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Abstract 

In realistic image synthesis, Photon Mapping is an essential extension to the standard ray tracing 

algorithm. However, recent developments in processor design, towards multi-core systems do not 

favor the tree-based photon map technique. We developed a novel approach for Photon Mapping, 

based on spatial hashing. Photon map creation and photon search are fully parallelized and take 

full advantage of the processing power of current GPUs. Synchronization is kept to a minimum 

and we are able to use texture memory to cache access to the photon information. In order to 

evaluate our new approach we carried out a series of benchmarks with existing, GPU based 

photon mapping techniques. Our spatial hashing approach is shown to be much faster than 

existing techniques with almost any possible configuration, while archiving the same image 

quality. 
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1 
1 Introduction 

 
 
 
 
 
“The only way forward in terms of performance - but we also think in terms of 
power - is to go to multicores. Multicores put us back on the historical trajectory of 
Moore's Law. We can directly apply the increase in transistors to core count - if 
you are willing to suspend disbelief for a moment that you can actually get all those 
cores working together.” 

 
- Justin R. Rattner, Chief Technical Officer at Intel [1] 

 
 
 
 
 

Objectives 

• To explain the problems we try to address with our project 

• To explain our motivation behind this project 

• To give an overview of the report’s structure 
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1.1 Problem statement 

Because of recent developments in processor design, parallel computing has become the new way 

of creating high performance applications. Especially Graphics Processor Units (GPUs) offer 

amazing computation power and are available in a lot of standard consumer machines these days. 

However, in order to unleash this available processing power, algorithms have to be parallelized 

[2]. In a lot of cases, like Photon Mapping, this task can be quite difficult due to a few reasons. 

 

The first problem arises with the creation of the photon map data structure. For performance 

reasons this structure is usually a balanced kD-Tree [3], used to speed up the photon search. 

However, it is difficult to parallelize the tree construction because all threads have to access the 

same data structure. This usually requires a lot of synchronization overhead and completely 

defeats the advantage of parallel processing. Although Jensen discusses parallelization of photon 

search in [4], we think that this is only a mediocre solution to the overall problem. 

 

Another problem is the highly irregular memory access pattern, revealed during tree construction 

and traversing. In order to find photons in a kD-Tree, lots of scattered memory reads have to be 

performed which is everything but optimal for GPUs. Also, the interdependent operations that 

have to be performed during tree traversal entail that the hardware is not able to hide these 

memory latencies. 

 

In this project we want to present and evaluate a new Photon Mapping technique for GPUs. 

Using a new approach, based on spatial hashing to organize the photons in the photon map, we 

think that we are able to utilize the available parallel computation power more efficient than 

existing techniques. In order to proof our proposed technique in terms of performance and 

quality, we will implement prototypes of the various approaches and compare them. We will also 

apply different parameters and data sizes during our tests, in order to evaluate the scalability of 

the different techniques. 
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1.2 Motivation 

Sequential computing has reached a point where huge performance improvements are not 

feasible anymore. Instead, chip manufacturers are now designing multi-core processors in order 

to be able to deliver regular performance improvements. However, in order to utilize this 

available power, algorithms must be massively parallelized and, in case of GPUs, executed using 

thousands of threads. While some sequential algorithms can be easily changed to parallel 

versions, others are very difficult or even impossible to modify in such a manner.  

 

The motivation behind this project is to come up a new technique for Photon Mapping that fits 

these trends in processor design. Our main idea is to develop a heavily parallelized algorithm that 

is designed with respect to current GPU architectures. This means we have to utilize as many 

threads as possible for the photon map creation and photon search, while trying to avoid any 

synchronization. Scattered memory access should also be kept to a minimum to achieve the 

highest possible performance. As we believe the future of computing is within parallelization, our 

technique should also be very useful for future, general purpose multi-core architectures.  

 

 

1.3 Structure of the Report 

After the introduction, a short explanation of Ray Tracing and Photon Mapping is provided, to 

give a basic understanding of these techniques. Furthermore, we take a look at existing GPU 

approaches, explaining how they work in detail and what shortcomings they have. 

Chapter three introduces our new GPU Photon Mapping approach, based on spatial hashing, with 

detailed information on our current implementation. 

The results of our experiments and tests are presented in chapter four, giving an overview of the 

performance, memory consumption and scalability of the various techniques. 

In chapter five we will critically analyze the results presented in the previous chapter. 

Finally, chapter six contains conclusions and directions for future research. 

 

 



     

 

 
 
 
 
 
 
 

2 
2 Background 

 
 
 
 
 
"Parallel programming is perhaps the largest problem in computer science today 

and is the major obstacle to the continued scaling of computing performance that 

has fuelled the computing industry, and several related industries, for the past 40 

years." 

 
- Bill Dally, Chief Scientist and Vice President of NVIDIA Research [5] 

 
 
 

Objectives 

• To give an introduction to Ray Tracing and highlight its problems 

• To explain how Photon Mapping works 

• To give an overview of existing GPU Photon Mapping techniques 

• To identify weaknesses in existing GPU Photon Mapping techniques 
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2.1 Theoretical Background

 

2.1.1 Ray Tracing 
Ray Tracing is a technique for image synthesis

world. The first Ray Tracing algorithm was introduced by Arthur Apple 

modifications, is still used in current ray tracers. 

one or more rays into the scene, testing if 

a few objects that our ray intersects but we will only consider the object

Now we have to distinguish between three different kinds of rays that are generated next, 

depending on the object’s material properties: 

 

 

Shadow rays simply check if our intersection point faces any of the light sources in the scene. In 

order to determine the amount of light 

source in our scene. If all rays reach the light source without intersecting another object

that our point is fully lit and we have to color that pixel on screen. In case all of these ra

intersect other objects, we know 

very dark or just black. 
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Theoretical Background 

racing is a technique for image synthesis, which is used to create a 2D image of a 3D 

racing algorithm was introduced by Arthur Apple 

is still used in current ray tracers. For each pixel on our viewing plane we shoot 

one or more rays into the scene, testing if they intersect with any object (Figure 

r ray intersects but we will only consider the object,

Now we have to distinguish between three different kinds of rays that are generated next, 

depending on the object’s material properties: shadow, reflection and refraction rays

Figure 1: Ray Tracing [8] 

rays simply check if our intersection point faces any of the light sources in the scene. In 

order to determine the amount of light received, we shoot another ray from this point to each light 

source in our scene. If all rays reach the light source without intersecting another object

that our point is fully lit and we have to color that pixel on screen. In case all of these ra

we know that our point is within a shadowed area and we color that pixel 

Chapter 2 - Background  

5 

create a 2D image of a 3D 

racing algorithm was introduced by Arthur Apple [6] and, with some 

For each pixel on our viewing plane we shoot 

Figure 1). We might find 

, closest to the viewer. 

Now we have to distinguish between three different kinds of rays that are generated next, 

, reflection and refraction rays [7].  

 

rays simply check if our intersection point faces any of the light sources in the scene. In 

we shoot another ray from this point to each light 

source in our scene. If all rays reach the light source without intersecting another object, we know 

that our point is fully lit and we have to color that pixel on screen. In case all of these rays 

our point is within a shadowed area and we color that pixel 
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Reflection rays are cast when our initial ray hits a reflective surface, i.e. a mirror. Leaving from 

the mirroring surface, we test for object intersection again. If we find an intersecting object, we 

pick the closest one to our reflective surface and color the pixel, using the reflected intersection 

point’s color. 

 

The third ray type is cast when we hit a refractive surface, i.e. a glass full of water. Light changes 

its direction according to Snell’s Law [9] when it travels between two media with different 

refraction indexes. The coloring for refractive objects works similar to reflective objects in the 

previous paragraph. 

 

2.1.2 Photon Mapping 
The problem with traditional methods, like Ray Tracing and Radiosity is that they are not able to 

model all possible lighting effects in a scene (Figure 2). Ray Tracing only simulates indirect 

illumination by adding a constant ambient term in the lighting calculation, whereas Radiosity 

only simulates diffuse reflections, completely ignoring mirrored surfaces. Therefore, approaches 

were made to combine both methods, where each technique renders the effects the other fails to. 

However, such approaches are is still not sufficient as they both fail to model focused light 

effects, like caustics. Solutions to this problem were presented by [10], [11] and [12] but they 

introduced other problems as [13] explains. 

 

 

Figure 2: Ray Tracing on the left, Photon Mapping on the right 
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Jensen presented a new extension to Ray Tracing, based on the concept of photon maps [14], that 

was able to overcome all these problems. In a first pass, the photon map is constructed by 

emitting light rays from each light source into the scene. In order to emit photons more 

efficiently, projection maps can be used as described in [15]. Whenever a photon hits a diffuse 

surface, its position, incident angles and power are stored in the photon map. Jensen uses a 

balanced kD-Tree [3] to organize this data, which is very useful to locate photons during the 

radiance estimation. Afterwards, we decide if the photon is absorbed or reflected, using Russian 

roulette [16]. Photon hits are not stored for specular objects because the chance, of having 

incoming photons from the specular direction is almost zero. Instead, these surfaces are rendered 

using standard Ray Tracing techniques, as explained earlier. An important property of the photon 

map is that it stores lighting information decoupled from the scene geometry. This means that the 

photon map’s lookup time for complex scenes with many polygons, is the same as it is for simple 

scenes with just a few polygons. 

 

In the second pass, the information in the photon map is used to calculate the effects of indirect 

lighting and caustics. Direct illumination and specular surfaces are rendered, using standard Ray 

Tracing because these effects would require a huge amount of photons in the photon map, to be 

rendered correctly. In order to calculate the reflected radiance for any given point x in a scene, 

Jensen uses density estimation. As shown in Figure 3, by expanding a sphere around x, until it 

contains n photons, we are able to collect photon samples for the estimation. This yields the 

following equation for estimating the reflected radiance �� at a given point x: 

 

 ��(�, ����) ≈ 1
�² � ����, �����, �����∆Φ���, ������

�

���
 (2.1)  

where ��  is the surface’s bidirectional reflectance distribution function (BRDF) and Φ�  is the 

power of photon p, stored in the photon map. 
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Figure 3: Photon density estimation [17] 

 

2.1.3 GPU Implementations 
There have already been a couple of successful attempts made, to implement Ray Tracing 

efficiently on GPUs. Purcell et al [18] presented the first ray tracer, running entirely on the GPU, 

using a uniform grid for acceleration. The first implementations that achieved better performance 

than CPU based ray tracers were presented in [19] and [20]. Unfortunately, both these techniques 

work with static scenes only. The latest work from Luebke et al [21] presents a technique, 

combining Ray Tracing and rasterization methods to obtain real-time performance on dynamic 

scenes. Photon mapping has been implemented for multi-core CPUs in [22] and for older GPU 

generations in [23]. In the following sections, we take a look at the available techniques that can 

be used for Photon Mapping on current GPU hardware. 

 

 

2.2 Fast k Nearest Neighbor Search using GPU 

 

2.2.1 Basics 
As described earlier, calculation of the illumination of a distinct point requires a certain amount 

of closely located photons. This kind of search is called k-nearest neighbor search [24], which is 

a special variation from the family of nearest neighbor search algorithms. In our case, the kNN 
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search problem consists of finding the � nearest photons, for a set of query points that we want to 

calculate the illumination for. 

 

In [25], Garcia et al present a brute force based approach to the kNN search problem. Their work 

is kept very general and supports points with arbitrary dimensions, as well as differently sized 

reference and query point sets. As they write in their report, this exhaustive search method is by 

nature highly parallelizable and therefore, is perfectly suitable for a GPU implementation. Their 

solution runs completely on the graphics device, completely offloading all work from the CPU. 

 

2.2.2 Construction 
All that needs to be done during the construction or setup phase is allocation of device memory 

and copying the required data to the device. For a given set of m photons and n query points, the 

memory requirements are pretty high with O(nm). In order to improve performance, data is 

loaded into different kinds of memory on the device. The query set is stored in global memory, 

which has a huge bandwidth but performs bad if access is not coalesced [2]. Photons will be 

stored in texture memory which provides better performance on non-coalesced accesses. 

 

2.2.3 Photon Search 
Photon search is split into the following three steps: 

• Compute all distances between a query point �� and all reference points � with  � ∈ !1, "# 
• Sort the computed distances 

• Select the first k reference points, corresponding to the k smallest distances 

These steps are repeated for all query points in the query set and can be performed in parallel on 

the GPU. Distances are computed and stored in a way similar to a matrix. Because our query 

point set will be usually quite large (i.e. more than 300.000 for an image resolution of 640 x 480), 

it is necessary to split our query, due to memory constraints.  

 

The sorting part is, by its nature, very problematic as it compares and exchanges many distances 

in non-predictable order. This means memory access is non-coalesced which results in a 
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performance hit, when using global memory. Texture memory would be a good alternative, but 

unfortunately it is read-only memory and therefore, cannot be used for sorting. 

 

For the sorting step, Garcia et al tried out a couple of algorithms in their paper. Quicksort [26] is 

very popular but cannot be used with CUDA, due to the lack of support for recursive functions. 

Therefore, their first implementation used the comb sort algorithm [27], which is able to sort the 

calculated n distances in O(n log n) time. However, because it is not necessary to sort the 

complete data set but only the first k elements, Garcia et al finally used a modified version of 

insertion sort [28]. Insertion sort proofed to be faster for finding up to k = 100 neighbors, before 

being outperformed by the comb sort implementation. Because insertion sort itself cannot be 

parallelized efficiently, sorting for all query points is performed simultaneous instead. 

 

Obviously, this solution demands a huge amount of processing power. Complexity is O(nmd) for 

the n times m distances computed and O(nm log m) for the n sorts, performed to find the nearest 

reference points. However, according to Garcia et al, their brute force approach performs faster 

than a kD-Tree based software implementation. For their comparison they used the ANN C++ 

library [29], which implements the kD-Tree based nearest neighbor search method, presented in 

[30]. 

 

 

2.3 Real-Time KD-Tree Construction on Graphics Hardware 

 

2.3.1 Basics 
Obviously, one way to move the Photon Mapping technique onto graphics hardware is to do the 

creation and traversal of the kD-Tree on the GPU. The first attempt to accomplish this was 

presented by Purcell et al in [23]. However, their work is a bit outdated because this technique is 

based on graphics hardware that is far less flexible and programmable than current devices. 

 

More general work on parallel kD-Tree construction was published by Popov et al [31] and 

Shevtsov et al [32]. Both approaches are based on multi-core CPUs and therefore, have design 

issues when used on a GPU. The first problem is that kD-Tree construction can easily become 
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bandwidth limited on large input data sets, due to its random memory access pattern. Therefore, 

the construction switches from breadth first search (BFS), over to depth first search (DFS) 

manner at deeper nodes. This means that these approaches keep the number of concurrently 

running threads pretty low. Graphics hardware however, has a much higher memory bandwidth 

and requires at least 10% ~ 10' threads for optimal performance [2]. Another important factor 

during construction is the balance of the tree and therefore, finding the right splitting position for 

a node. Both papers use the Surface Area Heuristic (SAH) [33] [34] to evaluate the costs for a 

splitting candidate. Even though the SAH improves the quality of trees significantly [35], its 

calculation consumes a lot of time. 

 

Finally, parallelizing the photon search or tree traversing is pretty easy, as the tree is accessed 

read-only. However, for performance reasons it is important that the tree is well balanced and 

stored efficiently. Storing the tree efficiently means to keep scattered memory accesses as low as 

possible, by placing child nodes close to their parents. The traversal algorithm itself is not a good 

candidate for parallelization. Instead, performing multiple traversals simultaneously is a much 

better way, in order to obtain good performance. 

 

In [36], Zhou et al present a new approach to kD-Tree construction and traversal on GPUs, using 

CUDA. Even though their main focus is on SAH kD-Tree construction for Ray Tracing, they also 

provide information on adapting the technique for photon mapping, which we will concentrate 

on. 

 

2.3.2 Construction 
Zhou et al build their kD-Tree completely in breadth first search manner, distinguishing between 

two different node stages. During the initialization stage, global memory is allocated for the tree 

construction and the root node is created. For the photon mapping implementation we also have 

to create three sorted order lists (one for each dimension) for all point coordinates, using the sort 

function from [37]. Using the sorted order, we are able to compute bounding boxes in O(1) time 

and we avoid to use segmented reduction, which compensates for the sorting. Additionally, we 

maintain three associated point ID lists (one for each coordinate axis) which have to fulfill the 

following criteria: 
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• Points in the same node are contiguous in all lists 

• Points in the same node start at the same offset in all lists 

In the first step, the so called Large Node Stage is executed. This stage splits nodes using a 

combination of spatial median splitting and “cutting off empty space”, as described in [38]. 

Because in the Large Node Stage the number of nodes is naturally smaller, computation is 

parallelized over all points rather than over nodes. First we need to find the splitting plane (the 

plane that splits the longest axis in the middle), after repeatedly applying empty space splitting 

before. Then each photon is classified as being either left (1) or right (0) of the splitting plane. 

Finally, we perform the scan operation from [39], in order to use the split operation in [40] to 

split the current node. As Zhou et al mention in their paper, the sorted coordinate and ID lists 

maintain all their properties after splitting. After the split we check if the amount of photons in 

our child nodes is below the threshold T = 32. If the number is smaller, the node is added to the 

small node list. Otherwise it is added to the active list and scheduled for the next iteration of the 

Large Node Stage. The Large Node Stage finishes as soon as there are no more nodes in the 

active list. 

 

The next phase is the Small Node Stage and begins with a preprocessing step for all nodes in the 

small node list, created during the previous stage. In this step we collect all splitting plane 

candidates and calculate the resulting split sets, which define photon distribution after a split. It 

should be noted that splitting planes are restricted to initial photon positions in this stage.  

 

After the preprocessing has finished, we process all small nodes in parallel and split them, until 

each node contains one photon. Since we need to build a kD-Tree for points (or photons), rather 

than triangles, we are now using the Voxel Volume Heuristic (VVH) [41] for split cost 

evaluation, instead of the SAH. Given a split position x, we can calculate the VVH as follows: 

 

 (()(�) = +,(�) (-.((, ± 0)
(-.(( ± 0) + +2(�) (-.((2 ± 0)

(-.(( ± 0)  (2.2)  

where +, and +2 is the number of photons in the left and right node, after the split and (-.(( ±
0) is the volume of node V, extended by the maximum query radius R. Wald et al approximate 

(-.(( ± 0) using the following formula: 
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(-.(( ± 0) ≈ 3 ((�,456 − (�,4�8 + 20)

��6,:,;
 (2.3)  

After we found the best split candidate (the one with the lowest VVH cost) we can split the small 

node into two sub nodes. To do so we need the current node’s photon set, which is a bit mask 

representation of the photons inside the node. In order to complete our split, we simply perform a 

logical AND between the current photon set and the precalculated result split sets of the root 

small node. This is illustrated in Figure 4 where we split node A into two sub nodes (B and C) 

and the symbols (~, #, o, +, *) represent photons in node A. 

 

 

Figure 4: Small node splitting [36] 

 

Besides easing node splitting, the binary photon representation also helps us calculating the 

number of photons in a node, which we need for VVH computation and to stop node splitting. All 

we have to do is to count the bits in the current photon set, using the parallel bit counting routine 

from [42].  

 

After splitting is done, the new nodes are added to the active node list, in order to be processed 

during the next iteration step. Of course it can and will happen that some nodes will not create 

any new child nodes. Therefore, we have to add another step to compact our active node list and 

remove empty space, as is illustrated in Figure 5 [43]. If there are no more nodes left in the active 

list, we can finish the Small Node Stage and proceed to the final construction stage. 
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Figure 

 

In the final kD-Tree Output Stage

traversal of nodes, in order to improve memory access

memory requirements for each node and its sub

are able to calculate each node’s address

top-down traversal pass. After reordering

references to its children, as well as 

 

2.3.3 Photon Search 
A natural choice for locating the k nearest neighbors 

described in [44]. Unfortunately

efficiently, because memory access is incoherent and almost all arithmetic is interdependent,

making it difficult for the hardware to hide memory latency. 

iterative kNN search algorithm

 

Starting from an initial, conservative search radius 

a couple of iterations. During each iteration

ranges is created and the final search radius is reduced from it. The final radius 

range search which returns all photons within that radius. Parts of these computations are 

performed on the CPU and, according to Zhou et al

less than 0.1%. Range search is implemented using the depth first searc

algorithm from [45]. 

 

 

Photon Mapping on the GPU  Chapter 

 

Figure 5: Compaction of the active node list [43] 

ree Output Stage, the tree is reorganized to change its layout to a preorder 

nodes, in order to improve memory access performance. First

memory requirements for each node and its sub-tree by traversing the tree bottom
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2.4 Analysis of existing Techniques 

 

2.4.1 Brute Force Approach 
First we take a look at the approach presented by Garcia et al [25], using a brute force technique 

to find the k nearest neighbors for a set of query points. On the plus side, this technique is very 

easy to understand and implement. It also supports arbitrary point dimensions, which is useful for 

scientific applications but not relevant to Photon Mapping. 

 

The first problem with this technique is obviously the huge memory consumption. Basically the 

method grabs all available memory and uses it for its distance matrix computation. Even though 

you can theoretically scale the memory consumption down, this will have a bad impact on the 

performance as the supported query size is minimized. 

 

Another problem, as already mentioned before, is the limited query size. Even with a lot of 

memory available, the query set size is limited to 2�> elements, due to limitations in the CUDA 

hardware API [47]. This is not a lot, considering that even for a low image resolution of 320 x 

240 pixels we need to find neighbors for approximately 76,800 points. 

 

Finally, the greatest disadvantage is the huge time complexity of O(nm) for n reference points 

(photons) and m query points. Especially low range graphics cards do not offer as much 

computation power as the top class devices and will not be able to achieve a good performance. 

 

2.4.2 GPU kD-Tree Approach 
The GPU kD-Tree approach from Zhou et al [36] has a couple of advantages compared to the 

brute force technique. Using a kD-Tree has been the first choice for all available software 

implementations of Photon Mapping. The main reason for this is that nearest neighbor search can 

be done pretty fast with this data structure, having a worst case time complexity of ?(� ∙ A�BC
D) 

[48], where k = 3 specifies the dimension of the tree. Another advantage of the kD-Tree is that 

memory consumption is quite moderate with O(n). 
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However, we also experienced a couple of problems with the kD-Tree approach on the GPU. 

First, parallel tree construction requires a certain level of synchronization, because we are writing 

to a single data instance. This is done explicitly by the CUDA API which waits for a previous 

kernel to finish, before the next kernel is executed on the GPU. Even though kernel calls are 

asynchronous we have to synchronize and stall the CPU at some point, because the kD-Tree 

technique maintains a list of active nodes used for the next processing step. This synchronization 

is done explicitly as well, within the CUDA API layer. 

 

This leads us directly to the next problem, the use of dynamic lists. The kD-Tree paper uses 

dynamic lists extensively for storing active nodes, tree nodes, small nodes and so on. CUDA only 

supports static arrays and therefore, additional work has to be done to grow lists by reallocating 

and copying memory. To avoid a high overhead caused by this memory management, Zhou et al 

double list sizes every time they run out of space. However, this leads to increased memory 

consumption during construction. Even though the final tree is stored without wasting any 

memory, the memory management during the construction stage constraints the supported 

maximum kD-Tree size. 

 

Another problem is that traversing the kD-Tree is, by its nature, non-predictable. This means we 

cannot place the tree in memory without having a non-coalesced access patterns. In order to 

decrease random memory access during photon search, Zhou et al also use an iterative kNN 

search approach at the cost of utilizing the CPU. 

 

As already explained in the previous chapter, Zhou et al also utilize the CPU for coordination 

work, during the tree construction. This means that the CPU and GPU are both busy when using 

the kD-Tree technique. Therefore, the CPU cannot be used for different tasks, like it is possible 

with other techniques that run completely on the GPU. Finally, we also think that the GPU kD-

Tree approach is pretty complex and not that easy to implement. Also the use of many other 

parallel algorithms like scan, split and sort increase the effort required to use this technique. 

 



     

 

 
 
 
 
 
 
 

3 
3 A new Approach 

 
 
 
 
 
"There will be the developers that go ahead and have a miserable time and do get 

good performance out of some of these multi-core approaches." 

 
- John Carmack, Technical Director at idSoftware [46] 

 
 
 
 
 
 
 

Objectives 

• Introduce the Spatial Hashing technique 

• Give detailed information on our Spatial Hashing implementation 

• Highlight limitations and possible solutions for them 
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3.1 Photon Mapping using Spatial Hashing 

 

3.1.1 Overview 
Our new Photon Mapping approach is based on the CUDA particles paper by Green [49]. Green 

shows how to perform fluid simulation, based on particle systems, efficiently on GPUs. The 

central part of this technique is to simulate the interaction between all the particles in the system. 

Therefore, it is necessary to locate neighbor particles for each fluid particle and test for collisions 

between them. This technique can be directly mapped to our photon search problem. Instead of 

finding neighbor particles we have to find neighbor photons for a set of sampling points. 

 

Our new approach uses a hash table, that allows us to look up a set of potential neighbor photons 

in O(1) time and which can easily be created and accessed in parallel. Each entry in the hash table 

references a spatial cell in the scene (numbered from 1 to 16 in the example below), containing 

photons as shown in Figure 6. In order to find the right cell, all we have to do is to calculate the 

hash value for the sample point and locate the right cell using the hash table. 

 

 

Figure 6: Immediate lookup of photons in the cell of the sample point x, using the hash table 

 

Because the sample point can be located close to an edge of the cell, we also have to process 

photons from the neighboring cells in all three dimensions. Finally, we collect the closest k 

photons, using a sorted list that we implement using the fast on-chip shared memory. Photon 

collection has a time complexity of O(n), where n is the average number of photons in a cell and 
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its neighbors. It should be noted, that the number of photons in a cell grows only at a fraction of 

the actual photon map size because photons will be distributed over many cells. Photon maps 

rarely contain more than a million photons, which means that we will not get any problems with 

time complexity, due to extremely large photon maps. 

 

3.1.2 Theory 
Green presents two different ways to build the hash table, depending on the available device’s 

compute capability. The first approach uses atomic operations (compute capability 1.1 and 

higher) to build the final hash table and is quite easy to implement.  However, because of various 

reasons, this approach is not as fast as the other technique in Green’s paper. For our Photon 

Mapping approach, we will concentrate on the faster, but more complex solution, based on 

sorting. 

 

This algorithm consists of several kernels that are executed after each other. The first kernel 

calculates the hash values for each photon in the photon map and stores the resulting values in an 

array, along with the associated photon’s index. In the next step, Green sorts the array based on 

the hash values, using the radix sort from Le Grand [50]. Finally, we need to find the start 

indexes for each entry in the sorted array to create our hash table.  

 

 

Figure 7: After calculating the hashes the photon list is sorted and the hash table is created 
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As can be seen in Figure 7, the sorted list introduces another level of indirection as it only 

contains a reference ID to the actual photon data in the photon table. In order to get rid of this 

overhead, we simply reorder the photons’ data according to their position in the sorted array. This 

allows us to access the data of the first photon in a cell directly, simply by looking up its index in 

our hash table. The other photons in the same cell can be easily iterated, sequentially. The array 

containing the reordered photon data is finally bound to texture memory. Unlike global memory 

reads, texture lookups are cached and the sorted, sequential order will improve the coherence 

when accessing the photons during the photon search stage. 

 

Choosing the right hash function is quite important for our technique to work efficiently. All hash 

functions require a grid position as their input parameter. The grid position EF for a photon with 

position p can be easily calculated using the following equation: 

 

 EF = GE ∙ H�I (3.1)  

where the scaling vector H�� specifies the scaling factors for a cell, in each dimension. Using EF we can 

now continue and calculate the hash value for our photon position. Green suggests two different hash 

functions in his paper. The first one simply calculates the linear cell id for the given grid position 

p using equation 3.2. 

 

 �J5KL(E) = EM ∙ NOPQOMRS ∙ NOPQOMRT + EU ∙ NOPQOMRT + E� (3.2)  

The gridSize factors in the formula above specify the number of grid cells along the x, y and z-

axis. Alternatively, Green suggests using a hash function, based on the Z-order curve [51] to 

improve coherence of memory accesses. 

 

In Green’s paper, each particle has to be checked for collision with other particles. First, he 

calculates each particle’s hash to find the cell of interest. Then he loops through all 27 

neighboring cells (using a 3x3x3 pattern) to test all particles for collision. We can almost map 

this technique directly to our needs for photon search. Our initial point of interest is not a photon 

but a sampling point in our scene, whose color we want to estimate. We can simply use the 

sampling point’s coordinate to calculate its grid position and hash value, in order to find the cell 
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it is located in. All we have to do now is to collect the closest k photons from all neighboring 

cells and we are able to calculate our radiance estimation. 

 

3.1.3 Implementation 
Before we can start calculating the hash values for our photons we need to initialize a couple of 

parameters, required for the hashing. Because we support photons with negative coordinate 

values, we need to provide the minimum coordinate values for the x, y and z dimension, stored in 

our photon map, which we call the world origin. We will use the world origin in our grid position 

calculation to transform all photon positions into a positive coordinate system, by simply adding 

the world origin to the input position. For the grid cell size, we currently use the maximum 

photon query radius and therefore, our scaling vector H��  is simply (1/456 1/456 1/"W�). 

Finally, we calculate the number of grid cells along each axis, using the cell size and the 

bounding box extents of the photon map. We increase the number of grid cells along each axis by 

two additional cells to ease the handling of border cells during photon search. This allows us to 

avoid any expensive checks, otherwise required for clamping grid positions. The last step 

performed, during the initialization phase, is the creation of the neighbor offset lookup table. This 

table is used to calculate the neighbor cells’ grid positions during the photon search, as shown in 

Figure 8. The table is placed in constant memory which caches memory reads and provides better 

performance, compared to global memory. 

 

 

Figure 8: Calculating neighbor cells’ grid positions, using the values from the offset lookup table 
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After finishing all initialization work, we will execute the first kernel which creates the unsorted 

hash value array, where each entry also contains the hashed photon’s index. Afterwards we sort 

this array, based on the photon hashes, using the radix sort algorithm from [37]. Now we have to 

determine the start photon index for each grid cell, in order to create the final hash table. This is 

done by executing a kernel function for each entry in the sorted array that checks, if the previous 

photon’s hash value is different from its own. If it is, we know that the current entry marks the 

start of a cell and the previous entry marks the end of another cell. This information can be 

efficiently exchanged using the GPU’s on-chip shared memory. After the resulting indexes have 

been written to our hash table we reorder the photons, as explained earlier, to improve memory 

access coherence. We finally end up with a hash table that can be indexed using a point’s hash 

value and a sorted photon table, as illustrated in Figure 9. 

 

 

Figure 9: Hash Table (start index, end index) and Photon Table relation 

 

In order to find the required photons, we execute our parallel search kernel for each point in the 

query set. First, we calculate the query point’s grid position and initialize our photon list to an 

empty list. For efficiency reasons, we place the photon list in shared memory which is an order of 

magnitude faster than global memory. Next we iterate through the 27 neighbor cells of interest, 

using the offsets from our precomputed neighbor offset table. We simply add the values from the 

table to the current grid position and use that new grid position for the hash calculation. In our 

current implementation we use a simple sorted list approach for collecting photons. As long as 

the list is empty, we just keep adding photons until the list is full. If we find a closer photon and 

the list is already full, we insert that photon to its sorted position in the list and shift all following 

photons back. The last item in the list is simply lost as we do not need it any longer. While this 

approach works well for our prototype, we think better performance can be achieved with 

different methods, like a heap data structure [52]. When the kernel finishes with the processing of 
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all cells, the remaining k photons in the shared memory list are written to the result array, stored 

in global memory. 

 

3.1.4 Limitations 
In this chapter, we talk about some limitations that our technique has, compared to others and 

present some possible workarounds for them. The first constraint is caused by the limited size of 

shared memory, which is used during photon collection. In our current implementation, 32 

threads have to share 16 KByte of shared memory. For each photon we need 8 bytes of memory 

in the list, 4 bytes for its square distance to the query point and 4 bytes for its power in RGBE 

format. This means we can gather a maximum number of � ≈ 60 photons per sampling point (we 

cannot use the full 16 KByte of shared memory because CUDA uses part of it for kernel 

parameters). Usually, this is not a big problem as it should be sufficient to locate 40-50 photons 

per query point. In case more photons are required for the radiance estimate, we can increase the 

maximum list size by decreasing the thread block size from 32 to 16. However, this solution 

should only be applied if absolutely necessary, as our experiments showed a performance 

decrease of around 25% with this change. Also, future GPUs most likely provide more shared 

memory, allowing larger photon search lists without any modification to the code. 

 

 

Figure 10: 2D view of a scene, green cells occupy geometry whereas red cells do not 

 

As shown in equation 3.2, our hash function uses the number of grid cells to calculate a hash 

value from a grid position. Unfortunately, using these factors causes some problems and 
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disadvantages. First, we might end up wasting a lot of memory with empty entries in our hash 

table because the linear hashing function is not ideal for certain scene types, as Figure 10 shows. 

The green cells indicate cells that contain geometry and therefore, most like photon information. 

Red cells are just floating around in empty space and do not contain any useful data but still 

occupy an entry in the hash table. 

 

The other drawback of this hashing function is that the scene size is limited. For instance we are 

not able to easily model an open landscape scene because our hash function depends on the grid 

size. Without choosing a reasonable amount of cells along each axis we can get problems with 

the increasing memory requirements of our hash table. A solution to these problems is using a 

different hash function, like the one presented in [53]:  

 

 �J5KL(E) = (E� ∙ E1 YZ[ EU ∙ E2 YZ[ EM ∙ E3) ]Z^ A (3.3)  

where p1, p2 and p3 are large prime numbers and n specifies the hash table size. As you can see, 

this function is not based on the grid size and therefore, does not experience the aforementioned 

problems. In order to avoid the expensive modulo operation we suggest choosing a hash table 

size equal to a power of 2. In that case the modulo can be replaced by a much cheaper logical 

AND operation with n – 1. 

 

Another limitation is that the photon query radius has to be specified at construction time and 

remains fixed for the hash table’s life time. This is because we use the radius as the cell size, 

when calculating the grid position for photons. If the radius is enlarged without recalculating the 

hash table, we might miss some photons during photon search. On the other hand, if the radius is 

decreased we will not experience any performance improvements from the smaller search radius. 

Other techniques like the kD-Tree also use the query radius during construction, in example for 

the VVH calculation. However, it is unlikely an application needs to change the query radius and 

even if so, both techniques should be fast enough to recreate the required data structures at run-

time. 

 

 



    

 

 
 
 
 
 
 
 

4 
4 Performance Measuring 

 
 
 
 
"There is a famous rule in performance optimization called the 90/10 rule: 90% of 

a program's execution time is spent in only 10% of its code. The standard inference 

from this rule is that programmers should find that 10% of the code and optimize it, 

because that's the only code where improvements make a difference in the overall 

system performance." 

 
- Richard Pattis, Senior Lecturer at Carnegie Mellon University, Pittsburgh [54] 

 
 
 
 

Objectives 

• To specify the environment used for the performance measurements 

• To specify what measurements we can use to compare Photon Mapping techniques 

• To explain the different measurements’ implication on performance 
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4.1 Measureable Parameters 

In order to validate and compare our technique to others, we will use a couple of measurements 

which are explained in more detail in Table 1. 

 

Table 1: Measurements 

Measurement Description 

Construction Speed Measures the time it takes for a technique to be ready to 

search photons. This includes memory allocations as well as 

creation of data structures, like trees or tables. 

Shorter is better. 

Search Speed Measures how fast a technique is able to locate the k nearest 

photons for n query points.  

Shorter is better. 

Memory Consumption Measures each technique’s memory consumption after the 

construction step. 

Lower is better. 

Memory Consumption (Peak) Measures the peak memory consumption of each technique 

during the construction phase.  

Lower is better. 

Non-Coalesced Reads/Writes Measures the number of non-coalesced memory accesses. 

Lower is better. 

Image Quality Verifies if the photons returned for the radiance estimate are 

correct. 

 

Of course it is important to keep photon search time as low as possible, in order to obtain good 

performance. However, it is just as important to keep construction time very low to get the most 

out of Photon Mapping. Scenes with dynamic lights, for instance require rebuilding the photon 

map every frame and a high construction time is unacceptable in such cases. 

 

Memory consumption is an important factor as well. Even though GPUs have quite a bit of 

memory available nowadays, not all of these resources might be available to our application. The 
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GPU memory is also used by the OS to display the user interface or by 3D APIs to store 

resources, like textures and geometry data. The second important memory measurement is the 

peak memory usage of a technique. Even if the final memory requirements are low, if a technique 

requires a lot of temporal memory during construction, we are still constraint by these needs. We 

also take a look at the memory access pattern of the different techniques. Non-coalesced memory 

accesses are penalized with a severe performance hit on GPUs. Therefore it is important to keep 

the number of such accesses as low as possible. 

 

Finally, we take a look at the correctness of the different GPU techniques. The resulting photon 

sets used for the radiance estimate should be the same with all techniques. To verify that, we will 

directly visualize the photon map and compare the visual quality of the resulting images. 

 

We will perform our tests with two different photon map types. Global photon maps contain 

photon information for the whole scene and are primarily used to render interreflections and soft 

shadows. Caustic photon maps are created by emitting photons only towards reflective and 

refractive objects, because we need a higher number of photons to visualize caustics. Therefore, 

the photons in a global photon map are more scattered over the scene whereas the photons in a 

caustic photon map are concentrated at certain areas. Because caustic photon maps contain 

lighting information for smaller areas, they do not require as many photons like global photon 

maps, which contain lighting information for a whole scene. To see if our approach handles both 

map types well, we carried out each test with global and caustic photon maps.  

 

 

4.2 System Specification 

Our test system has the following hardware and software specifications: 

 

Table 2: System Specification 

System Specifications 

CPU Intel Mobile Core 2 Duo P8600 @ 2.4 GHz 

Memory 4 GB DDR2 

GPU nVidia GeForce 9600M GT 
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GPU Cores 32 Cores @ 1.25 GHz 

GPU Memory 512 MB G-DDR3 @ 800 MHz 

CUDA Version 2.2 

Driver Version 185.85 

OS Windows Vista 64 Business Edition 

 

 

4.3 Application Specification 

Our test application implements the following Photon Mapping techniques: 

• A software kD-Tree, based on Jensen’s photon map code [44] 

• A GPU kD-Tree, based on Zhou et al [36] 

• A GPU brute force k nearest neighbor search, based on Garcia et al [25] 

• The GPU Sptatial Hashing technique presented in this report using two different hashing 

functions: 

o Linear hashing function by Green [49] 

o Hashing function by Teschner et al [53] with a hash table size of 2�' 

 

We used the CUDA 2.2 SDK and Microsoft’s C++ Optimizing Compiler 15.0 with the amd64 

release mode build and all default optimizations turned on. 

 

 

4.4 Test Scene Specification 

Our test scene is a simple Cornell Box scene with a shiny and a glass ball. The light source is an 

area light source, located right under the ceiling (not displayed in the rendered image). Notice the 

soft shadows and interreflections between the walls, as well as the caustic under the glass ball. 

Because the lighting information in the photon map is decoupled from the underlying geometry, 

the results of our tests are also valid for much more complex scenes with a higher polygon count. 
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Figure 11: Test scene 

 

 



   

 

 
 
 
 
 
 
 

5 
5 Results and Analysis 

 
 
 
 
 
 
"  It's just not right that so many things don't work when they should." 

 
- Stephen Wozniak, Chief Scientist at Fusion-io 

 
 
 
 
 
 
 
 
 
 

Objectives 

• To present the results of our performance measurements 

• To analyze and critically evaluate the observed results  
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5.1 Construction Time Performance 

 

 

Figure 12: Construction Time Performance for Global Photon Map 

 

As can be seen in Figure 12, our spatial hashing technique is much faster than the kD-Tree 

approach. The kD-Tree construction cost increases with the amount of photons in the photon 

map, whereas our hash table creation takes almost constant time. The reason for this behavior can 

be explained quite simple. Our hash table creation is fully parallelized, beginning with the hash 

calculation for each photon and ending with the hash table creation and the reordering of photons. 

In contrast, the kD-Tree technique iteratively executes several kernels for scan and split 

operations at each tree level. Every successive kernel invocation performs implicit 

synchronization because a GPU can run only one kernel function at a time. This means, before a 

new kernel can be started, all threads from the previous kernel function must be finished. 

 

Another reason for the longer creation time is non-coalesced memory access. The spatial hashing 

technique’s access pattern is completely coalesced, except for the final photon reordering. On the 

other hand, the kD-Tree approach performs non-coalesced memory writes after every split, when 

it reorders the sorted coordinate and index lists. Also, the final tree reorganization phase’s access 

pattern is almost entirely random and therefore, non-coalesced.  
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Figure 13: Construction Time Performance for Caustic Photon Map 

 

As Figure 13 shows, the measurements are almost identical for caustic photon maps. Again our 

spatial hashing methods are much faster than the kD-Tree method, especially when the photon 

map size becomes larger. Construction time for the GPU brute force technique is pretty low as 

well, but considering that it is only allocating memory and copying photon data to the device, this 

is not a big surprise. One thing to note is that we were only able to test the brute force approach 

with photon maps up to a size of 50,000 photons. This is due to a limitation in the CUDA 

hardware API, as already mentioned in chapter 2. 

 

 

5.2 Memory Requirements 

It is obvious that, if we increase the amount of photons in our photon map we will need more 

memory to store this information. However, as Figure 14 shows, there is still a huge difference 

between our hashing methods and the kD-Tree. Especially with an increasing number of photons, 

our spatial hashing technique consumes significantly less memory than the kD-Tree approach. 

The reason for this behavior is that the tree structure produces a lot of overhead. For every node 

we have to store references to its children, the splitting plane and bounding box, along with the 
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photon information itself. The only overhead our technique introduces is the hash table, which 

grows with the scene size or the number of hash table entries, depending on the used hash 

function.  

 

 

Figure 14: Memory Consumption 

 

 

Figure 15: Peak Memory Consumption 
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The next thing we measured is each technique’s peak memory consumption, during the creation 

phase. Figure 15 shows the data of our experiments with the kD-Tree and our spatial hashing 

approach. The results show that our technique is again, significantly better than the kD-Tree 

approach, with an almost 8 times lower peak consumption at 500,000 photons.  

 

As you may have noticed, our graphs are missing the GPU brute force method. Because this 

technique just grabs all the available memory for the distance matrix, we thought it makes no 

sense to include this method in the comparison. 

 

 

5.3 Photon Search 

In this section we show, how the different techniques perform during the photon search. There 

are a couple of parameters that have an influence on the performance at this stage, apart from the 

different photon map types: 

• The number of photons in the photon map  

• The number of k nearest neighbor queries, which increases with higher image resolutions 

• The number of photons, requested for each query (k) 

• The maximum allowed distance between the query point and a photon 

During our experiments we discovered that the brute force technique is not able to compete with 

the other two techniques, in terms of speed. In a best case scenario the brute force approach was 

almost 10 times slower than the kD-Tree and the spatial hashing methods. Therefore, we decided 

to omit the brute force technique from our photon search graphs in order to keep them 

meaningful. 

 

5.3.1 Photon Map Sizes 
In Figure 16 we see the performance graph for the kD-Tree and the hashing technique, with an 

increasing number of photons in the photon map. We first take a look at the test results, obtained 

with the hashing function from Teschner et al. As we can see there is a slight increase in search 

time with photon maps larger than 200,000. This performance drop is caused by collisions in the 

hashing function. Because of these collisions, some photons end up in the same hash table entry, 
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even though their location is not close to that of the other photons in the entry. With an increasing 

number of photons, the chance for a collision increases, causing the observed performance hit. 

However, the performance with bigger photon maps can be greatly improved by simply using a 

larger hash table size. 

 

 

Figure 16: Global photon map search performance with different map sizes 

 

As we can see, the increase in search time with the kD-Tree and the linear hashing function is 

pretty steady, before performance drops off a little bit with the kD-Tree. The reason for this 

performance hit is an increasing access to local memory. Local memory is basically global 

memory, which is only visible to a single thread, but accessing it is just as expensive as accessing 

normal global memory. Local memory is used for the stack-based kD-Tree traversal. With the 

increasing number of photons we get a deeper tree, resulting in more local memory accesses.  

 

Because we also have to traverse the tree several times before the actual search, in order to 

determine the k nearest neighbor search radius, a deeper tree becomes more expensive to process. 

Figure 17 shows the increase of local memory accesses which become significantly more with a 

larger photon map size. Here, one of the disadvantages of using a tree structure on the GPU 
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becomes obvious. By its nature, traversing a tree requires a lot of scattered memory accesses, 

which is extremely bad for performance on current GPU devices.  

 

 

Figure 17: kD-Tree Traversal - Local Memory Access 

 

If we take a look at our hashing method, using the linear hashing function, we can see that we 
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areas, compared to the photon density in global photon maps, as illustrated in Figure 19. In case 

of the kD-Tree, this forces us to traverse through more tree nodes because we fail to reject tree 

branches at higher levels.  

 

 

Figure 18: Caustic photon map search performance with different map sizes 

 

 

Figure 19: Photon Density in a global (left) and a caustic (right) photon map 
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while collisions decrease, the number of photons in a cell is much higher because of the high 

photon density in some areas. The higher photon numbers in the cells are responsible for the 

increased photon search time, because more photons have to be processed. Using the linear 

hashing function we experience a similar problem. Our final hash table will have lots of almost 

empty cells and a couple of cells, containing lots of photons. However, we do not have a 

performance hit due to hash collisions, which is why this hashing function performs better. 

 

Another problem with our hashing technique is the sorted list that we use to collect photons. With 

many close photons around our sampling point, we end up reordering the list many times, before 

we have found our final set. One reason why our hashing method is still pretty fast is that we are 

able to return photon information, for areas with a low photon count much faster than the kD-

Tree implementation. If we have none or only a few photons in a cell, a thread will finish much 

faster than if it has to traverse a whole kD-Tree, especially if the tree is very deep, as is the case 

with large photon maps. 

 

5.3.2 Number of Photons 
 

 

Figure 20: Global photon map search performance with different k sizes 
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In this section we take a look at what impact, different photon sample sizes have on the overall 

performance. As Figure 20 shows, the k parameter has a pretty big influence on the performance 

with both techniques. We can see that the kD-Tree’s performance is slowly degrading with an 

increased photon search number. This slowdown is caused by the larger number of memory 

writes when writing the resulting photons to global memory.  

 

If we take a look at the spatial hashing technique, we will notice that the chosen hashing function 

has a big impact on the performance. Our experiments showed that the main reason for these 

different results is our photon collection implementation. As already explained, we are using a 

sorted list to return the k closest photons when a thread finishes. However, photons are stored in 

random order with respect to their sampling point distance. This means we most likely end up 

shifting around lots of photons in our sorted array. If we take a look at the behavior of our spatial 

hashing technique with caustic photon maps in Figure 21, we will see a similar result. 

 

 

Figure 21: Caustic photon map search performance with different k sizes 
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tests showed that the cause of this problem is again, the sorted list. On the other hand with 50 

samples there is hardly any performance decrease noticeable. It seems that the ordering of 

photons allows to reject many photons earlier with list sizes smaller than 40. With a larger list 

size we are adding many photons at list positions 30 to 40, making it necessary to shift photons to 

the back.  

 

With Teschner’s hashing function we could not obtain the same performance as with the linear 

hashing function. Again we see a significant performance drop, this time between sample sizes of 

10 and 20 photons. The reason for this behavior is again, the sorted list combined with the hash 

collisions. Because of the collisions, an entry might have photons which are actually far away 

from the sample point. This causes a lot more shifting in our sorted list, leading to the 

performance hit. The reason why this only happens with the caustic map is the higher photon 

density. With the global photon map we were able to reject the colliding photons easily by 

testing, if their distance to the sampling point is smaller than the maximum photon search radius. 

However, this check fails with the caustic photon map, where lots of photons are located within 

the search radius. Nevertheless, with the caustic photon map our solution is still better than the 

kD-Tree implementation. 

 

5.3.3 Query Radius 
The maximum query radius is an important parameter for both, the kD-Tree and the spatial 

hashing technique. The kD-Tree technique uses it for the initial query radius =, which is required 

during construction for the VVH calculation and during photon search for the radius estimation. 

For our spatial hashing technique, the query radius determines the size of our grid, cells which 

are used for calculating the grid positions and hash values. 

 

Figure 22 shows the performance of both techniques with different query radii. As we can see in 

the graph, all techniques have an almost steady increase in search time with an increasing query 

radius. Because we have to visit more tree nodes when searching for photons, using a larger 

query radius, the kD-Tree requires more time. When using the spatial hashing technique with a 

growing query radius, we end up having fewer hash cells in our hash map. This means there are 

more photons in the remaining cells which causes the increased search time. Again the spatial 
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hashing method, using the linear hashing function, is faster because we avoid the overhead of 

traversing a tree structure or having hash collisions.  

 

 

Figure 22: Global photon map search performance with different query radii 

 

 

Figure 23: Caustic photon map search performance with different query radii 
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A similar behavior can be observed when we run our tests with a caustic photon map. In these 

tests it becomes clear that choosing the right query radius is very important for the kD-Tree. As 

Zhou et al write in their paper, a good estimation of =  is critical to the performance of their 

technique. Figure 23 confirms that, showing a steeper increase of search time with an increasing 

search radius. Another disadvantage is the high photon density in caustic photon maps that 

prevents us from rejecting tree branches earlier, when using large query radii.  

 

Our spatial hashing technique is dealing better with the high photon density in a caustic photon 

map. In this particular situation, the sorted list in combination with a little optimization to the 

neighbor offset lookup table, works very well. Obviously, we can assume that most of the 

photons we are interested in, are located in the same cell as our query point. Therefore, all we 

have to do is to swap the center cell’s offset (0/0/0) to the first position in the lookup table. This 

ensures that each thread first checks all photons in the cell that contains the current query point, 

before it continues with the other neighbors. Our experiments showed that this little optimization 

improves search time by around 15 percent, compared to the non-optimized lookup table. Of 

course we still have to check all neighbor cells as well, in case the sample point is close to one of 

the cell corners, for instance. However, especially in the high density caustic photon maps lots of 

photons will be already found in the center cell, allowing us to reject other photons and avoiding 

list reordering. As Figure 23 shows, this holds true for the spatial hashing technique generally, 

independent from the used hashing function. 

 

One thing we also have to keep in mind is that memory usage, with the linear hashing function, 

depends on the grid cells size and therefore, on the query radius. A smaller radius means that we 

have smaller cells and therefore, we need a larger grid with more cells to cover the whole scene. 

In Figure 24 we see the impact of the search radius on the memory consumption of our method. 

Especially with small photon maps, there is a noticeable difference in memory consumption. 

Using the smallest radius 0.5, we need more than 4 times the memory, required with a radius of 

1.5 or 2. As the photon maps grow in size, the significance of the hash table overhead becomes 

less important because more memory is used to store the photon information itself. At around 

50,000 photons, the memory requirement is roughly the same as for the kD-Tree technique. 

Another factor, which has an impact on our memory consumption, is the scene size. If we have a 

large scene we need a bigger grid to cover every part of it. However, in such situations, a 
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different hashing function like the one presented by Teschner [53] is a much better choice, to 

avoid exhaustive memory usage. 

 

 

Figure 24: Hashing Memory Consumption with different query radii 
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because the radius is usually in inverse proportion to the photon map size. If we have a small 

photon map, we want to use a large radius to find enough photons whereas if we have a large 
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fits our technique to ensure an optimum memory usage. 
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Figure 25: Global photon map performance with different query size 
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Figure 26: Non-Coalesced Memory Access 

 

 

Figure 27: Caustic photon map performance with different query size 
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5.4 Results with the Brute Force Approach 

As already mentioned earlier, the brute force approach was far behind the other two techniques in 

our performance comparison. However, we still want to give a short overview of how this 

technique performed in the different test cases. In Figure 28, we summarized the performance 

results for the radius, photon sample size and query size tests. We did not include any measures 

from the variable photon map tests, because the technique only supports a maximum photon map 

size of 2�>. There is also no need to distinguish between global and caustic photon maps, because 

the brute force approach is independent of the photons’ distribution or density. 

 

 

Figure 28: Brute Force Performance 

 

As we see in the performance graph, the technique is completely independent from the query 

radius. In the original version of the algorithm there was no support for a maximum query radius 

included. Therefore, we extended the insertion sort algorithm to stop after sorting the first k 

elements or when the last, sorted photon’s distance is outside the radius. However, the results 

showed that the algorithm was not able to benefit from this adaption. 

 

The second test with variable photon sample sizes shows a slight increase in search time. Again 

we started with 10 samples in test 1 and increased the size by 10 photons, up to 50 for test 5. 

0

100000

200000

300000

400000

500000

600000

1 2 3 4 5

ms

Test run

Brute Force Performance

Query Radius

Photon Number

Query Size



Photon Mapping on the GPU  Chapter 5 – Results and Analysis 

Martin Fleisz  47 

According to Garcia et al, the sorting algorithm is the bottle neck of their technique. Table 3 

shows the partitioning of the computation time, between the various steps during search. It should 

be noted that the data in the table is for a rather small reference point and query point set of just 

4800 each. 

 

Table 3: Computation time decomposition for the Brute Force Technique [25] 

k 5 10 20 

Distance 82% 71% 51% 

Sort 15% 26% 47% 

Memory Copying 3% 3% 2% 

 

In our case, where we have thousands of photons in the photon map (reference points) and even 

more query points, the distance computation clearly dominates. However between the photon 

sample test cases with 10 and 50 photons per sample, computation time still rises by roughly 20% 

due to the increased sorting effort.  

 

Finally, we also performed tests with different photon query sizes, using the brute force 

technique. As already mentioned in chapter 2, we had to split the photon query into multiple 

chunks because we can only search for 2�> query points at one time. Of course this introduces a 

slight overhead, caused by copying memory to and from the device. However, this is not as 

significant as the tremendous increase in distance computation, time that causes the slow down 

we observed during our tests.  

 

 

5.5 Image Quality 

In this section we take a look at the quality of the returned photon information. If a technique 

misses or returns false photons for a query, it will have a negative impact on the image quality. 

We already showed that our spatial hashing technique is pretty fast and now we take a look at the 

quality of the returned photon information. In order to evaluate quality, we will directly visualize 

the photon maps and compare them, using the method from [55]. This method can be used to 
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determine if images are perceptually identical, even though they might contain some numerical 

differences. 

 

 

Figure 29: Image quality with hashing (left) and kD-Tree (right) with 10,000 (top) and 50,000 

(bottom) photons 

 

In Figure 29 we see four images created with the spatial hashing and the kD-Tree technique, 

using different global photon map sizes. The upper images were created with a global photon 

map, containing 10,000 photons whereas the bottom images used 50,000 photons. Looking at the 

results, we can say that both techniques are identical in terms of quality and visual appearance. 

Checking the images with the aforementioned image comparison algorithm confirms our 

observations. The same holds true for the two images, showing the results for a caustic map, 

containing 10,000 photons in Figure 30. Again, the comparison algorithm confirmed that both 

images are visually equal, in terms of quality. 
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Figure 30: Image quality with hashing (left) and kD-Tree (right) with a caustic photon map 

(10,000 photons) 

 

 

5.6 Observations 

During our tests, we made a couple of observations that we want to summarize in this section. 

We start with the brute force approach, which proofed to be not very useful for photon mapping. 

The technique has a time complexity of O(mnd), where m is the number of photons in the photon 

map, n is the number of query points and d is the dimension (in our case 3). This clearly shows 

that the brute force technique is scaling pretty bad with large photon maps or query sizes. 

Unfortunately, especially with photon mapping, these numbers tend to be relatively big. Also the 

size limitation to 2�> photons or query points is very constraining. The strengths of the brute 

force technique seem to be smaller point sets with higher dimensions, as well as its 

straightforward implementation.  

 

Another observation was, that the brute force and the kD-Tree technique have problems on low 

performance GPUs. Compared to the results that were presented in both papers, we obtained 

much worse results on our system. It seems that both techniques rely heavily on a greater number 

of cores, a higher clock rate and higher memory bandwidth. Unfortunately, we have not had the 

possibility to perform benchmark tests of our spatial hashing technique on high performance 

GPU devices. However, we still proofed that on low-class consumer hardware, our approach is 

able to outperform both other techniques. 
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The kD-Tree was sometimes a very close competitor to our spatial hashing implementation. 

However, we think that besides performance there is another big advantage, our approach has 

over the kD-Tree, which is implementation complexity. The kD-Tree construction consists of 3 

different stages, where each stage consists of multiple kernel functions. Even though, Zhou et al 

claim that most of the parallel primitive functions, like scan and sort, are implemented in CUDPP 

[56] others like the splitting kernel [40] or compaction kernel [43] are not and have to be 

implemented from scratch. In contrast, our spatial hashing implementation requires three very 

simple kernels for construction and only uses the radix sort functionality from the CUDPP 

library. Search is just a simple iteration over the photons within the different cells, whereas the 

kD-Tree requires the CPU and multiple kernels to estimate the query radius and traverse the kD-

Tree. 

 

Our experiments also showed that the chosen hashing function is very important for our hashing 

technique, in terms of memory consumption and search speed. With smaller scenes, the linear 

hashing function proofed to be the best choice in almost all test cases. However, as already 

explained, this function puts some constraints on the supported scene types. With the hashing 

function presented by Teschner et al, we are able to overcome these problems, at the cost of a 

sometimes longer photon search time. Our tests also showed that it is important to choose the 

right hash table size with Teschner’s function. Especially with larger photon maps, a too small 

table can result in many hash collision, leading to a big performance hit. Nevertheless, 

performance with this hash function will certainly drop because hash collisions are inevitable, 

which results in cells containing more photons. 

 

Construction time with our spatial hashing technique is almost 0, even on our low performance 

GPU. This is definitely one of the strengths of our technique. Another advantage is that we are 

able to use texture memory for our photon data and utilize the texture cache to further improve 

performance. The kD-Tree cannot profit from using texture memory because the memory reads 

are scattered and therefore, the texture cache will not improve performance. What we also 

observed during our experiments is that non-coalesced or local memory access literally kills 

performance, especially on low range GPU hardware. This is one of the reasons why the kD-Tree 

did not perform as well as our spatial hashing technique. 
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One issue we found with our spatial hashing implementation was the photon collection, using the 

sorted list approach. We think that there are a couple of possible solutions for this problem. The 

first one is to use a different data structure for the photon list, like a max heap [52]. We think it is 

possible to implement this data structure efficiently in shared memory. Another solution is to 

further parallelize the search and process each cell in a different thread, where each thread will 

search for the k closest photons in its cell, for a given query point. The problem with this solution 

is that we somehow have to collect the final result set from these sub results. We implemented a 

naïve approach that simply uses an insertion sort to find the closest k photons at the end. 

However, this approach was slower than our sorted list implementation because we were running 

the insertion sort in just one thread. In order to obtain a better performance, the sorting or 

collecting has to be parallelized as well. Finally, there is an interesting paper by Deo et al [57] 

that presents a parallel implementation of a priority queue. This priority queue could be created 

after each thread finished processing its cell, making it quite easy to return the closest k photons. 
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- Michael Abrash, Programmer at Rad Game Tools [58] 
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6.1 Conclusion 

We started our project with the aim of developing an improved Photon Mapping technique that is 

tailored for parallel architectures, specifically GPUs. We began by looking at existing papers, 

published for Photon Mapping and k nearest neighbor search on the GPU and how they exploited 

parallelism. In our opinion, both methods had a few deficiencies in how they parallelized work, 

organized photon data or in their algorithm complexity. After analyzing these weaknesses, we 

came up with a new approach to parallelize Photon Mapping, where we try to avoid all the 

previously discovered shortcomings. Our new method is based on spatial hashing and grouping 

photons together in cells, according to their location in space. To evaluate our concept we 

implemented prototypes for the brute force, the kD-Tree and our spatial hashing technique and 

carried out a series of benchmarks. 

 

In our tests we observed that our new approach was faster during construction and almost all the 

search tests, than the other two techniques. Especially construction time was greatly reduced, 

compared to the kD-Tree solution. We also proofed that our spatial hashing approach works well 

with both, global and caustic photon map types. Some problems occurred with larger photon 

sample sizes of up to 40 or 50 photons per query point. Along with speed measurements, we also 

examined the memory consumption of the various methods. Our approach consumed the least 

memory but, as we noted, this strongly depends on the size of the rendered scene, the maximum 

photon search radius and the used hashing function. Finally, we validated the quality of the 

returned photon samples, by directly visualizing the photon maps and comparing the resulting 

images. The quality of the resulting images was identical and finally proofed the usefulness of 

our technique. 

 

We ended the results chapter with a summary of our observations, identifying two issues with our 

solution that we experienced during the tests. Memory consumption and the photon collection 

implementation were found to be the culprits of our technique. Finally, we presented a couple of 

possible solutions to these shortcomings. Nevertheless, there are a couple of areas where we think 

our technique might be very useful, which we will describe in the following section. 
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6.2 Future Work 

We think there are a couple of interesting topics, upon future work can be based on. The first one 

is to use our spatial hashing approach for rendering participating media, using Photon Mapping 

[59]. Examples for participating media are smoke, dust or clouds, which all affect light, when it 

travels through them. When a light beam enters participating media it is either absorbed or 

scattered, which means the light beam’s direction changes. Because our hashing function is based 

on a grid of cells, building a volume, we think it is a perfect structure for storing photon 

information of volumetric participating media, like in the aforementioned examples. 

 

Another interesting approach is to combine our spatial hashing method with the progressive 

Photon Mapping technique in [60]. As we were able to see in our experiments, our method scales 

pretty well with small photon map sizes and construction overhead is very low. Both these factors 

should favor our technique for the progressive radiance estimate, used in the paper. 

 

Like in the paper by Garcia et al [25], we think it is also interesting to see how well our approach 

scales with higher dimension points. A couple of adjustments need to be done to the algorithm in 

order to support variable dimensions, specifically the grid and hash calculation as well as the 

neighbor offset lookup table. 

 

Future developments in graphics hardware will also have an important impact on Photon 

Mapping techniques. With their newest range of GeForce graphics cards, nVidia relaxed the 

requirements for coalesced memory access. Maybe future generates will further relax these 

requirements or provide caches for local and global memory access. Like the kD-Tree, our 

technique could greatly profit from such developments. 

 

Finally, there is also Intel’s new GPU, called Larrabee [61], which is going to be released next 

year, offering a many-core x86 architecture for visual computing. Our spatial hashing algorithm 

should be well suited for this architecture because of its high parallelization. The sequential 

photon access pattern in each cell should also guarantee an optimal use of Larrabee’s first and 

second level data caches.  
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