
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/221137694

Model-to-Model	Transformations	By
Demonstration

Conference	Paper	·	June	2010

DOI:	10.1007/978-3-642-13688-7_11	·	Source:	DBLP

CITATIONS

11

READS

44

3	authors,	including:

Philip	Langer

TU	Wien

45	PUBLICATIONS			352	CITATIONS			

SEE	PROFILE

Available	from:	Philip	Langer

Retrieved	on:	12	May	2016

https://www.researchgate.net/publication/221137694_Model-to-Model_Transformations_By_Demonstration?enrichId=rgreq-e42fcd48-9959-486e-8890-2230d8d7923b&enrichSource=Y292ZXJQYWdlOzIyMTEzNzY5NDtBUzo5NzUwNjk4OTk2OTQyNkAxNDAwMjU4ODg2OTE0&el=1_x_2
https://www.researchgate.net/publication/221137694_Model-to-Model_Transformations_By_Demonstration?enrichId=rgreq-e42fcd48-9959-486e-8890-2230d8d7923b&enrichSource=Y292ZXJQYWdlOzIyMTEzNzY5NDtBUzo5NzUwNjk4OTk2OTQyNkAxNDAwMjU4ODg2OTE0&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-e42fcd48-9959-486e-8890-2230d8d7923b&enrichSource=Y292ZXJQYWdlOzIyMTEzNzY5NDtBUzo5NzUwNjk4OTk2OTQyNkAxNDAwMjU4ODg2OTE0&el=1_x_1
https://www.researchgate.net/profile/Philip_Langer?enrichId=rgreq-e42fcd48-9959-486e-8890-2230d8d7923b&enrichSource=Y292ZXJQYWdlOzIyMTEzNzY5NDtBUzo5NzUwNjk4OTk2OTQyNkAxNDAwMjU4ODg2OTE0&el=1_x_4
https://www.researchgate.net/profile/Philip_Langer?enrichId=rgreq-e42fcd48-9959-486e-8890-2230d8d7923b&enrichSource=Y292ZXJQYWdlOzIyMTEzNzY5NDtBUzo5NzUwNjk4OTk2OTQyNkAxNDAwMjU4ODg2OTE0&el=1_x_5
https://www.researchgate.net/institution/TU_Wien?enrichId=rgreq-e42fcd48-9959-486e-8890-2230d8d7923b&enrichSource=Y292ZXJQYWdlOzIyMTEzNzY5NDtBUzo5NzUwNjk4OTk2OTQyNkAxNDAwMjU4ODg2OTE0&el=1_x_6
https://www.researchgate.net/profile/Philip_Langer?enrichId=rgreq-e42fcd48-9959-486e-8890-2230d8d7923b&enrichSource=Y292ZXJQYWdlOzIyMTEzNzY5NDtBUzo5NzUwNjk4OTk2OTQyNkAxNDAwMjU4ODg2OTE0&el=1_x_7


Model-to-Model Transformations
By Demonstration?

Philip Langer1, Manuel Wimmer2, and Gerti Kappel2

1 Department of Telecooperation, Johannes Kepler University Linz, Austria
philip.langer@jku.ac.at

2 Business Informatics Group, Vienna University of Technology, Austria
{wimmer|gerti}@big.tuwien.ac.at

Abstract. During the last decade several approaches have been pro-
posed for easing the burden of writing model transformation rules manu-
ally. Among them are Model Transformation By-Demonstration (MTBD)
approaches which record actions performed on example models to derive
general operations. A current restriction of MTBD is that until now
they are only available for in-place transformations, but not for model-
to-model (M2M) transformations.

In this paper, we extend our MTBD approach, which is designed for in-
place transformations, to also support M2M transformations. In partic-
ular, we propose to demonstrate each transformation rule by modeling a
source model fragment and a corresponding target model fragment. From
these example pairs, the applied edit operations are computed which are
input for a semi-automatic process for deriving the general transforma-
tion rules. For showing the applicability of the approach, we developed
an Eclipse-based prototype supporting the generation of ATL code out
of EMF-based example models.

Key words: model transformations, by-example, by-demonstration

1 Introduction

Model transformations are an essential constituent in Model-driven Engineering
(MDE) [6]. Therefore, several approaches have been proposed for easing the bur-
den of writing model transformation rules by hand. One of the most prominent
approaches is Model Transformation By-Example (MTBE) [12, 14] which tries
to generalize model transformation rules from aligned example models by com-
paring the structure and the content of the example models. A similar idea is
followed by Model Transformation By-Demonstration (MTBD) approaches [3,
13]. MTBD exploits edit operations performed on an example model to gain
transformation specifications which are executable on arbitrary models.

? This work has been partly funded by the Austrian Federal Ministry of Transport,
Innovation and Technology (BMVIT) and FFG under grant FIT-IT-819584 and by
the Austrian Science Fund (FWF) under grant P21374-N13.



Until now, MTBD approaches are only available for in-place transformations
like refactorings. An open challenge is how to adapt MTBD to be applicable for
model-to-model (M2M) transformations due to the following hitherto unsolved
issues. First, when using MTBD for in-place transformations, the trace model
between the initial model (before transformation execution) and the revised
model (after transformation execution) comes nearly for free. That trace may
either be achieved using an ID-based comparison [3] or by directly recording all
performed actions [13]. Unfortunately, these methods cannot be used for M2M
transformation examples, because the corresponding elements in the source and
target model are independently created and, consequently, have different IDs.
Additionally, they are in most cases structurally heterogeneous. Second, state-
of-the-art MTBD approaches for in-place transformations allow to specify one
composite operation, e.g., a refactoring, performed on the initial model. After
generalization, the resulting composite operation is executed on arbitrary models
separately from other composite operations. However, in M2M scenarios, the
whole target model has to be established based on the source model from scratch
by applying a set of different, strongly interdependent transformation rules.

In this paper we tackle the mentioned challenges with a novel MTBD ap-
proach for developing M2M transformations. In particular, we elaborate on how
the approach presented in [3] for developing in-place transformations is adapted
for M2M transformations. To specify a M2M transformation, the user iteratively
demonstrates each transformation rule by specifying an example using her pre-
ferred editor. Subsequently, the example models are automatically generalized
to templates which the user may configure and customize by following a well-
defined annotation process. Finally, model transformation rules are automati-
cally derived from these annotated templates. Since the user only gets in touch
with templates representing the user-specified examples, she is able to develop
general model transformations without requiring in-depth knowledge of the un-
derlying transformation language. Please note that our approach is orthogonal
to existing high-level transformation approaches, such as Triple Graph Gram-
mars and QVT Relations, because instead of directly developing the generalized
templates, the user first develops concrete examples which are then systemati-
cally generalized. For showing the applicability of the approach, we developed
an Eclipse-based prototype which supports the generation of ATL code out of
EMF-based example models.

The paper is organized as follows. Starting with a motivating example in
Section 2, we outline the process of developing M2M transformations by-demon-
stration in Section 3. Section 4 provides a by-example presentation of the by-
demonstration approach. Section 5 discusses related work, and finally, we con-
clude with an outlook on future work in Section 6.

2 Motivating Example

To emphasize our motivation for developing a by-demonstration approach for
M2M transformations, we introduce a well-known M2M transformation scenario,



Class

name : String

Reference
name : String
upperBound : Int
lowerBound : Int

Property
name : String
type : Type

propertiesreferences

opposite

target

SimpleCDModel

Entity

name : String

ERModel

Attribute

name : String

attributes

Relationship

Role
name : String

roles2

*

1

1

* *

* *

refersTo1

Cardinality
upper : Int
lower : Int

cardinality

1

relationships*classes entities

Person

name : String

Magazine

title : String
subscriber subscriptions

0..* 1..*

Person Magazine
subscriptionssubscriber

1..*0..*

Type

name : String {unique}

1

M
M

Source Target

M
 (C

S)
M

 (A
S)

:SimpleCDModel

:Class

name = “Person”

:Reference

name = 
“subscriptions”
upperBound = -1
lowerBound = 1

:Reference

name = 
“subscriber”
upperBound = -1
lowerBound = 0

:Relationship

:Role

name = “subscriber”

:Role

name = “subscriptions”

:Cardinality

upper = -1
lower = 1

:Cardinality

upper = -1
lower = 0

:Class

name = “Magazine”

:Property

name = “name”
type = #String

:Attribute

name = “name”

:Type

name = “varchar”

:Property

name = “title”
type = #String

:ERModel

:Entity

name = “Person”
:Entity

name = “Magazine”

:Attribute

name = “title”

refersTo refersTo
target

target

opposite

opposite

type

name:varchar title:varchar

owns

*

owns owns

<enum>

Type
#String
…

Fig. 1. Motivating example: Source metamodel, target metamodel, source model (ab-
stract syntax), target model (abstract syntax), source model (concrete syntax), and
target model (concrete syntax).

namely the transformation from UML Class Diagrams to Entity Relationship
(ER) Diagrams. Fig. 1 illustrates the scenario which serves as a running exam-
ple throughout the rest of the paper. Although the involved modeling languages
provide semantically similar modeling concepts, this scenario also exhibits chal-
lenging correspondences between metamodel elements.

In the following, the main correspondences between the UML Class Diagram
and the ER Diagram are shortly described. Simple one-to-one correspondences
exist between the root containers SimpleCDModel and ERModel as well as be-
tween Class and Entity. However, the example also contains more complex
correspondences. In particular, these are the correspondences between (1) the
class Property and the classes Attribute and Type as well as (2) between the
class Reference and the classes Relationship, Role, and Cardinality. In the
first case, for each property, an attribute has to be generated. However, only for
each distinct value of Property.type a type should be generated. When a type
already exists with the same name, it should be reused. In the second case, for
every unique pair of References that are marked as opposite of each other a
corresponding Relationship has to be established containing two Roles, which



again contain their Cardinalities. With every unique pair, we mean that the
order in which the references are matched does not matter. For example, if
Reference r1 and Reference r2 are marked as opposite, then the transforma-
tion should produce one relationship for the match <r1, r2>, instead of creating
another one for <r2, r1>. Therefore, we speak about the matching strategy
Set if the order of the matched elements does not matter, and Sequence if the
order does matter. On the attribute level, only simple one-to-one correspon-
dences occur. On the reference level, some references can easily be mapped, e.g.,
SimpleCDModel.classes to ERModel.entities. However, some references on
the target side have to be computed from the context of the source side, because
they miss a direct counterpart, e.g., ERModel.relationship.

3 M2M Transformation By-Demonstration at a Glance

The design rationale for our by-demonstration approach is as follows. M2M
transformations may be seen as a set of operations that are applied to the tar-
get model for each occurrence of a pattern of model elements in the source
model. Thus, the target model is incrementally built by finding patterns in the
source model and by applying the appropriate operations to the target model.
Target elements created by these operations might need to be added to and
refer to already existing elements, which had been created in prior transforma-
tion steps. Therefore, operations mostly have to be applied within a context.
To enable the derivation of a transformation rule from examples, we apply the
by-demonstration process depicted in Fig. 2.

Phase 1: Modeling. The user demonstrates a single transformation rule by
adding model elements to the source model and by modeling the desired outcome
in the target model. A transformation usually consists of several transformation
rules. If a rule does not depend on other rules, no context elements are necessary
to illustrate the rule, thus the user creates empty models. But usually, rules
depend on other rules, which must have been previously applied forming the
context. Thus, they are called context rules. Therefore, the user might select a
context in which a new rule is demonstrated. If a context rule is selected, the
source and target example model contained by the context rule is extended by
the user to demonstrate the new context-dependent rule. For ensuring a high
reusability of rules as context rules, they should be as small as possible.

Phase 2: Generalization. Added elements are identified and the illus-
trated transformation scenario is generalized. To determine the new elements if
the demonstrated rule is context-dependent, we conduct a comparison between
the revised models (source and target) to the respective models of the selected
context rules. If the rule is context-free, all elements are considered as new. The
new elements in the source model act as “trigger elements” which trigger to
create the detected new elements in the target model. The most obvious way
to identify the new elements is to record user interactions within the modeling
environment. However, this would demand an intervention in the modeling en-
vironment, and due to the multitude of modeling environments, we refrain from



Initial
models

Demonstrate
transformation rule

Identify
new elements

Imply templates

Revise templates

Generate
rule

Templates
[revised]

Extend
context rule

M
od

el
in

g
G

en
er

al
iz

at
io

n

2

4
3

5

6a 6b

G
en

er
at

io
n

Context
required?

Select 
context rule

Extension Rule

Update
MT model

Further rules needed?

New 
elements

Revised
models

1

7

[yes]

[no]

[yes] [no]

Create 
empty models

1

Automatic activity
Manual activity
Model artefact

Legend:

Templates
[implied]

Fig. 2. By-Demonstration Process.

this possibility. Instead, we apply a state-based comparison to determine the ex-
ecuted operations after modeling the context models and the extended models.
This allows the use of any editor without depending on editor-specific exten-
sions. After the new elements are identified, we automatically imply templates
for each model element in the respective models. A template is a generalized
description of a model element. It contains conditions, which have to be ful-
filled to identify an arbitrary model element as a valid match for a template.
The automatic, metamodel-agnostic condition generation is done by creating a
new condition for each feature and its value of a specific model element. After
an automatic default configuration like the deactivation of conditions restricting
to empty feature values is applied, the user may refine templates by adding or
modifying certain conditions during the REMA process.

Attribute values in the target model usually depend on values in the source
model. Therefore, we search for similar values in the source and the target
model’s elements and, for each detected similarity, automatically derive sug-
gestions for the user to create attribute value correspondences. Accepted cor-
respondences are incorporated by adding them to the condition in the target
template. Attribute correspondence conditions bind a feature value or a combi-
nation of feature values in the source template model to a feature in the target
template model. Unambiguous correspondences are automatically added, but
the user might adjust the conditions using the semi-automatic REMA process
by relaxing, enforcing, modifying or augmenting templates.

We distinguish between usual templates and inherited templates. Usual tem-
plates represent model elements that have been newly created in the current



demonstration. Inherited templates represent context elements that have either
been already introduced in a context rule, or that conform to a template in a
context rule, i.e., they are processed by the context rule.

Phase 3: Generation. After the revision of the templates, transforma-
tion rules are generated by a higher-order transformation. In particular, for the
demonstrated scenario, a new rule has to be generated and attached to the trans-
formation model. Furthermore, in case a context-dependent scenarios has been
illustrated, the context rules have to be extended with further reference bindings
to the newly introduced elements referenced by the context elements.

4 M2M Transformation By-Demonstration in Action

In the previous section, we illustrated the by-demonstration process from a
generic point of view. In this section, we show how this process is adopted from
a user’s point of view. In particular, we discuss each iteration necessary to solve
the motivating example of Section 2. To support the user in the demonstration
process, we implemented a prototype presented on our project homepage1.

4.1 Iteration 1: Class Diagram to Entity Relationship Diagram

In Iteration 1, a context-free object-to-object correspondence is illustrated to
create for each SimpleCDModel instance an ERModel instance.

Step 1: Create empty models. The user creates a context-free rule by
specifying an empty source model and an empty target model. These models are
extended in the following steps.

Step 2: Demonstrate transformation rule. To illustrate the transforma-
tion of SimpleCDModels to ERModels, the user just has to add these elements
to the empty models as shown in Fig. 3(a).

Step 3: Identifying new elements. Since the demonstrated rule is context-
free, all model elements are considered as new.

Step 4: Imply templates. The example models are generalized by auto-
matically implying templates for each model element. The goal of creating these
templates is to generically describe model elements. With the help of source tem-
plates, we are able to verify if arbitrary model elements should be transformed
equally to the illustrated model elements. Target templates indicate which prop-
erties and values should be set in the target elements according to the source
model. In this example the templates Template L 1 1 and Template R 1 1 (cf.
specific templates in Fig. 3(a)) are implied for the respective elements in the ex-
ample models. The L in the template name indicates the left side and R the right
side. The first digit in the template name indicates the rule it has been intro-
duced. The second digit enumerates the templates. Since both elements do not
contain any classes or entities, for both templates a condition is created which
constrains these features to be empty, e.g., cf. classes = {}. After all templates

1 http://www.modelversioning.org/m2m-operations



:SimpleCDModel :ERModel

•Template_L_1_1 : SimpleCDModel
•classes = {}

ge
ne

ra
l

sp
ec

ifi
c

Te
m

pl
at

es
Ex

am
pl

es

Source Target

•Template_L_1_1 : SimpleCDModel
•classes = {} [deactivated]

:SimpleCDModel :ERModel

•Template_L_2_1 : SimpleCDModel
•classes = {Template_L_2_2}

•Template_L_2_2 : Class
•name = “Person”

:Class

name = “Person”

:Entity

name = “Person”

•InheritedTemplate_L_1_1 : SimpleCDModel
•classes->includes(Template_L_2_2)

•Template_L_2_2 : Class
•name = “Person” [deactivated]

•InheritedTemplate_R_1_1 : ERModel
•entities->includes(Template_R_2_2)

•Template_R_2_2 : Entity
•name = Template_L_2_2.name

ge
ne

ra
l

sp
ec

ifi
c

Te
m

pl
at

es
Ex

am
pl

es
•Template_R_1_1 : ERModel

•entities={}

•Template_R_1_1 : ERModel
•entities={} [deactivated]

•Template_R_2_1 : ERModel
•entities = {Template_R_2_2}

•Template_R_2_2 : Entity
•name = “Person”

(b) Rule 2

(a) Rule 1

:SimpleCDModel :ERModel

•Template_L_3_1 : SimpleCDModel
•classes = #Template_L_3_2

•Template_L_3_2 : Class
•name = “Person”
•properties = Template_L_3_3

•Template_L_3_3 : Property
•name = “lastname”
•type = SCD!String

•Template_R_3_1 : ERModel
•entities = #Template_R_3_2
•attributes = Template_R_3_3

•Template_R_3_2 : Entity
•name = “Person”
•attributes = Template_R_3_3

•Template_R_3_3 : Attribute
•name = “lastname”
•type = #Template_R_3_4

•Template_R_3_4 : Type
•name = “varchar”

:Class

name = “Person”

:Entity

name = “Person”

•InheritedTemplate_L_1_1 : SimpleCDModel
•classes->includes(Template_L_2_2)

•InheritedTemplate_L_2_2 : Class
•name = “Person” [deactivated]
•properties->includes(Template_L_3_3)

•Template_L_3_3 : Property
•name = “lastname” [deactivated]
•type = SCD!String [deactivated]

•InheritedTemplate_R_1_1 : ERModel
•attributes ->includes(Template_R_3_3)

•InheritedTemplate_R_2_2 : Entity
•attributes ->includes(Template_R_3_3)

•Template_R_3_3 : Attribute
•name = Template_L_3_3.name
•type = Template_R_3_4

•Template_R_3_4 : Type [reuseObject(name)]
•name = MapTypes(Template_L_3_3.type)

:Property

name = “lastname”
type : SCD!String

:Attribute

name = “lastname”

ge
ne

ra
l

sp
ec

ifi
c

Te
m

pl
at

es
Ex

am
pl

es

Source Target

:Type

name = “varchar”

:SimpleCDModel :ERModel

:Class

name = “Person”

:Entity

name = “Person”

:Reference

name = “subscriber”
upperBound = -1
lowerBound = 0

:Reference

name = 
“subscriptions”
upperBound = -1
lowerBound = 1

:Relationship

:Role

name = “subscriber”

:Cardinality

upper : -1
lower : 1

:Cardinality

upper : -1
lower : 0

:Class

name = “Magazine”

:Entity

name = “Magazine”

Ex
am

pl
es

•InheritedTemplate_L_1_1 : SimpleCDModel
•InheritedTemplate_L_2_2a : Class

•references->includes(Template_L_4_3)
•InheritedTemplate_L_2_2b : Class

•references->includes(Template_L_4_4)
•Template_L_4_3 : Reference

•name = …[deactivated]
•target = InheritedTemplate_L_2_2b
•upperBound = …[deactivated]
•lowerBound = …[deactivated]
•opposite = Template_L_4_4

•Template_L_4_4 : Reference
•name = …[deactivated]
•target = InheritedTemplate_L_2_2a
•upperBound = …[deactivated]
•lowerBound = …[deactivated]
•opposite = Template_L_4_3 

•InheritedTemplate_R_1_1 : ERModel
•relationships->includes(Template_R_4_3)

•InheritedTemplate_R_2_2a : Entity
•InheritedTemplate_R_2_2b : Entity
•Template_R_4_3 : Relationship

•role<-includes({Template_R_4_4, Template_R_4_5})
•Template_R_4_4 : Role

•name = Template_L_4_3.name
•type = Template_R_2_2b
•cardinality = Template_R_4_6

•Template_R_4_5 : Role
•…

•Template_R_4_6 : Cardinality
•upper = Template_L_4_3.upperBound
•lower = Template_L_4_3.lowerBound

•Template_R_4_7 : Cardinality
•…

ge
ne

ra
l

Te
m

pl
at

es
:Role

name = “subscriptions”

(b) Rule 4

(a) Rule 3

Fig. 3. (a) Rule 1: Class Diagram to ER Diagram. (b) Rule 2: Class to Entity.

are initially generated, they are automatically pre-configured and generalized.
This is done by deactivating all conditions in the source templates by default.
Solely, source template conditions referring to object values that are represented
by other source templates are left to be active. Consequently, source templates
only restrict the type of the elements and their dependencies to other source
templates. Additionally, conditions in the target templates are deactivated if
the features are not set (cf. general templates in Fig. 3(a)). This reflects an open
world assumption. Only aspects are restricted which are explicitly modeled.

Step 5: Revise templates. Since the templates and their contained con-
ditions are automatically implied, they might not always reflect the user’s in-
tention. Therefore, the user may adjust the generated templates and conditions
using the REMA process. She may relax currently active conditions, enforce
currently inactive conditions, or modify existing conditions. Additionally, tem-
plates may be augmented by adding annotations. Using these techniques, the
user might for instance tighten source templates by enforcing (reactivating) or
modifying certain conditions to restrict the execution of a transformation rule.
However, in this iteration none of these is necessary.



Step 6-7: Generation. The revised templates are transformed into ATL
transformations. Basically, the source templates are transformed into the from
block and the target templates into the to block of an ATL rule. Additional
conditions in source templates are used as guards and attribute correspondences
are set accordingly via bindings. The generated ATL rule for this iteration is
shown in List. 1.1 (line 4-6, 11). Step 6b is not applicable for context-free rules,
since no context rule has to be extended.

4.2 Iteration 2: Class to Entity

In this iteration, the transformation of Classes to Entities is demonstrated.
This rule requires a one-to-one object correspondence, a value-to-value corre-
spondence, and a context—the created target elements have to be added to an
ERModel instantiated in the previous iteration. The example models, the implied
templates, and the generalized templates are depicted in Fig. 3(b).

Step 1: Select context rule. Classes and Entities are always contained
by SimpleCDModels and ERModels, respectively. Thus, the user has to select
the transformation rule of Iteration 1 to be the context of the rule created in
this iteration. When a context is selected, a copy of the context rule’s example
models is created and opened in diagram editors in order to be extended.

Step 2: Demonstrate transformation rule. The user extends the loaded
context models to illustrate the transformation of a Class to an Entity. An
instance of both model elements have to be added in the respective models.
To allow a subsequent automatic detection of attribute value correspondences,
the user should use exactly the same values for which a correspondence exists.
Consequently, the class is named equally to the entity (cf. Fig. 3(b)).

Step 3: Identifying new elements. New elements are identified automat-
ically by comparing the current source model to the source model of the context
rule as well as the current target model to the context rule’s target model. Thus,
the class and the entity are marked as new elements.

Step 4: Imply templates. Like in the previous iteration, for each element
in the example models, a template is implied and a condition for each feature
is added to the template (cf. specific templates in Fig. 3(b)). In contrast to the
previous iteration, the current rule depends on a context, i.e., it includes context
elements to be processed by the context rule. For that reason, templates which
represent a context model element are replaced during the generalization mech-
anism with InheritedTemplates pointing to the respective template contained
by the context rule (cf. general templates in Fig. 3(b)). The first digit of the
template name indicates the context rule in which the elements have been in-
troduced, e.g., InheritedTemplate R 1 1 represents the ERModel introduced in
Iteration 1. Note that this inherited template is refined in this iteration by an ad-
ditional condition (entities->includes(Template R 2 2). This condition indi-
cates that the created entity has to be added to the feature ERModel.entitites.
The conditions of the source templates are again deactivated by default. Addi-
tionally, for setting attribute correspondences, for each value in the target model,



a corresponding value in the source model is searched. If an unambiguous cor-
respondence is detected, the target value is automatically restricted to be the
value of the source element’s attribute by replacing the value assignment (name
= ‘‘Person’’) with a template reference (name = Template L 2 2.name).

Step 5: Revise templates. Like in Iteration 1, no user adjustments are
necessary due to the accurate default implications.

Step 6-7: Generation. After the generalization phase, the current rule is
transformed into an ATL rule as shown in List. 1.1 (line 13-16, 18). As men-
tioned in Step 4, we refined InheritedTemplate R 1 1 with a new condition.
This condition preserves the relationship of the context element ERModel to the
newly added Entity. Hence, an assignment of generated Entities to the feature
entities is added to the context rule (cf. line 7 in List. 1.1).

4.3 Iteration 3: Property to Attribute

Now the transformation of Properties to Attributes is demonstrated. Proper-
ties are contained by classes whereas attributes are directly contained by the root
model element. Entities only incorporate a reference to the attributes they own.
Moreover, in class diagrams, the property type is expressed using an attribute.
In contrast, the type of an attribute in ERModels is represented by an additional
instance. Thus, we need to specify a one-to-many object correspondence as well
as two value-to-value correspondences.

Step 1: Select context rule. This transformation rule has to be illustrated
within the context of Rule 1 and Rule 2, because Attributes are referenced by
ERModels as well as by Entities.

Step 2: Demonstrate transformation rule. In the source model the user
adds a property to the class created in Iteration 2. Correspondingly, an attribute
with the same name is appended to the entity (cf. Fig. 4(a)). Corresponding to
the type of the property, an instance of Type has to be created in the target
model and linked to the attribute.

Step 3: Identifying new elements. As in the previous iterations, the new
elements are identified properly using the state-based comparison.

Step 4: Imply templates. For each model element, a template is implied.
Model elements which have already been created in previous iterations are rep-
resented by inherited templates. As in the previous iteration, the both inherited
templates in the target template model are refined by additional conditions (e.g.,
attributes->includes(Template R 3 3)), because the attribute is referenced
by the entity and contained by the ERModel. The value-to-value correspondence
regarding the attribute name is detected and annotated automatically (name =
Template L 3 3.name).

Step 5: Revise templates. In contrast to the previous iterations, the user
now has to apply two augmentations in the REMA process. First, type has to be
reused since it is not intended to add a new type each time an attribute is created.
Instead, Type instances have to be reused whenever a type already exists with
the same name. This is done by annotating the corresponding template with the
reuseObject operator and providing the name feature as discriminator for reuse.



:SimpleCDModel :ERModel

•Template_L_1_1 : SimpleCDModel
•classes = {}

ge
ne

ra
l

sp
ec

ifi
c

Te
m

pl
at

es
Ex

am
pl

es

Source Target

•Template_L_1_1 : SimpleCDModel
•classes = {} [deactivated]

:SimpleCDModel :ERModel

•Template_L_2_1 : SimpleCDModel
•classes = {Template_L_2_2}

•Template_L_2_2 : Class
•name = “Person”

:Class

name = “Person”

:Entity

name = “Person”

•InheritedTemplate_L_1_1 : SimpleCDModel
•classes->includes(Template_L_2_2)

•Template_L_2_2 : Class
•name = “Person” [deactivated]

•InheritedTemplate_R_1_1 : ERModel
•entities->includes(Template_R_2_2)

•Template_R_2_2 : Entity
•name = Template_L_2_2.name

ge
ne

ra
l

sp
ec

ifi
c

Te
m

pl
at

es
Ex

am
pl

es

•Template_R_1_1 : ERModel
•entities={}

•Template_R_1_1 : ERModel
•entities={} [deactivated]

•Template_R_2_1 : ERModel
•entities = {Template_R_2_2}

•Template_R_2_2 : Entity
•name = “Person”

(b) Rule 2

(a) Rule 1

:SimpleCDModel :ERModel

•Template_L_3_1 : SimpleCDModel
•classes = #Template_L_3_2

•Template_L_3_2 : Class
•name = “Person”
•properties = Template_L_3_3

•Template_L_3_3 : Property
•name = “lastname”
•type = SCD!String

•Template_R_3_1 : ERModel
•entities = #Template_R_3_2
•attributes = Template_R_3_3

•Template_R_3_2 : Entity
•name = “Person”
•attributes = Template_R_3_3

•Template_R_3_3 : Attribute
•name = “lastname”
•type = #Template_R_3_4

•Template_R_3_4 : Type
•name = “varchar”

:Class

name = “Person”

:Entity

name = “Person”

•InheritedTemplate_L_1_1 : SimpleCDModel
•classes->includes(Template_L_2_2)

•InheritedTemplate_L_2_2 : Class
•name = “Person” [deactivated]
•properties->includes(Template_L_3_3)

•Template_L_3_3 : Property
•name = “lastname” [deactivated]
•type = SCD!String [deactivated]

•InheritedTemplate_R_1_1 : ERModel
•attributes ->includes(Template_R_3_3)

•InheritedTemplate_R_2_2 : Entity
•attributes ->includes(Template_R_3_3)

•Template_R_3_3 : Attribute
•name = Template_L_3_3.name
•type = Template_R_3_4

•Template_R_3_4 : Type [reuseObject(name)]
•name = MapTypes(Template_L_3_3.type)

:Property

name = “lastname”
type : SCD!String

:Attribute

name = “lastname”

ge
ne

ra
l

sp
ec

ifi
c

Te
m

pl
at

es
Ex

am
pl

es

Source Target

:Type

name = “varchar”

:SimpleCDModel :ERModel

:Class

name = “Person”

:Entity

name = “Person”

:Reference

name = “subscriber”
upperBound = -1
lowerBound = 0

:Reference

name = 
“subscriptions”
upperBound = -1
lowerBound = 1

:Relationship

:Role

name = “subscriber”

:Cardinality

upper : -1
lower : 1

:Cardinality

upper : -1
lower : 0

:Class

name = “Magazine”

:Entity

name = “Magazine”

Ex
am

pl
es

•InheritedTemplate_L_1_1 : SimpleCDModel
•InheritedTemplate_L_2_2a : Class

•references->includes(Template_L_4_3)
•InheritedTemplate_L_2_2b : Class

•references->includes(Template_L_4_4)
•Template_L_4_3 : Reference

•name = …[deactivated]
•target = InheritedTemplate_L_2_2b
•upperBound = …[deactivated]
•lowerBound = …[deactivated]
•opposite = Template_L_4_4

•Template_L_4_4 : Reference
•name = …[deactivated]
•target = InheritedTemplate_L_2_2a
•upperBound = …[deactivated]
•lowerBound = …[deactivated]
•opposite = Template_L_4_3 

•InheritedTemplate_R_1_1 : ERModel
•relationships->includes(Template_R_4_3)

•InheritedTemplate_R_2_2a : Entity
•InheritedTemplate_R_2_2b : Entity
•Template_R_4_3 : Relationship

•role->includes({Template_R_4_4, Template_R_4_5})
•Template_R_4_4 : Role

•name = Template_L_4_3.name
•type = Template_R_2_2b
•cardinality = Template_R_4_6

•Template_R_4_5 : Role
•…

•Template_R_4_6 : Cardinality
•upper = Template_L_4_3.upperBound
•lower = Template_L_4_3.lowerBound

•Template_R_4_7 : Cardinality
•…

ge
ne

ra
l

Te
m

pl
at

es

:Role

name = “subscriptions”

(b) Rule 4

(a) Rule 3

Fig. 4. (a) Rule 3: Property to Attribute. (b) Rule 4: Reference to Relationship.



Second, the literals of the Type enumeration of the Class Diagram have to be
converted to String values in ER Diagrams. To enable such static value-to-value
conversions, the user may set up a mapping table. In the template conditions,
this table is used by calling its name (cf. name = MapTypes(Template L 3 3)).

Step 6-7: Generation. A matched rule is created to generate attributes
from properties (cf. line 25-33 in List. 1.1). A lazy rule and a helper is generated
for creating types if necessary (cf. line 35-40, 23). Furthermore, a helper for the
mapping table is generated (cf. line 20-21). Both ATL rules created for the used
context rules are extended by new feature bindings (cf. line 8, 17).

4.4 Iteration 4: Reference to Relationship

The last iteration demonstrates the transformation of References to Relation-
ships. For this, a many-to-many object correspondence is needed, since two ref-
erences marked as opposite are transformed into a relationship with two Roles
comprising Cardinalities (cf. Fig. 4(b)). As in the previous iteration, the con-
text rule 2 has to be used. Furthermore, tuples of reference instances have to be
processed only once by applying the Set matching strategy (cf. Section 2). In our
experience, this is the intuitive matching strategy for multiple query patterns
matching for the same type, thus it is used as default.

Step 1: Select context rule. The transformation of References into
Relationships is in the context of Rule 1 and of Rule 2.

Step 2: Demonstrate transformation rule. A new class named “Mag-
azine” and two new references (“subscriber” and “subscriptions”) are added to
the source model. In the target model, the user adds an Entity “Magazine”, a
relationship, two roles, and cardinalities for each role. All values in the target
are consciously set according to the corresponding values in the source model.

Step 3: Identifying new elements. Beside the Class and Entity “Per-
son”, which has been directly added in the context rule, the user also added
a second Class and correspondingly a second Entity named “Magazine”. To
correctly identify these two “Magazine” elements to be context elements and
not new elements, we match each added element in the example against all con-
text templates. Since the left and right “Magazine” elements are matching the
corresponding context templates, they are considered as context elements.

Step 4: Imply templates. For each model element, a template or an in-
herited template is created. Since there are now two instances of Class and of
Entity we enumerate the corresponding inherited templates with a letter (a and
b). The InheritedTemplate R 1 1 (representing a ERModel) is extended for this
rule by an additional condition specifying the reference to the added relationship.
All attribute value correspondences are detected and annotated automatically.
Solely, for the upper bounds of the Cardinalities only suggestions can be made
since the values of these features cannot be unambiguously mapped.

Step 5: Revise templates. The current transformation rule should only
be executed for reference pairs which are marked as opposite of each other.
As already mentioned before, all source template conditions are deactivated,
except for those, which refer to an object value that is represented by another



template. Consequently, also the two conditions restricting the two references to
be opposite of each other remains active which is the intended configuration.
Also the aforementioned difficulty regarding the matching strategy of these two
instances of Reference is solved by using the matching strategy Set which is
adopted by default. With this strategy, every combination of the reference in-
stances irrespectively of their order is “consumed” during the transformation.
Consequently, two references that refer to each other are only processed once by
the resulting rule. If this is not intended, the user may annotate the templates
to use the matching strategy Sequence.

Step 6-7: Generation. To realize the aforementioned Set matching strategy
we generate a unique lazy rule with a guard expression (cf. line 42-56 in List. 1.1)
which is called by the root rule to create and to add the relationships to the
feature ERModel.relationships (cf. line 9-10).

5 Related Work

Varró [14] and Wimmer et al. [15] have been the first proposing to develop
M2M transformation by-example. Both used input models, corresponding output
models, and the alignments between them to derive general transformation rules.
In [1], Balogh and Varró extended their MTBE approach by leveraging the power
of inductive logic programming. As before, the input of their approach are one
or more aligned source and target model pairs which are translated to Prolog
clauses. These clauses are fed into an inductive logic programming engine that
induces inference rules which are translated into model transformation rules. If
these rules do not entirely represent the intended transformation, the user has to
refine either the generated rules directly or she has to specify additional model
pairs and start another induction iteration. That approach might require less user
interaction compared to our approach, but we follow a different conceptual aim.
By our demonstration approach we are aiming at a very interactive approach. In
particular, the user is guided to demonstrate and configure each transformation
rule iteratively. To ease that interaction for the user, in each iteration the user
may focus only on one part of the potentially huge transformation until the
current rule is correctly specified. We believe, this is a natural way of dividing
and conquering the whole transformation.

For omitting to manually define alignments between source and target mod-
els, two further by-example approaches have been proposed. (1) Garćıa-Magariño
et al. [7] propose to develop M2M transformations by annotating the source
metamodel and the target metamodel with additional information, which is re-
quired to derive transformations based on given example models. Because the
approach of Garćıa-Magariño et al. uses a predefined algorithm to derive the
transformations purely automatically, the user has no possibility to influence
the generalization process, which is in our point of view a must for developing
model transformation in practice. The implication of this limitation is that most
attribute correspondences cannot be detected as well as configurations such as
reusing existing objects for aggregation or determining the matching strategy



such as Sequence or Set cannot be considered during the generalization process.
The only possibility for the user is to adapt and extend the generated ATL
code, which is more difficult compared to providing such configurations in our
proposed template language. (2) Kessentini et al. [10] interpret M2M transforma-
tions as an optimization problem. Therefore, Kessentini et al. propose to apply
an adapted version of a particle swarm optimization algorithm to find an optimal
solution for the transformation problem, which is described by multiple source
and target model pairs. However, as it is the case with most artificial intelli-
gence approaches, only an approximation of the optimal solution can be found.
This may be enough for some scenarios, e.g., searching for model elements in a
model repository where the user has to select one of the best matches, for oth-
ers, e.g., model exchange between different modeling tools, carefully-engineered
model transformations are necessary [2]. Such scenarios are not supported by
Kessentini et al., because the transformation logic is only implicitly available in
the trained optimization algorithm, which is not adaptable.

Finally, a complementary approach for generating model transformations au-
tomatically is metamodel matching. Two dedicated approaches [4, 5] have been
proposed for computing correspondences between metamodels which are input
for generating model transformations. We have experimented with technologies
for ontology matching by transforming metamodels into ontologies [9]. However,
we have experienced [8] that in a setting where (1) metamodels use different ter-
minology for naming metamodel elements and (2) the structures of metamodels
are very heterogeneous, it is sometimes impossible for the matching algorithms
to find the correct correspondences. However, we have to mention that a hybrid
approach, i.e., combining a matching approach with a by-example approach,
seems to be very promising for gaining the benefits of both worlds. We consider
this topic as subject to future work.

6 Conclusions and Future Work

The presented by-demonstration approach provides a novel contribution to the
field of MTBD for developing carefully-engineered M2M transformations. Our
approach is metamodel-independent and does not rely on the editors used to
illustrate the transformation scenarios. The automatic generalization technique
uses default implications which are proven useful in most of the cases. However,
the user may still fine-tune the derived rules using the REMA process without
touching the automatically generated ATL code.

Up to now, we support four operators that may be used to annotate tem-
plates, namely reuseObject, MapTypes, as well as two different matching strate-
gies Set and Sequence. In future work, we will evaluate our approach in fur-
ther scenarios to determine if further operators are required. For instance, we
will elaborate on selector templates to support complex user-defined selections
of source elements, e.g., a recursive selection of elements. Negative application
conditions (NAC) as well as many-to-one attribute correspondences are cur-
rently only supported by manually editing conditions. In future work, we plan



to imply NACs from user-specified examples and incorporate techniques from
instance-based ontology matching [11] to allow automatic detection of many-to-
one attribute correspondences. Furthermore, we intend to add features easing
large transformation development like rule inheritance and debugging support.
By employing user-specified test scenarios and comparing their transformation
result to the desired result, we can backtrack the differences to the relevant rule
and directly point the user to the template specification causing the difference.
Finally, we will elaborate if it is possible to derive Triple Graph Grammar defi-
nitions from example models by using our REMA process. By this, we want to
conduct if the approach is generic enough to generate also transformation rules
for other transformation languages which might follow different trace models
and execution semantics.

References

1. Z. Balogh and D. Varró. Model transformation by example using inductive logic
programming. Software and Systems Modeling, 8(3):347–364, 2009.

2. P. A. Bernstein and S. Melnik. Model Management 2.0: Manipulating Richer
Mappings. In SIGMOD’07, pages 1–12, 2007.

3. P. Brosch, P. Langer, M. Seidl, K. Wieland, M. Wimmer, G. Kappel, W. Rets-
chitzegger, and W. Schwinger. An Example Is Worth a Thousand Words: Com-
posite Operation Modeling By-Example. In MoDELS’09, pages 271–285, 2009.

4. M. D. D. Fabro and P. Valduriez. Semi-automatic model integration using matching
transformations and weaving models. In SAC’07, pages 963–970, 2007.

5. J.-R. Falleri, M. Huchard, M. Lafourcade, and C. Nebut. Metamodel matching for
automatic model transformation generation. In MoDELS’08, pages 326–340, 2008.

6. R. France and B. Rumpe. Model-driven Development of Complex Software: A
Research Roadmap. In FOSE’07, pages 37–54, 2007.

7. I. Garćıa-Magariño, J. J. Gómez-Sanz, and R. Fuentes-Fernández. Model Transfor-
mation By-Example: An Algorithm for Generating Many-to-Many Transformation
Rules in Several Model Transformation Languages. In ICMT’09, pages 52–66, 2009.

8. G. Kappel, H. Kargl, G. Kramler, A. Schauerhuber, M. Seidl, M. Strommer, and
M. Wimmer. Matching metamodels with semantic systems - an experience report.
In Workshop Proceedings of BTW’07, pages 38–52, 2007.

9. G. Kappel, T. Reiter, H. Kargl, G. Kramler, E. Kapsammer, W. Retschitzegger,
W. Schwinger, and M. Wimmer. Lifting metamodels to ontologies - a step to the
semantic integration of modeling languages. In MoDELS’06, pages 528–542, 2006.

10. M. Kessentini, H. Sahraoui, and M. Boukadoum. Model Transformation as an
Optimization Problem. In MoDELS’08, pages 159–173, 2008.

11. E. Rahm and P. A. Bernstein. A Survey of Approaches to Automatic Schema
Matching. The VLDB Journal, 10(4):334–350, 2001.

12. M. Strommer and M. Wimmer. A Framework for Model Transformation By-
Example: Concepts and Tool Support. In TOOLS’08, pages 372–391, 2008.

13. Y. Sun, J. White, and J. Gray. Model transformation by demonstration. In MoD-
ELS’09, pages 712–726, 2009.

14. D. Varró. Model Transformation by Example. In MoDELS’06, pages 410–424,
2006.

15. M. Wimmer, M. Strommer, H. Kargl, and G. Kramler. Towards Model Transfor-
mation Generation By-Example. In HICSS’07, pages 285–286, 2007.



Listing 1.1. Generated ATL Code
1 module CD2ER;
2 create OUT : ER from IN : CD;
3

4 rule GenerateERModel {
5 from cdmodel : CD!SimpleCDModel
6 to ermodel : ER!ERModel (
7 entities <- cdmodel.classes ,
8 attributes <- cdmodel.classes ->
9 collect(e| e.properties) -> flatten(),

10 relationships <- cdmodel.classes -> collect(x| x.references) ->
11 flatten () -> collect(x| thisModule.GenerateRelationship(
12 x, x.opposite )))
13 }
14 -----------------------------------------------------------------------
15 rule GenerateEntity {
16 from class : CD!Class
17 to entity : ER!Entity (
18 name <- class.name ,
19 attributes <- class.properties)
20 }
21 -----------------------------------------------------------------------
22 helper def : mapTypes(x : CD!Types) : ER!Types =
23 Map {(#String ,’varchar ’), ...)}. get(x);
24

25 helper def : seenERTypes : Set(ER!Type) = Set {};
26

27 rule GenerateAttribute {
28 from property : CD!Property
29 to attribute : ER!Attribute (
30 name <- property.name ,
31 type <-
32 i f (thisModule.seenERTypes -> exists(e|
33 e.name = thisModule.mapTypes(property.type )))
34 then thisModule.seenERTypes -> any(e|
35 e.name = thisModule.mapTypes(property.type))
36 else thisModule.CreateType(property.type) endif)
37 }
38

39 lazy rule CreateType {
40 from cdType : CD!Types
41 to erType : ER!Type (
42 name <- thisModule.mapTypes(cdType ))
43 do{thisModule.seenERTypes <- thisModule.seenERTypes ->
44 including(erType );}
45 }
46 -----------------------------------------------------------------------
47 unique lazy rule GenerateRelationship {
48 from reference1 : CD!Reference ,
49 reference2 : CD!Reference (reference1.opposite = reference2)
50 to relationship1 : ER!Relationship (
51 roles <- Set{role1 , role2}),
52 role1 : ER!Role(
53 name <- reference1.name ,
54 refersTo <- reference1.target ,
55 cardinality <- cardinality1),
56 role2 : ER!Role (...),
57 cardinality1 : ER!Cardinality(
58 upper <- reference1.upperBound ,
59 lower <- reference1.lowerBound ,
60 cardinality2 : ER!Cardinality (...)
61 }


