
International Journal of Computer& Organization Trends – Volume1Issue2- 2011

ISSN: 2249-2593 http://www.internationaljournalssrg.org Page 13

A Non-blocking Checkpointing Algorithm for
Non-Deterministic Mobile Ad hoc Networks

Kusum Saluja*, Praveen Kumar**

*NIMS University, Jaipur (Rajasthan India
**Meerut Institute of Engineering & Technology, Meerut (INDIA)-250005

Abstract— Mobile Ad-hoc Networks are a collection of two or
more devices equipped with wireless communication and
networking capability. These devices can communication with
other nodes that immediately within their radio range or one that
is outside their radio range. The transient failure probability of
the computing process increases greatly with the enlarging of
system scale. If a failure occurs in a process and there is not an
appropriate method to protect it, more cost will be wasted for
restarting the program. Coordinated checkpointing can be used
to introduce fault tolerance in mobile ad-hoc wireless networks
environment. In this paper we propose a new minimum process
checkpointing scheme for ad-hoc networks. We assume that
Cluster Based Routing Protocol (CBRP) is used which belongs to
the class of Hierarchical Reactive Routing Protocols. The
number of coordinated messages between a cluster head and its
ordinary members is small. The recovery scheme has no domino
effect and the failure process can rollback from its latest local
consistent Checkpoint. We capture the transitive dependencies
among processes by piggybacking dependency vector of the
sending process along with the computation messages.

Keywords— Mobile Ad Hoc Network; Checkpointing; Fault
tolerance; Coordinating Checkpointing.

1. INTRODUCTION

A. Preliminaries

Wireless networks include infrastructure-based
networks and ad hoc networks. Most wireless infrastructure-
based networks are established by a one hop radio connection
to a wired network. On the other hand, mobile ad hoc
networks are decentralized networks that develop through
self-organization [1]. The original idea of MANET started out
in the early 1970s. At this time they were known as packet
radio networks. Lately, substantial progress has been made in
technologies like microelectronics, wireless signal processing,
distributed computing and VLSI (Very Large Scale
Integration) circuit design and manufacturing [2]. This has
given the possibility to put together node and network devices
in order to create wireless communications with ad hoc
capability.

MANETs are formed by a group of nodes that can
transmit and receive data and also relay data among
themselves. Communication between nodes is made over
wireless links. A pair of nodes can establish a wireless link

among themselves only if they are within transmission range
of each other. An important feature of ad hoc networks is that
routes between two hosts may consist of hops through other
hosts in the network [3]. When a sender node wants to
communicate with a receiver node, it may happen that they
are not within communication range of each other. However,
they might have the chance to communicate if other hosts that
lie in-between are willing to forward packets for them. This
characteristic of MANET is known as multihopping. An
example is shown in figure 1. Node A can communicate
directly (single-hop) with node B, node C and node D. If A
wants to communicate with node E, node C must serve as an
intermediate node for communication between them.
Therefore, the communication between nodes A and E is
multi-hop.

The infrastructured networks have fixed and wired
gateways or the fixed Base-Stations which are connected to
other Base-Stations through wires. Each node is within the
range of a Base-Station. A ‘Hand-off’ occurs as mobile host
travels out range of on Base-Stations and into range of another
and thus, mobile is able to continue communication
seamlessly through out the network. Example applications of
this type include wireless local area networks and Mobile
Phone.

Mobile Ad-hoc Networks are supposed to be used for
disaster recovery, battle field Communications, and rescue
operations when the wired network is not available. I t can be
provided a feasible means for ground communications, and
information access.

The topology of the ad hoc network is represented by
an undirected graphic G= (V, E), where V is the set of all the
mobile nodes, E is the set of all the mobile links. If edge (u, v)

 E, then edge (u, v), E. Node u and v belong to the
communication range of each other, and they are 1-hop
neighbors. The set of node i’s 1-hop neighbor is denoted N1 i.
If two nodes share the same 1-hop neighbor, and the shortest
path between them is 2 hops, then the two nodes are each
other’s 2-hop neighbors. The set of node i’s 2-hop neighbors
is denoted N2 i. If the shortest path between two nodes is 3
hops, then they are each other’s 3-hop neighbors. The set of
node i’s 3-hop neighbors is denoted N3 i. All the nodes use

International Journal of Computer& Organization Trends – Volume1Issue2- 2011

ISSN: 2249-2593 http://www.internationaljournalssrg.org Page 14

omni directional antennae, and have the same transmission
ranges.

Figure 1:-A topology example after clustering

Each node may work as one of the four following roles:
cluster- head, gateway, compound gateway and cluster-
member. As shown in figure 1, there are four clusters; each
cluster is having one cluster head (denoted by CH). Gateway
Nodes (denoted by GW) interconnect the cluster head nodes.
First of all, since the nodes in Wireless Ad-hoc Network are
free to move arbitrarily at any time .So the networks topology
of MANET may change randomly and rapidly at
unpredictable times. This makes routing difficult because the
topology is constantly changing and nodes cannot be assumed
to have persistent data storage. In the worst case, we don not
even know whether the node will still remain next minute,
because the node will leave the network at any minute.

Bandwidth constrained is also a big challenge.
Wireless links have significantly lower capacity than their
hardwired counterparts. Also, due to multiple access, fading,
noise, and interference conditions etc. the wireless links have
low throughput.

Some or all of the nodes in MANET may rely on
batteries. In this scenario, the most important system design
criteria for optimization may be energy conservation.

Mobile networks are generally more prone to
physical security threats than are fixed cable networks. There
are increased possibility odeavesdropping, spoofing and
denial-of-service attacks in these networks.

In each cluster, it has a unique leader, called a cluster
head, to enforce channel allocation. A cluster head is a local
manager of all mobile hosts within a cluster. In the same
cluster, the mobile host called clusters members that
controlled by the cluster-head. One of the basic functions for a
cluster head is broadcasting beacon packets to all mobile hosts
in the cluster.

 Local checkpoint is the saved state of a process at
a processor at a given instance. Global checkpoint is a
collection of local checkpoints, one from each process. A
global state is said to be “consistent” if it contains no orphan
message; i.e., a message whose receive event is recorded, but
its send event is lost. Initial global state is always consistent,
because, it cannot contain any orphan message. A transit
message is a message whose send event has been recorded by
the sending process but whose receive event has not been
recorded by the receiving process. To recover from a failure,
the system restarts its execution from a previous consistent
global state saved on the stable storage during fault-free
execution. This saves all the computation done up to the last
check pointed state and only the computation done thereafter
needs to be redone. Processes in a distributed system
communicate by sending and receiving messages.

B. Contribution of the Paper

 In this chapter, we devise a minimum process non-
blocking checkpointing algorithm for mobile Ad hoc
Networks. There is no common clock, shared memory or
central coordinator. Message passing is the only mode of
communication between any pair of processes. Messages are
exchanged with finite but arbitrary delays. In our algorithm,
we consider that the processes which are running in the
distributed mobile ad hoc network systems are non-
deterministic. The algorithm is distributed in nature. There is
no centralized controlling node. To avoid any waste of
bandwidth or CPU consumption, the algorithm is loop free.
We assume that Cluster Based Routing Protocol (CBRP) is
used which belongs to the class of Hierarchical Reactive
Routing Protocols. Clustering Routing Strategy is highly
employed in Ad hoc Networks to surpass scalability problem.
By limiting the network view of each node, clustering reduces
the routing complexity and the size of the routing table. The
local movement of nodes is handled only within the cluster
without affecting other parts of the network and so the
overhead is highly reduced. Our system model consists of a
number of MHs which communicate through Cluster Heads
(CHs). Each CH provides wireless communication support for
a fixed geographical area, called a cluster. CHs are linked
together over the Wireless data networks through Gateway
Nodes. We assume that wireless channels and logical channels
are all FIFO order. If a MH moves to the cell of another CH, a
wireless channel to the old CH is disconnected and a wireless
channel in the new cluster is allocated. There is no common
clock, shared memory or central coordinator. Message passing
is the only mode of communication between any pair of
processes. Any process can initiate checkpointing. It is
assumed that processes may be failed during processing but
there is no communication link failure. Messages are
exchanged with finite but arbitrary delays. In our algorithm,
we consider that the processes which are running in the
mobile Ad hoc Network are non-deterministic.

International Journal of Computer& Organization Trends – Volume1Issue2- 2011

ISSN: 2249-2593 http://www.internationaljournalssrg.org Page 15

2. THE PROPOSED CHECKPOINTING ALGORITHM

A. Informal Discussion of the Proposed Algorithm with
an Example

 Figure 2
 In figure 2, at time t1, suppose process P5 initiates
checkpointing process. It should be noted that our proposed
algorithm is distributed in nature and any process can initiate
checkpointing. If two processes concurrently initiate
checkpointing, the checkpoint initiation of the process with
lower process_ID will prevail. In this way, concurrent
initiations will not lead to concurrent executions of the
proposed protocol. If we use the technique to capture the
transitive dependency by direct dependencies proposed by
Cao Singhal [2] and other similar algorithms; the following
scenario will take place. P5 sends the checkpointing request
to P4 due to m12. On receiving checkpointing request P4 takes
its tentative checkpoint and sends the checkpointing request to
P3 due to m11. Similarly, after taking its tentative checkpoint,
P3 sends the checkpointing request to P2 due to m10. In this
way, checkpointing tree of height three is generated and the
checkpointing time may be exceedingly high in ad hoc
networks.
 In the proposed scheme, every process maintains a
dependency vector (say DV[]) of length n where n is the
number of processes in the ad hoc network. DVi[j]=1 implies
Pi is causally dependent upon Pj. DVi[j] is set to ‘1’ only if Pi
processes m received from Pj such that Pj has not taken any
permanent checkpoint
after sending m.
 In our algorithm, dependency vectors are
maintained as follows. Let the initial dependency vectors of
P1, P2, P3, P4, P5, P6 are DV1 [000001], DV 2 [000010], DV 3
[000100], DV 4 [001000], DV5[010000], DV6[100000],
respectively. In figure 2, P2 sends m10 to P3 along with its

dependency vector DV2[000010]. When P3 receives m10, it
appends its dependency vector DV3 by taking the bitwise
logical OR of DV2[000010] and DV3 [000100], which comes
out to be [000110]. Similarly, P3 sends m11 to P4 along with its
own dependency vector DV3[000110].

 After receiving m11 by P4, DV4 becomes [001110].
At time t1, P5 initiates checkpointing process with the DV5
[011110], and sends the checkpointing request to P2, P3, P4. In
this way no checkpointing tree is formed as found in Cao-
Singhal algorithm as detailed above. In this way, the time to
collect the global state will be significantly low as compared
to Cao-Singhal algorithm. Therefore, the time to collect the
global checkpoint will be less and the number of useless
checkpoints will also be reduced considerably. The original
idea of capturing the transitive dependencies during normal
processing was proposed by Prakash-singhal [5].

 In figure 2, when P2 takes its tentative checkpoint
C21 and finds that P1 is in the dependency set of P2, but is not
available in the minimum set {P2, P3, P4, P5} received from P5.
In this case, if P1 does not take its checkpoint in the current
initiation, m13 will become orphan. Therefore, P2 sends
checkpoint request to P1 and P1 takes its tentative checkpoint
C11. In this way, we get [C11, C21, C31, C41, C51, C60] as the
consistent global state.

 In figure 3, P0 takes its tentative checkpoint and
sends m11 to P1. P1 has neither taken its tentative checkpoint
nor received any checkpointing request from any other
process. By the piggybacked information along with m11 and
certain other data structures, P1 concludes that P0 has taken its
tentative checkpoint for some new initiation. In this case if P1
takes its checkpoint after processing m11, m11 will become
orphan. Therefore, we propose that P1 will take a forced
checkpoint (say induced Checkpoint) before processing m. If
P1 does not receive any checkpointing request during the
current initiation, P1 will discard it on commit. In this case, if
we find that P1 has not sent any message to any process since
its last committed checkpoint, then P1 will process m without
taking its induced checkpoint. Because, we can say that P1
will not be included in the minimum set in this case.

International Journal of Computer& Organization Trends – Volume1Issue2- 2011

ISSN: 2249-2593 http://www.internationaljournalssrg.org Page 16

As shown in figure 4, at time t11, P13 initiates checkpointing
processfor the mobile ad hoc network under consideration. . It
captures minimum set {P11, P12, P13}. It takes its own tentative
checkpoint C131 and sends the checkpointing request to P11and
P12 [it should be noted that R3 at P13 at t11 is [0001110]. On
receiving the checkpointing request from P13, P12 takes its
tentative checkpoint C121. At the time of taking its tentative
checkpoint, P12 finds R2=[0100110]. It means P12 is
dependent on P15 due to m61 and P15 is not included in the
minimum set {P11, P12, P13} computed so far. Therefore, P12
sends checkpointing request to P15 which in turn takes its
tentative checkpoint C151. After taking its tentative checkpoint,
P12 sends message m31 to P11. P11 has not received the
checkpointing request so far. As csn of P12 is greater than
expected one at the time of sending m31, P11 takes its induced
checkpoint before processing m31. When P11 actually gets the
tentative checkpoint request, it converts its induced
checkpoint C111 into tentative one. After taking its tentative
checkpoint, P12 sends message m51 to P14. Obviously, P14 takes
its induced checkpoint before processing m51. All the
concerned processes after taking their tentative checkpoints,
inform the initiator [not shown in figure], and finally initiator
P13, sends the commit request at time t12 to all the processes.
On commit, P14 finds that it has not received the formal
tentative checkpointing request from any process. Therefore,
P14 discards its induced checkpoint. In this way the resultant
consistent state is [C100, C111, C121, C131, C140, C151, C160]. After
taking its tentative checkpoint, P15 sends m71 to P16; P16 does
not take induced checkpoint before processing m71 because
P16 has not sent any message to any process since its last
committed checkpoint.

B. Data Structures

 We have used the following data structures in our
checkpointing protocol.
 The following section describes the notations and
data structures used in our algorithm. In our algorithm, any
process can initiate the checkpointing operation. Data
structures are initialized/ updated on the completion of a
checkpointing process. We assume that there are n processes
running in the system.
 new_csni checkpoint sequence number of process

Pi and is incremented when Pi takes a tentative
checkpoint; otherwise, it shown the csn of the last
committed checkpoint.

 DV i [] an array of n bits for a process. DVi[j]
becomes ‘1’ when Pi receives a message from Pj in
the current checkpointing interval. In the beginning
of every checkpointing interval, this vector is to
zero for all processes except for itself which is
intialized as ‘1’. Maintenance of DVi[] is shown in
basic idea.

 ch_statei A boolean which is set to ‘1’ when Pi
takes a tentative checkpoint; otherwise is zero on
receiving abort or commit request from the
initiator process.

 Mess_send_flag[i] A bit vector of size n for n
processes. Mess_send_flag i[j]=1 if Pi sends m to
Pj

 set_dp An array of size n used to save
minimum set of processes on which initiator
process is transitively depends on. Initially, when

International Journal of Computer& Organization Trends – Volume1Issue2- 2011

ISSN: 2249-2593 http://www.internationaljournalssrg.org Page 17

checkpointing operation is started, set_dp is DVi[]
of the initiator process..

 Chk_set[] An array of size n to save information
about the processes which have taken their
tentative checkpoints. When process Pj takes its
tentative checkpoint then jth bit of this vector is set
to 1.

 Timeout_flag a flag used to provide
timing in checkpointing operation. It is initialized
to zero when timer is set and becomes ‘1’ when
maximum allowable time for collecting
coordinating checkpoints is expired.

 p_CH An array of size n used to save the
information on every CH regarding the processes
which are running in its cell. p_ch[k] = 1 indicate
that process Pk is running in the cell of this CH.
Information about disconnected MH, if any, which
are supported by this CH, is also stored in this
array.

 tent_chk_set An array of n bits
maintained by the CH. Tent_chk_set [j]=1
whenever process Pj which is in the cell of CH has
taken tentative checkpoint.

 chk_request[] An array of n bits
maintained also on every CH. The jth bit of this
array is set to 1 whenever initiator sends the
checkpoint request to Pj and Pj is in the cell of this
CH.

 error_flag A flag maintained on every
CH, initialized to ‘0’ and set to ‘1’ when any
process in the cell of CH fails to take tentative
checkpoint

 Pin The process which has initiated the
checkpointing operation

 CHin The CH which has Pin in its cell
 new_csnin checkpoint sequence number of

initiator process
 g_chkpt A flag which indicates that some global

checkpoint is being saved
 comm_csn_array [] An array of size n,

maintained on every CH, for n processes.
comm_csn_array[i] represens the most recently
committed checkpoint sequence number of Pi.
After the commit operation, if set_dp[i]=1 then
comm_csn_array[i] is incremented. It should be
noted that entries in this array are updated only
after converting tentative checkpoints in to
permanent checkpoints and not after taking
tentative checkpoints.

 set_dp1[] An array of size n maintained on every
CH. It contains those new processes which are
found on getting checkpoint request from initiator.

 set_dp2[] An array of size n. for all j such that
set_dp1[j] o, set_dp2= set_dp2 set_dp1.

 set_dp3[] An array of length n; on receiving
set_dp3, set_dp, set_dp1 along with checkpoint

request [c_req] or on the computation of set_dp1
locally: set_dp3=set_dp3 c_req.set_dp3;
set_dp3=set_dp3set_dp; set_dp3=set_dp3
c_req.set_dp1; set_dp3=set_dp3 set_dp1;
set_dp3 maintains the best local knowledge of the
minimum set at an CH;

C. The Checkpointing Protocol

 In a distributed mobile adhoc network system, due
to less bandwidth of wireless channels and vulnerability of
storage of MH, all the information regarding the
checkpointing are stored in the stable storage of the MH
itself. In the proposed protocol, when an MH sends an
application message, it is first sent to its local CH over the
wireless channel. The CH then attaches the dependency vector
of the process with the message and sends it to the CH for
which it was issued. The destination CH strips this
dependency vector from the application message and transmit
it to the destination MH over the wireless channels. The
destination CH updates the dependency vector of destination
MH (maintenance of dependency vector is explained in basic
idea). In this way, no data structures are allowed to travel over
the wireless channels. It should be noted that a dependency
vector of mobile hosts are maintained at CHs.

 We propose that any process in the system can
initiate the checkpointing operation. When a process (say Pi)
want to initiate checkpointing, it takes its tentative checkpoint
and send the request to its local CH (initiator CH). This local
CH coordinates the checkpointing operation on behalf of the
initiator MH. If two processes initiate checkpointing at the
same time then the checkpointing initiation of the lower id
will prevail. CHin [initiator CH] sends the checkpointing
request to all CHs alongwith set_dp { set_dp[] = DVi[] }. It
should be noted that the dependency vector of Pi i.e. DVi[]
contains all the processes on which it is directly or transitively
dependent. set_dp is a tentative minimum set computed from
DVi[] of the initiator process. When an CH receives the
checkpointing request, it sends checkpointing request to Pj if
Pj set_dp[] and Pj is in its cell and stores such processes in
chk_requestj[]. We take the following action with every
process, say Pj, which is required to take its tentative
checkpoint. If there exists any process Pk such that Pk does not
belong to set_dp [] and Pk belongs to DVj[], then Pj sends
checkpoint request to Pk. During checkpointing process, if a
process Pj receives the message m from Pi, it takes the
following actions:
 If Pi has taken its tentative checkpoint before
sending m and Pj has not taken its tentative checkpoint at the
time of receiving m, in this case, Pj will take its induced
checkpoint before receiving m. It should be noted that if Pj
takes its tentative checkpoint after receiving m, m will become
orphan and resulting consistent global state will be
inconsistent.

International Journal of Computer& Organization Trends – Volume1Issue2- 2011

ISSN: 2249-2593 http://www.internationaljournalssrg.org Page 18

 For a disconnected MH that is a member of
minimum set, the CH that has its disconnected checkpoint,
converts its disconnected checkpoint into tentative one. When
a CH learns that its concerned processes in its cell have taken
their tentative checkpoints, it sends the response to CHin. On
receiving positive response from all concerned CHs, the CHin
issues the commit request to all CHs. On commit when a
process learns that it has taken an induced checkpoint and has
not received the formal tentative checkpointing request from
any process, it discards its induced checkpoint.

D. Formal Outline of the checkpointing Algorithm:

1) Actions taken when Pi sends m to Pj:
 send (m, new_csni, ch_statei);

2) Algorithm executed at initiator CH (say CHin)

Suppose Pin initiates checkpointing. Pin sends the request to
CHin. CHin computes set_dp..

i.On the basis of computed set_dp, CHin computes
set_dp1, set_dp2, set_dp3.

ii.Set_dp = set_dp3.
iii.CHin sends c_req to all CHs alongwith set_dp.
iv.Set timeout_flag.
v.Wait for response.

vi.On receiving response (Pin, CHin,
CHs,tent_chk_set,set_dp2,error_flag) or at
timer out

(i) If (timeout_flag) (error_flag) { send
message abort (Pin,CHin,new_csnin} to
all CHs, Exit;
 [“ ” is a set union operator]

(ii) Set_dp = set_dp set_dp2.
(iii) Chk_set[] =

Chk_set[] tent_chk_set[]
vii. For (k=0;k<n; k++)

 If (k such that Chk_set [k] set_dp[k]) then
go to step 5;

viii. Send message commit (Pin, CHin,new_csnin, set_dp)
to all CHs;

 // set_dp is the exact minimum set//

3) Algorithm Executed at a process Pj on receiving of
m from Pi:

If (m.new_csni = =comm_csn_array[i])
{ rec(m);
 DVj[i]=1};
If (m.new_csni<comm_csn_array [i]; rec
(m));

If m.new_csni>comm_csn_array [i])
{if (new_csnj>comm_csn_array [j];
{rec (m); DVj[i]=1}

 Else
if
(new_csnj=comm_csn_arr
ay [j]

)

 {Pj takes induced
checkpoint; ++new_csnj; c-state=1;
 rec(m); DVj[i]=1}
 Else /
/ if (own-csnj =comm_csn_array i
 (mess_send_flagi]=
0//

{rec(m); DVj[i]=1;}

i. Algorithm executed at any CH
(say CHs)

1. Wait for Response
2. Upon receiving message c_req (Pin,

CHin, new_csni, set_dp) from CHin
(i) For any Pi such that

p_CH[i]=1 set_dp[i]=1; send c_req
to Pi

(ii) ++new_csni; chk_request[i]=1, ch-
statei=1

(iii) Compute set_dp1, set_dp2, set_dp3
(iv) If such that set_dp1[i]=1;

 send c_req to Pi. //set_dp1 contains
the new
processes
found for
the
minimum
set//

3. On receiving c_req from some other
CH say CHp

i such that set_dp3[i] = = 1 p_CH[i]=
=1 E[i]==0
{ send c_req to Pi; compute set_dp1,
set_dp2, set_dp3}
If i such that set_dp1[i]=1;
send c_req to Pi;

i set_dp1[i]=0;
4. On receiving response to checkpointing

from Pj

International Journal of Computer& Organization Trends – Volume1Issue2- 2011

ISSN: 2249-2593 http://www.internationaljournalssrg.org Page 19

(i) If (Pj has taken the tentative checkpoint
successfully the tent_chk_set[j]=1
else set error_flag.)

(ii) If (error_flag) (j
tent_chk_set[j]=chk_request[j];
Send response (Pin, CHin,
chk_request, error_flag, set_dp2)
to CHin;

5. On receiving commit().
(i) Convert the tentative checkpoints in to

permanent ones and discard old
permanent checkpoints.

(ii) Discard induced checkpoints if any.
(iii) j such that

set_dp[j]=1,comm_csn_array[j]+
+;

(iv) Initialize relevant data structures.
6. On receiving abort().

Discard the tentative checkpoints and
induced checkpoints, if any.
Update relevant variables.

4. Algorithm executed at any process Pi;

On receiving tentative checkpoint request.
Take tentative checkpoint and inform local CH.

3. A PERFORMANCE EVALUATION

 A. General Comparison with existing non-blocking

minimum process algorithms:

 In [7],[4], initiator process/CH collects
dependency vectors for all the processes and computes
the minimum set and sends the checkpointing request to
all the processes with minimum set. The algorithm is non-
blocking; the message received during checkpointing may
add processes to the minimum set. It suffers from
additional message overhead of sending request to all
processes to send their dependency vectors and all
processes send dependency vectors to the initiator process.
But in our algorithm, no such overhead is imposed. The
Cao-Singhal [2] suffers from the formation of
checkpointing tree as shown in basic idea. In our
algorithm, theoretically, we can say that the length of the
checkpointing tree will be considerably low as compared
to algorithm [2], as most of the transitive dependencies
are captured during the normal processing. We do not
compare our algorithm with Prakash-Singhal [2], as Cao-
Singhal proved that there no such algorithm exists [1].
Average number of useless checkpoints in the proposed
algorithm will be significantly less as compared to [2]

algorithm in many situations. As in [2] algorithm, a
checkpointing tree is formed, therefore, the time to collect
the global state in [2] will be higher than the proposed
one. Excessive checkpointing time may trigger many
mutable checkpoints which may lead to higher number of
useless checkpoints as compared to our algorithm.
Furthermore, in [2] algorithm, transitive dependencies are
captured by direct dependencies. Hence the average
number of useless checkpoints requests will be
significantly higher than the proposed algorithm. In [2],
huge data structure are piggybacked along with
checkpointing request, because they are unable to
maintain exact dependencies among processes. Incorrect
dependencies are solved by these huge data structures. In
our case, no such data structures are piggybacked on
checkpointing request and no such useless checkpoint
requests are sent., because we are able to maintain exact
dependencies among processes and furthermore, are able
to capture transitive dependencies during normal
computation at the cost of piggybacking bit vector of
length n for n processes.

 B. Performance of the proposed algorithm

 The average blocking time in our algorithm is nil.
The average number of checkpoints comes out to be Nmin
+ N useless.

Average message overhead:

 A process taking a tentative checkpoint needs two
system messages; request and reply. A process may
receive more than one request for the same checkpoint
initiation from different processes. However, we have
used techniques to reduce the occurrence of this kind of
situation. Therefore, the system message overhead is
approximately 2 Nmin* Cpp. in the second phase, CHin
broadcasts commit request in Cbst time. Hence the total
message overhead will be 2* Nmin* Cpp+ Cbst.

4. CONCLUSION

 We have proposed a minimum process coordinated
checkpointing algorithm for mobile ad hoc networks, where
no blocking of processes takes place. We try to reduce the
number of useless checkpoints by avoiding checkpointing tree
which may be formed in Cao-Singhal [2] algorithm. We
captured the transitive dependencies during the normal
execution. The Z-dependencies are well taken care of in this
protocol. We also avoided collecting dependency vectors of
all processes to find the minimum set as in [4], [7]. In this way,
we reduced the message complexity to a significant extent, as
compared to these algorithms. Thus the proposed protocol is
simultaneously able to attain the zero blocking time and to
reduce the useless checkpoints to bare minimum, by
maintaining exact dependencies among processes and

International Journal of Computer& Organization Trends – Volume1Issue2- 2011

ISSN: 2249-2593 http://www.internationaljournalssrg.org Page 20

piggybacking checkpointing sequence number and
dependency vector on to the normal messages.

REFERENCES

[1] Cao G. and Singhal M., “On the Impossibility of Min-
process Non-blocking Checkpointing and an Efficient
Checkpointing Algorithm for Mobile Computing Systems,”
Proceedings of International Conference on Parallel
Processing, pp. 37-44, August 1998.

[2] Cao G. and Singhal M., “Mutable Checkpoints: A New
Checkpointing Approach for Mobile Computing systems,”
IEEE Transaction On Parallel and Distributed Systems, vol.
12, no. 2, pp. 157-172, February 2001.

[3] Koo R. and Toueg S., “Checkpointing and Roll-Back
Recovery for Distributed Systems,” IEEE Trans. on Software
Engineering, vol. 13, no. 1, pp. 23-31, January 1987.

[4] Parveen Kumar, Lalit Kumar, R K Chauhan, V K Gupta “A
Non-Intrusive Minimum Process Synchronous
Checkpointing Protocol for Mobile Distributed Systems”
Proceedings of IEEE ICPWC-2005, pp 491-95, January
2005.

[5] Prakash R. and Singhal M., “Low-Cost Checkpointing and
Failure Recovery in Mobile Computing Systems,” IEEE
Transaction On Parallel and Distributed Systems, vol. 7, no.
10, pp. 1035-1048, October1996.

[6] J.L. Kim, T. Park, “An efficient Protocol for checkpointing
Recovery in Distributed Systems,” IEEE Trans. Parallel and
Distributed Systems, pp. 955-960, Aug. 1993.

[7] L. Kumar, M. Misra, R.C. Joshi, “Low overhead optimal
checkpointing for mobile distributed systems” Proceedings.
19th IEEE International Conference on Data Engineering, pp
686 – 88, 2003.

[8] Murthy & Manoj, “Ad hoc Wireless Networks Architectures
and Protocols”, Pearson Education, 2004.

[9] D.J. Baker and A. Ephremides, “The Architectural
Organisation of a Mobile Radio Network via a Distributed
algorithm”, IEEE Trans. Commun., vol. 29, no. 11, pp 1694-
1701, Nov., 1981

[10] D.J. Baker, A. Ephremides and J.A. Flynn “The design and
Simulation of a Mobile Radio Network with Distributed
Control”, IEEE J. sel. Areas Commun.., pp 226-237, 1984

[11] B.Das, R. Sivakumar and V. Bharghavan, “Routing in Ad-
hoc networks using a Spine”,Proc. Sixth International
Conference, 1997.

[12] B.Das, R. Sivakumar and V. Bharghavan, “Routing in Ad-
hoc networks using Minimum connected Dominating
Sets”,Proc. IEEE International Conference, 1997.

[13] M.Gerla, G. Pei, and S.J. Lee, “Wireless Mobile Ad-hoc
Network Routing”, Proc. IEEE/ACM FOCUS’99, 1999.

[14] M. Singhal and N. Shivaratri, Advanced Concepts in
Operating Systems, New York, McGraw Hill, 1994.

