
T1A1 10:00 Proceedings of the 2001 IEEE
 Workshop on Information Assurance and Security
 United States Military Academy, West Point, NY, 5-6 June, 2001

ISBN 0-7803-9814-9/$10.00 © 2001 IEEE 1

Abstract-- This paper presents a data mining algorithm, namely
Clustering and Classification Algorithm – Supervised (CCA-S),
which we developed for detecting intrusions into computer
network systems for intrusion detection. CCA-S is used to learn
signature patterns of both normal and intrusive activities in the
training data, and to classify the activities in the testing data as
normal or intrusive based on the learned signature patterns of
normal and intrusive activities. CCA-S differs from many existing
data mining techniques in its ability in scalable, incremental
learning. We tested CCA-S and two popular decision tree
algorithms, and obtained their performance for an intrusion
detection problem. CCA-S produced better intrusion detection
performance than these popular decision tree algorithms.

Index Terms-- Computer security, intrusion detection,
signature recognition, and data mining.

I. INTRODUCTION

OMPUTER security has become a critical issue with the
rapid development of business and other transaction

systems over the Internet. Intrusion detection is to detect
intrusive activities while they are acting on computer network
systems. One category of intrusion detection techniques,
namely signature recognition (or misuse detection in some
literature) relies on learning and recognition of intrusion
signatures. The automatic learning of intrusion signatures is
usually based on some kind of data mining algorithms.
However, many existing data mining algorithms, e.g., popular
decision tree algorithms as well as statistical clustering and
classification techniques such as hierarchical clustering and K-
means method, cannot handle large amounts of computer audit
data or network traffic data that capture activities in computer
network systems for intrusion detection in a scalable and
incremental manner during training to learn signature patterns
of intrusions. The incremental learning ability requires a data
mining algorithm to update the already learned intrusion
signatures whenever additional data of new intrusions are
obtained. As new intrusion scenarios come out and become
known, their signatures should be captured by updating the set
of already learned intrusion signatures from previous data sets
of intrusive activities.

CCA-S (Clustering and Classification Algorithm-
Supervised) is developed in our project to overcome the
problems of decision tree algorithms and statistical clustering
techniques in scalability and incremental learning. Section 2
briefly reviews existing intrusion detection techniques and
specifies the requirements for the scalability and the
incremental learning ability of a signature recognition

technique for computer intrusion detection. Section 3 describes
the CCA-S algorithm. Section 4 presents the application of the
CCA-S algorithm to learning and classifying normal and
intrusive activities in some data sets, and shows the intrusion
detection performance of CCA-S in comparison with the
intrusion detection performance two popular decision tree
algorithms for the same data sets. Section 5 summarizes the
paper.

II. INTRUSION DETECTION AND SIGNATURE RECOGNITION
An intrusion can be defined as a series of activities aiming

at compromising the security of a computer network system
[1]. Intrusions may take many forms: external attacks, internal
misuses, network-based attacks, information gathering, denial
of service, and so on [2-3]. Intrusion detection is an important
step of protecting the computer network system from
intrusions. Intrusion detection tries to detect intrusive activities
while they are acting on the computer network system.

There are two general categories of intrusion detection
techniques: anomaly detection and signature recognition
(pattern matching) [8,9]. Anomaly detection techniques learn a
profile of normal activities for a subject in a computer network
system, and look for intrusive activities that deviate largely
from the norm profile. The subject may be a user, a host
machine, or a network. Signature recognition techniques learn
signature patterns of intrusions and use those signatures to
classify observed activities in a computer network system as
normal or intrusive. Anomaly detection techniques can detect
unknown intrusions. However, anomaly detection techniques
may also produce false alarms if the detected anomalies are
caused by events other than intrusions. Signature recognition
techniques are accurate in detecting known intrusions, but
cannot detect novel intrusions. Hence anomaly detection
techniques and signature recognition techniques are often used
together to complement each other. This paper focuses on
signature recognition techniques.

Since the seminal work on the rule-based pattern matching
model by Denning [4], we have seen the rapid growth of
intrusion detection systems (IDS) based on signature
recognition techniques [5]. The performance comparison of
some IDS can be found in [6,7].

The core of an IDS based on signature recognition is the
analysis engine that learns signature patterns of intrusions
either manually or automatically [8-9] and uses those
signatures to classify observed activities in a computer
network system as normal or intrusive. The manual learning of

A Scalable Clustering Technique for Intrusion
Signature Recognition

Nong Ye, Member, IEEE and Xiangyang Li, Member, IEEE

C

ISBN 0-7803-9814-9/$10.00 © 2001 IEEE 2

intrusion signatures is cumbersome and impractical. Many
existing signature recognition techniques such as those based
on state transition analysis and Colored Petri Net lack the
automatic learning capability. Considering the changing of
intrusion scenarios over time, it is difficult to manually keep
intrusion signatures updated for people.

The automatic learning of intrusion signatures from historic
data containing examples of normal and intrusive activities is
necessary. Many data mining algorithms from such fields as
machine learning and statistical clustering have the potential to
serve as signature recognition techniques for computer
intrusion detection. The set of the learned intrusion signatures
should be updated whenever additional data of normal and
intrusive activities become available. There usually are large
amounts of such historic data.

Existing IDS based on signature recognition focus on two
kinds of activity data from a computer network system:
network traffic data and computer audit data. A variety of
activity attributes can be obtained from these data, producing
nominal variables such as the event type, user id, process id,
command, remote IP address, and numerical variables such as
the time stamp, CPU time, etc. Activity data from a computer
network system are huge and complex. A computer auditing
facility, such as Solaris Basic Security Module (BSM), can
easily produce hundreds of thousands of audit records per day,
and the attributes extracted from each audit record can reach
hundreds (e.g., 284 event types). As intrusive activities change
over time, additional activity data must be taken into account
to capture signature patterns of new intrusive activities. That
is, we need a data mining algorithm that supports the scalable,
incremental learning.

Decision tree algorithms are a very popular data mining
technique for learning patterns from data and using these
patterns for classification. In [10], we report the application of
decision tree algorithms to computer intrusion detection. Some
of the existing decision tree algorithms support the incremental
learning [11,12]. Some other data mining algorithms support
the scalability [13-15]. However, we do not have decision tree
algorithms that support both scalability and incremental
learning. This paper presents a data mining algorithm that
supports the scalable, incremental learning for computer
intrusion detection based on signature recognition. We apply
this algorithm to computer audit data for intrusion detection.

III. CCA-S

In CCA-S, a data record is considered as a data point in a p-
dimension space. Each dimension is either a numerical or a
nominal variable, called predictor variable, representing one
attribute of the data. Each data point has also a label indicating
the class of the data record, called the target variable. For
computer intrusion detection based on signature recognition,
the target variable is a binary variable with two possible
values: 0 for normal and 1 for intrusive. CCA-S clusters data
points based on two criteria: the distance between data points,
and the class label of data points. Only data points that are

close and same in their class label can be grouped together to
form a cluster. Each cluster represents a signature pattern for
normal activities or intrusive activities, depending on the class
label of the data points in the cluster.

Formally, each data point is a (p+1)-tuple with the attribute
variable vector X containing the p dimensions of predictor
variables and one target variable - Y. The training data set has
N data points.

A. Training (supervised clustering)
It takes mainly two steps to incrementally group the N data

points in the training data set into clusters.
1. Scan the training data and compute the relative

importance of each prediction variable with respect to the
target variable. This step calculates the coefficient of the
correlation between each predictor variable Xi and the
target variable Y. In addition, two dummy clusters, one
for normal activities and another for intrusive activities,
are created. The centroid of the dummy cluster for normal
activities is denoted by the mean vector of all the data
points for normal activities in the training data set. The
centroid of the dummy cluster for intrusive activities is
denoted by the mean vector of all the data points for
intrusive activities in the training data set.

2. Incrementally group each point in the training data set into
clusters. Given a data point X, we find the nearest cluster
L to this data point using a distance metric weighted by
the correlation coefficient of each dimension. If L has the
same class label as that of X, we group X with L;
otherwise, we create a new cluster with this data point as
the centroid of the new cluster.

We then repeat the above steps until we process all the data
points in the training data set.

B. Classification
There are two methods to classify a data point X in a testing

data set.
1. Assign the data point X the class dominant in the k nearest

clusters which are found using a distance metric weighted
by the correlation coefficient of each dimension; or

2. Use the weighted sum of the distances of k nearest clusters
to this data point to calculate a continuous value for the
target variable in the range of [0, 1].

C. Incremental update
The statistics from the correlation and the clustering are

stored. When new training data become available, each step of
the training can be repeated for new data points to update the
clusters incrementally.

An estimate of the computation cost of CCA-S is provided
here. Given N data points, and the total number of the resulting
clusters L, the computation cost for training is O(p*N*L). And
the computation cost of classifying a data point during testing
is O(p*L). Hence, CCA-S is scalable to even large amounts of
training data.

We define various distance metrics that may be used in

ISBN 0-7803-9814-9/$10.00 © 2001 IEEE 3

CCA-S, like the weighted Euclidean distance, weighted Chi-
squared distance, and weighted Canberra distance.

There are several methods to reduce the number of the
resulting clusters for reducing the computation cost. For
example, we can set the maximum number of clusters for a
certain class label. After the number of the clusters for that
class reaches the maximum number, new data points will not
lead to the creation of new clusters but to the update of the
existing clusters.

IV. IMPLEMENTATION AND RESULT ANALYSIS
CCA-S can be used to automatically learn signatures of

normal activities and intrusive activities. Signatures are
represented by the clusters that result from the training stage of
CCA-S. We can assign an Intrusion Warning (IW) value to
each luster based on the class label of each cluster.

As described in section 3, CCA-S classifies a data point into
a class during testing. For intrusion detection, there are two
classes: normal and intrusive. The predictor variables are the
attributes of the p-dimensional data points. There are several
distance metrics from which we may choose. In this study we
use the weighted Canberra distance metric as shown below:

 () 2

1

, i

P

i ii

ii C
LX
LX

LXd ∑
= +

−
=

where Xi is the ith attribute variable of a data point X, Li is

the ith coordinate of the centroid of a cluster L, and Ci is the
correlation coefficient of the ith attribute variable and the
target variable.

For intrusion detection, the IW level of a data point in the
testing data set is determined using the second method of
classification to obtain a value between 0-1. The Receiver
Operating Characteristic (ROC) analysis of the detection
performance of CCA-S is performed to determine the hit rates
and the false alarm rates using varying signal thresholds. If the
IW value of the data point is greater than a signal threshold,

the data point is classified as intrusive, and an alarm signal is
produced. The false alarm rate and the hit rate for a given
signal threshold are calculated based on these alarm signals
and true class labels of the data points in the testing data set.
The hit rates and false alarm rates for various signal thresholds
can be plotted as a ROC curve. The closer a ROC curve to the
top-left corner representing the 0% false alarm rate and the
100% hit rate, the better the detection performance of an
intrusion detection technique.

We use computer audit data from the Basic Security Module
(BSM) in the Solaris operating system in this study. We have
two data sets, one for training, and another for testing. Each
data set consists of two parts. The normal event part is from
the 1998 DARPA – the MIT Lincoln laboratory evaluation
data. The intrusive event part is obtained by simulating a
number of intrusion scenarios. In the training data set, there
are 1613 normal events and 526 intrusive events. In the testing
data set, there are 1406 normal events and 1225 intrusive
events. For the training data, the class label for an intrusive
event is 1, and the class label for a normal event is 0.

Each data set consists of audit events in sequence. Each
audit event in this event stream has several attributes. These
attributes are the variables that contain information about the
activities. The attributes of an audit event include the event
type, user ID, process ID, command, time, remote IP address,
and so on.

We use only the information of the event type to form our
predictor variables. There are 284 different event types in
Solaris, but only 30 event types appear in the training data set.
Hence, we have 30 predictor variables for 30 event types
respectively. Each predictor variable denotes the occurrence
frequency of the corresponding event type in the recent past of
the event stream. We use the Exponentially Weighted Moving
Average (EWMA) technique to compute the observation
values of the 30 predictor variables for an audit event t in the
event stream as follows:

Fig. 1. ROC comparisons on small intrusion detection data

ISBN 0-7803-9814-9/$10.00 © 2001 IEEE 4

)1(*)1(1*)(−−+= tXtX ii λλ if the audit event t
belongs to the ith event type

)1(*)1(0*)(−−+= tXtX ii λλ if the audit event t is
different from the ith event type

where)(tX i is the smoothed observation value of the ith
variable for the audit event t, λ is a smoothing constant which
determines the decay rate. The decay rate allows us to
introduce aging while obtaining the observation values of X
for the current event. More weight is given to events in the
more recent past of the current event.

In our study, we initialize Xi(0) to 0 for i = 1,…,30. We let λ
be 0.3 – a typical value for the smoothing constant [14], which
corresponds to a 15-event observation window.

Therefore, for each event in the training data and the testing
data, we obtain a vector of (X1,…, X30) - a data point in a 30-
dimensional space. Figure 1 shows the ROC curves of CCA-S
and two popular decision tree algorithms: CHAID and CART
based on the GINI split index available in a commercial data
mining package - AnswerTree from SPSS. The detection
performance of CCA-S is better than that of the decision tree
algorithms. In fact, CCA-S achieves the 100% hit rate at the
0% false alarm rate for this testing data set.

V. CONCLUSION
Many data mining techniques such as decision tree

algorithms cannot deal with large data sets in a both
incremental and scalable manner. We develop the CCA-S
algorithm to overcome these problems. The application of
CCA to computer intrusion detection based on signature
recognition demonstrates the better detection performance of
CCA-S than that of popular decision tree algorithms.

ACKNOWLEDGMENT
This work is sponsored in part by the Air Force Office of

Scientific Research (AFOSR) under grant number F49620-99-
1-001, and the Defense Advanced Research Project Agency
(DARPA) /Air Force Research Laboratory – Rome (AFRL-
Rome) under grant number F30602-99-1-0506. The U.S.
government is authorized to reproduce and distribute reprints
for governmental purposes notwithstanding any copyright
annotation thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements,
either express or implied, of, AFOSR, DARPA/AFRL-Rome,
or the U.S. Government.

REFERENCES
[1] Heady, R., Luger, G., Maccabe, A., and Servilla, M., The Architecture

of a Network Level Intrusion Detection System, Technical Report CS90-
20, Department of Computer Science, University of New Mexico,
August 1990.

[2] Graham, R., FAQ: Network Intrusion Detection Systems,
http://www.robertgraham.com/pubs/network-intrusion-detection.html,
2001.

[3] Escamilla, T. Intrusion Detection: Network Security beyond the
Firewall. John Wiley & Sons, New York, 1998.

[4] Denning, D., An Intrusion-detection Model, IEEE Transactions on
Software Engineering, 13(2), pp. 222-232, February 1987.

[5] Frincke, D. A., and Huang, M., Recent Advances in Intrusion Detection
Systems, Computer Networks, 34, pp. 541-545, 2001.

[6] Lippmann, R., Fried, D., Graf, I., Haines, J., Kendall, K., McClung, D.,
Weber, D., Webster, S., Wyschogrod, D., Cunningham, R., and
Zissman, M., Evaluating intrusion detection systems: The 1998 DARPA
off-line intrusion detection evaluation, Proceedings of the DARPA
Information Survivability Conference and Exposion, Los Alamitos,
IEEE Computer Society, pp. 12-26, 2000.

[7] Lippmann, R., Haines, J. W., Fried, D., Graf, I., Korba, J., Das, K., The
1999 DARPA off-line intrusion detection evaluation, Computer
Networks, No. 34, pp. 579-595, 2000.

[8] Axelsson, S. Intrusion Detection Systems: A Survey and Taxonom,
Report, Department of Computer Engineering, Chalmers University of
Technology, Goteborg, Sweden, 2000.

[9] Debar, H., Dacier, M., and Wespi, A., Towards a taxonomy of intrusion-
detection systems, Computer Networks, 31, pp. 805-822, 1999.

[10] Sinclair, C., Pierce, L., and Matzner, S., An application of machine
learning to network intrusion detection, Proceedings of 15th Annual
Computer Security Applications Conference (ACSAC '99), pp. 371-377,
1999.

[11] Utgoff, P. E., Berkman, N. C. and Clouse, J. A. Decision Tree Induction
Based on Efficient Tree Restructuring, Machine Learning Journal, 10,
pp. 5-44, 1997.

[12] Crawford S. L., Extensions to the CART Algorithm, International
Journal of Man-Machine Studies, 31, pp. 197-217, 1989.

[13] Goil, S., and Choudhary, A., A parallel scalable infrastructure for OLAP
and data mining, International Symposium Proceedings on Database
Engineering and Applications, IEEE, pp. 178 –186, 1999.

[14] Chaudhuri, S., Fayyad, U., and Bernhardt, J., Scalable classification
over SQL databases. 15th International Conference on Data
Engineering, IEEE, pp. 470-479, 1999.

[15] Shafer, J., Agrawal, R., and Mehta, M., SPRINT: A Scalable Parallel
Classifier for Data Mining, Proceedings of the 22nd VLDB Conference,
Mumbai, India, 1996.

