
Quantifying Software Requirements for Supporting
Archived Office Documents using Emulation

Thomas Reichherzer and Geoffrey Brown
Computer Science Department

Indiana University, Lindley Hall 215
Bloomington, IN 47405, U.S.A.

{treichhe, geobrown}@cs.indiana.edu

ABSTRACT
This paper addresses the issues associated with building
software images to support a collection of archived docu-
ments using machine emulators. Emulation has been pro-
posed as a strategy for preservation of digital documents
that require their original software for access. The cre-
ation of software images is a critical component in archiv-
ing documents via emulation. The software images include
the operating system, application software, and supporting
software artifacts such as fonts and Codecs (Compression-
Decompression algorithm). A practical emulation environ-
ment to support a digital document requires both an em-
ulator and a software image. This paper considers the is-
sues associated with creating such software images to sup-
port Microsoft Office documents. In particular, we discuss
a set of software tools and strategies that we developed to
automatically analyze the dependencies of Microsoft Office
documents on software resources and supporting files. As a
proof of concept, the tools and strategies have been applied
to establish dependencies of Office documents from a doc-
ument library containing approximately 200,000 documents
and to automatically collect missing resources such as fonts.
The software tools are a first step toward an interactive sys-
tem that aids in the construction of robust emulation en-
vironments for preserving digital artifacts. However, they
may also be used in other contexts, for example, to support
screening of documents for archiving and migration to new
platforms to ensure correct visualization.

Categories and Subject Descriptors
H.3.7 [Information Storage and Retrieval]: Digital Li-
braries—Collection, Systems issues

General Terms
Documentation, Experimentation

Keywords
digital preservation, emulation, Office documents

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JCDL’06, June 11–15, 2006, Chapel Hill, North Carolina, USA.
Copyright 2006 ACM 1-59593-354-9/06/0006 ...$5.00.

1. INTRODUCTION
Emulation has been widely discussed as a preservation

strategy for digital artifacts such as multimedia presenta-
tions that are intimately tied to their original hardware and
software platform for interpretation [15, 12, 13]. The basic
idea of emulation is simple - in order to preserve a complex
digital artifact in the face of rapid hardware obsolescence,
an emulation platform is created consisting of a program to
simulate the original hardware platform (the emulator) and
the original software used to access the artifact (the soft-
ware image). Future access to the artifact is achieved by
executing the emulation platform on modern hardware in
place of the original platform. Emulation has been success-
fully tested to preserve individual artifacts such as the BBC
Doomsday book project and various multimedia artworks
[16], but it has not been tested as a means for preserving a
large collection of digital artifacts.

There is a fundamental difference between preserving in-
dividual digital artifacts and a large collection of artifacts
expressed by two tasks that must be addressed to build re-
liable emulation platforms. First, the software (hardware)
resource requirements must be established and second, the
emulation platform must be tested to ensure that it ade-
quately supports the artifacts. In the case of individual
artifacts, each of these tasks can be accomplished with sig-
nificant human intervention assuming that the artifact is
of sufficient cultural value to justify building a specialized
emulation platform. When archiving large collections, it
is often difficult to predict which, if any, of the artifacts
will be of value in the future. Therefore, it is generally
infeasible to spend significant resources on any individual
artifact. For example, PowerPoint presentations may dif-
fer significantly in the fonts, language support, video and
audio Codecs (Compression-Decompression algorithm), and
“helper applications” required for successful access. When
creating an emulation platform to support a collection of
artifacts, each artifact must be evaluated to determine its
software and hardware resource requirements. Once an em-
ulation platform has been implemented, each artifact should
be tested against the platform to ensure that at least basic
functionality is achieved, and a careful quality assurance
program must be followed to ensure that loss of artifact
specific functionality is minimized. A further complication
is that a collection of artifacts may have conflicting soft-
ware requirements and hence a supporting emulation plat-
form may require a multitude of software images to support
the collection.

The primary focus of this paper is to demonstrate auto-
matic analysis of software requirements for a large collection
of documents and to quantify these requirements for Office
documents. In addition, we describe first steps in devel-
oping tools to test software images supporting a document
collection. All software tools, presented in this paper, have
been primarily developed to perform automatic document
analysis and image testing for the purpose of building ro-
bust emulation environments; yet, we recognize their general
usefulness in other contexts. For example, the tools may be
used to screen documents for requirements before accept-
ing them into an archive that imposes certain restrictions
on fonts or embedded multimedia resources. The tools may
also be used to support migration of documents to different
platforms that may have different resource requirements.

Automatic analysis of software requirements for Office
documents is limited by the information that the document’s
object model provides. An experimental study on a large
collection of Office documents has shown the limitation of
the information that can be reliably extracted. For exam-
ple, while links to embedded audio and video files can be
reliable identified, information about the Codec needed to
play back a media file cannot be determined from the object
model. Only by accessing the media file itself can Codec re-
quirements be established. Similar problems occurred when
establishing the font requirements. While a font’s face name
can be extracted from a document object model, the object
model provides no specific information to uniquely identify
a font used in a document. The face name itself is gener-
ally not sufficient to identify a font because face names are
user defined and currently lack any standardization. As a
consequence, two fonts may be identical, even though their
face names may be different. Examples of such cases have
occurred in our experiment and are discussed in section 4.
Other issues, where the object model provided insufficient
information are also discussed in the experimental section.

The results from the experimental study indicate that au-
thors of Office documents use a large variety of fonts that
differ from the set of fonts provided by Microsoft Office and
the Windows operating system. We believe that fonts not
supplied by Microsoft must come from software applications
installed on the author’s platform or from font vendors con-
sulted by the author to add additional fonts to their plat-
form. Another major result from the study is that the num-
ber of Codecs required to play back media files embedded
in Office documents is small. This makes it feasible to man-
ually collect the necessary Codecs when building emulation
platforms to guarantee proper playback of audio and video
files. Finally, the study has also shown that any embedded
objects, other than movie and audio clips, are always cor-
rectly visualized by Office even if the application with which
the embedded object was created is not installed.

We have chosen to focus upon the issues related to creat-
ing and testing software images rather than the creation of
emulators. There are several emulators and virtual machines
available for the ubiquitous x86-based PC. Thus, we believe
the creation of reliable hardware emulator is largely a solved
problem. For example, VirtualPC [18] and QEmu [7] pro-
vide reliable platforms to execute Windows 3.1 through XP
operating systems on Windows, Linux, and Macintosh com-
puters. VMWare [17] provides robust virtual PC emulators
on Linux and Windows. The primary difference between
emulation and virtualization is whether instruction set sim-

ulation is required. Instruction set simulation is relatively
easy. For example, GDB (a popular debugger) includes in-
struction set simulators for most common microprocessors
[20].

The rest of the paper is organized as follows. Section 2
proposes an architecture for preserving digital artifacts and
discusses some of the challenges for building robust emu-
lation environments that support access of Microsoft Of-
fice documents. Section 3 discusses first how to analyze
Office documents before presenting a suit of software tools
and strategies to establish platform requirements. Section 4
describes an experimental study to demonstrate how the
task of emulation platform specification can be accomplished
when faced with large collections of digital artifacts. Issues
that emerged from the experimental study are discussed in
section 6. Finally, section 7 concludes our work.

2. AN ARCHITECTURE FOR
PRESERVING DIGITAL ARTIFACTS

We envision a digital archive utilizing emulation to con-
sist of repositories for holding artifacts to be viewed, soft-
ware to generate emulation images on-demand for viewing
individual artifacts, and compute servers for executing the
emulation environment. Figure 1 illustrates this architec-
ture. If a user requests an artifact, a query is generated
corresponding to the artifact requirements in order to re-
trieve the necessary operating system, application software,
and supporting files. These components are used to gen-
erate an emulator image that is executed on the compute
server to generate a response. In this case, a response con-
sists of an interactive session for viewing the artifact. The
resulting multimedia display appears on the user’s worksta-
tion. In the remainder of this section, we address the issues
associated with building robust emulation platforms to sup-
port this model. The primary technical issues are analysis
of document requirements, collection of necessary support
components, generation of emulation images and testing of
generated images.

To ensure that the emulation environment successfully
supports viewing and access of the various artifacts, the re-
quirements must be known and stored with the artifacts
in the Artifact Repository. In addition, software and sup-
porting files such as fonts must be collected and stored in
the Software Resource Repository for subsequent access to
dynamically build a suitable emulator environment. The
creation of such repositories must be done far in advance of
any users accessing the digital artifacts to view them on a
workstation. Since technical obsolescence may make it im-
possible or impractical to “fix” an emulation environment
when a fault is discovered by a user accessing a particular
artifact, the process of creating the emulation environment
must provide high confidence that such failures are unlikely.
Building emulation environments must scale with the re-
quirements of an archive storing a diverse, large number of
artifacts. With tens of thousands of artifacts, it is not feasi-
ble for human beings to be required to “touch” each artifact
in creating and testing emulation environments. Thus, an
automatic approach is needed to solve this problem.

To create an emulation environment, the software and op-
erating system resources required to access artifacts must be
established. Assuming the requirements are known, creating
an emulation “image” consists of installing an operating sys-

Compute
Server

Response

Artifact
Repository

Software
 Resource

Repository

Access
Request

Artifact
Query

Supporting Files
Software
OS Emulator

Emulator Image

Figure 1: An Architecture for Viewing Digital Ar-

tifacts.

tem emulator for a target computing platform, applications
and plug-ins, and additional resources. The image can be ex-
ecuted to view artifacts or stored in the Software Resource
Repository for later use. Multiple images may be gener-
ated and stored to support sometimes conflicting software
requirements of artifacts. Once created, emulation images
can be customized at any time to meet the visualization re-
quirements for new artifacts by adding executables or other
supporting files to the image. We envision that when such
customized images are booted for the first time to visualize
an artifact, the compute server will install first the necessary
patches and applications before generating a response.

Digital artifacts, including Microsoft Office documents,
commonly link to other artifacts with different formats. This
means that archival preservation of a given artifact may in-
volve the preservation of additional artifacts of different for-
mats with different software and resource needs. The situa-
tion is further complicated because the process of collecting
artifacts into an archive may result in breaking many of the
links between them which have location specific references.
The linking problem could be solved in an emulation envi-
ronment through the use of “proxies” which redirect refer-
ences to linked artifacts to their appropriate location in an
archive and either launch helper applications in the emula-
tion environment of the source artifact or launch separate
emulators to view the linked artifacts. Thus, emulation sup-
port for an artifact requires both the emulator and a proxy
environment for the parent archive. While this paper does
not address directly the issue of handling linked artifacts,
it will present solutions for capturing the requirements of
linked artifacts to ensure that the Office documents are ren-
dered correctly. For example, for linked artifacts such as
video and audio clips, requirements to properly play back
such linked clips include media players that can handle the
file format and the Codecs.

In conclusion, to build robust emulation environments
that support visualization of a large collection of documents,
three major tasks must be performed. First, the digital ar-
tifacts from the artifact collection must be analyzed to es-
tablish their software requirements for correct visualization.
Second, emulator images must be generated that includes
the operating system, application software and supporting
files to visualize an artifact when access is requested. Third,
the image must be tested to ensure that future attempts to
access and interact with a digital artifact do not fail due to

Figure 2: A section of the PowerPoint object model.

inadequacies in the emulator platform. In this paper, we
focus primarily on the first task and describe first steps to-
ward accomplishing the third task. The second, the creation
of a test image, is subject of future research.

3. DOCUMENT ANALYSIS
This section discusses first how document analysis is auto-

matically performed using existing Microsoft programming
interfaces. It then presents the software tools that were
recently developed to establish resource requirements for a
large collection of Office documents.

Microsoft applications including Word and PowerPoint
provide a programmer accessible interface that allows pro-
grams to access and control a document’s object model.
This technology, known as COM (Component Object Model)
and the OLE (Object Linking and Embedding) [8] Automa-
tion programming interface, provides the basic interface to
read an Office document, parse the document’s object model,
and extract the information necessary to determine resource
requirements. For example, to determine the fonts used in
a PowerPoint document, a program running on a platform
where the Office software is installed can automatically load
the PowerPoint document into memory, traverse the ob-
ject model of a presentation [6], depcited in Figure 2, loop
through the presentation slides and the characters on each
slide, access the Font object and determine the font’s face
name. Similarly, embedded objects such as audio and video
clips and their corresponding file formats can be established
and the resource links to the objects used to access them for
further analysis. The pseudo-code in Table 1 illustrates how
the object model for PowerPoint presentations were parsed.
Only slight modifications were needed to apply the same
algorithm for parsing Word documents.

The OLE Automation programming interface not only al-
lows access to an Office document’s object model, but facil-
itates control of the model to automate document naviga-
tion and modification. This can be useful to build inter-
active systems that aid in resolving detected visualization
problems in documents. Although automatic problem reso-
lution is desirable, especially if there are a large number of
documents that need to be preserved permanently, it is not
realistic to expect that every visualization problem in a doc-
ument can be resolved automatically. Human inspection is
necessary and, assuming difficult to resolve problems occur

PROCEDURE Parse Object Model

INPUT:

PPT: a PowerPoint presentation
OUTPUT:

A record summarizing document attributes, font
requirements, linked resources, and embedded objects

BEGIN

Access Document Properties DP in PPT
extract and print attributes and their values from DP
For each slide S in PPT do
For each shape C in S do
If C is a text frame, do
extract text range R
for each character in R, extract font information
store font information, if new
End If

If C is a linked object, do
extract media type // i.e. audio or video
extract file link
store file link and media type, if new
End If

If C is embedded object, do
extract program ID and store it if new
End If

End For

End For

display font information
display information about linked audio/video clips
display program IDs of embedded objects

END

Table 1: Pseudo-code for parsing the PowerPoint

object model.

rarely, requesting an inspector to examine problem areas is
a viable approach to ensure that (1) artifacts are complete
when added to an artifact repository and (2) emulation envi-
ronments are robust because the necessary applications and
resources are available to guarantee future access of a set of
stored artifacts.

Despite the fact that useful information can be extracted
from a Microsoft Office object model, there are serious lim-
itations affecting the process of automatically establishing
resource requirements. For example, no class in the object
model provides version information about the Microsoft Of-
fice application with which a document was originally cre-
ated. Only the name of the application can be extracted
but this name does not reliably indicate the version of the
Office software or the platform on which the Office soft-
ware run at the time the document was authored. Another
limitation is the information that is available about fonts.
Class Font in the object model provides information about
a font’s face name, style, size, color, and effects but it does
not provide a kind of font “fingerprint” that would allow a
font to be uniquely identified. As a result, fonts can only be
distinguished on the basis of their face name, which is not
reliable. For example, in the experiment discussed below,
we determined that the word “times” as in Times New Ro-
man, a commonly used font, occurs 146 times in distinct
face names of fonts extracted from PowerPoint presenta-
tions. How many of these fonts actually refer to the font
Times or Times New Roman cannot be determined. Finally,

as was previously mentioned, the Office object model does
not provide media type or Codec information of embedded
media files. This problem, however, can be addressed by an-
alyzing the media file directly. Software tools for analyzing
such media files as well as Office documents will be discussed
next.

Software Tools for Automatic Artifact
Requirement Analysis
A suit of software tools was developed to perform a require-
ment analysis for Office documents and associated artifacts.
They include C++ programs to parse the Office object mod-
els and to identify installed fonts on a computing platform,
Python scripts to compile a list of resource requirements for
Office documents and to analyze and compare fonts, and
Java programs to search and download Office documents
and fonts. In addition, off-the-shelf freeware products were
used to analyze media files and extract font attributes from
font files. The tools proved to be sufficiently robust and
fast enough to process large document libraries. Difficul-
ties occurred when Office documents were corrupt, access
was restricted, or user interaction was required to complete
file processing. Not everything could be fully automized.
For example, to extract Codec information from media files,
interaction with a graphical user interface was required to
select media files to be processed and to store the processing
results in a text file.

The C++ programs that perform document analysis use
the OLE Automation programming interface to parse the
PowerPoint and Word object model and extract information
about document attributes, used fonts, filenames of symbol-
ically linked objects, and application names of physically
embedded objects as outlined in Table 1. Document at-
tributes that were extracted include the document’s title,
creator, creation date, and the application name with which
the document was created. For the fonts, only the face name
was extracted and for media clips, media type (i.e. whether
the clip is a video or an audio file) and the name and path
of the media files were extracted.

Analysis of embedded audio and video clips from within
PowerPoint or Office document is limited. While the media
file format can be reliably identified using, if available, the
extension of the media file’s name, Codec information is not
available within a PowerPoint or Word object model. Thus,
the audio and video files need to be analyzed directly to
establish any requirements for media players to successfully
play back the embedded clips. Media files contain Codec
information that media players must determine in order to
apply the correct decoding algorithm at the time the media
file is played back. However, unless the media file format is
known, parsing the media files to extract the Codec informa-
tion is as difficult as parsing a Word or a PowerPoint docu-
ment. As a result, an approach similar to Office documents
was pursued to parse media files. However, this approach
proved unsuccessful because media players provide no or in-
sufficient COM/OLE automation support to load media files
into memory and to parse their object model. An alterna-
tive approach is to use off-the-shelf freeware tools for media
file analysis.

To analyze media files and determine Codec requirements,
two products, VideoInspector [3] and AVICodec [1], were
used. Although both tools provide Codec information, they
differ in the information they provide and in the media files

they are capable of processing. For example, VideoInspec-
tor provides information on the number of frames per second
(FPS) while AVICodec provides FPS and the total number
of frames in the clip. As to the tools capability of pro-
cessing different media formats, VideoInspector processes
QuickTime but AVICodec does not. Conversely, AVICodec
processes ASF files but VideoInspector does not. Thus, by
using both tools, all downloaded media files from the library
were processed successfully. Both, VideoInspector and AVI-
Codec required users to use specific graphical user interfaces
to select media files from a target directory and to export
the results of the analysis into text files used for subsequent
analysis.

Besides software tools for document and media analysis,
additional software was built to process artifacts from a li-
brary, to search for Office documents and embedded media
files on the Web, to build font databases, identify installed
fonts on a computing platform, and compare fonts in a font
database using font metric information extracted from font
files via existing analysis tools. The role and use of this
software will be discussed in the experimental study section.
The section will start with discussing how Office documents
were collected from the Web. It will then present results
from the requirement analysis of the document collection
and the results from a follow-up experiment whose goal was
to study if fonts, missing on a computing platform, can be
downloaded from the Web.

4. EXPERIMENTAL STUDY
An experimental study was conducted to determine the ef-

fectiveness of the software tools introduced above for estab-
lishing software and resource requirements and to identify is-
sues building emulation environments that may be caused by
software needs. In the study, approximately 200,000 docu-
ments were downloaded from the Web using the Google Web
interface to automatically build a collection that contains
approximately half Word and half PowerPoint documents.
To download the documents, keywords from different glos-
saries were used to generate queries for searching Office doc-
uments on the Web. Each query was composed of a single
keyword and a file type specification to match PowerPoint
or Word documents only within Google’s index. Among the
matching results, up to 100 documents were downloaded us-
ing the URLs provided by Google. Information about the
documents including the URL, a document description as
provided by Google, file type information, and the name of
the glossary from which the query keyword was selected was
stored in a database for subsequent analysis.

To establish visualization requirements for a diverse set
of documents, four glossaries consisting of keywords from a
science, social science, business/law, and art domain were
used. The keywords were collected from free online glos-
saries published by individuals, educational institutions, or
companies. Each document was classified by the name of the
glossary from which the keyword was selected in the search.
While the approach does not guarantee that a document
actually represents information pertaining to the assigned
category, we believe it is sufficient to retrieve a diverse set
of documents. Table 2 summarizes the information about
the glossaries and the distribution of the downloaded Office
documents pertaining to the different glossaries. The file
sizes of the Office documents differed not only in terms of
the file type but also in terms of the glossary. The aver-

age file size for PowerPoint documents was approximately
1 MB, ranging from 1.12 MB file size for science and art
files to 0.64 MB for social science files and 0.92 MB for busi-
ness files. For Word documents, the average file size was
0.18 MB. The size difference among PowerPoint documents
is due to differences in presentation style. An analysis of
the files revealed that science presentations included more
pictures and other embedded objects such as graphs, equa-
tions, etc. than business or social science presentations. In
general, embedding media files affects the file size very lit-
tle because the files are only symbolically linked and not
physically embedded into the Office document.

Prior to processing, all files were scanned for viruses using
a standard virus scanning software to protect the platform,
artifacts, and the network. Although occurring rarely (less
than 30 viruses were detected in 200, 000 Office documents),
it takes only a single virus to cause irreparable damage to
software and artifacts of a platform.

glossary

size

#PowerPoint

files

#Word

files

science 563 39,771 41,596

social science 368 22,582 30,770

business/law 563 28,177 37,808

art 225 6,050 14,195

total 1,719 96,580 124,384

Table 2: Information about the downloaded Office

documents and the glossaries.

4.1 Document Analysis Results
The previously discussed software suite was used to ana-

lyze the PowerPoint and Word documents in the collection.
The analysis was performed on a PC with a Pentium 4,
2.6 GHz processor and 2 GB memory. The processing time
for each document was measured using standard OS library
calls from within a Python script.

Most files were successfully processed. Only 48 files among
the PowerPoint documents and 204 files among the Word
documents could not be processed due to errors in the doc-
uments or unresolvable problems with the COM/OLE in-
terface. The processing time ranged from 5.6 to 8.7 seconds
per file for PowerPoint and 6.16 to 8.24 seconds for Word
documents depending on the document’s category. The dif-
ference in processing time is largely due to the differences
in document style. Since most of the time is spent on font
analysis, PowerPoint presentations that favor text over em-
bedded objects such as images, video clips, etc. require more
time to process than presentations with less text but more
embedded objects. Although size is a factor in processing
time, differences in the ratio of text versus embedded objects
are more significant to explain differences in processing time.

Even if we assume the worst case scenario of 8.7 seconds
processing time per PowerPoint presentation and 8.24 sec-
onds for Word documents, the processing time is fairly low
making it feasible to process very large document libraries
containing millions of Office documents to establish resource
and software requirements. In addition, the problem lends
itself to conduct the document analysis in parallel on a farm
of machines, thereby reducing the total time needed to ana-
lyze a large collection of Office documents significantly. Ta-
ble 3 summarizes the performance statistics with ®T and

®S denoting the average processing time and the average
file size respectively.

PowerPoint Word

®T ®S ®T ®S

(sec) (MB) (sec) (MB)

science 5.65 1.12 6.40 0.20

social science 7.50 0.64 6.16 0.19

business/law 8.71 0.68 7.08 0.15

arts 8.07 1.06 8.24 0.26

Table 3: Performance analysis of processing Power-

Point and Word files.

Document Attributes: Among the extracted document
attributes, both application names and creation date were
considered for the collected documents. The results showed
that the extracted information was not reliably indicating
the documents’ creation date or the version of the Office
software with which a document was created. While the ear-
liest extracted creation date from Office files was long before
the first release of Microsoft Office software, indicating an
erroneously stored creation date, version information of the
Office software was only specified in some of the extracted
application names. Among the application names that in-
dicated version information are “microsoft powerpoint he-
brew edition”, “microsoft powerpoint 7.0”, and “microsoft
powerpoint 4.0”. However, for the majority of extracted
application names, no version information was specified in
the application name. While extracting version information
may be desirable, it is not necessary to match Office docu-
ments with the corresponding Office software since Microsoft
Office is backward compatible supporting full access to all
Office documents created with older versions of its software.

Fonts: Consolidating the extracted information on fonts
showed that both Word and PowerPoint documents use a
large variety of fonts with the total number of different face
names detected in the entire document collection exceeding
more than 3,000. In general, Microsoft supplies 131 different
fonts with Office 2003 installed on a Windows XP platform.
Thus, the vast majority of detected fonts must come from
specific font libraries or software applications other than Of-
fice or the operating system. For the remainder of this doc-
ument, such fonts are considered non-standard Microsoft
fonts. Among such fonts, less than 100 were detected to
have non-western face names (as determined by the string
being in unicode), with only 98 Word documents and 727
PowerPoint presentations using such fonts.

A closer analysis of the font usage revealed that (1) the
majority of the fonts (56% of the fonts detected in Power-
Point presentations and 58% of the fonts detected in Word
documents) occur only in one presentation or document,
and (2) standard Windows platform fonts occur more fre-
quently than non-standard fonts. For example, in Word
documents, Times-New Roman, the most frequently used
standard font for Windows platforms, occurs in 89,629 files,
while Helvetica, the most frequently used non-standard font
(the font is available on Apple Macintosh but not Windows
platforms), occurs in 2,583 files. For PowerPoint presen-
tations, the most frequently standard font Arial occurs in
54,134 files and the most frequently used non-standard Win-
dows font, Helvetica occurs in 3,470 files. This suggests that

standard Windows fonts are still favored by authors of Office
documents and that non-standard Windows fonts may also
be due to Office documents being produced on platforms
other than Windows such as Mac OSX.

Media Files: Media files such as audio and video clips
occurred predominantly in PowerPoint presentations. Only
a single Word file included an image that required Quick-
Time and a specific encoder to be visible. No media file was
physically embedded into the Office documents. The analy-
sis of the PowerPoint presentation returned a total of 6,337
audio and video files that were symbolically linked into the
presentations. As previously discussed, the symbolic media
link provides the filename with file extension that can be
used to successfully classify the media files. A total of 32
different extensions were identified, classifying all of the au-
dio and video clips into 12 different media types. The most
common detected media types include QuickTime, MPEG,
AVI, Waveform audio, and MIDI; other types include an-
imated images, Macromedia flash, Windows Media/Audio,
and audio streams.

The link information itself is insufficient to identify the
necessary Codec information for successfully playing back
embedded audio or video clips. Thus, in an effort to identify
Codec information, the embedded media files were searched
on the Web using a URL constructed from the extracted
name of the media file and the URL of the PowerPoint pre-
sentation that contained the media file. This approach re-
turned a total of 1,117 media files that were subsequently
analyzed for Codec information using the previously dis-
cussed freeware tools. The results revealed that the media
files required a total of 7 different audio Codecs and 25 dif-
ferent video Codecs to be played back with the majority of
files requiring MPEG 1, Wave, Radius Cinepak, Microsoft
Video 1, and Intel Indeo R3.2 support.

Embedded objects: Among the embedded objects other
than video and audio clips, PowerPoint presentations con-
tained 435 and Word documents 174 embedded objects such
as Excel spreadsheets or graphs, Visio graphs, images, Mi-
crosoft WordArt, diagrams and more. When considering
documents from the four different categories as well as the
number of files in each category, we found that most embed-
ded objects occurred in art documents while business/law
documents contained the fewest number of embedded ob-
jects. All of the embedded objects were visible when inspect
in the presentation or document but, as expected, could not
be edited absent of the application that generated them.
The most frequently used embedded objects were Microsoft
WordArt, JPEG and GIF images, drawings, diagrams, and
spreadsheets. Only a single Office file contained a Visual Ba-
sic Macro which performed a database call to retrieve data
to be shown in the document.

4.2 Building Font Databases
The large number of missing fonts prompted us to con-

duct an experiment to investigate whether it is possible to
automatically build font databases by searching for fonts on
the Web using a font’s face name as a query term. Unfor-
tunately, this strategy proved to be unsuccessful for several
reasons. First and foremost, fonts that are missing may
not be published on the Web. Second, as previously dis-
cussed, a font’s face name alone is insufficient to identify a
font. Thus, a missing font may be published on the Web but
due to naming differences cannot be located. Nevertheless,

among the 1,233 downloaded fonts, 27% matched missing
fonts in PowerPoint presentations and 18% matched miss-
ing fonts in Word documents judged by comparing the fonts’
face names.

To search for fonts on the Web, first a list of face names
was compiled from the list of missing fonts that were fre-
quently used in both Word and PowerPoint files. Using
each face name and a file type specification to match font
files, a Google query was generated to search and down-
load fonts on the Web. Among the matching results, up
to 10 true-type fonts were downloaded using the URL pro-
vided by Google. The corresponding files were stored in a
font database along with information about font attributes
that was automatically extracted from the font files. For
the automatic font analysis of downloaded true-type fonts,
a publicly available software from Microsoft was used [5] to
extract font attributes from the header of the font file. Some
of the font attributes that were considered include the aver-
age char width in x dimension, the panose (a 10 byte series
of numbers specifying the visual characteristics of a given
typeface), the typographic ascender and descender of the
font, and more. In total, 20 font attributes were extracted
from a font’s header file that were sufficient to distinguish
and compare the downloaded fonts (a full list of available
attributes is available at [4]). Approximately 1,300 fonts
were searched and 1,233 different fonts were collected and
stored in the database. The downloaded fonts were subse-
quently compared against the list of missing fonts in Power-
Point and Word files using the font face name. The compar-
ison revealed that 334 fonts matched missing fonts occurring
in PowerPoint and 255 fonts matched missing fonts occur-
ring in Word files. When performing an approximate match
in which the face name of the downloaded font partially
matches the face name of missing fonts, an additional 475
fonts matched fonts occurring in PowerPoint and an addi-
tional 481 fonts matched fonts occurring in Word files.

In a separate experiment, frequently missing fonts used in
both Word and PowerPoint documents where searched in a
font database provided by Adobe [2]. This database contains
approximately 4,200 fonts and is used by Adobe to convert
Office documents into PDF files for its online PDF conver-
sion service. When searching the font database, a total of
333 out of 1,994 missing fonts where found. This number
increases to 1,003 fonts, when performing an approximate
match in which the face names of the missing fonts par-
tially match fonts in the Adobe font database. The results
show that even large font databases used by an industry that
specializes in content creation and delivery cannot guaran-
tee availability of frequently used fonts to correctly visualize
collections of Office documents.

Fonts cannot be distinguished on the basis of the font’s
face name only. Preliminary results have shown that many
fonts have different face names but are visually identical.
To determine the similarity or difference of the downloaded
fonts to each other, a simple clustering algorithm was ap-
plied that uses the previously mentioned font attributes to
group the fonts. The algorithm assigns fonts to the same
group if their font attributes have identical values. The anal-
ysis showed that among the 1,233 font files, 1,041 fonts were
different. Examples of were fonts were identical but had dif-
ferent face names include Mead Bold and Andy or Arial and
TITOL Arial Narrow. However, for the majority of grouped
fonts, the fonts of a group shared the same face names.

Rather than searching for fonts on the Web, a more di-
rect approach is to require font files to be submitted along
with the artifacts. However, this will require artifacts to
be submitted to long-term repositories from the same plat-
form where they are originally authored. Once, the artifact
is moved from its authoring platform, there is no guarantee
that the new platform supports the same set of fonts as used
by the artifact. Another alternative to address the font issue
is to require fonts to be embedded into the artifact. This,
however, would increase the size of the artifact substantially
and unnecessarily, especially if the embedded fonts exist on
the platform on which the document is to be stored.

5. AUTOMATIC TEST CASE
CONSTRUCTION

An emulation platform must be tested to ensure that fu-
ture attempts to access and interact with a digital artifact
does not produce errors or anomalies due to inadequacies in
the emulation platform. For example, when viewing a Pow-
erPoint presentation, the application should not crash, and
all visual and audio effects should be rendered with reason-
able fidelity. Of course, some artifacts in a collection may
be inherently flawed. Testing emulation platforms poses sev-
eral technical challenges. First, a set of tests must be de-
fined that, when applied to a single artifact on an emulation
platform, ensure the correct behavior of that artifact. Sec-
ond, a test strategy must be developed which ensures that
if each test is applied to a selected subset of the artifacts,
the correct behavior is guaranteed for all artifacts with high
probability. Third, the tests and associated strategy must
be implemented with reasonable computational and human
resources. In this paper, we are focusing on the first and
third challenge and leave the second for future research.

Representative test cases for manual inspection must be
created to cover the different resource needs of the digital
artifacts in the library. The test cases must be few in num-
ber and small in size to make human inspection feasible.
An inspector of a test case must check the digital artifacts
for their correct visualization and functionality. For exam-
ple, the test cases for PowerPoint must include slides that
contain video and audio clips corresponding to the different
video and audio formats and Codecs used by the PowerPoint
presentations in the digital library. To construct represen-
tative test cases, the results from the requirement analysis
may be used to compile a list of fonts, video and audio clips,
and embedded objects to be examined to guarantee proper
visualization and functionality of the artifacts in the digital
library.

To support testing of an emulation environment, we inves-
tigated automation of test case construction. As a first step
toward interactive testing of emulation environments, pro-
totype software tools were developed that use output files
from a requirement analysis to automatically build Pow-
erPoint presentations for testing proper playback of media
clips. To simplify manual inspection, each slide contains
a single audio or video clip of a different format and with
a different Codec. The slides’ titles display the name of
the media file and the Codec to allow inspectors to quickly
identify if the media format and Codec is supported within
PowerPoint. When the software tools were applied to gen-
erate a test case to determine support for various types of
audio and video clips on a Windows XP computing plat-

form, a presentation with 34 slides was constructed. The
presentation covers the different audio and video clips and
Codecs that occur in the PowerPoint presentations of the
document library as discussed above.

The (generated) PowerPoint test presentation was easy
to inspect in viewing mode. Any problems with playing
back embedded media files were easily and quickly identified.
For example, it was quickly determined that any QuickTime
movie that appeared in the presentation could not be played
back successfully under Windows XP even though Quick-
Time was installed and the same movie played back correctly
outside PowerPoint using the QuickTime movie player di-
rectly. In contrast, when inspecting the same presentation
under Mac OS X, playing back any embedded QuickTime
movies from within PowerPoint was not an issue. In total,
10 of the 34 embedded movie and audio clips did not play
back correctly within PowerPoint due to missing Codecs or
Windows specific issues related to the QuickTime plug-in
for PowerPoint.

6. DISCUSSION
A few problems were encountered during the coding phase

and the experimental study of this research project. They
include (1) issues related to the large variety of fonts discov-
ered in Office documents, (2) deficiencies of the object model
to extract information about resource requirements, and (3)
performance issues when using the OLE/COM interface to
parse the object model.

If documents are accessed on platforms that don’t supply
the necessary fonts, Microsoft Office substitutes the missing
fonts with existing fonts causing, at the minimum, format-
ting problems with the document. However, in some cases,
font substitution may result in a loss of information when the
font itself carries specific meaning as is the case for symbol
fonts such as Symbol, Bookshelf Symbol 7, or MS Reference
Specialty. Users are typically not informed when fonts are
automatically substituted with available fonts causing con-
fusion when formatting issues arise in an opened document.

The large variety of fonts used in documents poses a chal-
lenge to digital preservation. Many fonts that were detected
cannot be distinguished by the face name itself because fonts
may have different face names but may be identical in their
visual characteristics. This is an issue that largely remains
unresolved because it requires outside intervention to be ad-
dressed. For example, Office documents must either embed
non-standard fonts in the files or encourage users to use stan-
dard fonts when the artifacts need to be stored in document
libraries for long-term preservation.

Our approach to use the OLE/COM interface to perform
a requirement analysis of Office documents has been mostly
successful. Performance issues occurred when Word docu-
ments were scanned character by character to extract font
information. Access and processing problems occurred be-
cause of file access restriction, file corruption, or embedded
macros. In the latter cases, some form of user intervention
was needed to continue with an automatic document anal-
ysis. For example, when access is restricted, a dialog box
opens up, requiring users to enter a password. To address
performance problems with Word documents, paragraphs
instead of characters were scanned to extract font informa-
tion from the file. Preliminary experiments have shown that
scanning paragraphs is sufficient to determine the fonts used
in a document. Access and processing problems were re-

solved by terminating and logging any files that could not
be analyzed within a fixed time period. In general, the num-
ber of processing problems were small enough for a manual
examination to be feasible given the large number of docu-
ments that were processed.

A critical component in the proposed architecture is the
operating system simulator. We believe that the technol-
ogy for creating and preserving machine simulators is well
understood and should be not considered a weak spot in
the proposed solution. Indeed, machine simulation is widely
used for system design [19, 11], software testing, and cross
platform software support [22, 9, 10]. Much of the writing
on emulation as a digital preservation strategy has focused
upon the fear that we may lose the ability to execute the ma-
chine simulator unless it is captured in some formal language
[14]. We believe that this is not the most serious problem re-
lating to emulation; indeed small teams have demonstrated
the ability to build hardware emulation platforms to support
complex systems in relatively short periods [10]. Emulation
also presents a serious usability issue; it seems likely that
some additional helper applications should be included in an
emulation environment to enable future users to successfully
launch and utilize an artifact in an emulation environment
without extensive experience with the underlying software.
Although this is an important issue, it is out of the scope of
this paper.

Using four different glossaries to download Office docu-
ments from the Web proved to be a successful approach in
building a document library with a diverse collection of Of-
fice files. When comparing files from each glossary category,
while taking the number of files in each category into consid-
eration, we found that science and art documents contained
more multimedia clips than social science or business/law
documents. The fewest multimedia clips occurred in busi-
ness/law documents. As to embedded objects other than
multimedia clips, art documents contained more embedded
objects than any other files while business/law, social sci-
ence, and science documents contained approximately the
same number of embedded objects such as images, Microsoft
WordArt, graphs and spreadsheets.

Emulation is only one piece of a larger digital preserva-
tion problem. An important issue that was not addressed
in this paper relates to the organization of digital archives
(e.g. such as handled by dspace [21]) as well as storing and
preserving the digital “bits.” Another issue that was not
touched upon is copyright and licensing. For example, many
fonts require licensing before they may be used on a client
workstation to display the content of Office documents that
uses them.

7. CONCLUSIONS
We have proposed to use emulation as a strategy to pre-

serve digital artifacts and facilitate future access. In the
context of digital preservation, emulation is generally con-
sidered to consist of the artifact to be preserved (the doc-
ument), the contemporaneous software required to access
and interact with the artifact (the software image), and the
hardware simulation software required to execute the soft-
ware image (the emulator). Emulation appears to provide
the only technique that can preserve the behavior of ar-
bitrary interactive digital artifacts in the face of hardware
obsolescence.

In this paper, we have discussed strategies and presented

a suite of software tools for building and testing emulation
environments to support digital preservation. The strate-
gies and software tools have been used in an experiment
to analyze a collection of 200,000 Office documents, half
PowerPoint presentations and half Word documents. The
results showed that authors employ a large variety of fonts
in their Office documents that far exceed the standard set
of fonts supplied by Microsoft’s operating systems and Of-
fice applications. The widespread use of non-standard fonts
in Office documents is likely to cause formating and visual-
ization problems when accessed on platforms where fonts
are missing. The problem can only be resolved if non-
standard fonts will automatically be embedded in the docu-
ments when stored for long-term usage. On a positive note,
analyzing the requirements for embedded media files and
other embedded objects was straightforward and scaled well
with large document libraries. Any embedded objects other
than media clips and audio/video streams that occurred in
the document library were correctly visualized upon inspec-
tion. For audio/video clips, a relatively small number of
Codecs and media types were identified making it possible
to collect the necessary software and resources to build emu-
lation environments that support correct visualization of the
embedded media clips. Also, initial prototype software for
automatic construction of test cases to examine an emula-
tion environment’s robustness has been successfully applied
and proven to be useful.

8. ACKNOWLEDGMENTS
We wish to express our thanks to Google for allowing us

to access the Google index to search for and download Office
documents and font files.

9. REFERENCES
[1] AVICodec. http://avicodec.duby.info/.

[2] Fonts supported by Create Adobe PDF Online.
http://www.adobe.com/support/techdocs/328731.html.

[3] KC Softwares. VideoInspector.
http://www.kcsoftwares.com/.

[4] Microsoft OpenType fonts specification.
http://www.microsoft.com/OpenType/OTSpec/os2.htm.

[5] Microsoft Typography: Internal Development Tools.
http://www.microsoft.com/typography/tools/tools.aspx.

[6] Microsoft PowerPoint Object Model. In MSDN
Library, 2001.

[7] F. Bellard. QEMU.
http://en.wikipedia.org/wiki/QEMU.

[8] K. Brockschmidt. Inside OLE (2nd ed.). Microsoft
Press, Redmond, WA, USA, 1995.

[9] J. C. Dehnert, B. K. Grant, J. P. Banning,
R. Johnson, T. Kistler, A. Klaiber, and J. Mattson.
The transmeta code morphing software: using
speculation, recovery, and adaptive retranslation to
address real-life challenges. In Proceedings of the
international symposium on code generation and
optimization, pages 15–24. IEEE Computer Society
Press, 2003.

[10] G. Desoli, N. Mateev, E. Duesterwald, P. Faraboschi,
and J. A. Fisher. Deli: a new run-time control point.
In Proceedings of the 35th annual ACM/IEEE
international symposium on Microarchitecture, pages
257–268. IEEE Computer Society Press, 2002.

[11] P. Faraboschi, G. Brown, J. A. Fisher, G. Desoli, and
F. Homewood. Lx: a technology platform for
customizable vliw embedded processing. In
Proceedings of the 27th annual international
symposium on Computer architecture, pages 203–213.
ACM Press, 2000.

[12] S. Gilheany. Preserving digital information forever and
a call for emulators. In Digital Libraries Asia 98: The
Digital Era: Implications, Challenges, and Issues,
1998.

[13] A. R. Heminger and S. Robertson. The digital rosetta
stone: a model for maintaining longterm access to
static digital documents. Communications of the AIS,
3(2), 2000.

[14] R. A. Lorie. A methodology and system for preserving
digital data. In Proceedings of the second
ACM/IEEE-CS joint conference on Digital libraries,
pages 312–319. ACM Press, 2002.

[15] A. T. McCray and M. E. Gallagher. Principles for
digital library development. Communications of ACM,
44(5):48–54, 2001.

[16] P. Mellor. CaMiLEON: emulation and BBC
doomsday. RLG DigiNews, 7(2), 2003.

[17] S. Miastkowski. Create two virtual PCs Out of One.
PC World, 1999.
http://www.vmware.com/news/articles/1999.html.

[18] Microsoft. Virtual PC.
http://en.wikipedia.org/wiki/Virtual PC.

[19] F. A. Salomon and D. A. Tafuri. Emulation - a useful
tool in the development of computer systems. In
Proceedings of the fifteenth annual simulation
symposium, pages 55–71, 1982.

[20] R. Stallman. GNU Debugger. GNU General Public
License, 1999. http://en.wikipedia.org/wiki/GDB.

[21] R. Tansley, M. K. Smith, and J. Harford Walker. The
DSpace open source digital asset management system:
Challenges and opportunities. In Lecture Notes in
Computer Science 3652: Research and Advanced
Technology for Digital Libraries: 9th European
Conference, pages 242–253, Vienna, Austria,
September 2005.

[22] S. G. Tucker. Emulation of large systems.
Communication of the ACM, 8:753–761, 1965.

