module in analogy to an enzyme kinetic reaction,

S + E
k1−→←−
k2

ES
k3−→ E + P.

Suppose that a given enzyme combines with a substrate to form an enzyme-substrate complex

with a rate constant k1. The complex holds two possible outcomes in the next step. It can become

dissociated with a rate constant k2, or it can further proceed to form a product with a rate constant

k3. It is assumed that none of the products reverts to the initial substrate. It is required to express

the relations between the rate of catalysis and the change of concentration for the substrate, the

enzyme, the complex, and the product.

"substrate"(S) "enzyme"(E)

"product"(P)

k1/k2

k3

"complex"(ES)

x1 x2

x3

x4

Figure 4: A template pathway modeling block for single-step signal transduction pathway. The pathway model can

be constructed from basic reaction modules like this enzyme kinetic reaction for which a set of four ODEs is required.

Based on these reaction kinetics (Robert and Tom 2001, Cho, Shin, Lee and Wolkenhauer 2003,

Cho, Shin, Kim, Wolkenhauer, McFerran and Kolch 2003), illustrated in Figure 4, we obtain the

following set of ODEs

ẋ1 = −k1x1x2 + k2x3 (30)

ẋ2 = −k1x1x2 + (k2 + k3)x3 (31)

ẋ3 = k1x1x2 − (k2 + k3)x3 (32)

ẋ4 = k3x3. (33)

Here x1 refers to the “enzyme” concentration, x2 to that of the “substrate”, x3 to the “enzyme-

substrate” complex, while x4 denotes the concentration of the “product”. For simulation studies,
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we set the parameter values as follows: T0 = 0, T1 = 10, x1(0) = 12, x2(0) = 12, x3(0) = 0,

x4(0) = 0, k1 = 0.18, k2 = 0.02, k3 = 0.23. First, the concentration curves were simulated with

a normally distributed noise, standard deviation 0.2, added to the process. As discussed earlier,

the magnitude of the noise is not important, since the relationship between the variance of the

parameter estimates and the variance of the noise is linear.
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Enzyme
Complex
Product

Figure 5: Reconstructed concentration curves for the enzyme kinetic reaction. Stars, triangles, dots and plus signs

refer to ‘measured’ data.

First we sampled the concentration at 16 equidistant time points in the domain [0, 10], then

we applied the MSM. This gave the estimates for the parameters k̂1 = 0.1768, k̂2 = 0.0155,

k̂3 = 0.2322. The reconstruction of the concentration profiles for each protein can be seen in Figure

5. The covariance matrix was computed based on the estimated parameter values. As described

in Section 4, the determinant of the covariance matrix was optimized by Powell’s quadratically

convergent minimization method to yield the optimal set of time points to minimize the variance of

the discrepancy between the real and the estimated parameter values of the system. The selected

optimal sampling time points for experimental design are summarized in Table 2 and its efficiency

is shown in Figure 6.

The set of time points are shown vertically at each iteration step. As can be seen at the

initial iteration, the time points were scattered equidistantly between zero and ten, while in the
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time points (min) 0 0.36 0.43 3.38 3.86 4.65
number of replicates 5 2 3 2 3 1

Table 2: Optimal experimental design for sampling time points.
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Figure 6: Figure illustrating how the accuracy increases as the design of time point collection changes during the

minimization process. Each column of points refers to a set of time points.

last iteration step they converged to the optimal detailed in Table 2. The continuous curve is the

determinant corresponding to the actual set of sampling time points at the specified iteration step.

Since the condition number of the covariance matrix did not tend to infinity as the number of

measurements increased, the parameters are locally identifiable (Müller et al. 2002).

In the second step the original (noisy) process was then sampled at the new set of sampling

time points (summarized in Table 2). MSM was applied for these measurements and produced new

estimates for the parameters of the system: k̂1 = 0.1779, k̂2 = 0.0231, k̂3 = 0.2296. The relative

error, defined in Section 2 compared to the one obtained from the original design was improved

considerably, as can be seen in Table 3.

To demonstrate how significant the difference can be between forward and backward numer-

ical integration we implemented the backward multiple shooting method as well. The backward
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k1 k2 k3

real values 0.1800 0.0200 0.2300
equidistant 0.1768 0.0155 0.2322forward estimate

optimal 0.1779 0.0231 0.2296
equidistant −0.0177 −0.2250 0.0095relative error

optimal −0.0117 0.155 −0.0017

Table 3: Comparison of the parameter estimates according to the sampling time points.

algorithm agrees with the usual MSM except (10) which has to be changed in the following way:

yu(ti) =




yu(ti) = xu(ti) : i = N,

xu(ti+1)−
ti+1∫
ti

f(t, xu(t),ku
0)dt : i = 1, . . . , N − 1.

(34)

This leads us back to the problem analyzed in Section 3. We solved it using the aforementioned

backward integration formula (19). Table 4 compares the results of backward with the usual forward

MSM.

k1 k2 k3

real values 0.1800 0.0200 0.2300
forward 0.1768 0.0155 0.2322estimate

backward 0.1782 0.0174 0.2324
forward −0.0177 −0.2250 0.0095relative error

backward −0.0100 −0.1300 0.0104

Table 4: Comparison of the parameter estimates according to the forward and backward MSM.

In this particular case the backward MSM outperformed the forward MSM, although this is

dependent on the particular experiment. As discussed in Section 3, the performance basically

depends on the shape of the curve (Table 1), but the magnitude of the noise at specific sampling

time points plays naturally a crucial role in the performance.

Here we considered only one particular realization of an experiment where the optimization

led to a considerably better estimate for the parameters. In general, we can also characterize its

expected performance, i.e. the reduction of variance on average. As seen in Figure 6, the change

of the determinant was approximately 20-fold between the original and the optimal design. This

means that the change in the determinant of the covariance matrix is around 1/20. Since the

matrix here is diagonally dominant, we can say that the determinant is roughly the product of the

diagonal elements (σ2(k̂1), σ2(k̂2), σ2(k̂3), . . .). The variance of the parameters have thus been

diminished to approximately 7
√

1/20 = 65%.
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6 Conclusions

Modelling cellular dynamics based on experimental data is at the heart of Systems Biology. If the

dynamics can be represented by ODEs, the first step in modelling is to decide upon the structure

of the equations. The most important next step is to identify the parameters of the system from

experimental data. Here we investigated multiple shooting for parameter estimation and experi-

mental design, trying to gain insights into the numerical properties of the approach and to consider

an application in experimental design. Considering the various applications that exist for the MSM

and from our study of these ideas, multiple-shooting based methods are a very good solution for

parameter estimation in dynamic pathway modelling. Based on these ideas we develop a concept

for time point selection in measurements. Since the approach to select optimal sampling time points

relies on an existing data set we cannot claim to provide a solution that will necessarily reduce the

costs of experiments, but will enhance the information extracted from the measurements. More-

over, at the beginning of interdisciplinary projects it is often the case that some data exist, based

on which one designs further experiments.
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Appendix

A Order of magnitudes

Given the introduced notations and definitions in Section 3 we will show that in (20) the magnitude

of the first term is that of o(h).

Theorem 1.
h2

2

L−1∑
i=0


 i∏

j=1

(
I + h · f ′(ζL−j)

) (ẍ(ξL−1−i)− ẍ(ηi)
)

= o(h)

Proof. In case h is small enough there exist a constant d ∈ R such that∣∣∣∣∣∣
h2

2

L−1∑
i=0


 i∏

j=1

(
I + h · f ′(ζL−j)

) (ẍ(ξL−1−i)− ẍ(ηi)
)∣∣∣∣∣∣ <

∣∣∣∣∣h
2

2
d

L−1∑
i=0

(
ẍ(ξL−1−i)− ẍ(ηi)

)∣∣∣∣∣
Using again Taylor’s remainder theorem (Rudin 1976), there exists a vector κi such that

κi
j ∈ [min

(
ξL−1−i
j , ηi

j),max
(
ξL−1−i
j , ηi

j)]
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for which
∣∣∣∣∣h

2

2
d

L−1∑
i=0

(
ẍ(ξL−1−i)− ẍ(ηi)

)∣∣∣∣∣ =
∣∣∣∣∣h

2

2
d

L−1∑
i=0

x(3)(κi) · h
∣∣∣∣∣ =
∣∣∣∣∣∣
h2

2
d

T1∫
T0

x(3)(t)dt

∣∣∣∣∣∣+ o(h2) = o(h)

holds. As usual x(3) denotes the third derivative of function x.

B Determinant properties

Suppose that A ∈ R
r×r and invertible, then

det(A) =
r∏

i=1

λi (35)

holds. Where as usual {λi}ri=1 are the eigenvectors of matrix A. Furthermore it is known that if

A,B ∈ R
r×r both non-singular, then det(AB) = det(A)det(B). Therefore

det(A + xx�) = det(A) det(I + A−1xx�). (36)

Theorem 2.

det(I + A−1xx�) = 1 + x�A−1x. (37)

Proof. Let us collect the eigenvectors of I + A−1xx�. There are r − 1 orthogonal vectors to x,

{x⊥
i }r−1

i=1 . Thus (I + A−1xx�)x⊥
i = x⊥

i . Their corresponding eigenvalues are all one. The final

eigenvector is A−1x. To verify this

(I + A−1xx�)(A−1x) = (1 + x�A−1x)(A−1x). (38)

Finally, from (36) and (37) we have that

det (A + xx�) = det (A)(1 + x�A−1x).
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