

Photon Mapping on the GPU

Martin Fleisz

S0894924@sms.ed.ac.uk

Master of Science

Computer Science

School of Informatics

University of Edinburgh

2009

Photon Mapping on the GPU Preface

Martin Fleisz I

Abstract

In realistic image synthesis, Photon Mapping is an essential extension to the standard ray tracing

algorithm. However, recent developments in processor design, towards multi-core systems do not

favor the tree-based photon map technique. We developed a novel approach for Photon Mapping,

based on spatial hashing. Photon map creation and photon search are fully parallelized and take

full advantage of the processing power of current GPUs. Synchronization is kept to a minimum

and we are able to use texture memory to cache access to the photon information. In order to

evaluate our new approach we carried out a series of benchmarks with existing, GPU based

photon mapping techniques. Our spatial hashing approach is shown to be much faster than

existing techniques with almost any possible configuration, while archiving the same image

quality.

Photon Mapping on the GPU Preface

Martin Fleisz II

Acknowledgements

I would like to thank my supervisor, Taku Komura for his advice and encouragement throughout

this project. I would also like to thank Vincent Garcia, who helped me to get a better

understanding of his paper and also provided source code to his work.

Photon Mapping on the GPU Preface

Martin Fleisz III

Declaration

I declare that this thesis was composed by me, that the work contained herein is my own except

where explicitly stated otherwise in the text, and that thesis work has not been submitted for any

other degree or professional qualification except as specified.

 (Martin Fleisz)

Photon Mapping on the GPU Preface

Martin Fleisz IV

Table of Contents

1 Introduction .. 1

1.1 Problem statement ... 2

1.2 Motivation ... 3

1.3 Structure of the Report .. 3

2 Background .. 4

2.1 Theoretical Background .. 5

2.1.1 Ray Tracing .. 5

2.1.2 Photon Mapping ... 6

2.1.3 GPU Implementations .. 8

2.2 Fast k Nearest Neighbor Search using GPU .. 8

2.2.1 Basics ... 8

2.2.2 Construction ... 9

2.2.3 Photon Search ... 9

2.3 Real-Time KD-Tree Construction on Graphics Hardware .. 10

2.3.1 Basics ... 10

2.3.2 Construction ... 11

2.3.3 Photon Search ... 14

2.4 Analysis of existing Techniques .. 15

2.4.1 Brute Force Approach .. 15

2.4.2 GPU kD-Tree Approach ... 15

3 A new Approach ... 17

3.1 Photon Mapping using Spatial Hashing .. 18

3.1.1 Overview .. 18

3.1.2 Theory .. 19

3.1.3 Implementation ... 21

3.1.4 Limitations ... 23

Photon Mapping on the GPU Preface

Martin Fleisz V

4 Performance Measuring .. 25

4.1 Measureable Parameters .. 26

4.2 System Specification ... 27

4.3 Application Specification .. 28

4.4 Test Scene Specification .. 28

5 Results and Analysis ... 30

5.1 Construction Time Performance .. 31

5.2 Memory Requirements .. 32

5.3 Photon Search .. 34

5.3.1 Photon Map Sizes ... 34

5.3.2 Number of Photons ... 38

5.3.3 Query Radius .. 40

5.3.4 Query Size .. 43

5.4 Results with the Brute Force Approach ... 46

5.5 Image Quality .. 47

5.6 Observations .. 49

6 Conclusion ... 52

6.1 Conclusion ... 53

6.2 Future Work ... 54

7 Bibliography ... 55

Photon Mapping on the GPU Preface

Martin Fleisz VI

List of Figures

Figure 1: Ray Tracing [8] ... 5

Figure 2: Ray Tracing on the left, Photon Mapping on the right ... 6

Figure 3: Photon density estimation [17] ... 8

Figure 4: Small node splitting [36] .. 13

Figure 5: Compaction of the active node list [43] .. 14

Figure 6: Immediate lookup of photons in the cell of the sample point x, using the hash table 18

Figure 7: After calculating the hashes the photon list is sorted and the hash table is created........ 19

Figure 8: Calculating neighbor cells’ grid positions, using the values from the offset lookup table

 .. 21

Figure 9: Hash Table (start index, end index) and Photon Table relation 22

Figure 10: 2D view of a scene, green cells occupy geometry whereas red cells do not 23

Figure 11: Test scene .. 29

Figure 12: Construction Time Performance for Global Photon Map ... 31

Figure 13: Construction Time Performance for Caustic Photon Map ... 32

Figure 14: Memory Consumption .. 33

Figure 15: Peak Memory Consumption ... 33

Figure 16: Global photon map search performance with different map sizes 35

Figure 17: kD-Tree Traversal - Local Memory Access ... 36

Figure 18: Caustic photon map search performance with different map sizes 37

Figure 19: Photon Density in a global (left) and a caustic (right) photon map 37

Figure 20: Global photon map search performance with different k sizes 38

Figure 21: Caustic photon map search performance with different k sizes 39

Figure 22: Global photon map search performance with different query radii 41

Figure 23: Caustic photon map search performance with different query radii 41

Figure 24: Hashing Memory Consumption with different query radii .. 43

Figure 25: Global photon map performance with different query size .. 44

Figure 26: Non-Coalesced Memory Access ... 45

Figure 27: Caustic photon map performance with different query size ... 45

Figure 28: Brute Force Performance .. 46

Photon Mapping on the GPU Preface

Martin Fleisz VII

Figure 29: Image quality with hashing (left) and kD-Tree (right) with 10,000 (top) and 50,000

(bottom) photons .. 48

Figure 30: Image quality with hashing (left) and kD-Tree (right) with a caustic photon map

(10,000 photons) ... 49

Photon Mapping on the GPU Preface

Martin Fleisz VIII

List of Tables

Table 1: Measurements .. 26

Table 2: System Specification .. 27

Table 3: Computation time decomposition for the Brute Force Technique [25] 47

1
1 Introduction

“The only way forward in terms of performance - but we also think in terms of
power - is to go to multicores. Multicores put us back on the historical trajectory of
Moore's Law. We can directly apply the increase in transistors to core count - if
you are willing to suspend disbelief for a moment that you can actually get all those
cores working together.”

- Justin R. Rattner, Chief Technical Officer at Intel [1]

Objectives

• To explain the problems we try to address with our project

• To explain our motivation behind this project

• To give an overview of the report’s structure

Photon Mapping on the GPU Chapter 1 - Introduction

Martin Fleisz 2

1.1 Problem statement

Because of recent developments in processor design, parallel computing has become the new way

of creating high performance applications. Especially Graphics Processor Units (GPUs) offer

amazing computation power and are available in a lot of standard consumer machines these days.

However, in order to unleash this available processing power, algorithms have to be parallelized

[2]. In a lot of cases, like Photon Mapping, this task can be quite difficult due to a few reasons.

The first problem arises with the creation of the photon map data structure. For performance

reasons this structure is usually a balanced kD-Tree [3], used to speed up the photon search.

However, it is difficult to parallelize the tree construction because all threads have to access the

same data structure. This usually requires a lot of synchronization overhead and completely

defeats the advantage of parallel processing. Although Jensen discusses parallelization of photon

search in [4], we think that this is only a mediocre solution to the overall problem.

Another problem is the highly irregular memory access pattern, revealed during tree construction

and traversing. In order to find photons in a kD-Tree, lots of scattered memory reads have to be

performed which is everything but optimal for GPUs. Also, the interdependent operations that

have to be performed during tree traversal entail that the hardware is not able to hide these

memory latencies.

In this project we want to present and evaluate a new Photon Mapping technique for GPUs.

Using a new approach, based on spatial hashing to organize the photons in the photon map, we

think that we are able to utilize the available parallel computation power more efficient than

existing techniques. In order to proof our proposed technique in terms of performance and

quality, we will implement prototypes of the various approaches and compare them. We will also

apply different parameters and data sizes during our tests, in order to evaluate the scalability of

the different techniques.

Photon Mapping on the GPU Chapter 1 - Introduction

Martin Fleisz 3

1.2 Motivation

Sequential computing has reached a point where huge performance improvements are not

feasible anymore. Instead, chip manufacturers are now designing multi-core processors in order

to be able to deliver regular performance improvements. However, in order to utilize this

available power, algorithms must be massively parallelized and, in case of GPUs, executed using

thousands of threads. While some sequential algorithms can be easily changed to parallel

versions, others are very difficult or even impossible to modify in such a manner.

The motivation behind this project is to come up a new technique for Photon Mapping that fits

these trends in processor design. Our main idea is to develop a heavily parallelized algorithm that

is designed with respect to current GPU architectures. This means we have to utilize as many

threads as possible for the photon map creation and photon search, while trying to avoid any

synchronization. Scattered memory access should also be kept to a minimum to achieve the

highest possible performance. As we believe the future of computing is within parallelization, our

technique should also be very useful for future, general purpose multi-core architectures.

1.3 Structure of the Report

After the introduction, a short explanation of Ray Tracing and Photon Mapping is provided, to

give a basic understanding of these techniques. Furthermore, we take a look at existing GPU

approaches, explaining how they work in detail and what shortcomings they have.

Chapter three introduces our new GPU Photon Mapping approach, based on spatial hashing, with

detailed information on our current implementation.

The results of our experiments and tests are presented in chapter four, giving an overview of the

performance, memory consumption and scalability of the various techniques.

In chapter five we will critically analyze the results presented in the previous chapter.

Finally, chapter six contains conclusions and directions for future research.

2
2 Background

"Parallel programming is perhaps the largest problem in computer science today

and is the major obstacle to the continued scaling of computing performance that

has fuelled the computing industry, and several related industries, for the past 40

years."

- Bill Dally, Chief Scientist and Vice President of NVIDIA Research [5]

Objectives

• To give an introduction to Ray Tracing and highlight its problems

• To explain how Photon Mapping works

• To give an overview of existing GPU Photon Mapping techniques

• To identify weaknesses in existing GPU Photon Mapping techniques

Photon Mapping on the GPU

Martin Fleisz

2.1 Theoretical Background

2.1.1 Ray Tracing
Ray Tracing is a technique for image synthesis

world. The first Ray Tracing algorithm was introduced by Arthur Apple

modifications, is still used in current ray tracers.

one or more rays into the scene, testing if

a few objects that our ray intersects but we will only consider the object

Now we have to distinguish between three different kinds of rays that are generated next,

depending on the object’s material properties:

Shadow rays simply check if our intersection point faces any of the light sources in the scene. In

order to determine the amount of light

source in our scene. If all rays reach the light source without intersecting another object

that our point is fully lit and we have to color that pixel on screen. In case all of these ra

intersect other objects, we know

very dark or just black.

Photon Mapping on the GPU Chapter

Theoretical Background

racing is a technique for image synthesis, which is used to create a 2D image of a 3D

racing algorithm was introduced by Arthur Apple

is still used in current ray tracers. For each pixel on our viewing plane we shoot

one or more rays into the scene, testing if they intersect with any object (Figure

r ray intersects but we will only consider the object,

Now we have to distinguish between three different kinds of rays that are generated next,

depending on the object’s material properties: shadow, reflection and refraction rays

Figure 1: Ray Tracing [8]

rays simply check if our intersection point faces any of the light sources in the scene. In

order to determine the amount of light received, we shoot another ray from this point to each light

source in our scene. If all rays reach the light source without intersecting another object

that our point is fully lit and we have to color that pixel on screen. In case all of these ra

we know that our point is within a shadowed area and we color that pixel

Chapter 2 - Background

5

create a 2D image of a 3D

racing algorithm was introduced by Arthur Apple [6] and, with some

For each pixel on our viewing plane we shoot

Figure 1). We might find

, closest to the viewer.

Now we have to distinguish between three different kinds of rays that are generated next,

, reflection and refraction rays [7].

rays simply check if our intersection point faces any of the light sources in the scene. In

we shoot another ray from this point to each light

source in our scene. If all rays reach the light source without intersecting another object, we know

that our point is fully lit and we have to color that pixel on screen. In case all of these rays

our point is within a shadowed area and we color that pixel

Photon Mapping on the GPU Chapter 2 - Background

Martin Fleisz 6

Reflection rays are cast when our initial ray hits a reflective surface, i.e. a mirror. Leaving from

the mirroring surface, we test for object intersection again. If we find an intersecting object, we

pick the closest one to our reflective surface and color the pixel, using the reflected intersection

point’s color.

The third ray type is cast when we hit a refractive surface, i.e. a glass full of water. Light changes

its direction according to Snell’s Law [9] when it travels between two media with different

refraction indexes. The coloring for refractive objects works similar to reflective objects in the

previous paragraph.

2.1.2 Photon Mapping
The problem with traditional methods, like Ray Tracing and Radiosity is that they are not able to

model all possible lighting effects in a scene (Figure 2). Ray Tracing only simulates indirect

illumination by adding a constant ambient term in the lighting calculation, whereas Radiosity

only simulates diffuse reflections, completely ignoring mirrored surfaces. Therefore, approaches

were made to combine both methods, where each technique renders the effects the other fails to.

However, such approaches are is still not sufficient as they both fail to model focused light

effects, like caustics. Solutions to this problem were presented by [10], [11] and [12] but they

introduced other problems as [13] explains.

Figure 2: Ray Tracing on the left, Photon Mapping on the right

Photon Mapping on the GPU Chapter 2 - Background

Martin Fleisz 7

Jensen presented a new extension to Ray Tracing, based on the concept of photon maps [14], that

was able to overcome all these problems. In a first pass, the photon map is constructed by

emitting light rays from each light source into the scene. In order to emit photons more

efficiently, projection maps can be used as described in [15]. Whenever a photon hits a diffuse

surface, its position, incident angles and power are stored in the photon map. Jensen uses a

balanced kD-Tree [3] to organize this data, which is very useful to locate photons during the

radiance estimation. Afterwards, we decide if the photon is absorbed or reflected, using Russian

roulette [16]. Photon hits are not stored for specular objects because the chance, of having

incoming photons from the specular direction is almost zero. Instead, these surfaces are rendered

using standard Ray Tracing techniques, as explained earlier. An important property of the photon

map is that it stores lighting information decoupled from the scene geometry. This means that the

photon map’s lookup time for complex scenes with many polygons, is the same as it is for simple

scenes with just a few polygons.

In the second pass, the information in the photon map is used to calculate the effects of indirect

lighting and caustics. Direct illumination and specular surfaces are rendered, using standard Ray

Tracing because these effects would require a huge amount of photons in the photon map, to be

rendered correctly. In order to calculate the reflected radiance for any given point x in a scene,

Jensen uses density estimation. As shown in Figure 3, by expanding a sphere around x, until it

contains n photons, we are able to collect photon samples for the estimation. This yields the

following equation for estimating the reflected radiance �� at a given point x:

 ��(�, ����) ≈ 1
�² � ����, �����, �����∆Φ���, ������

�

���
 (2.1)

where �� is the surface’s bidirectional reflectance distribution function (BRDF) and Φ� is the

power of photon p, stored in the photon map.

Photon Mapping on the GPU Chapter 2 - Background

Martin Fleisz 8

Figure 3: Photon density estimation [17]

2.1.3 GPU Implementations
There have already been a couple of successful attempts made, to implement Ray Tracing

efficiently on GPUs. Purcell et al [18] presented the first ray tracer, running entirely on the GPU,

using a uniform grid for acceleration. The first implementations that achieved better performance

than CPU based ray tracers were presented in [19] and [20]. Unfortunately, both these techniques

work with static scenes only. The latest work from Luebke et al [21] presents a technique,

combining Ray Tracing and rasterization methods to obtain real-time performance on dynamic

scenes. Photon mapping has been implemented for multi-core CPUs in [22] and for older GPU

generations in [23]. In the following sections, we take a look at the available techniques that can

be used for Photon Mapping on current GPU hardware.

2.2 Fast k Nearest Neighbor Search using GPU

2.2.1 Basics
As described earlier, calculation of the illumination of a distinct point requires a certain amount

of closely located photons. This kind of search is called k-nearest neighbor search [24], which is

a special variation from the family of nearest neighbor search algorithms. In our case, the kNN

Photon Mapping on the GPU Chapter 2 - Background

Martin Fleisz 9

search problem consists of finding the � nearest photons, for a set of query points that we want to

calculate the illumination for.

In [25], Garcia et al present a brute force based approach to the kNN search problem. Their work

is kept very general and supports points with arbitrary dimensions, as well as differently sized

reference and query point sets. As they write in their report, this exhaustive search method is by

nature highly parallelizable and therefore, is perfectly suitable for a GPU implementation. Their

solution runs completely on the graphics device, completely offloading all work from the CPU.

2.2.2 Construction
All that needs to be done during the construction or setup phase is allocation of device memory

and copying the required data to the device. For a given set of m photons and n query points, the

memory requirements are pretty high with O(nm). In order to improve performance, data is

loaded into different kinds of memory on the device. The query set is stored in global memory,

which has a huge bandwidth but performs bad if access is not coalesced [2]. Photons will be

stored in texture memory which provides better performance on non-coalesced accesses.

2.2.3 Photon Search
Photon search is split into the following three steps:

• Compute all distances between a query point �� and all reference points � with � ∈ !1, "#
• Sort the computed distances

• Select the first k reference points, corresponding to the k smallest distances

These steps are repeated for all query points in the query set and can be performed in parallel on

the GPU. Distances are computed and stored in a way similar to a matrix. Because our query

point set will be usually quite large (i.e. more than 300.000 for an image resolution of 640 x 480),

it is necessary to split our query, due to memory constraints.

The sorting part is, by its nature, very problematic as it compares and exchanges many distances

in non-predictable order. This means memory access is non-coalesced which results in a

Photon Mapping on the GPU Chapter 2 - Background

Martin Fleisz 10

performance hit, when using global memory. Texture memory would be a good alternative, but

unfortunately it is read-only memory and therefore, cannot be used for sorting.

For the sorting step, Garcia et al tried out a couple of algorithms in their paper. Quicksort [26] is

very popular but cannot be used with CUDA, due to the lack of support for recursive functions.

Therefore, their first implementation used the comb sort algorithm [27], which is able to sort the

calculated n distances in O(n log n) time. However, because it is not necessary to sort the

complete data set but only the first k elements, Garcia et al finally used a modified version of

insertion sort [28]. Insertion sort proofed to be faster for finding up to k = 100 neighbors, before

being outperformed by the comb sort implementation. Because insertion sort itself cannot be

parallelized efficiently, sorting for all query points is performed simultaneous instead.

Obviously, this solution demands a huge amount of processing power. Complexity is O(nmd) for

the n times m distances computed and O(nm log m) for the n sorts, performed to find the nearest

reference points. However, according to Garcia et al, their brute force approach performs faster

than a kD-Tree based software implementation. For their comparison they used the ANN C++

library [29], which implements the kD-Tree based nearest neighbor search method, presented in

[30].

2.3 Real-Time KD-Tree Construction on Graphics Hardware

2.3.1 Basics
Obviously, one way to move the Photon Mapping technique onto graphics hardware is to do the

creation and traversal of the kD-Tree on the GPU. The first attempt to accomplish this was

presented by Purcell et al in [23]. However, their work is a bit outdated because this technique is

based on graphics hardware that is far less flexible and programmable than current devices.

More general work on parallel kD-Tree construction was published by Popov et al [31] and

Shevtsov et al [32]. Both approaches are based on multi-core CPUs and therefore, have design

issues when used on a GPU. The first problem is that kD-Tree construction can easily become

Photon Mapping on the GPU Chapter 2 - Background

Martin Fleisz 11

bandwidth limited on large input data sets, due to its random memory access pattern. Therefore,

the construction switches from breadth first search (BFS), over to depth first search (DFS)

manner at deeper nodes. This means that these approaches keep the number of concurrently

running threads pretty low. Graphics hardware however, has a much higher memory bandwidth

and requires at least 10% ~ 10' threads for optimal performance [2]. Another important factor

during construction is the balance of the tree and therefore, finding the right splitting position for

a node. Both papers use the Surface Area Heuristic (SAH) [33] [34] to evaluate the costs for a

splitting candidate. Even though the SAH improves the quality of trees significantly [35], its

calculation consumes a lot of time.

Finally, parallelizing the photon search or tree traversing is pretty easy, as the tree is accessed

read-only. However, for performance reasons it is important that the tree is well balanced and

stored efficiently. Storing the tree efficiently means to keep scattered memory accesses as low as

possible, by placing child nodes close to their parents. The traversal algorithm itself is not a good

candidate for parallelization. Instead, performing multiple traversals simultaneously is a much

better way, in order to obtain good performance.

In [36], Zhou et al present a new approach to kD-Tree construction and traversal on GPUs, using

CUDA. Even though their main focus is on SAH kD-Tree construction for Ray Tracing, they also

provide information on adapting the technique for photon mapping, which we will concentrate

on.

2.3.2 Construction
Zhou et al build their kD-Tree completely in breadth first search manner, distinguishing between

two different node stages. During the initialization stage, global memory is allocated for the tree

construction and the root node is created. For the photon mapping implementation we also have

to create three sorted order lists (one for each dimension) for all point coordinates, using the sort

function from [37]. Using the sorted order, we are able to compute bounding boxes in O(1) time

and we avoid to use segmented reduction, which compensates for the sorting. Additionally, we

maintain three associated point ID lists (one for each coordinate axis) which have to fulfill the

following criteria:

Photon Mapping on the GPU Chapter 2 - Background

Martin Fleisz 12

• Points in the same node are contiguous in all lists

• Points in the same node start at the same offset in all lists

In the first step, the so called Large Node Stage is executed. This stage splits nodes using a

combination of spatial median splitting and “cutting off empty space”, as described in [38].

Because in the Large Node Stage the number of nodes is naturally smaller, computation is

parallelized over all points rather than over nodes. First we need to find the splitting plane (the

plane that splits the longest axis in the middle), after repeatedly applying empty space splitting

before. Then each photon is classified as being either left (1) or right (0) of the splitting plane.

Finally, we perform the scan operation from [39], in order to use the split operation in [40] to

split the current node. As Zhou et al mention in their paper, the sorted coordinate and ID lists

maintain all their properties after splitting. After the split we check if the amount of photons in

our child nodes is below the threshold T = 32. If the number is smaller, the node is added to the

small node list. Otherwise it is added to the active list and scheduled for the next iteration of the

Large Node Stage. The Large Node Stage finishes as soon as there are no more nodes in the

active list.

The next phase is the Small Node Stage and begins with a preprocessing step for all nodes in the

small node list, created during the previous stage. In this step we collect all splitting plane

candidates and calculate the resulting split sets, which define photon distribution after a split. It

should be noted that splitting planes are restricted to initial photon positions in this stage.

After the preprocessing has finished, we process all small nodes in parallel and split them, until

each node contains one photon. Since we need to build a kD-Tree for points (or photons), rather

than triangles, we are now using the Voxel Volume Heuristic (VVH) [41] for split cost

evaluation, instead of the SAH. Given a split position x, we can calculate the VVH as follows:

 (()(�) = +,(�) (-.((, ± 0)
(-.((± 0) + +2(�) (-.((2 ± 0)

(-.((± 0) (2.2)

where +, and +2 is the number of photons in the left and right node, after the split and (-.((±
0) is the volume of node V, extended by the maximum query radius R. Wald et al approximate

(-.((± 0) using the following formula:

Photon Mapping on the GPU Chapter 2 - Background

Martin Fleisz 13

(-.((± 0) ≈ 3 ((�,456 − (�,4�8 + 20)

��6,:,;
 (2.3)

After we found the best split candidate (the one with the lowest VVH cost) we can split the small

node into two sub nodes. To do so we need the current node’s photon set, which is a bit mask

representation of the photons inside the node. In order to complete our split, we simply perform a

logical AND between the current photon set and the precalculated result split sets of the root

small node. This is illustrated in Figure 4 where we split node A into two sub nodes (B and C)

and the symbols (~, #, o, +, *) represent photons in node A.

Figure 4: Small node splitting [36]

Besides easing node splitting, the binary photon representation also helps us calculating the

number of photons in a node, which we need for VVH computation and to stop node splitting. All

we have to do is to count the bits in the current photon set, using the parallel bit counting routine

from [42].

After splitting is done, the new nodes are added to the active node list, in order to be processed

during the next iteration step. Of course it can and will happen that some nodes will not create

any new child nodes. Therefore, we have to add another step to compact our active node list and

remove empty space, as is illustrated in Figure 5 [43]. If there are no more nodes left in the active

list, we can finish the Small Node Stage and proceed to the final construction stage.

Photon Mapping on the GPU

Martin Fleisz

Figure

In the final kD-Tree Output Stage

traversal of nodes, in order to improve memory access

memory requirements for each node and its sub

are able to calculate each node’s address

top-down traversal pass. After reordering

references to its children, as well as

2.3.3 Photon Search
A natural choice for locating the k nearest neighbors

described in [44]. Unfortunately

efficiently, because memory access is incoherent and almost all arithmetic is interdependent,

making it difficult for the hardware to hide memory latency.

iterative kNN search algorithm

Starting from an initial, conservative search radius

a couple of iterations. During each iteration

ranges is created and the final search radius is reduced from it. The final radius

range search which returns all photons within that radius. Parts of these computations are

performed on the CPU and, according to Zhou et al

less than 0.1%. Range search is implemented using the depth first searc

algorithm from [45].

Photon Mapping on the GPU Chapter

Figure 5: Compaction of the active node list [43]

ree Output Stage, the tree is reorganized to change its layout to a preorder

nodes, in order to improve memory access performance. First

memory requirements for each node and its sub-tree by traversing the tree bottom

are able to calculate each node’s address, using the size information from the pr

After reordering, each node stores its bounding box, split plane

as well as its photon’s position and power.

A natural choice for locating the k nearest neighbors in a kD-Tree is the priority queue method

. Unfortunately, it is not possible to implement a priority queue in CUDA

because memory access is incoherent and almost all arithmetic is interdependent,

making it difficult for the hardware to hide memory latency. Therefore,

iterative kNN search algorithm, based on range searching [45].

conservative search radius <, they try to find the query radius

a couple of iterations. During each iteration, a histogram of photon numbers over different radius

ranges is created and the final search radius is reduced from it. The final radius

e search which returns all photons within that radius. Parts of these computations are

according to Zhou et al, the resulting error of the final kNN radius is

less than 0.1%. Range search is implemented using the depth first searc

Chapter 2 - Background

14

nized to change its layout to a preorder

performance. First, we calculate the

tree by traversing the tree bottom-up. Finally, we

using the size information from the previous step in a

each node stores its bounding box, split plane and the

priority queue method,

it is not possible to implement a priority queue in CUDA

because memory access is incoherent and almost all arithmetic is interdependent,

 Zhou et al propose an

they try to find the query radius = through

a histogram of photon numbers over different radius

ranges is created and the final search radius is reduced from it. The final radius = is then used for

e search which returns all photons within that radius. Parts of these computations are

the resulting error of the final kNN radius is

less than 0.1%. Range search is implemented using the depth first search kD-Tree traversal

Photon Mapping on the GPU Chapter 2 - Background

Martin Fleisz 15

2.4 Analysis of existing Techniques

2.4.1 Brute Force Approach
First we take a look at the approach presented by Garcia et al [25], using a brute force technique

to find the k nearest neighbors for a set of query points. On the plus side, this technique is very

easy to understand and implement. It also supports arbitrary point dimensions, which is useful for

scientific applications but not relevant to Photon Mapping.

The first problem with this technique is obviously the huge memory consumption. Basically the

method grabs all available memory and uses it for its distance matrix computation. Even though

you can theoretically scale the memory consumption down, this will have a bad impact on the

performance as the supported query size is minimized.

Another problem, as already mentioned before, is the limited query size. Even with a lot of

memory available, the query set size is limited to 2�> elements, due to limitations in the CUDA

hardware API [47]. This is not a lot, considering that even for a low image resolution of 320 x

240 pixels we need to find neighbors for approximately 76,800 points.

Finally, the greatest disadvantage is the huge time complexity of O(nm) for n reference points

(photons) and m query points. Especially low range graphics cards do not offer as much

computation power as the top class devices and will not be able to achieve a good performance.

2.4.2 GPU kD-Tree Approach
The GPU kD-Tree approach from Zhou et al [36] has a couple of advantages compared to the

brute force technique. Using a kD-Tree has been the first choice for all available software

implementations of Photon Mapping. The main reason for this is that nearest neighbor search can

be done pretty fast with this data structure, having a worst case time complexity of ?(� ∙ A�BC
D)

[48], where k = 3 specifies the dimension of the tree. Another advantage of the kD-Tree is that

memory consumption is quite moderate with O(n).

Photon Mapping on the GPU Chapter 2 - Background

Martin Fleisz 16

However, we also experienced a couple of problems with the kD-Tree approach on the GPU.

First, parallel tree construction requires a certain level of synchronization, because we are writing

to a single data instance. This is done explicitly by the CUDA API which waits for a previous

kernel to finish, before the next kernel is executed on the GPU. Even though kernel calls are

asynchronous we have to synchronize and stall the CPU at some point, because the kD-Tree

technique maintains a list of active nodes used for the next processing step. This synchronization

is done explicitly as well, within the CUDA API layer.

This leads us directly to the next problem, the use of dynamic lists. The kD-Tree paper uses

dynamic lists extensively for storing active nodes, tree nodes, small nodes and so on. CUDA only

supports static arrays and therefore, additional work has to be done to grow lists by reallocating

and copying memory. To avoid a high overhead caused by this memory management, Zhou et al

double list sizes every time they run out of space. However, this leads to increased memory

consumption during construction. Even though the final tree is stored without wasting any

memory, the memory management during the construction stage constraints the supported

maximum kD-Tree size.

Another problem is that traversing the kD-Tree is, by its nature, non-predictable. This means we

cannot place the tree in memory without having a non-coalesced access patterns. In order to

decrease random memory access during photon search, Zhou et al also use an iterative kNN

search approach at the cost of utilizing the CPU.

As already explained in the previous chapter, Zhou et al also utilize the CPU for coordination

work, during the tree construction. This means that the CPU and GPU are both busy when using

the kD-Tree technique. Therefore, the CPU cannot be used for different tasks, like it is possible

with other techniques that run completely on the GPU. Finally, we also think that the GPU kD-

Tree approach is pretty complex and not that easy to implement. Also the use of many other

parallel algorithms like scan, split and sort increase the effort required to use this technique.

3
3 A new Approach

"There will be the developers that go ahead and have a miserable time and do get

good performance out of some of these multi-core approaches."

- John Carmack, Technical Director at idSoftware [46]

Objectives

• Introduce the Spatial Hashing technique

• Give detailed information on our Spatial Hashing implementation

• Highlight limitations and possible solutions for them

Photon Mapping on the GPU Chapter 3 – A new Approach

Martin Fleisz 18

3.1 Photon Mapping using Spatial Hashing

3.1.1 Overview
Our new Photon Mapping approach is based on the CUDA particles paper by Green [49]. Green

shows how to perform fluid simulation, based on particle systems, efficiently on GPUs. The

central part of this technique is to simulate the interaction between all the particles in the system.

Therefore, it is necessary to locate neighbor particles for each fluid particle and test for collisions

between them. This technique can be directly mapped to our photon search problem. Instead of

finding neighbor particles we have to find neighbor photons for a set of sampling points.

Our new approach uses a hash table, that allows us to look up a set of potential neighbor photons

in O(1) time and which can easily be created and accessed in parallel. Each entry in the hash table

references a spatial cell in the scene (numbered from 1 to 16 in the example below), containing

photons as shown in Figure 6. In order to find the right cell, all we have to do is to calculate the

hash value for the sample point and locate the right cell using the hash table.

Figure 6: Immediate lookup of photons in the cell of the sample point x, using the hash table

Because the sample point can be located close to an edge of the cell, we also have to process

photons from the neighboring cells in all three dimensions. Finally, we collect the closest k

photons, using a sorted list that we implement using the fast on-chip shared memory. Photon

collection has a time complexity of O(n), where n is the average number of photons in a cell and

Photon Mapping on the GPU Chapter 3 – A new Approach

Martin Fleisz 19

its neighbors. It should be noted, that the number of photons in a cell grows only at a fraction of

the actual photon map size because photons will be distributed over many cells. Photon maps

rarely contain more than a million photons, which means that we will not get any problems with

time complexity, due to extremely large photon maps.

3.1.2 Theory
Green presents two different ways to build the hash table, depending on the available device’s

compute capability. The first approach uses atomic operations (compute capability 1.1 and

higher) to build the final hash table and is quite easy to implement. However, because of various

reasons, this approach is not as fast as the other technique in Green’s paper. For our Photon

Mapping approach, we will concentrate on the faster, but more complex solution, based on

sorting.

This algorithm consists of several kernels that are executed after each other. The first kernel

calculates the hash values for each photon in the photon map and stores the resulting values in an

array, along with the associated photon’s index. In the next step, Green sorts the array based on

the hash values, using the radix sort from Le Grand [50]. Finally, we need to find the start

indexes for each entry in the sorted array to create our hash table.

Figure 7: After calculating the hashes the photon list is sorted and the hash table is created

Photon Mapping on the GPU Chapter 3 – A new Approach

Martin Fleisz 20

As can be seen in Figure 7, the sorted list introduces another level of indirection as it only

contains a reference ID to the actual photon data in the photon table. In order to get rid of this

overhead, we simply reorder the photons’ data according to their position in the sorted array. This

allows us to access the data of the first photon in a cell directly, simply by looking up its index in

our hash table. The other photons in the same cell can be easily iterated, sequentially. The array

containing the reordered photon data is finally bound to texture memory. Unlike global memory

reads, texture lookups are cached and the sorted, sequential order will improve the coherence

when accessing the photons during the photon search stage.

Choosing the right hash function is quite important for our technique to work efficiently. All hash

functions require a grid position as their input parameter. The grid position EF for a photon with

position p can be easily calculated using the following equation:

 EF = GE ∙ H�I (3.1)

where the scaling vector H�� specifies the scaling factors for a cell, in each dimension. Using EF we can

now continue and calculate the hash value for our photon position. Green suggests two different hash

functions in his paper. The first one simply calculates the linear cell id for the given grid position

p using equation 3.2.

 �J5KL(E) = EM ∙ NOPQOMRS ∙ NOPQOMRT + EU ∙ NOPQOMRT + E� (3.2)

The gridSize factors in the formula above specify the number of grid cells along the x, y and z-

axis. Alternatively, Green suggests using a hash function, based on the Z-order curve [51] to

improve coherence of memory accesses.

In Green’s paper, each particle has to be checked for collision with other particles. First, he

calculates each particle’s hash to find the cell of interest. Then he loops through all 27

neighboring cells (using a 3x3x3 pattern) to test all particles for collision. We can almost map

this technique directly to our needs for photon search. Our initial point of interest is not a photon

but a sampling point in our scene, whose color we want to estimate. We can simply use the

sampling point’s coordinate to calculate its grid position and hash value, in order to find the cell

Photon Mapping on the GPU Chapter 3 – A new Approach

Martin Fleisz 21

it is located in. All we have to do now is to collect the closest k photons from all neighboring

cells and we are able to calculate our radiance estimation.

3.1.3 Implementation
Before we can start calculating the hash values for our photons we need to initialize a couple of

parameters, required for the hashing. Because we support photons with negative coordinate

values, we need to provide the minimum coordinate values for the x, y and z dimension, stored in

our photon map, which we call the world origin. We will use the world origin in our grid position

calculation to transform all photon positions into a positive coordinate system, by simply adding

the world origin to the input position. For the grid cell size, we currently use the maximum

photon query radius and therefore, our scaling vector H�� is simply (1/456 1/456 1/"W�).

Finally, we calculate the number of grid cells along each axis, using the cell size and the

bounding box extents of the photon map. We increase the number of grid cells along each axis by

two additional cells to ease the handling of border cells during photon search. This allows us to

avoid any expensive checks, otherwise required for clamping grid positions. The last step

performed, during the initialization phase, is the creation of the neighbor offset lookup table. This

table is used to calculate the neighbor cells’ grid positions during the photon search, as shown in

Figure 8. The table is placed in constant memory which caches memory reads and provides better

performance, compared to global memory.

Figure 8: Calculating neighbor cells’ grid positions, using the values from the offset lookup table

Photon Mapping on the GPU Chapter 3 – A new Approach

Martin Fleisz 22

After finishing all initialization work, we will execute the first kernel which creates the unsorted

hash value array, where each entry also contains the hashed photon’s index. Afterwards we sort

this array, based on the photon hashes, using the radix sort algorithm from [37]. Now we have to

determine the start photon index for each grid cell, in order to create the final hash table. This is

done by executing a kernel function for each entry in the sorted array that checks, if the previous

photon’s hash value is different from its own. If it is, we know that the current entry marks the

start of a cell and the previous entry marks the end of another cell. This information can be

efficiently exchanged using the GPU’s on-chip shared memory. After the resulting indexes have

been written to our hash table we reorder the photons, as explained earlier, to improve memory

access coherence. We finally end up with a hash table that can be indexed using a point’s hash

value and a sorted photon table, as illustrated in Figure 9.

Figure 9: Hash Table (start index, end index) and Photon Table relation

In order to find the required photons, we execute our parallel search kernel for each point in the

query set. First, we calculate the query point’s grid position and initialize our photon list to an

empty list. For efficiency reasons, we place the photon list in shared memory which is an order of

magnitude faster than global memory. Next we iterate through the 27 neighbor cells of interest,

using the offsets from our precomputed neighbor offset table. We simply add the values from the

table to the current grid position and use that new grid position for the hash calculation. In our

current implementation we use a simple sorted list approach for collecting photons. As long as

the list is empty, we just keep adding photons until the list is full. If we find a closer photon and

the list is already full, we insert that photon to its sorted position in the list and shift all following

photons back. The last item in the list is simply lost as we do not need it any longer. While this

approach works well for our prototype, we think better performance can be achieved with

different methods, like a heap data structure [52]. When the kernel finishes with the processing of

Photon Mapping on the GPU Chapter 3 – A new Approach

Martin Fleisz 23

all cells, the remaining k photons in the shared memory list are written to the result array, stored

in global memory.

3.1.4 Limitations
In this chapter, we talk about some limitations that our technique has, compared to others and

present some possible workarounds for them. The first constraint is caused by the limited size of

shared memory, which is used during photon collection. In our current implementation, 32

threads have to share 16 KByte of shared memory. For each photon we need 8 bytes of memory

in the list, 4 bytes for its square distance to the query point and 4 bytes for its power in RGBE

format. This means we can gather a maximum number of � ≈ 60 photons per sampling point (we

cannot use the full 16 KByte of shared memory because CUDA uses part of it for kernel

parameters). Usually, this is not a big problem as it should be sufficient to locate 40-50 photons

per query point. In case more photons are required for the radiance estimate, we can increase the

maximum list size by decreasing the thread block size from 32 to 16. However, this solution

should only be applied if absolutely necessary, as our experiments showed a performance

decrease of around 25% with this change. Also, future GPUs most likely provide more shared

memory, allowing larger photon search lists without any modification to the code.

Figure 10: 2D view of a scene, green cells occupy geometry whereas red cells do not

As shown in equation 3.2, our hash function uses the number of grid cells to calculate a hash

value from a grid position. Unfortunately, using these factors causes some problems and

Photon Mapping on the GPU Chapter 3 – A new Approach

Martin Fleisz 24

disadvantages. First, we might end up wasting a lot of memory with empty entries in our hash

table because the linear hashing function is not ideal for certain scene types, as Figure 10 shows.

The green cells indicate cells that contain geometry and therefore, most like photon information.

Red cells are just floating around in empty space and do not contain any useful data but still

occupy an entry in the hash table.

The other drawback of this hashing function is that the scene size is limited. For instance we are

not able to easily model an open landscape scene because our hash function depends on the grid

size. Without choosing a reasonable amount of cells along each axis we can get problems with

the increasing memory requirements of our hash table. A solution to these problems is using a

different hash function, like the one presented in [53]:

 �J5KL(E) = (E� ∙ E1 YZ[EU ∙ E2 YZ[EM ∙ E3)]Z^ A (3.3)

where p1, p2 and p3 are large prime numbers and n specifies the hash table size. As you can see,

this function is not based on the grid size and therefore, does not experience the aforementioned

problems. In order to avoid the expensive modulo operation we suggest choosing a hash table

size equal to a power of 2. In that case the modulo can be replaced by a much cheaper logical

AND operation with n – 1.

Another limitation is that the photon query radius has to be specified at construction time and

remains fixed for the hash table’s life time. This is because we use the radius as the cell size,

when calculating the grid position for photons. If the radius is enlarged without recalculating the

hash table, we might miss some photons during photon search. On the other hand, if the radius is

decreased we will not experience any performance improvements from the smaller search radius.

Other techniques like the kD-Tree also use the query radius during construction, in example for

the VVH calculation. However, it is unlikely an application needs to change the query radius and

even if so, both techniques should be fast enough to recreate the required data structures at run-

time.

4
4 Performance Measuring

"There is a famous rule in performance optimization called the 90/10 rule: 90% of

a program's execution time is spent in only 10% of its code. The standard inference

from this rule is that programmers should find that 10% of the code and optimize it,

because that's the only code where improvements make a difference in the overall

system performance."

- Richard Pattis, Senior Lecturer at Carnegie Mellon University, Pittsburgh [54]

Objectives

• To specify the environment used for the performance measurements

• To specify what measurements we can use to compare Photon Mapping techniques

• To explain the different measurements’ implication on performance

Photon Mapping on the GPU Chapter 4 – Performance Measurements

Martin Fleisz 26

4.1 Measureable Parameters

In order to validate and compare our technique to others, we will use a couple of measurements

which are explained in more detail in Table 1.

Table 1: Measurements

Measurement Description

Construction Speed Measures the time it takes for a technique to be ready to

search photons. This includes memory allocations as well as

creation of data structures, like trees or tables.

Shorter is better.

Search Speed Measures how fast a technique is able to locate the k nearest

photons for n query points.

Shorter is better.

Memory Consumption Measures each technique’s memory consumption after the

construction step.

Lower is better.

Memory Consumption (Peak) Measures the peak memory consumption of each technique

during the construction phase.

Lower is better.

Non-Coalesced Reads/Writes Measures the number of non-coalesced memory accesses.

Lower is better.

Image Quality Verifies if the photons returned for the radiance estimate are

correct.

Of course it is important to keep photon search time as low as possible, in order to obtain good

performance. However, it is just as important to keep construction time very low to get the most

out of Photon Mapping. Scenes with dynamic lights, for instance require rebuilding the photon

map every frame and a high construction time is unacceptable in such cases.

Memory consumption is an important factor as well. Even though GPUs have quite a bit of

memory available nowadays, not all of these resources might be available to our application. The

Photon Mapping on the GPU Chapter 4 – Performance Measurements

Martin Fleisz 27

GPU memory is also used by the OS to display the user interface or by 3D APIs to store

resources, like textures and geometry data. The second important memory measurement is the

peak memory usage of a technique. Even if the final memory requirements are low, if a technique

requires a lot of temporal memory during construction, we are still constraint by these needs. We

also take a look at the memory access pattern of the different techniques. Non-coalesced memory

accesses are penalized with a severe performance hit on GPUs. Therefore it is important to keep

the number of such accesses as low as possible.

Finally, we take a look at the correctness of the different GPU techniques. The resulting photon

sets used for the radiance estimate should be the same with all techniques. To verify that, we will

directly visualize the photon map and compare the visual quality of the resulting images.

We will perform our tests with two different photon map types. Global photon maps contain

photon information for the whole scene and are primarily used to render interreflections and soft

shadows. Caustic photon maps are created by emitting photons only towards reflective and

refractive objects, because we need a higher number of photons to visualize caustics. Therefore,

the photons in a global photon map are more scattered over the scene whereas the photons in a

caustic photon map are concentrated at certain areas. Because caustic photon maps contain

lighting information for smaller areas, they do not require as many photons like global photon

maps, which contain lighting information for a whole scene. To see if our approach handles both

map types well, we carried out each test with global and caustic photon maps.

4.2 System Specification

Our test system has the following hardware and software specifications:

Table 2: System Specification

System Specifications

CPU Intel Mobile Core 2 Duo P8600 @ 2.4 GHz

Memory 4 GB DDR2

GPU nVidia GeForce 9600M GT

Photon Mapping on the GPU Chapter 4 – Performance Measurements

Martin Fleisz 28

GPU Cores 32 Cores @ 1.25 GHz

GPU Memory 512 MB G-DDR3 @ 800 MHz

CUDA Version 2.2

Driver Version 185.85

OS Windows Vista 64 Business Edition

4.3 Application Specification

Our test application implements the following Photon Mapping techniques:

• A software kD-Tree, based on Jensen’s photon map code [44]

• A GPU kD-Tree, based on Zhou et al [36]

• A GPU brute force k nearest neighbor search, based on Garcia et al [25]

• The GPU Sptatial Hashing technique presented in this report using two different hashing

functions:

o Linear hashing function by Green [49]

o Hashing function by Teschner et al [53] with a hash table size of 2�'

We used the CUDA 2.2 SDK and Microsoft’s C++ Optimizing Compiler 15.0 with the amd64

release mode build and all default optimizations turned on.

4.4 Test Scene Specification

Our test scene is a simple Cornell Box scene with a shiny and a glass ball. The light source is an

area light source, located right under the ceiling (not displayed in the rendered image). Notice the

soft shadows and interreflections between the walls, as well as the caustic under the glass ball.

Because the lighting information in the photon map is decoupled from the underlying geometry,

the results of our tests are also valid for much more complex scenes with a higher polygon count.

Photon Mapping on the GPU Chapter 4 – Performance Measurements

Martin Fleisz 29

Figure 11: Test scene

5
5 Results and Analysis

" It's just not right that so many things don't work when they should."

- Stephen Wozniak, Chief Scientist at Fusion-io

Objectives

• To present the results of our performance measurements

• To analyze and critically evaluate the observed results

Photon Mapping on the GPU Chapter 5 – Results and Analysis

Martin Fleisz 31

5.1 Construction Time Performance

Figure 12: Construction Time Performance for Global Photon Map

As can be seen in Figure 12, our spatial hashing technique is much faster than the kD-Tree

approach. The kD-Tree construction cost increases with the amount of photons in the photon

map, whereas our hash table creation takes almost constant time. The reason for this behavior can

be explained quite simple. Our hash table creation is fully parallelized, beginning with the hash

calculation for each photon and ending with the hash table creation and the reordering of photons.

In contrast, the kD-Tree technique iteratively executes several kernels for scan and split

operations at each tree level. Every successive kernel invocation performs implicit

synchronization because a GPU can run only one kernel function at a time. This means, before a

new kernel can be started, all threads from the previous kernel function must be finished.

Another reason for the longer creation time is non-coalesced memory access. The spatial hashing

technique’s access pattern is completely coalesced, except for the final photon reordering. On the

other hand, the kD-Tree approach performs non-coalesced memory writes after every split, when

it reorders the sorted coordinate and index lists. Also, the final tree reorganization phase’s access

pattern is almost entirely random and therefore, non-coalesced.

0

5000

10000

15000

20000

25000

10000 20000 50000 100000 200000 500000

ms

Photons

Construction Time (in ms)

kD-tree

Hashing (linear)

Hashing (Teschner)

BF

Photon Mapping on the GPU Chapter 5 – Results and Analysis

Martin Fleisz 32

Figure 13: Construction Time Performance for Caustic Photon Map

As Figure 13 shows, the measurements are almost identical for caustic photon maps. Again our

spatial hashing methods are much faster than the kD-Tree method, especially when the photon

map size becomes larger. Construction time for the GPU brute force technique is pretty low as

well, but considering that it is only allocating memory and copying photon data to the device, this

is not a big surprise. One thing to note is that we were only able to test the brute force approach

with photon maps up to a size of 50,000 photons. This is due to a limitation in the CUDA

hardware API, as already mentioned in chapter 2.

5.2 Memory Requirements

It is obvious that, if we increase the amount of photons in our photon map we will need more

memory to store this information. However, as Figure 14 shows, there is still a huge difference

between our hashing methods and the kD-Tree. Especially with an increasing number of photons,

our spatial hashing technique consumes significantly less memory than the kD-Tree approach.

The reason for this behavior is that the tree structure produces a lot of overhead. For every node

we have to store references to its children, the splitting plane and bounding box, along with the

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000 20000 50000 100000 200000

ms

Photons

Construction Time (in ms)

kD-tree

Hashing (linear)

Hashing (Teschner)

BF

Photon Mapping on the GPU Chapter 5 – Results and Analysis

Martin Fleisz 33

photon information itself. The only overhead our technique introduces is the hash table, which

grows with the scene size or the number of hash table entries, depending on the used hash

function.

Figure 14: Memory Consumption

Figure 15: Peak Memory Consumption

0

5

10

15

20

25

30

35

40

10000 20000 50000 100000 200000 500000

MB

Photons

Memory Consumption (MB)

kD-tree

Hashing (linear)

Hashing (Teschner)

0

20

40

60

80

100

120

140

160

180

10000 20000 50000 100000 200000 500000

MB

Photons

Peak Memory Consumption (MB)

kD-tree

Hashing (linear)

Hashing (Teschner)

Photon Mapping on the GPU Chapter 5 – Results and Analysis

Martin Fleisz 34

The next thing we measured is each technique’s peak memory consumption, during the creation

phase. Figure 15 shows the data of our experiments with the kD-Tree and our spatial hashing

approach. The results show that our technique is again, significantly better than the kD-Tree

approach, with an almost 8 times lower peak consumption at 500,000 photons.

As you may have noticed, our graphs are missing the GPU brute force method. Because this

technique just grabs all the available memory for the distance matrix, we thought it makes no

sense to include this method in the comparison.

5.3 Photon Search

In this section we show, how the different techniques perform during the photon search. There

are a couple of parameters that have an influence on the performance at this stage, apart from the

different photon map types:

• The number of photons in the photon map

• The number of k nearest neighbor queries, which increases with higher image resolutions

• The number of photons, requested for each query (k)

• The maximum allowed distance between the query point and a photon

During our experiments we discovered that the brute force technique is not able to compete with

the other two techniques, in terms of speed. In a best case scenario the brute force approach was

almost 10 times slower than the kD-Tree and the spatial hashing methods. Therefore, we decided

to omit the brute force technique from our photon search graphs in order to keep them

meaningful.

5.3.1 Photon Map Sizes
In Figure 16 we see the performance graph for the kD-Tree and the hashing technique, with an

increasing number of photons in the photon map. We first take a look at the test results, obtained

with the hashing function from Teschner et al. As we can see there is a slight increase in search

time with photon maps larger than 200,000. This performance drop is caused by collisions in the

hashing function. Because of these collisions, some photons end up in the same hash table entry,

Photon Mapping on the GPU Chapter 5 – Results and Analysis

Martin Fleisz 35

even though their location is not close to that of the other photons in the entry. With an increasing

number of photons, the chance for a collision increases, causing the observed performance hit.

However, the performance with bigger photon maps can be greatly improved by simply using a

larger hash table size.

Figure 16: Global photon map search performance with different map sizes

As we can see, the increase in search time with the kD-Tree and the linear hashing function is

pretty steady, before performance drops off a little bit with the kD-Tree. The reason for this

performance hit is an increasing access to local memory. Local memory is basically global

memory, which is only visible to a single thread, but accessing it is just as expensive as accessing

normal global memory. Local memory is used for the stack-based kD-Tree traversal. With the

increasing number of photons we get a deeper tree, resulting in more local memory accesses.

Because we also have to traverse the tree several times before the actual search, in order to

determine the k nearest neighbor search radius, a deeper tree becomes more expensive to process.

Figure 17 shows the increase of local memory accesses which become significantly more with a

larger photon map size. Here, one of the disadvantages of using a tree structure on the GPU

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000 20000 50000 100000 200000 500000

ms

Photons

Photon Search (k = 20, r = 1.0)

kD-tree

Hashing (linear)

Hashing (Teschner)

Photon Mapping on the GPU Chapter 5 – Results and Analysis

Martin Fleisz 36

becomes obvious. By its nature, traversing a tree requires a lot of scattered memory accesses,

which is extremely bad for performance on current GPU devices.

Figure 17: kD-Tree Traversal - Local Memory Access

If we take a look at our hashing method, using the linear hashing function, we can see that we

have a steady growth in search time for larger photon maps. This makes perfect sense, as the

number of photons in each hash cell also increases with more photons in the photon map.

However, we have some advantages over the kD-Tree approach that enable us to obtain a better

performance.

First, we do not have to traverse a tree or a similar data structure, using local memory. Instead,

we just have to look up our grid cell in the hash table, using a single memory read. The second

optimization we are able to use is texture memory, for storing the photon information. Because

we are able to access the photons sequentially, we can actually benefit from the texture cache.

If we take a look at the performance graph for caustic photon maps in Figure 18, we will notice

that all methods, the kD-Tree and both hashing methods, need more time to find photons, than

they need with a global photon map. The reason behind this is the high photon density in small

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

10000 20000 50000 100000 200000 500000

Accesses

Photons

kD-Tree Traversal - Local Memory Access

Memory Access

Photon Mapping on the GPU Chapter 5 – Results and Analysis

Martin Fleisz 37

areas, compared to the photon density in global photon maps, as illustrated in Figure 19. In case

of the kD-Tree, this forces us to traverse through more tree nodes because we fail to reject tree

branches at higher levels.

Figure 18: Caustic photon map search performance with different map sizes

Figure 19: Photon Density in a global (left) and a caustic (right) photon map

This time, Teschner’s hashing function performs much better and is significantly faster than the

kD-Tree technique. This is because most photons are located very close to each other and

therefore, the number of hash collisions is not as high as with a global photon map. However,

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

10000 20000 50000 100000 200000

ms

Photons

Photon Search (k = 20, r = 1.0)

kD-tree

Hashing (linear)

Hashing (Teschner)

Photon Mapping on the GPU Chapter 5 – Results and Analysis

Martin Fleisz 38

while collisions decrease, the number of photons in a cell is much higher because of the high

photon density in some areas. The higher photon numbers in the cells are responsible for the

increased photon search time, because more photons have to be processed. Using the linear

hashing function we experience a similar problem. Our final hash table will have lots of almost

empty cells and a couple of cells, containing lots of photons. However, we do not have a

performance hit due to hash collisions, which is why this hashing function performs better.

Another problem with our hashing technique is the sorted list that we use to collect photons. With

many close photons around our sampling point, we end up reordering the list many times, before

we have found our final set. One reason why our hashing method is still pretty fast is that we are

able to return photon information, for areas with a low photon count much faster than the kD-

Tree implementation. If we have none or only a few photons in a cell, a thread will finish much

faster than if it has to traverse a whole kD-Tree, especially if the tree is very deep, as is the case

with large photon maps.

5.3.2 Number of Photons

Figure 20: Global photon map search performance with different k sizes

0

500

1000

1500

2000

2500

3000

3500

4000

10 20 30 40 50

ms

k Nearest Neighbors

Photon Search (50.000 photons, r = 1.0)

kD-tree

Hashing (linear)

Hashing (Teschner)

Photon Mapping on the GPU Chapter 5 – Results and Analysis

Martin Fleisz 39

In this section we take a look at what impact, different photon sample sizes have on the overall

performance. As Figure 20 shows, the k parameter has a pretty big influence on the performance

with both techniques. We can see that the kD-Tree’s performance is slowly degrading with an

increased photon search number. This slowdown is caused by the larger number of memory

writes when writing the resulting photons to global memory.

If we take a look at the spatial hashing technique, we will notice that the chosen hashing function

has a big impact on the performance. Our experiments showed that the main reason for these

different results is our photon collection implementation. As already explained, we are using a

sorted list to return the k closest photons when a thread finishes. However, photons are stored in

random order with respect to their sampling point distance. This means we most likely end up

shifting around lots of photons in our sorted array. If we take a look at the behavior of our spatial

hashing technique with caustic photon maps in Figure 21, we will see a similar result.

Figure 21: Caustic photon map search performance with different k sizes

Again, the performance of the kD-Tree is steadily decreasing, whereas the spatial hashing

technique shows some weakness with higher sample numbers. Interestingly, our linear hashing

method shows a significant performance drop when changing the sample size from 30 to 40. Our

0

1000

2000

3000

4000

5000

6000

7000

10 20 30 40 50

ms

k Nearest Neighbors

Photon Search (50.000 photons, r = 1.0)

kD-tree

Hashing (linear)

Hashing (Teschner)

Photon Mapping on the GPU Chapter 5 – Results and Analysis

Martin Fleisz 40

tests showed that the cause of this problem is again, the sorted list. On the other hand with 50

samples there is hardly any performance decrease noticeable. It seems that the ordering of

photons allows to reject many photons earlier with list sizes smaller than 40. With a larger list

size we are adding many photons at list positions 30 to 40, making it necessary to shift photons to

the back.

With Teschner’s hashing function we could not obtain the same performance as with the linear

hashing function. Again we see a significant performance drop, this time between sample sizes of

10 and 20 photons. The reason for this behavior is again, the sorted list combined with the hash

collisions. Because of the collisions, an entry might have photons which are actually far away

from the sample point. This causes a lot more shifting in our sorted list, leading to the

performance hit. The reason why this only happens with the caustic map is the higher photon

density. With the global photon map we were able to reject the colliding photons easily by

testing, if their distance to the sampling point is smaller than the maximum photon search radius.

However, this check fails with the caustic photon map, where lots of photons are located within

the search radius. Nevertheless, with the caustic photon map our solution is still better than the

kD-Tree implementation.

5.3.3 Query Radius
The maximum query radius is an important parameter for both, the kD-Tree and the spatial

hashing technique. The kD-Tree technique uses it for the initial query radius =, which is required

during construction for the VVH calculation and during photon search for the radius estimation.

For our spatial hashing technique, the query radius determines the size of our grid, cells which

are used for calculating the grid positions and hash values.

Figure 22 shows the performance of both techniques with different query radii. As we can see in

the graph, all techniques have an almost steady increase in search time with an increasing query

radius. Because we have to visit more tree nodes when searching for photons, using a larger

query radius, the kD-Tree requires more time. When using the spatial hashing technique with a

growing query radius, we end up having fewer hash cells in our hash map. This means there are

more photons in the remaining cells which causes the increased search time. Again the spatial

Photon Mapping on the GPU Chapter 5 – Results and Analysis

Martin Fleisz 41

hashing method, using the linear hashing function, is faster because we avoid the overhead of

traversing a tree structure or having hash collisions.

Figure 22: Global photon map search performance with different query radii

Figure 23: Caustic photon map search performance with different query radii

0

500

1000

1500

2000

2500

3000

3500

4000

0.5 0.75 1.0 1.25 1.5 2.0

ms

Radius

Photon Search (50.000 photons, k = 20)

kD-tree

Hashing (linear)

Hashing (Teschner)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0.5 0.75 1.0 1.25 1.5 2.0

ms

Radius

Photon Search (50.000 photons, k = 20)

kD-tree

Hashing (linear)

Hashing (Teschner)

Photon Mapping on the GPU Chapter 5 – Results and Analysis

Martin Fleisz 42

A similar behavior can be observed when we run our tests with a caustic photon map. In these

tests it becomes clear that choosing the right query radius is very important for the kD-Tree. As

Zhou et al write in their paper, a good estimation of = is critical to the performance of their

technique. Figure 23 confirms that, showing a steeper increase of search time with an increasing

search radius. Another disadvantage is the high photon density in caustic photon maps that

prevents us from rejecting tree branches earlier, when using large query radii.

Our spatial hashing technique is dealing better with the high photon density in a caustic photon

map. In this particular situation, the sorted list in combination with a little optimization to the

neighbor offset lookup table, works very well. Obviously, we can assume that most of the

photons we are interested in, are located in the same cell as our query point. Therefore, all we

have to do is to swap the center cell’s offset (0/0/0) to the first position in the lookup table. This

ensures that each thread first checks all photons in the cell that contains the current query point,

before it continues with the other neighbors. Our experiments showed that this little optimization

improves search time by around 15 percent, compared to the non-optimized lookup table. Of

course we still have to check all neighbor cells as well, in case the sample point is close to one of

the cell corners, for instance. However, especially in the high density caustic photon maps lots of

photons will be already found in the center cell, allowing us to reject other photons and avoiding

list reordering. As Figure 23 shows, this holds true for the spatial hashing technique generally,

independent from the used hashing function.

One thing we also have to keep in mind is that memory usage, with the linear hashing function,

depends on the grid cells size and therefore, on the query radius. A smaller radius means that we

have smaller cells and therefore, we need a larger grid with more cells to cover the whole scene.

In Figure 24 we see the impact of the search radius on the memory consumption of our method.

Especially with small photon maps, there is a noticeable difference in memory consumption.

Using the smallest radius 0.5, we need more than 4 times the memory, required with a radius of

1.5 or 2. As the photon maps grow in size, the significance of the hash table overhead becomes

less important because more memory is used to store the photon information itself. At around

50,000 photons, the memory requirement is roughly the same as for the kD-Tree technique.

Another factor, which has an impact on our memory consumption, is the scene size. If we have a

large scene we need a bigger grid to cover every part of it. However, in such situations, a

Photon Mapping on the GPU Chapter 5 – Results and Analysis

Martin Fleisz 43

different hashing function like the one presented by Teschner [53] is a much better choice, to

avoid exhaustive memory usage.

Figure 24: Hashing Memory Consumption with different query radii

Nevertheless, the increased memory consumption with smaller radii should not be a big problem,

because the radius is usually in inverse proportion to the photon map size. If we have a small

photon map, we want to use a large radius to find enough photons whereas if we have a large

photon map, we can use a smaller radius to find the same amount. As you can see, this perfectly

fits our technique to ensure an optimum memory usage.

5.3.4 Query Size
In our last series of performance tests, we evaluated how well both techniques can deal with

different query sizes. The higher the resolution of our output image is going to be, the more

points we have to sample in our scene. Figure 25 shows that, for low resolutions, there is hardly

any difference between the different techniques. Both hashing functions obtain almost identical

results, indicating that the chosen hashing function has no impact on these tests. However, the

higher the resolution gets, the bigger grows the gap between the kD-Tree and both spatial hashing

methods.

0

5

10

15

20

25

30

35

40

10000 20000 50000 100000 200000 500000

MB

Photons

Hashing - Memory Consumption

0.5

0.75

1.0

1.25

1.5

2.0

Hashing (Teschner)

kD-Tree

Photon Mapping on the GPU Chapter 5 – Results and Analysis

Martin Fleisz 44

Figure 25: Global photon map performance with different query size

The reason for this difference is the number of non-coalesced memory accesses, performed by the

two techniques. As Figure 26 shows, the kD-Tree technique suffers from a far higher increase in

non-coalesced memory accesses than our spatial hashing approach. This graph makes the

disadvantage, of having a tree-based structure that requires lots of scattered reads, obvious. The

reason, why the overall performance of our technique is not as significant as the difference

between the non-coalesced memory accesses is our photon collection implementation. Again the

sorted list based approach prevents us from obtaining a better result in our tests.

Using a caustic photon map, we obtained a very similar result as with the global photon map.

However, the gap between the two techniques is bigger than in the previous tests, with the spatial

hashing methods being more than 75% faster at a resolution of 1280 x 1024 pixels. Like in

previous tests, the higher photon density forces us to visit more tree nodes in the kD-Tree, further

increasing the number of non-coalesced memory accesses. Overall, the random access pattern

again, causes a bigger performance hit than the sorted list in our spatial hashing implementation.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

320x240 640x480 800x600 1024x768 1280x1024

ms

Resolution (Query Size)

Photon Search (50.000 photons, k = 20, r = 1.0)

kD-tree

Hashing (linear)

Hashing (Teschner)

Photon Mapping on the GPU Chapter 5 – Results and Analysis

Martin Fleisz 45

Figure 26: Non-Coalesced Memory Access

Figure 27: Caustic photon map performance with different query size

0

10000000

20000000

30000000

40000000

50000000

60000000

320x240 640x480 800x600 1024x768 1280x1024

Accesses

Non-Coalesced Memory Access

kD-Tree

Hashing

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

320x240 640x480 800x600 1024x768 1280x1024

ms

Resolution (Query Size)

Photon Search (50.000 photons, k = 20, r = 1.0)

kD-tree

Hashing (linear)

Hashing (Teschner)

Photon Mapping on the GPU Chapter 5 – Results and Analysis

Martin Fleisz 46

5.4 Results with the Brute Force Approach

As already mentioned earlier, the brute force approach was far behind the other two techniques in

our performance comparison. However, we still want to give a short overview of how this

technique performed in the different test cases. In Figure 28, we summarized the performance

results for the radius, photon sample size and query size tests. We did not include any measures

from the variable photon map tests, because the technique only supports a maximum photon map

size of 2�>. There is also no need to distinguish between global and caustic photon maps, because

the brute force approach is independent of the photons’ distribution or density.

Figure 28: Brute Force Performance

As we see in the performance graph, the technique is completely independent from the query

radius. In the original version of the algorithm there was no support for a maximum query radius

included. Therefore, we extended the insertion sort algorithm to stop after sorting the first k

elements or when the last, sorted photon’s distance is outside the radius. However, the results

showed that the algorithm was not able to benefit from this adaption.

The second test with variable photon sample sizes shows a slight increase in search time. Again

we started with 10 samples in test 1 and increased the size by 10 photons, up to 50 for test 5.

0

100000

200000

300000

400000

500000

600000

1 2 3 4 5

ms

Test run

Brute Force Performance

Query Radius

Photon Number

Query Size

Photon Mapping on the GPU Chapter 5 – Results and Analysis

Martin Fleisz 47

According to Garcia et al, the sorting algorithm is the bottle neck of their technique. Table 3

shows the partitioning of the computation time, between the various steps during search. It should

be noted that the data in the table is for a rather small reference point and query point set of just

4800 each.

Table 3: Computation time decomposition for the Brute Force Technique [25]

k 5 10 20

Distance 82% 71% 51%

Sort 15% 26% 47%

Memory Copying 3% 3% 2%

In our case, where we have thousands of photons in the photon map (reference points) and even

more query points, the distance computation clearly dominates. However between the photon

sample test cases with 10 and 50 photons per sample, computation time still rises by roughly 20%

due to the increased sorting effort.

Finally, we also performed tests with different photon query sizes, using the brute force

technique. As already mentioned in chapter 2, we had to split the photon query into multiple

chunks because we can only search for 2�> query points at one time. Of course this introduces a

slight overhead, caused by copying memory to and from the device. However, this is not as

significant as the tremendous increase in distance computation, time that causes the slow down

we observed during our tests.

5.5 Image Quality

In this section we take a look at the quality of the returned photon information. If a technique

misses or returns false photons for a query, it will have a negative impact on the image quality.

We already showed that our spatial hashing technique is pretty fast and now we take a look at the

quality of the returned photon information. In order to evaluate quality, we will directly visualize

the photon maps and compare them, using the method from [55]. This method can be used to

Photon Mapping on the GPU Chapter 5 – Results and Analysis

Martin Fleisz 48

determine if images are perceptually identical, even though they might contain some numerical

differences.

Figure 29: Image quality with hashing (left) and kD-Tree (right) with 10,000 (top) and 50,000

(bottom) photons

In Figure 29 we see four images created with the spatial hashing and the kD-Tree technique,

using different global photon map sizes. The upper images were created with a global photon

map, containing 10,000 photons whereas the bottom images used 50,000 photons. Looking at the

results, we can say that both techniques are identical in terms of quality and visual appearance.

Checking the images with the aforementioned image comparison algorithm confirms our

observations. The same holds true for the two images, showing the results for a caustic map,

containing 10,000 photons in Figure 30. Again, the comparison algorithm confirmed that both

images are visually equal, in terms of quality.

Photon Mapping on the GPU Chapter 5 – Results and Analysis

Martin Fleisz 49

Figure 30: Image quality with hashing (left) and kD-Tree (right) with a caustic photon map

(10,000 photons)

5.6 Observations

During our tests, we made a couple of observations that we want to summarize in this section.

We start with the brute force approach, which proofed to be not very useful for photon mapping.

The technique has a time complexity of O(mnd), where m is the number of photons in the photon

map, n is the number of query points and d is the dimension (in our case 3). This clearly shows

that the brute force technique is scaling pretty bad with large photon maps or query sizes.

Unfortunately, especially with photon mapping, these numbers tend to be relatively big. Also the

size limitation to 2�> photons or query points is very constraining. The strengths of the brute

force technique seem to be smaller point sets with higher dimensions, as well as its

straightforward implementation.

Another observation was, that the brute force and the kD-Tree technique have problems on low

performance GPUs. Compared to the results that were presented in both papers, we obtained

much worse results on our system. It seems that both techniques rely heavily on a greater number

of cores, a higher clock rate and higher memory bandwidth. Unfortunately, we have not had the

possibility to perform benchmark tests of our spatial hashing technique on high performance

GPU devices. However, we still proofed that on low-class consumer hardware, our approach is

able to outperform both other techniques.

Photon Mapping on the GPU Chapter 5 – Results and Analysis

Martin Fleisz 50

The kD-Tree was sometimes a very close competitor to our spatial hashing implementation.

However, we think that besides performance there is another big advantage, our approach has

over the kD-Tree, which is implementation complexity. The kD-Tree construction consists of 3

different stages, where each stage consists of multiple kernel functions. Even though, Zhou et al

claim that most of the parallel primitive functions, like scan and sort, are implemented in CUDPP

[56] others like the splitting kernel [40] or compaction kernel [43] are not and have to be

implemented from scratch. In contrast, our spatial hashing implementation requires three very

simple kernels for construction and only uses the radix sort functionality from the CUDPP

library. Search is just a simple iteration over the photons within the different cells, whereas the

kD-Tree requires the CPU and multiple kernels to estimate the query radius and traverse the kD-

Tree.

Our experiments also showed that the chosen hashing function is very important for our hashing

technique, in terms of memory consumption and search speed. With smaller scenes, the linear

hashing function proofed to be the best choice in almost all test cases. However, as already

explained, this function puts some constraints on the supported scene types. With the hashing

function presented by Teschner et al, we are able to overcome these problems, at the cost of a

sometimes longer photon search time. Our tests also showed that it is important to choose the

right hash table size with Teschner’s function. Especially with larger photon maps, a too small

table can result in many hash collision, leading to a big performance hit. Nevertheless,

performance with this hash function will certainly drop because hash collisions are inevitable,

which results in cells containing more photons.

Construction time with our spatial hashing technique is almost 0, even on our low performance

GPU. This is definitely one of the strengths of our technique. Another advantage is that we are

able to use texture memory for our photon data and utilize the texture cache to further improve

performance. The kD-Tree cannot profit from using texture memory because the memory reads

are scattered and therefore, the texture cache will not improve performance. What we also

observed during our experiments is that non-coalesced or local memory access literally kills

performance, especially on low range GPU hardware. This is one of the reasons why the kD-Tree

did not perform as well as our spatial hashing technique.

Photon Mapping on the GPU Chapter 5 – Results and Analysis

Martin Fleisz 51

One issue we found with our spatial hashing implementation was the photon collection, using the

sorted list approach. We think that there are a couple of possible solutions for this problem. The

first one is to use a different data structure for the photon list, like a max heap [52]. We think it is

possible to implement this data structure efficiently in shared memory. Another solution is to

further parallelize the search and process each cell in a different thread, where each thread will

search for the k closest photons in its cell, for a given query point. The problem with this solution

is that we somehow have to collect the final result set from these sub results. We implemented a

naïve approach that simply uses an insertion sort to find the closest k photons at the end.

However, this approach was slower than our sorted list implementation because we were running

the insertion sort in just one thread. In order to obtain a better performance, the sorting or

collecting has to be parallelized as well. Finally, there is an interesting paper by Deo et al [57]

that presents a parallel implementation of a priority queue. This priority queue could be created

after each thread finished processing its cell, making it quite easy to return the closest k photons.

6
6 Conclusion

“After you finish the first 90% of a project, you have to finish the other 90%.”

- Michael Abrash, Programmer at Rad Game Tools [58]

Objectives

• To give an overall summary of this project

• To give a overview of the project’s outcomes

• To highlight future developments or extensions to the project

Photon Mapping on the GPU Chapter 6 – Conclusion

Martin Fleisz 53

6.1 Conclusion

We started our project with the aim of developing an improved Photon Mapping technique that is

tailored for parallel architectures, specifically GPUs. We began by looking at existing papers,

published for Photon Mapping and k nearest neighbor search on the GPU and how they exploited

parallelism. In our opinion, both methods had a few deficiencies in how they parallelized work,

organized photon data or in their algorithm complexity. After analyzing these weaknesses, we

came up with a new approach to parallelize Photon Mapping, where we try to avoid all the

previously discovered shortcomings. Our new method is based on spatial hashing and grouping

photons together in cells, according to their location in space. To evaluate our concept we

implemented prototypes for the brute force, the kD-Tree and our spatial hashing technique and

carried out a series of benchmarks.

In our tests we observed that our new approach was faster during construction and almost all the

search tests, than the other two techniques. Especially construction time was greatly reduced,

compared to the kD-Tree solution. We also proofed that our spatial hashing approach works well

with both, global and caustic photon map types. Some problems occurred with larger photon

sample sizes of up to 40 or 50 photons per query point. Along with speed measurements, we also

examined the memory consumption of the various methods. Our approach consumed the least

memory but, as we noted, this strongly depends on the size of the rendered scene, the maximum

photon search radius and the used hashing function. Finally, we validated the quality of the

returned photon samples, by directly visualizing the photon maps and comparing the resulting

images. The quality of the resulting images was identical and finally proofed the usefulness of

our technique.

We ended the results chapter with a summary of our observations, identifying two issues with our

solution that we experienced during the tests. Memory consumption and the photon collection

implementation were found to be the culprits of our technique. Finally, we presented a couple of

possible solutions to these shortcomings. Nevertheless, there are a couple of areas where we think

our technique might be very useful, which we will describe in the following section.

Photon Mapping on the GPU Chapter 6 – Conclusion

Martin Fleisz 54

6.2 Future Work

We think there are a couple of interesting topics, upon future work can be based on. The first one

is to use our spatial hashing approach for rendering participating media, using Photon Mapping

[59]. Examples for participating media are smoke, dust or clouds, which all affect light, when it

travels through them. When a light beam enters participating media it is either absorbed or

scattered, which means the light beam’s direction changes. Because our hashing function is based

on a grid of cells, building a volume, we think it is a perfect structure for storing photon

information of volumetric participating media, like in the aforementioned examples.

Another interesting approach is to combine our spatial hashing method with the progressive

Photon Mapping technique in [60]. As we were able to see in our experiments, our method scales

pretty well with small photon map sizes and construction overhead is very low. Both these factors

should favor our technique for the progressive radiance estimate, used in the paper.

Like in the paper by Garcia et al [25], we think it is also interesting to see how well our approach

scales with higher dimension points. A couple of adjustments need to be done to the algorithm in

order to support variable dimensions, specifically the grid and hash calculation as well as the

neighbor offset lookup table.

Future developments in graphics hardware will also have an important impact on Photon

Mapping techniques. With their newest range of GeForce graphics cards, nVidia relaxed the

requirements for coalesced memory access. Maybe future generates will further relax these

requirements or provide caches for local and global memory access. Like the kD-Tree, our

technique could greatly profit from such developments.

Finally, there is also Intel’s new GPU, called Larrabee [61], which is going to be released next

year, offering a many-core x86 architecture for visual computing. Our spatial hashing algorithm

should be well suited for this architecture because of its high parallelization. The sequential

photon access pattern in each cell should also guarantee an optimal use of Larrabee’s first and

second level data caches.

Photon Mapping on the GPU Bibliography

Martin Fleisz 55

7 Bibliography
[1] G. Anthes. (2007, November) ComputerWorldUK. [Online].

http://www.computerworlduk.com/technology/hardware/processors/in-

depth/index.cfm?articleid=957

[2] nVidia Corporation, "NVIDIA CUDA Programming Guide Version 2.2," NVIDIA, 2009.

[3] J. L. Bentley, "Multidimensional Binary Search Trees Used for Associative Searching,"

Comm. of the ACM 18, pp. 509-517, 1975.

[4] T. Davis, A. Chalmers, and H. W. Jensen, "Practical Parallel Processing for Realistic

Rendering," in SIGGRAPH 2000 Course Notes, New Orleans, 2000.

[5] C. James. (2008, May) V3. [Online]. http://www.v3.co.uk/vnunet/news/2215645/nvidia-

touts-parallel-computing

[6] A. Appel, "Some techniques for shading machine renderings of solids," in AFIPS Joint

Computer Conferences, Atlantic City, New Jersey, 1968, pp. 37-45.

[7] T. Whitted, "An Improved Illumination Model for Shaded Display," Communications of

the ACM, vol. 23, no. 6, pp. 343-349, June 1980.

[8] J. Atwood. (2008, March) Real-Time Raytracing. [Online].

http://www.codinghorror.com/blog/images/ray-tracing-diagram.png

[9] R. Descartes, Discourse on Method, Optics, Geometry, and Meteorology. Indianapolis:

Hackett Publishing Co., 2001.

[10] J. R. Wallace, M. F. Cohen, and D. P. Greenberg, "A Two-Pass Solution to the Rendering

Equation: A Synthesis of Ray Tracing and Radiosity Methods," Computer Graphics 21, pp.

311-320, 1987.

[11] H. E. Rushmeier and K. E. Torrance, "Extending the Radiosity Methods to Include

Photon Mapping on the GPU Bibliography

Martin Fleisz 56

Specularly Reflecting and Translucent Materials," ACM Transaction on Graphics 9, pp. 1-

27, 1990.

[12] F. X. Sillion, J. R. Arvo, S. H. Westin, and D. P. Greenberg, "A Global Illumination

Solution for General Reflectance Distributions," Computer Graphics 25, pp. 187-196,

1991.

[13] H. W. Jensen and N. J. Christensen, "Photon Maps in Bidirectional Monte Carlo Ray

Tracing of Complex Objects," Computers & Graphics vol. 19, pp. 215-224, 1995.

[14] H. W. Jensen, "Global Illumination using Photon Maps," Rendering Techniques '96, pp.

21-30, 1996.

[15] H. W. Jensen, "Global illumination via bidirektional Monte Carlo ray tracing," Technical

University of Denmark, Master thesis 1993.

[16] J. Arvo and D. B. Kirk, "Particle Transport and Image Synthesis," Computer Graphics

(Proc. SIGGRAPH '90), vol. 24, no. 4, pp. 63-66, August 1990.

[17] Z. Waters. (2009) Photon Mapping. [Online].

http://web.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/photon_mapping/Photon

Mapping.html

[18] T. J. Purcell, I. Buck, W. R. Mark, and P. Hanrahan, "Ray Tracing on Programmable

Graphics Hardware," ACM Transactions on Graphics, vol. 21, no. 3, pp. 703-712, 2002.

[19] D. R. Horn, J. Sugerman, M. Houston, and P. Hanrahan, "Interactive k-D Tree GPU

Raytracing," Proceedings of Symposium on Interactive 3D graphics and Games, pp. 167-

174, 2007.

[20] S. Popov, J. Günther, H.-P. Seidel, and P. Slusallek, "Stackless KD-Tree Traversal for

High Performance GPU Ray Tracing," Computer Graphics Forum, vol. 26, no. 3, pp. 415-

424, September 2007.

[21] D. Luebke and S. Parker, "Interactive Ray Tracing with CUDA," in NVISION08, 2008.

Photon Mapping on the GPU Bibliography

Martin Fleisz 57

[22] J. Günther, I. Wald, and P. Slusallek, "Realtime Caustics Using Distributed Photon

Mapping," Proceedings of the 15th Eurographics Symposium on Rendering, pp. 111-121,

June 2004.

[23] T. J. Purcell, C. Donner, M. Cammarano, H. W. Jensen, and P. Hanrahan, "Photon

Mapping on Programmable Graphics Hardware," in International Conference on Computer

Graphics and Interactive Techniques, Los Angeles, 2005.

[24] Y. Lifshits. (2008) The Homepage of Nearest Neighbors and Similarity Search. [Online].

http://simsearch.yury.name/

[25] V. Garcia, E. Debreuve, and M. Barlaud, "Fast k Nearest Neighbor Search using GPU," in

CVPR Workshop on Computer Vision on GPU, Anchorage, 2008.

[26] C. A. R. Hoare, "Quicksort: Algorithm 64," Communications of the ACM, vol. 4, no. 7, pp.

321-322, 1961.

[27] W. Dobosiewicz, "An efficient variation of bubble sort," Information Processing Letters,

vol. 11, pp. 5-6, 1980.

[28] D. Knuth, "Sorting by Insertion," in The Art of Computer Programming, Volume 3: Sorting

and Searching.: Addison-Wesley, 1998, ch. 5.2.1, pp. 80-105.

[29] D. M. Mount and S. Arya. ANN: A library for approximate nearest neighbor searching.

[Online]. http://www.cs.umd.edu/˜mount/ANN/

[30] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu, "An optimal

algorithm for approximate nearest neighbor searching fixed dimensions," Journal of the

ACM, vol. 45, no. 6, pp. 891-923, 1998.

[31] S. Popov, J. Günther, H.-P. Seidel, and P. Slusallek, "Experiences with Streaming

Construction of SAH KD-Trees," in Proceedings of the 2006 IEEE Symposium on

Interactive, 2006, pp. 89-94.

[32] M. Shevtsov, A. Soupikov, and A. Kapustin, "Highly Parallel Fast KD-tree Construction

Photon Mapping on the GPU Bibliography

Martin Fleisz 58

for Interactive Ray Tracing of Dynamic Scenes," Computer Graphics Forum, vol. 26, no.

3, pp. 395-404, October 2007.

[33] J. Goldsmith and J. Salmon, "Automatic creation of object hierarchies for ray tracing,"

IEEE Computer Graphics and Applications, vol. 7, no. 5, pp. 14-20, 1987.

[34] J. D. MacDonald and K. S. Booth, "Heuristics for ray tracing using space subdivision," The

Visual Computer, vol. 6, no. 3, pp. 153-166, 1990.

[35] I. Wald, "Realtime Ray Tracing and Interactive Global Illumination," Saarland University,

PhD Thesis 2004.

[36] K. Zhou, Q. Hou, R. Wang, and B. Guo, "Real-time KD-tree construction on graphics

hardware," ACM Transactions on Graphics, vol. 27, no. 5, pp. 1-11, December 2008.

[37] N. Satish, M. Harris, and M. Garland, "Designing Efficient Sorting Algorithms for

Manycore GPUs," Proc. 23rd IEEE Int’l Parallel & Distributed Processing Symposium,

May 2009.

[38] V. Havran, "Heuristic Ray Shooting Algorithms," Czech Technical University, PhD Thesis

2000.

[39] M. Harris, S. Sengupta, and J. D. Owens, "Parallel Prefix Sum (Scan) with CUDA," in

GPU Gems 3.: Addison Wesley, 2007.

[40] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens, "Scan Primitives for GPU

Computing," in Graphics Hardware 2007, San Diego, 2007, pp. 97-106.

[41] I. Wald, J. Günther, and P. Slusallek, "Balancing Considered Harmful - Faster Photon

Mapping using the Voxel Volume Heuristic," Computer Graphics Forum, vol. 22, no. 3,

2004.

[42] G. S. Manku. (2008, August) Fast Bit Counting. [Online].

http://gurmeetsingh.wordpress.com/2008/08/05/fast-bit-counting-routines/

[43] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and D. Manocha, "Fast BVH

Photon Mapping on the GPU Bibliography

Martin Fleisz 59

Construction on GPUs ," Computer Graphics Forum, vol. 28, no. 2, pp. 375-384, 2009.

[44] H. W. Jensen, Realistic Image Synthesis Using Photon Mapping.: A K Peters, 2001.

[45] F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction.: Springer-

Verlag New York, 1985.

[46] Edge Staff. (2005, August) Edge. [Online]. http://www.edge-online.com/features/john-

carmack

[47] V. Garcia. (2008, June) CUDA Zone Forum. [Online].

http://forums.nvidia.com/index.php?s=&showtopic=69307&view=findpost&p=391299

[48] D. T. Lee and C. K. Wong, "Worst-case analysis for region and partial region searches in

multidimensional binary search trees and balanced quad trees," Acta Informatica, vol. 9,

no. 1, pp. 23-29, 1977.

[49] S. Green, "Particle-based Fluid Simulation," in Game Developers Conference, 2008.

[50] S. Le Grand, "Broad-Phase Collision Detection with CUDA," in GPU Gems 3.: Addison

Wesley, 2007, pp. 697-721.

[51] G. M. Morton, "A computer Oriented Geodetic Data Base; and a New Technique in File

Sequencing," IBM Ltd., Ottawa, Technical Report 1966.

[52] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms.: MIT Press /

McGraw-Hill, 1990.

[53] M. Teschner, B. Heidelberger, M. Müller, D. Pomeranets, and M. Gross, "Optimized

Spatial Hashing for Collision Detection of Deformable Objects," Proceedings of VMV'03

Munich, pp. 47-54, 2003.

[54] R. Pattis. (2002) Framework Methodology. [Online].

http://www.phred.org/~brian/factoring/chapter2.html

[55] Y. H. Yee and A. Newman, "A perceptual metric for production testing," in International

Photon Mapping on the GPU Bibliography

Martin Fleisz 60

Conference on Computer Graphics and Interactive Techniques, Los Angeles, 2004, p. 121.

[56] M. Harris et al. (2009, August) CUDPP homepage. [Online].

http://code.google.com/p/cudpp/

[57] N. Deo and S. Prasad, "Parallel heap: An optimal parallel priority queue," The Journal of

Supercomputing, vol. 6, no. 1, pp. 87-98, November 2004.

[58] M. Abrash. (2000) Ramblings in Realtime. [Online].

http://www.gamedev.net/reference/articles/abrash/abrash.pdf

[59] H. W. Jensen and P. H. Christensen, "Efficient Simulation of Light Transport in Scenes

with Participating Media using Photon Maps," in In Proceedings of SIGGRAPH'98,

Orlando, 1998, pp. 311-320.

[60] T. Hachisuka, S. Ogaki, and H. W. Jensen, "Progressive Photon Mapping," in SIGGRAPH

Asia 2008, Singapore, 2008.

[61] L. Seiler et al., "Larrabee: a many-core x86 architecture for visual computing,"

Proceedings of ACM SIGGRAPH 2008, vol. 27, no. 3, August 2008.

