Photon Mapping on the GPU

Martin Fleisz
50894924 @sms.ed.ac.uk

Master of Science

Computer Science
School of Informatics
University of Edinburgh
2009

Photon Mapping on the GPU Preface

Abstract

In realistic image synthesis, Photon Mapping igssential extension to the standard ray tracing
algorithm. However, recent developments in proaedssign, towards multi-core systems do not
favor the tree-based photon map technique. We dpedla novel approach for Photon Mapping,
based on spatial hashing. Photon map creation hotbip search are fully parallelized and take
full advantage of the processing power of curreRUS. Synchronization is kept to a minimum
and we are able to use texture memory to cachesatoethe photon information. In order to
evaluate our new approach we carried out a sefidgeiochmarks with existing, GPU based
photon mapping techniques. Our spatial hashingcagbr is shown to be much faster than
existing techniques with almost any possible camfgon, while archiving the same image

quality.

Martin Fleisz |

Photon Mapping on the GPU Preface

Acknowledgements

I would like to thank my supervisor, Taku Komura Fas advice and encouragement throughout
this project. 1 would also like to thank Vincent rGa, who helped me to get a better

understanding of his paper and also provided satode to his work.

Martin Fleisz Il

Photon Mapping on the GPU Preface

Declaration

| declare that this thesis was composed by me,thigatvork contained herein is my own except
where explicitly stated otherwise in the text, dnalt thesis work has not been submitted for any

other degree or professional qualification excepecified.

(Martin Fleisz)

Martin Fleisz 11|

Photon Mapping on the GPU Preface

Table of Contents

R [01 1o To [1 o1 1o o 1
1.1 Problem STAtEMENTcooi it commmme et e e as 2
02 |V o 1)Y= 11 o] o U 3
1.3 Structure of the REPOITuiiiiiiiii e e e e 3

2 BaCKgrOUNG ... et e e 4
2.1 Theoretical Background ... 5

2.1.1 RAY TTACIHNG - e e sttt et e et s st st ssbestbsbbemmemeeeeeeeeeeeeeeees 5
P22 7 = aTo) (o] 1Y/ =T o] o] o PSPPSR 6
2.1.3 GPU IMPIEMENTALIONScceiiiiiiiiiiieeeeee ettt 8
2.2 Fast k Nearest Neighbor Search USING GPU ..cccacaaeiiiiiiiiiiiiiiiiiiiiiii e 8
F A R = T T (02 PP PPPPPPPPPPPP 8
2.2.2 CONSITUCTIONittiiiiieiee e et e e e ettt e e e e s s et bbb e e e e e s s nnenereeeeeas 9
2.2.3 Photon SEArCh ... 9
2.3 Real-Time KD-Tree Construction on Graphics Hardware............cccccvvvvvvevevienennnne. 10
2.3.1 BASICS ittt e e e et e e e e sennr e e e e e e 10
2.3.2 CONSITUCTION ...uttiieiiieie e ettt e e ettt e e e e e e e et e st e e e eensnbne e e e eaeeas 11
2.3.3 Photon SEArCh ... 14
2.4 Analysis of existing TEChNIQUEScccoviiiiiiie e 15
2.4.1 Brute FOIrce APPIrOACKuueiiiiiiiiiiitiieeeeeee ettt ettt reeeeaeaaaaeeas 15
2.4.2 GPU KD-Tree APPrOaCh........ccoiiiiiiiiiieiieeeeeeeiiiieeiieiteeveeev e mnamnee e 15
3 A NEW APPIOACKH ... ittt ettt e et e e e e e aee 17
3.1 Photon Mapping using Spatial Hashing ..., 18
0 I A O 1Y oY1 TSP RTOPPPPPPPPPTR 18
700 0 I o T=To] Y PP 19
3.1.3 IMPIEMENTALION......cci i e 21
0 I S N [1 = U1 0 TSP TOPPPPPPPPPTI 23
v

Martin Fleisz

Photon Mapping on the GPU Preface

4 PerformanCe MEASUING cccuuuiieut e e e e etieeeeeai s e e eeti e e aeannaeeeeens 25
4.1 Measureable Parametersooiiuiiiiieeeeeiieiiie e 26
4.2 System SPEeCIfiCAtiONcooiiiiiieeee 27
4.3 Application SPECITICALIONuuuueiiiiiiitceeeeieeiieiieieeiieiieieeerebee e eeeeeeeeeees 28
4.4 Test Scene SPeCfiCatiONccoooei oo e 28

5 ReSUltsS and ANAIYSIS........ciiiniiiiii e ieeeme e 30
5.1 Construction Time PerformMancCe..............ceeememieiieiiiiiiiiiieiieiieieeeieseeneeeneneeeeeeeeeeeeees 31
5.2 MemOry REQUIMEMENESuuuiiiiiiiiiiintiimmmmmm s e s se e e s e s e e s e e e e e e s eeamessnnnnnnnnes 32
5.3 PROtON SEAICN 34

5.3.1 PROLON MAP SIZESuuuiiiiiiiiiiiiiiitiit ettt et a et e et e ee ettt e e e et e e e eeeeeeneeaeaaaaaaaaaas 34
5.3.2 NUMDEI Of PROIONS.....ciiiiiiiiiiiiiieiee et teeeeee e 38
5.3.3 QUEIY RAIUScooeiiieeee e 40
5.3.4 QUETY SIZE e 43
5.4 Results with the Brute FOrce APProach ... 46
5.5 IMage QUAIILYcoeiieeeee e 47
5.6 OBSEIVALIONSuiiiiiiiiiiiiiit ittt e et e e e e e e e e e e e s e e e e e ss bbb n e e e e eeeeenaas 49

G O o] [1110 o PP 52
6.1 CONCIUSION ...t st s bt ebbennnnnrne 53
6.2 FULUIE WOIK ...oiiiii ittt ettt ettt e e e e e e e e e e et b e e e e e e eeenaas 54

7 BIblOGraphy .. .ccoee e 55

Martin Fleisz V

Photon M

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:

apping on the GPU Preface
RAY Tracing [8]ceeiiiiiiiiii i ieeeee bbb 5
Ray Tracing on the left, Photon Mappingloe right ... 6
Photon density @StiMation [17]ccceeeuiemii e 8
Small NOde SPIIttING [B6]uummumeiiiiiiiiiiieeiieeeiieiieeeeieeaeeeeeeeeeenneeeeeeeeeeeeeeseeeeeseeees 13
Compaction of the active node list [43]........cooorrii 14

Immediate lookup of photons in the célih® sample point X, using the hash table....18
After calculating the hashes the photsingd sorted and the hash table is created19....
Calculating neighbor cells’ grid positspmusing the values from the offset lookup table

... 21.
Figure 9: Hash Table (start index, end index) amokéh Table relationccooeiiieeeeee. 22
Figure 10: 2D view of a scene, green cells occugmnetry whereas red cells do not............ 3...2
FIQUIE 11 TOSE SCBME .. uuuuiiiiiiiirirrrrrr et e e e e et e et e et e aa e e s e e e e e e e e e e e e e aaeaaaaaaaaaaaens 29
Figure 12: Construction Time Performance for GldPabton Map..........ccccceeeiiiiiiiiiniiniinnenns 31
Figure 13: Construction Time Performance for CauBhoton Mapccceeeeeieieeeeeeeneen, 32
Figure 14: Memory CONSUMIPLIONuuuuueuetueueeaeeeeeieeiesteeeeesesseesssssesnssesseesrenerneeeeeseeeeeeeeeeeeee 33
Figure 15: Peak Memory CONSUMPLIONcouiiieiiieiiiiiiiieiieeieeeeeeeeeeeeeaee e ceeerenee s s e e aeaaaeaeaes 33
Figure 16: Global photon map search performancle eifferent map Sizescccccccunnnee 35
Figure 17: kD-Tree Traversal - Local MemOry ACCESS........ccoooiiiiiiiiiiiiieiieeeeeeeee 36
Figure 18: Caustic photon map search performanttedifferent map sizescccccceee..e. 37
Figure 19: Photon Density in a global (left) anchastic (right) photon map...........cc.cceeeeeeee. 37
Figure 20: Global photon map search performancle aifferent k sizesc.cccceiiiiii i 38
Figure 21: Caustic photon map search performanttedifferent k sizescccccvvvvvivv e 39
Figure 22: Global photon map search performancle eifferent query radii...........cccc..........41
Figure 23: Caustic photon map search performanttedifferent query radii........................41
Figure 24: Hashing Memory Consumption with diffdrgqoery radii ..., 43
Figure 25: Global photon map performance with défe query Sizeccccoeeiiiiiiiiiiiiiennns 44
Figure 26: Non-CoalesSced MEMOIY ACCESS.... . sennnnnnnnnanasaaaasaaaaassasssssssssssssssssssnssnnes 45
Figure 27: Caustic photon map performance withed#ifit qUEry Size.........ccccccvvvvivinnrnimmnnns 45
Figure 28: Brute FOrce PerformancCeoooooeeeoiioiiiiieieis e 46
Martin Fleisz Vi

Photon Mapping on the GPU Preface

Figure 29: Image quality with hashing (left) and-KBee (right) with 10,000 (top) and 50,000

(DOTEOM) PROTONS ... e aa et e s s s ts e st st e esensnsnennnenes 48
Figure 30: Image quality with hashing (left) and-KBee (right) with a caustic photon map
(10,000 PROIONS) . .ciiieiieiecee e 49

Martin Fleisz VI

Photon Mapping on the GPU Preface

List of Tables

TaDIE 1: MEASUIEIMENTSeuiiiiiiiiiiiiitietet ittt st s e bess e sebsbsnenennnes 26
Table 2: System SPecCifiCatioNcoo oo 27
Table 3: Computation time decomposition for thetBrigorce Technique [25]uvveeeeee a7..

Martin Fleisz VI

Introduction

“The only way forward in terms of performance - buw also think in terms of
power - is to go to multicores. Multicores put @k on the historical trajectory of
Moore's Law. We can directly apply the increasdramsistors to core count - if
you are willing to suspend disbelief for a moméat tyou can actually get all those
cores working together.”

- Justin R. Rattner, Chief Technical Officer aielrt]

Objectives

» To explain the problems we try to address withroject
* To explain our motivation behind this project

* To give an overview of the report’s structure

Photon Mapping on the GPU Chapter 1 - Introduction

1.1 Problem statement

Because of recent developments in processor dgsigallel computing has become the new way
of creating high performance applications. Espsci@raphics Processor Units (GPUs) offer
amazing computation power and are available irt aflstandard consumer machines these days.
However, in order to unleash this available procgspower, algorithms have to be parallelized

[2]. In a lot of cases, like Photon Mapping, ttask can be quite difficult due to a few reasons.

The first problem arises with the creation of tHefon map data structure. For performance
reasons this structure is usually a balanced k@-T8 used to speed up the photon search.
However, it is difficult to parallelize the treertsiruction because all threads have to access the
same data structure. This usually requires a losyoichronization overhead and completely
defeats the advantage of parallel processing. Ajhalensen discusses parallelization of photon

search in [4], we think that this is only a med®splution to the overall problem.

Another problem is the highly irregular memory acpattern, revealed during tree construction
and traversing. In order to find photons in a k24 rlots of scattered memory reads have to be
performed which is everything but optimal for GPWdso, the interdependent operations that
have to be performed during tree traversal entat the hardware is not able to hide these

memory latencies.

In this project we want to present and evaluateea@ RPhoton Mapping technique for GPUSs.
Using a new approach, based on spatial hashinggemize the photons in the photon map, we
think that we are able to utilize the availableghlat computation power more efficient than
existing techniques. In order to proof our proposechnique in terms of performance and
quality, we will implement prototypes of the vargoapproaches and compare them. We will also
apply different parameters and data sizes durimgesis, in order to evaluate the scalability of

the different techniques.

Martin Fleisz 2

Photon Mapping on the GPU Chapter 1 - Introduction

1.2 Motivation

Sequential computing has reached a point where lpggBrmance improvements are not
feasible anymore. Instead, chip manufacturers ave agesigning multi-core processors in order
to be able to deliver regular performance improwasieHowever, in order to utilize this

available power, algorithms must be massively pelizéd and, in case of GPUs, executed using
thousands of threads. While some sequential algositcan be easily changed to parallel

versions, others are very difficult or even impbksto modify in such a manner.

The motivation behind this project is to come upeav technique for Photon Mapping that fits
these trends in processor design. Our main ideadsvelop a heavily parallelized algorithm that
is designed with respect to current GPU architestulrhis means we have to utilize as many
threads as possible for the photon map creationpdwdon search, while trying to avoid any
synchronization. Scattered memory access shoutd lskept to a minimum to achieve the
highest possible performance. As we believe theréubf computing is within parallelization, our

technique should also be very useful for futureegal purpose multi-core architectures.

1.3 Structure of the Report

After the introduction, a short explanation of REnacing and Photon Mapping is provided, to

give a basic understanding of these techniqueghé&umore, we take a look at existing GPU

approaches, explaining how they work in detail eshét shortcomings they have.

Chapter three introduces our new GPU Photon Mapgpgoach, based on spatial hashing, with
detailed information on our current implementation.

The results of our experiments and tests are ptegem chapter four, giving an overview of the

performance, memory consumption and scalabilitthefvarious techniques.

In chapter five we will critically analyze the rdisupresented in the previous chapter.

Finally, chapter six contains conclusions and dioes for future research.

Martin Fleisz 3

Background

"Parallel programming is perhaps the largest prablén computer science today
and is the major obstacle to the continued scabhgomputing performance that
has fuelled the computing industry, and severatesl industries, for the past 40

years."

- Bill Dally, Chief Scientist and Vice President¥VIDIA Research [5]

Objectives

* To give an introduction to Ray Tracing and hightigh problems
* To explain how Photon Mapping works
» To give an overview of existing GPU Photon Mappiachniques

» To identify weaknesses in existing GPU Photon Magpechniques

Photon Mapping on the GPL Chapter 2 - Background

2.1 Theoretical Background

2.1.1 Ray Tracing
Ray Tracing is a technique for image synth, which is used tareate a 2D image of a &

world. The first Ray Tacing algorithm was introduced by Arthur Apg[6] and, with some
modifications,is still used in current ray traceiFor each pixel on our viewing plane we sh
one or more rays into the scene, testirthey intersect with any objedtigurel). We might find
a few objects that auay intersects but we will only consider the at, closest to the viewer.
Now we have to distinguish between three differkimids of rays that are generated n

depending on the object’s material propertshadow reflection and refraction ra [7].

Image

] .
Light Source
Camera fﬂf 8 g

L% ‘~_| View Ray

-_\-\-_""‘-\—\.
—

k]

N Scene Object

Figure 1: Ray Tracing [8]

Shadowrays simply check if our intersection point facey af the light sources in the scene
order to determine the amount of lireceivedwe shoot another ray from this point to each |
source in our scene. If all rays reach the lightrse without intersecting another ob, we know
that our point is fully lit and we have to colorathpixel on screen. In case all of thesys
intersect other objectsje knowthatour point is within a shadowed area and we colat fixel

very dark or just black.

Martin Fleisz 5

Photon Mapping on the GPU Chapter 2 - Background

Reflection rays are cast when our initial ray laiteeflective surface, i.e. a mirror. Leaving from
the mirroring surface, we test for object intersmtiagain. If we find an intersecting object, we
pick the closest one to our reflective surface emldr the pixel, using the reflected intersection

point’s color.

The third ray type is cast when we hit a refractueface, i.e. a glass full of water. Light changes
its direction according to Snell’'s Law [9] whentravels between two media with different
refraction indexes. The coloring for refractive edig works similar to reflective objects in the

previous paragraph.

2.1.2 Photon Mapping
The problem with traditional methods, like Ray Tngcand Radiosity is that they are not able to

model all possible lighting effects in a scene (fég2). Ray Tracing only simulates indirect
illumination by adding a constant ambient term he tighting calculation, whereas Radiosity
only simulates diffuse reflections, completely igng mirrored surfaces. Therefore, approaches
were made to combine both methods, where eachiteehnenders the effects the other fails to.
However, such approaches are is still not suffices they both fail to model focused light
effects, like caustics. Solutions to this problemrevpresented by [10], [11] and [12] but they

introduced other problems as [13] explains.

Figure 2: Ray Tracing on the left, Photon Mappingfe right

Martin Fleisz 6

Photon Mapping on the GPU Chapter 2 - Background

Jensen presented a new extension to Ray Traciegdlmn the concept of photon maps [14], that
was able to overcome all these problems. In a fiests, the photon map is constructed by
emitting light rays from each light source into teeene. In order to emit photons more
efficiently, projection maps can be used as deedrib [15]. Whenever a photon hits a diffuse
surface, its position, incident angles and power stored in the photon map. Jensen uses a
balanced kD-Tree [3] to organize this data, whighvéry useful to locate photons during the
radiance estimation. Afterwards, we decide if thetpn is absorbed or reflected, using Russian
roulette [16]. Photon hits are not stored for specwbjects because the chance, of having
incoming photons from the specular direction isadteero. Instead, these surfaces are rendered
using standard Ray Tracing techniques, as explaadgr. An important property of the photon
map is that it stores lighting information decoupfeom the scene geometry. This means that the
photon map’s lookup time for complex scenes witmynaolygons, is the same as it is for simple
scenes with just a few polygons.

In the second pass, the information in the photap m used to calculate the effects of indirect
lighting and caustics. Direct illumination and splkae surfaces are rendered, using standard Ray
Tracing because these effects would require a hugmunt of photons in the photon map, to be
rendered correctly. In order to calculate the o#ld radiance for any given poixtin a scene,
Jensen uses density estimation. As shown in Figut®y expanding a sphere arougduntil it
containsn photons, we are able to collect photon samplegherestimation. This yields the

following equation for estimating the reflectedigattel, at a given poink:

L. (x,@) = ?z fr(x, @y, @)Ad,(x, @) (2.1)
p=1

wheref, is the surface’s bidirectional reflectance disttion function (BRDF) andb,, is the

power of photorp, stored in the photon map.

Martin Fleisz 7

Photon Mapping on the GPU Chapter 2 - Background

Figure 3: Photon density estimation [17]

2.1.3 GPU Implementations
There have already been a couple of successfuhpite made, to implement Ray Tracing

efficiently on GPUs. Purcell et al [18] presentkd first ray tracer, running entirely on the GPU,
using a uniform grid for acceleration. The firstpl@ementations that achieved better performance
than CPU based ray tracers were presented in fiP]20]. Unfortunately, both these techniques
work with static scenes only. The latest work friumebke et al [21] presents a technique,
combining Ray Tracing and rasterization methodslitain real-time performance on dynamic
scenes. Photon mapping has been implemented fdrr-coud CPUs in [22] and for older GPU
generations in [23]. In the following sections, ta&e a look at the available techniques that can

be used for Photon Mapping on current GPU hardware.

2.2 Fast k Nearest Neighbor Search using GPU

2.2.1 Basics
As described earlier, calculation of the illuminatiof a distinct point requires a certain amount

of closely located photons. This kind of searchaled k-nearest neighbor search [24], which is

a special variation from the family of nearest héigr search algorithms. In our case, the kNN

Martin Fleisz 8

Photon Mapping on the GPU Chapter 2 - Background

search problem consists of finding th@earest photons, for a set of query points thaiveust to

calculate the illumination for.

In [25], Garcia et al present a brute force bagg@ach to the kNN search problem. Their work
is kept very general and supports points with eabjtdimensions, as well as differently sized
reference and query point sets. As they write @irtreport, this exhaustive search method is by
nature highly parallelizable and therefore, is @ettf/ suitable for a GPU implementation. Their

solution runs completely on the graphics deviceygletely offloading all work from the CPU.

2.2.2 Construction
All that needs to be done during the constructiosetup phase is allocation of device memory

and copying the required data to the device. Fgiv@n set oim photons ancdh query points, the

memory requirements are pretty high witl{fnm) In order to improve performance, data is
loaded into different kinds of memory on the devi€he query set is stored in global memory,
which has a huge bandwidth but performs bad if s£de not coalesced [2]. Photons will be

stored in texture memory which provides bettergrenfince on non-coalesced accesses.

2.2.3 Photon Search
Photon search is split into the following threepste

« Compute all distances between a query pgirEnd all reference pointg with j € [1,m]
» Sort the computed distances

» Select the firsk reference points, corresponding to khemallest distances

These steps are repeated for all query pointsamttery set and can be performed in parallel on
the GPU. Distances are computed and stored in asiaijar to a matrix. Because our query
point set will be usually quite large (i.e. moran300.000 for an image resolution of 640 x 480),

it is necessary to split our query, due to memanystraints.

The sorting part is, by its nature, very problemas it compares and exchanges many distances

in non-predictable order. This means memory acégsson-coalesced which results in a

Martin Fleisz 9

Photon Mapping on the GPU Chapter 2 - Background

performance hit, when using global memory. Textmesmory would be a good alternative, but

unfortunately it is read-only memory and therefaamnot be used for sorting.

For the sorting step, Garcia et al tried out a @b algorithms in their paper. Quicksort [26] is
very popular but cannot be used with CUDA, duehi lack of support for recursive functions.
Therefore, their first implementation used the cault algorithm [27], which is able to sort the
calculatedn distances inO(n log n) time. However, because it is not necessary to thart
complete data set but only the fikselements, Garcia et al finally used a modifiedsi@r of
insertion sort [28]. Insertion sort proofed to lstér for finding up t& = 100 neighbors, before
being outperformed by the comb sort implementati®acause insertion sort itself cannot be

parallelized efficiently, sorting for all query pas is performed simultaneous instead.

Obviously, this solution demands a huge amountoégssing power. Complexity @(nmd)for
then timesm distances computed a@{nmlog m) for then sorts, performed to find the nearest
reference points. However, according to Garcial,ehair brute force approach performs faster
than a kD-Tree based software implementation. Reir tomparison they used the ANN C++
library [29], which implements the kD-Tree base@nest neighbor search method, presented in
[30].

2.3 Real-Time KD-Tree Construction on Graphics Hardware

2.3.1 Basics
Obviously, one way to move the Photon Mapping tegm onto graphics hardware is to do the

creation and traversal of the kD-Tree on the GPbke Tirst attempt to accomplish this was
presented by Purcell et al in [23]. However, thveark is a bit outdated because this technique is

based on graphics hardware that is far less flexabd programmable than current devices.

More general work on parallel kD-Tree constructiwas published by Popov et al [31] and
Shevtsov et al [32]. Both approaches are based wn-core CPUs and therefore, have design

issues when used on a GPU. The first problem iskbaTlree construction can easily become

Martin Fleisz 10

Photon Mapping on the GPU Chapter 2 - Background

bandwidth limited on large input data sets, dugs@andom memory access pattern. Therefore,
the construction switches from breadth first seai8RS), over to depth first search (DFS)
manner at deeper nodes. This means that theseaappso keep the number of concurrently
running threads pretty low. Graphics hardware h@melias a much higher memory bandwidth
and requires at leasd® ~ 10* threads for optimal performance [2]. Another intpat factor
during construction is the balance of the tree thedefore, finding the right splitting position for
a node. Both papers use the Surface Area Heu(BAe&l) [33] [34] to evaluate the costs for a
splitting candidate. Even though the SAH improvies guality of trees significantly [35], its

calculation consumes a lot of time.

Finally, parallelizing the photon search or tremvérsing is pretty easy, as the tree is accessed
read-only. However, for performance reasons imgpdrtant that the tree is well balanced and
stored efficiently. Storing the tree efficiently ares to keep scattered memory accesses as low as
possible, by placing child nodes close to theiepts. The traversal algorithm itself is not a good
candidate for parallelization. Instead, performmgltiple traversals simultaneously is a much

better way, in order to obtain good performance.

In [36], Zhou et al present a new approach to kBeTeonstruction and traversal on GPUs, using
CUDA. Even though their main focus is on SAH kD-@ @nstruction for Ray Tracing, they also
provide information on adapting the technique faoten mapping, which we will concentrate

on.

2.3.2 Construction
Zhou et al build their kD-Tree completely in breaditst search manner, distinguishing between

two different node stages. During the initializatistage, global memory is allocated for the tree
construction and the root node is created. Fopti®on mapping implementation we also have
to create three sorted order lists (one for eantedsion) for all point coordinates, using the sort
function from [37]. Using the sorted order, we alde to compute bounding boxesOrfl) time
and we avoid to use segmented reduction, which eosgies for the sorting. Additionally, we
maintain three associated point ID lists (one fachecoordinate axis) which have to fulfill the

following criteria:

Martin Fleisz 11

Photon Mapping on the GPU Chapter 2 - Background

» Points in the same node are contiguous in all lists

* Points in the same node start at the same offs#l lists

In the first step, the so called Large Node Stagexecuted. This stage splits nodes using a
combination of spatial median splitting and “cuttioff empty space”, as described in [38].
Because in the Large Node Stage the number of nsdesaturally smaller, computation is
parallelized over all points rather than over nodesst we need to find the splitting plane (the
plane that splits the longest axis in the middidder repeatedly applying empty space splitting
before. Then each photon is classified as beirfgeeieft (1) or right (0) of the splitting plane.
Finally, we perform the scan operation from [39],arder to use the split operation in [40] to
split the current node. As Zhou et al mention igirtlpaper, the sorted coordinate and ID lists
maintain all their properties after splitting. Aftde split we check if the amount of photons in
our child nodes is below the threshdld= 32. If the number is smaller, the node is added ¢o th
small node list. Otherwise it is added to the actist and scheduled for the next iteration of the
Large Node Stage. The Large Node Stage finishesoas as there are no more nodes in the

active list.

The next phase is the Small Node Stage and begihsavpreprocessing step for all nodes in the
small node list, created during the previous stdgethis step we collect all splitting plane
candidates and calculate the resulting split setsch define photon distribution after a split. It

should be noted that splitting planes are resttitdanitial photon positions in this stage.

After the preprocessing has finished, we procedssnall nodes in parallel and split them, until
each node contains one photon. Since we need ld duD-Tree for points (or photons), rather
than triangles, we are now using the Voxel Volumeuttic (VVH) [41] for split cost

evaluation, instead of the SAH. Given a split posik, we can calculate the VVH as follows:

CL(.X') VOl(VL ‘l_' R) n CR(.X) VOl(VR i R)

VWHO) = = vt R Vol(V £ R)

(2.2)

whereC; andCy is the number of photons in the left and right eyoalfter the split andol(V +
R) is the volume of nod¥, extended by the maximum query radRisWald et al approximate

Vol(V + R) using the following formula:

Martin Fleisz 12

Photon Mapping on the GPU Chapter 2 - Background

Vol(V£R) ~ 1_[(Vimax = Viymin + 2R) (2.3)
1=x,y,Z

After we found the best split candidate (the onthhe lowest VVH cost) we can split the small
node into two sub nodes. To do so we need therdun@de’s photon set, which is a bit mask
representation of the photons inside the noderderado complete our split, we simply perform a
logical AND between the current photon set and ghecalculated result split sets of the root
small node. This is illustrated in Figure 4 where split node A into two sub nodes (B and C)

and the symbols (~, #, 0, +, *) represent photansode A.

Node A

B

+

< L T# T] L[T [+
10100 01001
Figure 4. Small node splitting [36]

._._____.e_______

Besides easing node splitting, the binary photgresentation also helps us calculating the
number of photons in a node, which we need for \@drhputation and to stop node splitting. All
we have to do is to count the bits in the currdrdgtpn set, using the parallel bit counting routine
from [42].

After splitting is done, the new nodes are addethéoactive node list, in order to be processed
during the next iteration step. Of course it cad aill happen that some nodes will not create
any new child nodes. Therefore, we have to addhanattep to compact our active node list and
remove empty space, as is illustrated in Figuré3}. [If there are no more nodes left in the active

list, we can finish the Small Node Stage and prddedhe final construction stage.

Martin Fleisz 13

Photon Mapping on the GPL Chapter 2 - Background

T T T
T ¥ T 3

| Split kernel | Q o * o) O

O = node active

@ = node done

Figure5: Compaction of the active node list [43]

In the final kD-Tree Output Sta¢, the tree is reorgeézed to change its layout to a preor
traversal ofnodes, in order to improve memory act performance. Fir, we calculate the
memory requirements for each node and it-tree by traversing the tree bott-up. Finally, we
are able to calculate each node’s adg, using the size information from theevious step in a
top-down traversal paséAfter reorderin, each node stores its bounding box, split ¢ and the

references to its childreas well asits photon’s position and power.

2.3.3 Photon Search
A natural choice for locating the k nearest neighlin a kD-Tree is theriority queue methc,

described in [44] Unfortunatel, it is not possible to implement a priority queue GQUDA
efficiently, because memory access is incoherent and almosritinetic is interdepende
making it difficult for the hardware to hide memdatency.Therefore,Zhou et al propose an
iterative KNN search algoritt, based on range searching [45].

Starting from an initialconservative search radiry, they try to find the query radiu;, through
a couple of iterations. During each itera, a histogram of photon numbers over different ra
ranges is created and the final search radiusliscesl from it. The final radiir, is then used for
range search which returns all photons within that uadiParts of these computations
performed on the CPU andcgcording to Zhou et the resulting error of the final KNN radius
less than 0.1%. Range search is implemented ubmgié¢pth first seah kD-Tree traversal

algorithm from [45].

Martin Fleisz 14

Photon Mapping on the GPU Chapter 2 - Background

2.4 Analysis of existing Techniques

2.4.1 Brute Force Approach
First we take a look at the approach presenteddgi&et al [25], using a brute force technique

to find the k nearest neighbors for a set of gyats. On the plus side, this technique is very
easy to understand and implement. It also suppdoitrary point dimensions, which is useful for

scientific applications but not relevant to Phokéapping.

The first problem with this technique is obviouihe huge memory consumption. Basically the
method grabs all available memory and uses ittéodistance matrix computation. Even though
you can theoretically scale the memory consumptiown, this will have a bad impact on the

performance as the supported query size is minghnize

Another problem, as already mentioned before, &slifmited query size. Even with a lot of
memory available, the query set size is limite@tbelements, due to limitations in the CUDA
hardware API [47]. This is not a lot, consideritgtt even for a low image resolution of 320 x

240 pixels we need to find neighbors for approxeha? 6,800 points.

Finally, the greatest disadvantage is the huge tomaplexity of O(nm)for n reference points
(photons) andm query points. Especially low range graphics cadds not offer as much

computation power as the top class devices anchailbe able to achieve a good performance.

2.4.2 GPU kD-Tree Approach
The GPU kD-Tree approach from Zhou et al [36] ha®aple of advantages compared to the

brute force technique. Using a kD-Tree has beenfitse choice for all available software

implementations of Photon Mapping. The main redsotthis is that nearest neighbor search can

1
be done pretty fast with this data structure, hgndnworst case time complexity 6tk - n' %)
[48], wherek = 3 specifies the dimension of the tree. Another athga of the kD-Tree is that

memory consumption is quite moderate wit(n).

Martin Fleisz 15

Photon Mapping on the GPU Chapter 2 - Background

However, we also experienced a couple of probleiitis the kD-Tree approach on the GPU.
First, parallel tree construction requires a cartavel of synchronization, because we are writing
to a single data instance. This is done explidifythe CUDA API which waits for a previous
kernel to finish, before the next kernel is exedubm the GPU. Even though kernel calls are
asynchronous we have to synchronize and stall tAg @ some point, because the kD-Tree
technigue maintains a list of active nodes usedhemext processing step. This synchronization
is done explicitly as well, within the CUDA API lay.

This leads us directly to the next problem, the aselynamic lists. The kD-Tree paper uses
dynamic lists extensively for storing active nodese nodes, small nodes and so on. CUDA only
supports static arrays and therefore, additionakviras to be done to grow lists by reallocating
and copying memory. To avoid a high overhead cabgatiis memory management, Zhou et al
double list sizes every time they run out of spadewever, this leads to increased memory
consumption during construction. Even though thwlfitree is stored without wasting any

memory, the memory management during the construcstage constraints the supported

maximum kD-Tree size.

Another problem is that traversing the kD-Treebig its nature, non-predictable. This means we
cannot place the tree in memory without having a-cmalesced access patterns. In order to
decrease random memory access during photon seémoh, et al also use an iterative KNN

search approach at the cost of utilizing the CPU.

As already explained in the previous chapter, Zbbal also utilize the CPU for coordination
work, during the tree construction. This means thatCPU and GPU are both busy when using
the kD-Tree technique. Therefore, the CPU cannaidasl for different tasks, like it is possible
with other techniques that run completely on thaJGPinally, we also think that the GPU kD-
Tree approach is pretty complex and not that easynplement. Also the use of many other

parallel algorithms like scan, split and sort irmse the effort required to use this technique.

Martin Fleisz 16

A new Approach

"There will be the developers that go ahead ancehawniserable time and do get
good performance out of some of these multi-copragzhes."”

- John Carmack, Technical Director at idSoftwar@ [4

Objectives

* Introduce the Spatial Hashing technique
* Give detailed information on our Spatial Hashinglementation

» Highlight limitations and possible solutions foeth

Photon Mapping on the GPU Chapter 3 — A new Approach

3.1 Photon Mapping using Spatial Hashing

3.1.1 Overview
Our new Photon Mapping approach is based on the ACpHticles paper by Green [49]. Green

shows how to perform fluid simulation, based ontipkr systems, efficiently on GPUs. The
central part of this technique is to simulate thteraction between all the particles in the system.
Therefore, it is necessary to locate neighbor gadifor each fluid particle and test for collisson
between them. This technique can be directly mappexlr photon search problem. Instead of

finding neighbor particles we have to find neighpbotons for a set of sampling points.

Our new approach uses a hash table, that allows losk up a set of potential neighbor photons
in O(1) time and which can easily be created and accésgetallel. Each entry in the hash table
references a spatial cell in the scene (numbered fr to 16 in the example below), containing
photons as shown in Figure 6. In order to findrigat cell, all we have to do is to calculate the

hash value for the sample point and locate the dgh using the hash table.

Hash Table 1 5 3 4
3® ® 040
2 X
5 5e|6 7 1|8
Hash(x) —m —
) 10 0. 1" 12
13 14 15 16

Figure 6: Immediate lookup of photons in the célih® sample point x, using the hash table

Because the sample point can be located close txiga of the cell, we also have to process
photons from the neighboring cells in all three esions. Finally, we collect the closdst
photons, using a sorted list that we implement gisire fast on-chip shared memory. Photon

collection has a time complexity &f(n), wheren is the average number of photons in a cell and

Martin Fleisz 18

Photon Mapping on the GPU Chapter 3 — A new Approach

its neighbors. It should be noted, that the nundbgrhotons in a cell grows only at a fraction of
the actual photon map size because photons witistebuted over many cells. Photon maps
rarely contain more than a million photons, whickams that we will not get any problems with

time complexity, due to extremely large photon maps

3.1.2 Theory
Green presents two different ways to build the haste, depending on the available device’s

compute capability. The first approach uses atoaperations (compute capability 1.1 and
higher) to build the final hash table and is qeiésy to implement. However, because of various
reasons, this approach is not as fast as the tghbnique in Green’s paper. For our Photon
Mapping approach, we will concentrate on the fasbet more complex solution, based on

sorting.

This algorithm consists of several kernels that executed after each other. The first kernel
calculates the hash values for each photon inlileédop map and stores the resulting values in an
array, along with the associated photon’s indexhtnext step, Green sorts the array based on
the hash values, using the radix sort from Le Gr@t. Finally, we need to find the start

indexes for each entry in the sorted array to ereat hash table.

Hash Cell [StartIndex
1
2
1 2 3 4 3
3. P 4@ Unsaorted List List sorted 4
2 {Cell ID, Photon ID) by Cell ID > 0
5@|6 1al8 1209 .2 ;
5 7 7 2
° (7. 1) > |(5:5) P
(7,2) (7. 1) 5
|:5f 3} {?’ 2}
(7.4) (7, 4) i >
g 10 0g|11 12 (5,5) (10, 0) 5
13
14
13 14 15 16 15
16

Figure 7: After calculating the hashes the phoisirid sorted and the hash table is created

Martin Fleisz 19

Photon Mapping on the GPU Chapter 3 — A new Approach

As can be seen in Figure 7, the sorted list intceduanother level of indirection as it only
contains a reference ID to the actual photon datde photon table. In order to get rid of this
overhead, we simply reorder the photons’ data @uegrto their position in the sorted array. This
allows us to access the data of the first photaméell directly, simply by looking up its index in
our hash table. The other photons in the samecaallbe easily iterated, sequentially. The array
containing the reordered photon data is finallyrmbto texture memory. Unlike global memory
reads, texture lookups are cached and the sortediestial order will improve the coherence

when accessing the photons during the photon sstage.

Choosing the right hash function is quite imporfantour technique to work efficiently. All hash
functions require a grid position as their inputgmaeter. The grid positign' for a photon with

positionp can be easily calculated using the following emquat

p'=lp-sl (3.1)

where the scaling vect@rspecifies the scaling factors for a cell, in edaghension. Using’ we can
now continue and calculate the hash value for tiotqn positionGreen suggests two different hash
functions in his paper. The first one simply ca#tas the linear cell id for the given grid position

p using equation 3.2.

frasn (D) = pz - gridSizeY - gridSizeX + py - gridSizeX + px (3.2)

The gridSizefactors in the formula above specify the numbegrad cells along the x, y and z-
axis. Alternatively, Green suggests using a hasiction, based on the Z-order curve [51] to

improve coherence of memory accesses.

In Green’s paper, each particle has to be checi&eadillision with other particles. First, he
calculates each particle’s hash to find the cellidkrest. Then he loops through all 27
neighboring cells (using a 3x3x3 pattern) to tdsparticles for collision. We can almost map
this technique directly to our needs for photorrgd®aOur initial point of interest is not a photon
but a sampling point in our scene, whose color veetwo estimate. We can simply use the

sampling point’s coordinate to calculate its graspion and hash value, in order to find the cell

Martin Fleisz 20

Photon Mapping on the GPU Chapter 3 — A new Approach

it is located in. All we have to do now is to calighe closesk photons from all neighboring

cells and we are able to calculate our radianémagon.

3.1.3 Implementation
Before we can start calculating the hash values@orphotons we need to initialize a couple of

parameters, required for the hashing. Because \pposuphotons with negative coordinate
values, we need to provide the minimum coordinataes for the x, y and z dimension, stored in
our photon map, which we call the world origin. Wil use the world origin in our grid position
calculation to transform all photon positions iat@ositive coordinate system, by simply adding
the world origin to the input position. For the dycell size, we currently use the maximum
photon query radius and therefore, our scalingoretts simply(1/fmax 1/Tmax 1/Tmax) -
Finally, we calculate the number of grid cells goeach axis, using the cell size and the
bounding box extents of the photon map. We incrédas@umber of grid cells along each axis by
two additional cells to ease the handling of borckdts during photon search. This allows us to
avoid any expensive checks, otherwise requiredcfamping grid positions. The last step
performed, during the initialization phase, is theation of the neighbor offset lookup table. This
table is used to calculate the neighbor cells’ gogitions during the photon search, as shown in
Figure 8. The table is placed in constant memorigvbaches memory reads and provides better
performance, compared to global memory.

MNeighbor | Offset
1 (-1/1)
2 (0/1)
3 (1/1)
4 (-1/0)
5 (0/0)
=]
7
]
9

(1/0)
(-1/1)
(0/-1)
(1/-1)

\J

7 8 9

Figure 8: Calculating neighbor cells’ grid positspmsing the values from the offset lookup table

Martin Fleisz 21

Photon Mapping on the GPU Chapter 3 — A new Approach

After finishing all initialization work, we will egcute the first kernel which creates the unsorted
hash value array, where each entry also contasméidshed photon’s index. Afterwards we sort
this array, based on the photon hashes, usingthe sort algorithm from [37]. Now we have to

determine the start photon index for each grid, ¢elbrder to create the final hash table. This is
done by executing a kernel function for each emtrthe sorted array that checks, if the previous
photon’s hash value is different from its own.tlid, we know that the current entry marks the
start of a cell and the previous entry marks thd ehanother cell. This information can be

efficiently exchanged using the GPU’s on-chip stlaremory. After the resulting indexes have

been written to our hash table we reorder the pistas explained earlier, to improve memory
access coherence. We finally end up with a hade thht can be indexed using a point’s hash

value and a sorted photon table, as illustratdeigare 9.

Hash Value Hash Table Photons
00— 05 PO
5,29 P1
2937 P2
: P3
P4
P5

Figure 9: Hash Table (start index, end index) anotéh Table relation

In order to find the required photons, we executeparallel search kernel for each point in the
query set. First, we calculate the query pointisl grosition and initialize our photon list to an
empty list. For efficiency reasons, we place thetph list in shared memory which is an order of
magnitude faster than global memory. Next we ieethtough the 27 neighbor cells of interest,
using the offsets from our precomputed neighbasetftable. We simply add the values from the
table to the current grid position and use that gew position for the hash calculation. In our
current implementation we use a simple sortedalgiroach for collecting photons. As long as
the list is empty, we just keep adding photonsldhé list is full. If we find a closer photon and
the list is already full, we insert that photonitesorted position in the list and shift all follong
photons back. The last item in the list is simggtlas we do not need it any longer. While this
approach works well for our prototype, we think tbetperformance can be achieved with

different methods, like a heap data structure [B&)en the kernel finishes with the processing of

Martin Fleisz 22

Photon Mapping on the GPU Chapter 3 — A new Approach

all cells, the remaining photons in the shared memory list are writterhtresult array, stored

in global memory.

3.1.4 Limitations
In this chapter, we talk about some limitationst tbar technique has, compared to others and

present some possible workarounds for them. TBedonstraint is caused by the limited size of
shared memory, which is used during photon coblectin our current implementation, 32
threads have to share 16 KByte of shared memonye&ch photon we need 8 bytes of memory
in the list, 4 bytes for its square distance todhery point and 4 bytes for its power in RGBE
format. This means we can gather a maximum numioker060 photons per sampling point (we
cannot use the full 16 KByte of shared memory bseaGUDA uses part of it for kernel
parameters). Usually, this is not a big problenit a&hould be sufficient to locate 40-50 photons
per query point. In case more photons are requaethe radiance estimate, we can increase the
maximum list size by decreasing the thread blocke $iom 32 to 16. However, this solution
should only be applied if absolutely necessary,oas experiments showed a performance
decrease of around 25% with this change. Also,réuGPUs most likely provide more shared

memory, allowing larger photon search lists withaoy modification to the code.

Figure 10: 2D view of a scene, green cells occigmntetry whereas red cells do not

As shown in equation 3.2, our hash function usesniiimber of grid cells to calculate a hash

value from a grid position. Unfortunately, usingesk factors causes some problems and

Martin Fleisz 23

Photon Mapping on the GPU Chapter 3 — A new Approach

disadvantages. First, we might end up wasting afilehemory with empty entries in our hash
table because the linear hashing function is redlifbr certain scene types, as Figure 10 shows.
The green cells indicate cells that contain geoyreetd therefore, most like photon information.
Red cells are just floating around in empty spacg @ not contain any useful data but still
occupy an entry in the hash table.

The other drawback of this hashing function is thatscene size is limited. For instance we are
not able to easily model an open landscape scezaube our hash function depends on the grid
size. Without choosing a reasonable amount of edtlag each axis we can get problems with
the increasing memory requirements of our hastetablsolution to these problems is using a
different hash function, like the one presente[b8j:

frasn(p) = (px - pl xor py - p2 xor pz - p3) mod n (3.3)

wherepl, p2 andp3 are large prime numbers andpecifies the hash table size. As you can see,
this function is not based on the grid size andefoee, does not experience the aforementioned
problems. In order to avoid the expensive modulerajon we suggest choosing a hash table
size equal to a power of 2. In that case the modatobe replaced by a much cheaper logical
AND operation withn — 1

Another limitation is that the photon query radhss to be specified at construction time and
remains fixed for the hash table’s life time. Tiesbecause we use the radius as the cell size,
when calculating the grid position for photonsthé radius is enlarged without recalculating the
hash table, we might miss some photons during phet¢arch. On the other hand, if the radius is
decreased we will not experience any performangeawements from the smaller search radius.
Other techniques like the kD-Tree also use theygreatius during construction, in example for
the VVH calculation. However, it is unlikely an djgation needs to change the query radius and
even if so, both techniques should be fast enoagiedreate the required data structures at run-
time.

Martin Fleisz 24

Performance Measuring

"There is a famous rule in performance optimizatwafied the 90/10 rule: 90% of
a program's execution time is spent in only 10%sofode. The standard inference
from this rule is that programmers should find th@6 of the code and optimize it,
because that's the only code where improvements makfference in the overall

system performance."

- Richard Pattis, Senior Lecturer at Carnegie Melmiversity, Pittsburgh [54]

Objectives

» To specify the environment used for the performaneasurements
* To specify what measurements we can use to confijter®n Mapping techniques

» To explain the different measurements’ implicatoonperformance

Photon Mapping on the GPU Chapter 4 — Performance Measurements

4.1 Measureable Parameters

In order to validate and compare our techniquethers, we will use a couple of measurements

which are explained in more detail in Table 1.

Table 1: Measurements

Measurement Description

Construction Speed Measures the time it takes for a technique to la@lyreto
search photons. This includes memory allocations/els as
creation of data structures, like trees or tables.

Shorter is better.

Search Speed Measures how fast a technique is able to locat thearest
photons fom query points.

Shorter is better.

Memory Consumption Measures each technique’s memory consumption #fie
construction step.

Lower is better.

Memory Consumption (Peak) | Measures the peak memory consumption of each tge@pi
during the construction phase.

Lower is better.

Non-Coalesced Reads/Writes | Measures the number of non-coalesced memory ascesse

Lower is better.

Image Quality Verifies if the photons returned for the radiancséimate arg

correct.

Of course it is important to keep photon searcletan low as possible, in order to obtain good
performance. However, it is just as important tegkeonstruction time very low to get the most
out of Photon Mapping. Scenes with dynamic ligfds,instance require rebuilding the photon

map every frame and a high construction time isoeptable in such cases.

Memory consumption is an important factor as wellen though GPUs have quite a bit of

memory available nowadays, not all of these ressunsight be available to our application. The

Martin Fleisz 26

Photon Mapping on the GPU Chapter 4 — Performance Measurements

GPU memory is also used by the OS to display thex usterface or by 3D APIs to store
resources, like textures and geometry data. Thensegnportant memory measurement is the
peak memory usage of a technique. Even if the fim&hory requirements are low, if a technique
requires a lot of temporal memory during constauttiwe are still constraint by these needs. We
also take a look at the memory access patterneadiifferent techniques. Non-coalesced memory
accesses are penalized with a severe performanoe BPUs. Therefore it is important to keep
the number of such accesses as low as possible.

Finally, we take a look at the correctness of tliter@nt GPU techniques. The resulting photon
sets used for the radiance estimate should beathe wiith all techniques. To verify that, we will

directly visualize the photon map and compare theal quality of the resulting images.

We will perform our tests with two different photenap types. Global photon maps contain
photon information for the whole scene and are arilywused to render interreflections and soft
shadows. Caustic photon maps are created by egnipiotons only towards reflective and
refractive objects, because we need a higher nupflgginotons to visualize caustics. Therefore,
the photons in a global photon map are more sealttever the scene whereas the photons in a
caustic photon map are concentrated at certains.afecause caustic photon maps contain
lighting information for smaller areas, they do metuire as many photons like global photon
maps, which contain lighting information for a waacene. To see if our approach handles both

map types well, we carried out each test with dlaba caustic photon maps.

4.2 System Specification

Our test system has the following hardware andvso#t specifications:

Table 2: System Specification

System Specifications

CPU Intel Mobile Core 2 Duo P8600 @ 2.4 GHp
Memory 4 GB DDR2
GPU nVidia GeForce 9600M GT

Martin Fleisz 27

Photon Mapping on the GPU

Chapter 4 — Performance Measurements

GPU Cores 32 Cores @ 1.25 Gt

GPU Memory 512 MB G-DDR3 @ 800 MHz
CUDA Version | 2.2

Driver Version 185.85

O

Windows Vista 64 Business Edition

4.3 Application Specification

Our test application implements the following PholMapping techniques:

» A software kD-Tree, based on Jensen’s photon mde pBt]
* A GPU kD-Tree, based on Zhou et al [36]

* A GPU brute force k nearest neighbor search, baségarcia et al [25]

» The GPU Sptatial Hashing technique presented srdport using two different hashing

functions:

o Linear hashing function by Green [49]

0 Hashing function by Teschner et al [53] with a htile size oR*

We used the CUDA 2.2 SDK and Microsoft's C++ Optimg Compiler 15.0 with the amd64
release mode build and all default optimizationadd on.

4.4 Test Scene Specification

Our test scene is a simple Cornell Box scene wihiay and a glass ball. The light source is an

area light source, located right under the cei(imgt displayed in the rendered image). Notice the

soft shadows and interreflections between the walswell as the caustic under the glass ball.

Because the lighting information in the photon nsmpecoupled from the underlying geometry,

the results of our tests are also valid for mucmenm@mplex scenes with a higher polygon count.

Martin Fleisz

28

Photon Mapping on the GPU Chapter 4 — Performance Measurements

Figure 11: Test scene

Martin Fleisz 29

Results and Analysis

" It's just not right that so many things don't warken they should."

- Stephen Wozniak, Chief Scientist at Fusion-io

Objectives

* To present the results of our performance measuresme

* To analyze and critically evaluate the observedltes

Photon Mapping on the GPU Chapter 5 — Results and Analysis

5.1 Construction Time Performance

Construction Time (in ms)

25000
20000 /
15000
/ ——kD-tree
ms
10000 —l—Hashing (linear)
// Hashing (Teschner)
5000 —34=BF
0 —#‘;::/ —

10000 20000 50000 100000 200000 500000

Photons

Figure 12: Construction Time Performance for Gldbabton Map

As can be seen in Figure 12, our spatial hashingnigue is much faster than the kD-Tree
approach. The kD-Tree construction cost increasés tive amount of photons in the photon
map, whereas our hash table creation takes almastant time. The reason for this behavior can
be explained quite simple. Our hash table credsdnlly parallelized, beginning with the hash
calculation for each photon and ending with thehttable creation and the reordering of photons.
In contrast, the kD-Tree technique iteratively eres several kernels for scan and split
operations at each tree level. Every successivenekeinvocation performs implicit
synchronization because a GPU can run only oneekéunction at a time. This means, before a

new kernel can be started, all threads from theipus kernel function must be finished.

Another reason for the longer creation time is noalesced memory access. The spatial hashing
technique’s access pattern is completely coalescexpt for the final photon reordering. On the
other hand, the kD-Tree approach performs non-soatememory writes after every split, when
it reorders the sorted coordinate and index I&kso, the final tree reorganization phase’s access
pattern is almost entirely random and therefore-cmalesced.

Martin Fleisz 31

Photon Mapping on the GPU Chapter 5 — Results and Analysis

Construction Time (in ms)

9000
8000 /
7000 /
6000 /
5000 —4—kD-tree
ms
4000 / —fi—Hashing (linear)
3000 Hashing (Teschner)
2000 —5—BF
1000

0 2 > o4 e 2

T | T 1 T Ty T L 1

10000 20000 50000 100000 200000

Photons

Figure 13: Construction Time Performance for Caushoton Map

As Figure 13 shows, the measurements are almastidgdefor caustic photon maps. Again our
spatial hashing methods are much faster than th@&rkB method, especially when the photon
map size becomes larger. Construction time forGR&J brute force technique is pretty low as
well, but considering that it is only allocating mery and copying photon data to the device, this
is not a big surprise. One thing to note is thatweee only able to test the brute force approach
with photon maps up to a size of 50,000 photonss T due to a limitation in the CUDA
hardware API, as already mentioned in chapter 2.

5.2 Memory Requirements

It is obvious that, if we increase the amount obtphs in our photon map we will need more
memory to store this information. However, as Fegli4 shows, there is still a huge difference
between our hashing methods and the kD-Tree. Eapeaiith an increasing number of photons,
our spatial hashing technique consumes signifigdeds memory than the kD-Tree approach.
The reason for this behavior is that the tree tinecproduces a lot of overhead. For every node

we have to store references to its children, thigtisg plane and bounding box, along with the

Martin Fleisz 32

Photon Mapping on the GPU Chapter 5 — Results and Analysis

photon information itself. The only overhead ouwhieique introduces is the hash table, which

grows with the scene size or the number of haste tabtries, depending on the used hash

function.
Memory Consumption (MB)
40
35 /’
30 /
mMB 20 /‘ —&—kD-tree
15 —f—Hashing (linear)
10 /./// Hashing (Teschner)
< |
| p——"
0 T = T - T T T 1
10000 20000 50000 100000 200000 500000
Photons
Figure 14: Memory Consumption
Peak Memory Consumption (MB)
180
160 > —
140 /
120 /
100
MB 80 / —&—kD-tree

60 // ——Hashing (linear)
Hashing (Teschner)
40
20 /
_4,71‘,/,"‘/
0 oy T oy

10000 20000 50000 100000 200000 500000

Photons

Figure 15: Peak Memory Consumption

Martin Fleisz 33

Photon Mapping on the GPU Chapter 5 — Results and Analysis

The next thing we measured is each technique’s peakory consumption, during the creation
phase. Figure 15 shows the data of our experimeittsthe kD-Tree and our spatial hashing
approach. The results show that our technique @nagignificantly better than the kD-Tree

approach, with an almost 8 times lower peak consiemjat 500,000 photons.

As you may have noticed, our graphs are missing@R& brute force method. Because this
technique just grabs all the available memory Far distance matrix, we thought it makes no

sense to include this method in the comparison.

5.3 Photon Search

In this section we show, how the different techesjyperform during the photon search. There
are a couple of parameters that have an influendbe performance at this stage, apart from the
different photon map types:

» The number of photons in the photon map
* The number ok nearest neighbor queries, which increases withdrignage resolutions
* The number of photons, requested for each qu@ry (

* The maximum allowed distance between the querytoid a photon

During our experiments we discovered that the biotee technique is not able to compete with
the other two techniques, in terms of speed. lest base scenario the brute force approach was
almost 10 times slower than the kD-Tree and théageashing methods. Therefore, we decided
to omit the brute force technique from our photaarsh graphs in order to keep them

meaningful.

5.3.1 Photon Map Sizes
In Figure 16 we see the performance graph for i fee and the hashing technique, with an

increasing number of photons in the photon map fi¥etake a look at the test results, obtained
with the hashing function from Teschner et al. As @an see there is a slight increase in search
time with photon maps larger than 200,000. Thiggearance drop is caused by collisions in the

hashing function. Because of these collisions, sphw¢ons end up in the same hash table entry,

Martin Fleisz 34

Photon Mapping on the GPU Chapter 5 — Results and Analysis

even though their location is not close to thahefother photons in the entry. With an increasing
number of photons, the chance for a collision iases, causing the observed performance hit.
However, the performance with bigger photon mapsha greatly improved by simply using a

larger hash table size.

Photon Search (k = 20, r = 1.0)

9000
8000 /—
7000

6000 /

5000
ms 4000 / / =@—kD-tree
3000 / == Hashing (linear)
2000 / Hashing (Teschner)
1000 4¢é’//‘
B)
0 T T T T T 1

10000 20000 50000 100000 200000 500000

Photons

Figure 16: Global photon map search performanck different map sizes

As we can see, the increase in search time wittkkEr@ree and the linear hashing function is
pretty steady, before performance drops off aelitilt with the kD-Tree. The reason for this
performance hit is an increasing access to locahoang. Local memory is basically global
memory, which is only visible to a single threadt bccessing it is just as expensive as accessing
normal global memory. Local memory is used for steck-based kD-Tree traversal. With the

increasing number of photons we get a deeperreselting in more local memory accesses.

Because we also have to traverse the tree severas$ tefore the actual search, in order to
determine thd nearest neighbor search radius, a deeper treengsomore expensive to process.
Figure 17 shows the increase of local memory aesasfiich become significantly more with a
larger photon map size. Here, one of the disadgastaf using a tree structure on the GPU

Martin Fleisz 35

Photon Mapping on the GPU Chapter 5 — Results and Analysis

becomes obvious. By its nature, traversing a tesgiires a lot of scattered memory accesses,

which is extremely bad for performance on curreRtJGlevices.

kD-Tree Traversal - Local Memory Access

70000000

60000000

50000000 /f
40000000

Accesses /
30000000

20000000

10000000 4//
0 ‘ I 4‘ I T T T 1

10000 20000 50000 100000 200000 500000

=&—Memory Access

Photons

Figure 17: kD-Tree Traversal - Local Memory Access

If we take a look at our hashing method, usinglthear hashing function, we can see that we
have a steady growth in search time for larger ghaohaps. This makes perfect sense, as the
number of photons in each hash cell also increasttss more photons in the photon map.

However, we have some advantages over the kD-p®ach that enable us to obtain a better

performance.

First, we do not have to traverse a tree or a amata structure, using local memory. Instead,
we just have to look up our grid cell in the haablé, using a single memory read. The second
optimization we are able to use is texture memfmy storing the photon information. Because

we are able to access the photons sequentiallgawactually benefit from the texture cache.

If we take a look at the performance graph for tayshoton maps in Figure 18, we will notice
that all methods, the kD-Tree and both hashing austhneed more time to find photons, than

they need with a global photon map. The reasonnidethiis is the high photon density in small

Martin Fleisz 36

Photon Mapping on the GPU Chapter 5 — Results and Analysis

areas, compared to the photon density in globalgphmaps, as illustrated in Figure 19. In case
of the kD-Tree, this forces us to traverse throogire tree nodes because we fail to reject tree

branches at higher levels.

Photon Search (k = 20, r = 1.0)

18000
16000
14000
12000
10000
ms
8000
6000
4000
2000

—9—kD-tree
——Hashing (linear)
Hashing (Teschner)

10000 20000 50000 100000 200000

Photons

Figure 18: Caustic photon map search performanttedifferent map sizes

Figure 19: Photon Density in a global (left) anchastic (right) photon map

This time, Teschner’s hashing function performs Imbetter and is significantly faster than the
kD-Tree technique. This is because most photonslcra&ted very close to each other and

therefore, the number of hash collisions is nohigh as with a global photon map. However,

Martin Fleisz 37

Photon Mapping on the GPU Chapter 5 — Results and Analysis

while collisions decrease, the number of photona itell is much higher because of the high
photon density in some areas. The higher photonbewnin the cells are responsible for the
increased photon search time, because more phberes to be processed. Using the linear
hashing function we experience a similar problemar fhhal hash table will have lots of almost
empty cells and a couple of cells, containing lotsphotons. However, we do not have a

performance hit due to hash collisions, which igwiis hashing function performs better.

Another problem with our hashing technique is thitesl list that we use to collect photons. With
many close photons around our sampling point, veewgnreordering the list many times, before
we have found our final set. One reason why ouhingsmethod is still pretty fast is that we are
able to return photon information, for areas wittow photon count much faster than the kD-
Tree implementation. If we have none or only a féwtons in a cell, a thread will finish much
faster than if it has to traverse a whole kD-Teespecially if the tree is very deep, as is the case

with large photon maps.

5.3.2 Number of Photons

Photon Search (50.000 photons, r = 1.0)

4000

3500

3000

2500 /‘/f.///
2000 / / =4—kD-tree

ms

1500 i i
r == Hashing (linear)
1000 Hashing (Teschner)
500 ¢
O T T T T 1
10 20 30 40 50

k Nearest Neighbors

Figure 20: Global photon map search performanck different k sizes

Martin Fleisz 38

Photon Mapping on the GPU Chapter 5 — Results and Analysis

In this section we take a look at what impact,edight photon sample sizes have on the overall
performance. As Figure 20 shows, thparameter has a pretty big influence on the perdmice
with both techniques. We can see that the kD-Trpetformance is slowly degrading with an
increased photon search number. This slowdown useth by the larger number of memory

writes when writing the resulting photons to globemory.

If we take a look at the spatial hashing technigqueewill notice that the chosen hashing function
has a big impact on the performance. Our experisnghbwed that the main reason for these
different results is our photon collection implertagion. As already explained, we are using a
sorted list to return thle closest photons when a thread finishes. Howevetons are stored in

random order with respect to their sampling poiistashce. This means we most likely end up
shifting around lots of photons in our sorted artdye take a look at the behavior of our spatial

hashing technique with caustic photon maps in E@ir, we will see a similar result.

Photon Search (50.000 photons, r = 1.0)

7000
6000 /
5000

4000 /

ms /.‘_. —9—kD-tree
3000

—fi—Hashing (linear)

2000

Hashing (Teschner)
1000

10 20 30 40 50

k Nearest Neighbors

Figure 21: Caustic photon map search performanttedifferent k sizes

Again, the performance of the kD-Tree is steadibcréasing, whereas the spatial hashing
technigue shows some weakness with higher sampldens. Interestingly, our linear hashing

method shows a significant performance drop whemgimg the sample size from 30 to 40. Our

Martin Fleisz 39

Photon Mapping on the GPU Chapter 5 — Results and Analysis

tests showed that the cause of this problem isnad¢ja¢ sorted list. On the other hand with 50
samples there is hardly any performance decreaseeable. It seems that the ordering of
photons allows to reject many photons earlier wighsizes smaller than 40. With a larger list
size we are adding many photons at list positidh®310, making it necessary to shift photons to
the back.

With Teschner’s hashing function we could not abtidie same performance as with the linear
hashing function. Again we see a significant periance drop, this time between sample sizes of
10 and 20 photons. The reason for this behaviag#n, the sorted list combined with the hash
collisions. Because of the collisions, an entry migave photons which are actually far away
from the sample point. This causes a lot more isbifin our sorted list, leading to the
performance hit. The reason why this only happeits the caustic map is the higher photon
density. With the global photon map we were abledect the colliding photons easily by
testing, if their distance to the sampling poinsisaller than the maximum photon search radius.
However, this check fails with the caustic photoapmwhere lots of photons are located within
the search radius. Nevertheless, with the causitom map our solution is still better than the
kD-Tree implementation.

5.3.3 Query Radius
The maximum query radius is an important paramggerboth, the kD-Tree and the spatial

hashing technique. The kD-Tree technique uses thiinitial query radius,, which is required
during construction for the VVH calculation and ithgr photon search for the radius estimation.
For our spatial hashing technique, the query radatsrmines the size of our grid, cells which
are used for calculating the grid positions andhhasdues.

Figure 22 shows the performance of both technigu#sdifferent query radii. As we can see in

the graph, all techniques have an almost steadgase in search time with an increasing query
radius. Because we have to visit more tree nodemvgearching for photons, using a larger
query radius, the kD-Tree requires more time. Wging the spatial hashing technique with a
growing query radius, we end up having fewer hadls en our hash map. This means there are

more photons in the remaining cells which causesithreased search time. Again the spatial

Martin Fleisz 40

Photon Mapping on the GPU Chapter 5 — Results and Analysis

hashing method, using the linear hashing functierfaster because we avoid the overhead of

traversing a tree structure or having hash cotisio

Photon Search (50.000 photons, k = 20)

4000
3500 /
3000 /

2500
ms 2000 /‘/"/ —4—KkD-tree
A

1500

A

o / == Hashing (linear)
1000 — Hashing (Teschner)
500 Al
0 T T T T T 1
0.5 0.75 1.0 1.25 1.5 2.0
Radius

Figure 22: Global photon map search performanck aifferent query radii

Photon Search (50.000 photons, k = 20)

18000
16000

14000 /
12000 /

10000 /
ms 8000 / —o—kD-tree

6000 / A —8—Hashing (linear)
4000 P— Hashing (Teschner)
2000 .A{_»r/ -
0 . : . : : .
0.5 0.75 1.0 1.25 1.5 2.0
Radius

Figure 23: Caustic photon map search performantedifferent query radii

Martin Fleisz 41

Photon Mapping on the GPU Chapter 5 — Results and Analysis

A similar behavior can be observed when we runtests with a caustic photon map. In these
tests it becomes clear that choosing the rightyqreatius is very important for the kD-Tree. As
Zhou et al write in their paper, a good estimatodm, is critical to the performance of their
technique. Figure 23 confirms that, showing a ste@pcrease of search time with an increasing
search radius. Another disadvantage is the highophdensity in caustic photon maps that

prevents us from rejecting tree branches earlibBenausing large query radii.

Our spatial hashing technique is dealing betteh Wit high photon density in a caustic photon
map. In this particular situation, the sorted iIrstcombination with a little optimization to the
neighbor offset lookup table, works very well. Glwvly, we can assume that most of the
photons we are interested in, are located in theesezell as our query point. Therefore, all we
have to do is to swap the center cell’s offset/@®/@o the first position in the lookup table. This
ensures that each thread first checks all photorise cell that contains the current query point,
before it continues with the other neighbors. Ouwegiments showed that this little optimization
improves search time by around 15 percent, comptrétie non-optimized lookup table. Of
course we still have to check all neighbor cellsvall, in case the sample point is close to one of
the cell corners, for instance. However, especiallne high density caustic photon maps lots of
photons will be already found in the center cdlgvaing us to reject other photons and avoiding
list reordering. As Figure 23 shows, this holdstfar the spatial hashing technique generally,

independent from the used hashing function.

One thing we also have to keep in mind is that mgmsage, with the linear hashing function,
depends on the grid cells size and therefore, emtiery radius. A smaller radius means that we
have smaller cells and therefore, we need a laygerwith more cells to cover the whole scene.
In Figure 24 we see the impact of the search ragliuthhe memory consumption of our method.
Especially with small photon maps, there is a matide difference in memory consumption.
Using the smallest radius 0.5, we need more thaames the memory, required with a radius of
1.5 or 2. As the photon maps grow in size, theiiagmce of the hash table overhead becomes
less important because more memory is used to #ter@hoton information itself. At around
50,000 photons, the memory requirement is roughéy $ame as for the kD-Tree technique.
Another factor, which has an impact on our memanysamption, is the scene size. If we have a

large scene we need a bigger grid to cover every gfait. However, in such situations, a

Martin Fleisz 42

Photon Mapping on the GPU Chapter 5 — Results and Analysis

different hashing function like the one presentgdTleschner [53] is a much better choice, to

avoid exhaustive memory usage.

Hashing - Memory Consumption

40

35 .

30 _ m05

»5 _ m0.75
®1.0
m1.25
m15
=20

Hashing (Teschner)

kD-Tree

10000 20000 50000 100000 200000 500000

Photons

Figure 24: Hashing Memory Consumption with diffdrqoery radii

Nevertheless, the increased memory consumptionsaitiler radii should not be a big problem,

because the radius is usually in inverse propottiothe photon map size. If we have a small
photon map, we want to use a large radius to frnaligh photons whereas if we have a large
photon map, we can use a smaller radius to fincsémee amount. As you can see, this perfectly

fits our technique to ensure an optimum memory eisag

5.3.4 Query Size
In our last series of performance tests, we evatudiow well both techniques can deal with

different query sizes. The higher the resolutionoof output image is going to be, the more
points we have to sample in our scene. Figure BWshhat, for low resolutions, there is hardly
any difference between the different techniqueghBmashing functions obtain almost identical
results, indicating that the chosen hashing funchas no impact on these tests. However, the
higher the resolution gets, the bigger grows thelggtween the kD-Tree and both spatial hashing

methods.

Martin Fleisz 43

Photon Mapping on the GPU Chapter 5 — Results and Analysis

Photon Search (50.000 photons, k = 20, r = 1.0)

10000
9000 2

8000 //
7000 /
6000 =

ms 5000 ///- ——kD-tree

4000 . .
J —fli—Hashing (linear)

1\ Hashing (Teschner)
2000 -
1000 -
N

0 T T T T 1
320x240 640x480 800x600 1024x768 1280x1024

Resolution (Query Size)

Figure 25: Global photon map performance with défg query size

The reason for this difference is the number of-coalesced memory accesses, performed by the
two techniques. As Figure 26 shows, the kD-Trebrtepie suffers from a far higher increase in
non-coalesced memory accesses than our spatiainbasbproach. This graph makes the
disadvantage, of having a tree-based structurer¢lgaires lots of scattered reads, obvious. The
reason, why the overall performance of our techmigginot as significant as the difference
between the non-coalesced memory accesses is otanptollection implementation. Again the

sorted list based approach prevents us from obmibetter result in our tests.

Using a caustic photon map, we obtained a verylaimesult as with the global photon map.
However, the gap between the two techniques isebithgan in the previous tests, with the spatial
hashing methods being more than 75% faster at @utes of 1280 x 1024 pixels. Like in
previous tests, the higher photon density forcet® wssit more tree nodes in the kD-Tree, further
increasing the number of non-coalesced memory sese®verall, the random access pattern

again, causes a bigger performance hit than thedsbst in our spatial hashing implementation.

Martin Fleisz 44

Photon Mapping on the GPU Chapter 5 — Results and Analysis

Non-Coalesced Memory Access
60000000

50000000 2
40000000 /
Accesses 30000000 —9—kD-Tree
20000000
10000000 / /.

320x240 640x480 800x600 1024x768 1280x1024

== Hashing

Figure 26: Non-Coalesced Memory Access

Photon Search (50.000 photons, k = 20, r = 1.0)

18000

2

16000 /
14000

12000 /
10000
me 8000 // /E —o—kD-tree
6000 / 1‘/ —@—Hashing (linear)

4000 / ~#—Hashing (Teschner)

2000 -

0 T T T T 1
320x240 640x480 800x600 1024x768 1280x1024

Resolution (Query Size)

Figure 27: Caustic photon map performance withedgfiit query size

Martin Fleisz 45

Photon Mapping on the GPU Chapter 5 — Results and Analysis

5.4 Results with the Brute Force Approach

As already mentioned earlier, the brute force apgnavas far behind the other two techniques in
our performance comparison. However, we still wantgive a short overview of how this

technigue performed in the different test casesrigure 28, we summarized the performance
results for the radius, photon sample size andygsiee tests. We did not include any measures
from the variable photon map tests, because thmigaee only supports a maximum photon map
size of21¢. There is also no need to distinguish betweenajglabd caustic photon maps, because

the brute force approach is independent of thegutsddistribution or density.

Brute Force Performance
600000
500000
400000
ms 300000 —— Query Radius

200000 == Photon Number

» - 1 Query Size
100000

0 T T T T 1
1 2 3 4 5
Test run

Figure 28: Brute Force Performance

As we see in the performance graph, the technigumimpletely independent from the query
radius. In the original version of the algorithneté was no support for a maximum query radius
included. Therefore, we extended the insertion afgorithm to stop after sorting the first k

elements or when the last, sorted photon’s distasaitside the radius. However, the results

showed that the algorithm was not able to benefinfthis adaption.

The second test with variable photon sample sikews a slight increase in search time. Again

we started with 10 samples in test 1 and increésedize by 10 photons, up to 50 for test 5.

Martin Fleisz 46

Photon Mapping on the GPU Chapter 5 — Results and Analysis

According to Garcia et al, the sorting algorithmthe bottle neck of their technique. Table 3
shows the partitioning of the computation timewesn the various steps during search. It should
be noted that the data in the table is for a raghaill reference point and query point set of just
4800 each.

Table 3: Computation time decomposition for thetBrgorce Technique [25]

k 5 10 20
Distance 82% 71% 51%
Sort 15% 26% 47%

Memory Copying | 3% 3% 2%

In our case, where we have thousands of photottseiphoton map (reference points) and even
more query points, the distance computation cleddgninates. However between the photon
sample test cases with 10 and 50 photons per saoagpigutation time still rises by roughly 20%

due to the increased sorting effort.

Finally, we also performed tests with different pmo query sizes, using the brute force
technique. As already mentioned in chapter 2, we thasplit the photon query into multiple
chunks because we can only search2térquery points at one time. Of course this introduae
slight overhead, caused by copying memory to anthfthe device. However, this is not as
significant as the tremendous increase in dist@oceputation, time that causes the slow down

we observed during our tests.

5.5 Image Quality

In this section we take a look at the quality of tleturned photon information. If a technique
misses or returns false photons for a query, it halve a negative impact on the image quality.
We already showed that our spatial hashing teclenigjpretty fast and now we take a look at the
quality of the returned photon information. In ardie evaluate quality, we will directly visualize

the photon maps and compare them, using the mdtbod [55]. This method can be used to

Martin Fleisz 47

Photon Mapping on the GPU Chapter 5 — Results and Analysis

determine if images are perceptually identical,netrough they might contain some numerical

differences.

Figure 29: Image quality with hashing (left) and-Kiee (right) with 10,000 (top) and 50,000
(bottom) photons

In Figure 29 we see four images created with thaiaphashing and the kD-Tree technique,
using different global photon map sizes. The uppeges were created with a global photon
map, containing 10,000 photons whereas the bottoagés used 50,000 photons. Looking at the
results, we can say that both techniques are winh terms of quality and visual appearance.
Checking the images with the aforementioned imageparison algorithm confirms our

observations. The same holds true for the two imagkowing the results for a caustic map,
containing 10,000 photons in Figure 30. Again, ¢oenparison algorithm confirmed that both

images are visually equal, in terms of quality.

Martin Fleisz 48

Photon Mapping on the GPU Chapter 5 — Results and Analysis

Figure 30: Image quality with hashing (left) and-KBee (right) with a caustic photon map
(10,000 photons)

5.6 Observations

During our tests, we made a couple of observatibas we want to summarize in this section.
We start with the brute force approach, which pedaib be not very useful for photon mapping.
The technique has a time complexity@fmnd) wherem is the number of photons in the photon
map,n is the number of query points adds the dimension (in our case 3). This clearlyveho
that the brute force technique is scaling prettd ath large photon maps or query sizes.
Unfortunately, especially with photon mapping, thesimbers tend to be relatively big. Also the
size limitation to21® photons or query points is very constraining. Birengths of the brute
force technique seem to be smaller point sets wiijher dimensions, as well as its
straightforward implementation.

Another observation was, that the brute force dwedkD-Tree technique have problems on low
performance GPUs. Compared to the results that wesgented in both papers, we obtained
much worse results on our system. It seems thatteohniques rely heavily on a greater number
of cores, a higher clock rate and higher memorydhadth. Unfortunately, we have not had the

possibility to perform benchmark tests of our sgabiashing technique on high performance
GPU devices. However, we still proofed that on Idass consumer hardware, our approach is

able to outperform both other techniques.

Martin Fleisz 49

Photon Mapping on the GPU Chapter 5 — Results and Analysis

The kD-Tree was sometimes a very close competiioour spatial hashing implementation.
However, we think that besides performance ther@nisther big advantage, our approach has
over the kD-Tree, which is implementation complgxithe kD-Tree construction consists of 3
different stages, where each stage consists ofptaukernel functions. Even though, Zhou et al
claim that most of the parallel primitive functioti&e scan and sort, are implemented in CUDPP
[56] others like the splitting kernel [40] or congbian kernel [43] are not and have to be
implemented from scratch. In contrast, our spdiashing implementation requires three very
simple kernels for construction and only uses theixr sort functionality from the CUDPP
library. Search is just a simple iteration over fi®tons within the different cells, whereas the
kD-Tree requires the CPU and multiple kernels torede the query radius and traverse the kD-
Tree.

Our experiments also showed that the chosen hadinegon is very important for our hashing
technique, in terms of memory consumption and $eapeed. With smaller scenes, the linear
hashing function proofed to be the best choicelimoat all test cases. However, as already
explained, this function puts some constraints len dupported scene types. With the hashing
function presented by Teschner et al, we are ablevércome these problems, at the cost of a
sometimes longer photon search time. Our testssilswved that it is important to choose the
right hash table size with Teschner’s function. éesqlly with larger photon maps, a too small
table can result in many hash collision, leadingatobig performance hit. Nevertheless,
performance with this hash function will certairdyop because hash collisions are inevitable,

which results in cells containing more photons.

Construction time with our spatial hashing techeidggi almost 0, even on our low performance
GPU. This is definitely one of the strengths of technique. Another advantage is that we are
able to use texture memory for our photon datawitide the texture cache to further improve
performance. The kD-Tree cannot profit from usiegtire memory because the memory reads
are scattered and therefore, the texture cachenatllimprove performance. What we also
observed during our experiments is that non-coatkswr local memory access literally Kills
performance, especially on low range GPU hardwihes is one of the reasons why the kD-Tree
did not perform as well as our spatial hashing neglre.

Martin Fleisz 50

Photon Mapping on the GPU Chapter 5 — Results and Analysis

One issue we found with our spatial hashing impleatéon was the photon collection, using the
sorted list approach. We think that there are @leoaf possible solutions for this problem. The
first one is to use a different data structuretifi@ photon list, like a max heap [52]. We thinisit
possible to implement this data structure effidieimt shared memory. Another solution is to
further parallelize the search and process eadhcal different thread, where each thread will
search for thé closest photons in its cell, for a given querynpoi he problem with this solution
is that we somehow have to collect the final resettfrom these sub results. We implemented a
naive approach that simply uses an insertion soffind the closesk photons at the end.
However, this approach was slower than our sorsedhplementation because we were running
the insertion sort in just one thread. In orderotwain a better performance, the sorting or
collecting has to be parallelized as well. Finathgre is an interesting paper by Deo et al [57]
that presents a parallel implementation of a pgagueue. This priority queue could be created

after each thread finished processing its cell,intalt quite easy to return the closkgihotons.

Martin Fleisz 51

Conclusion

“After you finish the first 90% of a project, yoave to finish the other 90%.”

- Michael Abrash, Programmer at Rad Game Tools [58]

Objectives

* To give an overall summary of this project
* To give a overview of the project’s outcomes

* To highlight future developments or extensionshifroject

Photon Mapping on the GPU Chapter 6 — Conclusion

6.1 Conclusion

We started our project with the aim of developingraproved Photon Mapping technique that is
tailored for parallel architectures, specificallfPGs. We began by looking at existing papers,
published for Photon Mapping akdearest neighbor search on the GPU and how thagited
parallelism. In our opinion, both methods had a tficiencies in how they parallelized work,
organized photon data or in their algorithm complexAfter analyzing these weaknesses, we
came up with a new approach to parallelize Phot@pphg, where we try to avoid all the
previously discovered shortcomings. Our new metisdoased on spatial hashing and grouping
photons together in cells, according to their lmatin space. To evaluate our concept we
implemented prototypes for the brute force, theTkBe and our spatial hashing technique and

carried out a series of benchmarks.

In our tests we observed that our new approachfagisr during construction and almost all the
search tests, than the other two techniques. Eapeconstruction time was greatly reduced,
compared to the kD-Tree solution. We also prooked bur spatial hashing approach works well
with both, global and caustic photon map types. &groblems occurred with larger photon
sample sizes of up to 40 or 50 photons per queirnt.pdlong with speed measurements, we also
examined the memory consumption of the various atgthOur approach consumed the least
memory but, as we noted, this strongly dependshersize of the rendered scene, the maximum
photon search radius and the used hashing funchiorally, we validated the quality of the
returned photon samples, by directly visualizing ghoton maps and comparing the resulting
images. The quality of the resulting images wasitidal and finally proofed the usefulness of
our technique.

We ended the results chapter with a summary obbservations, identifying two issues with our
solution that we experienced during the tests. Mgnmonsumption and the photon collection
implementation were found to be the culprits of taghnique. Finally, we presented a couple of
possible solutions to these shortcomings. Neversiselthere are a couple of areas where we think

our technique might be very useful, which we wékdribe in the following section.

Martin Fleisz 53

Photon Mapping on the GPU Chapter 6 — Conclusion

6.2 Future Work

We think there are a couple of interesting topiggn future work can be based on. The first one
is to use our spatial hashing approach for rendguarticipating media, using Photon Mapping
[59]. Examples for participating media are smokestdr clouds, which all affect light, when it
travels through them. When a light beam entersigiyeating media it is either absorbed or
scattered, which means the light beam’s directltanges. Because our hashing function is based
on a grid of cells, building a volume, we thinkig a perfect structure for storing photon

information of volumetric participating media, likethe aforementioned examples.

Another interesting approach is to combine our igpdtashing method with the progressive
Photon Mapping technique in [60]. As we were ablede in our experiments, our method scales
pretty well with small photon map sizes and corcdtam overhead is very low. Both these factors

should favor our technique for the progressiveaade estimate, used in the paper.

Like in the paper by Garcia et al [25], we thinksitalso interesting to see how well our approach
scales with higher dimension points. A couple gtistinents need to be done to the algorithm in
order to support variable dimensions, specificéitlg grid and hash calculation as well as the

neighbor offset lookup table.

Future developments in graphics hardware will diewe an important impact on Photon
Mapping techniques. With their newest range of Ge€a@raphics cards, nVidia relaxed the
requirements for coalesced memory access. Mayheefujenerates will further relax these
requirements or provide caches for local and glahamory access. Like the kD-Tree, our

technique could greatly profit from such developtsen

Finally, there is also Intel's new GPU, called ladree [61], which is going to be released next
year, offering a many-core x86 architecture folusiscomputing. Our spatial hashing algorithm
should be well suited for this architecture becaokés high parallelization. The sequential

photon access pattern in each cell should alscagtese an optimal use of Larrabee’s first and

second level data caches.

Martin Fleisz 54

Photon Mapping on the GPU Bibliography

Bibliography

[1] G. Anthes. (2007, November) ComputerWorldUK. [Oa]in
http://www.computerworlduk.com/technology/hardwaretessors/in-
depth/index.cfm?articleid=957

[2] nVidia Corporation, "NVIDIA CUDA Programming Guidéersion 2.2," NVIDIA, 2009.

[3] J. L. Bentley, "Multidimensional Binary Search Tsdésed for Associative Searching,”
Comm. of the ACM 1&p. 509-517, 1975.

[4] T. Davis, A. Chalmers, and H. W. Jensen, "Pracieahllel Processing for Realistic
Rendering," ilSIGGRAPH 2000 Course Notégéew Orleans, 2000.

[5] C. James. (2008, May) V3. [Onlindittp://www.v3.co.uk/vnunet/news/2215645/nvidia-

touts-parallel-computing

[6] A. Appel, "Some techniques for shading machine eeinds of solids," iIRAFIPS Joint
Computer Conferenceétlantic City, New Jersey, 1968, pp. 37-45.

[7] T. Whitted, "An Improved Illumination Model for Sad Display,"Communications of
the ACM vol. 23, no. 6, pp. 343-349, June 1980.

[8] J. Atwood. (2008, March) Real-Time Raytracing. [i@e].
http://www.codinghorror.com/blog/images/ray-tracidiagram.png

[9] R. Descarteddiscourse on Method, Optics, Geometry, and Meteggpolindianapolis:
Hackett Publishing Co., 2001.

[10] J. R. Wallace, M. F. Cohen, and D. P. Greenbergli®-Pass Solution to the Rendering
Equation: A Synthesis of Ray Tracing and Radiostathods,"Computer Graphics 23p.
311-320, 1987.

[11] H. E. Rushmeier and K. E. Torrance, "ExtendingRladiosity Methods to Include

Martin Fleisz 55

Photon Mapping on the GPU Bibliography

Specularly Reflecting and Translucent MateriadgCM Transaction on Graphics gp. 1-
27, 1990.

[12] F. X. Sillion, J. R. Arvo, S. H. Westin, and D.@®reenberg, "A Global lllumination
Solution for General Reflectance DistributionSdmputer Graphics 2%p. 187-196,
1991.

[13] H. W. Jensen and N. J. Christensen, "Photon Mapgdinectional Monte Carlo Ray
Tracing of Complex ObjectsComputers & Graphics vol. 19p. 215-224, 1995.

[14] H. W. Jensen, "Global lllumination using Photon MdRendering Techniques "9g6p.
21-30, 1996.

[15] H. W. Jensen, "Global illumination via bidirektidrionte Carlo ray tracing," Technical

University of Denmark, Master thesis 1993.

[16] J. Arvo and D. B. Kirk, "Particle Transport and geaSynthesis,Computer Graphics
(Proc. SIGGRAPH "90Q)ol. 24, no. 4, pp. 63-66, August 1990.

[17] Z. Waters. (2009) Photon Mapping. [Online].

http://web.cs.wpi.edu/~emmanuel/courses/cs563/wifie/zackw/photon mapping/Photon

Mapping.html

[18] T. J. Purcell, I. Buck, W. R. Mark, and P. HanraH#&tay Tracing on Programmable
Graphics Hardware ACM Transactions on Graphicsol. 21, no. 3, pp. 703-712, 2002.

[19] D. R. Horn, J. Sugerman, M. Houston, and P. Hamrghateractive k-D Tree GPU
Raytracing,"Proceedings of Symposium on Interactive 3D grapdincs Gamespp. 167-
174, 2007.

[20] S. Popov, J. Gunther, H.-P. Seidel, and P. Sldsalitackless KD-Tree Traversal for
High Performance GPU Ray Tracing;bmputer Graphics Forunvol. 26, no. 3, pp. 415-
424, September 2007.

[21] D. Luebke and S. Parker, "Interactive Ray Tracintp WUDA," in NVISIONO08 2008.

Martin Fleisz 56

Photon Mapping on the GPU Bibliography

[22] J. Gunther, I. Wald, and P. Slusallek, "Realtimegiias Using Distributed Photon
Mapping,"Proceedings of the 15th Eurographics Symposiumend&ing pp. 111-121,
June 2004.

[23] T. J. Purcell, C. Donner, M. Cammarano, H. W. Jenaad P. Hanrahan, "Photon
Mapping on Programmable Graphics Hardware]htarnational Conference on Compu

Graphics and Interactive Techniquésos Angeles, 2005.

[24] Y. Lifshits. (2008) The Homepage of Nearest Neigsland Similarity Search. [Online].

http://simsearch.yury.name/

[25] V. Garcia, E. Debreuve, and M. Barlaud, "Fast kidsaNeighbor Search using GPU," in
CVPR Workshop on Computer Vision on GRldchorage, 2008.

[26] C. A. R. Hoare, "Quicksort: Algorithm 64Communications of the AGMol. 4, no. 7, pp.
321-322, 1961.

[27] W. Dobosiewicz, "An efficient variation of bubblers," Information Processing Letters
vol. 11, pp. 5-6, 1980.

[28] D. Knuth, "Sorting by Insertion," ithe Art of Computer Programming, Volume 3: Sor
and Searching Addison-Wesley, 1998, ch. 5.2.1, pp. 80-105.

[29] D. M. Mount and S. Arya. ANN: A library for appraxrate nearest neighbor searching.
[Online]. http://www.cs.umd.edu/"mount/ANN/

[30] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silvermand A. Y. Wu, "An optimal
algorithm for approximate nearest neighbor searcfiked dimensions,Journal of the
ACM, vol. 45, no. 6, pp. 891-923, 1998.

[31] S. Popov, J. Glnther, H.-P. Seidel, and P. Slusaliexperiences with Streaming
Construction of SAH KD-Trees," iRroceedings of the 2006 IEEE Symposium on
Interactive 2006, pp. 89-94.

[32] M. Shevtsov, A. Soupikov, and A. Kapustin, "Higlitgrallel Fast KD-tree Construction

Martin Fleisz 57

Photon Mapping on the GPU Bibliography

for Interactive Ray Tracing of Dynamic ScendSdmputer Graphics Forunvol. 26, no.
3, pp. 395-404, October 2007.

[33] J. Goldsmith and J. Salmon, "Automatic creatioolgéct hierarchies for ray tracing,"
IEEE Computer Graphics and Application®l. 7, no. 5, pp. 14-20, 1987.

[34] J. D. MacDonald and K. S. Booth, "Heuristics foy teacing using space subdivisiohe
Visual Computervol. 6, no. 3, pp. 153-166, 1990.

[35] I. Wald, "Realtime Ray Tracing and Interactive Glbllumination,” Saarland University,
PhD Thesis 2004.

[36] K. Zhou, Q. Hou, R. Wang, and B. Guo, "Real-time-K&e construction on graphics
hardware,"”ACM Transactions on Graphicsgol. 27, no. 5, pp. 1-11, December 2008.

[37] N. Satish, M. Harris, and M. Garland, "Designindi¢&nt Sorting Algorithms for
Manycore GPUs,Proc. 23rd IEEE Int'| Parallel & Distributed Procasng Symposium
May 2009.

[38] V. Havran, "Heuristic Ray Shooting Algorithms," @€keTechnical University, PhD Thesis
2000.

[39] M. Harris, S. Sengupta, and J. D. Owens, "ParBllefix Sum (Scan) with CUDA," in
GPU Gems 3 Addison Wesley, 2007.

[40] S. Sengupta, M. Harris, Y. Zhang, and J. D. Ow&san Primitives for GPU
Computing," inGraphics Hardware 20Q7San Diego, 2007, pp. 97-106.

[41] I. Wald, J. Gunther, and P. Slusallek, "Balancirans§idered Harmful - Faster Photon
Mapping using the Voxel Volume Heuristi€cZomputer Graphics Forunvol. 22, no. 3,
2004.

[42] G. S. Manku. (2008, August) Fast Bit Counting. [iDe].
http://qurmeetsingh.wordpress.com/2008/08/05/féstduinting-routines/

[43] C. Lauterbach, M. Garland, S. Sengupta, D. Luebdkd,D. Manocha, "Fast BVH

Martin Fleisz 58

Photon Mapping on the GPU Bibliography

Construction on GPUs Computer Graphics Forunvol. 28, no. 2, pp. 375-384, 2009.
[44] H. W. JenserRealistic Image Synthesis Using Photon MappiAK Peters, 2001.

[45] F. P. Preparata and M. I. Sham@smputational Geometry: An Introductiospringer-
Verlag New York, 1985.

[46] Edge Staff. (2005, August) Edge. [Onlineltp://www.edge-online.com/features/john-

carmack

[47] V. Garcia. (2008, June) CUDA Zone Forum. [Online].
http://forums.nvidia.com/index.php?s=&showtopic=6%9&view=findpost&p=391299

[48] D. T. Lee and C. K. Wong, "Worst-case analysigégrion and partial region searches in
multidimensional binary search trees and balanced d¢rees,Acta Informaticavol. 9,
no. 1, pp. 23-29, 1977.

[49] S. Green, "Patrticle-based Fluid Simulation,Game Developers Conferen@908.

[50] S. Le Grand, "Broad-Phase Collision Detection V@thDA," in GPU Gems 3 Addison
Wesley, 2007, pp. 697-721.

[51] G. M. Morton, "A computer Oriented Geodetic Datss8aand a New Technique in File
Sequencing,” IBM Ltd., Ottawa, Technical Report3.96

[52] T. H. Cormen, C. E. Leiserson, and R. L. Rivastoduction to Algorithms MIT Press /
McGraw-Hill, 1990.

[53] M. Teschner, B. Heidelberger, M. Miiller, D. Pomatsnand M. Gross, "Optimized
Spatial Hashing for Collision Detection of Defornw®bjects, Proceedings of VMV'03
Munich, pp. 47-54, 2003.

[54] R. Pattis. (2002) Framework Methodology. [Online].
http://www.phred.org/~brian/factoring/chapter2.html

[55] Y. H. Yee and A. Newman, "A perceptual metric fooguction testing," innternational

Martin Fleisz 59

Photon Mapping on the GPU Bibliography

Conference on Computer Graphics and Interactivehiieies Los Angeles, 2004, p. 121.

[56] M. Harris et al. (2009, August) CUDPP homepage lif@h
http://code.google.com/p/cudpp/

[57] N. Deo and S. Prasad, "Parallel heap: An optimedllgd priority queue,The Journal of
Supercomputingvol. 6, no. 1, pp. 87-98, November 2004.

[58] M. Abrash. (2000) Ramblings in Realtime. [Online].
http://www.gamedev.net/reference/articles/abrash&bpdf

[59] H. W. Jensen and P. H. Christensen, "Efficient $atien of Light Transport in Scenes
with Participating Media using Photon Maps,limProceedings of SIGGRAPH'98
Orlando, 1998, pp. 311-320.

[60] T. Hachisuka, S. Ogaki, and H. W. Jensen, "Progre$thoton Mapping,” iIslIGGRAPH
Asia 2008 Singapore, 2008.

[61] L. Seiler et al., "Larrabee: a many-core x86 aggtiire for visual computing,”
Proceedings of ACM SIGGRAPH 20@8I. 27, no. 3, August 2008.

Martin Fleisz 60

