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1. INTRODUCTION

This chapter is about making regionally specific inferences in

neuroimaging.  These inferences may be about differences expressed

when comparing one group of subjects to another or, within subjects,

over a sequence of observations.  They may pertain to structural

differences (e.g. in voxel-based morphometry - Ashburner and Friston

2000) or neurophysiological indices of brain functions (e.g. fMRI).

The principles of data analysis are very similar for all of these

applications and constitute the subject of this chapter.  We will focus

on the analysis of fMRI time-series because this covers most of the

issues that are likely to be encountered in other modalities.  Generally,
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the analysis of structural images and PET scans is simpler because

they do not have to deal with correlated errors, from one scan to the

next.

   A general issue, in data analysis, is the relationship between the

neurobiological hypothesis one posits and the statistical models

adopted to test that hypothesis.  This chapter begins by reviewing the

distinction between functional specialization and integration and how

these principles serve as the motivation for most analyses of

neuroimaging data. We will address the design and analysis of

neuroimaging studies from both these perspectives but note that both

have to be integrated for a full understanding of brain mapping results.

   Statistical parametric mapping is generally used to identify

functionally specialized brain regions and is the most prevalent

approach to characterizing functional anatomy and disease-related

changes.  The alternative perspective, namely that provided by

functional integration, requires a different set of [multivariate]

approaches that examine the relationship between changes in activity

in one brain area and another.  Statistical parametric mapping is a

voxel-based approach, employing classical inference, to make some

comment about regionally specific responses to experimental factors.

In order to assign an observed response to a particular brain structure,

or cortical area, the data must conform to a known anatomical space.

Before considering statistical modeling, this chapter deals briefly with

how a time-series of images are realigned and mapped into some

standard anatomical space (e.g. a stereotactic space).  The general

ideas behind statistical parametric mapping are then described and

illustrated with attention to the different sorts of inferences that can be
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made with different experimental designs.  fMRI is special, in the

sense that the data lend themselves to a signal processing perspective.

This can be exploited to ensure that both the design and analysis are as

efficient as possible.  Linear time invariant models provide the bridge

between inferential models employed by statistical mapping and

conventional signal processing approaches.  Temporal

autocorrelations in noise processes represent another important issue,

specific to fMRI, and approaches to maximizing efficiency in the

context of serially correlated error terms will be discussed.  Nonlinear

models of evoked hemodynamics will be considered here because

they can be used to indicate when the assumptions behind linear

models are violated.  fMRI can capture data very fast (in relation to

other imaging techniques), engendering the opportunity to measure

event-related responses.  The distinction between event and epoch-

related designs will be discussed from the point of view of efficiency

and the constraints provided by nonlinear characterizations.  Before

considering multivariate analyses we will close the discussion of

inferences, about regionally specific effects, by looking at the

distinction between fixed and random-effect analyses and how this

relates to inferences about the subjects studied or the population from

which these subjects came.  The final section will deal with functional

integration using models of effective connectivity and other

multivariate approaches.
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2. FUNCTIONAL SPECIALIZATION AND
INTEGRATION

The brain appears to adhere to two fundamental principles of

functional organization, functional integration and functional

specialization, where the integration within and among specialized

areas is mediated by effective connectivity.  The distinction relates to

that between localisationism and [dis]connectionism that dominated

thinking about cortical function in the nineteenth century.  Since the

early anatomic theories of Gall, the identification of a particular brain

region with a specific function has become a central theme in

neuroscience.  However functional localization per se was not easy to

demonstrate: For example, a meeting that took place on August 4th

1881 addressed the difficulties of attributing function to a cortical

area, given the dependence of cerebral activity on underlying

connections (Phillips et al 1984).  This meeting was entitled

"Localization of function in the cortex cerebri".  Goltz (1881),

although accepting the results of electrical stimulation in dog and

monkey cortex, considered that the excitation method was

inconclusive, in that movements elicited might have originated in

related pathways, or current could have spread to distant centers.  In

short, the excitation method could not be used to infer functional

localization because localisationism discounted interactions, or

functional integration among different brain areas.  It was proposed

that lesion studies could supplement excitation experiments.

Ironically, it was observations on patients with brain lesions some

years later (see Absher and Benson 1993) that led to the concept of
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disconnection syndromes and the refutation of localisationism as a

complete or sufficient explanation of cortical organization.  Functional

localization implies that a function can be localized in a cortical area,

whereas specialization suggests that a cortical area is specialized for

some aspects of perceptual or motor processing, and that this

specialization is anatomically segregated within the cortex.  The

cortical infrastructure supporting a single function may then involve

many specialized areas whose union is mediated by the functional

integration among them.  In this view functional specialization is only

meaningful in the context of functional integration and vice versa.

2.1 Functional specialization and segregation

The functional role played by any component (e.g. cortical area,

subarea or neuronal population) of the brain is largely defined by its

connections.  Certain patterns of cortical projections are so common

that they could amount to rules of cortical connectivity.  "These rules

revolve around one, apparently, overriding strategy that the cerebral

cortex uses - that of functional segregation" (Zeki 1990).  Functional

segregation demands that cells with common functional properties be

grouped together.  This architectural constraint necessitates both

convergence and divergence of cortical connections.  Extrinsic

connections among cortical regions are not continuous but occur in

patches or clusters.  This patchiness has, in some instances, a clear

relationship to functional segregation.  For example, V2 has a

distinctive cytochrome oxidase architecture, consisting of thick

stripes, thin stripes and inter-stripes.  When recordings are made in
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V2, directionally selective (but not wavelength or color selective) cells

are found exclusively in the thick stripes.  Retrograde (i.e. backward)

labeling of cells in V5 is limited to these thick stripes.  All the

available physiological evidence suggests that V5 is a functionally

homogeneous area that is specialized for visual motion.  Evidence of

this nature supports the notion that patchy connectivity is the

anatomical infrastructure that mediates functional segregation and

specialization.  If it is the case that neurons in a given cortical area

share a common responsiveness (by virtue of their extrinsic

connectivity) to some sensorimotor or cognitive attribute, then this

functional segregation is also an anatomical one.  Challenging a

subject with the appropriate sensorimotor attribute or cognitive

process should lead to activity changes in, and only in, the area of

interest.  This is the anatomical and physiological model upon which

the search for regionally specific effects is based .

   The analysis of functional neuroimaging data involves many

steps that can be broadly divided into; (i) spatial processing, (ii)

estimating the parameters of a statistical model and (iii) making

inferences about those parameter estimates with their associated

statistics (see Figure 1).  We will deal first with spatial

transformations: In order to combine data from different scans from

the same subject, or data from different subjects it is necessary that

they conform to the same anatomical frame of reference.  This is the

subject of the next section.
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Figure 1. This schematic depicts the transformations that start with an imaging data sequence
and end with a statistical parametric map (SPM).  SPMs that can be thought of as 'X-rays' of

the significance of an effect.  Voxel-based analyses require the data to be in the same
anatomical space:  This is effected by realigning the data (and removing movement-related

signal components that persist after realignment).  After realignment the images are subject to
non-linear warping so that they match a template that already conforms to a standard

anatomical space.  After smoothing, the general linear model is employed to (i) estimate the
parameters of the model and (ii) derive the appropriate univariate test statistic at every voxel

(see Figure 3).  The test statistics that ensue (usually T or F statistics) constitute the SPM.
The final stage is to make statistical inferences on the basis of the SPM and Gaussian random
field theory (see Figure 6) and characterize the responses observed using the fitted responses

or parameter estimates.

3. SPATIAL REALIGNMENT AND
NORMALISATION

The analysis of neuroimaging data generally starts with a series of

spatial transformations.  These transformations aim to reduce

artifactual variance components in the voxel time-series that are
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induced by movement or shape differences among a series of scans.

Voxel-based analyses assume that the data from a particular voxel all

derive from the same part of the brain.  Violations of this assumption

will introduce artifactual changes in the voxel values that may obscure

changes, or differences, of interest..  Even single-subject analyses

proceed in a standard anatomical space, simply to enable reporting of

regionally-specific effects in a frame of reference that can be related to

other studies.

   The first step is to realign the data in order to 'undo' the effects of

subject movement during the scanning session.  After realignment the

data are then transformed using linear or nonlinear warps into a

standard anatomical space.  Finally, the data are usually spatially

smoothed before entering the analysis proper.

3.1 Realignment

Changes in signal intensity over time, from any one voxel, can

arise from head motion and this represents a serious confound,

particularly in fMRI studies.  Despite restraints on head movement,

co-operative subjects still show displacements of up to a millimeter or

so.  Realignment involves (i) estimating the 6 parameters of an affine

'rigid-body' transformation that minimizes the [sum of squared]

differences between each successive scan and a reference scan

(usually the first or the average of all scans in the time series) and (ii)

applying the transformation by re-sampling the data using tri-linear,

sinc or cubic spline interpolation.  Estimation of the affine

transformation is usually effected with a first order approximation of
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the Taylor expansion of the effect of movement on signal intensity

using the spatial derivatives of the images (see below).  This allows

for a simple iterative least squares solution (that corresponds to a

Gauss-Newton search) (Friston et al 1995a).  For most imaging

modalities this procedure is sufficient to realign scans to, in some

instances, a hundred microns or so (Friston et al 1996a).  However, in

fMRI, even after perfect realignment, movement-related signals can

still persist.  This calls for a final step in which the data are adjusted

for residual movement-related effects.

3.2 Adjusting for movement related effects in fMRI

In extreme cases as much as 90% of the variance, in a fMRI time-

series, can be accounted for by the effects of movement after

realignment (Friston et al 1996a).  Causes of these movement-related

components are due to movement effects that cannot be modeled

using a linear affine model.  These nonlinear effects include; (i)

subject movement between slice acquisition,  (ii) interpolation

artifacts (Grootoonk et al 2000),  (iii) nonlinear distortion due to

magnetic field inhomogeneities (Andersson et al 2001) and (iv) spin-

excitation history effects (Friston et al 1996a).  The latter can be

pronounced if the TR (repetition time) approaches T
1
 making the

current signal a function of movement history.  These multiple effects

render the movement-related signal (y) a nonlinear function of

displacement (x) in the nth and previous scans ),,( 1 ��

� nnn xxfy .  By

assuming a sensible form for this function, its parameters can be
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estimated using the observed time-series and the estimated movement

parameters x from the realignment procedure.  The estimated

movement-related signal is then simply subtracted from the original

data.  This adjustment can be carried out as a pre-processing step or

embodied in model estimation during the analysis proper.  The form

for ƒ(x), proposed in Friston et al (1996a), was a nonlinear auto-

regression model that used polynomial expansions to second order.

This model was motivated by spin-excitation history effects and

allowed displacement in previous scans to explain the current

movement-related signal.  However, it is also a reasonable model for

many other sources of movement-related confounds.  Generally, for

TRs of several seconds, interpolation artifacts supersede (Grootoonk

et al 2000) and first order terms, comprising an expansion of the

current displacement in terms of periodic basis functions, appear to be

sufficient.

   This subsection has considered spatial realignment.  In multislice

acquisition different slices are acquired at slightly different times.

This raises the possibility of temporal realignment to ensure that the

data from any given volume were sampled at the same time.  This is

usually performed using sinc interpolation over time and only when (i)

the temporal dynamics of evoked responses are important and (ii) the

TR is sufficiently small to permit interpolation.  Generally timing

effects of this sort are not considered problematic because they

manifest as artifactual latency differences in evoked responses from

region to region.  Given that biophysical latency differences may be in

the order of a few seconds, inferences about these differences are only

made when comparing different trial types at the same voxel.
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Provided the effects of latency differences are modelled, this renders

temporal realignment unnecessary in most instances.

3.3 Spatial Normalization

After realigning the data, a mean image of the series, or some other

co-registered (e.g. a T1-weighted) image, is used to estimate the

warping parameters that map it onto a template that already conforms

to some standard anatomical space (e.g. Talairach and Tournoux

1988).  This estimation can use a variety of models for the mapping,

including: (i) a 12-parameter affine transformation, where the

parameters constitute a spatial transformation matrix, (ii) low

frequency basis spatial functions (usually a discrete cosine set or

polynomials), where the parameters are the coefficients of the basis

functions employed and (ii) a vector field specifying the mapping for

each control point (e.g. voxel).  In the latter case, the parameters are

vast in number and constitute a vector field that is bigger than the

image itself.  Estimation of the parameters of all these models can be

accommodated in a simple Bayesian framework, in which one is

trying to find the deformation parameters �  that have the maximum

posterior probability )|( yp � given the data y, where

)()|()|( ��� pypyp � . Put simply, one wants to find the deformation

that is most likely given the data.  This deformation can be found by

maximizing the probability of getting the data, assuming the current

estimate of the deformation is true, times the probability of that

estimate being true.  In practice the deformation is updated iteratively
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using a Gauss-Newton scheme to maximize )|( yp � .  This involves

jointly minimizing the likelihood and prior potentials

)|(ln)|( �� ypyH � and )(ln)( �� pH � .  The likelihood potential is

generally taken to be the sum of squared differences between the

template and deformed image and reflects the probability of actually

getting that image if the transformation was correct.  The prior

potential can be used to incorporate prior information about the

likelihood of a given warp. Priors can be determined empirically or

motivated by constraints on the mappings.  Priors play a more

essential role as the number of parameters specifying the mapping

increases and are central to high dimensional warping schemes

(Ashburner et al 1997).

   In practice most people use an affine or spatial basis function

warps and use iterative least squares to minimize the posterior

potential. A nice extension of this approach is that the likelihood

potential can be refined and taken as difference between the index

image and the best [linear] combination of templates (e.g. depicting

gray, white, CSF and skull tissue partitions).  This models intensity

differences that are unrelated to registration differences and allows

different modalities to be co-registered (see Figure 2).

   A special consideration is the spatial normalization of brains that

have gross anatomical pathology.  This pathology can be of two sorts

(i) quantitative changes in the amount of a particular tissue

compartment (e.g.  cortical atrophy) or (ii) qualitative changes in

anatomy involving the insertion or deletion of normal tissue

compartments (e.g. ischemic tissue in stroke or cortical dysplasia).

The former case is, generally, not problematic in the sense that
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changes in the amount of cortical tissue will not affect its optimum

spatial location in reference to some template (and, even if it does, a

disease-specific template is easily constructed).  The second sort of

pathology can introduce substantial 'errors' in the normalization unless

special precautions are taken.  These usually involve imposing

constraints on the warping to ensure that the pathology does not bias

the deformation of undamaged tissue.  This involves 'hard' constraints

implicit in using a small number of basis functions or 'soft' constraints

implemented by increasing the role of priors in Bayesian estimation.

An alternative strategy is to use another modality that is less sensitive

to the pathology as the basis of the spatial normalization procedure or

to simply remove the damaged region from the estimation by masking

it out.
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Figure 2. Schematic illustrating a Gauss-Newton scheme for maximizing the posterior
probability   of the parameters for spatially normalizing an image.  This scheme is iterative.
At each step the conditional estimate of the parameters is obtained by jointly minimizing the

likelihood and the prior potentials.  The former is the difference between a resampled (i.e.
warped) version y of the image f and the best linear combination of some templates g.  These
parameters are used to mix the templates and resample the image to progressively reduce both

the spatial and intensity differences.  After convergence the resampled image can be
considered normalized.

3.4 Co-registration of functional and anatomical data

It is sometimes useful to co-register functional and anatomical

images.  However, with echo-planar imaging, geometric distortions of

T2* images, relative to anatomical T1-weighted data, are a particularly

serious problem because of the very low frequency per point in the

phase encoding direction.  Typically for echo-planar fMRI magnetic

field inhomogeneity, sufficient to cause dephasing of 2π through the

slice, corresponds to an in-plane distortion of a voxel.  'Unwarping'

schemes have been proposed to correct for the distortion effects

(Jezzard and Balaban 1995).  However, this distortion is not an issue if

one spatially normalizes the functional data.

3.5 Spatial smoothing

The motivations for smoothing the data are fourfold:  (i) By the

matched filter theorem, the optimum smoothing kernel corresponds to

the size of the effect that one anticipates.  The spatial scale of

hemodynamic responses is, according to high-resolution optical

imaging experiments, about 2 to 5mm.  Despite the potentially high

resolution afforded by fMRI an equivalent smoothing is suggested for
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most applications.  (ii) By the central limit theorem, smoothing the

data will render the errors more normal in their distribution and ensure

the validity of inferences based on parametric tests.  (iii) When

making inferences about regional effects using Gaussian random field

theory (see Section IV) one of the assumptions is that the error terms

are a reasonable lattice representation of an underlying and smooth

Gaussian field.  This necessitates smoothness to be substantially

greater than voxel size.  If the voxels are large, then they can be

reduced by sub-sampling the data and smoothing (with the original

point spread function) with little loss of intrinsic resolution.  (iv) In

the context of inter-subject averaging it is often necessary to smooth

more (e.g. 8 mm in fMRI or 16mm in PET) to project the data onto a

spatial scale where homologies in functional anatomy are expressed

among subjects.

4. STATISTICAL PARAMETRIC MAPPING

Functional mapping studies are usually analyzed with some form

of statistical parametric mapping.  Statistical parametric mapping

refers to the construction of spatially extended statistical processes to

test hypotheses about regionally specific effects (Friston et al 1991).

Statistical parametric maps (SPMs) are image processes with voxel

values that are, under the null hypothesis, distributed according to a

known probability density function, usually the Student's T or F
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distributions.  These are known colloquially as T- or F-maps.  The

success of statistical parametric mapping is due largely to the

simplicity of the idea.  Namely, one analyses each and every voxel

using any standard (univariate) statistical test.  The resulting statistical

parameters are assembled into an image - the SPM.  SPMs are

interpreted as spatially extended statistical processes by referring to

the probabilistic behavior of Gaussian fields (Adler 1981, Worsley et

al 1992, Friston et al 1994a, Worsley et al 1996).  Gaussian random

fields model both the univariate probabilistic characteristics of a SPM

and any non-stationary spatial covariance structure.  'Unlikely'

excursions of the SPM are interpreted as regionally specific effects,

attributable to the sensorimotor or cognitive process that has been

manipulated experimentally.

  Over the years statistical parametric mapping has come to refer to

the conjoint use of the general linear model (GLM) and Gaussian

random field (GRF) theory to analyze and make classical inferences

about spatially extended data through statistical parametric maps

(SPMs).  The GLM is used to estimate some parameters that could

explain the data in exactly the same way as in conventional analysis of

discrete data.  GRF theory is used to resolve the multiple comparison

problem that ensues when making inferences over a volume of the

brain.  GRF theory provides a method for correcting p values for the

search volume of a SPM and plays the same role for continuous data

(i.e. images) as the Bonferonni correction for the number of

discontinuous or discrete statistical tests.

   The approach was called SPM for three reasons; (i) To

acknowledge Significance Probability Mapping,  the use of
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interpolated pseudo-maps of p values used to summarize the analysis

of multi-channel ERP studies. (ii) For consistency with the

nomenclature of parametric maps of physiological or physical

parameters (e.g. regional cerebral blood flow rCBF or volume rCBV

parametric maps). (iii) In reference to the parametric statistics that

comprise the maps.  Despite its simplicity there are some fairly subtle

motivations for the approach that deserve mention.  Usually, given a

response or dependent variable comprising many thousands of voxels

one would use multivariate analyses as opposed to the mass-

univariate approach that SPM represents.  The problems with

multivariate approaches are that; (i) they do not support inferences

about regionally specific effects, (ii) they require more observations

than the dimension of the response variable (i.e. number of voxels)

and (iii), even in the context of dimension reduction, they are usually

less sensitive to focal effects than mass-univariate approaches.  A

heuristic argument, for their relative lack of power, is that multivariate

approaches estimate the model’s error covariances using lots of

parameters (e.g. the covariance between the errors at all pairs of

voxels).  In general, the more parameters (and hyper-parameters) an

estimation procedure has to deal with, the more variable the estimate

of any one parameter becomes.  This renders inferences about any

single estimate less efficient.

   An alternative approach would be to consider different voxels as

different levels of an experimental or treatment factor and use

classical analysis of variance, not at each voxel (c.f. SPM), but by

considering the data sequences from all voxels together, as

replications over voxels.  The problem here is that regional changes in
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error variance, and spatial correlations in the data, induce profound

non-sphericity1 in the error terms.  This non-sphericity would again

require large numbers of [hyper]parameters to be estimated for each

voxel using conventional techniques.  In SPM the non-sphericity is

parameterized in the most parsimonious way with just two

[hyper]parameters for each voxel.  These are the error variance and

smoothness estimators (see Section IV.B and Figure 2).  This minimal

parameterization lends SPM a sensitivity that usually surpasses other

approaches.  SPM can do this because GRF theory implicitly imposes

constraints on the non-sphericity implied by the continuous and

[spatially] extended nature of the data. This is the only constraint on

the behavior of the error terms implied by the use of GRF theory and

is something that conventional multivariate and equivalent univariate

approaches are unable to accommodate, to their cost.

   Some analyses use statistical maps based on non-parametric tests

that eschew distributional assumptions about the data.  These

approaches may, in some instances, be useful but are generally less

powerful (i.e. less sensitive) than parametric approaches (see Aguirre

et al 1998).  Their original motivation in fMRI was based on the

[specious] assumption that the residuals were not normally distributed.

Next we consider parameter estimation in the context of the GLM.

1 Sphericity refers to the assumption of identically and independently distributed error terms
(i.i.d.).  Under i.i.d. the probability density function of the errors, from all observations,
has spherical iso-contours, hence sphericity.  Deviations from either of the i.i.d. criteria
constitute non-sphericity.  If the error terms are not identically distributed then different
observations have different error variances.  Correlations among error terms reflect
dependencies among the error terms (e.g. serial correlation in fMRI time series) and
constitute the second component of non-sphericity.
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This is followed by an introduction to the role of GRF theory when

making classical inferences about continuous data.

4.1 The general linear model

Statistical analysis of imaging data corresponds to (i) modeling the

data to partition observed neurophysiological responses into

components of interest, confounds and error and (ii) making

inferences about the interesting effects in relation to the error variance.

This inference can be regarded as a direct comparison of the variance

due to an interesting experimental manipulation with the error

variance (c.f. the F statistic and other likelihood ratios).  Alternatively,

one can view the statistic as an estimate of the response, or difference

of interest, divided by an estimate of its standard deviation.  This is a

useful way to think about the T statistic.

   A brief review of the literature may give the impression that there

are numerous ways to analyze PET and fMRI time-series with a

diversity of statistical and conceptual approaches.  This is not the case.

With very a few exceptions, every analysis is a variant of the general

linear model.  This includes; (i) simple T tests on scans assigned to

one condition or another, (ii) correlation coefficients between

observed responses and boxcar stimulus functions in fMRI, (iii)

inferences made using multiple linear regression, (iv) evoked

responses estimated using linear time invariant models and (v)

selective averaging to estimate event-related responses in fMRI.

Mathematically they are all identical.  The use of the correlation

coefficient deserves special mention because of its popularity in fMRI



20 Chapter #1

(Bandettini et al 1993).  The significance of a correlation is identical

to the significance of the equivalent T statistic testing for a regression

of the data on the stimulus function.  The correlation coefficient

approach is useful but the inference is effectively based on a limiting

case of multiple linear regression that obtains when there is only one

regressor.  In fMRI many regressors usually enter into a statistical

model.  Therefore, the T statistic provides a more versatile and generic

way of assessing the significance of regional effects and is preferred

over the correlation coefficient.

   The general linear model is an equation �� �� XY  that

expresses the observed response variable Y in terms of a linear

combination of explanatory variables X plus a well behaved error term

(see Figure 3 and Friston et al 1995b).  The general linear model is

variously known as 'analysis of covariance' or 'multiple regression

analysis' and subsumes simpler variants, like the 'T test' for a

difference in means, to more elaborate linear convolution models such

as finite impulse response (FIR) models.  The matrix X that contains

the explanatory variables (e.g. designed effects or confounds) is called

the design matrix.  Each column of the design matrix corresponds to

some effect one has built into the experiment or that may confound the

results.  These are referred to as explanatory variables, covariates or

regressors.  The example in Figure 1 relates to a fMRI study of visual

stimulation under four conditions.  The effects on the response

variable are modeled in terms of functions of the presence of these

conditions (i.e. boxcars smoothed with a hemodynamic response

function) and constitute the first four columns of the design matrix.

There then follows a series of terms that are designed to remove or
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model low frequency variations in signal due to artifacts such as

aliased biorhythms and other drift terms.  The final column is whole

brain activity.  The relative contribution of each of these columns is

assessed using standard least squares and inferences about these

contributions are made using T or F statistics, depending upon

whether one is looking at a particular linear combination (e.g. a

subtraction), or all of them together.  The operational equations are

depicted schematically in Figure 3.  In this scheme the general linear

model has been extended (Worsley and Friston 1995) to incorporate

intrinsic non-sphericity, or correlations among the error terms, and to

allow for some specified temporal filtering of the data.  This

generalization brings with it the notion of effective degrees of

freedom, which are less than the conventional degrees of freedom

under i.i.d. assumptions (see footnote).  They are smaller because the

temporal correlations reduce the effective number of independent

observations.  The T and F statistics are constructed using

Satterthwaite’s approximation.  This is the same approximation used

in classical non-sphericity corrections such as the Geisser-Greenhouse

correction.  However, in the Worsley and Friston (1995) scheme,

Satherthwaite’s approximation is used to construct the statistics and

appropriate degrees of freedom, not simply to provide a post hoc

correction to the degrees of freedom.

   The equations summarized in Figure 3 can be used to implement

a vast range of statistical analyses.  The issue is therefore not so much

the mathematics but the formulation of a design matrix X appropriate

to the study design and inferences that are sought.  The design matrix

can contain both covariates and indicator variables.  Each column of X
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has an associated unknown parameter.  Some of these parameters will

be of interest (e.g. the effect of particular sensorimotor or cognitive

condition or the regression coefficient of hemodynamic responses on

reaction time).  The remaining parameters will be of no interest and

pertain to confounding effects (e.g. the effect of being a particular

subject or the regression slope of voxel activity on global activity).

Inferences about the parameter estimates are made using their

estimated variance.  This allows one to test the null hypothesis that all

the estimates are zero using the F statistic to give an SPM{F} or that

some particular linear combination (e.g. a subtraction) of the estimates

is zero using a SPM{T}.  The T statistic obtains by dividing a contrast

or compound (specified by contrast weights) of the ensuing parameter

estimates by the standard error of that compound.  The latter is

estimated using the variance of the residuals about the least-squares

fit.  An example of a contrast weight vector would be [-1 1 0 0..... ] to

compare the difference in responses evoked by two conditions,

modeled by the first two condition-specific regressors in the design

matrix.  Sometimes several contrasts of parameter estimates are jointly

interesting.  For example, when using polynomial (Büchel et al 1996)

or basis function expansions of some experimental factor.  In these

instances, the SPM{F} is used and is specified with a matrix of

contrast weights that can be thought of as a collection of ‘T contrasts’

that one wants to test together.  A ‘F-contrast’ may look like,
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0010
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which would test for the significance of the first or second

parameter estimates.  The fact that the first weight is –1 as opposed to

1 has no effect on the test because the F statistic is based on sums of

squares.

. In most analysis the design matrix contains indicator variables or

parametric variables encoding the experimental manipulations.  These

are formally identical to classical analysis of [co]variance (i.e.

AnCova) models.  An important instance of the GLM, from the

perspective of fMRI, is the linear time invariant (LTI) model.

Mathematically this is no different from any other GLM.  However, it

explicitly treats the data-sequence as an ordered time-series and

enables a signal processing perspective that can be very useful.

Figure 3. The general linear model.  The general linear model is an equation expressing the
response variable Y in terms of a linear combination of explanatory variables in a design

matrix X and an error term with assumed or known autocorrelation �.  In fMRI the data can
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be filtered with a convolution matrix S, leading to a generalized linear model that includes
[intrinsic] serial correlations and applied [extrinsic] filtering.  Different choices of S

correspond to different [de]convolution schema as indicated on the upper left.  The parameter
estimates obtain in a least squares sense using the pseudoinverse (denoted by +) of the filtered

design matrix.  Generally an effect of interest is specified by a vector of contrast weights c
that give a weighted sum or compound of parameter estimates  referred to as a contrast.  The

T statistic is simply this contrast divided by its the estimated standard error (i.e. square root of
its estimated variance).  The ensuing T statistic is distributed with  v degrees of freedom.  The

equations for estimating the variance of the contrast and the degrees of freedom associated
with the error variance are provided in the right-hand panel.  Efficiency is simply the inverse

of the variance of the contrast. These expressions are useful when assessing the relative
efficiency of an experimental design.  The parameter estimates can either be examined

directly or used to compute the fitted responses (see lower left panel).  Adjusted data refers to
data from which estimated confounds have been removed.  The residuals r obtain from

applying the residual-forming matrix R to the data.  These residual fields are used to estimate
the smoothness of the component fields of the SPM used in Gaussian random field theory (see

Figure 6).

4.1.1 Linear Time Invariant (LTI) systems and temporal basis
functions

In Friston et al (1994b) the form of the hemodynamic impulse

response function (HRF) was estimated using a least squares de-

convolution and a time invariant model, where evoked neuronal

responses are convolved with the HRF to give the measured

hemodynamic response (see also Boynton et al 1996).  This simple

linear framework is the cornerstone for making statistical inferences

about activations in fMRI with the GLM.  An impulse response

function is the response to a single impulse, measured at a series times

after the input.  It characterizes the input-output behavior of the

system (i.e.. voxel) and places important constraints on the sorts of

inputs that will excite a response.  The HRFs, estimated in Friston et

al (1994b) resembled a Poisson or Gamma function, peaking at about

5 seconds.  Our understanding of the biophysical and physiological

mechanisms that underpin the HRF has grown considerably in the past
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few years (e.g. Buxton and Frank 1997).  Figure 4 shows some

simulations based on the hemodynamic model described in Friston et

al (2000a).  Here, neuronal activity induces some auto-regulated

signal that causes transient increases in rCBF.  The resulting flow

increases dilate the venous balloon increasing its volume (v) and

diluting venous blood to decrease deoxyhemoglobin content (q).  The

BOLD signal is roughly proportional to the concentration of

deoxyhemoglobin (q/v) and follows the rCBF response with about a

seconds delay.

   Knowing the forms that the HRF can take is important for several

reasons, not least because it allows for better statistical models of the

data.  The HRF may vary from voxel to voxel and this has to be

accommodated in the GLM.  To allow for different HRFs in different

brain regions the notion of temporal basis functions, to model evoked

responses in fMRI, was introduced (Friston et al 1995c) and applied to

event-related responses in Josephs et al (1997) (see also Lange and

Zeger 1997).  The basic idea behind temporal basis functions is that

the hemodynamic response induced by any given trial type can be

expressed as the linear combination of several [basis] functions of

peristimulus time.  The convolution model for fMRI responses takes a

stimulus function encoding the supposed neuronal responses and

convolves it with a HRF to give a regressor that enters into the design

matrix.  When using basis functions the stimulus function is

convolved with all the basis functions to give a series of regressors.

The associated parameter estimates are the coefficients or weights that

determine the mixture of basis functions that best models the HRF for

the trial type and voxel in question.  We find the most useful basis set
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to be a canonical HRF and its derivatives with respect to the key

parameters that determine its form (e.g. latency and dispersion).  The

nice thing about this approach is that it can partition differences

among evoked responses into differences in magnitude, latency or

dispersion, that can be tested for using specific contrasts and the

SPM{T} (see  Friston et al 1998b for details).

   Temporal basis functions are important because they enable a

graceful transition between conventional multi-linear regression

models with one stimulus function per condition and FIR models with

a parameter for each time point following the onset of a condition or

trial type.  Figure 5 illustrates this graphically (see Figure legend).  In

summary, temporal basis functions offer useful constraints on the

form of the estimated response that retain (i) the flexibility of FIR

models and (ii) the efficiency of single regressor models. The

advantage of using several temporal basis functions (as opposed to an

assumed form for the HRF) is that one can model voxel-specific forms

for hemodynamic responses and formal differences (e.g. onset

latencies) among responses to different sorts of events.  The

advantages of using basis functions over FIR models are that (i) the

parameters are estimated more efficiently and (ii) stimuli can be

presented at any point in the inter-stimulus interval.  The latter is

important because time-locking stimulus presentation and data

acquisition gives a biased sampling over peristimulus time and can

lead to differential sensitivities, in multi-slice acquisition, over the

brain.
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hemodynamicshemodynamics

Figure 4. Hemodynamics elicited by an impulse of neuronal activity as predicted by a
dynamical biophysical model (see Friston et al 2000a for details).  A burst of neuronal activity

causes an increase in flow inducing signal that decays with first order kinetic and is down
regulated by local flow.  This signal increases rCBF with dilates the venous capillaries

increasing its volume (v).  Concurrently, venous blood is expelled from the venous pool
decreasing deoxyhemoglobin content (q).  The resulting fall in deoxyhemoglobin

concentration leads to a transient increases in BOLD (blood oxygenation level dependent)
signal and a subsequent undershoot.

4.2 Statistical inference and the theory of Gaussian fields

Inferences using SPMs can be of two sorts depending on whether

one knows where to look in advance.  With an anatomically

constrained hypothesis, about effects in a particular brain region, the

uncorrected p value associated with the height or extent of that region

in the SPM can be used to test the hypothesis.  With an anatomically

open hypothesis (i.e. a null hypothesis that there is no effect anywhere
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in a specified volume of the brain) a correction for multiple dependent

comparisons is necessary.  The theory of Gaussian random fields

provides a way of correcting the p-value that takes into account the

fact that neighboring voxels are not independent by virtue of

continuity in the original data.  Provided the data are sufficiently

smooth the GRF correction is less severe (i.e. is more sensitive) than a

Bonferroni correction for the number of voxels. As noted above GRF

theory deals with the multiple comparisons problem in the context of

continuous, spatially extended statistical fields, in a way that is

analogous to the Bonferroni procedure for families of discrete

statistical tests.  There are many ways to appreciate the difference

between GRF and Bonferroni corrections.  Perhaps the most intuitive

is to consider the fundamental difference between a SPM and a

collection of discrete T values.  When declaring a connected volume

or region of the SPM to be significant, we refer collectively to all the

voxels that comprise that volume.  The false positive rate is expressed

in terms of connected [excursion] sets of voxels above some

threshold, under the null hypothesis of no activation.  This is not the

expected number of false positive voxels.  One false positive volume

may contain hundreds of voxels, if the SPM is very smooth.  A

Bonferroni correction would control the expected number of false

positive voxels, whereas GRF theory controls the expected number of

false positive regions.  Because a false positive region can contain

many voxels the corrected threshold under a GRF correction is much

lower, rendering it much more sensitive.  In fact the number of voxels

in a region is somewhat irrelevant because it is a function of

smoothness.  The GRF correction discounts voxel size by expressing
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the search volume in terms of smoothness or resolution elements

(Resels). See Figure 6.  This intuitive perspective is expressed

formally in terms of differential topology using the Euler

characteristic (Worsley et al 1992). At high thresholds the Euler

characteristic corresponds to the number of regions exceeding the

threshold.

    There are only two assumptions underlying the use of the GRF

correction: (i) The error fields (but not necessarily the data) are a

reasonable lattice approximation to an underlying random field with a

multivariate Gaussian distribution.  (ii) These fields are continuous,

with a twice-differentiable autocorrelation function.  A common

misconception is that the autocorrelation function has to be Gaussian.

It does not.  The only way in which these assumptions can be violated

is if; (i) the data are not smoothed (with or without sub-sampling of

the data to preserve resolution), violating the reasonable lattice

assumption or (ii) the statistical model is mis-specified so that the

errors are not normally distributed. Early formulations of the GRF

correction were based on the assumption that the spatial correlation

structure was wide-sense stationary.  This assumption can now be

relaxed due to a revision of the way in which the smoothness

estimator enters the correction procedure (Kiebel et al 1999).  In other

words, the corrections retain their validity, even if the smoothness

varies from voxel to voxel.
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4.2.1 Anatomically closed hypotheses

When making inferences about regional effects (e.g. activations) in

SPMs, one often has some idea about where the activation should be.

In this instance a correction for the entire search volume is

inappropriate.  However, a problem remains in the sense that one

would like to consider activations that are 'near' the predicted location,

even if they are not exactly coincident.  There are two approaches one

can adopt; (i) pre-specify a small search volume and make the

appropriate GRF correction (Worsley et al 1996) or (ii) used the

uncorrected p value based on spatial extent of the nearest cluster

(Friston 1997).  This probability is based on getting the observed

number of voxels, or more, in a given cluster (conditional on that

cluster existing).  Both these procedures are based on distributional

approximations from GRF theory.
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Temporal basis functions
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Figure 5. Temporal basis functions offer useful constraints on the form of the estimated
response that retain (i) the flexibility of FIR models and (ii) the efficiency of single regressor

models.  The specification of these constrained FIR models involves setting up stimulus
functions x(t) that model expected neuronal changes [e.g. boxcars of epoch-related responses
or spikes (delta functions) at the onset of specific events or trials].  These stimulus functions

are then convolved with a set of basis functions   of peri-stimulus time u, that model the HRF,
in some linear combination.  The ensuing regressors are assembled into the design matrix.

The basis functions can be as simple as a single canonical HRF (middle), through to a series
of delayed delta functions (bottom).  The latter case corresponds to a FIR model and the
coefficients constitute estimates of the impulse response function at a finite number of

discrete sampling times, for the event or epoch in question.  Selective averaging in event-
related fMRI (Dale and Buckner 1997) is mathematically equivalent to this limiting case.

4.2.2  Anatomically open hypotheses and levels of inference

To make inferences about regionally specific effects the SPM is

thresholded, using some height and spatial extent thresholds that are

specified by the user.  Corrected p-values can then be derived that

pertain to; (i) the number of activated regions (i.e. number of clusters
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above the height and volume threshold) - set level inferences, (ii) the

number of activated voxels (i.e. volume) comprising a particular

region - cluster level inferences and (iii) the p-value for each voxel

within that cluster - voxel level inferences.   These p-values are

corrected for the multiple dependent comparisons and are based on the

probability of obtaining c, or more, clusters with k, or more, voxels,

above a threshold u in an SPM of known or estimated smoothness.

This probability has a reasonably simple form (see Figure 6 for

details).

   Set-level refers to the inference that the number of clusters

comprising an observed activation profile is highly unlikely to have

occurred by chance and is a statement about the activation profile, as

characterized by its constituent regions.  Cluster-level inferences are a

special case of set-level inferences, that obtain when the number of

clusters c = 1.  Similarly voxel-level inferences are special cases of

cluster-level inferences that result when the cluster can be small (i.e. k

= 0).  Using a theoretical power analysis (Friston et al 1996b) of

distributed activations, one observes that set-level inferences are

generally more powerful than cluster-level inferences and that cluster-

level inferences are generally more powerful than voxel-level

inferences.  The price paid for this increased sensitivity is reduced

localizing power. Voxel-level tests permit individual voxels to be

identified as significant, whereas cluster and set-level inferences only

allow clusters or sets of clusters to be declared significant.  It should

be remembered that these conclusions, about the relative power of

different inference levels, are based on distributed activations.  Focal

activation may well be detected with greater sensitivity using voxel-



#1. Statistical Parametric Mapping 33

level tests based on peak height.  Typically, people use voxel-level

inferences and a spatial extent threshold of zero.  This reflects the fact

that characterizations of functional anatomy are generally more useful

when specified with a high degree of anatomical precision.
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Figure 6. Schematic illustrating the use of Gaussian random field theory in making inferences
about activations in SPMs.  If one knew where to look exactly, then inference can be based on

the value of the statistic at a specified location in the SPM, without correction.  However, if
one did not have an anatomical constraint a priori, then a correction for multiple dependent

comparisons has to be made.  These corrections are usually made using distributional
approximations from GRF theory.  This schematic deals with a general case of n SPM{T}s
whose voxels all survive a common threshold  u (i.e. a conjunction of n component SPMs).
The central probability, upon which all voxel, cluster or set-level inferences are made is the
probability P of getting c or more clusters with k or more resels (resolution elements) above

this threshold.  By assuming that clusters behave like a multidimensional Poisson point
process (i.e. the Poisson clumping heuristic) P is simply determined.  The distribution of c is

Poisson with an expectation that corresponds to the product of the expected number of
clusters, of any size, and the probability that any cluster will be bigger than k resels.  The

latter probability is shown using a form for a single Z-variate field constrained by the
expected number of resels per cluster (<.> denotes expectation or average).  The expected
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number of resels per cluster is simply the expected number of resels in total divided by the
expected number of clusters.  The expected number of clusters is estimated with the Euler

characteristic (EC) (effectively the number of blobs minus the number of holes).  This
estimate is in turn a function of the EC density for the statistic in question (with  degrees of

freedom v) and the resel counts.  The EC density is the expected EC per unit of D-
dimensional volume of the SPM where the D dimensional volume of the search space is given
by the corresponding element in the vector of resel counts.  Resel counts can be thought of as
a volume metric that has been normalized by the smoothness of the SPMs component fields
expressed in terms of the full width at half maximum (FWHM).  This is estimated from the

determinant of the variance-covariance matrix of the first spatial derivatives of e, the
normalized residual fields r (from Figure 3).  In this example equations for a sphere of radius

� are given.  � denotes the cumulative density function for the sub-scripted statistic in
question.

5. EXPERIMENTAL DESIGN

This section considers the different sorts of designs that can be

employed in neuroimaging studies.  Experimental designs can be

classified as single factor or multifactorial designs, within this

classification the levels of each factor can be categorical or

parametric.  We will start be discussing categorical and parametric

designs and then deal with multifactorial designs.

5.1 Categorical designs, cognitive subtraction and
conjunctions

The tenet of cognitive subtraction is that the difference between

two tasks can be formulated as a separable cognitive or sensorimotor

component and that regionally specific differences in hemodynamic

responses, evoked by the two tasks, identify the corresponding

functionally specialized area.  Early applications of subtraction range
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from the functional anatomy of word processing (Petersen et al 1989)

to functional specialization in extrastriate cortex (Lueck et al 1989).

The latter studies involved presenting visual stimuli with and without

some sensory attribute (e.g. color, motion etc).  The areas highlighted

by subtraction were identified with homologous areas in monkeys that

showed selective electrophysiological responses to equivalent visual

stimuli.

   Cognitive conjunctions (Price and Friston 1997) can be thought

of as an extension of the subtraction technique, in the sense that they

combine a series of subtractions.  In subtraction ones tests a single

hypothesis pertaining to the activation in one task relative to another.

In conjunction analyses several hypotheses are tested, asking whether

all the activations, in a series of task pairs, are jointly significant.

Consider the problem of identifying regionally specific activations due

to a particular cognitive component (e.g. object recognition).  If one

can identify a series of task pairs whose differences have only that

component in common, then the region which activates, in all the

corresponding subtractions, can be associated with the common

component.  Conjunction analyses allow one to demonstrate the

context-invariant nature of regional responses.  One important

application of conjunction analyses is in multi-subject fMRI studies,

where generic effects are identified as those that are conjointly

significant in all the subjects studied (see Section VII).
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5.2 Parametric designs

The premise behind parametric designs is that regional physiology

will vary systematically with the degree of cognitive or sensorimotor

processing or deficits thereof.  Examples of this approach include the

PET experiments of Grafton et al (1992) that demonstrated significant

correlations between hemodynamic responses and the performance of

a visually guided motor tracking task.  On the sensory side Price et al

(1992) demonstrated a remarkable linear relationship between

perfusion in peri-auditory regions and frequency of aural word

presentation.  This correlation was not observed in Wernicke's area,

where perfusion appeared to correlate, not with the discriminative

attributes of the stimulus, but with the presence or absence of semantic

content.  These relationships or neurometric functions may be linear

or nonlinear.  Using polynomial regression, in the context of the

GLM, one can identify nonlinear relationships between stimulus

parameters (e.g. stimulus duration or presentation rate) and evoked

responses.  To do this one usually uses a SPM{F} (see Büchel et al

1996).

   The example provided in Figure 7 illustrates both categorical and

parametric aspects of design and analysis.  These data were obtained

from a fMRI study of visual motion processing using radially moving

dots.  The stimuli were presented over a range of speeds using

isoluminant and isochromatic stimuli.  To identify areas involved in

visual motion a stationary dots condition was subtracted from the

moving dots conditions (see the contrast weights on the upper right).

To ensure significant motion-sensitive responses, using both color and

luminance cues, a conjunction of the equivalent subtractions was
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assessed under both viewing contexts.  Areas V5 and V3a are seen in

the ensuing SPM{T}.  The T values in this SPM are simply the

minimum of the T values for each subtraction.  Thresholding this

SPM{Tmin} ensures that all voxels survive the threshold u in each

subtraction separately.  This conjunction SPM has an equivalent

interpretation; it represents the intersection of the excursion sets,

defined by the threshold u, of each component SPM.  This intersection

is the essence of a conjunction.  The expressions in Figure 6 pertain to

the general case of the minimum of n T values.  The special case

where n = 1 corresponds to a conventional SPM{T}.

   The responses in left V5 are shown in the lower panel of Figure 7

and speak to a compelling inverted 'U' relationship between speed and

evoked response that peaks at around 8 degrees per second.  It is this

sort of relationship that parametric designs try to characterize.

Interestingly the form of these speed-dependent responses was similar

using both stimulus types, although luminance cues are seen to elicit a

greater response.  From the point of view of a factorial design there is

a main effect of cue (isoluminant vs. isochromatic), a main [nonlinear]

effect of speed, but no speed by cue interaction.

   Clinical neuroscience studies can use parametric designs by

looking for the neuronal correlates of clinical (e.g. symptom) ratings

over subjects.  In many cases multiple clinical scores are available for

each subject and the statistical design can usually be seen as a

multilinear regression.  In situations where the clinical scores are

correlated principal component analysis or factor analysis is

sometimes applied to generate a new, and smaller, set of explanatory

variables that are orthogonal to each other.  This has proved
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particularly useful in psychiatric studies where syndromes can be

expressed over a number of different dimensions (e.g. the degree of

psychomotor poverty, disorganization and reality distortion in

schizophrenia.  See Liddle et al 1992).  In this way, regionally specific

correlates of various symptoms may point to their distinct

pathogenesis in a way that transcends the syndrome itself.  For

example psychomotor poverty may be associated with left dorsolateral

prefrontal dysfunction irrespective of whether the patient is suffering

from schizophrenia or depression.

SPM{T}SPM{T}

speed

isoluminant
stimuli (even)

isochromatic
stimuli (odd)V5V5
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Figure 7. Top right: Design matrix:  This is an image representation of the design matrix.
Contrasts:  These are the vectors of contrast weights defining the linear compounds of

parameters tested.  The contrast weights are displayed over the column of the design matrix
that corresponds to the effects in question.  The design matrix here includes condition-specific

effects (boxcars convolved with a hemodynamic response function).  Odd columns
correspond to stimuli shown under isochromatic conditions and even columns model

responses to isoluminant stimuli.  The first two columns are for stationary stimuli and the
remaining columns are for conditions of increasing speed.  The final column is a constant

term.  Top left: SPM{T}:  This is a maximum intensity projection of the SPM{T} conforming
to the standard anatomical space of Talairach and Tournoux (1988).  The T values here are the

minimum T values from both contrasts, thresholded at p = 0.001 uncorrected.  The most
significant conjunction is seen in left V5.  Lower panel: Plot of the condition-specific

parameter estimates for this voxel.  The T value was 9.25 (p<0.001 corrected - see Figure 6).

5.3 Multifactorial designs

Factorial designs are becoming more prevalent than single factor

designs because they enable inferences about interactions.  At its

simplest an interaction represents a change in a change.  Interactions

are associated with factorial designs where two or more factors are

combined in the same experiment.  The effect of one factor, on the

effect of the other, is assessed by the interaction term.  Factorial

designs have a wide range of applications.  An early application, in

neuroimaging, examined physiological adaptation and plasticity

during motor performance, by assessing time by condition interactions

(Friston et al 1992a).  Psychopharmacological activation studies are

further examples of factorial designs (Friston et al 1992b).  In these

studies cognitively evoked responses are assessed before and after

being given a drug.  The interaction term reflects the pharmacological

modulation of task-dependent activations.  Factorial designs have an

important role in the context of cognitive subtraction and additive

factors logic by virtue of being able to test for interactions, or context-
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sensitive activations (i.e. to demonstrate the fallacy of 'pure insertion'.

See Friston et al 1996c).  These interaction effects can sometimes be

interpreted as (i) the integration of the two or more [cognitive]

processes or (ii) the modulation of one [perceptual] process by another

being manipulated.  See Figure 8 for an example.  From the point of

view of clinical studies interactions are central.  The effect of a disease

process on sensorimotor or cognitive activation is simply an

interaction and involves replicating a subtraction experiment in

subjects with and without the pathophysiology being studied.

Factorial designs can also embody parametric factors.  If one of the

factors has a number of parametric levels, the interaction can be

expressed as a difference in regression slope of regional activity on

the parameter, under both levels of the other [categorical] factor.  An

important example of factorial designs, that mix categorical and

parameter factors, are those looking for psychophysiological

interactions.  Here the parametric factor is brain activity measured in a

particular brain region.  These designs have proven useful in looking

at the interaction between bottom-up and top-down influences within

processing hierarchies in the brain (Friston et al 1997).  This issue will

be addressed below in Section VIII from the point of view of effective

connectivity.
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Interactions between set and event-related responses:
Attentional modulation of V5 responses

attention to motion

attention to colour

Figure 8. Results showing how to assess an interaction using an event-related design.
Subjects viewed stationary monochromatic stimuli that occasionally changed color and
moved at the same time.  These compound events were presented under two levels of

attentional set (attention to color and attention to motion), The event-related responses are
modeled, in an attention-specific fashion by the first four regressors (delta functions

convolved with a hemodynamic response function and its derivative) in the design matrix on
the right.  The simple main effects of attention are modeled as similarly convolved boxcars.

The interaction between attentional set and visually evoked responses is simply the difference
in evoked responses under both levels of attention and is tested for with the appropriate

contrast weights (upper right).  Only the first 256 rows of the design matrix are shown.  The
most significant modulation of evoked responses under attention to motion was seen in left
V5 (insert).  The fitted responses and their standard errors are shown on the left as functions

of peristimulus time.

6. DESIGNING FMRI STUDIES
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In this section we consider fMRI time-series from a signal

processing perspective with particular reference to optimal

experimental design and efficiency.  fMRI time-series can be viewed

as a linear admixture of signal and noise.  Signal corresponds to

neuronally mediated hemodynamic changes that can be modeled as a

[non]linear convolution of some underlying neuronal process,

responding to changes in experimental factors, by a HRF.  Noise has

many contributions that render it rather complicated in relation to

other neurophysiological measurements.  These include neuronal and

non-neuronal sources.  Neuronal noise refers to neurogenic signal not

modeled by the explanatory variables and has the same frequency

structure as the signal itself.  Non-neuronal components have both

white [e.g. R.F. (Johnson) noise] and colored components [e.g.

pulsatile motion of the brain caused by cardiac cycles and local

modulation of the static magnetic field B0 by respiratory movement].

These effects are typically low frequency or wide-band (e.g. aliased

cardiac-locked pulsatile motion).  The superposition of all these

components induces temporal correlations among the error terms

(denoted by �  in Figure 3) that can effect sensitivity to experimental

effects.  Sensitivity depends upon (i) the relative amounts of signal

and noise and (ii) the efficiency of the experimental design.

Efficiency is simply a measure of how reliable the parameter estimates

are and can be defined as the inverse of the variance of a contrast of

parameter estimates (see Figure 3).  There are two important

considerations that arise from this perspective on fMRI time-series:

The first pertains to optimal experimental design and the second to
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optimum [de]convolution of the time-series to obtain the most

efficient parameter estimates.

6.1 The hemodynamic response function and optimum
design

As noted above, a LTI model of neuronally mediated signals in

fMRI suggests that, whatever the frequency structure of experimental

variables, only those that survive convolution with the hemodynamic

response function (HRF) can be estimated with any efficiency.  By

convolution theorem the experimental variance should therefore be

designed to match the transfer function of the HRF.  The

corresponding frequency profile of this transfer function is shown in

Figure 9 - solid line).  It is clear that frequencies around 0.03 Hz are

optimal, corresponding to periodic designs with 32 second periods

(i.e. 16 second epochs).  Generally, the first objective of experimental

design is to comply with the natural constraints imposed by the HRF

and ensure that experimental variance occupies these intermediate

frequencies.
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A Signal processing perspective

by convolution theorem

Experimental variance
(~32s cycles)
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Figure 9. Modulation transfer function of a canonical hemodynamic response function (HRF),
with (broken line) and without (solid line) the addition of a high pass filter.  This transfer

function corresponds to the spectral density of a white noise process after convolution with
the HRF and places constraints on the frequencies that are survive convolution with the HRF.
This follows from convolution theorem (summarized in the equations).  The insert is the filter
expressed in time, corresponding to the spectral density that obtains after convolution with the

HRF and high-pass filtering.

6.2 Serial correlations and filtering

This is quite a complicated but important area.  Conventional

signal processing approaches dictate that whitening the data engenders

the most efficient parameter estimation.  This corresponds to filtering

with a convolution matrix S (see Figure 3) that is the inverse of the

intrinsic convolution matrix K ( ��
TKK ).  This whitening strategy

renders the generalized least squares estimator in Figure 3 equivalent
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to the Gauss-Markov estimator or minimum variance estimator.

However, one generally does not know the form of the intrinsic

correlations, which mean it has to be estimated.  This estimation

usually proceeds using a restricted maximum likelihood (ReML)

estimate of the serial correlations, among the residuals, that properly

accommodates the effects of the residual-forming matrix and

associated loss of degrees of freedom.  However, using this estimate

of the intrinsic non-sphericity to form a Gauss-Markov estimator at

each voxel has several problems.  (i) First the estimate of non-

sphericity can itself be very inefficient leading to bias in the standard

error (Friston et al 2000b). (ii) ReML estimation requires an iterative

procedure at every voxel and this is computationally prohibitive.  (iii)

Adopting a different form for the serial correlations at each voxel

means the effective degrees of freedom and the null distribution of the

statistic will change from voxel to voxel.  This violates the

assumptions of GRF results for T and F fields (although not very

seriously).  There are a number of different approaches to these

problems that aim to increase the efficiency of the estimation and

reduce the computational burden.  The approach we have chosen is to

forgo the efficiency of the Gauss-Markov estimator and use a

generalized least square GLS estimator, after approximately whitening

the data with a high-pass filter.  The GLS estimator is unbiased and,

luckily, is identical to the Gauss-Markov estimator if the regressors in

the design matrix are periodic2.  After GLS estimation �  is estimated

2 More exactly, the GLS and ML estimators are the same if X lies
within the space spanned by the eigenvectors of Toeplitz
autocorrelation matrix � .
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using ReML and the resulting estimate of TSSV ��  entered into the

expression for the standard error and degrees of freedom provided in

Figure 3.  To ensure this non-sphericity estimate is robust, we assume

it is the same at all voxels.  Clearly this is an approximation but can be

motivated by the fact we have applied the same high-pass temporal

convolution matrix S to all voxels.  This ameliorates any voxel to

voxel variations in TSSV ��  (see Figure 3)

   The reason that high-pass filtering approximates a whitening

filter is that there is a preponderance of low frequencies in the noise.

fMRI noise has been variously characterized as a 1/f process (Zarahn

et al 1997) or an autoregressive process (Bullmore et al 1996) with

white noise (Purdon and Weisskoff 1998).  Irrespective of the exact

form these serial correlations take, high-pass filtering suppresses low

frequency components in the same way that whitening would.  An

example of a band-pass filter with a high-pass cut-off of 1/64 Hz is

shown in inset of Figure 7.  This filter’s transfer function (the broken

line in the main panel) illustrates the frequency structure of

neurogenic signals after high-pass filtering.

6.3 Spatially coherent confounds and global
normalization

Implicit in the use of high pass filtering is the removal of low

frequency components that can be regarded as confounds.  Other

important confounds are signal components that are artifactual or have

no regional specificity.  These are referred to as global confounds and

have a number of causes.  These can be divided into physiological
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(e.g. global perfusion changes in PET, mediated by changes in pCO2)

and non-physiological (e.g. transmitter power calibration, B1 coil

profile and receiver gain in fMRI).  The latter generally scale the

signal before the MRI sampling process.  Other non-physiological

effects may have a non-scaling effect (e.g. Nyquist ghosting,

movement-related effects etc).  In PET it is generally accepted that

regional changes in rCBF, evoked neuronally, mix additively with

global changes to give the measured signal.  This calls for a global

normalization procedure where the global estimator enters into the

statistical model as a confound.  In fMRI, instrumentation effects that

scale the data motivate a global normalization by proportional scaling,

using the whole brain mean, before the data enter into the statistical

model.

   It is important to differentiate between global confounds and

their estimators.  By definition the global mean over intra-cranial

voxels will subsume regionally specific effects.  This means that the

global estimator may be partially collinear with effects of interest,

especially if the evoked responses are substantial and widespread.  In

these situations global normalization may induce apparent

deactivations in regions not expressing a physiological response.

These are not artifacts in the sense they are real, relative to global

changes, but they have little face validity in terms of the underlying

neurophysiology.  In instances where regionally specific effects bias

the global estimator, some investigators prefer to omit global

normalization.  Provided drift terms are removed from the time-series,

this is generally acceptable because most global effects have slow

time constants.  However, the issue of normalization-induced
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deactivations is better circumnavigated with experimental designs that

use well-controlled conditions, which elicit differential responses in

restricted brain systems.

6.4 Nonlinear system identification approaches

So far we have only considered LTI models and first order HRFs.

Another signal processing perspective is provided by nonlinear system

identification (Vazquez and Noll 1998).  This section considers

nonlinear models as a prelude to the next subsection on event-related

fMRI, where nonlinear interactions among evoked responses provide

constraints for experimental design and analysis.  We have described

an approach to characterizing evoked hemodynamic responses in

fMRI based on nonlinear system identification, in particular the use of

Volterra series (Friston et al 1998a).  This approach enables one to

estimate Volterra kernels that describe the relationship between

stimulus presentation and the hemodynamic responses that ensue.

Volterra series are essentially high order extensions of linear

convolution models.  These kernels therefore represent a nonlinear

characterization of the HRF that can model the responses to stimuli in

different contexts and interactions among stimuli.  In fMRI, the kernel

coefficients can be estimated by (i) using a second order

approximation to the Volterra series to formulate the problem in terms

of a general linear model and (ii) expanding the kernels in terms of

temporal basis functions.  This allows the use of the standard

techniques described above to estimate the kernels and to make
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inferences about their significance on a voxel-specific basis using

SPMs.

  One important manifestation of the nonlinear effects, captured by

the second order kernels, is a modulation of stimulus-specific

responses by preceding stimuli that are proximate in time.  This means

that responses at high stimulus presentation rates saturate and, in some

instances, show an inverted U behavior.  This behavior appears to be

specific to BOLD effects (as distinct from evoked changes in cerebral

blood flow) and may represent a hemodynamic refractoriness.  This

effect has important implications for event-related fMRI, where one

may want to present trials in quick succession (see below).

   The results of a typical nonlinear analysis are given in Figure 10.

The results in the right panel represent the average response,

integrated over a 32-second train of stimuli as a function of stimulus

onset asynchrony (SOA) within that train.  These responses were

based on the kernel estimates (left hand panels) using data from a

voxel in the left posterior temporal region of a subject obtained during

the presentation of single words at different rates.  The solid line

represents the estimated response and shows a clear maximum at just

less than one second.  The dots are responses based on empirical data

from the same experiment.  The broken line shows the expected

response in the absence of nonlinear effects (i.e. that predicted by

setting the second order kernel to zero).  It is clear that nonlinearities

become important at around two seconds leading to an actual

diminution of the integrated response at sub-second SOAs.  The

implication of this sort of result is that (i) SOAs should not really fall

much below one second and (ii) at short SOAs the assumptions of
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linearity are violated.  It should be noted that these data pertain to

single word processing in auditory association cortex.  More linear

behaviors may be expressed in primary sensory cortex where the

feasibility of using minimum SOAs as low as 500ms has been

demonstrated (Burock et al 1998).  This lower bound on SOA is

important because some effects are detected more efficiently with high

presentation rates.  We now consider this from the point of view of

and event-related designs.

Nonlinear saturation

Figure 10. Left panels: Volterra kernels from a voxel in the left superior temporal gyrus at -
56, -28, 12mm.  These kernel estimates were based on a single subject study of aural word

presentation at different rates (from 0 to 90 words per minute) using a second order
approximation to a Volterra series expansion modeling the observed hemodynamic response

to stimulus input (a delta function for each word).  These kernels can be thought of as a
characterization of the second order hemodynamic response function.  The first order kernel

(upper panel) represents the (first order) component usually presented in linear analyses.  The
second order kernel (lower panel) is presented in image format.  The color scale is arbitrary;
white is positive and black is negative.  The insert on the right represents the second order
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kernel that would be predicted by a simple model that involved linear convolution with
followed by some static nonlinearly.

Right panel: Integrated responses over a 32-second stimulus train as a function of SOA.  Solid
line: Estimates based on the nonlinear convolution model parameterized by the kernels on the
left. Broken line: The responses expected in the absence of second order effects (i.e. in a truly
linear system).  Dots:  Empirical averages based on the presentation of actual stimulus trains.

6.5 Event and epoch-related designs

A crucial distinction, in experimental design for fMRI, is that

between epoch and event-related designs.  In SPECT and PET only

epoch-related responses can be assessed because of the relatively long

half-life of the radiotracers used. However, in fMRI there is an

opportunity to measure event-related responses that may be important

in some cognitive and clinical contexts.  An important issue, in event-

related fMRI, is the choice of inter-stimulus interval or more precisely

SOA.  The SOA, or the distribution of SOAs, is a critical factor in

experimental design and is chosen, subject to psychological or

psychophysical constraints, to maximize the efficiency of response

estimation.  The constraints on the SOA clearly depend upon the

nature of the experiment but are generally satisfied when the SOA is

small and derives from a random distribution.  Rapid presentation

rates allow for the maintenance of a particular cognitive or attentional

set, decrease the latitude that the subject has for engaging alternative

strategies, or incidental processing, and allows the integration of

event-related paradigms using fMRI and electrophysiology.  Random

SOAs ensure that preparatory or anticipatory factors do not confound
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event-related responses and ensure a uniform context in which events

are presented.  These constraints speak to the well-documented

advantages of event-related fMRI over conventional blocked designs

(Buckner et al 1996, Clark et al 1998).

   In order to compare the efficiency of different designs it is useful

to have some common framework that accommodates them all.  The

efficiency can then be examined in relation to the parameters of the

designs. Designs can be stochastic or deterministic depending on

whether there is a random element to their specification. In stochastic

designs (Heid et al 1997) one needs to specify the probabilities of an

event occurring at all times those events could occur.  In deterministic

designs the occurrence probability is unity and the design is

completely specified by the times of stimulus presentation or trials.

The distinction between stochastic and deterministic designs pertains

to how a particular realization or stimulus sequence is created.  The

efficiency afforded by a particular event sequence is a function of the

event sequence itself, and not of the process generating the sequence

(i.e. deterministic or stochastic). However, within stochastic designs,

the design matrix X, and associated efficiency, are random variables

and the expected or average efficiency, over realizations of X is easily

computed.:

  In the framework considered here (Friston et al 1999a) the

occurrence probability p of any event occurring is specified at each

time that it could occur (i.e. every SOA).  Here p is a vector with an

element for every SOA.  This formulation engenders the distinction

between stationary stochastic designs, where the occurrence

probabilities are constant and non-stationary stochastic designs, where
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they change over time.  For deterministic designs the elements of p are

0 or 1, the presence of a 1 denoting the occurrence of an event.  An

example of p might be the boxcars used in conventional block designs.

Stochastic designs correspond to a vector of identical values and are

therefore stationary in nature.  Stochastic designs with temporal

modulation of occurrence probability have time-dependent

probabilities varying between 0 and 1.  With these probabilities the

expected design matrices and expected efficiencies can be computed.

A useful thing about this formulation is that by setting the mean of the

probabilities p to a constant, one can compare different deterministic

and stochastic designs given the same number of events.  Some

common examples are given in Figure 11 (right panel) for an SOA of

1 second and 32 expected events or trials over a 64 second period

(except for the first deterministic example with 4 events and an SOA

of 16 seconds).  It can be seen that the least efficient is the sparse

deterministic design (despite the fact that the SOA is roughly optimal

for this class), whereas the most efficient is a block design.  A slow

modulation of occurrence probabilities gives high efficiency whilst

retaining the advantages of stochastic designs and may represent a

useful compromise between the high efficiency of block designs and

the psychological benefits and latitude afforded by stochastic designs.

However, it is important not to generalize these conclusions too far.

An efficient design for one effect may not be the optimum for another,

even within the same experiment.  This can be illustrated by

comparing the efficiency with which evoked responses are detected

and the efficiency of detecting the difference in evoked responses

elicited by two sorts of trials:
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   Consider a stationary stochastic design with two trial types.

Because the design is stationary the vector of occurrence probabilities,

for each trial type, is specified by a single probability.  Let us assume

that the two trial types occur with the same probability p. .By varying

p and SOA one can find the most efficient design depending upon

whether one is looking for evoked responses per se or differences

among evoked responses.  These two situations are depicted in the left

panels of Figure 11.  It is immediately apparent that, for both sorts of

effects, very small SOAs are optimal.  However, the optimal

occurrence probabilities are not the same.  More infrequent events

(corresponding to a smaller p = 1/3) are required to estimate the

responses themselves efficiently.  This is equivalent to treating the

baseline or control condition as any other condition (i.e. by including

null events, with equal probability, as further event types).

Conversely, if we are only interested in making inferences about the

differences, one of the events plays the role of a null event and the

most efficient design ensues when one or the other event occurs (i.e. p

= 1/2).  In short, the most efficient designs obtain when the events

subtending the differences of interest occur with equal probability.

   Another example, of how the efficiency is sensitive to the effect

of interest, is apparent when we consider different parameterizations

of the HRF.  This issue is sometimes addressed through distinguishing

between the efficiency of response detection and response estimation.

However, the principles are identical and the distinction reduces to

how many parameters one uses to model the HRF for each trail type

(one basis function is used for detection and a number are required to

estimate the shape of the HRF).  Here the contrasts may be the same
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but the shape of the regressors will change depending on the temporal

basis set employed.  The conclusions above were based on a single

canonical HRF.  Had we used a more refined parameterization of the

HRF, say using three-basis functions, the most efficient design to

estimate one basis function coefficient would not be the most efficient

for another.  This is most easily seen from the signal processing

perspective where basis functions with high frequency structure (e.g.

temporal derivatives) require the experimental variance to contain

high frequency components.  For these basis functions a randomized

stochastic design may be more efficient than a deterministic block

design, simply because the former embodies higher frequencies.  In

the limiting case of FIR estimation the regressors become a series of

stick functions (see Figure 5) all of which have high frequencies. This

parameterization of the HRF calls for high frequencies in the

experimental variance.  However, the use of FIR models is

contraindicated by model selection procedures (Henson et al in

preparation) that suggest only two or three HRF parameters can be

estimated with any efficiency.   Results that are reported in terms of

FIRs should be treated with caution because the inferences about

evoked responses are seldom based on the FIR parameter estimates.

This is precisely because they are estimated inefficiently and contain

little useful information.
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Efficiency and fMRI design:
The design matrix as a stochastic variable

Probability {p} Efficiency
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Efficiency - evoked responses

Efficiency - evoked differences
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Figure 11. Efficiency as a function of occurrence probabilities p. for a model X formed by
post-multiplying S (a matrix containing n columns, modeling n possible event-related

responses every SOA) by B.  B is a random binary vector that determines whether the nth
response is included in X or not, where .  Right panels: A comparison of some common

designs. A graphical representation of the occurrence probabilities p expressed as a function
of time (seconds) is shown on the left and the corresponding efficiency is shown on the right.
These results assume a minimum SOA of one second, a time-series of 64 seconds and a single

trial-type.  The expected number of events was 32 in all cases (apart from the first).  Left
panels: Efficiency in a stationary stochastic design with two event types both presented with

probability p every SOA.  The upper graph is for a contrast testing for the response evoked by
one trial type and the lower graph is for a contrast testing for differential responses.

7. INFERENCES ABOUT SUBJECTS AND
POPULATIONS

In this section we consider some issues that are generic to brain

mapping studies that have repeated measures or replications over
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subjects.  The critical issue is whether we want to make an inference

about the effect in relation to the within-subject variability or with

respect to the between subject variability.  For a given group of

subjects, there is a fundamental distinction between saying that the

response is significant relative to the variability with which that

response in measured and saying that it is significant in relation to the

inter-subject variability.  This distinction relates directly to the

difference between fixed and random-effect analyses.  The following

example tries to make this clear.  Consider what would happen if we

scanned six subjects during the performance of a task and baseline.

We then constructed a statistical model, where task-specific effects

were modelled separately for each subject.  Unknown to us, only one

of the subjects activated a particular brain region.  When we examine

the contrast of parameter estimates, assessing the mean activation over

all the subjects, we see that it is greater than zero by virtue of this

subject's activation.  Furthermore, because that model fits the data

extremely well (modelling no activation in five subjects and a

substantial activation in the sixth) the error variance, on a scan to scan

basis, is small and the T statistic is very significant.  Can we then say

that the group shows an activation?  On the one hand we can say,

quite properly, that the mean group response embodies an activation

but clearly this does not constitute an inference that the group's

response is significant (i.e. that this sample of subjects shows a

consistent activation).  The problem here is that we are using the scan

to scan error variance and this is not necessarily appropriate for an

inference about group responses.  In order to make the inference that

the group showed a significant activation one would have to assess the
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variability in activation effects from subject to subject (using the

contrast of parameter estimates for each subject).  This variability now

constitutes the proper error variance.  In this example the variance of

these six measurements would be large relative to their mean and the

corresponding T statistic would not be significant.

   The distinction, between the two approaches above, relates to

how one computes the appropriate error variance.  The first represents

a fixed-effect analysis and the second a random-effect analysis (or

more exactly a mixed-effects analysis).  In the former the error

variance is estimated on a scan to scan basis, assuming that each scan

represents an independent observation (ignoring serial correlations).

Here the degrees of freedom are essentially the number of scans

(minus the rank of the design matrix).  Conversely, in random-effect

analyses, the appropriate error variance is based on the activation from

subject to subject where the effect per se constitutes an independent

observation and the degrees of freedom fall dramatically to the

number of subjects.  The term ‘random-effect’ indicates that we have

accommodated the randomness of differential responses by comparing

the mean activation to the variability in activations from subject to

subject.  Both analyses are perfectly valid but only in relation to the

inferences that are being made: Inferences based on fixed-effects

analyses are about the particular subject[s] studied.  Random-effects

analyses are usually more conservative but allow the inference to be

generalized to the population from which the subjects were selected.
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7.1 Random-effects analyses

The implementation of random-effect analyses in SPM is fairly

straightforward and involves taking the contrasts of parameters

estimated from a first-level (fixed-effect) analysis and entering them

into a second-level (random-effect) analysis.  This ensures that there is

only one observation (i.e. contrast) per subject in the second-level

analysis and that the error variance is computed using the subject to

subject variability of estimates from the first level.  The nature of the

inference made is determined by the contrasts entered into the second

level (see Figure 12).  The second-level design matrix simply tests the

null hypothesis that the contrasts are zero (and is usually a column of

ones, implementing a single sample T test).

   The reason this multistage procedure emulates a full mixed-

effects analyses, using a hierarchical observation model, rests upon

the fact that the design matrices for each subject are the same (or

sufficiently similar).  In this special case the estimator of the variance

at the second level contains the right mixture of variance induced by

observation error at the first level and between-subject error at the

second.  It is important to appreciate this because the efficiency of the

design at the first level percolates up to higher levels.  It is therefore

important to use efficient strategies at all levels in a hierarchical

design.
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Figure 12. Schematic illustrating the implementation of random-effect and conjunction
analyses for population inference.  The lower right graph shows the probability p(n) of
obtaining a conjunction over n subjects, conditional on a certain proportion � of the

population expressing the effect, for a test with specificity of � = 0.05, at several sensitivities
(� = 1, 0.9, 0.8 and 0.6).  The critical specificity for population inference �c and the

associated proportion of the population �c are denoted by the broken lines.

7.2 Conjunction analyses and population inferences

In some instances a fixed effects analysis is more appropriate,

particularly to facilitate the reporting of a series of single-case studies.

Among these single cases it is natural to ask what are common

features of functional anatomy (e.g. the location of V5) and what

aspects are subject–specific (e.g. the location of ocular dominance

columns).  One way to address commonalties is to use a conjunction

analysis over subjects.  It is important to understand the nature of the
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inference provided by conjunction analyses of this sort.  Imagine that

in 16 subjects the activation in V5, elicited by a motion stimulus, was

great than zero.  The probability of this occurring by chance, in the

same area, is extremely small and is the p-value returned by a

conjunction analysis using a threshold of p = 0.5 (T = 0) for each

subject. This result constitutes evidence that V5 is involved in motion

processing.  However, note that this is not an assertion that each

subject activated significantly (we only require the T value to be

greater than zero for each subject).  In other words, a significant

conjunction of activations is not synonymous with a conjunction of

significant activations.

   The motivations for conjunction analyses, in the context of multi-

subject studies are twofold. (i) They provide an inference, in a fixed-

effect analysis testing the null hypotheses of no activation in any of

the subjects, that can be much more sensitive than testing for the

average activation.  (ii) They can be extended to make inferences

about the population as described next

 If, for any given contrast, one can establish a conjunction of

effects over n subjects using a test with a specificity of � and

sensitivity �, the probability of this occurring by chance can be

expressed as a function of �, the proportion of the population that

would have activated (see the equation in Figure 12 - lower right

panel).  This probability has an upper bound �c corresponding to a

critical proportion �c that is realized when (the generally unknown)

sensitivity is one.  In other words, under the null hypothesis that the

proportion of the population evidencing this effect is less than or equal
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to �c, the probability of getting a conjunction over n subjects is equal

to, or less than, �c.  In short a conjunction allows one to say, with a

specificity of �c, that more than �c of the population show the effect in

question.  Formally, we can view this analysis as a conservative 100(1

- �c)% confidence region for the unknown parameter �. These

inferences can be construed as statements about how typical the effect

is, without saying that it is necessarily present in every subject.

   In practice, a conjunction analysis of a multi-subject study

comprises the following steps:  (i) A design matrix is constructed

where the explanatory variables pertaining to each experimental

condition are replicated for each subject.  This subject-separable

design matrix implicitly models subject by condition interactions (i.e.

different condition-specific responses among sessions).  (ii) Contrasts

are then specified that test for the effect of interest in each subjects to

give a series of SPM{T} that can be reported as a series of ‘single-

case’ studies in the usual way. (iii) These SPM{T} are combined at a

threshold u (corresponding to the specificity � in Figure 12) to give a

SPM{Tmin} (i.e. conjunction SPM).  The corrected p-values associated

with each voxel are computed as described in Figure 6.  These p-

values provide for inferences about effects that are common to the

particular subjects studied.  Because we have demonstrated regionally

specific conjunctions, one can also proceed to make an inference

about the population from which these subjects came using the

confidence region approach described above (see Friston et al 1999b

for a fuller discussion).
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8. EFFECTIVE CONNECTIVITY

8.1 Functional and Effective connectivity

Imaging neuroscience has firmly established functional

specialization as a principle of brain organization in man.  The

functional integration of specialized areas has proven more difficult to

assess.  Functional integration is usually inferred on the basis of

correlations among measurements of neuronal activity.  Functional

connectivity has been defined as correlations between remote

neurophysiological events.  However correlations can arise in a

variety of ways:  For example in multi-unit electrode recordings they

can result from stimulus-locked transients evoked by a common input

or reflect stimulus-induced oscillations mediated by synaptic

connections (Gerstein and Perkel 1969).  Integration within a

distributed system is usually better understood in terms of effective

connectivity:  Effective connectivity refers explicitly to the influence

that one neural system exerts over another, either at a synaptic (i.e.

synaptic efficacy) or population level.  It has been proposed that "the

[electrophysiological] notion of effective connectivity should be

understood as the experiment- and time-dependent, simplest possible

circuit diagram that would replicate the observed timing relationships

between the recorded neurons" (Aertsen and Preißl 1991).  This

speaks to two important points:  (i) Effective connectivity is dynamic,
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i.e.  activity- and time-dependent and (ii) it depends upon a model of

the interactions.  The estimation procedures employed in functional

neuroimaging can be classified as (i) those based directly on

regression (Friston et al 1995d) or (ii) structural equation modeling

(McIntosh et al 1994) (i.e. path analysis).

   There is a necessary relationship between approaches to

characterizing functional integration and multivariate analyses

because the latter are necessary to model interactions among brain

regions.  Multivariate approaches can be divided into those that are

inferential in nature and those that are data led or exploratory.. We

will first consider multivariate approaches that are universally based

on functional connectivity or covariance patterns (and are generally

exploratory) and then turn to models of effective connectivity (that

usually allow for some form of inference)

8.2 Eigenimage analysis and related approaches

Most analyses of covariances among brain regions are based on the

singular value decomposition (SVD) of the between-voxel

covariances in a neuroimaging time-series In Friston et al (1993) we

introduced voxel-based principal component analysis (PCA) of

neuroimaging time-series to characterize distributed brain systems

implicated in sensorimotor, perceptual or cognitive processes.  These

distributed systems are identified with principal components or

eigenimages that correspond to spatial modes of coherent brain

activity.  This approach represents one of the simplest multivariate

characterizations of functional neuroimaging time-series and falls into
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the class of exploratory analyses.  Principal component or eigenimage

analysis generally uses SVD to identify a set of orthogonal spatial

modes that capture the greatest amount of variance, expressed over

time.  As such the ensuing modes embody the most prominent aspects

of the variance-covariance structure of a given time-series.  Noting

that the covariances among brain regions is equivalent to functional

connectivity renders eigenimage analysis particularly interesting

because it was among the first ways of addressing functional

integration (i.e. connectivity) with neuroimaging data.  Subsequently,

eigenimage analysis has been elaborated in a number of ways.

Notable among these are canonical variate analysis (CVA) and

multidimensional scaling (Friston et al 1996d,e).  Canonical variate

analysis was introduced in the context of ManCova (multiple analysis

of covariance) and uses the generalized eigenvector solution to

maximize the variance that can be explained by some explanatory

variables relative to error.  CVA can be thought of as an extension of

eigenimage analysis that refers explicitly to some explanatory

variables and allows for statistical inference.

   In fMRI eigenimage analysis (Sychra et al 1994) is generally

used as an exploratory device to characterize coherent brain activity.

These variance components may, or may not be, related to

experimental design and endogenous coherent dynamics have been

observed in the motor system (Biswal et al 1995).  Despite its

exploratory power eigenimage analysis is fundamentally limited for

two reasons.  Firstly, it offers only a linear decomposition of any set

of neurophysiological measurements and secondly the particular set of

eigenimages or spatial modes obtained is uniquely determined by
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constraints that are biologically implausible.  These aspects of PCA

confer inherent limitations on the interpretability and usefulness of

eigenimage analysis of biological time-series and have motivated the

exploration of nonlinear PCA and neural network approaches (e.g.

Mørch et al 1995).

  Two other important approaches deserve mention here.  The first

is independent component analysis (ICA).  ICA uses entropy

maximization to find, using iterative schemes, spatial modes or their

dynamics that are approximately independent.  This is a stronger

requirement than orthogonality in PCA and involves removing high

order correlations among the modes (or dynamics).  It was initially

introduced as spatial ICA (McKeown et al 1998) in which the

independence constraint was applied to the modes (with no constraints

on their temporal expression).  More recent approaches use, by

analogy with magneto- and electrophysiological time-series analysis,

temporal ICA where the dynamics are enforced to be independent.

This requires an initial dimension reduction (usually using

conventional eigenimage analysis).  Finally, there has been an interest

in cluster analysis (Baumgartner et al 1997).  Conceptually, this can

be related to eigenimage analysis through multidimensional scaling

and principal coordinates analysis.  In cluster analysis voxels in a

multidimensional scaling space are assigned belonging probabilities to

a small number of clusters, thereby characterizing the temporal

dynamics (in terms of the cluster centroids) and spatial modes

(defined by the belonging probability for each cluster).  These

approaches eschew many of the unnatural constraints imposed by

eigenimage analysis and can be a useful exploratory device.
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Volterra series a general nonlinear input-state-output characterization
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n.b. Volterra kernels are synonymous with effective connectivity

PPC           V2

V5

Figure 13. Schematic depicting the causal relationship between the outputs and the recent
history of the inputs to a nonlinear dynamical system, in this instance a brain region or voxel.
This relationship can be expressed as a Volterra series, which expresses the response or output
y(t) as a nonlinear convolution of the inputs u(t), critically without reference to any [hidden]

state variables.  This series is simply a functional Taylor expansion of y(t) as a function of the
inputs over the recent past.    is the ith order kernel.  Volterra series have been described as a

'power series with memory' and are generally thought of as a high-order or 'nonlinear
convolution' of the inputs to provide an output.  Volterra kernels are useful in characterizing
the effective connectivity or influences that one neuronal system exerts over another because

they represent the causal characteristics of the system in question.  Neurobiologically they
have a simple and compelling interpretation – they are synonymous with effective

connectivity.  It is evident that the first-order kernel embodies the response evoked by a
change in input at  .  In other words it is a time-dependant measure of driving efficacy.

Similarly the second order kernel reflects the modulatory influence of the input at   on the
evoked response at  .  And so on for higher orders.

8.3 Characterizing nonlinear coupling among brain
areas

Linear models of effective connectivity assume that the multiple inputs to

a brain region are linearly separable.  This assumption precludes activity-
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dependent connections that are expressed in one context and not in another.

The resolution of this problem lies in adopting nonlinear models like the

Volterra formulation that include interactions among inputs. These

interactions can be construed as a context- or activity-dependent modulation

of the influence that one region exerts over another, where that context is

instantiated by activity in further brain regions exerting modulatory effects.

These nonlinearities can be introduced into structural equation modeling

using so-called 'moderator' variables that represent the interaction between

two regions in causing activity in a third (Büchel et al 1997).  From the point

of view of regression models modulatory effects can be modeled with

nonlinear input-output models and in particular the Volterra formulation

described above.  In this instance the inputs are not stimuli but activities

from other regions.  Because the kernels are high-order they embody

interactions over time and among inputs and can be thought of as explicit

measures of effective connectivity (see Figure 13).  An important thing

about the Volterra formulation is that it has a high face validity and

biological plausibility.  The only thing it assumes is that the response of a

region is some analytic nonlinear function of the inputs over the recent past.

This function exists even for complicated dynamical systems with many

[unobservable] state variables.  Within these models, the influence of one

region on another has two components;  (i) the direct or driving influence of

input from the first (e.g. hierarchically lower) region, irrespective of the

activities elsewhere and (ii) an activity-dependent, modulatory component

that represents an interaction with inputs from the remaining (e.g.

hierarchically higher) regions.  These are mediated by the first and second

order kernels respectively.  The example provided in Figure 14 addresses the

modulation of visual cortical responses by attentional mechanisms (e.g.

Treue and Maunsell 1996) and the mediating role of activity-dependent

changes in effective connectivity:
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Changes in V5 response to V2 inputs that depend 
on PPC activity

i.e. a modulatory component of V5 responses

SPM{F}

PPC activity = 1

PPC activity = 0

PPCPPC

V5V5

PULPUL

V2V2

Figure 14. Left: Brain regions and connections comprising the effective connectivity model
formulated in terms of a Volterra series (see Figure 13).  Right: Characterization of the effects
of V2 inputs on V5 and their modulation by posterior parietal cortex (PPC).  The broken lines

represent estimates of V5 responses when PPC activity is zero, according to a second order
Volterra model of effective connectivity with inputs to V5 from V2, PPC and the pulvinar
(PUL).  The solid curves represent the same response when PPC activity is one standard

deviation of its variation over conditions.  It is evident that V2 has an activating effect on V5
and that PPC increases the responsiveness of V5 to these inputs.  The insert shows all the

voxels in V5 that evidenced a modulatory effect (p < 0.05 uncorrected).   These voxels were
identified by thresholding a SPM{F} testing for the contribution of second order kernels

involving V2 and PPC (treating all other terms as nuisance variables).  The data were
obtained with fMRI under identical stimulus conditions (visual motion subtended by radially
moving dots) whilst manipulating the attentional component of the task (detection of velocity

changes).

   The right panel in Figure 14 shows a characterization of this

modulatory effect in terms of the increase in V5 responses, to a

simulated V2 input, when posterior parietal activity is zero (broken

line) and when it is high (solid lines).  In this study subjects were

studied with fMRI under identical stimulus conditions (visual motion
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subtended by radially moving dots) whilst manipulating the attentional

component of the task (detection of velocity changes).  The brain

regions and connections comprising the model are shown in the upper

panel.  The lower panel shows a characterization of the effects of V2

inputs on V5 and their modulation by posterior parietal cortex (PPC)

using simulated inputs at different levels of PPC activity.  It is evident

that V2 has an activating effect on V5 and that PPC increases the

responsiveness of V5 to these inputs.  The insert shows all the voxels

in V5 that evidenced a modulatory effect (p < 0.05 uncorrected).

These voxels were identified by thresholding a SPM{F} testing for the

contribution of second order kernels involving V2 and PPC while

treating all other components as nuisance variables.  The estimation of

the Volterra kernels and statistical inference procedure is described in

Friston and Büchel  (2000c).
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