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Initially described as an inert fat store, adipose tissue (AT) has been extensively studied in recent years and 
shown to have multifaceted roles in appetite regulation, vascular homeostasis, energy balance and systemic 
inflammation in chronic diseases. Composed mainly of adipocytes and stromal vascular fraction (SVCs), 
comprising preadipocytes, macrophages, mesenchymal stem cells (MSCs), T cells, B cells, mast cells and 
endothelial progenitor cells (EPCs), AT performs an endocrine role in secretion of growth factors and cytokines 
(termed adipocytokines). AT is extensively vascularized and, as in other tissues and organs, the growth and 
maintenance of AT is critically dependent on angiogenic processes. The microvasculature network surrounding 
the adipocytes provides efficient pathways for crosstalk with the surrounding environment. AT undergoes 
constant expansion and shrinkage during its entire life span. To cope with this increased metabolic demand 
during expansion, AT vasculature undergoes extensive remodelling, and changes to vessel density are observed. 
To facilitate these processes, AT secretes angiogenic/growth factors. Dysregulation in the secretion of these 
factors is known to play an important role in obesity and insulin-resistant states. In this article we will discuss 
novel therapeutic strategies to combat obesity and inflammation by inducing changes to the AT vascular 
network. 
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Introduction 

Adipose tissue (AT) functions as an endocrine organ, and 
is comprised of several cell types including adipocytes, 
stromal cells, resident and infiltrating immune cells, and an 
extensive endothelial network of the vascular tree [1, 2]. The 
latter performs diverse roles ranging from the delivery of 
nutrients to the tissue and the circulation of metabolites, 
growth factors and adipokines from the tissue to the rest of 
the body. Thus the vascular tree enables interactions between 
different cell types facilitating autocrine/paracrine signalling. 

This in turn influences AT metabolic environment [3]. The 
existing vascular density and function eventually fail to meet 
the increasing demand of the expanding AT leading to 
chronic inflammation [4, 5]. This state is characterized by 
development of local pockets of hypoxic environment 
leading to increased endoplasmic reticulum (ER) stress, 
fibrosis and inflammation accompanied by immune cell 
infiltration [5, 6, 7]. These processes, however, seem to be 
absent in ‘metabolically healthy obese’, since AT expansion 
in these cases is accompanied by adequate vascular supply [8].  
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Table 1. Adipocytokines and obesity-induced changes 

Adipokines Circulating levels in obesity References 
Adiponectin  Asayama et al, 200314; Hoffstedt et al, 200415 

Apelin  Boucher et al, 200516 

Adipsin  Napolitano et al, 1994 17(human study) 
Chemerin  Sell et al, 200918 

FABP-4  Queipo-Ortuño et al, 201219 
Leptin  Harmelen et al, 199820 

Lipocalin 2  Catalan et al, 200921 

Omentin  De Souza Batista et al, 200722 

Perilipin  Wang et al, 200323 

RBP-4  Janke et al, 200624 

Resistin  Way et al, 200125 

Visfatin  Berndt et al, 200526 

 
Table 2. Effect of adipokines on endothelial angiogenesis and inflammation 

Adipocykines Effects on Angiogenesis 
Adiponectin EC proliferation, migration and angiogenesis and anti-inflammatory29,30 
Apelin Pro-angiogenic and anti-inflammatory31 

Adipsin Unknown?  
Chemerin Pro-angiogenic and pro-inflammatory32 

Pro-angiogenic and pro-inflammatory33 IL-6 
Leptin Pro-angiogenic and pro-inflammatory34 

Lipocalin 2 Pro-angiogenic and pro-inflammatory35 

Omentin Anti-inflammatory and anti-angiogenic36,37 

Perilipin Unknown? 
RBP-4 Pro-angiogenic? and pro-inflammatory38 

Resistin Pro-angiogenic and pro-inflammatory39 

Visfatin Pro-angiogenic and pro-inflammatory40, 41 

 
Table 3. Studies relating to adipose tissue angiogenesis in obesity 

Pro-angiogenesis Anti-angiogenesis 
Sung et al, 2013-VEGF in VEGFAdΔ mice44 Rupnick et al, 2002-downregulating AT angiogenesis in genetically obese 

mice by TNP-47027 

Sun et al, AT specific VEGF-A , -Early 
stimulation of WAT angiogenesis in obese 
mice12 

Brakenhielm et al, 2004, down regulating AT angiogenesis in DIO mice by 
TNP-47046 

Elias et al, 2012, VEGF-A overexpression in 
diet-induced obese (DIO) model47 

Kolonin et al, 2004, Targeted induction of apoptosis in AT vasculature by 
prohibitin48 

Aprahamian et al, 2014, Stimulation of 
angiogenesis by inducing adiponectin 
expression in Adipo-/- mice49 

Lu et al, 2012, VEGF-A leads to VEGF-B in HFD genetically modified 
mice – not linked to vascularization50 

 
Adipose tissue expansion is characterized by substantial 

structural remodelling involving adipocyte hyperplasia 
and/or hypertrophy, recruitment of inflammatory cells 
achieved primarily through vascular remodelling and 
neovascularization, thus making angiogenesis a pivotal 
process in influencing the rate of AT expansion [2, 9]. 

AT angiogenesis is dependent on both locally secreted and 
perfused angiogenic factors. The differential regulation of 
these angiogenic adipokines in obesity could contribute to 
changes in AT angiogenic profiles [10]. These factors are 
further regulated by the presence of tissue hypoxia, vascular 
perfusion and local inflammatory cells, suggesting the 
involvement of autocrine-paracrine related events.  

Recent advances in AT angiogenesis have established that 
in advanced stages of metabolically challenged AT, disruption 
of AT vascularity results in substantial decreases in AT size 

and body weight [11]. However, other reports have 
demonstrated a contrasting evidence of beneficial effects of 
improving AT angiogenesis in reducing AT inflammation and 
decreasing body weight; albeit in different phases of AT 
expansion. In this context, a doxycycline (Dox)-inducible 
adipocyte-specific VEGF-A overexpression mice model 
exhibited enhanced AT angiogenesis and improved insulin 
sensitivity and weight loss [12]. Similar results were found in 
metabolic disease-resistant 11β-hydroxysteroid 
dehydrogenase Type 1 (HSD1)-deficient mice, which have an 
increased AT angiogenesis compared to their wild types. This 
increased induction of AT angiogenesis was accounted for by 
an HIF-1α independent up regulation of VEGF-A and 
angiopoeitin-4 [13]. 

Adipokines and angiogenic mediators 

As noted, AT produces and secretes several hormones and 



Immunoendocrinology 2015; 2: e918. doi: 10.14800/ie.918; © 2015 by Raghu Adya, et al. 
http://www.smartscitech.com/index.php/ie 

 

Page 3 of 7 
 

cytokines (adipokines/adipocytokines) which have multiple 
functions in inflammation, vascular homeostasis, 
carbohydrate-lipid metabolism and, more specifically for this 
review, in angiogenesis. As summarized in Table 1, the 
secretion levels of these adipokines vary with changes in AT 
mass (i.e. lean and obese states). It is interesting to note that 
adipokines with anti-inflammatory properties are decreased 
in obesity despite increased adipocyte/AT mass, thus 
demonstrating changes to the secretory profile of 
adipocytes/stromal-vascular fraction following 
hypertrophic/hyperplastic changes. 

Adipokines and angiogenesis 

As mentioned earlier, AT expansion is critically 
dependent on angiogenesis, and both locally secreted and 
circulating growth factors have been implicated in the 
dysregulation of AT angiogenesis in obesity [27,28]. In 
addition to well-known angiogenic/growth factors such as 
VEGF, FGF and HGF produced both locally (AT-derived) 
and systemically; some of the adipokines (leptin, visfatin, 
adiponectin, TNF-α, chemerin, vaspin, IL-6, angiogenesin, 
omentin and PAI-1) have recently been shown to exert their 
influence in AT angiogenesis. As shown in Table 2, pro- and 
anti-angiogenic adipokines may perhaps play an important 
role in maintaining AT vascular homeostasis.  

Changes to regional AT concentrations of adipokines in 
obesity 

Clinical studies measuring circulating adipokine levels 
and their AT concentrations have found significant changes 
in lean and obese human subjects. 

Studies by You et al have demonstrated significant 
differences in regional AT concentrations of adipokines 
(adiponectin and leptin) before and after weight loss. 
Following a 20-week weight loss programme there was 
significant decrease in leptin production in gluteal and 
abdominal AT and increased expression and secretion of 
adiponectin from abdominal AT. Also, the changes to 
circulating levels of adipokines in pre- and post-intervention 
seemed to follow tissue expression patterns [42]. 

Adipose tissue angiogenesis in early and late stages of 
obesity 

With the progression of obesity, adipocytes undergo either 
hypertrophic or hyperplastic changes, resulting in local tissue 
hypoxia and inflammation [43]. Studies have shown that 
anti-angiogenic interventions in stages of early obesity result 
in increased AT hypoxia, inflammation and apoptosis [12, 44]. 
By contrast, reduced adiposity and improved glucose 

tolerance are observed in late-stage suppression of AT 
angiogenesis, plausibly through increased clearance of 
apoptotic adipocytes, reduced inflammation and hypoxia 
leading to regression of AT [44]. 

Therapeutic pro-/anti-angiogenic approaches to combat 
obesity 

Studies have shown that by limiting the vascular supply, 
growth of AT can be controlled [27, 45]. This suggests the 
‘hypoxic’ hypothesis, where the rapidly expanding AT in 
HFD mice models, not accompanied by an adequately 
parallel growth of capillary network, results in tissue 
hypoxia, inflammation and insulin resistance. In this context 
AT-VEGF-ablated animals display a net decrease in depot 
size, accompanied by increased inflammation and marked 
deterioration of glucose tolerance and insulin sensitivity, 
most evident in response to HFD [27]. Conversely, 
overexpression of VEGF in AT results in increased 
vascularization, decreased inflammation, and amelioration of 
HFD-induced insulin resistance [44]. Other studies have 
shown that overexpression of ANGPTL4 (thus inducing AT 
angiogenesis) in obese mice ameliorates insulin resistance 
and glucose intolerance [46]. In accordance with this, 
11β-hydroxysteroid dehydrogenase type 1 KO mice with 
high fat feeding show AT expansion accompanied by 
increased AT vascularity and expression of pro-angiogenic 
factors [13]. 

As listed in Table 3, numerous studies have shown both 
pro- and anti-angiogenic approaches have resulted in weight 
loss, albeit in varied rodent models and at differing stages of 
obesity.  

To add to the complexity of these approaches in treating 
obesity, studies have shown diametrically opposing actions 
of two splice variants of a well-known angiogenic factor, 
VEGF-A (VEGF165 and VEGF165b). In a report by Ngo et al 
2014, the anti-angiogenic effect of VEGF165b (in AT) is 
demonstrated in human obesity [51]. 

Differential role of VEGF165A and VEGF165B in AT 
angiogenesis 

A well-studied angiogenic growth factor VEGF (vascular 
endothelial growth factor) exists as 5 distinct ligands 
(VEGF-A, VEGF-B, VEGF-C, VEGF-D and placental 
growth factor). Furthermore, there are two splice variants of 
VEGF-A; VEGF-A165 (pro-angiogenic) and VEGF-A165b 
(anti-angiogenic) [52]. The differential regulations of these 
splice variants resulting in either pro- or anti-angiogenic 
processes have been studied in cancers [53, 54]. This process 
has been recently reported in visceral AT where it is 
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responsible for regulating AT angiogenesis in obesity (Ngo 
et al) [51]. More importantly, in obesity a ‘VEGF paradox’ 
occurs, resulting in decreased AT angiogenesis in spite of 
increased circulating levels of VEGF. This can be explained 
by apparent overexpression of anti-angiogenic VEGF165b in 
obese visceral AT and subsequently decreased angiogenesis 
[55]. Thus a detailed understanding of angiogenic modulators 
in AT is vital in developing therapeutic strategies in 
combating obesity.  

This may also be true for other adipokines which are 
secreted from AT to have a differential effect on AT 
angiogenesis. We have previously reported the differential 
angiogenic effects of two forms of adiponectin (globular and 
full length), which may play a role in AT angiogenesis in 
states of obesity [30]. 

Obesity, adiponectin and adipose tissue angiogenesis 

Circulating adiponectin levels have been shown to be 
decreased in states of obesity and insulin resistance [14, 15]. In 
post-bariatric surgical and exercise-induced weight-loss 
subjects, circulating adiponectin levels have been 
demonstrated to increase significantly [56]. Research by Kern 
et al, 2003 has demonstrated that AT expression levels of 
adiponectin are decreased in obese AT and this correlated 
with circulating levels as well [57]. 

Adiponectin has been shown by various groups to have 
contrasting effects in promoting endothelial angiogenesis.  

Studies by Ouchi et al reported adiponectin (full length 
fraction of adiponectin-fAd) induced angiogenesis [28]. 
However, other groups have demonstrated potent 
anti-angiogenic effects of adiponectin [58]. We have 
previously performed experiments with both fractions of 
adiponectin [full length (fAd) and globular (gAd) 
adiponectin] on human endothelial cells. We found that fAd 
was pro-proliferative with no effects on migration and 
capillary tube formation. The gAd fraction showed 
proliferative, migratory and angiogenic effects in HMECs 
(human microvascular endothelial cells) [30]. Our findings are 
different from those described above, possibly because of 
differences in experimental material and methods. 

However, there is very limited understanding regarding 
the ular aspects of adiponectin and AT angiogenesis. Studies 
manipulating AT adiponectin levels in DIO (diet-induced 
obesity) models have demonstrated the role of 
adipokine-mediated AT angiogenesis in obesity. As 
demonstrated by studies of Aprahamian et al, AT levels of 
adiponectin were critical in the maintenance of adequate 
vascularity and tissue perfusion in AT [49]. Overexpression of 
AT adiponectin levels in DIO mice led to increased 
vascularity, decreased tissue hypoxia, increased VEGF-A 
expression levels and decreased AT infiltration of 
macrophages. Similarly the expressions of AT angiogenic 
factors (VEGF, Arnt2, erythropoietin, and notch1) were 
consistently upregulated in apn-TG mice in comparison with 
wild type and apn-KO mice [49]. 

The dual pro/anti-angiogenic profiles demonstrated by 

Figure 1. Changes in vascularity and resident inflammatory cell population in AT through stages of 
obesity. A. Lean AT is highly vascularized with smaller adipocytes and sparse inflammatory cells 
(macrophages and lymphocytes). B. With the onset of obesity, rapidly expanding adipocytes (hypertrophic) 
with a lag in vascular density leads to local hypoxia and increase in populations of inflammatory cells. C. In 
morbid obesity, there is decreased vascularity, evident tissue hypoxia with apoptotic adipocytes and 
increased influx of inflammatory cells.  
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VEGF and adiponectin could be true for other adipokines 
and growth factors. Thus detailed in vivo analyses of 
angiogenic profiles of growth factors in various stages of 
obesity are required to understand the mechanisms in 
obesity.  

Changes to adipokine expression profile in obesity 

As shown in Table 1, pathological AT expansion in 
obesity leads to increased production of AT-derived 
adipokines including VEGF-A, leptin, resistin, IL-6, TNF-α, 
MCP-1, PAI-1, chemerin, visfatin and vaspin in contrast to 
reduction in secretory levels of adiponectin, omentin, and 
angiopoietin-4 [14, 18, 20, 22, 25, 26, 60]. More importantly, the 
physiological depot-specific differences in adipokine 
expression profiles are altered in obesity. There is a marked 
increase in both AT and circulating levels of 
pro-inflammatory adipokines vs anti-inflammatory ones. 
These changes could be attributed to 
hypertrophic/hyperplastic adipocytes and increased 
macrophage content of obese AT [60, 61].  

Angiogenic responses in stages of obesity 

In the initial phases of AT expansion, due to increased 
production of local angiogenic factors, there is a switch to 
pro-angiogenic phenotype, thus facilitating further AT 
expansion. Obese AT, in addition to angiogenic factors, 
produces more pro-inflammatory molecules, eventually 
causing endothelial dysfunction of the AT vascular tree. This 
results in ‘angiogenic refractoriness’ of AT despite increased 
production of pro-angiogenic growth factors. In accordance 
with this theory, studies have described reduced capillary 
density and angiogenic ability of AT in morbid obesity [5,6 3]. 
Decreased vascularity (relative) in obese AT and 
accompanying inflammation further promotes local tissue 
hypoxia and leads to dysregulation of AT secretory factors 
[13.64]. This further affects the systemic circulatory levels 
leading to pathologies in distant organs. This phenomenon 
forms the foundation hypotheses for suggesting therapeutic 
induction of angiogenesis in obesity, increasing vascularity 
and decreasing local inflammation [47]. The AT 
microenvironment has been shown to be dynamically altered 
through stages of obesity, finally reaching a hypoxic, 
proinflammatory stage.    

Conclusion 

The loss of the delicate balance of angiogenic and 
inflammatory factors responsible for maintaining AT 
homeostasis is implicated as the main causative factor for 
inflammation in obesity. Very similar to tumour 
angiogenesis, AT angiogenesis is controlled by multiple 

pathways and constantly varies with AT expansion. 
Furthermore the concept of enhancing AT angiogenesis by 
targeted (site-specific) manipulation of 
adipokines/angiogenic factors provides a therapeutic target to 
counter obesity. 

Insufficient angiogenic tissue responses seem to be at the 
heart of the pathological phenotype of the adipose tissues 
observed in obesity and may constitute the link between 
excessive adipose tissue growth and adipokine dysregulation.  

A detailed understanding of AT microenvironment 
through the stages of obesity is vital in developing novel 
strategies to control obesity. This will also include the 
introduction of therapeutic drugs to revert the deranged 
adipokine/growth factor expression profiles in obese AT, 
restoring sufficient AT vascularisation.  

It is also important that we accept the limitations and 
drawbacks of obtaining conclusions from in vitro and animal 
models of obesity if we are to better understand the 
pathophysiological events in human obesity. 
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