
T1A1 10:00  Proceedings of the 2001 IEEE 
   Workshop on Information Assurance and Security 
    United States Military Academy, West Point, NY, 5-6 June, 2001 

ISBN 0-7803-9814-9/$10.00 © 2001 IEEE  1 

 

Abstract-- This paper presents a data mining algorithm, namely 
Clustering and Classification Algorithm – Supervised (CCA-S), 
which we developed for detecting intrusions into computer 
network systems for intrusion detection. CCA-S is used to learn 
signature patterns of both normal and intrusive activities in the 
training data, and to classify the activities in the testing data as 
normal or intrusive based on the learned signature patterns of 
normal and intrusive activities. CCA-S differs from many existing 
data mining techniques in its ability in scalable, incremental 
learning. We tested CCA-S and two popular decision tree 
algorithms, and obtained their performance for an intrusion 
detection problem. CCA-S produced better intrusion detection 
performance than these popular decision tree algorithms.  

 
 

Index Terms-- Computer security, intrusion detection, 
signature recognition, and data mining. 

I. INTRODUCTION 

OMPUTER security has become a critical issue with the 
rapid development of business and other transaction 

systems over the Internet. Intrusion detection is to detect 
intrusive activities while they are acting on computer network 
systems. One category of intrusion detection techniques, 
namely signature recognition (or misuse detection in some 
literature) relies on learning and recognition of intrusion 
signatures. The automatic learning of intrusion signatures is 
usually based on some kind of data mining algorithms. 
However, many existing data mining algorithms, e.g., popular 
decision tree algorithms as well as statistical clustering and 
classification techniques such as hierarchical clustering and K-
means method, cannot handle large amounts of computer audit 
data or network traffic data that capture activities in computer 
network systems for intrusion detection in a scalable and 
incremental manner during training to learn signature patterns 
of intrusions. The incremental learning ability requires a data 
mining algorithm to update the already learned intrusion 
signatures whenever additional data of new intrusions are 
obtained. As new intrusion scenarios come out and become 
known, their signatures should be captured by updating the set 
of already learned intrusion signatures from previous data sets 
of intrusive activities.  

CCA-S (Clustering and Classification Algorithm-
Supervised) is developed in our project to overcome the 
problems of decision tree algorithms and statistical clustering 
techniques in scalability and incremental learning. Section 2 
briefly reviews existing intrusion detection techniques and 
specifies the requirements for the scalability and the 
incremental learning ability of a signature recognition 

technique for computer intrusion detection. Section 3 describes 
the CCA-S algorithm. Section 4 presents the application of the 
CCA-S algorithm to learning and classifying normal and 
intrusive activities in some data sets, and shows the intrusion 
detection performance of CCA-S in comparison with the 
intrusion detection performance two popular decision tree 
algorithms for the same data sets. Section 5 summarizes the 
paper.  

II. INTRUSION DETECTION AND SIGNATURE RECOGNITION 
An intrusion can be defined as a series of activities aiming 

at compromising the security of a computer network system 
[1]. Intrusions may take many forms: external attacks, internal 
misuses, network-based attacks, information gathering, denial 
of service, and so on [2-3]. Intrusion detection is an important 
step of protecting the computer network system from 
intrusions. Intrusion detection tries to detect intrusive activities 
while they are acting on the computer network system.  

There are two general categories of intrusion detection 
techniques: anomaly detection and signature recognition 
(pattern matching) [8,9]. Anomaly detection techniques learn a 
profile of normal activities for a subject in a computer network 
system, and look for intrusive activities that deviate largely 
from the norm profile. The subject may be a user, a host 
machine, or a network. Signature recognition techniques learn 
signature patterns of intrusions and use those signatures to 
classify observed activities in a computer network system as 
normal or intrusive. Anomaly detection techniques can detect 
unknown intrusions. However, anomaly detection techniques 
may also produce false alarms if the detected anomalies are 
caused by events other than intrusions. Signature recognition 
techniques are accurate in detecting known intrusions, but 
cannot detect novel intrusions. Hence anomaly detection 
techniques and signature recognition techniques are often used 
together to complement each other. This paper focuses on 
signature recognition techniques. 

Since the seminal work on the rule-based pattern matching 
model by Denning [4], we have seen the rapid growth of 
intrusion detection systems (IDS) based on signature 
recognition techniques [5]. The performance comparison of 
some IDS can be found in [6,7]. 

The core of an IDS based on signature recognition is the 
analysis engine that learns signature patterns of intrusions 
either manually or automatically [8-9] and uses those 
signatures to classify observed activities in a computer 
network system as normal or intrusive. The manual learning of 
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intrusion signatures is cumbersome and impractical. Many 
existing signature recognition techniques such as those based 
on state transition analysis and Colored Petri Net lack the 
automatic learning capability. Considering the changing of 
intrusion scenarios over time, it is difficult to manually keep 
intrusion signatures updated for people.  

The automatic learning of intrusion signatures from historic 
data containing examples of normal and intrusive activities is 
necessary. Many data mining algorithms from such fields as 
machine learning and statistical clustering have the potential to 
serve as signature recognition techniques for computer 
intrusion detection. The set of the learned intrusion signatures 
should be updated whenever additional data of normal and 
intrusive activities become available. There usually are large 
amounts of such historic data.  

Existing IDS based on signature recognition focus on two 
kinds of activity data from a computer network system: 
network traffic data and computer audit data. A variety of 
activity attributes can be obtained from these data, producing 
nominal variables such as the event type, user id, process id, 
command, remote IP address, and numerical variables such as 
the time stamp, CPU time, etc. Activity data from a computer 
network system are huge and complex. A computer auditing 
facility, such as Solaris Basic Security Module (BSM), can 
easily produce hundreds of thousands of audit records per day, 
and the attributes extracted from each audit record can reach 
hundreds (e.g., 284 event types). As intrusive activities change 
over time, additional activity data must be taken into account 
to capture signature patterns of new intrusive activities. That 
is, we need a data mining algorithm that supports the scalable, 
incremental learning. 

Decision tree algorithms are a very popular data mining 
technique for learning patterns from data and using these 
patterns for classification. In [10], we report the application of 
decision tree algorithms to computer intrusion detection. Some 
of the existing decision tree algorithms support the incremental 
learning [11,12]. Some other data mining algorithms support 
the scalability [13-15]. However, we do not have decision tree 
algorithms that support both scalability and incremental 
learning. This paper presents a data mining algorithm that 
supports the scalable, incremental learning for computer 
intrusion detection based on signature recognition. We apply 
this algorithm to computer audit data for intrusion detection. 

III. CCA-S 

In CCA-S, a data record is considered as a data point in a p-
dimension space. Each dimension is either a numerical or a 
nominal variable, called predictor variable, representing one 
attribute of the data. Each data point has also a label indicating 
the class of the data record, called the target variable. For 
computer intrusion detection based on signature recognition, 
the target variable is a binary variable with two possible 
values: 0 for normal and 1 for intrusive. CCA-S clusters data 
points based on two criteria: the distance between data points, 
and the class label of data points. Only data points that are 

close and same in their class label can be grouped together to 
form a cluster. Each cluster represents a signature pattern for 
normal activities or intrusive activities, depending on the class 
label of the data points in the cluster.  

Formally, each data point is a (p+1)-tuple with the attribute 
variable vector X containing the p dimensions of predictor 
variables and one target variable - Y. The training data set has 
N data points. 

A. Training (supervised clustering) 
It takes mainly two steps to incrementally group the N data 

points in the training data set into clusters. 
1. Scan the training data and compute the relative 

importance of each prediction variable with respect to the 
target variable. This step calculates the coefficient of the 
correlation between each predictor variable Xi and the 
target variable Y. In addition, two dummy clusters, one 
for normal activities and another for intrusive activities, 
are created. The centroid of the dummy cluster for normal 
activities is denoted by the mean vector of all the data 
points for normal activities in the training data set. The 
centroid of the dummy cluster for intrusive activities is 
denoted by the mean vector of all the data points for 
intrusive activities in the training data set. 

2. Incrementally group each point in the training data set into 
clusters.  Given a data point X, we find the nearest cluster 
L to this data point using a distance metric weighted by 
the correlation coefficient of each dimension. If L has the 
same class label as that of X, we group X with L; 
otherwise, we create a new cluster with this data point as 
the centroid of the new cluster. 

We then repeat the above steps until we process all the data 
points in the training data set. 

B. Classification 
There are two methods to classify a data point X in a testing 

data set. 
1. Assign the data point X the class dominant in the k nearest 

clusters which are found using a distance metric weighted 
by the correlation coefficient of each dimension; or 

2. Use the weighted sum of the distances of k nearest clusters 
to this data point to calculate a continuous value for the 
target variable in the range of [0, 1]. 

C. Incremental update 
The statistics from the correlation and the clustering are 

stored. When new training data become available, each step of 
the training can be repeated for new data points to update the 
clusters incrementally.  

An estimate of the computation cost of CCA-S is provided 
here. Given N data points, and the total number of the resulting 
clusters L, the computation cost for training is O(p*N*L). And 
the computation cost of classifying a data point during testing 
is O(p*L). Hence, CCA-S is scalable to even large amounts of 
training data.  

We define various distance metrics that may be used in 
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CCA-S, like the weighted Euclidean distance, weighted Chi-
squared distance, and weighted Canberra distance.  

There are several methods to reduce the number of the 
resulting clusters for reducing the computation cost. For 
example, we can set the maximum number of clusters for a 
certain class label. After the number of the clusters for that 
class reaches the maximum number, new data points will not 
lead to the creation of new clusters but to the update of the 
existing clusters.  

IV. IMPLEMENTATION AND RESULT ANALYSIS 
CCA-S can be used to automatically learn signatures of 

normal activities and intrusive activities. Signatures are 
represented by the clusters that result from the training stage of 
CCA-S. We can assign an Intrusion Warning (IW) value to 
each luster based on the class label of each cluster.  

As described in section 3, CCA-S classifies a data point into 
a class during testing. For intrusion detection, there are two 
classes: normal and intrusive. The predictor variables are the 
attributes of the p-dimensional data points. There are several 
distance metrics from which we may choose. In this study we 
use the weighted Canberra distance metric as shown below: 
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where Xi is the ith attribute variable of a data point X, Li is 

the ith coordinate of the centroid of a cluster L, and Ci is the 
correlation coefficient of the ith attribute variable and the 
target variable. 

For intrusion detection, the IW level of a data point in the 
testing data set is determined using the second method of 
classification to obtain a value between 0-1. The Receiver 
Operating Characteristic (ROC) analysis of the detection 
performance of CCA-S is performed to determine the hit rates 
and the false alarm rates using varying signal thresholds. If the 
IW value of the data point is greater than a signal threshold, 

the data point is classified as intrusive, and an alarm signal is 
produced. The false alarm rate and the hit rate for a given 
signal threshold are calculated based on these alarm signals 
and true class labels of the data points in the testing data set. 
The hit rates and false alarm rates for various signal thresholds 
can be plotted as a ROC curve. The closer a ROC curve to the 
top-left corner representing the 0% false alarm rate and the 
100% hit rate, the better the detection performance of an 
intrusion detection technique.  

We use computer audit data from the Basic Security Module 
(BSM) in the Solaris operating system in this study. We have 
two data sets, one for training, and another for testing. Each 
data set consists of two parts. The normal event part is from 
the 1998 DARPA – the MIT Lincoln laboratory evaluation 
data. The intrusive event part is obtained by simulating a 
number of intrusion scenarios. In the training data set, there 
are 1613 normal events and 526 intrusive events. In the testing 
data set, there are 1406 normal events and 1225 intrusive 
events. For the training data, the class label for an intrusive 
event is 1, and the class label for a normal event is 0. 

Each data set consists of audit events in sequence. Each 
audit event in this event stream has several attributes. These 
attributes are the variables that contain information about the 
activities. The attributes of an audit event include the event 
type, user ID, process ID, command, time, remote IP address, 
and so on.  

We use only the information of the event type to form our 
predictor variables. There are 284 different event types in 
Solaris, but only 30 event types appear in the training data set. 
Hence, we have 30 predictor variables for 30 event types 
respectively. Each predictor variable denotes the occurrence 
frequency of the corresponding event type in the recent past of 
the event stream. We use the Exponentially Weighted Moving 
Average (EWMA) technique to compute the observation 
values of the 30 predictor variables for an audit event t in the 
event stream as follows: 

Fig. 1.  ROC comparisons on small intrusion detection data 
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)1(*)1(1*)( −−+= tXtX ii λλ   if the audit event t 
belongs to the ith event type 

)1(*)1(0*)( −−+= tXtX ii λλ   if the audit event t is 
different from the ith event type 

where )(tX i  is the smoothed observation value of the ith 
variable for the audit event t, λ is a smoothing constant which 
determines the decay rate. The decay rate allows us to 
introduce aging while obtaining the observation values of X 
for the current event. More weight is given to events in the 
more recent past of the current event.  

In our study, we initialize Xi(0) to 0 for i = 1,…,30. We let λ 
be 0.3 – a typical value for the smoothing constant [14], which 
corresponds to a 15-event observation window.  

Therefore, for each event in the training data and the testing 
data, we obtain a vector of (X1,…, X30) - a data point in a 30-
dimensional space. Figure 1 shows the ROC curves of CCA-S 
and two popular decision tree algorithms: CHAID and CART 
based on the GINI split index available in a commercial data 
mining package - AnswerTree from SPSS. The detection 
performance of CCA-S is better than that of the decision tree 
algorithms. In fact, CCA-S achieves the 100% hit rate at the 
0% false alarm rate for this testing data set. 

V. CONCLUSION 
Many data mining techniques such as decision tree 

algorithms cannot deal with large data sets in a both 
incremental and scalable manner. We develop the CCA-S 
algorithm to overcome these problems. The application of 
CCA to computer intrusion detection based on signature 
recognition demonstrates the better detection performance of 
CCA-S than that of popular decision tree algorithms. 
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