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1

1 Introduction

In recent years large progress has been made in the field of seamless and hands-free acoustic

human-machine interfaces, both, in basic research and in product-orientated development.

In this area much effort is dedicated to terminals providing multimedia or telecommuni-

cation services which have to be designed to operate in various different scenarios due to

the wide range of applications. These include, e.g., audio-/video-conferencing, hands-free

telecommunication using car-kits or bluetooth headsets, dictation systems, or public in-

formation systems. In such applications the digital signal processing algorithms aim at

the estimation of one desired source signal which may be superimposed by several inter-

fering point sources such as competing speakers and possibly also by diffuse background

noise such as car noise or speech babble in crowded environments. Additionally, as people

want to be untethered and move freely, no close-talking microphones can be used. Thus,

in environments with rigid walls also reflections of the desired and interfering signals are

picked up which significantly complicate the problem of desired source signal recovery.

Until a few years ago, most acoustic human-machine interfaces offered only one micro-

phone for audio signal acquisition which restricted the approaches to retrieve the desired

source signal to single-channel algorithms such as [Bol79, EM84]. Even now, this topic

continues to be an important research field as can be seen, e.g., in [BMC05, Sri05]. How-

ever, nowadays due to cheaper hardware costs, manufacturers also start to accommodate

additional microphones in their products and thus, allow the applicability of multi-channel

signal processing algorithms. Examples of products using microphone arrays can be found

in several fields such as hands-free communication in cars [Per02], bluetooth headsets for

cell phones [VTDM06, Bra07], arrays integrated in multimedia laptops [Mic05], or digital

hearing aids [HCE+05].

Moving to more than one sensor allows, in addition to the temporal filtering, also

spatial filtering of the acquired signals. This new degree of freedom is exploited by the

traditional multi-channel or so-called array signal processing approaches which have origi-

nally been developed for narrowband signals as encountered in radar or sonar applications

[JD93, Hay02]. Already several decades ago there have been attempts to apply these

methods also to broadband signals such as speech. Since then, the area has matured

and there are several methods available to enhance a desired acoustic signal corrupted

by noise [BW01, Her05]. Typically, these so-called beamforming approaches assume that

the positions of the sensors, i.e., the array geometry is known and try to add the de-

sired signal coherently while the interfering signals are added incoherently. Thus, these
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algorithms assume a single desired source whose position has to be known a-priori, or

has to be estimated by an appropriate source localization algorithm. By applying linear

adaptive filtering algorithms based on mean-square error minimization also a tracking of

time-variant desired and interfering source positions is possible.

In several applications approaches are desirable where the aim is not only the esti-

mation of a single desired source but the extraction and separation of several acoustic

sources. One example are smart meeting rooms which are equipped with several micro-

phones and cameras allowing for audio-/video-conferencing [Moo02]. The possibility to

record a meeting allows post-processing such as speaker indexing and meeting transcrip-

tion using automatic speech recognition, making it easier for people who miss a meeting

to access relevant information [CRG+02]. As all participants are “desired signals”, all

speech signals have to be retrieved and for possibly overlapping speech segments speech

separation techniques would be required. Another field for which it is desirable to sep-

arate several acoustic sources instead of extracting one desired source are surveillance

applications. Additionally, in such scenarios the positions of the desired sources may be

unknown so that approaches relying on less a-priori knowledge are desirable. Moreover,

the array geometry may not always be known, e.g., if table-top microphones are used

inside a meeting room. Another application where only inaccurate information about the

sensor positions is available are digital hearing aids aiming at binaural processing of the

data [PKRH04, ABZK07].

A possible solution to such problems are blind source separation (BSS) methods which

do not require any information about the source and sensor positions. This lack of a-priori

knowledge is compensated by exploiting not only the second-order statistical properties

of the sensor signals as in linear adaptive filtering algorithms based on mean-square error

minimization, but to process the observed signals based on their information content

using information theoretic signal processing techniques. The underlying assumption for

BSS which allows this point of view is that the source signals are mutually independent.

By developing optimization criteria based on statistical descriptors such as entropy or

measures determining the similarity of probability distributions, higher-order statistics

can be incorporated into the adaptation algorithms. Additionally, also other source signal

characteristics such as nonstationarity or nonwhiteness can be exploited. It was pointed

out in a recent tutorial article [EP06] that this concept of applying information theoretic

criteria to adaptive signal processing also yields improved results in related fields such as

feature extraction, clustering, or system identification where up to now mean-square error

approaches inherently based on second-order statistics are prevalent.

The concept of BSS can be traced back to the early 80’s and since the early 90’s it

received an increasing interest in the signal processing community [JT00]. Most research

was dealing with delayless superposition of the source signals and only since the mid 90’s

mixing systems accounting for reflections as encountered in acoustics have been considered
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[Tor99]. Since then a vast amount of literature has been published on BSS in noiseless

acoustic environments.

In contrast to most literature, we will address in this thesis convolutive blind source

separation in the context of acoustic signals in both, reverberant and noisy environments.

The main contribution of this thesis is twofold: First, it will be shown how the infor-

mation theoretic criterion mutual information can be used to formulate a novel BSS

optimization criterion for the first time exploiting all three signal properties nongaussian-

ity, nonwhiteness, and nonstationarity. Based on this criterion a generic BSS framework

will be presented. The benefit of the proposed framework is the unifying view on BSS al-

gorithms. This allows to see on which approximations current state-of-the-art algorithms

are based on and suggests new research directions to obtain novel algorithms based on less

assumptions or more accurate approximations. Based on this point of view, several novel

and efficient algorithms are derived and relationships to popular algorithms from the BSS

literature are established. The second main contribution of this thesis is the presentation

of several pre- and post-processing techniques to ensure noise-robust adaptation of these

BSS algorithms for applying them in environments with high background noise. There, it

will be shown how these extensions achieve a simultaneous suppression of the background

noise in addition to the separation of the point sources.

The work presented in this thesis is structured as follows: In Chapter 2 we introduce

the BSS model. After briefly describing the simplest case given by the instantaneous BSS

model, we focus on the convolutive BSS model which can accommodate the fact that in

acoustic environments also reflections of the original source signals are picked up by the

sensors. Subsequently, the relationship of the BSS model to the fundamentals of acoustics

is discussed. Then, the source signal properties which may be utilized in BSS approaches

are examined and the ambiguities which arise due to the blindness of the BSS methods

are addressed.

Based on the convolutive BSS model, a generic framework for BSS in reverberant

environments is introduced in Chapter 3. First, the optimum solution for BSS and its

consequences are discussed. Based on the distinction between broadband and narrowband

optimization the BSS framework is introduced by the formulation of a generic broadband

time-domain optimization criterion. A generic gradient-based algorithm is derived and

several efficient novel and well-known algorithms are obtained by introducing certain ap-

proximations. Additionally, it is shown how broadband algorithms can be derived in the

discrete Fourier transform (DFT) domain. These broadband algorithms behave equiva-

lently to their time-domain counterparts and thus, do not exhibit the BSS ambiguities

independently in each DFT bin as typical for narrowband algorithms. Moreover, by intro-

ducing selective approximations also efficient hybrid and purely narrowband algorithms

can be derived. After addressing the different update strategies, experimental results

in several reverberant rooms are given for the various BSS algorithms which have been
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derived in Chapter 3.

In addition to the interfering point sources, in Chapter 4 also background noise is con-

sidered. Due to the diffuse sound field characteristics of several realistic noise types such

as car noise or speech babble, the convolutive BSS model describing the superposition of

several point sources cannot address the separation of the desired sources from the back-

ground noise. Therefore, several extensions to the generic BSS framework are discussed

in Chapter 4. First several pre-processing methods are examined which allow a noise-

robust adaptation of the BSS algorithms. Subsequently, post-processing approaches are

investigated where single-channel postfilters are applied to each BSS output. Due to the

background noise, the performance of BSS algorithms decreases so that the postfilter has

to address both, the suppression of residual crosstalk from point source interferers and the

reduction of background noise. Experimental results for both, pre- and post-processing

algorithms are given.

Finally, this thesis is summarized and concluded in Chapter 5. In addition suggestions

for future work are presented.

In the Appendices A and B mathematical operators are defined and several derivations

are treated in detail. Moreover, in Appendix C all acoustic environments used in the

experiments are described.
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2 Acoustic Blind Source Separation

Model

In blind source separation (BSS) a situation is considered where there are a number of

signals emitted by some physical sources. These sources could be, e.g., different brain

areas emitting electric signals or several speakers in the same room. Furthermore, it is

assumed that there are several sensors which are located at different positions. Therefore,

each sensor acquires a slightly different mixture of the original source signals. The goal

of blind source separation is to recover the original source signals from this set of sensor

signals. The term “blind” stresses the fact that the source signals and the mixing system

are assumed to be unknown. The fundamental assumption necessary for applying BSS

methods is that the original source signals are mutually statistically independent. In

reality this assumption holds for a variety of signals, such as multiple speakers. Therefore,

the problem of BSS refers to finding a demixing system whose outputs are statistically

independent.

In the following we will first describe the different mixing models which are encoun-

tered in various applications. We will especially focus on the convolutive mixing system

to model acoustic environments. Subsequently, the relationship between the convolutive

model and the fundamentals of room acoustics is discussed. Furthermore, the source sig-

nal characteristics with respect to audio signals are examined and their possible utilization

for BSS algorithms is explained. In the end of this chapter an overview of objective perfor-

mance measures, which are useful in assessing BSS algorithms with respect to separation

performance and signal quality, is given.

2.1 Instantaneous mixing model

The simplest BSS case deals with an instantaneous mixing model where no delayed ver-

sions of the source signals appear. It can be described as a set of observations xp(n),

p = 1, . . . , P , which are generated as a linear mixture of independent components sq(n),

q = 1, . . . , Q, by

xp(n) =

P∑

q=1

hqpsq(n) + np(n), (2.1)
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where hqp denote the scalar weights from each source to each sensor, np(n) is a possible

noise contribution at each sensor and n is the discrete-time index. In this instantaneous

BSS case we are interested in finding a corresponding demixing system with the weights

wpq, which recover estimates yq(n), q = 1, . . . , Q, of the original sources sq(n) from

yq(n) =

P∑

p=1

wpqxp(n). (2.2)

There are several applications where the instantaneous mixing model is applicable. E.g., in

brain science BSS helps to identify underlying components of brain activity from record-

ings of brain activity as given by an electroencephalogram (EEG) (e.g., [CA02]) or in

econometrics where BSS is used to find hidden factors from parallel financial time series

(e.g., [HKO01]). Other fields are the extraction of independent features in image process-

ing and improving the image quality, e.g., of astronomic observations (e.g., [Car03]). A

comprehensive treatment of the instantaneous BSS case and of the respective algorithms

can be found in [HKO01]. In this thesis we deal with BSS for acoustic environments and

thus, the instantaneous mixing model is not appropriate as no delayed versions of the

source signals are considered. Therefore, we will extend this model in the next section

and show its relationship to room acoustics.

2.2 Convolutive mixing model

Extending the instantaneous mixing model by considering also delayed versions of the

source signals sq(n) leads to a mixing system consisting of finite impulse response (FIR)

filters instead of scalars. An M-tap mixing system is thus described by

xp(n) =

Q∑

q=1

M−1∑

κ=0

hqp,κsq(n− κ) + np(n), (2.3)

where hqp,κ, κ = 0, . . . ,M − 1 denote the coefficients of the FIR filter model from the

q-th source to the p-th sensor. It should be noted that the source signals are assumed

to be point sources so that the signal paths can be modeled as FIR filters. In addition

to the source signals a noise signal np(n) may be picked up by each sensor. Similar to

instantaneous BSS, we are interested in finding a corresponding demixing system whose

output signals yq(n) are described by

yq(n) =

P∑

p=1

L−1∑

κ=0

wpq,κxp(n− κ). (2.4)

The parameter L denotes the FIR filter length of the demixing filters wpq,κ. The convo-

lutive mixing model together with the demixing system is depicted as a block diagram
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yQ

mixing system demixing system

Figure 2.1: Convolutive MIMO model for BSS.

in Fig. 2.1. From this it is obvious that BSS can be classified as a blind multiple-input

multiple-output (MIMO) technique.

Most commonly, BSS algorithms are developed under the assumption that the number

Q of simultaneously active source signals sq(n) equals the number P of sensor signals xp(n).

However, with the use of suitable techniques, the more general scenario with an arbitrary

number of sources and sensors can always be reduced to the standard BSS model. The

case that the sensors outnumber the sources is termed overdetermined BSS (P > Q).

The main approach to simplify the separation problem in this case is to apply principle

component analysis (PCA) [HKO01], to perform dimension reduction by extracting the

first P components and then use standard BSS algorithms. The significantly more difficult

case P < Q is called underdetermined BSS or BSS with overcomplete bases. Mostly

the sparseness of the sources in the time-frequency domain is used to determine clusters

which correspond to the separated sources (e.g., [ZP01, Bof03, YR04]). Several researchers

proposed methods to estimate the sparseness of the sources based on modeling the human

auditory system and then subsequently applied time-frequency masking to separate the

sources. This research field is termed computational auditory scene analysis (CASA) and

a recent overview on the state-of-the-art can be found, e.g., in [Div05, WB06, BW05].

Another approach to the underdetermined case is to exploit the sparseness to eliminate

only Q− P sources and then apply again standard BSS algorithms [AMB+03].

Throughout this thesis, we therefore regard the standard BSS model where the number

Q of potentially simultaneously active source signals sq(n) is equal to the number of sensor

signals xp(n), i.e., Q ≤ P . It should be noted that in contrast to other BSS algorithms

we do not assume prior knowledge about the exact number of active sources. Thus,

even if the algorithms will be derived for the case Q = P , the number of simultaneously

active sources may change throughout the application of the BSS algorithm and only the
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condition Q ≤ P has to be fulfilled.

The main focus of this thesis is on BSS for acoustic applications for which the convolu-

tive model is appropriate. The shape of the filters hqp,κ of the mixing system determines

the type of acoustic environment. This relationship will be discussed in the following

sections and the connection to the fundamentals of room acoustics will be made. More-

over, it should be pointed out that convolutive mixtures can also be used, e.g., to model

transmission paths in wireless communication scenarios (e.g., [HKO01, CA02]) and more

recently they have been applied in brain science to the analysis of magnetoencephalogra-

phy (MEG) signals [ASM03, DMH06].

2.2.1 Point sources in free-field environments

In principle any complex sound field can be considered as a superposition of numer-

ous simple sound waves. The propagation of such sound waves in any homogeneous,

dispersion-free, and lossless medium is governed by a differential equation called the wave

equation. Homogeneity assures a constant propagation speed throughout space and time.

Dispersion occurs in non-linear media, where the interaction with the medium depends

on the amplitude and on the spectral content of the wave. A medium is lossless if the

medium does not influence the amplitude attenuation of the propagating wave. Under

these assumptions the wave equation is obtained by connecting the various acoustical

quantities by a number of basic laws which finally yield [Pie91, Kut00]

∇2p(~r, t) =
1

c2
∂2p(~r, t)

∂t2
. (2.5)

The sound pressure p(~r, t) measures the difference between the instantaneous pressure

and the static pressure. These gas pressure variations occur under the influence of the

sound wave and can be described as a function of the position of observation denoted by

the vector 1 ~r and time t. The operator ∇2 is the Laplacian sum of the second derivatives

with respect to the three cartesian coordinates, i.e., the divergence of the gradient. The

sound velocity c is given for dry air approximately as [Pie91]

c ≈ 331
m

s
+ 0.6TC

m

s ◦C
, (2.6)

where TC denotes the temperature in degrees Celsius and the sound velocity is given in

meters per second. In this thesis we will assume a constant sound velocity of c = 340 m/s.

The mathematically simplest case considers sound propagation in a homogeneous loss-

less medium which is at rest and unbounded in all directions, i.e., the effects of any ob-

stacles such as walls are neglected. Such a scenario is also termed free-field environment.

1Vectors describing directional quantities defined in a coordinate system using a certain metric are

denoted as “physical” vectors by an arrow. A vector describing the concatenation of N elements to a

general N -tuple is denoted in bold lower case.
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In the following, two solutions of the wave equation for a monochromatic wave, i.e., one

single harmonic with frequency ω are presented for the free-field environment. Due to the

linearity of the wave equation, the principle of superposition holds. For the BSS scenario

this is important as there are up to P simultaneously active sources. Moreover, more

complicated wave fields, such as the propagation of wideband sources can be expressed

as the Fourier integrals with respect to the temporal frequency ω [Pie91].

Monochromatic plane wave

One solution of the wave equation is the plane wave which describes a sound field where all

acoustical quantities depend only on the time t and on one single direction. The general

solution consists of waves moving in positive and negative directions, respectively, with

speed c. If we assume that there is just one wave traveling away from the acoustic source

then the solution of the wave equation is given for a monochromatic signal as

p(~r, t) = p̂ cos(ωt− ~kT~r), (2.7)

where (·)T denotes the transpose of a matrix or a vector. The plane wave exhibits a

constant amplitude p̂ and propagates in the direction determined by the wavenumber

vector ~k. The magnitude of ~k represents the number of cycles in radians per meter of

length in the direction of propagation. The wavenumber magnitude |~k| = 2π
λ0

can thus

be interpreted as the spatial frequency variable corresponding to the temporal frequency

variable ω = 2π
T

. Here, T determines the cycle duration and λ0 is the wavelength2. The

relation between temporal frequency ω and wavenumber magnitude |~k| is given as

|~k| =
ω

c
. (2.8)

For a plane wave the points of equal amplitude are lying on planes which are defined by
~kT~p = a, where a is a constant.

Acoustic sound fields can be described in reality by using a statistical model [Her05].

Therefore, a microphone at position ~r captures a sample function (realization) of the

random process3. The realization is given for the plane wave sound field and the discrete-

time case as

x(n) = p̂ cos(ωnTs − ~kT~r) (2.9)

with n being the discrete-time index and Ts denoting the temporal sampling period.

2It should be noted that the subscript in the definition of the wavelength λ0 is used to avoid inconsis-

tencies in the notation because λ will later denote the forgetting factor.
3All signals considered in this thesis are considered to be realizations of random processes. In some

instances where the underlying random processes are required this will explicitly be pointed out.
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Monochromatic spherical wave

Another common sound field is a spherically symmetric wave spreading out from a source

in an unbounded, fluid or gaseous medium. The source is considered to be centered at

the origin and to have perfect spherical symmetry insofar as the excitation of sound is

concerned. Moreover, if only the waves moving away from the source are considered, then

the solution of the wave equation for a monochromatic signal is given as

p(~r, t) =
p̂

|~r| cos(ωt− |~k||~r|). (2.10)

The wave fronts are spheres concentric to the spatial origin and, in contrast to a plane

wave, the amplitude of the monochromatic spherical wave decreases hyperbolically with

the distance of the observation, i.e., the radius |~r|. Generally the radiation of point sources

is modeled by spherical waves if the circumference of the source is small compared to the

wavelength and if the positions of observation are close to the source. The area close to the

point source is often termed near field because the wave front of the propagating wave is

perceptively curved with respect to the distance between the positions of the observations.

Provided the distance |~r| from the center is large compared with the wavelength λ, i.e.,

|~k||~r| ≫ 1, then the wave field of point sources can be approximated by plane waves due

to the decreasing curvature of the wave front. This is termed far field approximation and

is shown in Fig. 2.2. The transition between the near field and far field of a point source

depends on the maximum distance dmax between the observation positions. In literature

(e.g., [Sko70, Teu05]) the minimum distance where the near field can be approximated

by the far field is usually defined by the maximum tolerable phase error of 22.5◦ which

is introduced by the far field approximation. Using this definition the far field can be

assumed for

|~r| > 2d2
max

λ0
. (2.11)

Similarly to the sound field of a plane wave, the discrete-time sample function cap-

tured by the microphone at the distance |~r| from the point source can be written for the

monochromatic spherical wave as

x(n) =
p̂

|~r| cos(ωnTs − |~k||~r|). (2.12)

BSS mixing system for free-field environments

In the convolutive BSS model depicted in Fig. 2.1 the mixing system is described by FIR

filters hqp,κ from each source sq, q = 1, . . . , P to each sensor xp, p = 1, . . . , P . As shown

above, the sound propagation of a point source in the near field can be described by a

spherical wave and in the far field it can be approximated by a plane wave. This results

for each source sq in an FIR filter model hqp,κ consisting simply of a delay and attenuation
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factor. The delay is determined by the distance |~rqp| between the q-th source and the p-th

microphone. The delay in samples is given as ∆k = |~rqp|·fs

c
where fs denotes the sampling

frequency. If the delay is not an integer value, then fractional delays have to be considered

as discussed in [LVKL96]. Moreover, the unit impulse is attenuated by the distance |~rqp|
between q-th source and p-th microphone. In BSS applications not the absolute delay but

d

x1

x2

θ

|∆~r|

Planar wavefront
(Far field approximation)

Spherical wavefront
(Near field model)

Point source sq

Figure 2.2: Far field and near field model.

the relative delay between different sensors is important. For two microphones x1 and x2

in the near field of the point source the relative delay can be determined using the distance

difference |∆~r| = |~rq1| − |~rq2|. For the far field we can approximate the spherical waves

by plane waves and thus the distance difference can be calculated by |∆~r| = d · sin(θ),

where θ denotes the incident angle of the point source and d is the distance between the

microphones (see Fig. 2.2).

Early works on BSS for acoustic signals have considered free-field environments. This

was also termed BSS for delayed mixtures (see, e.g., [Tor96b, JRY00]).

2.2.2 Point sources in reverberant environments

The free-field model is often not appropriate in realistic environments because reverbera-

tion is encountered. Reverberation is caused by the fact that acoustic waves are reflected

by room walls and other objects present in the room such that the signals recorded by the

microphone array consist of a direct signal path and multiple delayed and attenuated ver-

sions. In general, due to the superposition principle even reverberant sound fields can be

described by the wave equation. However, for complicated room geometries this requires

considerable effort and may not be practical anymore. Therefore, we will present in the
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following several variables for characterizing the reverberation. First, a global characteri-

zation of the room by a single parameter termed reverberation time is examined and then

the notation of acoustic impulse responses, which can be measured experimentally and

can be used to determine the mixing system of the BSS model in reverberant environ-

ments, are introduced. To describe the effect of the positioning of the point source and of

the microphones on the perceived reverberation, several variables have been introduced

in the literature and will be discussed.

Reverberation time

The reverberation is determined by the decay of the sound energy. Ideally, after switching

off the sound source, the sound energy E decays exponentially according to [Sab22]

E(t) = E0 exp

(
A c ln(1 − ᾱab)

4V
t

)
, (2.13)

where E0 is the initial energy, A is the area of all walls of the rooms, V is the volume of

the room, and c is the velocity of sound. The average ᾱab of the individual absorption

coefficients αab,i for the i-th wall is given as

ᾱab =
1

A

∑

i

Aiαab,i, (2.14)

where Ai is the area of the i-th wall. The characteristic time constant in (2.13) is called

reverberation time T60 and is a global characterization parameter of a reverberant room.

The reverberation time was first defined in [Sab22] as the time needed for the sound

pressure level to decay to −60 dB of its original value E0. From this definition together

with (2.13) a formula to determine the reverberation time T60 in seconds was derived by

Eyring in [Eyr30] and is given as

T60 = − 24 ln(10) V

A c ln(1 − ᾱab)
. (2.15)

For small absorption coefficients αab,i the natural logarithm can be linearized and thus

the formula for the reverberation time according to Sabine [Sab22] is obtained

T60 =
24 ln(10) V

c
∑

iAiαab,i
. (2.16)

More advanced formulae for calculating the reverberation time have been described in

[Neu01]. For office rooms, typical values for the reverberation time are in the order of

200-500ms, whereas for a car T60 is typically smaller than 100ms and T60 for a church or

concert hall can be several seconds. It should also be noted that the reverberation time

is frequency-dependent due to frequency-dependent absorption coefficients and decreases

for higher frequencies. The reverberation time can also be determined experimentally

which will be shown later in this section.
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Acoustic impulse responses

The reverberant environment can be globally characterized using the reverberation time

determined by the exponential decay of the sound energy. However, in reality only late

reflections can be considered to decay according to (2.13). Therefore, for a more detailed

investigation including also the early reflections, it is of interest to describe the acoustic

path between two points (e.g. a point source and a microphone). The acoustic path can be

modeled by a linear transfer function due to the linearity of the acoustic wave propagation.

This model is in most cases well-justified even if in real-life additional phenomena occur,

such as, e.g., diffraction or non-linear absorption [Cro98]. Since the positions of sources

are not necessarily fixed, acoustic paths are generally time-varying.

In simulations the acoustic impulse responses are usually modeled using FIR filters.

For rectangular enclosures they can be generated by the image method [AB79] which has

been extended for microphone arrays in [Pet86]. The image method is an elegant and

widely used method. Instead of tracing all reflections, mirror images of the sound source

with respect to the room boundaries are created. From each image source, a direct path is

traced towards the receiving microphone allowing for accurate modeling of the reflections.

In [Bor84] the image model has been extended to arbitrary polyhedra. Nevertheless, for

difficult room geometries such as the passenger compartment of a car a generation of the

impulse responses by the image method is not feasible. In such cases the impulse responses

can be measured by a loudspeaker-microphone system. The loudspeaker is placed at the

source position and emits a white pseudo-random signal, e.g., maximum-length sequences

[Sch79, RV89] to excite the room with equal power at all frequencies. The pseudo-random

signal is picked up by the microphone and subsequently the acoustic impulse response can

be calculated by a cross-correlation of the captured signal with the original sequence. In

this thesis all experiments have been conducted with impulse responses measured by using

this approach.

Two typical impulse responses are shown in Fig. 2.3 which were measured (a) in a

reverberant room with dimensions 5.8 m × 5.9 m × 3.1 m where the speaker was located

2 m from the microphone and (b) in a car with the speaker at the driver seat and the

microphone mounted at the interior mirror. The sampling frequency was fs = 16 kHz.

Acoustic impulse responses consist typically of five parts [Mar95]. The first is called

dead time, i.e., the time needed for the acoustic wave to propagate from the source to

the microphone along the shortest direct acoustic path. The second period contains the

direct path and the first set of early reflections. This period is characterized by single

non-overlapping impulses which are caused by dominant reflections. This can be observed

especially for the reverberant room in Fig. 2.3a where the first reflections from the room

boundaries are clearly visible. The third phase is termed early reverberation and contains

numerous overlapping reflections. The fourth phase is called late reverberation where the

reverberation energy decays exponentially according to (2.13). Finally, in the fifth stage
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Figure 2.3: Measured impulse responses consisting of five parts. I: dead time, II: direct path

and early reflections III: early reverberation, IV: late reverberation, V: measurement noise.

the decay of the reverberation energy is buried under the constant noise level which is

present in all stages and is determined by the measurement hardware.

Instead of calculating the reverberation time T60 according to (2.15) or (2.16) we can

also estimate T60 from a measured acoustic impulse response. The energy decay curve

can be calculated by integrating or, in the discrete-time case, by summing the squared

impulse response over time according to [Sch65]

Edecay(n) =
∞∑

κ=n

h2(κ). (2.17)

In Fig. 2.4 the corresponding energy decay curve of the acoustic impulse response mea-

sured in the car (Fig 2.3b) is shown. In real measurements it is often difficult to obtain

a decay of the energy of 60 dB. Thus, standardized methods recommend to extrapolate

the segment between -5 dB and -35 dB of the measured reverberation decay to 60 dB by

linear least-squares regression [ISO97]. If a 30 dB decay range cannot be measured then

a 20 dB range can be used. In Fig. 2.4 this extrapolation is indicated by the dashed line

yielding a reverberation time of T60 ≈ 50ms.
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Figure 2.4: Energy decay curve of the acoustic impulse response measured in the car.

Definition D50, clarity index C80, and signal-to-reverberation ratio

The reverberation time T60 is considered as the most important objective quantity in

room acoustics as it can be easily measured and as it does not significantly depend on the

observer’s position in the room. However, the reverberation time would only give a full

description of the listening conditions in a room if the sound decay obeys strictly to the

exponential law given in (2.13). However, especially the early reflections vary from one

observation point to the other and hence, the exponential law is a crude approximation

for early portions of an impulse response. Thus, for a full description of the prevailing

listening conditions the reverberation time has to be supplemented by additional parame-

ters [Kut00]. E.g., an important quantity is the critical delay time which separates useful

from detrimental reflections, and which is in the range from 50ms to 100ms. This range is

spanned by the different types of source signals as, e.g., if the sound signal is music instead

of speech, our hearing is generally much less sensitive to reflections. For these reasons,

objective criteria are necessary, which relate the reverberation at a certain position in a

room with speech intelligibility or subjective sound perception.

Based on the impulse response hqp,κ between a source sq and a microphone xp, a

measure called “definition” D50 was introduced which is defined as

D50 =

∑n50

κ=0 h
2
qp,κ∑M−1

κ=0 h2
qp,κ

· 100%, (2.18)
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where n50 is the discrete-time index corresponding to 50ms denoting the critical delay time

for speech signals. In [Kut00] it was argued that there is a good correlation between D50

and the speech intelligibility (e.g., D50 = 50% corresponds to 90 % speech intelligiblity).

For music signals a similar quantity exists, which is widely accepted for a charac-

terization of the transparency of music in concert halls and is termed clarity index C80.

There, the critical delay time of 80ms is chosen higher compared to speech. According to

[RAS75] it is defined for a impulse response hqp,κ of length M between a source sq and a

microphone xp as

C80 = 10 lg

∑n80

κ=0 h
2
qp,κ∑M−1

κ=n80
h2

qp,κ

dB, (2.19)

where n80 is the discrete-time index corresponding to 80ms.

In addition to the previous two quantities D50 and C80, which were defined in the

context of room acoustics, another criterion measuring the ratio between direct sound and

reverberation is the signal-to-reverberation ratio (SRR). In contrast to D50 and C80, the

SRR is a signal-dependent quantity and it is usually used in the signal processing literature

for the evaluation of dereverberation approaches (see, e.g., [NG05]). It is measured in

decibel (dB) and is defined for a signal sq at a sensor xp as

SRRp,sq
= 10 lg

∑
n (
∑n50

κ=0 hqp,κsq(n− κ))
2

∑
n

(∑M−1
κ=n50

hqp,κsq(n− κ)
)2 . (2.20)

It should be noted that in contrast to (2.20), in some literature the SRR is defined as the

ratio of the direct signal path and the delayed signal paths, i.e., the critical delay time

n50 is replaced by the discrete-time index of the direct signal path. However, this neglects

the fact that the first reflections are considered as useful. Hence we will use the definition

in (2.20) which accounts for these perceptual effects and we will use the SRR later to

characterize the environments and setups used for the evaluation of the influence of the

reverberation time and the source-sensor distance on the BSS algorithms in Section 3.6.6.

Critical distance rh

As pointed out in the previous paragraph, the location of point source and microphone

influences the shape of the early reflections and is thus important for the speech intelligi-

bility and for the subjective quality of music signals.

Another quantity which is frequently used in room acoustics is describing the ratio

of direct sound and reverberation and is called the critical distance. It is based on the

fact that if we consider point sources in reverberant environments, then the sound at

the listening position is composed of the direct sound from the source described by a

spherical wave and the reverberant sound, which approximately constant in the room.

The direct sound pressure level decreases inversely to the distance from the source as
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described in Section 2.2.1 and will equal the reverberant sound pressure at a distance

rh. This equilibrium of direct and reverberant sound level is called critical distance or

reverberation distance and is calculated as

rh =

√
ᾱabA

16π
≈ 0.1m

√
V/m3

πT60/s
. (2.21)

The second term in (2.21) is an approximation which is obtained by expressing ᾱab using

(2.14) and then inserting the formula for the reverberation time (2.16). Within the critical

distance the direct sound from the point source dominates and outside the critical distance

the reverberant sound field generated by the reflections from the walls prevails.

Many sound sources have a certain directivity which can be characterized by their

directivity factor γs [Kut00] which is defined as the ratio of the maximum sound intensity

and the sound intensity averaged over all directions. Then the maximum critical distance

is increased and is given as

rh =

√
γsᾱabA

16π
≈ 0.1m

√
γsV/m3

πT60/s
. (2.22)

In [Mar95] the directivity factor for a human speaker has been estimated as γs ≈ 1.44

leading to an increase of the critical distance by a factor of 1.2 compared to a monopole

emitting an isotropic sound field. Moreover, if directional microphones targeting at the

point source are used instead of omnidirectional microphones, then the critical distance

is further increased by the directivity factor γx of the sensor yielding

rh =

√
γsγxᾱabA

16π
≈ 0.1m

√
γsγxV/m3

πT60/s
. (2.23)

Using a hypercardiod microphone exhibiting a directivity factor γx = 4 therefore doubles

the critical distance [ZZ98]. Moreover, it should be noted that both, the directivity factor

of the source and of the sensor are usually frequency-dependent.

The critical distance of a human speaker captured by an omnidirectional microphone

in a reverberant room as described in Appendix C.2 with the dimensions (5.8 m×5.9 m×
3.14 m) and reverberation time T60 = 200 ms can be determined according to (2.22)

as rh = 1.6 m. For comparison, the critical distance in a car with an estimate of the

acoustically relevant volume of V = 1.3 m3 and a measured reverberation time of T60 =

50 ms leads to a critical distance of rh = 0.35 m [Mar95]. Thus, it can be seen that

in realistic environments the area where the direct sound outweighs the reflected sound

is very small and therefore, in many applications requiring audio signal capture, the

desired source is located outside the critical distance. This shows that the adaptive BSS

algorithms considered in this thesis need to explicitly take into account the reverberation

by using the convolutive model (2.3), to be applicable to realistic environments.
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2.2.3 Diffuse sound fields

In addition to point sources, in real-world scenarios also background noise may be present

which often can be modeled as a diffuse sound field. In an ideally diffuse sound field the

intensities of the incident sound are uniformly distributed over all possible directions. The

phase relations between the sound waves are neglected as the phases of the sound waves

are assumed to be uniformly distributed between 0 and 2π. Moreover, the average energy

is the same at each point of the enclosure. The resulting 3-dimensional isotropic sound

field is termed diffuse sound field [Kut00]. It can be modeled as the sound field created

by statistically independent point sources which are uniformly distributed on a sphere

and whose phases φ(ϕ, θ) are uniformly distributed between 0 and 2π. The angles ϕ and

θ describe the direction of the point source. If the radius of the sphere is r → ∞, then

the propagating waves from each point source picked up be the microphones xp can be

assumed to be plane waves. In Fig. 2.5 the diffuse sound field model is depicted where dÃ

x

y

z

θ

ϕ

dÃ

x1

x2

Figure 2.5: Diffuse sound field model.

denotes the area element of one point source. As shown in the next section, such diffuse

sound fields can be described very well by the coherence function.

In realistic scenarios, the diffuse sound field is often used to model reverberation

[Kut00]. As pointed out above, the assumption which allows this contemplation is that

the direct sound and the reflections are assumed to be mutually incoherent, i.e., the phase

relations between the sound waves are neglected and thus, a superposition of the sound

waves only results in a summation of the sound intensities. However, the convolutive BSS

mixing model accounts for the phase relations by the FIR filters describing the acoustic

impulse responses. Also the demixing BSS system uses FIR filters of length L, so that
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only the reflections exceeding the time-delay covered by L filter taps can be considered

as being of diffuse nature. This case applies to highly reverberant environments such as,

e.g., lecture rooms, or train stations. Additionally, independent of the reverberation time,

diffuse sound fields occur if an infinite number of statistically independent and spatially

distributed sound sources are active. This case is more relevant for this thesis as this allows

to model background noise such as speech babble noise in a cafeteria, which is generated

by a large number of background speakers, by the diffuse sound field. Moreover, it will be

shown in Section 2.2.4.3 that exterior noise recorded in the passenger compartment of a

car which is a superposition of many different sources such as, e.g., motor, wind, or street

noise also exhibit diffuse sound field characteristics.

In the convolutive BSS model depicted in Fig. 2.1 we assumed that the number of

simultaneously active point sources Q is equal to the number of sensors P . Due to the

limited number of point sources Q in the BSS scenario, we thus cannot model the diffuse

sound field by an infinite number of point sources. Therefore, they are included in the

BSS model in Fig. 2.1 as noise components np, p = 1, . . . , P which are additively mixed

to each microphone signal xp. For diffuse noise fields, the noise components np may be

correlated between the sensors as will be shown in the next section. Additionally, each np,

p = 1, . . . , P may also contain sensor noise which is usually assumed independent across

the different sensors.

2.2.4 Characterizing sound fields by the magnitude squared co-

herence function

The previous sections described different sound fields that are encountered in applications

of BSS algorithms to acoustic environments. An adequate quantity to classify the sound

field at the sensors is the magnitude-squared coherence (MSC) function |Γx1x2(ω)|2 [BP66,

Car87]. With respect to Chapter 4, where BSS algorithms capable of dealing with different

background noise fields will be investigated, we will in the following discuss the MSC and

its estimation. The estimation procedures for the MSC were thoroughly examined in

[Mar95] and we will briefly summarize the results presented in [Mar95] showing the effect

of several parameters on the MSC estimation.

For two stationary discrete-time random processes X1 and X2 together with their

realisations x1(n) and x2(n) the MSC is defined in the frequency domain using the discrete-

time Fourier transform (DTFT) as

|Γx1x2(ω)|2 =
|Sx1x2(ω)|2

Sx1x1(ω)Sx2x2(ω)
, (2.24)

where Sx1x2(ω) denotes the cross-power spectral density and Sx1x1(ω), Sx2x2(ω) are the

auto-power spectral densities. Thus, the MSC describes the correlation of the two signals
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x1(k) and x2(k) in the frequency domain. An important property of the MSC is that it

can only attain values between zero and one, i.e.,

0 ≤ |Γx1x2(ω)|2 ≤ 1. (2.25)

For |Γx1x2(ω)|2 = 0 the signals x1(n) and x2(n) are not correlated at the frequency ω. On

the contrary, if the MSC is close to one, then the two signals are highly correlated. In the

case that the two signals are related by a linear convolution or if the two input signals

are the same, i.e., x1 ≡ x2, then the MSC is given as |Γx1x2(ω)|2 = 1, ∀ ω.

The MSC between two signals is not affected by linearly convolving these signals with

arbitrary FIR filters. This can be seen by calculating the MSC |Γy1y2(ω)|2 of the random

processes Y1 and Y2 (whose realisations y1, y2 are obtained by the linear convolution

yq(n) =
∑M−1

κ=0 hq,κxq(n− κ), q = 1, 2) which is given as

|Γy1y2(ω)|2 =
|Sy1y2(ω)|2

Sy1y1(ω)Sy2y2(ω)

=
|H1(ω)Sx1x2(ω)H∗

2(ω)|2
|H1(ω)|2Sx1x1(ω)Sx2x2(ω)|H2(ω)|2

= |Γx1x2(ω)|2, (2.26)

where H1(ω) and H2(ω) denote the DTFT of the impulse responses h1(n) and h2(n),

respectively. This result shows that linear filtering does not affect the MSC.

2.2.4.1 Estimating the magnitude squared coherence function

Stationary and ergodic signals

The estimation of the MSC according to (2.24) based on the realisations x1, x2 of the

random processes X1, X2 requires the estimation of the power spectral densities Sx1x2(ω),

Sx1x1(ω), and Sx2x2(ω). A popular method to estimate power spectral densities for station-

ary and ergodic signals is the weighted overlapped-segment averaging technique sometimes

referred to as Welch’s method [Wel67]. There, the measured signals are decomposed into

K overlapping segments of length R which are weighted by a window function wf (n) and

then transformed by an R-point discrete Fourier transform (DFT) into the DFT domain.

The weighted DFT of the signal xp(n) at the frequency bin ν and at the time segment m

is given as

X(ν)
p (m) =

R−1∑

n=0

xp

(
m
R

α
+ n

)
wf(n)e−j 2πνn

R , (2.27)

where α denotes the overlap factor. In this thesis we use the convention that DFT-domain

quantities are marked by an underline. Using (2.27) the modified cross-periodogram
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between the signals xp(n) and xq(n) is obtained by

I(ν)
xpxq

(m) =
1

R · UX
(ν)
p (m)X(ν)∗

q (m)

=
1

R · U

(
R−1∑

n=0

xp

(
m
R

α
+ n

)
wf(n)e−j 2πνn

R

)

·
(

R−1∑

n=0

xq

(
m
R

α
+ n

)
wf(n)e−j 2πνn

R

)∗

. (2.28)

The factor R ·U normalizes the periodogram by the block length R and the energy of the

window function wf(n) given as

U =
1

R

R−1∑

n=0

w2
f(n). (2.29)

Outside the interval 0 ≤ n ≤ R− 1 the window function is equal to zero.

According to [Wel67] the estimate of the cross-power spectral density for the ν-th fre-

quency bin is obtained by an average of the modified cross-periodograms over K segments

S(ν)
xpxq

=
1

K

K−1∑

m=0

I(ν)
xpxq

(m). (2.30)

It is shown in [Wel67, OSB98] that for the overlap factor α = 1, i.e., no overlap, the

variance of S(ν)
xpxq

is inversely proportional to the number of periodograms averaged, and

as K increases, the variance approaches zero. Moreover, if R increases then also the

bias will approach zero and thus, the periodogram averaging provides an asymptotically

unbiased, consistent estimate of Sx1x2(ω). However, as is typical in statistical estimation

problems, for a fixed data length there is a trade-off between bias and variance. To reduce

the variance for a fixed data length, Welch considered overlapping segments and showed

that if the overlap is one-half the window length, i.e., α = 2, the variance is further

reduced by almost a factor of two due to the doubling of the number of sections. Greater

overlap does not continue to reduce the variance, because the segments become less and

less independent as the overlap increases. Therefore, in practice it is usual to apply a

Hamming or Hann window together with an overlap of successive blocks by 50%, i.e., the

overlap factor α = 2.

Based on the power-spectral density estimates we obtain an estimate of the magnitude-

squared coherence function for the ν-th frequency bin

|Γ(ν)
x1x2

|2 =
|S(ν)

x1x2
|2

S(ν)
x1x1

S(ν)
x2x2

. (2.31)

In [CKN73, Car87] the bias and variance of this estimate has been investigated. Their

empirical studies showed that the smallest bias and variance is obtained using an overlap
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of 62.5%. However, with regard to the computational complexity they recommended an

overlap of 50%.

In Section 2.2.4 it was shown in (2.26) that the MSC |Γx1x2(ω)|2 is not affected by an

arbitrary linear processing of the signals. In [Mar95, Bit01] the effect of linear transfor-

mations yq(n) =
∑M−1

κ=0 hq,κxq(n−κ) on the estimated MSC |Γ(ν)
x1x2

|2 has been investigated

for stationary and ergodic signals. Martin showed in [Mar95] that due to the windowing

function and the finite length of the DFT the estimated MSC |Γ(ν)
y1y2

|2 is not independent

of the filter transfer functions and thus, only yields an estimate of the MSC |Γ(ν)
x1x2

|2 of

the original signals x1 and x2 which is biased towards zero. This bias due to the impulse

responses h1,κ and h2,κ of length M is mitigated by using, e.g., a Hann window for the

window function wf (n). Moreover, it is desirable that the ratio R/M is large, i.e., an

observation interval R larger than the length M of the impulse response is chosen. This

aspect is important when estimating the MSC of point sources in an acoustic environment

as will be discussed in Section 2.2.4.2.

Nonstationary signals

The MSC estimate according to (2.31) is only defined for stationary signals. In acoustic

signal processing, however, we are usually dealing with short-term stationary signals such

as speech. For speech signals the period where stationarity can be assumed is only 5ms

to 20ms [RS78]. Thus, the estimation of the power-spectral densities should ideally be

performed in these short-term stationary periods. Usually a weighting function with an

exponential forgetting factor γ is used for the estimation leading to 4

S(ν)
xpxq

(m) = (1 − γ)

m∑

i=0

γm−iX(ν)
p (i)X(ν)∗

q (i). (2.32)

This average can be expressed equivalently by a first-order recursive system yielding an

estimate for the cross-power spectral density of the m-th block and the ν-th frequency

bin

S(ν)
xpxq

(m) = γS(ν)
xpxq

(m− 1) + (1 − γ)X(ν)
p (m)X(ν)∗

q (m). (2.33)

The forgetting factor γ determines both, the temporal resolution and similarly to the

parameter K in (2.30) also the variance of the estimate. The value of γ has to lie in the

range 0 ≤ γ < 1 and is usually chosen as a value close to one. A rule of thumb is that a

rectangular window with the length R = (1 + γ)/(1 − γ) yields approximately the same

estimate as the exponential window with forgetting factor γ. This has been proven for the

estimation of short-term stationary auto-regressive Gaussian processes in [Bor85]. Thus,

4Due to the averaging over several short-term stationary blocks of data, the estimate will still be

influenced by the nonstationarity of the signal. However, this is usually tolerated as the averaging

reduces the bias of the estimate.
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the MSC estimate for the m-th block and ν-th frequency bin is given as

|Γ(ν)
x1x2

(m)|2 =
|S(ν)

x1x2
(m)|2

S(ν)
x1x1

(m)S(ν)
x2x2

(m)
. (2.34)

After averaging over K individual blocks we obtain the long-term estimate of the MSC.

|Γ̄(ν)
x1x2

|2 =
1

K

K−1∑

i=0

|Γ(ν)
x1x2

(i)|2. (2.35)

2.2.4.2 Magnitude squared coherence of point sources

The magnitude squared coherence defined in (2.24) is given for a point source sq(n) as

|Γsqsq
(ω)| = 1. In (2.26) it was shown that when using the DTFT the MSC is not affected

by arbitrary filtering. However, it was pointed out in the previous section that a bias

towards zero is introduced by the impulse response hpq,κ of length M between the point

source sq(n) and the sensor xp(n) when estimating the MSC within finite time intervals by

using the DFT of length R. For the choice of the observation interval R one usually has

the two contradictory requirements that R should be less than or equal to the stationarity

interval but, to avoid a bias of the MSC towards zero, it should also be larger than the FIR

filter length M of the acoustic impulse responses. In realistic reverberant environments,

where M may be very large, the ratio R/M is usually less than 1, i.e., a bias of the

MSC cannot be avoided. Therefore, we will discuss in this section the MSC estimate of

the point source at the sensors x1(n), x2(n) and the resulting bias for point sources in

free-field and reverberant environments.

Point sources in free-field environments can be described by a spherical wave in the

near field and by plane wave propagation in the far field as pointed out in Section 2.2.1.

Therefore, the FIR filters hpq,κ modeling the propagation from the q-th source to the p-th

microphone contain only a delay and attenuation factor. In [Car87] the influence of the

relative delay between the two sensor signals x1(n) and x2(n) on the MSC estimate was

studied for stationary signals. It was pointed out that due to the estimation using Welch’s

method and a rectangular window function the magnitude of the MSC is degraded in the

mean by a constant factor which depends on the ratio of the relative delay τ between the

observed signals and the DFT length R

E{|Γ(ν)
x1x2

|2} ≈
(

1 − |τ |
R

)2

|Γx1x2(ω)|2. (2.36)

This decrease of the MSC due to the delay τ and the finite DFT length R can also be

observed for nonstationary signals such as speech. Fig. 2.6 shows the long-term estimate

of the MSC (2.35) for a speech signal of length 20 sec obtained by using the recursive

averaging procedure (2.33) with γ = 0.9, α = 2, and choosing the Hann window for
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Figure 2.6: Estimate of MSC for a speech source in a free-field environment with different sensor

spacing d.

wf(n). A free-field was assumed with the source located in the far field coming from a

direction of θ = 70◦ and with the sampling frequency fs = 16 kHz. The sensor spacing d

was varied from 0.1m to 2m. It can be seen that due to the finite DFT length R = 512

the delay between the two sensor signals introduces a bias towards zero for the MSC

estimate. According to (2.36) the bias increases for larger sensor spacings as the relative

time delay τ between the sensors increases which is confirmed by the experimental results

obtained in Fig. 2.6.

For point sources in reverberant environments the bias of the MSC estimate depends

on the power ratio between direct sound and reverberation. In [Mar95] it was pointed

out that for a DFT length R smaller than the length M of the acoustic impulse responses

the bias of the MSC |Γ̄(ν)
x1x2

|2 for a source sq depends on the correlation of the acoustic

impulse responses from source sq to the sensors x1 and x2. For large correlation (i.e.,

strong direct path) the MSC is large and for small correlation (i.e., weak direct path and

large reverberation) the MSC becomes small. In Fig. 2.7 the influence of the reverberation

time on the bias of the long-term estimate of the MSC is shown. The long-term estimate

of the MSC is obtained using (2.35) and (2.33) choosing R = 512, γ = 0.9, α = 2,

and a sensor spacing of d = 20 cm. The speech source was located at θ = 0◦ and 2m
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Figure 2.7: Estimate of MSC for a speech source at a distance of 2 m from the sensors in a

reverberant environment with different reverberation times T60.

distance to the sensors. Two different rooms as shown in the Appendices C.1 and C.2

with reverberation times T60 which can be modified within a range of 50ms to 400ms by

retractable curtains have been investigated. The result shown in Fig. 2.7 confirms that

the increase of reverberation increases also the bias of the MSC.

Additionally, the ratio of direct sound and reverberant sound is influenced by the

distance of the point source to the sensors. An important quantity describing the distance

where the direct sound component equals the reverberant sound is the critical distance

rh and was described in Section 2.2.2. For distances larger than rh the reverberant sound

outweighs the direct sound component, resulting in an increased bias of the MSC towards

zero. This increased bias can be observed in Fig. 2.8 where the source at θ = 0◦ was

placed at a distance of 0.25m, 1m, and 4m from the two sensors which have a spacing

of d = 20 cm. The room is described in Appendix C.2 and has the dimensions 5.8 m ×
5.9 m × 3.14 m and exhibits a reverberation time of T60 ≈ 200ms. The critical distance

for a speech source is given in this room as rh ≈ 1.6m. From Fig. 2.8 it can be seen that

for a distance larger than rh a significant bias is introduced.

In [Mar95] it was shown that the use of directional microphones pointing to the source

of interest yield a better estimate of the MSC as then also the critical distance is increased

(see Section 2.2.2). However, in this thesis only omnidirectional microphones are used as

no prior information about the source location is assumed to be available.
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Figure 2.8: Estimate of MSC for a speech source in a reverberant environment (T60 ≈ 250 ms)

with different distances between the speech source and the sensor array.

We can conclude that for the estimation of the MSC of point sources it is desirable to

use large DFT window lengths R to avoid a bias towards zero. The bias becomes more

severe the larger the distance between point source and sensors becomes. Additionally,

also larger reverberation leads to an increased bias.

2.2.4.3 Magnitude squared coherence of diffuse sound fields

In Section 2.2.3 the properties of an diffuse sound field were discussed. It has been pointed

out that the diffuse sound field can be modeled by an infinite number of statistically

independent point sources uniformly distributed on a sphere (see also Fig. 2.5). Based

on this model, the MSC between the microphone signals x1(n) and x2(n) in an ideally

diffuse sound field has been derived in Appendix B.1 yielding

|Γx1x2(ω)|2 =
sin2 (ωfsd c

−1)

(ωfsd c−1)2 , (2.37)

where d denotes the distance between the microphones. This result assumes omnidirec-

tional sensor characteristics and was first presented in [CWB+55]. Fig. 2.9 illustrates

(2.37) for different sensor spacings d. In [Mar95, Elk01] the MSC has been investigated

also for directional microphones. It should be noted, that (2.37) is only a necessary but

not a sufficient condition for a diffuse sound field. Hence, it is possible to construct sound



2.2. Convolutive mixing model 27

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

Frequency in Hz

M
S
C

d = 0.04m
d = 0.08m
d = 0.16m
d = 0.5m

Figure 2.9: MSC |Γx1x2(ω)|2 between two sensors x1 and x2 in an ideally diffuse sound field for

different sensor spacings d.

fields which have an MSC according to (2.37) but are not ideally diffuse [Däm57].

In Fig. 2.10 the estimated MSC of car noise is shown. According to Appendix C.4 a six-

element omnidirectional microphone array was positioned in the passenger compartment

at the interior mirror. Two different spacings of d = 4 cm and d = 16 cm have been

chosen. The car noise was measured while driving through a suburban area. The long-

term estimate of the MSC (2.35) for a signal length of 20 sec is obtained by using the

recursive averaging procedure (2.33) with γ = 0.9, α = 2, DFT length R = 512, and

choosing the Hann window for wf(n). It can be seen that the MSC of the measured

data (solid) corresponds very well to the sin(x)/x characteristic of the MSC of an ideal

diffuse sound field (dashed) for both microphone spacings. Therefore, it can be concluded

that the MSC of car noise can be approximated by the MSC of a diffuse sound field.

However, as pointed out above this does not allow the conclusion of a diffuse sound field

[Däm57, Mar95]. Additionally, in [Mar01b] it was shown experimentally that also office

noise originating from computer fans and hard disk drives can be assumed to exhibit the

MSC of a diffuse noise field.

In contrast to the scenario of a point source in a free-field or reverberant environment

as examined in Section 2.2.4.2, the noise sources such as in car noise are spatially spread

out, e.g., due to vibrating bodies and are thus coming from different directions. Hence,

they cannot be modeled as one virtual point source which is picked up by the microphones
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Figure 2.10: MSC |Γx1x2(ω)|2 of car noise measured at two sensors x1 and x2 positioned at the

interior mirror in a car compartment for different sensor spacings d.

after filtering with room impulse responses. Therefore, in contrast to point sources the

MSC estimate is not biased towards zero and is largely independent of the length of the

analysis frame as has been confirmed experimentally in [Mar95].

2.2.5 Effects of sensor imperfections and positioning

In this thesis omnidirectional microphones are used as no prior information on the spa-

tial location of the desired sources is available. In conventional beamforming literature

(e.g., [Doc03]) these microphones are generally considered to be perfect point receivers

with ideal omni-directional properties and a flat frequency response equal to 1. More-

over, the microphone characteristics are assumed to be equal for all sensors in the mi-

crophone array. These assumptions are convenient for the beamformer design and thus

sensor imperfections will have a detrimental effect on the beamformer characteristics.

However, in reality the assumption of ideal and equal microphone characteristics are usu-

ally not fulfilled and therefore adaptive calibration schemes have been proposed (see e.g.

[Buc02, Buc04, OK05]). The BSS algorithms investigated in this thesis are based on the

convolutive model which allows for reverberant environments. Therefore, equalization

of sensor imperfections such as, e.g., different frequency responses, phase differences, or

shadowing effects as encountered in hearing aid applications can be incorporated into

the FIR filters hpq,κ of the mixing model. As BSS algorithms have the advantage that

no distinction between the component caused by the room acoustics and the component

caused by the microphone characteristic has to be made, this avoids the necessity of a

calibration procedure.
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The microphones can be positioned in different microphone array configurations. The

positioning of the microphones can be interpreted as a spatial sampling of the acoustic

wave field. To avoid ambiguities in the representation of the acoustic waves, i.e., to avoid

spatial aliasing (see, e.g., [vVB88, JD93]), the microphone distance d between two sensors

has to fulfill

d ≤ λmin

2
(2.38)

for the minimum wavelength λmin. This is the spatial analogon to the temporal sampling

theorem. For discrete-time signals with sampling frequency fs, this leads to the condition

d ≤ c/fs. In this thesis fs = 16 kHz is chosen which would correspond to a maximum

sensor spacing of d ≤ 2.1 cm. This is an important aspect in the design of fixed and

adaptive beamformers [vVB88, Her05]. On the other hand, the concept of BSS does in

general not constrain the positioning of the sensors as these methods are assumed to

be blind and therefore no information about the mixing system and the location of the

sources and sensors is needed. Later in Section 3.1 it will be shown that the presented BSS

algorithms do not rely on fulfilling the spatial sampling theorem and thus are applicable

to arbitrary array configurations.

2.3 Source signal characteristics and their utilization

in blind source separation

In this section we want to discuss the signal properties of acoustic source signals such

as speech or music and subsequently discuss their utilization for BSS algorithms. The

resulting variety of BSS algorithms based on different signal properties is one of the main

motivations for the development of a generic BSS framework in Chapter 3 which allows

a simultaneous utilization of all signal properties.

Basic signal properties of acoustic signals

The properties describing the signal statistics are given, e.g., in [Pap02] and will be

discussed in the following in the context of acoustic signal processing:

Signal distribution. The signal distribution is described by the probability density

function (pdf). Source signals such as speech or music exhibit a nongaussian pdf which

can be described by a supergaussian density, i.e., it has a sharper peak and longer tails

than the Gaussian pdf and is modeled e.g., by the Laplacian pdf.

Temporal dependencies. If the temporal samples of a signal are uncorrelated,

then the signal is termed to be white. If in addition also the higher-order moments do



30 2. Acoustic Blind Source Separation Model

not depend on the samples, i.e., if the temporal samples are statistically independent,

then the signal exhibits strict-sense whiteness. However, audio signals are in general

showing temporal dependencies which are introduced, e.g., for speech signals by the vocal

tract. Especially the second-order correlations have been investigated in detail in the

literature on linear prediction (e.g., [DHP00]). For a sampling frequency of fs =16 kHz

the temporal correlation originating from the vocal tract spans 10 to 20 time lags. These

temporal dependencies also affect the signal distribution which is then described by a

multivariate pdf (see, e.g., [BS87, GZ03]).

Stationarity. In literature it is distinguished between strict-sense and wide-sense

stationarity. The latter one assumes that the mean of the signal is constant and that

the second-order correlation only depends on the time-difference and not on the absolute

time instants. For strict-sense stationary signals also higher-order moments only depend

on the time-difference. The majority of audio signals are considered in the literature as

nonstationary signals and wide-sense or strict-sense stationarity is only assumed, e.g., for

speech signals within a period of 5ms to 20ms [RS78].

Exploitable acoustic source signal properties for BSS criteria

The basic assumption for BSS algorithms is that the source signals sq(n), q = 1, . . . , Q are

mutually statistically independent. The first BSS algorithms were derived for instanta-

neous mixtures and no temporal dependencies were taken into account so that originally

the mutual statistical independence for temporally white signals given as

ps,Q([s1(n), . . . , sQ(n)]T) =

Q∏

q=1

psq,1(sq(n)), (2.39)

was used. The variable ps,Q(·) is the joint pdf of dimension Q for all source signals and

psq,1(·) is the univariate pdf for the q-th source. The dimension of the pdfs are denoted by

the subscripts. For the case of convolutive mixtures (2.4) it was shown in [WFO93] that

merely utilizing second-order statistics (SOS) by decorrelating the output signals yq(n)

does not lead to a separation of the sources. This implies that we have to force the output

signals to become statistically decoupled up to joint moments of a certain order by using

additional conditions. This can be realized by exploiting one of the source signal properties

discussed above leading to a formulation of several BSS criteria. They can be categorized

into approaches exploiting the nongaussiantiy, nonwhiteness, or nonstationarity of the

source signals and will be discussed in the following:

(a) Nongaussianity. It was stated above that the pdf of an acoustic source signal

sq(n) is in general not Gaussian. Thus, the nongaussianity can be exploited by
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using higher-order statistics (HOS) yielding a statistical decoupling of higher-order

joint moments of the BSS output signals. BSS algorithms utilizing HOS are also

termed independent component analysis (ICA) algorithms (e.g., in instantaneous

BSS [Car89, JH91, CJH91, Com94, BS95] and convolutive BSS [Sma98]).

(b) Nonwhiteness. As audio signals exhibit temporal dependencies this can be ex-

ploited by the BSS criterion. Therefore, it can be assumed that the samples of each

source signal are not independent along the time axis however, the signal samples

from different sources are mutually independent. This leads to a generalization of

(2.39) given as

ps,QC([s1(n), . . . , sQ(n)]T) =

Q∏

q=1

psq,C(sq(n)), (2.40)

where sq(n) contains the C temporally dependent samples of the q-th source, ps,QC(·)
is the joint pdf of dimension QC over all sources, and psq,C(·) is the multivariate

pdf of dimension C of the q-th source. For a speech signal with a sampling fre-

quency of fs =16 kHz, the temporal dependencies introduced by the vocal tract

span C = 15, . . . , 20 time-lags. The fundamental frequency of voiced sounds, which

is in general between 50Hz and 250Hz, adds additional temporal dependencies

within an interval of up to 20ms, i.e., C = 160. Based on the assumption of mu-

tual statistical independence for non-white sources (2.40) several algorithms can

be found in the literature. Mainly the nonwhiteness is exploited using SOS by si-

multaneous diagonalization of output correlation matrices over multiple time-lags,

(e.g., in instantaneous BSS [TLSH91, MS94, BAMCM97, WP97] and convolutive

BSS [GC95, KJ00]). It should be noted that convolutive BSS algorithms which are

based on the mutual statistical independence (2.39) for temporally white signals

instead of (2.40) will aim at removing temporal dependencies and will for the case

of audio signals therefore distort the separated output signals.

(c) Nonstationarity. The short-term correlations/dependencies of audio signals are

in general assumed to be time-variant. Therefore, in most acoustic BSS applications

nonstationarity of the source signals can be exploited by simultaneous diagonaliza-

tion of short-term output correlation matrices at different time instants (e.g., in in-

stantaneous BSS [WFO93, MOK95] and convolutive BSS [KMO98, PSV98, PS00]).

The signals within the block, necessary for estimating the SOS correlation matri-

ces, are usually assumed to be wide-sense stationary. A more detailed discussion of

block-based estimation methods will be given in Section 3.3.5.

As a simultaneous exploitation of two or even all three signal properties leads to improved

results we will present in the next chapter a generic framework which allows to explicitly

incorporate nongaussianity, nonwhiteness, and nonstationarity. It should also be noted
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that the latter two properties can already be utilized by using second-order correlation

matrices. Thus, such algorithms are termed second-order statistics (SOS) BSS approaches.

2.4 Ambiguities in instantaneous and convolutive

blind source separation

As the concept of BSS is solely based on the assumption of mutual independence of the

source signals there arise some ambiguities. In instantaneous BSS the following indeter-

minacies appear [HKO01]:

• Scaling ambiguity: The estimated independent components can only be determined

up to a scalar factor.

• Permutation ambiguity: The order of the independent components cannot be de-

termined.

As both, the original source signals and the mixing system are unknown, a possible scaling

and permutation of the source signals could always be undone by a different mixing

system. Due to the impossibility to distinguish if the scaling and permutation occurred in

the source signals or in the mixing system, these ambiguities cannot be resolved without

using additional a-priori information if only the sensor signals are observed. Thus, the

original sources can only be recovered up to an unknown scaling and permutation. In the

convolutive BSS case the indeterminacies translate to:

• Filtering ambiguity: The estimated independent components can only be deter-

mined up to an arbitrary filtering operation.

• Permutation ambiguity: The order of the independent components cannot be de-

termined.

Again the permutation ambiguity cannot be resolved without further a-priori information.

However, if, e.g., the sensor positions are known, then the position of each separated source

can be determined from the demixing system [BAS+05, ABWK06]. For some applications

this may be sufficient for solving the permutation problem.

In general the scaling ambiguity translates for convolutive BSS to an arbitrary fil-

tering of the output signals. Therefore, it has to be distinguished between blind source

separation, where the goal is merely to separate the original source signals, and blind

deconvolution of the mixing system (termed blind dereverberation for acoustic signals)

with the more challenging task to recover the original source signals up to an arbitrary

scaling factor and a constant delay. In acoustics it is difficult to distinguish between the
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temporal correlations introduced by the vocal tract of the human speaker and the cor-

relations originating from the reverberation of the room. Therefore, the multi-channel

blind deconvolution (MCBD) algorithms which were originally designed for independent,

identically distributed (i.i.d.) signals occurring in telecommunication applications are not

applicable to solve the blind dereverberation problem (see also discussion in Section 3.2).

Even if we do not strive for solving the dereverberation problem, it is desirable to avoid

the arbitrariness of the filtering operation in blind source separation. When discussing

the optimum BSS solution in Section 3.1 it will be shown that, even in convolutive BSS,

the filtering ambiguity reduces to a scaling ambiguity, if the optimum BSS demixing filter

length is chosen. As will be discussed in Section 3.1.4, another popular approach to avoid

the arbitrary filtering is to apply a constraint which minimizes the distortion introduced

by the demixing system of the BSS algorithm. Thus, the q-th separated source yq is

constrained to be equal to the component of the desired source sq picked up, e.g., at the

q-th microphone. This is done by back-projecting the estimated sources to the sensors or

by introducing a constrained optimization scheme [IM99, MN01].

2.5 Performance measures

In general, it is possible to distinguish between subjective and objective tests for assessing

the performance of signal processing methods. In subjective testing, listening tests are

conducted with a number of test persons which implies a considerable effort for the organi-

zation and performance of such tests. A discussion of different subjective test procedures

can be found in [VHH98, Jek05]. To reduce the large effort of subjective evaluations it is

desirable to substitute the listening tests by instrumental measuring methods (also termed

objective measures) which usually compare processed and unprocessed signal in the time

or frequency domain [QBC88, VHH98]. A useful objective measure should exhibit a high

correlation with the results obtained from subjective evaluations. This can be done by

developing objective measures which take perceptual aspects into account Mainly, the

research efforts were directed towards the evaluation of speech quality in mobile telecom-

munications networks (e.g., [Möl00]) which resulted in two recommendations published by

the International Telecommunication Union (ITU) [ITU01a, ITU01b]. Recently, there are

also activities to use these methods for the evaluation of single-channel speech enhance-

ment signal processing algorithms (see, e.g., [Hub03, RHK05]). However, as this is still

an active research area, we will use in this thesis several established objective measures

to assess the performance of BSS algorithms. To evaluate the BSS performance appro-

priately it has to be pointed out that the perceived quality of the BSS output signals is

determined by three factors which have to be addressed individually:

(a) Suppression of interfering point sources
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(b) Attenuation of background noise

(c) Distortion of the desired signal

In general, BSS algorithms focus on the suppression of interfering point sources and

have only a limited capability of attenuating background noise. However, in Chapter 4

several extensions will be addressed which allow additional background noise suppression.

Moreover, the application of BSS to commercially successful products also requires small

signal distortions of the desired signals. To illustrate these three aspects and to define

appropriate objective measures we decompose the output signals yq(n), q = 1, . . . , P of

the BSS algorithm as

yq(n) = ysr,q(n) + yc,q(n) + yn,q(n), (2.41)

where ysr,q is the component containing the desired source sr(n). In general, the desired

source at the q-th output channel can be any of the source signals due to the permutation

ambiguity. In the evaluation of the experiments in this thesis, the output channels have

been manually reordered to avoid any permutation. In this no permutation of the output

channels occurs and thus r = q. The component yc,q is the crosstalk component in the q-th

output channel stemming from the remaining point sources that could not be suppressed

by the BSS algorithm and yn,q denotes the contributions of the background noise at the

q-th output. The microphone signals xq(n), q = 1, . . . , P can be decomposed analogously

as

xq(n) = xsr ,q(n) + xc,q(n) + nq(n), (2.42)

where xsr ,q(n) is the component stemming from the desired source signal sr(n) and xc,q(n)

contains the contributions of the other interfering point sources. The background noise

is denoted as nq(n).

Suppression of interfering point sources

The decomposition of the output signal into desired and interfering components allows to

evaluate the interference suppression by calculating the signal-to-interference ratio (SIR)

for each channel q = 1, . . . , P measured in decibel (dB) as

SIRyq
= 10 lg

E{y2
sr ,q}

E{y2
c,q}

≈ 10 lg

∑
n y

2
sr,q(n)∑

n y
2
c,q(n)

. (2.43)

As shown in (2.43) that the expectation operator E{·} has to be replaced in practice by a

time-average. This estimate of the SIR has only a weak correlation to the quality perceived

by auditory measurements [VHH98]. Therefore, due to the nonstationarity of acoustic

signals, in literature usually the segmental signal-to-interference ratio (SIR) is preferred.
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It is based on time-varying local SIR estimates which are obtained by decomposing the

signals into KS segments/blocks of length NS. The segment length NS should be chosen

according to the stationarity interval of the observed signals (e.g., 5 to 20ms for speech).

In this thesis we will use NS = 256 corresponding for a sampling frequency of fs = 16 kHz

to 16ms. The SIR for the m-th segment is given as

SIRseg,yq
(m) = 10 lg

(∑NS

κ=1 y
2
sr,q(κ+mNS)∑NS

κ=1 y
2
c,q(κ+mNS)

)
(2.44)

and the segmental SIR is defined as the average over KS segments

SIRseg,yq
=

1

KS

KS∑

m=1

SIRseg,yq
(m). (2.45)

The segmental SIR is very sensitive to periods with low desired signal energy. This poses

the problem that in desired signal pauses extremely large negative local SIR values will

be encountered. This problem is alleviated by identifying silence periods and excluding

them from segmental SIR calculations. Hence, a pause detection is necessary which can

be realized, e.g., by comparing long-term and short-term energy of the signal [VHH98].

Another approach is to set a lower threshold and replace all frames with the local SIR

below by the threshold [DHP00]. This prevents the measure from being overwhelmed

by a few frames of silence. Similarly, frames with SIRseg,yq
greater than 35 dB are not

perceived by listeners as being significantly different from the clean desired signal [DHP00].

Therefore, an upper threshold of usually 35 dB is used to limit any unusually high SIRseg,yq

measures. The two thresholds thereby prevent the final segmental SIR measure from

being biased in either a positive or a negative direction from a few frames that do not

contribute significantly to the overall signal quality. In this thesis the segmental SIR has

been calculated according to [DHP00] using a lower threshold of -10 dB and an upper

threshold of 35 dB.

If the input segmental SIR at the microphones SIRseg,xq
at the q-th microphone

SIRseg,xq
=

1

KS

KS∑

m=1

SIRseg,xq
(m)

=
1

KS

KS∑

m=1

(
10 lg

(∑NS

κ=1 x
2
sr ,q(κ +mNS)∑NS

κ=1 x
2
c,q(κ+mNS)

))
. (2.46)

is not equal to 0 dB then the SIRseg,yq
alone is not sufficient in evaluating the separation

performance of the BSS algorithm. It is rather the segmental SIR improvement in the

q-th channel

∆SIRseg,q = SIRseg,yq
− SIRseg,xq

(2.47)



36 2. Acoustic Blind Source Separation Model

which determines the capability of the BSS algorithm in suppressing interfering point

sources. It should be noted that for closely-spaced microphone arrays SIRseg,xq
will be

very similar for all microphones. However, for large spacings and if objects are between

the microphones as, e.g., in binaural hearing aid applications, then SIRseg,xq
may differ

significantly depending on the microphone location.

Each BSS output contains one desired output signal ysr,q and thus, the segmental

SIR improvement can be measured at each output q = 1, . . . , P . An averaging over all

channels is possible to obtain the average segmental SIR improvement

∆SIRseg =
1

P

P∑

q=1

∆SIRseg,q. (2.48)

If it is desired to illustrate the convergence behavior of the BSS algorithms, then the

quantities ∆SIRseg,q(m) or ∆SIRseg(m)

∆SIRseg,q(m) = SIRseg,yq
(m) − SIRseg,xq

(m) (2.49)

∆SIRseg(m) =
1

P

P∑

q=1

∆SIRseg,q(m) (2.50)

are plotted as a function of the segment index m instead of calculating the overall seg-

mental SIR improvement.

Suppression of background noise

BSS is in general not aiming at suppressing background noise. Nevertheless, the influence

of the BSS filters on the background noise should also be investigated. Moreover, the

extensions presented in Chapter 4 leading to additional background noise suppression

also have to be evaluated. Therefore, apart from the segmental signal-to-interference

ratio we introduce also the segmental signal-to-noise ratio (SNR) which is defined for the

q-th BSS output channel as

SNRseg,yq
=

1

KS

KS∑

m=1

SNRseg,yq
(m)

=
1

KS

KS∑

m=1

(
10 lg

(∑NS

κ=1 y
2
sr,q(κ+mNS)∑NS

κ=1 y
2
n,q(κ+mNS)

))
. (2.51)

The segmental SNR at the sensors is defined analogously to (2.46) as

SNRseg,xq
=

1

KS

KS∑

m=1

SNRseg,xq
(m)

=
1

KS

KS∑

m=1

(
10 lg

(∑NS

κ=1 x
2
sr ,q(κ+mNS)∑NS

κ=1 n
2
q(κ +mNS)

))
, (2.52)
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and the segmental SNR improvement is calculated for each output as

∆SNRseg,q = SNRseg,yq
− SNRseg,xq

. (2.53)

Again it is possible to calculate the average over all output channels analogously to (2.48).

Similarly, the quantities ∆SNRseg,q(m) or ∆SNRseg(m) which are defined analogously

to (2.49) and (2.50) can be plotted over the segment index m to depict the convergence

behavior of the evaluated algorithms.

Distortion of the desired signal

The component in the q-th BSS output channel originating from the desired source sr(n)

is given according to (2.41) as ysr,q. It should be again noted that only for the case that

no permutation is present, the q-th source appears at the q-th BSS output (i.e., r = q).

To evaluate the signal distortion introduced by the BSS algorithm the desired signal at

the q-th BSS output is compared to the desired signal component xsr ,p at one of the

microphones p = 1, . . . , P or even at all microphones. This is based on the assumption

that the aim of BSS is to merely separate the original source signals and to preserve the

spectral content of xsr ,p, i.e., the desired source acquired at the q-th sensor. The filtering

ambiguity which may lead to an arbitrary filtering would thus lead to a distortion of the

desired signal.

A quantity which is reasonably well-correlated with the subjective perception of speech

distortion is the logarithmic spectral distance [QBC88]. The unweighted log-spectral

distance (SD) measures the Euclidean distance between short-time magnitude spectra in

decibel (dB) and is defined for the desired source signal sr at the q-th output as

SDsr,q =
1

KS

KS∑

m=1

√√√√√√
1

R

R−1∑

ν=0


20 lg

∣∣∣Y (ν)
sr ,q

∣∣∣
∣∣∣X(ν)

sr,q

∣∣∣




2

(2.54)

where Y (ν)
sr,q and X(ν)

sr,q are the DFT-domain representations of ysr,q and xsr ,q, respectively.

Alternatively, also the spectral envelope of the DFT-domain representation can be used

which may be estimated by using linear prediction techniques [QBC88]. This has the

benefit that small variations in the fine structure, which have little impact on the speech

quality, are not considered in (2.54). To avoid a bias of the SD due to speech pauses, we

only include the m-th segment in the arithmetic average if the input SIR and SNR are

above -10 dB for this segment. Additionally, care should be taken that the time-domain

signals ysr,q and xsr ,q are properly time-aligned before computing the SD. From (2.54) it

can be seen that a value of SDsr,q = 0dB corresponds to no signal distortion.
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2.6 Summary

In this chapter we introduced the instantaneous and convolutive BSS mixing model. The

latter uses FIR filters to model the mixing and demixing process and is thus applicable

to acoustic point sources in free-field and reverberant conditions.

For free-field environments it is possible to model point sources by plane waves and

spherical waves. While plane waves can be used to describe signals in the far field of a

microphone array, spherical waves can be applied to model the point source in the near

field. Due to the superposition principle even reverberant environments could be modeled

by the wave equation. To avoid the complexity of calculating the superposition of thou-

sands of reflections usually acoustic impulse responses are used to model the acoustic path

between a point source and a sensor. The acoustic impulse responses can be measured

experimentally and allow the introduction of several quantities to describe the listening

conditions in a room. The most commonly used parameter is the reverberation time T60

which is a global indicator for the reverberation of an enclosure. To obtain further infor-

mation on the room acoustics and to establish a relationship also to speech intelligibility,

the “definition” D50, the signal-to-reverberation ratio (SRR), and the critical distance rh

have been introduced.

The diffuse sound field was presented to allow the modeling of several realistic back-

ground noises such as, e.g., car noise or speech babble. By utilizing the magnitude squared

coherence (MSC) function it can be distinguished between sound fields originating from

point sources where the MSC is equal to one and diffuse sound fields which exhibit a

sin(x)/x MSC characteristic. The introduction of the MSC is also important as it will be

shown in Section 3.4.3.4 that the MSC is closely related to BSS based on second-order

statistics. The examination of the MSC estimation for point sources showed that in re-

verberant environments the room impulse responses introduce a bias towards zero. This

bias can be mitigated by choosing the DFT length R much larger than the room impulse

length M . However, in reverberant environments M is very large and thus this condition

is usually not fulfilled. In such situations a larger bias occurs if the reverberation time

T60, the distance between sources and sensors or the sensor spacing is increased. On the

other hand, for diffuse sound fields the MSC estimate is not biased and thus is largely

independent of the room parameters.

It has been pointed out that BSS is robust against sensor imperfections and thus no

sensor calibration schemes are needed. Moreover, the source signal properties nonwhite-

ness, nonstationarity, and nongaussianity and their utilization by BSS algorithms have

been discussed.

In the end several performance measures have been introduced which allow a sepa-

rate evaluation of the suppression of point sources, attenuation of background noise and

distortion of the desired signal.
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3 A Blind Source Separation

Framework for Reverberant

Environments

In the last chapter it was shown that BSS for acoustic environments requires the convo-

lutive mixing model. Moreover, the three fundamental source signal properties nonwhite-

ness, nonstationarity, and nongaussianity and their utilization for BSS algorithms have

been discussed. Based on the fundamentals in Chapter 2 we will present in this chapter

a generic convolutive BSS framework which allows the simultaneous exploitation of the

three signal properties and leads to efficient algorithms allowing real-time separation of

multiple sources in reverberant environments. This treatment follows own previous pub-

lications at international conferences and journals [ABK03, BAK03b, BAK04a, BAK05a]

and more references are given when appropriate.

This chapter is organized as follows: In Section 3.1 the optimum BSS solution will

be discussed. From the requirement of perfect separation an optimum BSS demixing

filter length is derived and the optimum demixing FIR filters are given. Then, in Sec-

tion 3.2 we give a historical retrospect of convolutive BSS. This leads to a classification

of BSS approaches according to the optimization scheme into broadband and narrow-

band algorithms. Broadband stands for a simultaneous optimization for all frequencies

whereas narrowband optimization allows an independent application of the criterion for

each frequency. A review of both approaches will be given and it will be emphasized on

which signal properties the individual algorithms rely on. This is the basis for the pre-

sentation of a generic convolutive BSS framework in Section 3.3 which allows to combine

all three signal properties into one optimization criterion operating in the time domain.

Several novel efficient gradient and natural gradient algorithms are derived and links to

well-known algorithms in the literature are developed. In Section 3.4 the broadband time-

domain algorithms are formulated equivalently in the frequency domain leading to fast

implementations. By introducing approximations, efficient algorithms can be derived from

this framework and links to several well-known narrowband algorithms are established.

Moreover, it will be shown that narrowband efficiency can be exploited by broadband

algorithms if only selective narrowband approximations are introduced. Different update

strategies are presented in Section 3.5 and a special emphasis is placed on the derivation

of a block-online update rule which allows high separation performance at moderate com-
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putational complexity. In the last section the experimental results of several algorithms

are analyzed for different reverberant environments.

3.1 Optimum solution for blind source separation

3.1.1 Overall system matrix

In the convolutive BSS model (2.3) and (2.4) in Section 2.2 it can be seen that a con-

catenation of the FIR mixing filters hqp,κ of length M , i.e., κ = 0, . . . ,M − 1 and the FIR

demixing filters of length L, given as wpq,κ, κ = 0, . . . , L− 1, occurs. The FIR filter taps

of the mixing and demixing system can be captured by using vector notation as

hqp = [hqp,0, . . . , hqp,M−1]
T, (3.1)

wpq = [wpq,0, . . . , wpq,L−1]
T, (3.2)

where superscript T denotes transposition of a vector or a matrix. The channel-wise FIR

filters can be combined in matrix notation yielding the QM × P MIMO mixing matrix

Ȟ and the PL×Q MIMO demixing matrix W̌ defined as

Ȟ =




h11 · · · h1P

...
. . .

...

hQ1 · · · hQP


 , (3.3)

W̌ =




w11 · · · w1Q

...
. . .

...

wP1 · · · wPQ


 , (3.4)

where Q denotes the number of sources and P stands for the number of microphones. It

should be noted that in Section 3.1 we still distinguish between the number of sources

and the number of microphones as this will give some further insight into the optimum

BSS demixing filter length. From Section 3.2 on we will only consider the square case

Q = P . Inserting the mixing equation (2.3) into the demixing equation (2.4) results in a

convolution of the mixing and demixing FIR filters yielding the overall system FIR filters

of length M+L−1. The overall system FIR filter from the q-th source to the r-th output

of the demixing system (q, r = 1, . . . , Q) is denoted by the column vector cqr given as

cqr = [cqr,0, . . . , cqr,M+L−2]
T, (3.5)

and a combination of all channels yields the overall system matrix Č of dimensions Q(M+

L− 1) ×Q defined as

Č =




c11 · · · c1Q

...
. . .

...

cQ1 · · · cQQ


 . (3.6)
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In general, a convolution between two sequences can also be written as a matrix-vector

product if the matrix exhibits a special Toeplitz structure. By using this procedure we

can express the FIR filter model cqr from the q-th source to the r-th output as

cqr =

P∑

p=1

Hqp,Lwpr (3.7)

with the M +L− 1×L matrix Hqp,L, containing the M filter taps in each column, given

as

Hqp,L =




hqp,0 0 · · · 0

hqp,1 hqp,0
. . .

...
... hqp,1

. . . 0

hqp,M−1
...

. . . hqp,0

0 hqp,M−1
. . . hqp,1

...
. . .

...

0 · · · 0 hqp,M−1




. (3.8)

Matrices exhibiting the special Toeplitz structure given in (3.8) are termed Sylvester,

convolution, or transmission matrices (see, e.g., [Eks73, MZB87, MK88]) and allow the

expression of the convolution as a matrix-vector product. In the remainder of this thesis

we will use the term Sylvester matrix. To ensure the equivalence between matrix-vector

product and linear convolution, the width of the Sylvester matrix has to be adjusted

to correspond to the length of the column vector in (3.7). Therefore, the width of the

Sylvester matrix in (3.7) and (3.8) is indicated by the subscript L. The necessity of

defining the width of the Sylvester matrix will become especially important when ex-

pressing a concatenation of several linear convolutions as matrix-vector products (see,

e.g., Appendix A.2).

A combination of all channels yields the MIMO block-Sylvester matrix HL of dimen-

sions Q(M + L− 1) × PL given as

HL =




H11,L · · · H1P,L

...
. . .

...

HQ1,L · · · HQP,L


 , (3.9)

where the subscript L indicates again the width of the channel-wise Sylvester matrices.

The concatenation of the mixing and demixing MIMO system results in the Q(M + L−
1)×Q overall system matrix Č which was introduced in (3.6). The concatenation can be

expressed as a matrix product by using the block-Sylvester matrix HL given in (3.9) and

the block matrix W̌ defined in (3.4) leading to

Č = HLW̌. (3.10)
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3.1.2 Optimum BSS solution and resulting optimum demixing

filter length

In BSS the goal is the separation of the original sources at the outputs of the demixing

system. In terms of the overall system matrix Č this condition can be written as

Č − bdiag{Č} = boff{Č} !
= 0. (3.11)

The operator bdiag applied on a block matrix consisting of several submatrices or vectors

sets all submatrices or vectors on the off-diagonals to zero. Analogously, the boff operation

sets all submatrices or vectors off the diagonal to zero (for more details on operators for

block matrices see Appendix A.1). In (3.11) this corresponds to cqr
!
= 0, ∀ q 6= r. In the

formulation of (3.11) it was assumed, without loss of generality, that no output channel

order permutation is present. In this case the optimum solution yields the q-th source at

the q-th output of the demixing system and all cross-channel terms cqr, q 6= r are zero.

It should be noted that in case of an output channel order permutation the vectors cqr

contained in the optimum Č are permuted, but in each column and row there is at most

one vector unequal to zero, which still guarantees perfect separation of the sources.

By inserting the definition of the overall system matrix (3.10) in (3.11) the optimum

BSS solution can be expressed as

boff{HLW̌} !
= 0. (3.12)

This relation allows us to derive a lower bound for the demixing FIR filter length L

for which the optimum solution (3.11) can still be achieved. In Fig. 3.1 the matrix

product Č = HLW̌ is illustrated for the optimum solution in the case Q = P = 3. In

general, for the q-th column wcol,q = [wT
1q, . . . ,w

T
Pq]

T of the demixing FIR filter matrix

W̌ a homogeneous linear system of equations can be established by picking the subset of

Sylvester matrices Hrp,L with r = 1, . . . , Q, p = 1, . . . , P , and r 6= q. The subset for the

q-th column wcol,q of the demixing filter matrix is obtained by removing the q-th row of

submatrices and is denoted as Hsub,q. In Fig. 3.1 the procedure to generate a homogeneous

linear system is illustrated for q = 1. The two shaded areas show the first column wcol,1

of the filter matrix W̌ and the subset Hsub,1 of HL, respectively. Thus, to determine the

optimum demixing filter coefficients, for each column wcol,q a homogeneous linear system

of equations

Hsub,qwcol,q = 0 (3.13)

has to be solved. The homogeneous linear system is obviously solved by the trivial solution

wcol,q = 0. Additional non-trivial solutions are obtained if the rank of the matrix Hsub,q

is smaller than the number of elements of wcol,q [Har97].

In the following it is assumed that Hsub,q has full row rank. This assumption can

be interpreted such that the FIR acoustic impulse responses contained in Hsub,q do not
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subset Hsub,1 of
Sylvester matrices Hqp,L

Sylvester
matrices Hqp,L

demixing FIR

filter matrix W̌first
column
wcol,1

Figure 3.1: Illustration of the matrix product Č = HLW̌ for the optimum solution boff{Č} !
= 0

and Q = P = 3.

possess any common zeros in the z-domain. This assumption usually holds in practice and

leads to the requirement that, for obtaining non-trivial solutions, the number of elements

of wcol,q (i.e., the number of columns of Hsub,q) have to outnumber the number of rows

of Hsub,q, i.e., PL > (Q − 1)(M + L − 1). Solving for L yields the lower bound for the

demixing filter length as

L >
Q− 1

P −Q+ 1
(M − 1). (3.14)

If (3.14) is fulfilled then there exists an infinite number of solutions and the space spanned

by the linearly independent solutions is called the solution space of the homogeneous linear

system (3.13) or the null space of matrix Hsub,q. The dimension of the null space of Hsub,q,

i.e., the number of linearly independent solutions, is given as the difference of the length

of the vector wcol,q and the row rank of the matrix Hsub,q, i.e., PL− rank(Hsub,q) [Har97].

Due to the full row rank, the rank is given as rank(Hsub,q) = (Q−1)(M +L−1). If PL is
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chosen to rank(Hsub,q) + 1, then the dimension of the null space is equal to one, i.e., only

one linearly independent solution wcol,q exists. This choice of L is denoted the optimum

BSS filter length Lopt and is given as

Lopt =
Q− 1

P −Q+ 1
(M − 1) + 1. (3.15)

This choice means that only one linearly independent solution wcol,q is possible and all

other solutions in the null space are linearly dependent vectors obtained by multiplying

wcol,q with a scalar factor αq. Hence, for Lopt the arbitrary filtering of the BSS output

signals as discussed in Section 2.4 reduces to an arbitrary scaling.

It should be noted that the result for the optimum BSS filter length has also been

derived in a different way independently in [Hof04, Hof05].

3.1.3 Optimum BSS demixing system and relationship to blind

MIMO identification

In the previous section the optimum BSS filter length has been derived. Here, we discuss

the optimum demixing system W̌opt which can be obtained for the choice L = Lopt. For

simplicity we will first start with the special case Q = P = 2 and then subsequently

generalize the result to the square case for P,Q > 2.

Square case using two sources and two sensors (Q = P = 2).

According to (3.13) and Fig. 3.1 we have to solve for the case Q = P = 2 two homogeneous

linear systems given as

H11,Lw12 + H12,Lw22 = 0, (3.16)

H21,Lw11 + H22,Lw21 = 0. (3.17)

The matrix-vector products in the equations (3.16), (3.17) represent convolutions of the

FIR filters hqp and wpq which can also be written equivalently as a multiplication in the

z-domain yielding [BAK05b, BAK07]

H11(z)W12(z) +H12(z)W22(z) = 0, (3.18)

H21(z)W11(z) +H22(z)W21(z) = 0. (3.19)

Due to the FIR filter structure the z-domain representations can be expressed by the zeros

z0Hqp,ν , z0Wpq ,µ and the gains AHqp
, AWpq

of the filters Hqp(z) and Wpq(z) respectively:

AH11

M−1∏

ν=1

(z − z0H11,ν)AW12

L−1∏

µ=1

(z − z0W12,µ) = −AH12

M−1∏

ν=1

(z − z0H12,ν)AW22

L−1∏

µ=1

(z − z0W22,µ)
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(3.20)

AH21

M−1∏

ν=1

(z − z0H21,ν)AW11

L−1∏

µ=1

(z − z0W11,µ) = −AH22

M−1∏

ν=1

(z − z0H22,ν)AW21

L−1∏

µ=1

(z − z0W21,µ)

(3.21)

As pointed out before, the matrices Hsub,q, q = 1, 2 are assumed to be full row rank

and this translates in the z-domain to the assumption that H11(z) and H12(z) in (3.20)

and H21(z) and H22(z) in (3.21) do not share common zeros. If no common zeros exist

and if the optimum demixing filter length, given for the case Q = P = 2 as L = M , is

chosen, then the equality in (3.20) can only hold if the zeros of the demixing filters are

chosen as z0W12,µ = z0H12,µ and z0W22,µ = z0H11,µ for µ = 1, . . . ,M − 1. Analogously, the

equality in (3.21) requires z0W11,µ = z0H22,µ and z0W21,µ = z0H12,µ for µ = 1, . . . ,M − 1.

Additionally, to fulfill the equality, the gains of the demixing filters in (3.20) have to be

chosen as AW22 = α2AH11 and AW12 = −α2AH12 , where α2 is an arbitrary scalar constant.

Thus, the demixing filters are only determined up to a scalar factor α2. Analogously,

for the equality (3.21) the gains of the demixing filters are given as AW11 = α1AH22 and

AW21 = −α1AH21 with the scalar constant α1. In summary, this leads to the optimum

demixing filter matrix W̌opt given in the time domain as

W̌opt =

[
α1h22 −α2h12

−α1h21 α2h11

]
, (3.22)

where due to the scaling ambiguity each column of the block-adjoint is multiplied by an

unknown scalar αq.

It should be noted that the optimum solution for Q = P = 2, given by (3.22), performs

blind MIMO system identification up to an arbitrary scalar constant. Thus, BSS algo-

rithms aiming at the optimum solution (3.22) can be interpreted as an extension of single-

input multi-output (SIMO) system identification approaches (see e.g., [XLTK95, GN95])

as was pointed out in [BAK05b, BAK07]. If additionally the geometrical information

about the sensor locations is taken into account, then algorithms performing SIMO iden-

tification are often used for single-source localization (see, e.g., [Ben00]). Hence, the ex-

tension to MIMO system identification allows for BSS algorithms capable of performing

multiple-source localization as has been demonstrated in [BAS+05, BAK07].

Additionally, (3.22) can be interpreted as a blind interference canceller for each BSS

output channel. Due to the blind MIMO system identification property of the acoustic

impulse responses between the sources and the sensors, the optimum BSS solution does

not depend on the positioning of the sources or the sensors. Thus, BSS algorithms leading

to (3.22) can be applied to arbitrary array geometries and hence do not suffer from spatial

aliasing .
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To see how the overall system matrix Č behaves in the case of the optimum solution

(3.22), the optimum demixing filters W̌opt (with the optimum demixing filter length

L = M) are inserted into (3.10) yielding

Čopt = HMW̌opt

=

[
H11,M H12,M

H21,M H22,M

]
·
[

α1h22 −α2h12

−α1h21 α2h11

]

=

[
α1(H11,Mh22 −H12,Mh21) α2(H12,Mh11 − H11,Mh12)

α1(H12,Mh22 −H22,Mh21) α2(H22,Mh11 − H21,Mh12)

]
. (3.23)

Due to the Sylvester structure, each matrix-vector product in (3.23) denotes a linear

convolution of two FIR filters. The linear convolution is commutative and thus, the order

of the FIR filters in the matrix-vector product may be interchanged (e.g. H22,Mh11 =

H11,Mh22). Hence, (3.23) can be simplified to

Čopt =

[
α1(H11,Mh22 −H12,Mh21) 0

0 α2(H11,Mh22 − H12,Mh21)

]
. (3.24)

From (3.24) it can be seen that as desired, the optimum solution achieves perfect separa-

tion because boff{Čopt} = 0. However, the separated outputs of the overall system will

be filtered versions of the original source signals due to the terms on the block-diagonal

of Čopt. These block-diagonal terms are column vectors representing FIR filters of length

2M − 1. They differ only by a scalar constant, which shows again that for the case

L = Lopt the optimum solution does not lead to an arbitrary filtering, but only to an

arbitrary scaling. Using the block determinant operator defined in the Appendix A.2 we

can write (3.24) compactly as

Čopt =

[
α1bdet2{Ȟ} 0

0 α2bdet2{Ȟ}

]
. (3.25)

General square case with more than two sources and sensors.

Now, we want to see how the above results generalize to the square case Q = P with

P,Q > 2. It can be seen that the optimum solution given in (3.22) for the case Q = P = 2

is the adjoint of the matrix Ȟ with its entries hqp treated as scalar values. This operation is

formalized in the Appendix A.2 by the introduction of the block-adjoint operator badjP (·).
There it is shown that the block-adjoint operator can be applied to block matrices with

Q = P and P,Q ≥ 2. Due to the FIR filters contained in Ȟ the block-adjoint involves

linear convolutions for P,Q > 2 and thus, in the general case the size of badjP
{
Ȟ
}

is

determined by the length of the convolutional product given as P (M − 1) + 1 × P (for

more details on the block-adjoint operator see Appendix A.2). Hence, for the general
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square case Q = P and if the optimum BSS demixing filter length according to (3.15) is

chosen, then the optimum demixing system W̌opt is given as

W̌opt = badjP
{
Ȟ
}

Λα. (3.26)

The diagonal matrix Λα = Diag{[α1, . . . , αP ]T} accounts for the scaling ambiguity. The

operator Diag{a} denotes a square matrix with the elements of vector a on its main

diagonal. To see that (3.26) really is the optimum solution for P,Q ≥ 2, we examine the

overall system matrix. Inserting the optimum solution W̌opt given in (3.26) into (3.10)

leads to

Čopt = H badjP
{
Ȟ
}

Λα

= Bdiag
{
bdetP{Ȟ}, . . . , bdetP{Ȟ}

}
Λα, (3.27)

where for the second line the equation (A.10) in the Appendix A.2 has been used. The

operator bdetP{Ȟ} denotes the block determinant of the mixing system as defined in

Appendix A.2. The block determinant bdetP{Ȟ} has the dimensions P (M − 1) + 1 × 1

and can be interpreted as an FIR filter of length P (M − 1) + 1. The result in (3.27)

shows that boff{Čopt} = 0, i.e., that perfect separation is achieved, for the optimum

W̌opt given in (3.26). On the other hand, (3.27) also shows that for the case Q = P the

original source signals will be filtered by the FIR filter of length P (M − 1) + 1 given by

bdetP{Ȟ}. As the filter length is larger than the mixing filter length M this introduces

additional reverberation at the BSS outputs. In the case Q = P this problem becomes

more severe if the number of sources and sensors P,Q increases. A remedy to this problem

are additional constraints as discussed in the next section.

3.1.4 Constraining the optimum BSS solution to additionally

minimize output signal distortions

In the previous section it was shown that perfect separation can be obtained if the adaptive

BSS algorithm leads to the optimum demixing FIR filters according to (3.26). Then the

arbitrary filtering reduces to an arbitrary scaling of the BSS output signals. Nevertheless,

each source signal at the BSS output is still filtered by the FIR filter cqq (q = 1, . . . , P )

with cqq = bdetP{Ȟ}, ∀ q.
As pointed out previously in Section 2.4, an approach to avoid filtering of the separated

sources is to constrain, in addition to the block-offdiagonal of Č, also the block-diagonal of

Č. A popular approach proposing such a constraint was presented in [MN01] and requires

that the distortion caused by the demixing system should be minimized so that the q-th

output signal yq exhibits the same spectral envelope as each source signal sq picked up at
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the q-th sensor (q = 1, . . . , P ). This constraint corresponds to

bdiag{Č} !
= bdiag{Ȟ}. (3.28)

Usually, this constraint has to be incorporated in BSS optimization criteria by using the

method of Lagrange multipliers or by using projection methods (see, e.g., [Fle81]).

3.1.5 Summary

In this section the optimum BSS solution was discussed. First we showed how the concate-

nation of the mixing and demixing MIMO systems can be expressed conveniently using

matrix notation leading to an overall system matrix Č. Perfect separation is achieved if

the block-offdiagonal elements of the matrix Č are equal to zero (in the case of no output

channel permutation). This requirement led to an equation yielding the optimum BSS

demixing filter length. Subsequently, based on the optimum filter length, the optimum

BSS demixing filters were given, first for the case Q = P = 2 and then for the more gen-

eral case Q = P , P,Q > 2. It could be seen that this optimum solution results in MIMO

identification of the mixing system reducing the arbitrary filtering to an arbitrary scaling

of the BSS output signals. Moreover, this relationship allows for the application of BSS

algorithms to multiple-source localization problems as was shown in [BAS+05, BAK07].

Finally, it was pointed out that in the case of the optimum demixing filters the BSS out-

put signals will be filtered versions of the original sources. This filtering is not arbitrary

and depends on the mixing system. For the case Q = P considered in this thesis, the

filtering becomes more severe if P,Q > 2. A remedy to this problem is the introduction

of an additional constraint as shown in [MN01].

In the next sections we will first give an overview about the different BSS approaches

in literature. Subsequently, in Section 3.3 we will introduce a novel optimization criterion

leading to algorithms aiming at estimating the optimum BSS demixing filters as shown

above.

3.2 Broadband versus narrowband optimization

In literature the various BSS algorithms are usually categorized into time-domain and

frequency-domain algorithms. However, especially for BSS algorithms another important

classification is based on the signal model which is used for the optimization scheme. One

can distinguish the narrowband signal model where the BSS algorithms are designed in

the DFT domain under the assumption that individual frequency bins of the input signals

can be considered independently from each other and the broadband signal model where

the optimization is performed for all frequency bins simultaneously. Comparing these two
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categories with the traditional classification into time- and frequency domain1 algorithms

it can be seen that in total three approaches are conceivable:

(a) Optimization and implementation in the time domain and thus, inherently using

the broadband signal model.

(b) Optimization in the time domain based on the broadband signal model together

with the implementation in the DFT domain.

(c) Optimization and implementation in the DFT domain based on the narrowband

signal model.

In this thesis all three approaches will be covered by firstly addressing (a) the optimization

in the time-domain, resulting in a generic framework for convolutive BSS in Section 3.3.

Subsequently, in Section 3.4 the framework will be extended to broadband algorithms in

the DFT domain and thus, exploiting the efficiency of fast convolutions (b). This class

is especially important as by the introduction of approximations also links to novel and

well-known algorithms based on narrowband optimization schemes (c) can be developed

(Section 3.4.3). There, the close connection between (b) and (c) becomes obvious in the

derivation of novel hybrid algorithms obtained by using only selective approximations.

Before deriving this novel framework a short overview of important work on convolutive

BSS will be given and the various algorithms with respect to the three optimization

schemes (a)-(c) will be classified. In the historical retrospect in [JT00] it was pointed

out that the early works on source separation and the genesis of the concept itself can

be traced back to the early 80’s. Since the early 90’s it received an increasing interest in

the signal processing commmunity but most research was still dealing with instantaneous

mixtures. However, with the application of BSS to acoustic mixtures in mind the research

focused on BSS for convolutive mixtures since the mid 90’s [Tor99]. Since then a vast

amount of literature on convolutive BSS has been published and the major algorithmic

milestones are now presented with respect to the optimization scheme.

(a) Optimization and implementation in the time domain

In early works feedback demixing systems were proposed [Tor96a, Tor96b, LBL97] result-

ing in infinite impulse response (IIR) filters. However, the drawback of IIR filters is that

depending on the mixing system they may become unstable. Therefore, nowadays usually

an FIR demixing system is used as illustrated in Fig. 2.1 in Section 2.2.

1It should be noted that the precise definition of the term frequency domain refers to the domain

obtained by applying the discrete-time Fourier transform (DTFT). However, in adaptive signal processing

literature (e.g., [Hay02]) the term frequency domain is usually used to denote the domain obtained by

application of the discrete Fourier transform (DFT). Hence, in this thesis the term frequency domain

refers to the application of the DFT unless otherwise noted.
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Most algorithms which perform the optimization in the time domain and thus, in-

herently use the broadband signal model, introduce a temporal whitening of the original

sources, e.g., [Lam96, ADCY97, KMO98, ZCA99, CACL99, DSM03]. The reason for the

whitening is that these algorithms not only perform source separation but try to decon-

volve the temporal correlation which is introduced by the mixing system. However, these

algorithms cannot distinguish between correlation arising from the impulse responses of

the mixing system and correlation introduced by the sources (e.g., by the means of the

vocal tract) and therefore whiten the original source signals. This class is termed multi-

channel blind deconvolution (MCBD) algorithms. Due to the whitening effect they were

initially proposed for independent, identically distributed (i.i.d.) telecommunication sig-

nals (e.g., [ADCY97, CACL99, JS03]). Later on, these algorithms have also been applied

to acoustic signals (e.g. [MOTN03, DSM04b]). To prevent the whitening of the acoustic

sources different heuristic counter-measures have been proposed. In [MN01] the minimal

distortion principle has been presented which introduces a constraint minimizing the dis-

tortion caused by the demixing system of the MCBD algorithm. Another possibility is

the temporal prewhitening of the acoustic mixtures by the application of linear prediction

analysis filters prior to the MCBD algorithm [KZN03], leading to a mere spatial separa-

tion or by restoring the original temporal correlations after the MCBD algorithm by the

use of linear prediction synthesis filters [SD01].

Also some algorithms based on time-domain optimization have been proposed which

do not introduce a temporal whitening. In [GC95] an algorithm based on second-order

statistics (SOS) has been presented but has been restricted to the adaptation of causal

filters. In [KJ00, Joh04] algorithms based on the Frobenius norm have been proposed. In

[BSBAM01] a criterion based on block-diagonalization of correlation matrices has been

presented but no update procedure has been given. The same criterion was used in

[ABK03, BAK03b, BAK05a] for the derivation of gradient and natural gradient algo-

rithms.

(b) Implementation in the DFT domain with optimization based on the broad-

band model

Recently, also some algorithms were proposed performing the optimization based on the

broadband model but implementing the algorithm in the DFT domain to exploit the

efficiency of fast convolutions. In [JS03, DSM04a] two algorithms for MCBD based on

higher-order statistics (HOS) were derived. BSS algorithms based on a second-order

statistics (SOS) criterion were presented in [ABK03, BAK03b, BAK05a] and an extension

to a HOS criterion was proposed in [BAK04a]. A more detailed discussion of such BSS

approaches will be given in Section 3.4.
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(c) Implementation in the DFT domain with optimization based on the nar-

rowband model

Another very common approach is the independent optimization in each frequency bin

of the DFT domain which is termed narrowband BSS. The advantage of the narrowband

approach is that any BSS algorithm derived for instantaneous mixtures can now be applied

in each frequency bin. Several algorithms have been proposed which utilize either HOS

(e.g., [CSL95, Sma98]) or SOS (e.g., [WFO93, PSV98, WP99, PS00, FP01a, RR01]).

However, a serious drawback is that the scaling and permutation ambiguity in instan-

taneous BSS (see Section 2.4) appears in each frequency bin independently and has to be

solved before applying the demixing filters to the sensor signals.

There exist several heuristic approaches to solve the permutation problem. In [IM99,

AK00, Ane01] inter-frequency correlations of the estimated source signals are exploited

to reorder the output channels. If the geometry of the sensor array is known and if the

sensor spacing is small enough to avoid spatial aliasing (see Section 2.2.5), then it is

possible to calculate the attenuation by the demixing filters for incident signals arriving

from different angles. Plotting the attenuation over the angle yields a directivity pattern

for each output channel and for each frequency bin. By comparing the minima of the

directivity patterns it is possible to determine the direction of arrival (DOA) of the sources

and thus, a reordering of the output channels is possible [KSK+00, IM02]. In [SMAM04]

a closed-form formula for calculating the DOA has been presented, leading to reduced

computational complexity. It should be noted that for estimating the DOA it has been

assumed that the sources are mixed in a free-field environment. In [SMAM05] these

methods have been extended to avoid the necessity of the array geometry. However, the

geometry has still to be constrained to avoid spatial aliasing [KBA06] or other extensions

have to be incorporated to resolve the DOA ambiguity for the frequencies where spatial

aliasing occurs [SAMM06].

The scaling ambiguity in each frequency bin can be removed by application of a con-

straint which reduces the distortion introduced by the demixing system of the BSS algo-

rithm. This is done either by back-projecting the estimated sources to the sensors or by

introducing a constrained optimization scheme in each frequency bin [IM99, MN01].

Another effect, which has to be accounted for, is that the circular convolution is only

an approximation of the linear convolution. This can be mitigated by choosing the DFT

length much larger than the demixing filter length (e.g., [Sma98, PS00]) or by applying

spectral smoothing as in [SMdlKdR+03].

Recently, several of these repair mechanisms have been combined to obtain a robust

narrowband algorithm [SMAM04] which has also been used to separate several acoustic

signals in reverberant environments [MSAM05].
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3.3 Generic time-domain optimization criterion and

algorithmic framework

In this section a time-domain optimization criterion is presented which is based on the

introduction of a compact matrix notation. Due to the optimization in the time do-

main, it is inherently based on the broadband signal model. The proposed optimization

criterion takes inherently all three fundamental signal properties, i.e., nonstationarity,

nonwhiteness, and nongaussianity as discussed in Section 2.3, into account. So far, in

literature at most two of these properties have been combined, e.g., nonstationarity and

nonwhiteness by using second-order statistics (e.g., [KJ00, BAK03b]) or nonwhiteness

and nongaussianity by introducing time-delayed decorrelation as a preprocessing step for

an algorithm based on higher order statistics [LZOS98]. After introducing the optimiza-

tion criterion, we derive the gradient and the natural gradient update equations based

on multivariate probability density functions. After the derivation, several aspects which

are important for the implementation of these algorithms will be addressed. First, dif-

ferent estimation techniques for the cross-relation matrices appearing in the updates will

be discussed. Second, it will be shown that these update equations require a so-called

“Sylvester Constraint (SC)” for which efficient implementations and the resulting ap-

propriate initializations will be discussed. Then, several approximations are discussed

which lead to efficient novel algorithms based on higher-order and second-order statistics.

Moreover, this allows to derive several links to well-known BSS and MCBD algorithms

following as special cases from the previous update equations. In the end of this section

several regularization strategies are proposed to allow for a robust adaptation behavior

even in adverse environments.

3.3.1 Matrix formulation

From the convolutive MIMO model illustrated in Fig. 2.1 in Section 2.2, it can be seen

that the output signals yq(n) are obtained by convolving the input signals xp(n) with

the demixing filter coefficients wpq,κ, κ = 0, . . . , L − 1. To derive an algorithm which

utilizes the nonwhiteness property of the source signals by taking into account D − 1

time-lags, a memory containing the current and the last D − 1 output signal values

yq(n), . . . , yq(n − D + 1) has to be introduced. The linear convolution yielding the D

output signal values can be formulated using matrix-vector notation as

yq(n) =

P∑

p=1

WT
pqxp(n), (3.29)
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with the column vectors xp and yq given as2

xp(n) = [xp(n), . . . , xp(n− 2L+ 1)]T, (3.30)

yq(n) = [yq(n), . . . , yq(n−D + 1)]T. (3.31)

Analogously to Section 3.1.1, the 2L×D matrix Wpq has to exhibit a Sylvester structure

that contains all L coefficients of the respective demixing filter in each column, which is

needed for the matrix formulation of the linear convolution:

Wpq =




wpq,0 0 · · · 0

wpq,1 wpq,0
. . .

...
... wpq,1

. . . 0

wpq,L−1
...

. . . wpq,0

0 wpq,L−1
. . . wpq,1

...
. . .

...

0 · · · 0 wpq,L−1

0 · · · 0 0
... · · · ...

...

0 · · · 0 0




. (3.32)

It can be seen that for the general case, 1 ≤ D ≤ L, the last L − D + 1 rows of Wpq

are padded with zeros to ensure compatibility with the length of xp(n) with regard to a

concise DFT-domain formulation in Section 3.4. Finally, to allow a convenient notation

we combine all channels and thus, we can write (3.29) compactly as

y(n) = WTx(n), (3.33)

with

x(n) = [xT
1 (n), . . . ,xT

P (n)]T, (3.34)

y(n) = [yT
1 (n), . . . ,yT

P (n)]T, (3.35)

W =




W11 · · · W1P

...
. . .

...

WP1 · · · WPP


 , (3.36)

with W exhibiting a block-Sylvester structure.

Analogously, we can describe the linear convolution, which models the mixing process,

by a matrix-vector product. The sensor signal column vector xp(n) of length 2L in the

2With respect to a concise DFT-domain formulation in Section 3.4 the vector xp contains 2L sensor

signal samples instead of the L + D − 1 samples required for the linear convolution (1 ≤ D ≤ L).
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p-th channel can thus be expressed as

xp(n) =
P∑

q=1

HT
qp,2Lsq(n). (3.37)

The source signal column vector containing M + 2L− 1 samples, necessary for the linear

convolution with the mixing FIR filters of length M , is given as

sq(mL+ j) = [sq(mL+ j), . . . , sq(mL+ j − 2L−M + 2)]T , (3.38)

and Hqp,2L is the M+2L−1×2L mixing matrix in Sylvester structure as defined in (3.8).

The linearity condition of the convolution determines the width of the Sylvester matrix

Hqp,2L which is indicated by the subscript 2L. A combination for all sensor channels

p = 1, . . . , P leads to

x(n) = HT
2Ls(n), (3.39)

with

s(n) = [sT
1 (n), . . . , sT

P (n)]T, (3.40)

and the block-Sylvester matrix H2L defined in (3.9).

The output signals y(n) can then be expressed as a concatenation of mixing and

demixing system

y(n) = WTHT
2Ls(n)

= CTs(n), (3.41)

where C = H2LW denotes the P (M +2L−1)×PD overall system matrix. The channel-

wise submatrices of C exhibit a Sylvester structure containing in each column the overall

system FIR filters of length M +L− 1 which are given for the path from the q-th source

to the r-th output as cqr = [cqr,0, . . . , cqr,M+L−1]
T and which were already defined in (3.5).

The block-Sylvester matrix C is the Sylvester matrix counterpart to the overall system

matrix Č originally introduced in (3.6) in Section 3.1.1 which contains only the FIR filter

taps without any Sylvester structure.

3.3.2 Optimization criterion

As pointed out before, we aim at an optimization criterion simultaneously exploiting

the three signal properties nonstationarity, nonwhiteness, and nongaussianity (see Sec-

tion 2.3).

To exploit the nonwhiteness property, a generic SOS algorithm for convolutive mix-

tures has been derived in [BAK03b, BAK05a] from an optimization criterion that ex-

plicitly contains correlation matrices that include several time-lags. The nonstationarity

of the sources can be utilized by considering several short-time correlation matrices at
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different time instants. Additionally, for exploiting nongaussianity, higher-order statis-

tics are required. Higher-order approaches for BSS can be divided into three classes

[HKO01]: maximum likelihood (ML) estimation [Car98], minimization of the mutual in-

formation (MMI) among the output signals [YA97], and maximization of the entropy

(ME/“infomax”) [BS95]. Although all of these HOS approaches lead to similar update

rules, it was shown in [YA97] that MMI can be regarded as the most general one. The

mutual information I is defined for P random processes Y1, Y2, . . . , YP as [CT91]

I(Y1, Y2, . . . , YP ) = E

{
log

py,P ([y1, . . . , yP ])∏P
q=1 pyq,1(yq)

}
, (3.42)

where py,P is the P -dimensional joint probability density function (pdf), pyq,1 denotes

the univariate marginal pdfs, and E{·} is the expectation operator. In acoustics we are

dealing with signals exhibiting temporal dependencies. In instantaneous BSS algorithms

and also early convolutive BSS algorithms the mutual information (3.42) was used as an

optimization criterion. However, acoustic signals are in general temporally dependent so

that for a separation only the mutual information between the output channels should

be minimized without forcing the output signals to become also temporally independent.

This requires a generalization of the mutual information which allows also for vectors,

i.e., for multivariate pdfs in the denominator of (3.42). This generalization allows us

to define the following optimization criterion which is termed “TRIple-N-Independent

component analysis for CONvolutive mixtures” (TRINICON) [BAK03a] as it simul-

taneously accounts for the three fundamental properties Nonwhiteness, Nonstationarity,

and Nongaussianity:

J (m,W) =
∞∑

i=0

β(i,m)
1

N

N−1∑

j=0

{
log

p̂y,PD(y(iL+ j))∏P
q=1 p̂yq,D(yq(iL+ j))

}

=

∞∑

i=0

β(i,m)J̃ (i,W), (3.43)

Instead of the true pdfs as used in the definition of the mutual information, the TRINI-

CON optimization criterion is based on the estimates of the true pdfs. The variable

p̂yq,D(·) is the estimate or model of the multivariate probability density function (pdf)

for channel q of dimension D and p̂y,PD(·) is the estimated joint pdf of dimension PD

over all channels. The usage of pdfs allows to exploit the nongaussianity of the signals.

Furthermore, the multivariate structure of the pdfs, which is given by the memory length

D, i.e., the number of time-lags, models the nonwhiteness of the P signals with D chosen

to 1 ≤ D ≤ L. As we can observe at each BSS output only one realisation of a random

process we also replaced the expectation operator of the mutual information (3.42) by a
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short-time average using N time instants. For the algorithms treated in this thesis the

averaging has to be done in general for N > PD time instants as will be discussed in

more detail in the respective sections. The block indices i,m refer to the blocks which are

underlying to the statistical estimation of the multivariate pdfs. For each output signal

block yq containing D samples a sensor signal block of length 2L is required according to

(3.34). The nonstationarity is taken into account by a weighting function β(i,m) with the

block indices i,m and with finite support. The weighting function is normalized according

to
∑∞

i=0 β(i,m) = 1, and allows offline, online, and block-online implementations of the

algorithms. A detailed discussion of β(i,m) will be given in Section 3.5. As an example,

β(i,m) = (1 − λ)λm−i for 0 ≤ i ≤ m, and β(i,m) = 0 else, leads to an efficient online

version allowing for tracking in time-variant environments [ABAM03].

The approach followed here is carried out with overlapping data blocks as the sensor

signal blocks of length 2L are shifted only by L samples due to the time index iL in (3.43).

Analogously to supervised block-based adaptive filtering [MAG95, BBK03], this increases

the convergence rate and reduces the signal delay. If further overlapping is desired, then

the time index iL in (3.43) is simply replaced by iL
α
. The overlap factor α with 1 ≤ α ≤ L

should be chosen suitably to obtain integer values for the time index. For clarity, we will

omit the overlap factor and will point to it when necessary.

It should be noted that the optimization criterion (3.43) can be interpreted as the

Kullback-Leibler divergence [Kul59, CT91] between the joint density of the output signals

p̂y,PD(y(iL + j)) and a source model pdf which, in the case of the BSS optimization

criterion (3.43), is based on the assumption of mutually independent source signals and

is therefore factorized with respect to the different sources. This point of view allowed

a generalization of the TRINICON optimization criterion to different source models by

replacing the denominator of (3.43) with a desired source model pdf p̂s,PD(y(iL + j))

leading to [BAK04b]

Jgen(m,W) =
∞∑

i=0

β(i,m)
1

N

N−1∑

j=0

{
log

p̂y,PD(y(iL+ j))

p̂s,PD(y(iL+ j))

}
, (3.44)

The BSS optimization criterion (3.43) is obtained from (3.44) by using the output channel

pdf factorized with respect to the channels as the source model pdf

p̂s,PD(y(iL+ j))
(BSS)
=

P∏

q=1

p̂yq,D(yq(iL+ j)). (3.45)

By additionally factorizing the output channel pdfs with respect to temporal dependencies

p̂s,PD(y(iL+ j))
(MCBD)

=

P∏

q=1

D∏

d=1

p̂yq,1(yq(iL− d+ j)), (3.46)



3.3. Generic time-domain optimization criterion and algorithmic framework 57

we obtain a source model pdf which allows to cover also multi-channel blind deconvolution

(MCBD) algorithms by this framework [BAK04b, ABK05]. MCBD algorithms have also

been applied to BSS of acoustic signals in the literature (see Section 3.2) and thus, the

relationships between the algorithms derived in this thesis and the approaches in literature

will be discussed in detail in Section 3.3.7.

Moreover, it has been shown in [BAK04b, Buc] that also a partial factorization of

p̂s,PD(y(iL+ j)) with respect to temporal dependencies is possible which was denoted as

multi-channel blind partial deconvolution (MCBPD). This allows, e.g., for speech signals,

to distinguish between the temporal correlation of the source signal introduced, e.g., by

the vocal tract and the correlation due to the reverberation. This distinction is important

for the design of dereverberation algorithms which should only minimize the influence of

the room acoustics without affecting the quality of the audio signals. Dereverberation

algorithms based on TRINICON are treated in detail in [Buc] and will not be covered in

this thesis.

3.3.3 Gradient of the optimization criterion

In this thesis, algorithms based on first-order gradients are considered. The derivation

of the gradient with respect to the demixing filter weights wpq,κ for p, q = 1, . . . , P and

κ = 0, . . . , L − 1 can either be expressed elementwise for all P 2L elements or compactly

in matrix notation. For the latter case we can use the notation already introduced in

Section 3.1.1 where the demixing filter taps have been combined to a column vector

wpq = [wpq,0, . . . , wpq,L−1]
T in (3.2). Furthermore, a combination of all channels led to the

introduction of the PL× P matrix W̌ in (3.4). Using the matrix W̌ which contains all

demixing filter elements, the gradient with respect to the demixing filter coefficients can

be expressed in matrix notation as

∇W̌J̃ (m,W) =
∂J̃ (m,W)

∂W̌
. (3.47)

In order to calculate the gradient (3.47), the TRINICON optimization criterion J̃ (m,W)

given in (3.43) has to be expressed in terms of the demixing filter coefficients wpq,κ. This

can be done by inserting the definition of the linear convolution y = WTx given in (3.33)

into J̃ (m,W) and subsequently transforming the output signal pdf p̂y,PD(y(iL+ j)) into

the PD-dimensional input signal pdf p̂x,PD(·) using the Sylvester matrix W, which is

considered as a mapping matrix for this linear transformation [Pap02]. This is shown in

detail in the Appendix B.2.1 and leads to an expression of the optimization criterion (3.43)

with respect to the Sylvester matrix W. To be able to take the derivative with respect to

W̌ instead of the Sylvester matrix W, the chain rule for the derivative of a scalar function

with respect to a matrix [Har97, PP06] is applied to the gradient (3.47) containing the

derivative with respect to W̌. Thus, (3.47) can be split up into the concatenation of the
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gradient ∇WJ̃ (m,W) = ∂J̃ (m,W)
∂W

with respect to the Sylvester matrix W and the partial

derivative ∂W

∂W̌
. The resulting gradient ∇WJ̃ (m,W) is a matrix of dimensions 2PL×PD

whereas the partial derivative ∂W

∂W̌
results in a fourth order tensor. Thus, the application

of the chain rule to (3.47) cannot be expressed in matrix notation but is given elementwise

as
∂J̃ (m,W)

∂ [wpq]g
=
∑

k,j,r,s

∂J̃ (m,W)

∂ [Wrs]k,j

·
∂ [Wrs]k,j

∂ [wpq]g
. (3.48)

In this formulation, the indices of boldface variables denote the channel-selective sub-

matrices or vectors, and the indices [·]k,j and [·]g denote the elements of the respective

submatrix or vector. Therefore, [wpq]g is the g-th element of the pq-th column vector

in matrix W̌, g ∈ {1, . . . , L}, p, q ∈ {1, . . . , P} and [Wrs]k,j is the k, j-th element of

the rs-th Sylvester submatrix of W, k ∈ {1, . . . , 2L}, j ∈ {1, . . . , D}, r, s ∈ {1, . . . , P}.
From (3.48) it can be seen that first the gradient ∇WJ̃ (m,W), i.e., the derivative of the

TRINICON optimization criterion J̃ (m,W) with respect to the elements [Wrs]k,j of the

Sylvester matrix Wrs is calculated. Subsequently, the derivative of the Sylvester matrix

element [Wrs]k,j with respect to the element [wpq]g of matrix W̌ has to be calculated. By

introducing the Kronecker delta defined as

δi,j =

{
1 for i = j

0 for i 6= j
(3.49)

the second term can be simplified due to the Sylvester structure of Wrs leading to

∂J̃ (m,W)

∂ [wpq]g
=

∑

k,j,r,s

∂J̃ (m,W)

∂ [Wrs]k,j

δp,rδq,sδk,g+j−1

=
∑

k,j

∂J̃ (m,W)

∂ [Wpq]k,j

δk,g+j−1. (3.50)

Now the derivative (3.50) with respect to [wpq]g can be written for each element g =

1, . . . , L as

∂J̃ (m,W)

∂ [wpq]1
=

D∑

j=1

∂J̃ (m,W)

∂ [Wpq]j,j

∂J̃ (m,W)

∂ [wpq]2
=

D∑

j=1

∂J̃ (m,W)

∂ [Wpq]j+1,j

(3.51)

...

∂J̃ (m,W)

∂ [wpq]L
=

D∑

j=1

∂J̃ (m,W)

∂ [Wpq]j+L−1,j
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Combining this elementwise description of the gradient with the compact matrix notation

∇W̌J̃ (m,W) is possible by introducing a new operator termed Sylvester Constraint (SC)

[BAK07] which relates the gradient with respect to W̌ and with respect to W as

∇W̌J̃ (m,W) = SC
{
∇WJ̃ (m,W)

}
. (3.52)

Thus, (3.52) represents the formulation of (3.51) in matrix notation and is illustrated

for the pq-th submatrix of ∇WJ̃ (m,W) in Fig. 3.2. It can be seen that the Sylvester

D

L

L

2L

1

Figure 3.2: Illustration of the Sylvester constraint (SC) for the gradient ∇Wpq J̃ (m,W) with

respect to the pq-th submatrix Wpq.

constraint defined by (3.51) corresponds (up to a scaling by the constant factor D) to

an arithmetic average over the elements on each diagonal of the 2L × D submatrices of

the gradient ∇WJ̃ (m,W). Thus, the 2PL× PD gradient ∇WJ̃ (m,W) will be reduced

to the PL × P gradient ∇W̌J̃ (m,W). Later on in Section 3.3.6 efficient approximated

versions of the Sylvester constraint SC will be given. Taking a look at the right-hand side

of (3.52), we see that by using the Sylvester constraint operator we simplified the task

as now the derivative of the TRINICON optimization criterion J̃ (m,W) with respect to

the Sylvester matrix W instead of W̌ has to be taken. This is easier as the optimization

criterion J̃ (m,W) can be expressed in terms of the Sylvester matrix W by transforming

the output signal pdf p̂y,PD(y(iL + j)) into the PD-dimensional input signal pdf (see

Appendix B.2.1). Thus, we are now able to calculate the derivative ∇WJ̃ (m,W) at the

right-hand side of (3.52) as shown in Appendix B.2.2. With the weighting function β(i,m)

introduced in the optimization criterion (3.43) and using (3.52) we can write the gradient



60 3. A Blind Source Separation Framework for Reverberant Environments

with respect to the demixing filters W̌ as

∇W̌J (m,W) = SC {∇WJ (m,W)}

= SC
{ ∞∑

i=0

β(i,m)∇WJ̃ (m,W)

}
(3.53)

Inserting the result for ∇WJ̃ (m,W) from Appendix B.2.2 in (3.53) finally yields the

generic HOS gradient utilizing all three signal properties

∇W̌J (m,W) = SC
{ ∞∑

i=0

β(i,m)
1

N

N−1∑

j=0

{
x(iL+ j)ΦT(y(iL+ j))

−W1D0
2PL×PD

(
WTW1D0

2PL×PD

)−1
}}

, (3.54)

with the general weighting function β(i,m) discussed in Section 3.5 and the multivariate

score function Φ(y) consisting of the stacked channel-wise multivariate score functions

Φq(yq), q = 1, . . . , P defined as

Φ(y(iL+ j)) =




−

∂p̂y1,D(y1(iL+j))

∂y1(iL+j)

p̂y1,D(y1(iL+ j))




T

, . . . ,


−

∂p̂yP ,D(yP (iL+j))

∂yP (iL+j)

p̂yP ,D(yP (iL+ j))




T


T

:=
[
ΦT

1 (y1(iL+ j)), . . . ,ΦT
P (yP (iL+ j))

]T
. (3.55)

The 2PL× PD window matrix W1D0
2PL×PD is defined as

W1D0
2PL×PD = Bdiag

{
W1D0

2L×D, . . . ,W
1D0
2L×D

}
, (3.56)

W1D0
2L×D =

[
ID×D, 0D×(2L−D)

]T
. (3.57)

The operator Bdiag{A1, . . . ,AP} denotes a block-diagonal matrix with submatrices

A1, . . . ,AP on its diagonal. For the description of window matrices (also appearing in

the DFT-domain algorithms in Section 3.4) we use the following conventions:

• The lower index of a matrix denotes its dimensions.

• P -channel matrices (as indicated by the size in the lower index) are partitioned into

P single-channel window matrices.

• The upper index describes the positions of ones and zeros. Unity submatrices are

always located at the upper left (‘10’) or lower right (‘01’) corners of the respective

single-channel window matrix. The size of these clusters is indicated in subscript

(e.g., ‘1D0’).
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The window matrix W1D0
2PL×PD appears due to the transformation of pdfs by the non-

square Sylvester matrix W (see Appendix B.2.1).

With an iterative optimization procedure, the current demixing matrix is obtained by

the recursive update equation

W̌(m) = W̌(m− 1) − µ∆W̌(m), (3.58)

where µ is a stepsize parameter, and ∆W̌(m) is the update which is set equal to

∇W̌J (m,W) for gradient descent adaptation. Due to the adaptation process, the co-

efficient matrix becomes time-variant.

Moreover, it should be noted that an extension to higher-order gradients is possible as

shown in [Buc] and leads, e.g., for the second-order gradient to the appearance of fourth-

order tensors in the coefficient update. In [Buc] it is shown that efficient algorithms can

again be obtained by using similar approximations as shown later in Section 3.4.

3.3.4 Equivariance property and natural gradient update

It is known that stochastic gradient descent, i.e., ∆W̌(m) = ∇W̌J (m,W) suffers from

slow convergence in many practical problems due to statistical dependencies in the data

being processed. In the BSS application the gradient and thus, the separation performance

depends on the MIMO mixing system. This can be observed by considering the gradient

∇WJ (m,W) with respect to the Sylvester matrix W which is related to the gradient

∇W̌J (m,W) by (3.53). The update of the overall system matrix C is then given as

∆C(m) = H2L∇WJ (m,W). To see how the mixing system H2L influences this update

we pre-multiply ∆W(m) by the Sylvester matrix H2L leading to

∆C(m) = H2L

∞∑

i=0

β(i,m)
1

N

N−1∑

j=0

{
x(iL+ j)ΦT(y(iL+ j))

−W1D0
2PL×PD

(
WTW1D0

2PL×PD

)−1
}
.(3.59)

This way it can be easily seen that ∆C(m) depends on the mixing system H2L and

therefore, on its conditioning.

Fortunately, a modification of the ordinary gradient, termed the natural gradient by

Amari [Ama98] and the relative gradient by Cardoso [CL96, Car98] (which is equivalent

to the natural gradient in the BSS application) has been developed that largely removes

all effects of an ill-conditioned mixing matrix H2L, assuming an appropriate initialization

of W. The idea of the relative gradient is based on the equivariance property. Generally

speaking, an estimator behaves equivariantly if it produces estimates that, under data

transformation, are transformed in the same way as the data [CL96]. In the context of

BSS the key property of equivariant estimators is that they exhibit uniform performance,
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e.g., in terms of bias and variance, independently of the mixing system H2L. In [BAK03b,

BAK05a] the natural/relative gradient has been extended to the case of Sylvester matrices

W yielding

∇NG
W J (m,W) =

∞∑

i=0

β(i,m)W(i)WT(i)∇WJ̃ (i,W). (3.60)

As we finally want to obtain the natural gradient with respect to the demixing filter

weights W̌ we have to apply the Sylvester constraint to (3.60) yielding

∇NG
W̌

J (m,W) = SC
{ ∞∑

i=0

β(i,m)W(i)WT(i)∇WJ̃ (i,W)

}
. (3.61)

Together with the expression (B.50) for ∇WJ̃ (i,W) from Appendix B.2 this immediately

leads to the following expression for the HOS natural gradient

∇NG
W̌

J (m,W) = SC
{ ∞∑

i=0

β(i,m)W(i)
1

N

N−1∑

j=0

{
y(iL+ j)ΦT(y(iL+ j)) − I

}
}
,

(3.62)

which is then used as update ∆W̌(m) in (3.58).

In the derivation of the natural gradient for instantaneous mixtures, the fact that

the demixing matrices form a so-called Lie group has played an important role [Ama98].

However, the block-Sylvester matrices W after (3.32), (3.36) do not form a Lie group

(as they are generally not invertible). To see that the above formulation of the natural

gradient is indeed justified, we pre-multiply the natural gradient with respect to the

Sylvester matrix W given in (3.60) with H2L, which leads to

∆C(m) =
∞∑

i=0

β(i,m)H2LW(i)
1

N

N−1∑

j=0

{
y(iL+ j)ΦT(y(iL+ j)) − I

}

=

∞∑

i=0

β(i,m)C(i)
1

N

N−1∑

j=0

{
y(iL+ j)ΦT(y(iL+ j)) − I

}
. (3.63)

The matrix ∆C(m) does not depend on the mixing matrix as it has been absorbed as an

initial condition into C(0) = H2LW(0). This leads to the desired uniform performance

of (3.62) and proves the equivariance property of the natural gradient. Possible choices

of the initial value W(0) will be discussed in Section 3.3.6.

Another well-known advantage of using the natural gradient is a reduction of the com-

putational complexity of the update as the inversion of the PD×PD matrix WTW1D0
2PL×PD

in (3.54) does not need to be carried out in (3.62). Furthermore, it can be shown for spe-

cific pdfs (see Section 3.3.7) that instead of N > PD for the gradient update the condition

N > D is sufficient for the averaging in the natural gradient update due to multivariate

score functions Φ(y), which lead only to the inversion of D ×D channel-wise matrices.
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The update in (3.62) represents a so-called holonomic algorithm as it imposes the

constraint y(iL+j)ΦT(y(iL+j)) = I on the magnitudes of the recovered signals. However,

when the source signals are nonstationary, these constraints may force a rapid change in

the magnitude of the demixing matrix leading to numerical instabilities in some cases

(see, e.g., [CA02]). By replacing I in (3.62) with the term bdiag{y(iL+ j)ΦT(y(iL+ j))}
the constraint on the magnitude of the recovered signals can be avoided. This is termed

the nonholonomic natural gradient algorithm which is given as

∇NG
W̌

J (m,W) = SC
{ ∞∑

i=0

β(i,m)W(i)
1

N

N−1∑

j=0

{
y(iL+ j)ΦT(y(iL+ j))

−bdiag{y(iL+ j)ΦT(y(iL+ j))}
}
}
. (3.64)

Here, the bdiag operator sets all channel-wise cross-terms to zero. Note that the nonholo-

nomic property can also be directly taken into account by modifying the cost function as

shown in [BAK03a].

Due to the reduced computational complexity and the improved convergence behavior,

the remainder of this thesis will focus on algorithms based on the natural gradient. In

particular the nonholonomic variant (3.64) will be chosen because of the nonstationary

nature of acoustic signals.

3.3.5 Covariance versus correlation method

In the previous sections, the gradient update (3.54) and natural gradient updates (3.62),

(3.64) of the optimization criterion have been derived. These updates exhibit short-time

HOS cross-relation matrices which are estimated by time-averaging as

RyΦ(y)(i) =
1

N

N−1∑

j=0

y(iL+ j)ΦT(y(iL+ j)), (3.65)

RxΦ(y)(i) =
1

N

N−1∑

j=0

x(iL+ j)ΦT(y(iL+ j)), (3.66)

where RyΦ(y) has dimensions PD × PD and RxΦ(y) is a 2PL × PD matrix. From

linear prediction problems it is known that in principle, there are two basic methods for

the block-based estimation of the SOS short-time auto- and cross-correlation matrices

for nonstationary signals: the so-called covariance method and the correlation method

[MG76, DHP00, VHH98, Hay02]. It should be emphasized that the terms covariance

method and correlation method are not based upon the standard usage of the covariance
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function as the correlation function with the means removed. In the following the two

methods are first discussed for the case of SOS and then this distinction is analogously

introduced for the cross-relation matrices occurring in HOS BSS algorithms.

Covariance method

Second-order statistics (SOS). As in the remainder of this thesis only natural

gradient algorithms are considered, we show the difference between both estimation meth-

ods using the cross-relation matrix of the output signals RyΦ(y) defined in (3.65) and the

SOS cross-correlation counterpart defined for each channel as

Rypyq
(i) =

1

N

N−1∑

j=0

yp(iL+ j)yT
q (iL+ j). (3.67)

In this thesis acoustic signals are considered which are real-valued quantities. However,

with regard to the cross-spectral density matrices derived later in Section 3.4, we will

formulate the estimation of the cross-relation matrices (3.73) for complex signals and thus,

the transpose operator T is replaced by the hermitian operator H denoting transposition

of the conjugate complex values. The cross-correlation matrix (3.67) can be written

compactly in matrix notation

Rypyq
(i) =

1

N
Yp(i)Y

H
q (i), (3.68)

by defining the D ×N Toeplitz matrix

Yp(i) = [yp(iL), . . . ,yp(iL+N − 1)]

=




yp(iL) · · · yp(iL+N − 1)

yp(iL− 1)
. . . yp(iL+N − 2)

...
. . .

...

yp(iL−D + 1) · · · yp(iL−D +N)



. (3.69)

The definition of the cross-correlation matrix in (3.67), (3.68) describes the estimation

method for the true correlation matrix E{ypy
H
q } which is commonly denoted as the co-

variance method (see e.g., [MG76]). In this case, the element of Rypyq
(i) in the u-th row

and v-th column (u, v ∈ {0, . . . , D − 1}) is given as

rypyq
(i, u, v) =

1

N

iL+N−1∑

n=iL

yp(n− u)y∗q(n− v). (3.70)

where ∗ denotes the conjugate complex operator. This leads in general to a cross-

correlation matrix exhibiting no special structure as each element (3.70) of the matrix

is computed by evaluating the signals at different time instants. Therefore the matrix
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elements depend on the time-shift u and v of the respective signals. A combination of all

channels leads to

Ryy(i) =
1

N

N−1∑

j=0

y(iL+ j)yH(iL+ j)

=
1

N
Y(i)YH(i), (3.71)

with

Y(i) = [YT
1 (i), . . . ,YT

P (i)]T. (3.72)

Higher-order statistics (HOS). The covariance method which originates from

linear prediction techniques also appears in the estimation of the HOS cross-relation

matrices in the natural gradient algorithms considered in this thesis. The cross-relation

matrix of the output signals RyΦ(y) defined in (3.65) is composed of the D ×D channel-

wise submatrices

RypΦq(yq)(i) =
1

N

N−1∑

j=0

yp(iL+ j)ΦH
q (yq(iL+ j)), (3.73)

where the multivariate score function Φq(yq(iL + j)) of the q-th output channel is de-

fined according to (3.55). Analogously, the cross-relation matrix (3.73) can be written

compactly in matrix notation

RypΦq(yq)(i) =
1

N
Yp(i)Y

H
Φq

(i) (3.74)

by using Yp(i) defined in (3.69) and defining the D ×N matrix

YΦq
(i) = [Φq(yq(iL)), . . . ,Φq(yq(iL+N − 1))]

=




Φq,0(yq(iL)) · · · Φq,0(yq(iL+N − 1))

Φq,−1(yq(iL))
. . . Φq,−1(yq(iL+N − 1))

...
. . .

...

Φq,−D+1(yq(iL)) · · · Φq,−D+1(yq(iL+N − 1))



, (3.75)

where the elements of the multivariate score function Φq(yq) for the q-th channel are

given as Φq(yq) = [Φq,0(yq), . . . ,Φq,−D+1(yq)]
T. It can be observed that the matrix Yp(i)

exhibits a Toeplitz structure whereas YΦq
(i) is not necessarily Toeplitz as the multivariate

score function Φ(·) is applied to each column. The definition of the cross-relation matrices

in (3.73), (3.74) can be interpreted as an estimation according to the covariance method

as the element in the u-th row and v-th column (u, v ∈ {0, . . . , D − 1}) of RypΦq(yq)(i) is

given by

rypΦq(yq)(i, u, v) =
1

N

iL+N−1∑

n=iL

yp(n− u)Φ∗
q,−v(yq(n)). (3.76)
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Analogously to the SOS case, this leads in general to a cross-relation matrix exhibiting

no special structure as each element (3.76) of the matrix depends on the time-shift u of

yp and on the index v of the multivariate score function of the respective signals.

A combination of all channel-wise cross-relation matrices allows to express (3.65) con-

veniently in matrix notation as

RyΦ(y)(i) =
1

N
Y(i)YH

Φ(i), (3.77)

with Y(i) defined in (3.72) and

YΦ(i) = [YT
Φ1

(i), . . . ,YT
ΦP

(i)]T. (3.78)

Correlation method

Second-order statistics (SOS). If the cross-correlation matrix is instead esti-

mated using the correlation method then the cross-correlation elements do not de-

pend on the individual time-shifts u, v but only on the relative time-lag ṽ = v − u

(ṽ ∈ {−D + 1, . . . , D − 1}) of the signals yp(n− u) and yq(n− v)). This leads to

r̃ypyq
(i, ṽ) =





1

N

iL+N−ṽ−1∑

n=iL

yp(n + ṽ)y∗q (n) for ṽ ≥ 0

1

N

iL+N−1∑

n=iL−ṽ

yp(n+ ṽ)y∗q(n) for ṽ < 0

, (3.79)

where it can be seen that the number of summation elements decreases with increasing

time-lag ṽ. The usage of the correlation method leads to a Toeplitz structure of the D×D
correlation matrix. To indicate the estimation by the correlation method, a tilde is used

and thus, the Toeplitz correlation matrix is given as

R̃ypyq
(i) =




r̃ypyq
(i, 0) · · · r̃ypyq

(i, D − 1)

r̃ypyq
(i,−1)

. . . r̃ypyq
(i, D − 2)

...
. . .

...

r̃ypyq
(i,−D + 1) · · · r̃ypyq

(i, 0)



. (3.80)

Analogously to the covariance method in (3.68) we can express the cross-correlation matrix

(3.80) also for the correlation method as a matrix product

R̃ypyq
(i) =

1

N
Ỹp(i)Ỹ

H
q (i) (3.81)
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with the D ×N +D − 1 matrix

Ỹp(i) =




yp(iL) . . . yp(iL+N − 1) 0 . . . 0

0 yp(iL) . . . yp(iL+N − 1)
. . .

...
...

. . .
. . . . . .

. . . 0

0 . . . 0 yp(iL) . . . yp(iL+N − 1)



.

(3.82)

The combination of all channels leads to

R̃yy(i) =
1

N
Ỹ(i)ỸH(i), (3.83)

with

Ỹ(i) = [ỸT
1 (i), . . . , ỸT

P (i)]T. (3.84)

It can be seen from the definition of the matrix Ỹp(i) that the correlation method only

requires N signal values for estimating the cross-correlation matrix whereas the covariance

method needs N +D− 1 values. This difference between both methods can be explained

by the illustration in Fig. 3.3 where the signals used for the calculation of the element

rypyq
(i, u, v) of the covariance method and r̃ypyq

(i, ṽ) of the correlation method are depicted

for v = 0, u > 0 and ṽ = v − u, i.e., ṽ < 0. It can be seen in Fig. 3.3a that for the

(a)

(b)

n

n

N

yp(n− u)

yq(n− v)

yp(n+ ṽ)

yq(n)

n = iL n = iL+N − 1

Figure 3.3: Illustration of the estimation of second-order cross-correlations by (a) covariance

and (b) correlation method for v = 0, u > 0 and ṽ = v − u, i.e., ṽ < 0.

covariance method the signals are first shifted by u and v samples, respectively and then

windowed by a window of length N . For the correlation method (Fig. 3.3b) the windowing
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is applied to the signal before the relative shift of ṽ samples and thus, it can be seen that

the number of summation elements decreases with an increasing absolute value of the

relative shift ṽ. The different windowing procedure leads to the fact that the correlation

method only needs N signal values in contrast to the N + D − 1 for the covariance

method. Moreover, it should be pointed out that the correlation method can be seen

as an approximation of the more accurate covariance method which follows by assuming

stationarity within each block i and compensating for the bias due to the nonuniform

number of contributions to the sum. Therefore, the covariance method is sometimes

also referred to as the cross-correlation function in the “nonstationary case” whereas the

correlation method refers to the “stationary case” [DHP00]. Due to the Toeplitz structure

of the cross-correlation matrices the correlation method exhibits a lower computational

complexity and is thus used for the implementation of the SOS algorithms evaluated

experimentally in Section 3.6.

Higher-order statistics (HOS). The correlation method can also be applied to

the estimation of the cross-relation matrices RypΦq(yq)(i). In this case their elements

do not depend on the individual indices u, v but only on the relative index ṽ = v − u

(ṽ ∈ {−D + 1, . . . , D − 1}) of the signals yp(n− u) and Φ∗
q,−v(yq(n)) leading to

r̃ypΦq(yq)(i, ṽ) =





1

N

iL+N−ṽ−1∑

n=iL

yp(n + ṽ)Φ∗
q,0(yq(n)) for ṽ ≥ 0

1

N

iL+N−1∑

n=iL−ṽ

yp(n+ ṽ)Φ∗
q,0(yq(n)) for ṽ < 0

. (3.85)

It can be seen that the number of summation elements decreases with increasing time-

lag ṽ. As the elements in (3.85) only depend on the relative time-delay ṽ, this leads

analogously to the SOS case to a Toeplitz structure of the D × D matrix RypΦq(yq)(i)

which can then be expressed as

R̃ypΦq(yq)(i) =




r̃ypΦq(yq)(i, 0) · · · r̃ypΦq(yq)(i, D − 1)

r̃ypΦq(yq)(i,−1)
. . . r̃ypΦq(yq)(i, D − 2)

...
. . .

...

r̃ypΦq(yq)(i,−D + 1) · · · r̃ypΦq(yq)(i, 0)



. (3.86)

We can express the cross-relation matrix (3.86) as a matrix product

R̃ypΦq(yq)(i) =
1

N
Ỹp(i)Ỹ

H
Φq

(i), (3.87)
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with Ỹp(i) defined in (3.82) and the D ×N +D − 1 matrix

ỸΦq
(i) =




Φq,0(yq(iL)) . . . Φq,0(yq(iL+N − 1)) 0 . . . 0

0
. . . . . .

. . .
. . .

...
...

. . .
. . . . . .

. . . 0

0 . . . 0 Φq,0(yq(iL)) . . . Φq,0(yq(iL+N − 1))



.

(3.88)

It can be seen in (3.88) that the same nonlinear weighting caused by the multivariate

score function is applied to each diagonal of ỸΦq
. A combination of all channel-wise cross-

relation matrices allows to express the estimation of R̃yΦ(y) via the correlation method

conveniently in matrix notation as

R̃yΦ(y)(i) =
1

N
Ỹ(i)ỸH

Φ(i), (3.89)

with

ỸΦ(i) = [ỸT
Φ1

(i), . . . , ỸT
ΦP

(i)]T. (3.90)

3.3.6 Efficient Sylvester Constraint realizations and resulting

initialization methods

In Section 3.3.3 the Sylvester constraint operator was introduced in (3.52) which resulted

in averaging the elements on the diagonals as illustrated in Fig. 3.2. This is computa-

tionally expensive as all P 2LD elements of the natural gradient ∇NG
W J (m) have to be

calculated in order to perform the averaging. However, it is possible to approximate

the Sylvester constraint (SC) by calculating only certain elements of the natural gradi-

ent ∇NG
W J (m) which neglects the averaging process but still allows us to obtain all P 2L

relevant values for the filter updates. In the following two possibilities will be discussed

for the nonholonomic natural gradient (3.64) which result in powerful efficient algorithms.

Using the definition of the cross-relation matrix (3.65), the nonholonomic natural gradient

(3.64) derived from the cost function (3.43) can be expressed as

∇NG
W̌

J (m,W) =

∞∑

i=0

β(i,m)∇NG
W̌

J̃ (i,W)

=

∞∑

i=0

β(i,m)SC
{
∇NG

W J̃ (i,W)
}

=
∞∑

i=0

β(i,m)SC
{
W(i)boff

{
RyΦ(y)(i)

}}
, (3.91)
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where the operator boff{A} = A−bdiag{A}, i.e., it sets all diagonal submatrices to zero.

The Sylvester constraint is applied to the 2PL× PD update ∇NG
W J̃ (i,W) which results

from the matrix multiplication of the 2PL×PD Sylvester matrix W(i) with the PD×PD
block-offdiagonal matrix boff

{
RyΦ(y)(i)

}
. This matrix multiplication can be expressed

channel-wise and results for the pq-th update ∇NG
Wpq

J̃ (i,W) of dimension 2L×D in

∇NG
Wpq

J̃ (i,W) =

P∑

t=1,t6=q

Wpt(i)RytΦq(yq)(i). (3.92)

Based on this channel-wise matrix product two different approximations of the Sylvester

constraint are now investigated.

Column Sylvester constraint SCC

In Section 3.3.3 it was rigorously derived that the updates for the filter weights wpq

contained in the PL×P matrix W̌ are obtained by the Sylvester constraint SC using the

averaging operation depicted in Fig. 3.2. One possible approximation which still provides

the updates for the filter weights wpq is to compute only the first L elements of the first

column of each 2L × D submatrix ∇NG
Wpq

J̃ (i,W) in (3.92). This neglects the averaging

operation and thus reduces the matrix product to a matrix-vector product. This approach

is termed column Sylvester constraint SCC and an illustration of SCC is given in Fig. 3.4a.

There it can be seen that D = L has to be chosen to be able to independently adjust all

filter updates for all taps κ = 0, . . . , L− 1. Note that in general any other column could

be chosen.

Furthermore, due to the Sylvester structure of Wpt(i) the matrix-vector product rep-

resents a convolution of the filter weight vector wpt(i) with the first column of the cross-

relation matrix RytΦq(yq)(i). By implementing the linear convolution expressed by the

matrix-vector product as a fast convolution using fast Fourier transforms (FFTs) the

computational complexity can thus be reduced to O(logL). Exploiting this fact led to

the efficient real-time implementation presented in [ABYK04, ABYK06].

Row Sylvester Constraint SCR

If the number of time-lags D used to exploit the nonwhiteness property is chosen asD = L

then another possible approximation of the Sylvester constraint (SC) is to compute only

the L-th row of the update matrix ∇NG
Wpq

J̃ (i,W). Thus, again the matrix product reduces

to a matrix-vector product. This method is termed row Sylvester constraint SCR and is

illustrated in Fig. 3.4b.

In the case of SCR the matrix-vector product can in general not be written as a convo-

lution of two sequences as the matrix RytΦq(yq)(i) does not necessarily exhibit any special

structure. However, if the correlation method (see Section 3.3.5) is used for estimating
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D = L

D = L

D = L

2L

Cross-relation

matrix

RytΦq(yq)

Sylvester
matrix Wpt

each column con-
tains the filter
weights wpt

obtain updates for wpq by
picking the first L elements

of the 1st column (SCC)

(a) Sylvester constraint SCC

D = L

D = L

D = L

2L

Cross-relation

matrix

RytΦq(yq)

Sylvester
matrix Wpt

each column con-
tains the filter
weights wpt

obtain updates for
wpq by picking the

L-th row (SCR)

(b) Sylvester constraint SCR
Figure 3.4: Illustration of the channel-wise matrix-matrix product Wpt(i)RytΦq(yq)(i) when

using the Sylvester constraints SCC and SCR.

the cross-relation matrices, then they exhibit a Toeplitz structure and are expressed as

R̃ytΦq(yq)(i). This approximation allows the expression of the matrix-vector product as

the convolution of the filter weights wpq with the two-sided cross-relation sequence.

Comparing the linear convolutions resulting from SCC and SCR shows that different

cross-relation sequences are used for the convolution. In this discussion, it is assumed that

for both Sylvester constraints the correlation method is used to estimate the cross-relation

sequences. The version using SCC convolves the filter weights with the one-sided sequence

of cross-relation elements r̃ytΦq(yq)(i, ṽ), ṽ = 0, . . . ,−L + 1 resulting in the filter update

for the κ-th tap

∇NG
wpq,κ

J̃ (i,W)
(SCC)
=

κ∑

ṽ=0

wpt,ṽ(i)r̃ytΦq(yq)(i, ṽ − κ). (3.93)

The row Sylvester constraint SCR uses the two-sided sequence r̃ytΦq(yq)(i, ṽ), ṽ = −L +

1, . . . , L− 1 resulting in a linear convolution

∇NG
wpq,κ

J̃ (i,W)
(SCR)
=

L−1∑

ṽ=0

wpt,ṽ(i)r̃ytΦq(yq)(i, ṽ − κ). (3.94)

These two implementation schemes have a crucial effect on the properties of the resulting
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algorithm (see experiments in Section 3.6) and on the suitable initialization of wpq as will

be discussed in the following.

Appropriate initialization methods

When applying the previously derived BSS algorithms to realistic environments for P = 2,

i.e., two sources and two microphones, we can distinguish two cases of acoustical scenarios

(Fig. 3.5). From Section 3.1 we know that the demixing system contains the mixing filters

in a rearranged order so that for each output channel blind interference cancellation is

performed. Viewing BSS as blind interference cancellation allows to suggest possible

initialization methods for both scenarios shown in Fig. 3.5. In the two-dimensional setup

shown in Fig. 3.5a the two sources are located in two halfplanes and thus only causal FIR

filters wpq are needed to achieve interference cancellation as only delayed direct paths

and reflections have to be modeled. Thus, the initialization of wpp (p = 1, 2) with a

unit impulse at the first tap wpp,0 = 1 is sufficient while wpt,κ = 0 for all κ and t 6= p.

On the other hand, if the sources are in the same halfplane as in Fig. 3.5b, then for an

a) b)

s1

s1

s2

s2

h11
h11

h12

h12

h21

h21

h22

h22

x1 x1

x2 x2

w11 w11

w12 w12

w21 w21

w22 w22

y1 y1

y2 y2

demixing system demixing system

Figure 3.5: BSS setups for P = 2 requiring (a) only causal delays and (b) causal and acausal

delays for the demixing FIR filters wpq.

initialization with wpp,0 = 1 (and if no permutation should be present, i.e., y1 should

be an estimate of s1) a noncausal filter w21 is required. Analogously, if the sources are

both in the other halfplane, w12 must be noncausal. For scenarios with P > 2 there will

always be a need for noncausal filters. In practice noncausal filters can be implemented

by initializing the adaptive filters wpp,κ with a shifted unit impulse. This initialization

can be interpreted as shifting the point of origin which then allows both, causal and

acausal filter taps. An appropriate shift is determined by the array geometry (i.e., for

P = 2 by the distance between the sensors) and the resulting maximum possible delay
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of the arriving signals between the sensors. This technique is also used in the design

of fixed beamformers or in adaptive beamforming to be able to steer the spatial beam

into all directions [vVB88]. As pointed out above, BSS can be seen as blind interference

cancellation similar to conventional adaptive beamforming and thus, the approach of

initialization with a shifted unit impulse is applicable.

The choice of initialization method also determines the suitable approximation of the

Sylvester constraint SC. In the case of causal mixtures (Fig. 3.5a), i.e., initialization with

wpp,0 = 1, both Sylvester constraints SCC and SCR are possible. On the other hand for

noncausal mixtures it is necessary to initialize with a shifted unit impulse such as, e.g.,

wpp,L/2 = 1. When evaluating the matrix product resulting from SCC (Fig. 3.4a) for the

initialization wpp,L/2 = 1 it can be seen that all filter updates for the demixing filters wpq,κ

for 0 ≤ κ ≤ L/2 − 1 would be equal to zero, i.e., these filter coefficients could not be

adapted. Thus, for the initialization with a shifted unit impulse only SCR can be applied.

It can be concluded that if no a priori information about the location of the sources is

available then the Sylvester constraint SCR together with an initialization using a shifted

unit impulse should be applied due to its increased generality. Recall that then the

correlation method is preferable for estimating the cross-correlation matrix because of its

computational advantages over the covariance method. This applies also to the case for

systems with P > 2. If it is known that the sources for a BSS system with P = 2 are

in two halfplanes (e.g. car environment with array at the interior mirror), then also the

slightly more robust (see [ABK05]) SCC can be used.

3.3.7 Approximations leading to known and novel algorithms

The natural gradient update (3.64) rule provides a very general basis for BSS of con-

volutive mixtures. However, to apply it to real-world scenarios, the multivariate score

function (3.55) has to be estimated, i.e., we have to estimate P D-dimensional multivari-

ate pdfs p̂yq ,D(yq(iL + j)), q = 1, . . . , P . In general, this is a very challenging task, as it

effectively requires estimation of all possible higher-order cumulants for a set of D output

samples, where D may be on the order of several hundred or thousand in real acoustic

environments.

In Section 3.3.7.1 we will present an efficient solution for the problem of estimating the

multivariate pdfs by assuming so-called spherically invariant random processes (SIRPs).

Moreover, efficient realizations based on second-order statistics will be derived in Sec-

tion 3.3.7.2 by utilization of the multivariate Gaussian pdf. In Section 3.3.7.3 it will be

shown how the approximation of multivariate pdfs by univariate pdfs leads to MCBD

algorithms. Finally, relationships to well-known algorithms are shown.
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3.3.7.1 Higher-order statistics realization based on multivariate pdfs

Early experimental measurements [Dav52] indicated that the pdf of speech signals in the

time domain can be approximated by exponential distributions such as the Gamma or

Laplacian pdf. Later on, a special class of multivariate pdfs based on the assumption of

spherically invariant random processes (SIRPs) was introduced in [BS87] to model band-

limited telephone speech. The SIRP model is representative for a wide class of stochastic

processes [Yao73, Gol76, PSS00, Sel06] and it is very attractive since multivariate pdfs

can be derived analytically from the corresponding univariate probability density function

together with the correlation matrices covering multiple time-lags. The correlation matri-

ces can be estimated from the data while for the univariate pdf appropriate models can be

assumed or the univariate pdf can be estimated based on parameterized representations,

such as the Gram-Charlier or Edgeworth expansions [Com94, HKO01].

The general model of a zero-mean non-white SIRP of D-th order for channel q is given

by [BS87]

p̂yq ,D(yq(iL+ j)) =
1√

πDdet(Ryqyq
(i))

fyq ,D

(
yT

q (iL+ j)R−1
yqyq

(i)yq(iL+ j)
)

(3.95)

with the D × D correlation matrix Rypyq
defined in (3.68) and the function fyq,D(·)

depending on the chosen univariate pdf. As the best known example, the multivariate

Gaussian can be viewed as a special case of the class of SIRPs. The multivariate pdfs are

completely characterized by the scalar function fyq ,D(·) and Ryqyq
. Due to the quadratic

form yT
q R−1

yqyq
yq, the pdf is spherically invariant which means for the bivariate case (D =

2) that independently of the choice of fyq ,D(·) the bivariate pdfs based on the SIRP

model exhibit ellipsöıdal or circular contour lines (see Fig. 3.6). The function fyq,D(·) is

determined by the choice of the univariate pdf and can be calculated by using the so-called

Meijer’s G-functions as detailed in [Bre82, BS87].

In [Yao73] it was shown that the SIRP pdf can also be expressed as a random mixture

of D-dimensional Gaussian pdfs. This is based on the decomposition of the column vector

yq of length D given for zero-mean random variables as

yq =
√
z · v, (3.96)

where the column vector v of length D exhibits a multivariate Gaussian pdf with the

correlation matrix E{vvT} and z is a non-negative scalar with distribution p̂z,1(z). Then

yq is denoted as a normal variance mixture or scale mixture of Gaussians. The multivariate

SIRP pdf is then obtained by calculating

p̂yq,D(yq) =

∫ ∞

0

p̂yq|z,D(yq|z)p̂z,1(z)dz (3.97)

which can be seen as an alternative to the computation of the SIRP pdf using (3.95) and

Meijer’s G-functions. It should be noted that the relationship of the correlation matrices

of yq and v is given as E{yqy
T
q } = z · E{vvT} [Yao73].
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Figure 3.6: Illustration of a bivariate SIRP pdf (i.e., D = 2).

By introducing SIRPs into the BSS optimization criterion we obtain a consider-

ably simplified expression for the multivariate score function (3.55) as first presented

in [BAK03a]. After applying the chain rule to (3.95), the multivariate score function for

the q-th channel can be expressed as

Φq(yq(iL+ j)) = −
∂p̂yq,D(yq(iL+j))

∂yq(iL+j)

p̂yq,D(yq(iL+ j))

= 2


−

∂fyq,D(uq(iL+j))

∂uq(iL+j)

fyq,D(uq(iL+ j))




︸ ︷︷ ︸
:=φyq,D(uq(iL+j))

R−1
yqyq

(i)yq(iL+ j), (3.98)

For convenience, we call the scalar function φyq,D(uq(iL + j)) the SIRP score of channel

q and the scalar argument given as the quadratic form is defined as

uq(iL+ j) = yT
q (iL+ j)R−1

yqyq
(i)yq(iL+ j). (3.99)

From (3.98) it can be seen that the estimation of multivariate pdfs reduces to an estimation

of the correlation matrix together with a computation of the SIRP score which can be

determined by choosing suitable models for the multivariate SIRP pdf.

In [BS87, GZ03] it was shown that the spherically symmetric multivariate Laplacian

pdf which exhibits Laplacian marginals is a good model for long-term properties of speech

signals in the time-domain. A derivation of the multivariate Laplacian based on SIRPs
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can be found in, e.g., [BS87, KKP01, EKL06, Sel06] and leads to

p̂yq,D(yq(iL+j)) =
1√

πD det{Ryqyq
(i)}

(
1√

2uq(iL+ j)

)D/2−1

KD/2−1

(√
2uq(iL+ j)

)
,

(3.100)

and Kν(·) denotes the ν-th order modified Bessel function of the second kind. Compar-

ing (3.95) and (3.100) shows that for the multivariate Laplacian SIRP pdf the function

fyq,D(uq(iL+ j)) is given as

fyq,D(uq(iL+ j)) =

(
1√

2uq(iL+ j)

)D/2−1

KD/2−1

(√
2uq(iL+ j)

)
. (3.101)

The SIRP score for the multivariate Laplacian SIRP pdf can be straightforwardly derived

by using the relation for the derivative of a ν-th order modified Bessel function of the

second kind given as [AS72, Sel06]

∂Kν

(√
2uq

)

∂
√

2uq

=
ν√
2uq

Kν

(√
2uq

)
−Kν+1

(√
2uq

)
, (3.102)

and is obtained as

φyq,D(uq(iL+ j)) =
1√

2uq(iL+ j)

KD/2

(√
2uq(iL+ j)

)

KD/2−1

(√
2uq(iL+ j)

) . (3.103)

It should be noted that a slightly different but equivalent formulation to (3.103) was given

in [BAK03a]. In practical implementations the ν-th order modified Bessel function of the

second kind Kν(
√

2uq) may be approximated as [AS72]

Kν(
√

2uq) =

√
π

2
√

2uq

e−
√

2uq

(
1 +

4ν2 − 1

8
√

2uq

+
(4ν2 − 1)(4ν2 − 9)

2!(8
√

2uq)2
+ . . .

)
. (3.104)

Having derived the multivariate score function (3.98) for the SIRP model, we can now

insert it into the generic HOS natural gradient update equation with its nonholonomic

extension (3.64). Considering the fact that the auto-correlation matrices are symmetric so

that
(
R−1

yqyq

)T

= R−1
yqyq

leads to the following expression for the nonholonomic HOS-SIRP

natural gradient :

∇NG
W̌

J (m) = SC
{

2

∞∑

i=0

β(i,m)W(i)
{
Ryφ(y)(i) − bdiag{Ryφ(y)(i)}

}
bdiag−1{Ryy(i)}

}

(3.105)
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with the second-order correlation matrix Ryy defined in (3.71) and Ryφ(y) consisting of

the channel-wise submatrices Rypφ(yq) given as

Rypφ(yq)(i) =
1

N

N−1∑

j=0

yp(iL+ j)φyq,D(uq(iL+ j))yT
q (iL+ j). (3.106)

The SIRP score φyq,D(·) of channel q in (3.106) is a scalar value function which causes

a weighting of the correlation matrix and is defined in (3.98). With regard to a DFT-

domain formulation we can formulate Rypφ(yq) analogously to (3.71) by using matrices

instead of vectors and for a concise formulation we replace the transpose operator (·)T by

the hermitian operator (·)H leading to

Rypφ(yq)(i) =
1

N
Yp(i)Λ

H
q (i)YH

q (i), (3.107)

where the nonlinear weighting by the multivariate score function is expressed using (3.99)

as a diagonal N ×N matrix given as

Λq(i) = φyq,D

(
diag

{
YH

q (i)R−1
yqyq

(i)Yq(i)
})

, (3.108)

where the operator diag{A} sets all off-diagonal elements of matrix A to zero and the

SIRP score function φyq,D(·) is applied element-wise to the diagonal matrix in its argument.

As only channel-wise submatrices have to be inverted in (3.105) it is sufficient to choose

N > D instead of N > PD for the estimation of Ryy(i). Moreover, from the update

equation (3.105), it can be seen that the SIRP model leads to an inherent normalization

by the auto-correlation submatrices. This becomes especially obvious if the update (3.105)

is written explicitly for a 2-by-2 MIMO system leading to

∇NG
W̌

J (m,W) = SC
{

2
∞∑

i=0

β(i,m)W(i)

[
0 Ry1φ(y2)(i)R

−1
y2y2

(i)

Ry2φ(y1)(i)R
−1
y1y1

(i) 0

]}
.

(3.109)

The normalization is important as it provides good convergence even for correlated signals

such as speech and also for a large number of filter taps. The normalization resembles the

recursive least-squares (RLS) algorithm in supervised adaptive filtering where also the

inverse of the auto-correlation matrix is computed [Hay02]. To obtain efficient implemen-

tations, the normalization by the computationally demanding inverse of the D×D matrix

can be approximated in several ways as shown in Section 3.3.8 and 3.4.3.1. Additionally,

for a real-time implementation also the argument uq of the SIRP score function φyq,D(uq)

has to be calculated efficiently by using suitable approximations as will be shown in Sec-

tion 3.4.3.2. Moreover, it should be pointed out that the matrix multiplication in (3.109)

with the Sylvester matrix W can be interpreted as a convolution (see Section 3.3.6) and

thus, efficient implementations using fast convolutions are possible.
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3.3.7.2 Second-order statistics realization based on the multivariate Gaussian

pdf

Using the model of the multivariate Gaussian pdf leads to a second-order realization of the

BSS algorithm utilizing the nonstationarity and the nonwhiteness of the source signals.

The multivariate Gaussian pdf

p̂yq,D(yq(iL+ j)) =
1√

(2π)Ddet(Ryqyq
(i))

e−
1
2
yT

q (iL+j)R−1
yqyq (i)yq(iL+j) (3.110)

is inserted in the expression for the multivariate score function (3.55) whose elements

reduce to

Φq(yq(iL+ j)) = R−1
yqyq

(i)yq(iL+ j). (3.111)

Inserting (3.111) into the natural gradient update (3.62) yields the generic SOS natural

gradient

∇NG
W̌

J (m,W) = SC
{ ∞∑

i=0

β(i,m)W(i) {Ryy(i) − bdiagRyy(i)} bdiag−1 Ryy(i)

}
.

(3.112)

Comparing (3.112) to the HOS-SIRP update (3.105) shows that due to the fact that only

SOS are utilized, we obtain the same update with the nonlinearity (3.103) omitted, i.e.,

φyq,D(uq(iL + j)) = 1, q = 1, . . . , P . Therefore, the SOS natural gradient update also

exhibits the inherent normalization by the auto-correlation matrices which leads to very

robust convergence behavior in real-world environments. For the 2×2 case we can express

(3.112) as

∇NG
W̌

J (m,W) = SC
{ ∞∑

i=0

β(i,m)W(i)

[
0 Ry1y2(i)R

−1
y2y2

(i)

Ry2y1(i)R
−1
y1y1

(i) 0

]}
.

(3.113)

Moreover, due to the inversion of channel-wise D × D submatrices, N > D instead of

N > PD is again sufficient for the estimation of the correlation matrices. The estimation

of the correlation matrices can be done according to the correlation or covariance method

as outlined in Section 3.3.5. Furthermore, it is important to note that the matrix product

of Sylvester matrices Wpq and the remaining matrices in the update equation (3.113) can

be described by linear convolutions.

In Fig. 3.7 the structure of the cost function in the case of SOS and idealized/simplified

mechanism of the adaptation update (3.112) is illustrated. By assuming the multivariate

Gaussian pdf (3.110) and then minimizing J (m,W), all cross-correlations for D time-

lags are reduced and thus the algorithm exploits nonwhiteness. Nonstationarity is utilized

by minimizing the correlation matrices simultaneously for several blocks i. Ideally, the
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Figure 3.7: Illustration of the diagonalization of the correlation matrices performed by the

natural gradient update (3.113) for the 2 × 2 case.

cross-correlations will be equal to zero upon convergence which causes the update term

to be zero because then Ryy(i) − bdiagRyy(i) = 0.

Another interesting finding is that for both, the holonomic and nonholonomic versions

of the HOS update (3.62), (3.64), the insertion of the Gaussian pdf (3.110) yields the

same SOS BSS algorithm (3.112). This SOS BSS algorithm puts no constraint on the

auto-correlation Rypyp
of the estimated sources. This explains its good performance for

speech sources. According to the BSS terminology an algorithm with such a behavior

would fall into the class of nonholonomic algorithms and thus, this shows that even if

starting from a holonomic algorithm we can obtain nonholonomic algorithms if special

pdfs such as the Gaussian multivariate pdf are used.

An alternative derivation of a SOS BSS algorithm leading to the same natural gradient

update as given in (3.112) was presented in [BAK03b, BAK05a]. There, the derivation

was based on a generalized version of the cost function used in [MOK95], which also

simultaneously exploits nonwhiteness and nonstationarity of the sources.

3.3.7.3 Realizations based on univariate pdfs

If the output signals yq(n) are assumed to be temporally independent, then the D-

dimensional multivariate pdf p̂yq,D(yq(iL + j)) reduces to a product of univariate pdfs

p̂yq,1(·). Thereby, the multivariate score function (3.55) reduces to a univariate score

function representing a scalar nonlinearity

Φq(yq(n)) = −
∂p̂yq,1(yq(n))

∂yq(n)

p̂yq,1(yq(n))
, (3.114)

which is applied individually to each element of yq(iL+ j) = [yq(iL+ j), . . . , yq(iL+ j −
D + 1)]T. The drawback of this simplified score function is that this approach can only

be applied to temporally independent signals as encountered, e.g., in telecommunications.

The resulting natural gradient algorithms obtained by inserting the scalar nonlinearity
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(3.114) into (3.62) or (3.64) estimate the original source signals by blindly deconvolving

the sensor signals and therefore, belong to the class of multi-channel blind deconvolution

(MCBD) algorithms. Application of algorithms based on a scalar nonlinearity to tempo-

rally correlated signals results in a temporal whitening of the estimated separated output

signals. As discussed in Section 3.2 several heuristic countermeasures have been proposed

to mitigate this whitening effect.

The scalar score function in MCBD algorithms is chosen depending on the model of

the source signals. In the literature, many heuristic nonlinearities have been proposed as

realizations of the scalar score function. For supergaussian distributions, i.e., distributions

with sharper peaks and longer tails than the Gaussian pdf, e.g., Φ(yq(n)) = tanh(a ·yq(n))

with the scaling parameter a or Φ(yq(n)) = sign(yq(n)) are commonly used nonlinearities.

For subgaussian distributions, e.g., Φ(yq(n)) = y3
q (n) is a popular choice. A discussion of

the properties of various nonlinearities can be found, e.g., in [MD02]. Moreover, the score

function can also be determined by estimating the univariate pdfs. This is done by using

expansions for the pdf in the vicinity of a Gaussian pdf similar to the Taylor expansion.

This allows to express the univariate pdfs in terms of the higher order moments which

are then estimated. Two prominent examples which are usually used in this context are

the Gram-Charlier or Edgeworth expansion [HKO01].

Using (3.114) several relationships between the generic HOS natural gradient update

rule (3.62) and well-known MCBD algorithms in literature can be established [ABK05].

These links are obtained by the application of different implementations of the Sylvester

constraint (SC), the distinction between correlation and covariance method, and the dif-

ferent approximations of the multivariate pdfs. This altogether spans a whole tree of

algorithms as depicted in Fig. 3.8. The most general algorithm is given as the generic

HOS natural gradient algorithm (3.62) which is based on multivariate pdfs. A distinction

with respect to the implementation of the Sylvester constraint SC leads to two branches

which can again be split up with respect to the method used for the estimation of the

cross-relation matrices. Approximating the multivariate pdfs by univariate ones, neglect-

ing the nonstationarity, and using the Sylvester constraint SCR yields two block-based

MCBD algorithms presented in [JS03, DSM04a]. By changing the block-based adaptation

to a sample-by-sample algorithm, a link to the popular MCBD algorithm in [ADCY97]

and to [DSM04b] can be established. It should be noted that also the nonholonomic

extension of [ADCY97] presented in [CACL99] can be derived from the presented frame-

work by using (3.64) instead of (3.62). By using the Sylvester constraint SCC a link to the

MCBD algorithm in [ZCA99] is obtained. However, it should be noted that algorithms

based on SCC are less general as only causal filters can be adapted and thus for MCBD

algorithms only minimum-phase systems can be treated as was pointed out in [ZCA99].
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Figure 3.8: Overview of links between the generic HOS natural gradient update rule (3.62) and

existing MCBD algorithms.

3.3.8 Efficient normalization and regularization strategies

In Section 3.3.7 it was pointed out that the usage of multivariate pdfs leads to an inherent

normalization by the auto-correlation matrices. This is desirable as it guarantees good

convergence of the adaptive filters even for large filter lengths and correlated input signals.

On the other hand this poses the problem of large computational complexity due to the

required matrix inversion of P matrices of size D × D. The complexity is O(D3) for

using the covariance method and O(D2) for the correlation method due to the Toeplitz

structure involved. However, as D may be even larger than 1000 for realistic environments

this is still prohibitive for a real-time implementation on regular PC platforms. Therefore,

approximations are desirable which reduce the complexity with minimum degradation of

the separation performance.

One possible solution is to approximate the auto-correlation matrices Ryqyq
(i) by a
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diagonal matrix, i.e., by the output signal powers

Ryqyq
(i) ≈ 1

N

N−1∑

j=0

diag
{
yq(iL+ j)yH

q (iL+ j)
}
. (3.115)

This case corresponds to a simplification of the covariance method where the values on

the diagonal are not identical. For the correlation method stationarity within each block

i is assumed and thus, the correlation matrix which is then denoted as R̃yqyq
further

simplifies to

R̃yqyq
(i) =

1

N

iL+N−1∑

n=iL

|yq(n)|2I

:= σ2
yq

(i)I, (3.116)

for q = 1, . . . , P , where the operator diag{A} sets all off-diagonal elements of matrix

A to zero. This approximation is comparable to the well-known normalized least mean

squares (NLMS) algorithm in supervised adaptive filtering approximating the RLS al-

gorithm [Hay02]. It should be noted that the SOS natural gradient algorithm based

on (3.112) together with the approximation (3.115) was also heuristically introduced for

the case D = L in [NSS02, AAM+02] as an extension of [KMO98] incorporating sev-

eral time-lags. Further approximations of the normalizations exploiting the efficiency of

computations in the DFT domain are presented in Section 3.4.3.1.

For blocks with speech pauses and low background noise the normalization by the

auto-correlation matrix Ryqyq
leads to the inversion of an ill-conditioned matrix or in the

case of the approximations (3.115) and (3.116) to a division by very small output powers

σ2
yq

or even by zero and thus the estimation of the filter coefficients becomes very sensitive.

For a robust adaptation Ryqyq
is replaced by a regularized version Ryqyq

+δyq
I. The basic

feature of the regularization is a compromise between fidelity to data and fidelity to prior

information about the solution [CU94]. As the latter increases robustness but leads to

biased solutions, in this thesis, similarly to supervised adaptive filtering [BBK03, BBK05],

a dynamic regularization is used

δyq
= δmaxe

−σ2
yq

/σ2
0 (3.117)

with two parameters δmax and σ2
0. This exponential method provides a smooth transition

between regularization for low output power σ2
yq

and data fidelity whenever the output

power is large enough. Other popular strategies are the fixed regularization which simply

adds a constant value to the output power and the approach of choosing the maximum

out of the respective component σ2
yq

and a fixed threshold δth.

Moreover, it should be pointed out that especially for second-order BSS algorithms

there exists another popular class of algorithms which completely lacks any normalization.
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They are based on cost functions using the Frobenius norm ‖A‖2
F =

∑
i,j a

2
ij of a matrix

A = (aij) aiming at minimizing the cross-correlations. Several algorithms for instanta-

neous mixtures have been proposed (e.g., [HKO01, MS94, CS96]) and the Frobenius norm

has also been suggested for convolutive mixtures, e.g., in [KJ00, Joh04]. In the latter case

a possible cost function based on the Frobenius norm is given as [BAK04a, BAK05a]

JF(m,W) =

∞∑

i=0

β(i,m) ‖Ryy(i) − bdiag {Ryy(i)}‖2
F . (3.118)

By using the trace operator tr{·}, the Frobenius norm can be expressed as ‖A‖2
F =

tr{ATA}, and the derivative of the Frobenius norm with respect to A is given as
∂ tr{ATA}

∂A
= 2A [Har97]. By using this relation and applying the chain rule it was shown

in [BAK05a] that the natural gradient update is obtained as

∇NG
W̌

J (m,W) = SC
{

2
∞∑

i=0

β(i,m)W(i)Ryy(i) (Ryy(i) − bdiag Ryy(i))

}
. (3.119)

This update equation differs from the more general equation (3.112) mainly in the lack

of the inherent normalization expressed by the inverse matrices bdiag−1 {Ryy}. Thus,

(3.119) can be regarded as an analogon to the least-mean-square (LMS) algorithm [Hay02]

in supervised adaptive filtering. Even if (3.119) can be efficiently implemented, many

simulation results have shown that for large filter lengths L and nonstationary input

signals, (3.119) is prone to instability, while algorithms exhibiting a normalization show

a very robust convergence behavior in real acoustic environments which require a large

filter length L [BAK05a].

3.3.9 Summary

In Section 3.3 the goal was to introduce a generic optimization criterion which allows

to exploit all three signal properties: nongaussianity, nonstationarity, and nonwhiteness.

The latter one was utilized by introducing a novel matrix formulation in Sect. 3.3.1 al-

lowing for a memory of D − 1 samples necessary for modeling temporal dependencies.

In Sect. 3.3.2 the TRINICON optimization criterion, based on a generalization of the

mutual independence and accounting for all three signal properties simultaneously, was

presented. From the TRINICON optimization criterion several novel algorithms were de-

rived by applying certain approximations as summarized in the flowchart in Fig. 3.9. First,

the gradient and natural gradient update rule were derived in Sections 3.3.3 and 3.3.4,

respectively. Subsequently, the block-based estimation of the higher-order cross-relation

matrices, appearing in the update equations, was discussed. This distinction between

different estimation methods is known from linear prediction problems and was applied

to BSS algorithms in Section 3.3.5. Furthermore, a Sylvester constraint is necessary to
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ensure that the gradient with respect to the Sylvester matrix W exhibits again a Sylvester

structure. In Section 3.3.6 efficient versions of this Sylvester constraint SC and the re-

sulting appropriate initializations are discussed. The generic update equations derived

from the TRINICON optimization criterion require the estimation of high-dimensional

multivariate pdfs which is a very challenging task. Therefore, in Section 3.3.7 several

approximations as shown in Fig. 3.9 are discussed. An efficient solution to the estimation

of multivariate pdfs is to assume spherically invariant random processes (Section 3.3.7.1)

which only require the estimation of a univariate pdf together with the estimation of a

correlation matrix including time lags. This leads to a novel HOS BSS approach which

explicitly models the temporal dependencies of source signals such as speech. The mul-

tivariate Gaussian pdf as a special case of SIRP leads to an SOS BSS algorithm which

simultaneously exploits nonwhiteness and nonstationarity. In Section 3.3.7.3 the tempo-

ral dependencies of the source signals are neglected and thus univariate pdfs are obtained

in the generic update equations leading to a set of MCBD algorithms. This allows to

establish relationships to several popular MCBD algorithms in literature. Finally, in Sec-

tion 3.3.8 the normalization by the inverse auto-correlation matrices, which appears in

algorithms based on multivariate pdfs is approximated by the inverse of a diagonal ma-

trix. The normalization ensures good convergence when using temporally correlated and

nonstationary signals such as speech and together with a regularization method leads to

efficient and robust BSS algorithms.
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Section 3.3.2: TRINICON optimization criterion based on multivariate pdfs

Minimization of criterion by using:

Section 3.3.3: Gradient update
Section 3.3.4: Natural gradient update

Section 3.3.7.1: Approximation of multivariate pdfs in the update
equations by a pdf of spherically random invariant processes (SIRPs)

⇒ HOS BSS algorithms

Section 3.3.7.2: Applying the
multivariate Gaussian pdf as a
special case of SIRP-pdf

⇒ SOS BSS algorithms

Section 3.3.7.3: Approximation of
multivariate pdfs by univariate
pdfs

⇒ MCBD algorithms

Section 3.3.8: Approximation of
normalization by output signal
variance

⇒ efficient SOS BSS algorithms

Figure 3.9: Flowchart showing the relations between the generic algorithms based on the TRINI-

CON optimization criterion and its various approximations leading to efficient BSS and MCBD

algorithms.
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3.4 Broadband and narrowband DFT-domain algo-

rithms

In the previous section a time-domain framework for convolutive BSS was introduced lead-

ing to several novel algorithms. However, due to the large matrices involved a straight-

forward implementation in the time domain is inefficient. Therefore, in this section the

framework will be extended to the DFT domain which is attractive for reasons of com-

putational efficiency. As already pointed out in Section 3.2 there are two possibilities

to design algorithms in the DFT domain. The first approach is based on the broadband

model which computes the matrix multiplications using fast convolution techniques based

on the overlap-save principle. The second method utilizes the narrowband model which

assumes a complete decoupling of different frequency bins. Thus, first the broadband

and narrowband model will be discussed in Section 3.4.1. Then this knowledge is used

in Section 3.4.2 to derive an equivalent formulation of the time-domain BSS algorithms

in the DFT domain by applying the broadband model and thus, exploiting the com-

putational savings resulting from the fast convolutions. Subsequently, in Section 3.4.3

selective approximations are introduced which allow to exploit the narrowband efficiency

for broadband convolutive BSS leading to several novel and well-known algorithms. By

completely decoupling the frequency bins using further approximations several algorithms

based on the narrowband model are obtained as well. Finally, in Section 3.4.4 the results

are summarized.

3.4.1 Broadband and narrowband signal model

For supervised adaptive filtering [Hay02] in the DFT domain it was shown in [KB03] that

the distinction between broadband and narrowband signal model is important. In this

thesis we will extend this examination to BSS algorithms which belong to the class of

unsupervised adaptive filtering.

In (3.31) an output signal vector yq(n) = [yq(n), . . . , yq(n − D + 1)]T containing a

memory of D − 1 past values with descending sample index n was introduced to incor-

porate D − 1 time-lags into the BSS optimization criterion (3.43). Moreover, in the BSS

optimization criterion (3.43) an additional N−1 values yq(n+1), . . . , yq(n+N−1) with an

ascending sample index are required inside the summation necessary for the block-based

estimation of the pdfs. The ascending index corresponds to successive time instants where

for each time instant a linear convolution is performed. The linear convolution of the sen-

sor signals xp(n) with the demixing FIR filters wpq,κ, κ = 0, . . . , L − 1 is given for the

output signal yq(n) at time instant n as yq(n) =
∑P

p=1

∑L−1
κ=0 wpq,κxp(n − κ). If a block

processing procedure is used, then the linear convolution necessary for the block-based

estimation of the pdfs can be expressed in matrix notation for a block of N output signal
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samples ȳq(mL) as

ȳq(mL) =

P∑

p=1

UT
p (m)wpq (3.120)

where m denotes the block index, and the block output signal vector ȳq(mL) and the

weights wpq of the MIMO filter taps from the p-th sensor channel to the q-th output

channel are given by

ȳq(mL) = [yq(mL), yq(mL+ 1), . . . , yq(mL+N − 1)]T, (3.121)

wpq = [wpq,0, wpq,1, . . . , wpq,L−1]
T. (3.122)

The N × L matrix UT
p (m) contains the sensor signal samples and exhibits a Toeplitz

structure

UT
p (m) =




xp(mL) . . . . . . xp(mL− L+ 1)

xp(mL+ 1)
. . .

...
...

. . .
. . .

...

xp(mL+N − 1) . . . . . . xp(mL+N − L)



. (3.123)

Based on this matrix formulation the broadband and narrowband signal model will be

discussed in the following.

Broadband signal model

To obtain an efficient computation of the linear convolution (3.120) in the DFT domain we

can exploit the property that any circulant R×R matrix can be diagonalized by the DFT

matrix FR [GL96, p. 202], where R denotes the transformation length and the element

in the i-th row and k-th column of the DFT matrix is given as [FR]ik = 1√
R
e−j2πik/R,

i, k ∈ {0, . . . , R− 1} 3. However, the Toeplitz matrix UT
p (m) is in general neither square

nor does it exhibit a circulant structure. Nevertheless, we can utilize the diagonalization

property of the DFT matrix by utilizing the key idea that any Toeplitz matrix can be

“embedded” in a circulant [GL96, p. 202]. This means that an R × R circulant matrix

can be generated by extending the Toeplitz matrix properly. This leads to an increased

size of the matrix and therefore, several “window matrices” are necessary to ensure the

original size of the matrix. This procedure yields the overlap-save algorithm [OSB98] in

matrix notation which allows an exact implementation of the linear convolution. Thus,

this approach is based on the broadband signal model and will now be examined in detail.

3Due to the factor 1√
R

the DFT matrix is unitary, i.e., FH
RFR = F−1

R FR = I which simplifies the

notation of DFT-domain algorithms. The additional multiplication which is introduced by 1√
R

causes

this factor to be often omitted in implementations which then leads to FH
RFR = R · F−1

R FR = R · I.
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For a DFT length R the N ×L Toeplitz matrix UT
p (m) in (3.123) is first expanded to

a R ×R circulant matrix CUp
(m) given by

CUp
(m) =




xp(mL+N − R) xp(mL+N − 1) . . . xp(mL+N − R+ 1)

xp(mL+N −R+ 1)
. . .

...
...

. . .
. . .

...

xp(mL+N − 1) xp(mL+N − 2) . . . xp(mL+N −R)



.

(3.124)

It can be seen that the first column is circularly downshifted by one sample for each

subsequent column and that the original Toeplitz matrix UT
p (m) can be found in the

lower left corner. To obtain UT
p (m) from the circulant matrix CUp

(m) two windowing

matrices have to be introduced leading to

UT
p (m) = W01N

N×RCUp
W1L0

R×L, (3.125)

where W01N

N×R and W1L0
R×L denote window matrices given as

W01N

N×R = [0N×R−N , IN×N ] , (3.126)

W1L0
R×L = [IL×L, 0L×R−L]T . (3.127)

For the description of window matrices we use the conventions as outlined already in

Section 3.3.3:

• The lower index of a matrix denotes its dimensions.

• P -channel matrices (as indicated by the size in the lower index) are partitioned into

P single-channel window matrices.

• The upper index describes the positions of ones and zeros. Unity submatrices are

always located at the upper left (‘10’) or lower right (‘01’) corners of the respective

single-channel window matrix. The size of these clusters is indicated in subscript

(e.g., ‘01D’).

In Fig. 3.10 we illustrated (3.125) by showing the circulant CUp
(m) together with the

window matrices which constrain the circulant to yield the Toeplitz matrix UT
p (m). Now

we can exploit the key property that the circulant can be diagonalized by the DFT matrix

so that we obtain a diagonal matrix

Up(m) = FRCUp
(m)F−1

R , (3.128)

where FR denotes the DFT matrix with the transformation length R and the diagonal

matrix Up(m) can be expressed by the first column of CUp
(m),

Up(m) = Diag





FR



xp(mL+N − R)

...

xp(mL+N − 1)







. (3.129)
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Toeplitz matrix UT
p

of size N × L

R

R

L

N

constrained
by W

01N

N×R

constrained
by W

1L0
R×L

Figure 3.10: Illustration of (3.125) showing the relation between circulant matrix CUp and

Toeplitz matrix UT
p .

The operator Diag{a} denotes a square matrix with the elements of vector a on its main

diagonal. From (3.129) it can be seen that Up(m) has the DFT values of the first column

of CUp
(m) on its main diagonal. In this thesis we use the convention that DFT-domain

quantities are denoted by an underline. Relations (3.125) and (3.128) are the prerequisites

necessary for formulating the linear convolution (3.120) equivalently in the DFT domain.

Inserting (3.125) and (3.128) into (3.120) leads to

ȳq(mL) =
P∑

p=1

W01N

N×RF−1
R Up(m)FRW1L0

R×Lwpq. (3.130)

By identifying the DFT representation wpq of the demixing filters wpq padded with R−L
zeros as

wpq = FR[wT
pq, 0R−L×1]

T

= FRW1L0
R×Lwpq, (3.131)

we can express the linear filtering operation (3.120), yielding a block of N output samples,

equivalently by using DFT variables as

ȳq(mL) =

P∑

p=1

W01N

N×RF−1
R Up(m)wpq. (3.132)

According to (3.132) the output of the linear convolution is obtained by multiplying the

DFT values on the main diagonal of Up(m), containing the transformation of R input

signal samples (3.129), with the DFT values wpq of the zero-padded FIR filter wpq. As

Up is a diagonal matrix, the matrix-vector multiplication can be calculated as a scalar

multiplication in each frequency bin. The result is transformed back into the time domain
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DFT

DFT

IDFT
Up(m)

wpq
ȳ

q

wpq 0

xp(n)

xpxp

R − N old
samples

from memory

block of N
new samples

yq(n)

discard

save last
block

append
R − L zeros

concatenate R
samples xp

Figure 3.11: Illustration of the overlap-save method expressed in matrix notation in (3.132).

and the first R − N samples are discarded due to the window matrix W01N

N×R. It should

be pointed out that for an output signal block of length N and an FIR filter of length L

the DFT length has to be chosen to R ≥ N + L− 1 to avoid circular convolution effects.

For this choice (3.132) describes the overlap-save algorithm in matrix notation, resulting

in an efficient equivalent implementation of the linear convolution. This is denoted as a

DFT-implementation based on the broadband signal model. A visualization of (3.132) is

given in Fig. 3.11. The matrix formulation in (3.132) is important as it allows to transform

any broadband time-domain algorithm equivalently to the DFT-domain as will be shown

in Section 3.4.2.

Narrowband signal model

The narrowband model is obtained if no output signal samples are discarded which means

that the block length N is set to N = R yielding an output signal vector ȳq(mL) of length

R. Thus, circular convolution effects are tolerated and the linear convolution (3.132) is

approximated by a circular convolution given as

ȳq(mL) =

P∑

p=1

F−1
R Up(m)wpq. (3.133)

It can be observed in (3.133) that due to the choice N = R the window matrix W01N

N×R

reduces to an identity matrix. By approximating the window matrix W01N

N×R it is assumed

that the input signal xp(n) is a periodic signal with period R/κ, κ ∈ {1, 2, . . . , R} so that

the extension of the N ×L input signal Toeplitz matrix UT
p (mL), defined in (3.123), to a

R×R matrix would already exhibit a circulant structure [KB03]. This means that xp(n)

is described by a finite Fourier series xp(n) =
∑R−1

i=0 cie
j 2πin

R , i.e., by at most R complex

exponentials. For audio signals, however, the input signals are in general not periodic

and therefore, the DFT length R should be chosen much larger than the filter length L
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to obtain a valid approximation and thus, to reduce the circular convolution effects. In

[Gra72] it was shown, based on the properties of Toeplitz matrices and circulant matrices,

that for the case R → ∞ the broadband and narrowband signal model are equivalent.

The equivalence is based on the Szegö theorem [GS58] and will be discussed in detail

in Section 3.4.3 where the narrowband signal model is selectively introduced to obtain

efficient algorithms. This selective approximation was also applied to supervised adaptive

filtering algorithms in [BBK03, KB03, BBK05].

General method for designing efficient broadband convolutive BSS algorithms

in the DFT domain

Based on the distinction between broadband and narrowband signal model, a general

method for designing efficient broadband convolutive BSS algorithms can be given:

Step 1: A time-domain convolutive BSS update equation is expressed in terms of DFT

variables using the broadband signal model (3.132). This is achieved by the following

procedure:

At first, the property that a Toeplitz matrix can be embedded in a circulant matrix

is exploited. Thus, the update equation has to be expressed in terms of Toeplitz

matrices. These are then all replaced by square circulant matrices together with

appropriate window matrices. The window matrices are necessary as the update

equation only contains Toeplitz matrices and thus, the window matrices have to

assure that a Toeplitz matrix is again obtained from a circulant matrix as shown in

(3.125).

Secondly, the circulant matrices are diagonalized by the DFT matrix. This results

in the desired DFT-domain representation of the time-domain quantities.

Step 2: To obtain efficient versions of the broadband DFT-domain algorithm the various

constraints resulting from the application of Step 1 to all Toeplitz matrices are

examined. A selective approximation of the constraints by selectively introducing

the narrowband signal model (3.133) leads to efficient implementations without

completely decoupling the individual DFT bins.

Instead of considering a broadband time-domain update equation in Step 1, it is also

possible to use a broadband time-domain optimization criterion, such as, e.g., (3.43).

Then, the optimization criterion is expressed analogously in terms of DFT matrices and

window functions. Subsequently, the optimization criterion is minimized with respect to

the DFT-domain filter coefficients wpq instead of the time-domain coefficients wpq. This

procedure yields the same broadband DFT-domain formulation of the update equation as

obtained in Step 1 of the procedure above. In both cases, it is especially important for BSS

algorithms to selectively introduce the narrowband signal model in Step 2 only for some



92 3. A Blind Source Separation Framework for Reverberant Environments

of the Toeplitz matrices appearing in the update equations. If all window matrices are

ignored then purely narrowband algorithms are obtained as will be shown in Section 3.4.3.

The drawback is that, then, also the permutation ambiguity (see Section 2.4) appears in

each frequency bin independently.

3.4.2 Equivalent formulation of broadband algorithms in the

DFT domain

In the previous section the basis to describe broadband convolutive BSS algorithms in

the DFT domain was given. In this section we will use this method to express the HOS

and SOS realizations of the generic natural gradient algorithm (3.64) equivalently in the

DFT domain.

First, an extended signal model based on matrix notation will be introduced which

allows a compact notation for the linear convolution yielding the output signal samples.

Then, the iterative update rule is given for the DFT-domain demixing matrix. Subse-

quently, the HOS realization (3.105) based on pdfs of multivariate spherically invariant

random processes (SIRPs) and later on also the second-order statistics (SOS) realization

(3.112) will be expressed equivalently in the DFT domain. The resulting expressions will

be the basis for introducing selective narrowband approximations in Section 3.4.3.

3.4.2.1 Signal model expressed by Toeplitz matrices

The optimization criterion and the update equations in Section 3.3 were formulated using

the signal model y(n) = WTx(n) given in (3.33) which allows the introduction of a

memory of D − 1 time-lags for each channel. The generation of these D output signal

samples yq(n), yq(n−1) . . . , yq(n−D+1) for each channel q = 1, . . . , P could be expressed

conveniently as a matrix-vector product by expressing the demixing FIR filters wpq as a

Sylvester matrix Wpq defined in (3.32).

Additionally, the samples yq(n), . . . , yq(n + N − 1) are used for the block-based esti-

mation of the D-variate pdfs in the optimization criterion. It was shown in (3.120) that

the linear convolution yielding these N output signal values can also be formulated in

matrix-vector notation. Thus, in the optimization criterion (3.43) a total of N + D − 1

output signal samples yq(n−D+ 1), . . . , yq(n+N − 1) is required for each block and for

each channel.

A combination of (3.33) and (3.120) is possible by introducing a compact signal model

in matrix notation which provides all N + D − 1 output signal samples required by the

optimization criterion and is given as

Y(m) = WHX(m). (3.134)
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It should be noted that due to the block-processing all signal quantities depend on the

block index m. Moreover, to simplify the notation of the DFT-domain formulation we

used the hermitian operator instead of the transpose operator in the definition of the

signal model. This is permitted as we are only dealing with real-valued time-domain

signals. The matrices in (3.134) are given as

Y(m) = [YT
1 (m), . . . ,YT

P (m)]T, (3.135)

X(m) = [XT
1 (m), . . . ,XT

P (m)]T. (3.136)

The channel-wise D×N submatrices Yq(m) contain all D+N − 1 output signal samples

and were already defined in (3.69) as

Yp(m) =




yp(mL) · · · yp(mL+N − 1)

yp(mL− 1)
. . . yp(mL+N − 2)

...
. . .

...

yp(mL−D + 1) · · · yp(mL−D +N)



.

The 2L×N submatrices Xp(m) contain 2L+N −1 sensor signal samples 4 and are given

as

Xp(m) =




xp(mL) · · · xp(mL+N − 1)

xp(mL− 1)
. . . xp(mL+N − 2)

...
. . .

...

xp(mL− 2L+ 1) · · · xp(mL− 2L+N)




(3.137)

and the demixing filter matrix W consists of Sylvester submatrices as defined in (3.36).

It should be noted that the resulting output signal matrix Y(m) was already used in Sec-

tion 3.3.5 in the definition of the short-time HOS cross-relation and SOS cross-correlation

matrices based on the covariance method.

As desired, all matrices in the signal model (3.134) exhibit a Toeplitz structure which

allows for an equivalent formulation in the DFT domain according to the procedure pre-

sented in the previous section. Therefore, after formulating the iterative update rule in

the DFT domain, we will express the various special cases derived in Section 3.3 using the

output signal matrix Y(m) and then subsequently transform them to the DFT domain.

3.4.2.2 Iterative update rule in the DFT domain

To obtain a broadband update procedure in the DFT domain, the iterative time-domain

update equation (3.58) has to be transformed to the DFT domain. All demixing filters

4Actually, already L + D + N − 2 samples would be sufficient. However, with regard to a concise

DFT-domain notation, the Sylvester matrices Wpq used in the signal model (3.33) were defined in (3.32)

with appended rows of zeros leading to a dimension of 2L × D instead of L + D − 1 × D. Thereby, the

dimension of Xp is given as 2L × N and thus, contains 2L + N − 1 sensor signal samples.
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wpq(m) can be expressed in the DFT domain by first appending R − L zeros and then

transforming the zero-padded filter by a DFT of length R. The DFT length R has to be

chosen at least to R ≥ L. Later on, when deriving the broadband DFT-domain algorithms

it will be seen that depending on the estimation of the cross-relation matrices based on

the covariance or correlation method different restrictions are imposed on the DFT length

R. It was pointed out in (3.131) that the transformation of the demixing FIR filters is

written in matrix notation as wpq = FRW1L0
R×Lwpq. A combination of all channels leads

to the DFT-domain demixing matrix

W̌ =




w11 . . . w1P
...

. . .
...

wP1 . . . wPP


 , (3.138)

which combines all DFT-domain filters wpq obtained by zero-padding and transformation

of the individual time-domain filters wpq. The relationship between the DFT-domain

demixing matrix W̌ and the time-domain counterpart W̌ (3.4) is given as

W̌ = VH
PL×PRW̌, (3.139)

with the matrix VH
PL×PR denoting the channel-wise transformation of the window matrix

W1L0
R×L into the DFT domain

VH
PL×PR = Bdiag

{
FRW1L0

R×L, . . . ,FRW1L0
R×L

}
. (3.140)

Using the DFT-domain demixing matrix (3.138) the update procedure can be written in

the DFT domain analogously to the time-domain update (3.58) as

W̌(m) = W̌(m− 1) − µVH
PL×PR∆W̌(m)

= W̌(m− 1) − µ∆W̌(m). (3.141)

In the following the various time-domain updates ∆W̌ derived in Section 3.3 will be

expressed by using DFT-domain variables which are developed in the next section, so

that together with (3.141) an update procedure solely based on DFT-domain quantities

is obtained.

3.4.2.3 DFT representation of the Sylvester matrix W and the output signal

Toeplitz matrices Y and Ỹ

The time-domain updates in Section 3.3.7 following from the generic natural gradient up-

date (3.64) can be expressed in terms of the Sylvester matrix W and the output signal ma-

trix Y. Using the matrix Y corresponds to a block-based estimation of the cross-relation

and cross-correlation matrices using the covariance method (see also Section 3.3.5). Espe-

cially for the algorithms based on SOS also the estimation of the cross-correlation matrices
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using the correlation method is important as it leads to lower computational complexity.

In this case the matrix Y is replaced by Ỹ defined in (3.84). Thus, for an equivalent

formulation of the time-domain algorithms in the DFT domain it is required that a trans-

formation of all three matrices W, Y, and Ỹ to the DFT domain is performed. This will

be developed in the following.

DFT representation of demixing filter matrix W(m)

First, the channel-wise matrix Wpq(m) will be transformed into the DFT domain. Thus,

the 2L ×D Toeplitz matrix Wpq(m) has to be extended to a circulant CWpq
(m) of size

R × R with R ≥ 2L (note that in general 1 ≤ D ≤ L). The relationship between the

original matrix Wpq(m) and the circulant CWpq
(m) is given by

Wpq(m) = W12L0
2L×RCWpq

(m)W1D0
R×D, (3.142)

where W12L0
2L×R and W1D0

R×D denote window matrices given as

W12L0
2L×R = [I2L×2L, 02L×R−2L] , (3.143)

W1D0
R×D = [ID×D, 0D×R−D]T . (3.144)

An illustration of (3.142) showing the application of the window matrices to obtain the

Toeplitz matrix Wpq(m) from the circulant matrix CWpq
(m) is given in Fig. 3.12 5. The

key property of a circulant, namely that it can be diagonalized by the DFT matrix, is

now exploited yielding

CWpq
(m) = F−1

R Wpq(m)FR, (3.145)

with

Wpq(m) = Diag
{
FR

[
wT

pq(m), 0T
R−L×1

]T}
. (3.146)

Thus, Wpq(m) has the DFT values of the first column of CWpq
(m) on its main diagonal.

From (3.145) it can be seen that these values correspond to the DFT values of the zero-

padded filter wpq(m). By inserting (3.145) into (3.142) the relationship between the

time-domain quantity Wpq(m) and the DFT-domain quantity Wpq(m) is obtained

Wpq(m) = W12L0
2L×RF−1

R Wpq(m)FRW1D0
R×D. (3.147)

A combination of all channels yields the DFT-domain representation

W(m) = V2PL×PRW(m)
(
V1D0

PD×PR

)H
, (3.148)

with the channel-wise transformation of the window matrices given as

V1D0
PD×PR = Bdiag

{
W1D0

D×RF−1
R . . . ,W1D0

D×RF−1
R

}
, (3.149)

V2PL×PR = Bdiag
{
W12L0

2L×RF−1
R . . . ,W12L0

2L×RF−1
R

}
. (3.150)

5As can be seen in (3.32), the Sylvester matrix Wpq contains L − D + 1 rows of zeros. Thus, even in

the case D = L one row of zeros is retained and hence, strictly speaking, the hatched area does not hit

the lower right corner of Wpq in Fig. 3.12.
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Figure 3.12: Illustration of (3.142) showing the relation between circulant matrix CWpq and

Toeplitz matrix Wpq for the case D = L.

DFT representation of output signal matrix Y(m)

If the covariance method is used, then the output signal matrix Y(m) defined in (3.72) is

required. Similarly to the demixing filter matrix W(m), the matrix Y(m) is transformed

channel-wise into the DFT domain by first expressing the D×N Toeplitz matrix Yp(m)

defined in (3.69) in terms of the R× R circulant matrix CYp
(m) resulting in

Yp(m) = W01D

D×RCYp
(m)W1N0

R×N (3.151)

with the window matrices

W01D

D×R = [0D×R−D, ID×D] , (3.152)

W1N0
R×N = [IN×N , 0N×R−N ]T . (3.153)

An illustration of (3.151) is given in Fig. 3.13. Utilizing again the diagonalization property

of the DFT analogously to (3.145) yields the relation between the time-domain quantity

Yp and DFT-domain values Yp

Yp(m) = W01D

D×RF−1
R Yp(m)FRW1N0

R×N . (3.154)

The DFT-domain variable Yp(m) represents a diagonal matrix where the values on the

diagonal are given as the DFT of the first column of CYp
(m) (see Fig. 3.13). Therefore,

Yp(m) is given as

Yp(m) = diag
{
FR[0, . . . , 0, yp(mL−D + 1), . . . , yp(mL+N − 1)]T

}
. (3.155)
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Figure 3.13: Illustration of (3.151) showing the relation between circulant matrix CYp and

Toeplitz matrix Yp.

A combination of all channels p = 1, . . . , P results in

Y(m) = VPD×PRY(m)FRW1N0
R×N , (3.156)

with the constraint matrix VPD×PR given as

VPD×PR = Bdiag
{
W01D

D×RF−1
R . . . ,W01D

D×RF−1
R

}
. (3.157)

DFT representation of output signal matrix Ỹ(m)

If in contrast to the covariance method, the correlation method is used for estimating the

cross-correlation matrices, then, instead of Yp(m), the D × N + D − 1 Toeplitz matrix

Ỹp(m) defined in (3.82) has to be expressed in terms of DFT quantities. Again, Ỹ(m) is

embedded into an R× R circulant matrix CỸp
, which is subsequently diagonalized:

Ỹp(m) = W01D

D×RCỸp
(m)W

1N+D0
R×N+D

= W01D

D×RF−1
R Ỹp(m)FRW

1N+D0
R×N+D, (3.158)

where

W
1N+D−10
R×N+D−1 = [IN+D−1×N+D−1, 0N+D−1×R−N−D+1]

T. (3.159)

The relation between circulant and Toeplitz matrix is illustrated in Fig. 3.14. The entries

of the diagonal matrix Ỹp are given as the DFT of the first column of CỸp

Ỹp(m) = Diag
{
FR[0, . . . , 0, yp(mL+N − 1), . . . , yq(mL), 0, . . . , 0]T

}
. (3.160)

Comparing (3.155) with (3.160) it can be seen that in contrast to the covariance method

where N + D − 1 values are transformed to the DFT domain, the correlation method
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Figure 3.14: Illustration of (3.158) showing the relation between circulant matrix C
Ỹp

and

Toeplitz matrix Ỹp.

only requires N output signal values yp. This was also pointed out in the discussion of

the covariance and correlation method in Section 3.3.5. A combination of all channels

p = 1, . . . , P yields

Ỹ(m) = VPD×PRỸ(m)FRW
1N+D−10
R×N+D−1, (3.161)

where VPD×PR is defined in (3.157).

3.4.2.4 Higher-order statistics realization based on multivariate pdfs

After transforming the matrices W and Y in the previous section into the DFT domain,

we will now show the expression of the HOS-SIRP natural gradient by these DFT-domain

variables. In Section 3.3.4 the nonholonomic natural gradient (3.64) based on multivariate

pdfs was derived. In Section 3.3.7.1 the SIRP model (3.95) was introduced to allow for

an efficient estimation of multivariate pdfs. This led to the time-domain nonholonomic

HOS-SIRP natural gradient given in (3.105) as

∆W̌(m) = 2

∞∑

i=0

β(i,m)SC
{
W(i) boff{Ryφ(y)(i)} bdiag−1{Ryy(i)}

}
,

with the operator boff {A} = A − bdiag {A}. The cross-correlation matrix Ryy and the

nonlinearly weighted cross-correlation matrix Ryφ(y) consist of the channel-wise D × D

matrices defined in (3.68) and (3.107), respectively, as

Rypyq
(i) =

1

N
Yp(i)Y

H
q (i)

Rypφ(yq)(i) =
1

N
Yp(i)Λ

H
q (i)YH

q (i)
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where the N ×N diagonal matrix Λq is given as

Λq(i) = φyq,D

(
diag

{
YH

q (i)R−1
yqyq

(i)Yq(i)
})

,

and φyq,D (diag {A}) is the scalar SIRP score function which is applied element-wise to

the elements ajj on the diagonal of A. It was defined in (3.98) as

φyq,D (ajj) = −∂(log fyq,D(ajj))

∂ajj

= −
∂fyq,D(ajj)

∂ajj

fyq,D(ajj)
.

The PD×N matrix Y(i) = [Y1(i), . . . ,YP (i)]T leads to an estimation of the cross-relation

matrices Ryy and Ryφ(y) via the covariance method (see also Section 3.3.5). Due to its

generality, the covariance method will be used first for the derivation of the DFT-domain

formulation. The differences between covariance and correlation method in the DFT

domain, which are especially important for the implementation of SOS BSS algorithms,

will be discussed in Section 3.4.2.5.

A formulation of the cross-correlation matrix Ryy using DFT quantities can be

achieved by inserting (3.154) in the definition of Rypyq
yielding

Rypyq
(i) =

1

N
W01D

D×RF−1
R Yp(i)G

1N0
R×RYH

q (i)FRW01D

R×D, (3.162)

with the constraint matrix given as

G1N0
R×R = FRW1N0

R×NW1N0
N×RF−1

R

= FRW1N0
R×RF−1

R . (3.163)

A combination of all cross- and auto-correlations leads to

Ryy(i) =
1

N
VPD×PRY(i)G1N0

R×RYH(i)VH
PD×PR (3.164)

with VPD×PR defined in (3.157).

The nonlinearly weighted cross-correlation matrix was defined in (3.107) as Rypφ(yq) =
1
N
YpΛ

H
q YH

q . A DFT representation of Rypφ(yq) is obtained by again inserting (3.154) which

yields

Rypφ(yq)(i) =
1

N
W01D

D×RF−1
R Yp(i)FRW1N0

R×NΛH
q (i)W1N0

N×RF−1
R YH

q (i)FRW01D

R×D. (3.165)

To allow for a concise formulation of all channels we define the channel-wise multiplication

of ΛH
q and YH

q as

YH
φ =

[
FRW1N0

R×NΛH
1 W1N0

N×RF−1
R YH

1 , . . . ,FRW1N0
R×NΛH

PW1N0
N×RF−1

R YH
P

]
. (3.166)
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The transformation of the N × N diagonal matrix Λq(i) in (3.166) is given by inserting

the time-frequency relations (3.154) and (3.162) leading to

Λq(i) = φyq,D

(
diag

{
W1N0

N×RF−1
R YH

q (i)FRW01D

R×D·

·
(

1

N
W01D

D×RF−1
R YH

q (i)G1N0
R×RYq(i)FRW01D

R×D

)−1

W01D

D×RF−1
R Yq(i)FRW1N0

R×N

})
.

(3.167)

In Section 3.4.3.2 it will be shown that by using suitable approximations an efficient

computation of the nonlinearity Λq(i) can be achieved.

Using (3.148) and (3.164)-(3.166) the PR × P DFT-domain update ∆W̌ is given for

the HOS-SIRP algorithm as

∆W̌(m) = 2
∞∑

i=0

β(i,m)VH
PL×PRSC

{
V2PL×PRW(i)

(
V1D0

PD×PR

)H
VPD×PR

boff
{
Y(i)YH

φ (i)
}
VH

PD×PR

bdiag−1

{
1

N
VPD×PRY(i)G1N0

R×RYH(i)VH
PD×PR

}}
.

(3.168)

It should be pointed out that in the derivation of the DFT-domain update (3.168) no

approximations have been made and thus, ∆W̌ could also be obtained by a channel-wise

DFT of length R applied to the zero-padded PL× P time-domain update ∆W̌ given in

(3.105). The advantage of the formulation in (3.168) is that all time-domain correlations

and linear convolutions are expressed in an overlap-save structure using matrix notation

and thus exploit the efficiency of fast convolutions. Due to the constraints V..., G1N0
R×R

(containing DFT, IDFT, and windowing operations) no circular convolution approxima-

tions are made and thus, the DFT bins are still coupled and the permutation ambiguity in

each DFT bin is avoided. The formulation in (3.168) is the basis for selective narrowband

approximations in Section 3.4.3 leading to efficient algorithms.

3.4.2.5 Second-order statistics realization based on the multivariate Gaussian

pdf

In Section 3.3.7.2 it was shown that the usage of the multivariate Gaussian pdf leads to a

second-order statistics algorithm given in (3.112), inherently exploiting the nonwhiteness

property and exhibiting the same normalization by the auto-correlation matrices as the

HOS-SIRP algorithm. Analogously to the previous section, we can express the SOS

natural gradient update (3.112) in the DFT domain by using (3.141), (3.148), and (3.164)

yielding
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∆W̌(m) =
∞∑

i=0

β(i,m)VH
PL×PRSC

{
V2PL×PRW(i)

(
V1D0

PD×PR

)H
VPD×PR

boff
{
Y(i)G1N0

R×RYH(i)
}

VH
PD×PR

bdiag−1
{
VPD×PRY(i)G1N0

R×RYH(i)VH
PD×PR

}}
, (3.169)

which corresponds to an estimation of the cross-correlation matrices by the covariance

method. Comparing (3.169) and (3.168) shows that for the algorithm based on second-

order statistics the channel-wise nonlinearities Λq(i) are approximated as identity matri-

ces.

If the correlation method is used instead, then the DFT-domain representation of the

cross-correlation matrices is simplified as will be discussed in the following. Using the

correlation method, the cross-correlation matrices are estimated in the time domain as

R̃ypyq
(i) = 1

N
Ỹp(i)Ỹ

H
q (i) with Ỹq(i) defined in (3.82). The DFT representation of the

time-domain Toeplitz matrix Ỹq(i) is given in (3.161) as

Ỹ(i) = VPD×PRỸ(i)FRW
1N+D−10
R×N+D−1.

By approximating the window matrix W
1N+D−10
R×N+D−1 in (3.161) as an R×R identity matrix

it can be seen in the lower right corner of the illustration in Fig. 3.14 that only columns

of zeros are appended for each channel q = 1, . . . , P at the end of each matrix Ỹq, i.e.,

(3.161) is now for each channel of the form
[
Ỹq(i), 0D×R−N−D+1

]
= W01D

D×RF−1
R Ỹq(i)FR. (3.170)

These appended columns of zeros have no effect on the calculation of the correlation

matrix R̃ypyq
as

R̃ypyq
(i) =

1

N
Ỹp(i)Ỹ

H
q (i)

=
1

N

[
Ỹp(i), 0D×R−N−D+1

] [
Ỹq(i), 0D×R−N−D+1

]H
(3.171)

and thus, the cross-correlation matrix in DFT representation can be written as

R̃ypyq
(i) =

1

N
W01D

D×RF−1
R Ỹp(i)Ỹ

H

q (i)FRW01D

R×D. (3.172)

A combination of all channels leads to

R̃yy(i) =
1

N
VPD×PRỸ(i)Ỹ

H
(i)VH

PD×PR. (3.173)

Comparing (3.164) and (3.173) shows that by using the correlation method the constraint

matrix G01N

R×R is reduced to the identity matrix IR×R. Therefore, by using the correlation

method the SOS natural gradient in the DFT domain simplifies to
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∆W̌(m) =
∞∑

i=0

β(i,m)VH
PL×PRSC

{
V2PL×PRW(i)

(
V1D0

PD×PR

)H
VPD×PR

boff
{
Ỹ(i)Ỹ

H
(i)
}

VH
PD×PR

bdiag−1
{
VPD×PRỸ(i)Ỹ

H
(i)VH

PD×PR

}}
. (3.174)

The two DFT-domain formulations (3.169) and (3.174) do not contain any approximations

and thus, the time-domain correlations and linear convolutions are expressed equivalently

in an overlap-save structure using matrix notation. To allow efficient implementations we

will investigate in the next section the introduction of selective narrowband approxima-

tions which are applied, e.g., to the computationally demanding matrix inverse.

3.4.3 Selective approximations leading to well-known and novel

algorithms

In this section we will discuss selective approximations leading to efficient DFT-domain

implementations of the HOS and SOS natural gradient algorithms derived in (3.168),

(3.169), and (3.174). The main computational complexity of these algorithms originates

from the normalization by inverting the D×D auto-correlation matrices for each channel

and from the calculation of the SIRP-based nonlinearity Λq. In the following, suitable

approximations addressing these two aspects will be presented. First, in Section 3.4.3.1

the inversion of the large D ×D auto-correlation matrices is efficiently approximated by

a narrowband normalization. This approximation is applied to the HOS and SOS DFT-

domain updates in Sections 3.4.3.2 and 3.4.3.3. Moreover, further simplifications are

discussed yielding several novel algorithms and also establishing links to popular state-of-

the-art algorithms. Finally, in Section 3.4.3.4 the relationship of narrowband SOS-BSS

and the magnitude squared coherence (MSC) is discussed, showing the link to other cost

functions and to the estimation of the MSC presented in Chapter 2.

3.4.3.1 Narrowband normalization and regularization strategies

In literature it is very popular to apply BSS algorithms independently to each frequency

bin in the DFT domain. This leads to an optimization based on the narrowband model

as was pointed out in Section 3.2. Usually, these algorithms are computationally efficient

due to the application of circular convolutions. However, the drawback is that they suffer

from the scaling and permutation ambiguity in each DFT bin. By applying only selec-

tive narrowband approximations it is possible to exploit narrowband efficiency without

encountering the scaling and permutation problem. The Szegö theorem [GS58] provides
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the mathematical basis for the narrowband approximation and will now be applied to the

normalization given by the inverse of the block-diagonal matrix, i.e., by the channel-wise

inversion of the auto-correlation matrices in (3.168), (3.169), and (3.174). Subsequently,

also a regularization method is presented which improves the robustness in realistic envi-

ronments.

Approximation of the normalization based on the Szegö theorem

In the tutorial paper [Gra72] the Szegö theorem, originally introduced in [GS58], is for-

mulated and proven for finite-order Toeplitz matrices. A finite-order Toeplitz matrix is

defined as an R×R Toeplitz matrix where a finite D (D < R) exists such that all elements

of the matrix with the row or column index greater than D are equal to zero. It was shown

in [Gra72] that the R×R Toeplitz matrix of order D is asymptotically equivalent to the

R × R circulant matrix generated from an appropriately complemented D ×D Toeplitz

matrix. If the two matrices are also of hermitian structure, then the Szegö theorem on

the asymptotic eigenvalue distribution states:

1. The eigenvalues of both matrices lie between the same lower and upper bound.

2. The arithmetic means of the eigenvalues of both matrices are equal if the size R of

both matrices approaches infinity.

Then, the eigenvalues of both matrices are said to be asymptotically equally distributed.

The Szegö theorem will now be applied to the inversion of the auto-correlation matrices

which are needed in the HOS and SOS natural gradient updates (3.168), (3.169), and

(3.174). At first we will consider the case that the auto-correlation matrices are estimated

by the correlation method as R̃yqyq
= 1

N
ỸqỸ

H
q yielding a Toeplitz structure. Later on,

also the estimation by using the covariance method Ryqyq
= 1

N
YqY

H
q will be investigated.

Correlation method. In (3.172) the relationship between the D×D Toeplitz auto-

correlation matrix Ryqyq
and the DFT-domain quantity Ỹq is given for the case that the

correlation method is used. We can rewrite (3.172) as

R̃yqyq
(i) =

1

N
W01D

D×RCỸqỸq
(i)W01D

R×D, (3.175)

with the R× R circulant matrix CỸqỸq
given as

CỸqỸq
(i) = F−1

R Ỹq(i)Ỹ
H

q (i)FR. (3.176)

Thus, (3.175) shows the relationship between the D ×D Toeplitz matrix R̃yqyq
and the

R × R circulant matrix CỸqỸq
generated from the Toeplitz matrix by extending and

multiplying it with appropriate window matrices.
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According to [Gra72] the circulant CỸqỸq
and the D-th order Toeplitz matrix R̃yqyq

extended with zeros to the size R × R are asymptotically equivalent. Additionally, the

Szegö theorem states that the eigenvalues of the R×R Toeplitz matrix generated by ap-

pending zeros to R̃yqyq
can be asymptotically approximated for R → ∞ by the eigenvalues

of CỸqỸq
which are given as the elements on the main diagonal of the diagonal matrix

ỸqỸ
H

q . The benefit of this approximation becomes clear if we consider the inverse of a

circulant matrix. The inverse of a circulant matrix can be easily calculated by inverting

its eigenvalues

C−1

ỸqỸq
(i) = F−1

R

(
Ỹq(i)Ỹ

H

q (i)
)−1

FR. (3.177)

By using the Szegö theorem we can now approximate the inverse of the Toeplitz matrix

R̃yqyq
by the inverse of the circulant matrix (3.177) for R → ∞:

R̃−1
yqyq

(i) ≈ N · W01D

D×RF−1
R

(
Ỹq(i)Ỹ

H

q (i)
)−1

FRW01D

R×D. (3.178)

This can also be denoted as narrowband approximation because the eigenvalues ỸqỸ
H

q can

easily be determined as the DFT of the first column of the circulant matrix CỸqỸq
. The

inverse in (3.178) can now be efficiently implemented as a scalar inversion in each DFT

bin because ỸqỸ
H

q denotes a diagonal matrix. Moreover, it is important to note that the

inverse of a circulant matrix is also circulant. Thus, after the windowing by W01D
... the

resulting matrix R̃−1
yqyq

exhibits again a Toeplitz structure.

The error which is introduced by the narrowband approximation has been examined in

[She85] for the case of stationary random processes. The error has been measured as the

difference between the exact inversion of the Toeplitz matrix and the approximated inverse

given in (3.178). The results obtained in [She85] show that for R ≫ D the narrowband

approximation is well-justified.

In summary, (3.178) can be efficiently implemented as a DFT of the first column of

CỸqỸq
followed by a scalar inversion of the DFT-domain values and then applying the

inverse DFT. After the windowing operation these values are then replicated to generate

the Toeplitz structure of R̃−1
yqyq

. This approach reduces the complexity of the matrix

inversion from O(D2) to O(R logR).

Covariance method. If the covariance method is used instead to estimate the auto-

correlation matrices then Ryqyq
is given in (3.162) as

Ryqyq
(i) =

1

N
W01D

D×RF−1
R Yq(i)G

1N 0
R×RYH

q (i)FRW01D

R×D,

where compared to the correlation method the additional constraint matrix G1N 0
R×R ap-

pears. The constraint matrix is defined in (3.163) as an DFT, windowing, and IDFT

operation given as G1N0
R×R = F−1

R W1N0
R×RFR. Since the window matrix W1N0

R×R is diagonal,
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the constraint matrix G1N0
R×R is circulant which can be seen in the illustration in Fig. 3.15.

In [BBK03, BBK05] such a constraint was examined in the context of supervised adaptive
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Figure 3.15: Illustration of the constraint matrix |G1N0
R×R| with R = 64,N = 32.

system identification and it was pointed out that the main diagonal is dominant in the

mean-square sense. By neglecting the off-diagonals and the influence of the two isolated

peaks on the lower left and upper right corner in Fig. 3.15, the constraint matrix can be

approximated as a scaled identity matrix [BBK03, BBK05]

G1N0
R×R ≈ N

R
· IR×R. (3.179)

This can be interpreted as approximating the computation of the correlation YqY
H
q in

the time-domain as a circular convolution YqY
H
q in the DFT domain. Thus, circular

convolution effects originating from the narrowband computation are neglected and the

computation of the time-domain auto-correlation matrices is considerably simplified to

Ryqyq
(i) =

1

N
W01D

D×RCYqYq
(i)W01D

R×D, (3.180)

with

CYqYq
(i) =

N

R
F−1

R Yq(i)Y
H
q (i)FR. (3.181)

In general Ryqyq
does not exhibit any special structure if it is estimated using the co-

variance method. However, if the approximation (3.179) is used then, similar to the

correlation method, Ryqyq
is Toeplitz even if it is estimated by the covariance method. By

using again the Szegö theorem, the inverse of the auto-correlation matrix Ryqyq
can be
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approximated by the inverse of the circulant matrix CYqYq
for R → ∞ which yields for

the covariance method

R−1
yqyq

(i) ≈ R · W01D

D×RF−1
R

(
Yq(i)Y

H
q (i)

)−1
FRW01D

R×D. (3.182)

The inverse in (3.182) can now again be efficiently implemented as a scalar inversion.

This computationally efficient estimation of the inverse auto-correlation matrices based

on the covariance method is also used in supervised frequency-domain adaptive filtering

(FDAF) (e.g., [Shy92, BBK03, BBK05]). There, the narrowband approximation (3.179)

allowed to derive low-complexity multi-channel RLS-type algorithms. Applications of

such algorithms include multi-channel acoustic echo cancellation (e.g., [BBK03, BBK05])

or adaptive beamforming (e.g., [HBK03]).

Regularization of the matrix inverse

Prior to the inversion of the auto-correlation Toeplitz matrices according to (3.178) or

(3.182) a regularization is necessary as in practice these matrices may be ill-conditioned.

In [ABK06a] it was proposed to attenuate the off-diagonals of the auto-correlation Toeplitz

matrices R̃yqyq
by multiplying them with the factor ρ (0 ≤ ρ ≤ 1):

R̆yqyq
(i) = ρR̃yqyq

(i) + (1 − ρ)diag
{
R̃yqyq

(i)
}

= ρR̃yqyq
(i) + (1 − ρ)σ2

yq
(i)I (3.183)

It should be noted that for ρ = 0 the previous approximation of the normalization by

the output signal variance (3.116) in Section 3.3.8 can be seen as a special case of the

regularized version of the narrowband normalization.

The approximations in the previous section have led to a narrowband normalization

which is characterized by an inversion of circulant matrices CỸpỸq
, CYpYq

instead of

Toeplitz matrices R̃yqyq
. Thus, analogously to (3.183) it is desirable for the DFT-domain

implementations to regularize CỸpỸq
, CYpYq

instead of R̃yqyq
prior to inversion. This is

shown here exemplarily for the circulant matrix based on estimation by the correlation

method:

C̆ỸqỸq
(i) = ρCỸqỸq

(i) + (1 − ρ)diag
{
CỸqỸq

(i)
}
. (3.184)

In (3.176) it was pointed out that every circulant matrix can be expressed using the DFT

and inverse DFT matrix and a diagonal matrix as CỸqỸq
= F−1

R ỸqỸ
H

q FR. The diagonal

matrix ỸqỸ
H

q contains the DFT values of the elements of the first column of the circulant

matrix CỸqỸq
on its diagonal. Thus, by applying the diag operator on CỸqỸq

we can
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write

diag
{
CỸqỸq

(i)
}

= ryqyq
(i, 0) · I

= σ2
yq

(i) · I
= F−1

R σ2
yq

(i) · I · FR, (3.185)

with the auto-correlation elements ryqyq
(i, 0) defined in (3.79). Thus, (3.184) can be

simplified to a narrowband regularization in each frequency bin as

C̆ỸpỸq
(i) = ρF−1

R Ỹq(i)Ỹ
H

q (i)FR + (1 − ρ)σ2
yq

(i)I

= F−1
R

(
ρỸq(i)Ỹ

H

q (i) + (1 − ρ)σ2
yq

(i)I
)

FR. (3.186)

The variance is added in (3.186) to each DFT bin which is equivalent to adding it to

the diagonal of the time-domain matrix R̃yqyq
in (3.183). It should be noted that the

regularization in (3.186) which has been derived based on broadband optimization can

also be applied to algorithms based on narrowband optimization.

The narrowband normalization (3.178) or (3.182) together with the regularization

(3.186) is a first step to decrease the computational complexity of the DFT-domain up-

dates without much performance loss. In the following two sections the HOS and SOS

DFT-domain updates are investigated in more detail and additional approximations are

presented.

3.4.3.2 BSS based on higher-order statistics

In Section 3.3.7.1 a HOS-SIRP algorithm was presented and the resulting nonlinearity has

been given exemplarily for the multivariate Laplacian SIRP pdf which is a good model for

speech. The assumption of SIRPs considerably simplifies the estimation of multivariate

pdfs as only second-order correlation matrices instead of higher-order moments have to

be estimated. In Section 3.4.2.4 an equivalent representation of the HOS-SIRP algorithm

in the DFT domain given by (3.168) has been discussed. However, for an efficient im-

plementation of (3.168) not only the normalization has to be approximated as shown in

the previous section, but also suitable approximations have to be introduced to efficiently

calculate the nonlinearity Λq(i) in the DFT domain. In this Section we will show how

efficient HOS algorithms can be obtained by selectively approximating the constraints

originating from the broadband formulation (3.168) of the HOS-SIRP algorithm in the

DFT domain. This will show relationships to several popular algorithms in the literature.

Narrowband algorithms based on multivariate pdfs

It has been shown in Section 3.4.3.1 that the narrowband normalization (3.182) leads

to less computational complexity compared to the inversion of the time-domain auto-

correlation matrices. This approximation is applied to the HOS-SIRP update equation
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(3.168) expressed in the DFT domain by using the broadband signal model. Additionally,

(3.168) can further be simplified by selectively introducing the narrowband signal model

and thus, replacing linear convolutions by circular convolutions. Hence, the narrowband

normalization together with the approximation of the constraint
(
V1D0

PD×PR

)H
VPD×PR

simplifies the HOS-SIRP update to

∆W̌(m) =
2

N

∞∑

i=0

β(i,m)VH
PL×PRSC

{
V2PL×PRW(i)boff

{
Y(i)YH

φ (i)
}

diag−1

{
1

R
Y(i)YH(i)

}
VH

PD×PR

}
, (3.187)

where the nonlinearly weighted output signals YH
φ = [YH

φ,1, . . . ,Y
H
φ,P ] are given as

YH
φ =

[
FRW1N0

R×NΛH
1 W1N0

N×RF−1
R YH

1 , . . . ,FRW1N0
R×NΛH

PW1N0
N×RF−1

R YH
P

]
. (3.188)

The matrices W and Y are composed of diagonal submatrices Wpq, Yq with the DFT

bins on the diagonal. Due to the remaining constraint matrices V... and the PD × N

matrix Yφ a decoupling of the DFT bins, which would lead to an independent permuta-

tion and scaling ambiguity in each DFT bin, is prevented. Nevertheless, for reasons of

computational complexity it would be desirable that also the channel-wise submatrices

of Yφ could be approximated as a diagonal matrices with the DFT bins on the diagonal.

Then, the coupling would still be ensured by the constraints V... and also by the nonlin-

earity, which is still based on multivariate pdfs. However, the advantage would be that

the matrix multiplications involving W, Y, and Yφ could be performed element-wise for

each DFT bin. These element-wise computations can be seen as a bin-wise decomposition

of the PR×PR matrix W or the PR×R matrix Y into R smaller P ×P matrices W(ν)

or P × 1 column vectors Y(ν) for each DFT bin ν = 1, . . . , R − 1. An illustration of this

decomposition is given in Fig. 3.16 exemplarily for Y.

diagonal
submatrices
Y1, Y2

Y(0) Y(1) Y(R−1)

R

R

Figure 3.16: Illustration of the bin-wise decomposition of Y for the case P = 2.
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In the following we will discuss the approximations which also allow a bin-wise decom-

position of the nonlinearly weighted output signals Yφ and show how these approximations

lead to several recently published algorithms. For that, we first examine the nonlinear

weighting matrix Λq which is an N ×N diagonal matrix originating from the assumption

of multivariate SIRP pdfs of dimension D and is in (3.108) expressed in the time domain

as

Λq(i) = φyq,D

(
diag

{
YH

q (i)R−1
yqyq

(i)Yq(i)
})

. (3.189)

In (3.167) this quantity was expressed equivalently in the DFT domain by using the

time-frequency relations (3.154) and (3.162) leading to

Λq(i) = φyq,D

(
diag

{
W1N0

N×RF−1
R YH

q (i)FRW01D

R×D
(

1

N
W01D

D×RF−1
R YH

q (i)G1N0
R×RYq(i)FRW01D

R×D

)−1

W01D

D×RF−1
R Yq(i)FRW1N0

R×N

})
.

(3.190)

The inversion of the auto-correlation matrix can be approximated by the narrowband

inverse as pointed out in (3.182) leading to the diagonal matrix Syqyq
(i) = 1

R
Yq(i)Y

H
q (i)

with the DFT bins on its diagonal. Due to the diagonal structure this allows for an

element-wise inversion. Thus, Λq(i) can be simplified to

Λq(i) ≈ φyq,D

(
diag

{
W1N0

N×RF−1
R YH

q (i)G01D

R×RS−1
yqyq

(i)G01D

R×RYq(i)FRW1N0
R×N

})
, (3.191)

where, by exploiting the fact that the product of the window matrices can be expressed

as W01D

R×DW01D

D×R = W01D

R×R, the constraint matrix G01D

R×R is defined as

G01D

R×R = FRW01D

R×RF−1
R . (3.192)

The entries on the diagonal of Syqyq
(i) correspond to estimates of the variance in each

of the R DFT bins. In [Hir06, KEL06, KALL06, KALL07] it has been argued that the

matrix Syqyq
(i) may be further approximated as an identity matrix Syqyq

(i) ≈ IR×R. This

assumption can be justified if in each DFT bin a prewhitening step (see, e.g., [HKO01]),

i.e., a cross-channel decorrelation and normalization to unit variance, is applied. This

additional approximation leads to

Λq(i) ≈ φyq,D

(
diag

{
W1N0

N×RF−1
R YH

q (i)G01D

R×RYq(i)FRW1N0
R×N

})

= φyq,D

(
diag

{
YH

q (i)Yq(i)
})
, (3.193)

where the second line in (3.193) corresponds to the time-domain interpretation. As the

HOS-SIRP algorithm is based on the covariance method, the entries on the diagonal of the

N×N matrix diag
{
YH

q (i)Yq(i)
}

are not identical. Each of the N entries is determined by

the summation over D output signal samples given as yH
q (iL+ j)yq(iL+ j), j = 0, . . . , N .
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This shows that in totalN+D−1 output signal samples y(iL−D+1), . . . , y(iL+N−1) are

taken into account. By assuming stationarity within this signal block, we can approximate

the covariance method so that all values on the diagonal of diag
{
YH

q (i)Yq(i)
}

are equal

to the variance σ2
yq

given as

σ2
yq

(i) =

iL+N−1∑

n=iL−D+1

y2
q (n)

=
R−1∑

ν=0

|Y (ν)
q (i)|2. (3.194)

For the DFT-domain representation in the second line Parseval’s theorem6 was invoked

and Y (ν)
q denotes the element in the ν-th DFT bin given as the ν-th element on the

diagonal of Yq. Thus, the nonlinearity can be expressed as

Λq(i) ≈ φyq,D

(
σ2

yq
(i)
)
· IN×N

= φyq,D

(
R−1∑

ν=0

|Y (ν)
q (i)|2

)
· IN×N . (3.195)

Inserting (3.195) in (3.188) leads to

YH
φ (i) =

[
G1N0

R×RYH
1 (i)ΛH

1 (i), . . . ,G1N0
R×RYH

P (i)ΛH
P (i)

]

≈ N

R
YH(i)ΛH(i), (3.196)

where in the second line again the approximation (3.179) for the constraint matrix G1N0
R×R

has been used and the diagonal matrices Λq(i), Λ(i) are defined as

Λq(i) = φyq,D

(
R−1∑

ν=0

|Y (ν)
q (i)|2

)
· IR×R, (3.197)

Λ(i) = Bdiag {Λ1(i), . . . ,ΛP (i)} . (3.198)

We see now that the approximations have led to a simplified nonlinearly weighted matrix

YH
φ in (3.196) which consists of diagonal submatrices. Therefore, YH

φ can be decomposed

into the individual DFT bins. Nevertheless, the coupling between the DFT bins is ensured

by the nonlinearity φyq,D(·) whose argument includes all DFT bins. The approximated

nonlinearity Λ(i) leads to the simplified update

∆W̌(m) =
2

R

∞∑

i=0

β(i,m)VH
PL×PRSC

{
V2PL×PR∆W(i)VH

PD×PR

}
, (3.199)

6The DFT matrix FR has been introduced as [FR]ik = 1√
R

e−j2πik/R and is a unitary matrix due

to the scaling factor 1√
R

. For a unitary DFT matrix the Parseval theorem is given as
∑

n |yq(n)|2 =
∑R−1

ν=0 |Y (ν)
q |2. It should be noted that if the scaling factor in the definition of the DFT matrix is

omitted, then the Parseval theorem changes to
∑

n |yq(n)|2 = 1
R

∑R−1
ν=0 |Y (ν)

q |2.
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with the PR× PR update defined as

∆W(i) = W(i)boff
{
Y(i)YH(i)ΛH(i)

}
diag−1

{
Syy(i)

}
. (3.200)

All matrices in (3.200) consist of diagonal channel-wise submatrices with the DFT values

on the diagonal. This means that (3.200) can easily be computed by element-wise multi-

plications instead of matrix multiplications. Thus, this can be seen as decomposing the

large PR × PR or PR × P matrices for each DFT bin into R small P × P matrices or

P × 1 vectors as illustrated in Fig. 3.16.

The two constraint matrices V2PL×PR and VH
PD×PR in (3.199) transform the DFT-

domain matrix ∆W inside the Sylvester constraint SC into the time domain. For each

channel this is done by the transformation F−1
R ∆Wpq(i)FR. Multiplying a DFT-domain

diagonal matrix on both sides with the IDFT and DFT matrices leads to a time-domain

circulant matrix as was already discussed in Section 3.4.2.3 and illustrated for the Sylvester

matrix Wpq in Fig. 3.12. For the DFT-domain update ∆Wpq the R×R circulant matrix

is given as

C∆Wpq
= F−1

R ∆Wpq(i)FR. (3.201)

The circulant matrix is then constrained by the window matrices W12L0
2L×R and W1D0

R×D to

a Toeplitz matrix of size 2PL × D. This results in a channel-wise Toeplitz structure of

V2PL×PR∆W(i)VH
PD×PR which considerably simplifies the Sylvester constraint SC. In

the illustration of the Sylvester constraint SC in Fig. 3.2 it was shown that the operator

SC picks the first L diagonals in each channel and then performs an averaging of the

values on each diagonal. Due to the channel-wise Toeplitz structure the values on each

diagonal are already identical. Thus, we can discard the averaging operation and only

need to ensure that in each channel the values on the first L diagonals are picked. This

allows to simplify the Sylvester constraint in the update equation leading to the Sylvester

constraint for narrowband algorithms

∆W̌(m) =
2

R

∞∑

i=0

β(i,m)G1L0
PR×PR∆W(i)LI, (3.202)

where the constraint matrix

G1L0
PR×PR = VH

PL×PRV2PL×PR

= Bdiag
{
FRW1L0

R×RF−1
R , . . . ,FRW1L0

R×RF−1
R

}
, (3.203)

and LI = Bdiag {1R×1, . . . , 1R×1} is a block-diagonal matrix consisting of column vec-

tors 1R×1 containing only ones. A multiplication on the right-hand side with matrix LI

converts the DFT-domain R × R diagonal submatrices of ∆W to R × 1 column vectors

containing the R DFT values. The left-hand side multiplication with the constraint ma-

trix G1L0
PR×PR transforms the DFT-domain demixing filter coefficients for each channel to
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the time domain, sets all values larger than the filter length L to zero, and then goes back

to the DFT domain. This procedure ensures that the elements on the first L diagonals

are used as filter coefficients as desired by the Sylvester constraint SC.

This allows to finally write the natural gradient update for the narrowband HOS

algorithm based on multivariate SIRP pdfs as:

∆W̌(m) =
2

R

∞∑

i=0

β(i,m)G1L0
PR×PRW(i)boff

{
Y(i)YH(i)ΛH(i)

}
diag−1

{
Syy(i)

}
LI

(3.204a)

Λ(i) = Bdiag {Λ1(i), . . . ,ΛP (i)} (3.204b)

Λq(i) = φyq,D

(
R−1∑

ν=0

|Y (ν)
q (i)|2

)
· IR×R (3.204c)

It can be seen that the coupling between the DFT bins is ensured in two ways. First, the

nonlinearity Λ depends on the output signals in all DFT bins as can be seen in (3.204c)

and second, the constraint matrix G1L0
PR×PR contains a windowing operation in the time-

domain which also leads to a coupling of the individual DFT bins. The latter procedure

appears similarly in the well-known “constrained frequency-domain adaptive filtering” in

the supervised case [Hay02, BBK03] and allows to avoid in a simple way an independent

permutation and scaling in each DFT bin.

In [Hir06, KALL06, KALL07] a similar algorithm was derived which is based on the

narrowband model and avoids the independent permutation and scaling in each DFT bin

by assuming multivariate SIRP pdfs. Their algorithms can be obtained if the constraint

G1L0
PR×PR is further approximated as a scaled identity matrix and if the inverse is assumed

to be diag−1
{
Syy(i)

}
≈ IPR×PR leading to

∆W̌(m) ∝
∞∑

i=0

β(i,m)W(i)boff
{
Y(i)YH(i)ΛH(i)

}
LI. (3.205)

The nonlinearity in [Hir06, KALL06, KALL07] was calculated according to (3.204c) and

the SIRP score was based on an approximation of the multivariate Laplacian SIRP pdf

(3.100) leading to

φyq,D

(
R−1∑

ν=0

|Y (ν)
q (i)|2

)
=

1√∑R−1
ν=0 |Y (ν)

q (i)|2
. (3.206)

So here only the joint power in the nonlinearity is used to avoid the internal permutation.

Alternatively, the SIRP score (3.103) which is based on the exact multivariate Laplacian

SIRP pdf and which was proposed in [BAK03a] can be used.
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Narrowband algorithms based on univariate pdfs

Above we have seen that by using a multivariate SIRP pdf a coupling between the DFT

bins can be retained leading to a score function φyq,D(·) where the argument depends on

all DFT bins. This method prevents the independent permutation and scaling ambiguity

in each DFT bin as has been pointed out in, e.g., [BAK04a, Hir06, KEL06]. On the

other hand, the overwhelming majority of traditional narrowband approaches are based

on univariate pdfs which do not provide any coupling between the DFT bins and thus,

the permutation and scaling ambiguity have to be solved by different methods.

In the following we will show how also such narrowband algorithms can be derived from

the broadband HOS-SIRP update (3.168) expressed in the DFT-domain. The assumption

of a univariate pdf has consequences for the nonlinear weighting Λq contained in the output

signals Yφ which was given in (3.188). In (3.191) the nonlinear weighting Λq based on

the D-variate SIRP pdf was expressed by DFT domain quantities together with several

constraint matrices and the normalization already expressed as a narrowband inverse. If

instead a univariate pdf for each DFT bin is chosen, then all constraint matrices G01D

R×R are

approximated as identity matrices because no coupling between the DFT bins is preserved.

This means that the D-variate SIRP pdf defined in the time-domain in (3.95) as p̂yq,D(yq)

is approximated by univariate pdfs p̂(ν)

Y q,1
(Y (ν)

q ) for each DFT bin which are given as

p̂(ν)

Y q,1
(Y (ν)

q ) = a · fY q ,1


 |Y (ν)

q |2

σ
(ν)2

Y q


 , (3.207)

where a is a normalization factor, σ
(ν)2

Y q
is an estimate of the variance for the q-th output

signal in the ν-th DFT bin (ν = 0, . . . , R − 1), and fY q ,1(·) is a scalar function which

depends on the chosen distribution. Thus, the nonlinear weighting in (3.191) reduces to

Λq(i) = W1N0
N×RF−1

R φ
yq ,1

(
YH

q (i)S−1
yqyq

(i)Yq(i)
)

FRW1N0
R×N , (3.208)

where φ
yq ,1

(·) is the transformed score function resulting from the univariate pdf given in

(3.207). The score function φ
yq ,1

(·) is applied independently to the individual DFT bins

of the diagonal DFT-domain matrix product. Inserting (3.208) into the definition of the

nonlinearly weighted output signals Yφ given in (3.188) leads for the q-th channel to

YH
φ,q = G1N0

R×R φ
yq ,1

(
YH

q (i)S−1
yqyq

(i)Yq(i)
)

G1N0
R×RYH

q . (3.209)

By further approximating the constraint matrices G1N0
R×R as scaled identity matrices we

obtain the nonlinearly weighted DFT-domain output signals Yφ,q given as the R × R

matrix

YH
φ,q(i) ≈ φ

yq,1

(
YH

q (i)S−1
yqyq

(i)Yq(i)
)

YH
q (i) (3.210)
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and the combination of all channels is denoted as

Yφ(i) = [Yφ,1(i), . . . ,Yφ,P (i)]T. (3.211)

Inserting (3.211) into the update equation (3.187) leads to

∆W̌(m) =
2

N

∞∑

i=0

β(i,m)VH
PL×PRSC

{
V2PL×PR∆W(i)VH

PD×PR

}
, (3.212)

with the narrowband update ∆W defined as

∆W(i) ∝ W(i)boff
{
Y(i)YH

φ (i)
}

diag−1
{
Syy(i)

}
. (3.213)

Analogously to the previous section in (3.202), we can replace the Sylvester constraint

SC by a multiplication with LI and the constraint G1L0
PR×PR yielding

∆W̌(m) =
2

N

∞∑

i=0

β(i,m)G1L0
PR×PR∆W(i)LI. (3.214a)

As all matrices in the narrowband update ∆W are diagonal we can analogously to the

illustration in Fig. 3.16 decompose the PR × PR matrices W, Syqyq
and the PR × R

matrices Y, Yφ into smaller P × P matrices or P × 1 vectors for each DFT bin ν =

0, . . . , R− 1. This leads to a bin-wise update ∆W(ν) given for the ν-th DFT bin as

∆W(ν)(i) ∝ W(ν)(i)boff

{
Y(ν)(i)

(
Y

(ν)
φ (i)

)H
}

diag−1
{
S(ν)

yy (i)
}
, (3.214b)

where the diagonal matrix diag{S(ν)
yy} contains the variances

(
σ

(ν)
Y q

)2

of the output channels

on its diagonal. The bin-wise decomposition of Yφ = [Yφ,1, . . . ,Yφ,P ]T is given by the

bin-wise decomposition of the score function φ
yq,1

(·) in (3.210) to φ(ν)

yq,1
(·) as

Y
(ν)
φ,q(i) = φ(ν)

yq,1

(
|Y (ν)

q |2/σ(ν)2

Y q

)
Y (ν)

q (i), (3.214c)

φ(ν)

yq,1

(
|Y (ν)

q |2/σ(ν)2

Y q

)
= −

∂ log fY q,1

(
|Y (ν)

q |2/σ(ν)2

Y q

)

∂(|Y (ν)
q |2/σ(ν)2

Y q
)

. (3.214d)

The equations (3.214a)-(3.214d) define the narrowband HOS algorithm based on univari-

ate pdfs. It can be seen from the narrowband update equation (3.214b) and the nonlinear

weighting (3.214d) that all DFT bins are adapted independently. The only coupling be-

tween the DFT bins is given by the constraint matrix in (3.214a) which corresponds to a

transformation of the filter coefficients back to the time domain, zeroing the last R − L
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values, and transforming the result back to the DFT domain. This procedure appears

similarly in the well-known “constrained frequency-domain adaptive filtering” in the su-

pervised case [Hay02, BBK03]. In BSS, this theoretically founded mechanism largely

eliminates the internal permutation problem in a simple way. It was first heuristically in-

troduced for narrowband BSS algorithms in [Sma98], and also in [PSV98, PS00]. A more

detailed experimental examination on this constraint was reported in [IM00]. However,

due to the omission of the other constraints in the approximated gradients we will not

perfectly remove the permutation ambiguity as observed experimentally in [IM00]. Tra-

ditional narrowband approaches also neglecting the constraint matrix in (3.214a) need

additional measures for solving the permutation ambiguity (e.g., [IM99, SMAM03]).

For the implementation of the algorithm (3.214a)-(3.214d) the choice of a suitable

nonlinearity φ(ν)

yq,1
in (3.214c) remains to be discussed. It was shown in [GZ03] that the

multivariate Laplacian pdf is a good model for speech in the time domain. Additionally,

their experimental evaluations showed that the distribution of speech can also be modeled

in transform domains by a Laplacian distribution. The Laplacian pdf is given for the ν-th

DFT bin as

p̂(ν)

Y q,1
(Y (ν)

q ) = a · e
−

0

@

|Y (ν)
q |

σ
(ν)
Y q

1

A

, (3.215)

where a denotes a normalization term. This leads to a nonlinearly weighted output signal

Y
(ν)
φ,q given for the ν-th DFT bin as

Y
(ν)
φ,q(i) =

1

2
σ

(ν)
Y q

(i)
Y (ν)

q (i)

|Y (ν)
q (i)|

. (3.216)

Noting that the complex sign function is given as sign(Y (ν)
q ) = Y (ν)

q /|Y (ν)
q |, we can express

(3.216) as

Y
(ν)
φ,q(i) =

1

2
σ

(ν)
Y q

(i) · sign(Y (ν)
q (i)). (3.217)

The sign-function is a popular nonlinearity for narrowband BSS applied to speech signals

(see, e.g., [HKO01, MD02]). Another very popular univariate pdf for narrowband BSS is

given as

p̂(ν)

Y q,1
(Y (ν)

q ) = a− cosh
(
|Y (ν)

q |/σ(ν)
Y q

)
, (3.218)

where a is a constant. This leads to a nonlinearly weighted output signal Y
(ν)
φ,q given for

the ν-th DFT bin as

Y
(ν)
φ,q(i) =

1

2
σ

(ν)
Y q

(i) tanh


 |Y (ν)

q |
σ

(ν)
Y q


 Y (ν)

q (i)

|Y (ν)
q (i)|

. (3.219)



116 3. A Blind Source Separation Framework for Reverberant Environments

The nonlinear weighting is in (3.219) only applied to the absolute value of the output signal

as has been proposed in [SMAM02]. This is an improved version of the original proposition

in [Sma98] to extend the information maximization approach [BS95] by applying the

tanh(·) to the real and imaginary part of the output signal separately.

It should be noted that both nonlinear weightings (3.217) and (3.219) contain the

normalization by the output signal variance. However, in most of the narrowband BSS

literature this normalization is omitted as usually a prewhitening step in each DFT bin

is included which performs a cross-channel decorrelation and scales the signals to unit

variance, i.e., σ
(ν)2

Y q
= 1, ∀ ν.

3.4.3.3 BSS based on second-order statistics

In the SOS case we can apply the same approximation steps as discussed for the HOS

case in Section 3.4.3.2. At first we apply the narrowband normalization explained in

Section 3.4.3.1 to the SOS natural gradient update expressed in the DFT domain. For an

estimation of the correlation matrices by the covariance method additionally the constraint

G1N0
R×R is approximated according to (3.179) as G1N 0

R×R ≈ N/R · IR×R so that the DFT-

domain update (3.169) simplifies to

∆W̌(m) =
∞∑

i=0

β(i,m)VH
PL×PRSC

{
V2PL×PRW(i)G1D0

PR×PRboff
{
Y(i)YH(i)

}

G1D0
PR×PRdiag−1

{
Y(i)YH(i)

}
VH

PD×PR

}
, (3.220)

with the constraint matrix G1D0
PR×PR given as

G1D0
PR×PR = Bdiag

{
F−1

R W01D

R×RFR, . . . ,F
−1
R W01D

R×RFR

}
. (3.221)

For an estimation of the correlation matrices by the correlation method, the matrices Y

are simply replaced by Ỹ as defined in (3.160) leading to

∆W̌(m) =

∞∑

i=0

β(i,m)VH
PL×PRSC

{
V2PL×PRW(i)G1D0

PR×PRboff
{
Ỹ(i)Ỹ

H
(i)
}

G1D0
PR×PRdiag−1

{
Ỹ(i)Ỹ

H
(i)
}

VH
PD×PR

}
, (3.222)

The algorithms (3.220) and (3.222) preserve most constraints and only the normalization

is performed in a narrowband manner. Thus, narrowband efficiency is combined with

avoiding the permutation and scaling ambiguity in each DFT bin due to the formulation of

the remaining algorithm in a broadband manner. The constraints express the overlap-save
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procedure which ensures that linear convolutions are computed. This hybrid algorithm

has been proposed in [ABK06a, ABK06b] and the evaluations in Section 3.6 will show its

good performance.

The narrowband approach is obtained by further approximating the constraint

G1D0
PR×PR ≈ D/R · IPR×PR. This allows again a simplification of the Sylvester constraint

SC as given in (3.202) and leads together with the DFT-domain update ∆W to the

narrowband natural gradient SOS BSS algorithm

∆W̌(m) =

∞∑

i=0

β(i,m)G1L0
PR×PR∆W(i)LI, (3.223a)

∆W(i) ∝ W(i)boff
{
Y(i)YH(i)

}
bdiag−1

{
Y(i)YH(i)

}
. (3.223b)

Analogously to the HOS narrowband algorithm in the previous section, we can decompose

the DFT-domain update ∆W to a bin-wise formulation yielding

∆W(ν)(i) ∝ W(ν)(i)boff

{
Y(ν)(i)

(
Y(ν)(i)

)H
}

bdiag−1

{
Y(ν)(i)

(
Y(ν)(i)

)H
}
, (3.224)

with ν = 0, . . . , R − 1 denoting the DFT bin index. The complete decoupling of the

DFT bins is again prevented by the constraint G1L0
PR×PR given in (3.223a). This constraint

which consists of a channel-wise IDFT, windowing operation, and DFT was first heuris-

tically proposed for SOS BSS algorithms in [PSV98, PS00]. The narrowband algorithm

(3.223a), (3.223b) is equivalent to a natural gradient BSS algorithm proposed in [WP99]

derived from a narrowband optimization criterion. Additionally, from this optimization

criterion also a gradient version was derived in [WP99] and more recently Fancourt and

Parra in [FP01a] obtained the same algorithm by using the magnitude-squared coherence

(MSC) function as a criterion. This indicates that a relationship between the broadband

TRINICON optimization criterion and the magnitude-squared coherence function can be

established as will be shown in the following section.

3.4.3.4 Relationship of narrowband second-order BSS and the magnitude-

squared coherence function

To obtain a link between the magnitude-squared coherence (MSC) function, we need to

obtain first a SOS optimization criterion based on the broadband TRINICON optimiza-

tion criterion (3.43). To this end, the joint densities p̂y,PD(·) and p̂yq,D(·) in (3.43) are
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assumed to be multivariate Gaussian pdfs (3.110) yielding

J̃ (i,W) =
1

2N

N−1∑

j=0

(
P∑

q=1

(
log det Ryqyq

(i) + yH
q (iL+ j)R−1

yqyq
(i)yq(iL+ j)

)

− log det Ryy(i) − yH(iL+ j)R−1
yy(i)y(iL+ j)

)
. (3.225)

Exploiting the fact that the determinant of a block-diagonal matrix is given as [Har97]

det








A11 0 . . . 0

0 A22 0
...

...
. . .

0 0 . . . APP








= det{A11} · det{A22} · . . . · det{APP}, (3.226)

we can rewrite the term
∑P

q=1 log det{Ryqyq
} = log det{bdiag{Ryy}}. Using the matrix

Yq(i) defined in (3.69) which contains the N column vectors yq(iL+j) for j = 0, . . . , N−1

and the correlation matrix Ryy(i) = 1
N
Y(i)YH(i) from (3.71) we can rewrite the quadratic

form as

1

N

N−1∑

j=0

yH
q (iL+ j)R−1

yqyq
(i)yq(iL+ j) = tr

{
YH

q (i)
(
Yq(i)Y

H
q (i)

)−1
Yq(i)

}

= tr
{
Yq(i)Y

H
q (i)

(
Yq(i)Y

H
q (i)

)−1
}

= tr {ID×D} = D. (3.227)

For the second line of (3.227) we exploited the fact that the matrices inside the trace

operator may be circularly shifted, i.e., tr{ABC} = tr{CAB} [Har97]. Analogously, the

quadratic form 1
N

∑N−1
j=0 yH(iL+j)R−1

yy(i)y(iL+j) can be expressed using Y(i) defined in

(3.72) which leads to the constant value PD. Using these results, the SOS optimization

criterion (3.225) simplifies to

J (m,W) =
1

2

m∑

i=0

β(i,m) (log det{bdiag{Ryy}} − log det{Ryy}) . (3.228)

The same broadband optimization criterion was proposed in [ABK03, BAK03b, BAK05a]

where it was not derived from the TRINICON optimization criterion (3.43) but motivated

as the extension of the criterion proposed in [MOK95, KMO98] to incorporate D time

lags.

To see the link to the MSC we derive a narrowband optimization criterion from (3.228)

by expressing it in the DFT domain and then approximating the constraint matrices as
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identity matrices as shown in the previous sections. This leads to an optimization criterion

J (ν)(m,W(ν)) =
1

2

m∑

i=0

β(i,m)
(
log det

{
diag{S(ν)

yy (i)}
}
− log det

{
S(ν)

yy (i)
})

(3.229)

applied independently to each DFT bin ν = 0, . . . , R−1. The P×P power-spectral density

matrix in the ν-th DFT bin is defined as S(ν)
yy = Y(ν)

(
Y(ν)

)H

with its entries denoted

as S(ν)
ypyq

, p, q ∈ {1, . . . , P}. The standard MSC was already defined and discussed in

Section 2.2.4 and is given as

|Γ(ν)
ypyq

(m)|2 =
|S(ν)

ypyq
(m)|2

S(ν)
ypyp

(m)S(ν)
yqyq

(m)
(3.230)

with p, q ∈ {1, 2}. It can be extended to more than two channels by the generalized

coherence function [GC88]

|Γ(ν)
yy (m)|2 = 1 −

det{S(ν)
yy (m)}

∏P
p=1 S

(ν)
ypyp

(m)
, (3.231)

which is valid for an arbitrary number P of channels and is equal to (3.230) for P = 2.

To show the relationship between the generalized coherence and (3.229), the optimization

criterion has to be reformulated leading to

J (ν)(m,W(ν)) =

m∑

i=0

β(i,m)

(
log

P∏

p=1

S(ν)
ypyp

(i) − log det{S(ν)
yy (i)}

)

=

m∑

i=0

β(i,m)

(
− log

det{S(ν)
yy (i)}

∏P
p=1 S

(ν)
ypyp

(i)

)
. (3.232)

A Taylor approximation

− log(x) = (1 − x) +
(1 − x)2

2
+

(1 − x)3

3
+ · · ·

around x = 1 for 0 < x ≤ 2 finally yields

J (ν)(m,W(ν)) =
m∑

i=0

β(i,m)

(
1 −

det{S(ν)
yy (i)}

∏P
p=1 S

(ν)
ypyp

(i)

)
, (3.233)

which shows that the narrowband SOS optimization criterion can directly be seen as a

minimization of the generalized coherence function [BAK03b].

Both, the MSC and the generalized coherence function satisfy the desirable property

0 ≤ |Γ(ν)
ypyq

(m)|2, |Γ(ν)
yy (m)|2 ≤ 1, (3.234)
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which is very suitable for an optimization criterion as it directly translates into an inher-

ent stepsize normalization of the corresponding update equation as can be seen, e.g., in

(3.223b). Especially for colored signals such as speech, this normalization leads to im-

proved performance compared to traditional BSS algorithms based on the Frobenius norm

where usually a heuristic normalization is added (see, e.g., [PS00]). The performance gain

due to the normalization has also been exploited in [FP01a] where the sum of all possible

MSCs between the P output channels has been proposed as an optimization criterion

for narrowband BSS. The criterion in [FP01a] is equivalent to (3.233) for P = 2, while

for P > 2 the criterion (3.233) resulting from the broadband TRINICON optimization

criterion is slightly more general.

The conclusion that the narrowband SOS BSS algorithm derived from the TRINICON

framework is based on the generalized coherence allowed to establish the link to the

algorithm in [FP01a]. Additionally, it shows that the influence of different parameters

on the estimation of the magnitude-squared coherence as discussed in Section 2.2.4 also

applies to the estimation of the narrowband SOS BSS optimization criterion and the

algorithms following from it.

3.4.4 Summary

In Section 3.4 the aim was to formulate the broadband BSS algorithms derived from

the TRINICON optimization criterion equivalently in the DFT domain and subsequently

introduce selective approximations to obtain efficient algorithms. As shown in the flow-

chart in Fig. 3.17, this has been realized by firstly introducing the distinction between

broadband and narrowband signal model in Section 3.4.1 based on the linear convolution

in matrix notation which is expressed as a multiplication of a Toeplitz matrix with a

vector. The broadband model yields the linear convolution expressed as an overlap-

save procedure in matrix notation resulting in a multiplication of DFT-domain vectors

or matrices together with so-called constraint matrices consisting of DFT, IDFT, and

windowing operations. The narrowband model can be obtained from the broadband

version by approximating the constraint matrices.

In Section 3.4.2 based on the two signal models a general procedure was given to

express the broadband BSS update equations, which were derived in the time domain,

equivalently in the DFT domain. The approach is to firstly express the time-domain vari-

ables appearing in the BSS update equations in terms of Toeplitz matrices (Section 3.4.2.1)

and then express the Toeplitz matrices as DFT-domain quantities by using the broadband

signal model (Section 3.4.2.3). Additionally, in Section 3.4.2.2 the iterative update rule

was expressed in the DFT-domain. These were the prerequisites for expressing the higher-

order and second-order statistics realizations of the generic TRINICON BSS algorithm

equivalently in the DFT-domain in Sections 3.4.2.4 and 3.4.2.5.
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The formulation of the algorithms in the DFT domain resulted in several constraint

matrices which have been selectively approximated in Section 3.4.3 and led to recently

published and also well-known algorithms from the literature. A selective approximation

allows to gain computational efficiency but at the same time still avoids the permutation

and scaling in each DFT bin. The main computational complexity arises from the nor-

malization given for each channel by the inverse of the auto-correlation matrix. Therefore,

a narrowband normalization together with a regularization scheme has been discussed in

Section 3.4.3.1. Subsequently, by approximating additional constraints several efficient

HOS and SOS BSS algorithms have been derived in Sections 3.4.3.2 and 3.4.3.3. The

coupling between the DFT bins has either been assured by a last remaining constraint

or by still considering multivariate pdfs instead of univariate pdfs for each DFT bin.

This avoided the permutation and scaling ambiguity to a large extent. If the updates

in the DFT bins are fully decoupled then the permutation and scaling problem have to

be solved by applying other repair mechanisms developed for narrowband algorithms.

Finally, in Section 3.4.3.4 a relationship between SOS narrowband BSS algorithms and

the generalized coherence function have been given. This shows that the influence of

different parameters on the estimation of the magnitude-squared coherence as discussed

in Section 2.2.4 also applies to the estimation of the narrowband SOS BSS algorithms.
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Section 3.4.1: Broadband and narrowband model in the DFT domain:
– Linear convolution as overlap-save in matrix notation leads to constraints
– Approximation of constraints leads to circular convolution

Section 3.4.2: Equivalent formulation of broadband algorithms in the DFT domain

Section 3.4.2.1: Formulation of signal model by Toeplitz matrices
Section 3.4.2.2: Formulation of update rule in the DFT domain
Section 3.4.2.3: Transformation of Toeplitz matrices into the DFT domain

⇒ Several constraint matrices ensure equivalence to the time domain

Section 3.4.2.4: HOS algorithm
based on SIRP pdfs expressed
in the DFT domain

Section 3.4.2.5: SOS algorithm
based on multivariate Gaussian
pdf expressed in the DFT domain

Section 3.4.3: Introducing selective narrowband approximations

Section 3.4.3.1: Approximation of the normalization by an inverse matrix

Section 3.4.3.2: Efficient HOS
algorithms by additional
approximations. Coupling
between DFT bins preserved by:
– nonlinearity based on multivariate

pdf
– remaining constraint resulting

in IDFT, windowing, DFT
operation

Section 3.4.3.3: Efficient SOS
algorithms
– narrowband normalization
– approximation of all other

constraints except one
– coupling by the remaining

constraint resulting in IDFT,
windowing, and DFT operation

Algorithms based on narrowband optimization if all constraints approximated
⇒ Repair mechanisms are needed for solving permutation and scaling ambiguity

Figure 3.17: Flowchart showing the relations between the generic TRINICON update expressed

in the DFT domain based on a broadband model and its various narrowband approximations

leading to efficient BSS algorithms.
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3.5 Algorithm formulation for different update

strategies

In the TRINICON optimization criterion (3.43) a weighting function β(i,m), with the

block time indices i,m and with finite support normalized according to
∑∞

i=0 β(i,m) = 1,

was introduced to allow different realizations of the algorithms. Based on (3.43) different

update rules in the time-domain and DFT domain have been derived in the previous

sections. The different algorithm adaptation possibilities will be shown in this section

exemplarily for the iterative time-domain coefficient update given in (3.58) so that e.g.

Newton-based methods are not considered here although they are possible (see [Buc]).

All updates in this thesis are based on the natural gradient of the optimization criterion

J (i,W) and thus the coefficient update in the m-th block can be expressed as

W̌(m) = W̌(m− 1) − µ∆W̌(m)

= W̌(m− 1) − µ∇NG
W̌

J (i,W)

= W̌(m− 1) − µ

∞∑

i=0

β(i,m)∇NG
W̌

J̃ (i,W), (3.235)

where J̃ (i,W) denotes the optimization criterion for the i-th block and was defined in

(3.43). In the following we distinguish three different types of weighting functions β(i,m)

for offline, online, and block-online realizations [BAK04a].

3.5.1 Offline update

When realizing the algorithm as an offline or so-called batch algorithm, then β(i,m)

corresponds to a rectangular window (Fig. 3.18), which is described by

β(i,m) =
1

Ksig
ǫ0,(Ksig−1)(i), (3.236)

where ǫa,b(i) is a rectangular window function, i.e., ǫa,b(i) = 1 for a ≤ i ≤ b, and ǫa,b(i) = 0

elsewhere. The entire signal is segmented into Ksig blocks, and then it is processed to

estimate the demixing matrix Wℓ, where the superscript ℓ denotes the current iteration.

This leads to the coefficient update

W̌ℓ = W̌ℓ−1 − µ

Ksig

Ksig−1∑

i=0

∇NG
W̌

J̃ (i,W), (3.237)

where due to the offline processing the update does not depend on the block-time index

anymore, but on the iteration index ℓ. Hence, the algorithm is generally visiting all

the signal data repeatedly for each iteration ℓ and therefore, it usually achieves a better

performance compared to its online counterpart.
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Figure 3.18: Weighting function β(i,m) for offline implementation.

3.5.2 Online update

In time-variant environments an online implementation of (3.235) is required. An efficient

realization can be achieved by using a weighting function with an exponential forgetting
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Figure 3.19: Weighting function β(i,m) for online implementation.

factor λ (Fig. 3.19). It is defined by

β(i,m) = (1 − λ)λm−iǫ0,m(i), (3.238)

where 0 ≤ λ < 1 and m denotes the current block. Inserting (3.238) in (3.235) yields

W̌(m) = W̌(m− 1) − µ (1 − λ)

m∑

i=0

λm−i∇NG
W̌

J̃ (i,W)

︸ ︷︷ ︸
=∆W̌(m)

. (3.239)

Additionally, the update ∆W̌(m) in (3.239) can be formulated recursively as

∆W̌(m) = (1 − λ)

(
λ

m−1∑

i=0

(
λm−1−i∇NG

W̌
J̃ (i,W)

)
+ ∇NG

W̌
J̃ (m,W)

)

= λ∆W̌(m− 1) + (1 − λ)∇NG
W̌

J̃ (m,W). (3.240)

This reduces computational complexity and memory requirements since only the preceding

update ∆W̌(m−1) has to be saved. The recursive formulation thus leads to the following

online coefficient update:
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W̌(m) = W̌(m− 1) − µ
(
λ∆W̌(m− 1) + (1 − λ)∇NG

W̌
J̃ (m,W)

)
(3.241)

It can be seen that the forgetting factor λ determines the memory of the algorithm

update. A rule of thumb is that a rectangular window with the length (1 + λ)/(1 − λ)

yields approximately the same estimate as the exponential window with forgetting factor

λ. This has been proven for the estimation of quasi-stationary auto-regressive Gaussian

processes in [Bor85]. For the special case λ = 0 we have

W̌(m) = W̌(m− 1) − µ∇NG
W̌

J̃ (m,W), (3.242)

which corresponds to β(i,m) = δ(i−m).

3.5.3 Block-online update

The online adaptation presented in (3.241) allows for a real-time implementation, however,

for rapidly time-variant mixing systems the convergence of the natural gradient algorithms

may not be sufficient. Therefore, it is desirable to combine the improved convergence of

offline adaptation with the online adaptation. Similarly to supervised adaptive filtering,

where the weighting function β(i,m) = (1 − λ)λm−iǫ0,m(i) allows to derive the recursive

least-squares (RLS) algorithm, i.e., the online solution, from the corresponding offline

least-squares (LS) solution [SS89, Hay02], we want to use the same methodology to obtain

a recursive block-by-block solution based on the offline adaptation (where all data is

required) given by

W̌ℓ(m) = W̌ℓ−1(m) − µ∆W̌ℓ(m), ℓ = 1, . . . , ℓmax. (3.243)

The superscript ℓ denotes again the iteration number, µ is the stepsize and the update

∆W̌ℓ(m) corresponds for the natural gradient to ∇NG
W̌

J (m,Wℓ−1(m)). Here, the weight-

ing function β(i,m) is chosen as

β(i,m) =
1 − λ

K

m∑

m′=0

λm−m′

ǫm′K,m′K+K−1(i), (3.244)

and is shown in Fig. 3.20. The horizontal axis shows the block index i with each block

having a length of N samples. In the previously discussed offline and online adaptation

methods the variable m denoted the current block of length N . When specifying β(i,m)

as given in (3.244), the current block m is of length KL+N −L samples as it contains K

subsequent blocks of length N with a blockshift of L samples each to allow the exploitation

of the nonstationarity. As shown in Appendix B.3 we can derive an approximate recursive

formulation of the offline update (3.243) by using the weighting function β(i,m) given

in (3.244). This leads to a so-called block-online method where an online update and
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Figure 3.20: Weighting function β(i,m) for block-online implementation at block time m = 2.

an offline update are combined similar to the approach in [MSAM03]. The advantage of

this approach is that it allows a faster convergence and better tracking behavior than the

online algorithm at moderate computational complexity.

According to Appendix B.3, the offline part is calculated iteratively for the current

block m without exploiting any previous blocks (see Fig. 3.20) as,

W̌ℓ(m) = W̌ℓ−1(m) − µ
1

K

mK+K−1∑

i=mK

∇NG
W̌

J̃ (i,Wℓ−1(i)). (3.245)

where W̌ℓ(m) is the demixing filter matrix after ℓ iterations (ℓ = 1, . . . , ℓmax) based on

data of the m-th block. Equation (3.245) contains K update terms ∇NG
W̌

J̃ (i,Wℓ−1(i))

which are determined by using one of the algorithms derived in the previous section. This

simultaneous optimization for K blocks allows to exploit the nonstationarity of the source

signals as for each block the source statistics may change and thus, new support for the

adaptation of the coefficient vector space may be added. A large number of iterations

ℓmax allows a fast convergence of the natural gradient descent without introducing an

additional algorithmic delay but at the cost of an increased computational complexity. In

practice, the maximum number of iterations ℓmax is usually chosen to 5 . . . 10 iterations

to keep the complexity at a moderate level. An analysis of the trade-off between con-

vergence and maximum number of iterations can be found in [ASR+06] whose authors

implemented a TRINICON-based algorithm together with the block-online adaptation

procedure. Additionally, in Section 3.6.4 the influence of the number of offline iterations

will be examined.

The demixing filter matrix W̌ℓmax(m) of the current block m which is obtained from

the offline part after ℓmax iterations (see Fig. 3.20) is then used as input of the online part

of the block-online algorithm which is written recursively as
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W̌(m) = λW̌(m− 1) + (1 − λ)W̌ℓmax(m). (3.246)

This yields the final demixing filter matrix W̌(m) of the current block m containing the

filter weights wpq(m) used for separation. The demixing filter weights wpq(m) of the

current block are then used as initial values for the offline algorithm (3.245) of the next

block.

Analogously to supervised block-based adaptive filtering [MAG95], the approach fol-

lowed here can also be carried out with overlapping data blocks in both, the online and

offline part to further increase the convergence rate and to reduce the signal delay. The

ratio of the number of previously used samples to the number of previously unseen sam-

ples is given by the overlap factors αoff for the offline part and αon for the online part.

These parameters are in the range 1 ≤ αoff , αon ≤ L and should be chosen suitably to

obtain integer values for the time index.

3.5.4 Adaptive stepsize techniques for block-online updates

In general the choice of the stepsize is very important for the performance of adaptive

algorithms. In an offline processing scheme several trials can be run to establish the opti-

mum stepsize. However, for an online procedure usually the stepsize has to be chosen very

conservatively to prevent instability problems due to noise dependency, time-variance, etc.

To make the adaptation more robust in real-world environments a stepsize control is de-

sirable. In supervised adaptive filtering usually a closed-form solution for the stepsize is

derived based on an observable reference signal. So far, in the BSS community there is

little literature on this topic due to the absence of a reference signal. In the instantaneous

mixing case some adaptive stepsize methods have been proposed (e.g., [DC98, SG00])

which are mainly relying on second order derivatives. However, for the convolutive mix-

ing case such gradient stepsizes are computationally complex. In the neural networks

community iterative methods for stepsize determination based on online measurements

of the state of the adaptive system are more common and can be found in textbooks as,

e.g., [CU94, Roj96]. We propose to use a simple but effective strategy for updating the

stepsize based on a method presented in [VMR+88], [CU94, p. 146]. The procedure is to

increase the stepsize if the value of the cost function J̃ (i,W) is decreased compared to

J̃ (i − 1,W) (indicating convergence) and to decrease it rapidly if the current value of

J̃ (i,W) exceeds the previous one J̃ (i− 1,W), by more than a pre-specified ratio (indi-

cating divergence). In the latter case the current demixing filter update may be discarded

(∆W̌(i) = 0). After starting with a small stepsize µ(0) its modifications are described by

µ(i+ 1) =





a · µ(i) if J̃ (i,W) < J̃ (i− 1,W) , a > 1

b · µ(i) if J̃ (i,W) ≥ c · J̃ (i− 1,W) , b < 1, c > 1

µ(i− 1) otherwise

(3.247)
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where for our application the values a = 1.1, b = 0.5, c = 1.3 provided robust behavior

for all evaluated parameter settings. Moreover, to avoid instabilities, in practice the

adaptive stepsize should be restricted to a finite range [µmin, µmax]. In (3.247) the cost

function J̃ defined in (3.43) has to be evaluated for each block i. It can be seen in

(3.43) that in general this involves the estimation of multivariate pdfs. However, in

practice the efficient algorithms based on approximations of the generic TRINICON-based

nonholonomic natural gradient algorithm (3.64) will be used. Thus, different quantities

which allow the assessment of the separation performance, such as the cross-correlation

sequences between the output channels may be used instead of evaluating the original

cost function. In the experiments in Section 3.6 we use the Frobenius norm of the cross-

correlation matrices to obtain a scalar value, which is used to replace J̃ for the decision

process in (3.247).

It may be also desirable to use a frequency-dependent adaptive stepsize µ(ν)(m). This

stepsize can be calculated for every frequency bin ν = 0, . . . , R − 1 according to the

algorithm given in (3.247) where J̃ has to be replaced by the narrowband DFT-domain

cost function J̃ (ν) or by some other suitable quantity such as the magnitude squared

coherence (MSC) between the output channels. For applying the bin-dependent stepsize,

the update ∆W̌(m) is transformed by an DFT, multiplied in each frequency bin by

µ(ν)(m) and transformed back into the time-domain using an IDFT.

Furthermore, more sophisticated schemes which apply individual adaptive stepsizes to

different filters are possible. This can be useful if, e.g., only one speaker is moving and

thus, only a few demixing filters W̌pq(m) are highly affected.

3.6 Experimental results

After introducing a generic BSS framework leading to various algorithms in time domain

and DFT domain in the previous sections, we will now experimentally evaluate the dif-

ferent approaches. Firstly, in Section 3.6.2 the effect of different implementations of the

Sylvester constraint on the separation performance will be investigated. Then the ap-

proximation of the more accurate covariance method used for estimating the correlation

matrices by the efficient correlation method is examined in Section 3.6.3. Subsequently,

in Section 3.6.4 the block-online update procedure is analyzed and the effect of the of-

fline iterations and the adaptive stepsize is discussed. The investigations performed in

these three sections are the basis for the comparison of the various efficient realizations of

the generic BSS algorithm. Both, higher-order statistics and second-order statistics algo-

rithms will be discussed in Section 3.6.5. Then, in the last section the performance of one

selected high-performance algorithm will be evaluated in several realistic environments

with different reverberation times and for various source-sensor distances.
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3.6.1 Experimental setup

For the experiments several acoustic environments are used which are described in detail

in Appendix C. They were chosen to reflect different realistic application scenarios with

reverberation times ranging from T60 = 50ms as, e.g., in a car environment, up to T60 =

850ms for large lecture or conference rooms. In all environments two omnidirectional

microphones with a spacing of d = 20 cm are used. Different source positions (which

are described in the following sections and also in Appendix C) are considered and to

allow the calculation of the SIR, we have measured the acoustic impulse responses from

the source positions to the microphones by using the method described in [Sch79, RV89].

The height of the loudspeakers used to measure the impulse responses and the height of

the microphones was approximately 140 cm. The impulse responses were then convolved

with two dry source signals with a length of 10 sec recorded from a male and female

speaker, respectively. The sampling rate was chosen to 16 kHz.

3.6.2 Sylvester constraint SC and its efficient implementations

In the derivation of the generic gradient BSS update equation in Section 3.3.3 it was

shown in (3.52) that a Sylvester constraint operator SC is necessary. It was illustrated

in Fig. 3.2 that the operator SC performs an averaging of the values on the diagonals

of the demixing matrix update in each channel. Additionally, to obtain more efficient

algorithms, it was proposed in Section 3.3.6 that instead of the averaging operation only

the first column or the L-th row in each channel of the demixing matrix update may be

picked. This was denoted as column Sylvester constraint SCC and row Sylvester constraint

SCR, respectively.

Here, we compare the performance of the different Sylvester constraints by using the

generic SOS natural gradient algorithm introduced in (3.112). The adaptation will be

performed in an offline manner according to (3.237). The correlation matrices were esti-

mated by using the more accurate covariance method. The generic SOS algorithm still

has a high complexity due to the large matrix computations involved in the update equa-

tion. However, in contrast to the efficient broadband and narrowband realizations in the

DFT domain, no approximations are made. Thus, to obtain a reasonable computational

complexity we perform these experiments in a low reverberant room with T60 = 50 ms

so that we can choose a moderate demixing filter length L = 256. More reverberant

environments will be considered when evaluating the efficient algorithms. The number of

sources and microphones was chosen to P = 2 and the source-sensor distance was 1m for

all positions. Two different setups were examined: (a) sources positioned at ±70◦ and

(b) sources positioned at +45◦, +90◦ (see also Appendix C.1 for layout of the room and

positions of sources and sensors). As pointed out in Section 3.3.6 this allows for different

initializations. In the case of P = 2 and two-sided setups such as (a) only causal delays are
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needed in the demixing filters and thus, for the case (a) the demixing filters are initialized

as wpp,1 = 1 for p = 1, 2. For one-sided setups such as in (b) or for P > 2 in general also

acausal delays are necessary. This can be achieved by initializing the demixing filter in

(b) with a shifted unit impulse. The minimum shift of the unit impulse is determined by

by the maximum relative time delay between the sensors and is given as fsd/c. In our

case we chose the initialization for scenario (b) as wpp,15 = 1 for p = 1, 2. The parameter

D which determines the number of time-lags considered in the correlation matrices is

chosen to D = L = 256 and the block length determining the number of samples used for

the estimation of the correlation matrices is N = 512. The auto-correlation matrices are

regularized before inversion by multiplying the off-diagonal values with a factor ρ = 0.75

according to (3.183). Additionally, to prevent a division by zero, i.e., to cope with speech

pauses, a constant value δyq
= 10−4 is added to the main diagonal of each auto-correlation

matrix.

In Fig. 3.21 the segmental signal-to-interference ratio (SIR) improvement ∆SIRseg for

two different scenarios and the source signals described in Section 3.6.1 is shown. Each

curve represents the average of the channel-wise SIR improvements ∆SIRseg,q according

to (2.48). In the results for the two-sided setup depicted in Fig. 3.21(a) it can be seen

that the original Sylvester constraint operator SC achieves the highest separation perfor-

mance. Approximating SC by the row Sylvester constraint SCR or the column Sylvester

constraint SCC does not lead to a significant degradation of the separation performance.

In the one-sided scenario (b) the original Sylvester constraint operator SC exhibits again

the highest separation performance. The approximation by SCR still achieves excellent

separation. The application of the column Sylvester constraint SCC is not recommendable

for one-sided setups or for the case P > 2 because no acausal delays can be adapted as

discussed in Section 3.3.6. Hence, the use of SCC in setup (b) leads to the suppression

of one source signal, i.e., one output of the BSS system contains a separated source with

∆SIRseg = 18dB. The other output, however, still contains the mixture of both sources

(i.e, ∆SIRseg = 0dB) and thus, the average of both channels leads to the curve plotted in

Fig. 3.21(b). It should be noted, that due to the permutation ambiguity it can in general

not be predicted which source signal will be separated.

The results of these experiments show that the row Sylvester constraint SCR is a

suitable approximation of the more complex Sylvester constraint SC. It was also confirmed

that the column Sylvester constraint can only be applied to the special case of a two-sided

scenario with P = 2. To ensure the generality of the algorithms we will thus use the row

Sylvester constraint SCR for the remaining experimental evaluation.
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Figure 3.21: Segmental SIR improvement ∆SIRseg for the offline generic SOS algorithm for

different Sylvester constraints. The positions of the P = 2 sources are given in the two scenarios

as (a) ±70◦ and (b) +45◦, +90◦.

3.6.3 Block-based estimation using covariance or correlation

method

The correlation matrices appearing in the previously derived BSS algorithms can be esti-

mated based on the covariance or correlation method as discussed in Section 3.3.5. The

differences between these block-based estimation methods will be evaluated using again

the generic SOS natural gradient algorithm (3.112) and the offline update procedure

(3.237). The Sylvester constraint SCR is used for determining the demixing filter weights

as it is applicable to all possible scenarios and according to the experimental results of

the previous section it yields almost the same separation performance as the Sylvester

constraint SC with less computational complexity. We use the same scenarios as in the

previous section and the initialization is again given as wpp,1 = 1 for scenario (a) and
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wpp,15 = 1, p = 1, 2 for scenario (b). The parameters of the algorithm are set to the same

values as in the previous section and both setups (a) and (b) are examined.

The results in Fig. 3.22 show that for both setups the BSS algorithms based on co-

variance and correlation method converge to the same segmental SIR improvement. In
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Figure 3.22: Segmental SIR improvement ∆SIRseg for the offline generic SOS algorithm using

a block-based estimation of correlation matrices based on correlation and covariance method.

The positions of the sources are given in the two scenarios as (a) ±70◦ and (b) +45◦, +90◦.

general, the covariance method has the potential of giving better performance as no sta-

tionarity is assumed within the signal block of length N = 512. However, the estimation

by the covariance method usually requires a larger regularization of the correlation matrix

as the values on the main diagonal are not constant and “holes” on the main diagonal, i.e.,

small values lead to an ill-conditioned matrix. Thus, the regularization with a constant

value added to the main diagonal of the auto-correlation matrices is chosen to δyq
= 10−4

for the covariance method and δyq
= 10−5 for the correlation method. The smaller regular-

ization in case of the correlation method leads to a faster convergence as can be observed
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in Fig. 3.22.

From the results in Fig. 3.22 we can conclude that for speech signals the correlation

method is an appropriate approach for the estimation of the correlation matrices. This

has the benefit that computational complexity is reduced due to the Toeplitz structure

of the correlation matrices. Similar results have been observed in linear prediction where

the correlation method is the preferred approach due to lower computational complexity

and increased stability (see, e.g., [MG76, BNR96]).

3.6.4 Block-online adaptation and adaptive stepsize

In the previous sections the offline update has been used for the adaptation of the BSS al-

gorithm as it provides an upper bound for the segmental SIR improvement. For real-time

applications a block-online update procedure has been proposed in Section 3.5.3 which

improves convergence by performing an offline update with ℓmax iterations for K subse-

quent blocks. To evaluate the effect of the iteration number ℓmax on the SIR improvement

we use again the generic SOS natural gradient algorithm (3.112) together with the esti-

mation of the correlation matrices by the correlation method. Additionally we use in the

following, due to its increased versatility, the Sylvester constraint SCR together with the

initialization wpp,15 = 1, p = 1, 2. Analogously to the previous experiments, the demixing

filter length is chosen to L = 256, the block length N = 512, and the regularization

is given as ρ = 0.75 and δyq
= 10−5. To exploit the nonstationarity of the signals we

simultaneously use K = 8 blocks of length N for the offline iterations given in (3.245)

and the forgetting factor is set to λ = 0.2. To illustrate the convergence behavior of

the BSS algorithm over time, we use the segmental SIR improvement ∆SIRseg(m) which

depends on the block index m and is defined in (2.50). Fig. 3.23 shows the resulting

segmental SIR improvements for the low reverberant room with T60 = 50ms and the

sources positioned at ±70◦ when varying the number of offline iterations ℓmax = 1, 5, 10.

It can be seen that the increase of ℓmax leads to a faster initial convergence. Especially

for time-variant mixing systems a fast convergence time is crucial to be able to adapt to

changes in the environment. However, for the choice ℓmax = 5, 10 it can be seen that the

stepsize µ = 0.01 becomes too large when adapting towards the correct demixing filters

and thus, the segmental SIR improvement is limited (ℓmax = 5) or even decreases again

(ℓmax = 10). This is the motivation for introducing an adaptive stepsize according to

Section 3.5.4 which is able to choose µ from a given interval [µmin, µmax].

In (3.247) an update rule for an adaptive stepsize was given based on comparing

the value of the cost function for subsequent demixing filter coefficients. The values

of the cost function can be interpreted as an indicator for convergence or divergence

of the filter weights. As the cross-correlations, which are already calculated during the

coefficient update, also allow to assess the separation performance, they can be used
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Figure 3.23: Segmental SIR improvement ∆SIRseg for the block-online generic SOS algorithm

for different number of offline iterations ℓmax.

instead of the cost function in (3.247). Therefore, the Frobenius norm of the cross-

correlations averaged over K blocks and over all possible output combinations given as
1

K(P 2−P )

∑K
i=1

∑
p,q ‖Rypyq

‖F, p 6= q is used as an indicator for convergence or divergence

determining the value of the adaptive stepsize. The parameters in (3.247) are chosen

as a = 1.1, b = 0.5, c = 1.3, and the range of the stepsize is given as [0.0001, 0.01].

Fig. 3.24 exemplarily shows the advantage of the adaptive stepsize for ℓmax = 5. The

algorithm behaves the same during the initial convergence phase. In the adaptive case

the stepsize µ is reduced after the initial convergence which allows a finer adaptation of

the filter weights and thus leads to a higher segmental SIR improvement compared to a

fixed stepsize. Additionally, in real-time implementations the fixed stepsize would have

to be set very conservatively to avoid divergence of the demixing filter weights. In the

case of an adaptive stepsize this is avoided by an automatic reduction of the stepsize so

that the upper limit µmax may be chosen larger than a conservative fixed stepsize.

We can conclude that it is recommendable to introduce a moderate number of offline

iterations (e.g, ℓmax = 5) to increase the convergence of the BSS algorithm. Moreover,

an adaptive stepsize should be incorporated to increase the robustness and to allow for

higher stepsizes compared to a fixed stepsize.



3.6. Experimental results 135

0 1 2 3 4 5 6 7 8 9
0

5

10

15

20

25

 

 

adaptive stepsize
fixed stepsize

Time in seconds

∆
S

I
R

se
g

in
d
B

Figure 3.24: Segmental SIR improvement ∆SIRseg for the block-online generic SOS algorithm

with ℓmax = 5 iterations using fixed and adaptive stepsizes.

3.6.5 Comparison of different HOS and SOS realizations

In this section several different HOS and SOS realizations resulting from the generic

HOS natural gradient algorithm (3.64) will be compared. Based on the results of the

previous sections we will use for all examined algorithms the Sylvester constraint SCR
together with the initialization wpp,15 = 1, p = 1, 2 and use the correlation method for

the estimation of the correlation matrices. Additionally, the block-online update with

ℓmax = 5 together with the adaptive stepsize procedure is used to allow online processing

of the sensor signals while maintaining fast convergence. The parameters of the block-

online update are chosen as in the previous section and the stepsize has been maximized

for each algorithm up to the stability margin. The separation performance of the various

BSS algorithms is shown for a living room scenario with a reverberation time T60 = 200ms.

Two different setups are examined with the sources placed at a distance of 1m at either

−20◦, 40◦ or 20◦, 80◦ (see also Appendix C.2 for layout of the room and positions of sources

and sensors). To address the reverberation, the demixing filter length has been chosen to

L = 1024 taps. The nonwhiteness is exploited by the memory ofD = L = 1024 introduced

in the multivariate pdfs and in the correlation matrices. For accurate estimation of these

quantities a block length of N = 2048 was chosen.
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The algorithms which are evaluated include the computationally complex higher-order

and second-order statistics generic algorithms as well as the efficient algorithms obtained

by applying several approximations to the generic algorithms. A list of all algorithms is

given in Table 3.1. It should be noted that all algorithms were implemented efficiently in

the DFT-domain either in a broadband or narrowband manner.

Second order statistics (SOS)

(A) Generic broadband SOS algorithm (3.174) based on the multivariate Gaussian

pdf.
(B) Broadband SOS algorithm based on multivariate Gaussian pdf (3.222) with nor-

malization approximated as a narrowband inverse.
(C) Broadband SOS algorithm based on multivariate Gaussian pdf (3.174) with nor-

malization approximated as a scaling by the output signal variance (3.116).

(D) Narrowband SOS algorithm based on multivariate Gaussian pdf (3.223a),

(3.223b) where the coupling between the DFT bins is ensured by one remaining

constraint matrix.

Higher order statistics (HOS)

(E) Broadband HOS algorithm (3.168) based on the model of a Laplacian SIRP pdf

(3.100).

(F) Narrowband HOS algorithm (3.204) based on a multivariate SIRP pdf. The

coupling between the DFT bins is ensured by one remaining constraint matrix

and by the argument of the multivariate score function (3.206).

(G) Narrowband HOS algorithm (3.214) based on univariate pdfs with the score

function chosen according to (3.219). The coupling between the DFT bins is

ensured by one remaining constraint matrix.

Table 3.1: List of algorithms evaluated in the reverberant living room scenario.

The results for the SOS algorithms (A)-(D) can be found in Fig. 3.25. It can be seen

that the generic broadband SOS algorithm (A) provides the best performance in both

setups. However, its high computational complexity prevents a real-time implementa-

tion on current state-of-the-art hardware platforms for such large demixing filter lengths.

Therefore approximations are needed which minimally affect the separation performance

but result in computationally efficient algorithms. The main complexity in the second-

order statistics algorithms is caused by the inverse of the auto-correlation matrix for each

output channel. This inverse is approximated in the broadband algorithm (B) by a nar-

rowband inverse which leads to a scalar inversion in each DFT bin. The algorithm (B)

can be implemented in real-time on regular PC hardware and it can be seen in Fig. 3.25

that for both setups the separation performance is only slightly reduced. In the broad-

band algorithm (C) the normalization is further simplified by using the variance of each
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Figure 3.25: Segmental SIR improvement ∆SIRseg for the second-order statistics algorithms

(A)-(D) evaluated in the living room scenario (T60 = 200 ms) for two source position setups.
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output signal. This means that the normalization is not frequency-dependent anymore.

The experiments show that this is not so critical in scenarios where only causal filters

have to be adapted. However, for the setup with the sources placed at 20◦ and 80◦ a clear

reduction of the separation performance can be observed. In the narrowband algorithm

(D) all constraint matrices except one are approximated. This means that the narrow-

band normalization is done analogously to algorithm (B), however, due to discarding all

constraint matrices except for one, the complete decoupling of the DFT bins is only pre-

vented by the last remaining constraint matrix. Thus, the algorithm (D) already suffers

from the permutation and scaling problem occurring in each DFT bin. This explains the

inferior separation performance compared to the broadband algorithms (A)-(C).

In Fig. 3.26 the results for the HOS algorithms (E)-(G) are depicted. The generic HOS

broadband algorithm (E) exhibits the highest performance in both setups. Similar to the

generic SOS broadband algorithm, the high computational complexity of (E) requires that

certain approximations are made to obtain efficient algorithms. In Section 3.4.3.2 two

possibilities have been shown to obtain more efficient algorithms. Approximating several

constraint matrices leads to a narrowband algorithm (F) where the coupling between

the DFT bins is still given by the argument of the score function which is based on a

multivariate SIRP pdf and additionally by one remaining constraint matrix. A different

example how to approximate the generic HOS algorithm is the algorithm (G) which is

based on score functions resulting from univariate pdfs. Then, the coupling between

the DFT bins is solely ensured by the last remaining constraint matrix. It can be seen

that both algorithms (F) and (G) exhibit similar performance and show also a reduced

separation performance compared to the broadband generic HOS algorithm. One reason

for this behavior is that in the generic broadband algorithm the argument of the nonlinear

SIRP score function is given by the quadratic form uq defined in (3.99) which contains

the inverse of the auto-correlation matrix. This ensures that in the mean the argument of

the SIRP score function is well-scaled and thus, the generic HOS algorithm exhibits good

performance. However, due to the approximations of the quadratic form leading to the

algorithms (F) and (G), the scaling is not as accurate anymore and thus, the separation

performance decreases.

When comparing the results for the SOS and HOS algorithms in Figs. 3.25 and 3.26 it

can be seen that the usage of higher-order statistics, i.e., the exploitation of the nongaus-

sianity of the sources yields higher separation performance for the narrowband algorithms

(F), (G) compared to (D). For the generic broadband algorithms, however, for the given

data the performance does not increase when using HOS. This can be attributed to the

SIRP score φyq,D(uq) which was obtained from the multivariate Laplacian SIRP pdf in

(3.103) and which exhibits a pole for uq → 0. This required a careful regularization

of algorithm (E) and thus, much higher separation performance compared to the SOS

generic algorithm was difficult to obtain. Instead of introducing a regularization it was
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Figure 3.26: Segmental SIR improvement ∆SIRseg for the higher-order statistics algorithms

(E)-(G) evaluated in the living room scenario (T60 = 200 ms) for two source position setups.
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shown in [Buc] that another possibility is to remove the nonlinearity, i.e., φyq,D(uq) = 1

for small arguments uq → 0 so that for small excitations the multivariate Gaussian pdf is

used instead. This procedure, was derived by using the theory of robust statistics [Hub81]

and avoids poles in the nonlinearity. In that case the generic higher-order statistics algo-

rithm (E) outperforms the second-order counterpart (A). This concept was also applied

successfully for the case of instantaneous BSS in [CD06]. In [Buc] the theory of robust

statistics is extended to multivariate pdfs where even further separation improvements

are expected. Moreover, similar to the second-order case it would also be desirable to

introduce less approximations than in (F) or (G) to obtain efficient and high-performing

versions of the generic higher-order statistics algorithm (E).

3.6.6 Influence of reverberation time and source-sensor distance

In Chapter 2 it was pointed out that reverberant environments can be characterized by

different quantities. The reverberation time T60, which is determined by measuring the

sound decay, is a global characterization of the room but does not fully describe the

listening conditions. Especially the early reflections vary from one point to another so

that the positions of the sources and sensors and in particular the source-sensor distance

influence the perceived quality of the sound signal. One quantity which can measure the

effects of different source positions is the signal-to-reverberation ratio (SRR) which was

defined in (2.20) as the ratio of useful reflections arriving earlier than 50ms to the later

reflections which are perceived as reverberation.

To examine the applicability of the BSS algorithms in different reverberant environ-

ments, we will evaluate in this section the influence of the reverberation time and the

source-sensor distance on the separation performance. For this purpose we will use the

algorithm (B) from Table 3.1 which is given as the broadband SOS algorithm using a nar-

rowband normalization as derived in (3.222). In the comparison in the previous section

this algorithm showed the best results among all efficient algorithms. The filter length and

the memory length are chosen as L = D = 1024 and the block length is N = 2048. For

the narrowband normalization, the DFT length is R = 4096 and the regularization prior

to inversion is given by ρ = 0.75, δyq
= 10−5. We again use the block-online update with

ℓmax = 5 offline iterations and the adaptive stepsize lies within the interval [0.0001, 0.05].

First, the BSS algorithm is applied in three different environments: the living room

scenario with closed and open curtains and the lecture room (see Appendices C.2 and C.3).

The reverberation times for these rooms are given as T60 = 200ms, 400ms, and 850ms and

the source-sensor distance is 1m. For each environment the signal-to-reverberation ratio

SRRq,sq
was calculated according to (2.20) for each source sq, q = 1, 2 and then averaged

over both sources. This leads to the signal-to-reverberation ratios of 17.7 dB, 12.6 dB,

and 7.4 dB for the environments with the reverberation times T60 = 200ms, 400ms,
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Figure 3.27: Segmental SIR improvement ∆SIRseg for different reverberation times T60.

and 850ms, respectively. Subsequently, a comparison of the separation performance for

different source-sensor distances of 1m, 2m, and 4m is carried out in the living room

scenario with closed curtains. In terms of the signal-to-reverberation ratio, the different

distances lead to of 17.7 dB, 13.1 dB, and 12.2 dB, respectively. The direction of arrival

(DOA) of the sources is chosen for all experiments in this section to ±20◦.

In Fig. 3.27 the separation results for different reverberation times are depicted. It

can be seen that a high separation can be achieved in the living room scenario for both

cases, curtains opened or closed. However, for highly reverberant environments like the

lecture room the segmental SIR decreases because the demixing filter length L is too

short to cover all reflections. Although an increase of L would allow to address the

large reverberation, this would mean that also the block length N has to be increased

as in general N > L samples are required to estimate the correlation matrices. On

the other hand, speech is a nonstationary process and thus, the block length should be

chosen as small as possible. These two contradictory requirements may be addressed

by a partitioned adaptive filtering scheme as previously proposed in supervised adaptive

filtering [SP90], however, this is outside the scope of this work.

The influence of the source-sensor distance is shown in Fig. 3.28. It can be seen that

the further the sources are away from the sensors, i.e., the lower the signal-to-reverberation
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Figure 3.28: Segmental SIR improvement ∆SIRseg for different source-sensor distances.

ratio is, the harder it is to achieve high separation performance. This behavior was also

observed in Chapter 2 for the estimation of the magnitude-squared coherence (MSC) for

point sources in reverberant environments. The estimation of the MSC exhibits a bias

which depends on the ratio of the observation length to the acoustic impulse response

length. Moreover, it was shown that the bias is increased for larger reverberation times T60

and larger source-sensor distances. Ideally, for the MSC estimation the observation length

would have to be much larger than the acoustic impulse response length. This analogous

behavior of the demixing filter estimation and the MSC estimation is not surprising as

it was shown in Section 3.4.3.4 that the narrowband SOS BSS algorithm can be derived

from the generalized coherence which is in the case P = 2 equal to the MSC. Due to this

analogy, an increasing observation length, i.e. block length N , should also yield better

results for large source-sensor distances. However, as pointed out already above this

requirement can usually not be fulfilled as the nonstationary nature of acoustic signals

such as speech prevents the choice of large block lengths. Thus, here again a BSS scheme

based on partitioned adaptive filtering may yield improved results and would therefore be

an interesting topic of future research.
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3.7 Summary

In this chapter we presented a framework for BSS in reverberant environments which is

termed TRINICON (“TRIple-N Independent component analysis for CONvolutive mix-

tures”) and provides a unified view on convolutive BSS algorithms. This framework

allows to derive novel algorithms and to establish relationships to existing state-of-the-art

algorithms.

First, in Section 3.1 the optimum BSS solution was discussed and the resulting opti-

mum demixing filter length was derived. It could be seen that BSS aims at multi-channel

blind system identification and thus, can be interpreted as a blind interference cancellation

technique.

Then, in Section 3.2 the broadband and narrowband signal models were introduced

which are the basis of the different optimization schemes used to derive BSS algorithms.

Broadband optimization is obtained if the derivation is performed in the time domain

or if the optimization is carried out for all DFT bins simultaneously. This preserves the

coupling between the DFT bins and has the advantage that the permutation and scaling

ambiguity do not appear in each DFT bin independently. On the other hand, narrowband

optimization is obtained if the optimization is done in each DFT bin independently.

Narrowband BSS algorithms are usually computationally more efficient, however, they

need additional measures to provide a consistent assignment of the sources to the output

channels and a consistent scaling for all DFT bins. Based on this categorization an

overview about the BSS literature was given in Section 3.2.

The TRINICON BSS framework was developed in Section 3.3 using a time-domain

optimization criterion based on the generalization of the mutual information for tempo-

rally dependent signals. The term “TRIple-N” accounts for the fact that all three signal

properties nongaussianity, nonstationarity, and nonwhiteness can be exploited. The mini-

mization of the optimization criterion was achieved by using gradient descent and natural

gradient descent iterative update procedures. The derivation of the gradient and natural

gradient led to generic BSS algorithms which are characterized by high-dimensional mul-

tivariate pdfs. In general, the estimation of these multivariate pdfs is a very challenging

task as all corresponding higher-order cumulants have to be determined. Fortunately,

signals such as speech can be modeled as spherically invariant random processes (SIRPs)

which lead to multivariate pdfs solely determined by the second-order correlation matrix

and the univariate marginal pdf. This approximation resulted in a higher-order BSS al-

gorithm realization and a generic second-order BSS algorithm based on the multivariate

Gaussian pdf as a special case of a SIRP pdf. Several further approximations were dis-

cussed leading to novel algorithms and to relationships to state-of-the-art BSS algorithms

from the literature.

The higher-order and second-order BSS algorithm realizations in the time domain
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were the starting point in Section 3.4 to extend the framework to the DFT domain and

investigate broadband and narrowband DFT-domain algorithms. First, the broadband

and narrowband signal models introduced in Section 3.2 were expressed by using ma-

trix notation. This yielded in the broadband case the well-known overlap-save algorithm

which implements a linear convolution in the DFT domain. In the narrowband case the

constraint originating from the overlap-save structure is approximated and thus a circular

convolution is obtained. The broadband signal model in matrix notation was then ap-

plied to express the time-domain update equations equivalently in the DFT domain. This

resulted in broadband DFT-domain algorithms which exhibit several constraint matrices

consisting of IDFT, windowing, and DFT operations. Selective approximations of these

constraint matrices were introduced to obtain computationally more efficient novel algo-

rithms, but to still preserve the coupling between the DFT bins so that the permutation

and scaling ambiguities do not appear independently in each DFT bin. This allowed,

e.g., to avoid computationally complex matrix inverses and led to more efficient meth-

ods to calculate the HOS score functions originating from the multivariate SIRP pdfs.

Moreover, relationships to several well-known algorithms from the BSS literature could

be established. It was also shown that algorithms based on narrowband optimization can

be derived from the TRINICON framework if all constraint matrices are removed.

In Section 3.5 the general weighting function introduced in the TRINICON optimiza-

tion criterion was discussed. The weighting function allows the implementation of several

different iterative update procedures necessary for the iterative gradient or natural gra-

dient descent. First, the well-known offline update, which iterates over the whole signal

data, and the online update, which can be efficiently implemented in a recursive man-

ner, were discussed. The online update has the advantage that it can track time-variant

systems and is thus well-suited for real-time implementations. However, in rapidly time-

variant systems the convergence of the online algorithms is sometimes not sufficient, so

that a combination of online and offline update was introduced. This so-called block-

online approach includes an online part which ensures that the method is applicable to

real-time systems by continuously processing new blocks. Additionally, every time for the

current block an iterative offline processing is performed. This improves convergence and

only moderately increases computational complexity. Moreover, to achieve more robust

adaptation, an adaptive stepsize technique has been proposed.

The algorithms and update procedures developed in Sections 3.3 - 3.5 were evaluated

experimentally in reverberant environments in Section 3.6. First, the different methods

to implement the Sylvester constraint and the block-based estimation of the correlation

matrices were investigated using the offline generic second-order BSS algorithm. Based on

these results the same algorithm was used to examine the block-online update procedure

and the benefit of the adaptive stepsize. It was shown that already a moderate number

of offline iterations leads to a drastic increase of the algorithm convergence and that the
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application of an adaptive stepsize leads to higher separation performance. Subsequently,

the various higher-order and second-order BSS algorithms derived in Sections 3.3 and

3.4 have been evaluated. It was shown that broadband algorithms, where only selective

narrowband approximations were introduced, yielded better separation performance com-

pared to their narrowband counterparts where the coupling between the DFT bins was

ensured only by a last remaining constraint. In the end, one of the most promising BSS

algorithms was additionally evaluated in different reverberant environments to examine

the influence of the reverberation time and the source-sensor distance on the separation

performance.
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4 Extensions for Blind Source

Separation in Noisy Environments

In Chapter 3 only noiseless reverberant environments were considered with the maximum

number of simultaneously active point sources Q assumed to be equal to the number

of sensors P . However, in realistic scenarios, in addition to the point sources to be

separated, also some background noise will usually be present. It was pointed out in

Section 2.2.3 that several types of background noise (e.g., car noise, babble noise, etc.)

can be described by a diffuse sound field which can be modeled by an infinite number of

statistically independent point sources distributed on a sphere. Due to the assumption

that Q = P , the BSS algorithms treated in Chapter 3 cannot model an infinite or in

practice at least very large number of noise point sources. Therefore, in the block diagram

of the BSS model in Fig. 2.1 the noise signals were not modeled as point sources but as

contributions n1, . . . , nP to the sensor signals x1, . . . , xP . Hence, the BSS framework

derived in Chapter 3 does not aim at the reduction of diffuse background noise, but the

noise has rather to be regarded as a perturbation of the BSS signal model. Thus, in

general BSS faces two different challenges in noisy environments:

1. The adaptation of the demixing BSS filters should be robust against the noise sig-

nals n1, . . . , nP to ensure high separation performance of the desired point sources

s1, . . . , sP . This means that the signal-to-interference ratio (SIR) should not dete-

riorate compared to the noiseless case.

2. The noise contribution contained in the separated BSS output signals should be

suppressed, i.e., the signal-to-noise ratio (SNR) should be maximized.

Both requirements must be met if BSS should be attractive for noisy environments.

According to the literature (see e.g., [CA02, HKO01] and references therein), it has

been tried to address the first point by developing noise-robust BSS algorithms. How-

ever, so far this has been considered only for the instantaneous BSS case. Additionally,

several assumptions are usually imposed on the noise signals allowing to generate opti-

mization criteria which are not affected by the noise signals. In [CC01] the assumption of

spatially correlated but temporally uncorrelated noise allowed the formulation of a joint

diagonalization criterium which only exploits correlations for time-lags unequal to zero.

Other noise-robust instantaneous BSS algorithms for the case of temporally correlated



148 4. Extensions for Blind Source Separation in Noisy Environments

but spatially uncorrelated noise were presented in [Car04]. However, in the case of convo-

lutive BSS for acoustic signals these assumptions for the noise signals are too restrictive.

As pointed out above, in realistic scenarios temporally correlated background noise at

the sensors can often be described by a diffuse sound field leading to signals which are

also spatially correlated for low frequencies (see Section 2.2.4.3). This does not allow the

application of the above-mentioned algorithms to the noisy convolutive BSS problem.

Another class of noise-robust instantaneous BSS algorithms aims at merely using

higher-order statistics (HOS), e.g., by using fourth-order cumulants, to be immune against

Gaussian noise signals [Car92, CA02, HKO01]. This could also be applied to background

noise described by diffuse sound fields which can be modeled as a superposition of an

infinite number of statistically independent sources. Due to the central limit theorem

the distribution of the superpositioned sources, i.e., of the noise signals observed at the

sensors, will approach the Gaussian distribution. However, by neglecting the second-order

correlations and relying merely on HOS, these algorithms become very sensitive to outliers

and thus, they are not useful in practice.

A more promising approach for increasing the robustness of the BSS adaptation are

pre-processing methods. In Section 4.1 we will describe single-channel and multi-channel

methods in order to remove the bias of the second-order correlation matrices caused by

the noise. This will lead to a better performance of the BSS algorithms discussed in

Chapter 3. Moreover, it will be pointed out how the information of additional sensors

could be exploited by using subspace techniques to achieve noise suppression for the input

signals of the BSS algorithm.

Another approach to the noisy convolutive BSS problem is the application of post-

processing methods to the outputs of the BSS system. Without pre-processing the sepa-

ration performance of the BSS algorithms will decrease in noisy environments. Therefore,

the post-processing technique has to aim at the suppression of both, background noise

and residual crosstalk from interfering point sources which could not be canceled by the

BSS demixing filters. This will be discussed in detail in Section 4.2.

Finally, in Section 4.3 the results of the different techniques will be summarized.

4.1 Pre-processing for noise-robust adaptation

From the literature only few pre-processing approaches for BSS in noisy environments are

known. If the number of sensors P is equal to the number of sources Q, as considered in

this thesis, then usually so-called bias-removal techniques are used which aim at estimating

and subtracting the contribution of the noise in the sensor signal itself or in the second-

order correlation matrix and possibly also in the higher-order relation matrix of the sensor

signals. These techniques will be discussed in Section 4.1.1. If more sensors than sources

are available, i.e., P > Q, then also subspace techniques can be used as a pre-processing
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step to achieve a suppression of the background noise. Even if we restricted ourselves in

this thesis to the case P = Q we will, for the sake of completeness, briefly summarize the

history of subspace approaches, their application to BSS, and outline possible directions

of future research in Section 4.1.2.

4.1.1 Bias-removal techniques

The signal model in matrix-vector notation (3.33) yields the BSS output signals y(n)

containing D output signal samples for each of the Q = P channels. If background noise

np(n) is superimposed at each sensor p = 1, . . . , P , the signal model can be decomposed

as

y(n) = WTx(n)

= WT
(
HT

2Ls(n) + n(n)
)

(4.1)

where the background noise samples are contained in the column vectors

n(n) = [nT
1 (n), . . . ,nT

P (n)]T, (4.2)

np(n) = [np(n), . . . , np(n− 2L+ 1)]T . (4.3)

It can be seen from the noisy signal model (4.1) that the second-order correlation matrix

Ryy and also the higher-order relation matrix RyΦ(y) will contain a bias due to the back-

ground noise. In this chapter we will use the second-order statistics BSS algorithm given

in (3.222) as it yielded the best results of all efficient algorithms presented in the previous

chapter. Thus, we will focus here only on second-order statistics. The background noise

n and the point-source signals s are assumed to be mutually uncorrelated so that the

second-order correlation matrix Ryy defined in (3.71) can be decomposed as

Ryy(n) = WT
(
HT

2LRss(n)H2L + Rnn(n)
)
W (4.4)

with the source correlation matrix Rss and noise correlation matrix Rnn defined as

Rss(n) =
1

N

N−1∑

j=0

s(n+ j)sT(n + j), (4.5)

Rnn(n) =
1

N

N−1∑

j=0

n(n+ j)nT(n+ j). (4.6)

To remove the bias introduced by the background noise it is possible to either aim at

estimating and subsequently removing the noise component in (4.1), e.g., by using single-

channel noise reduction techniques, or to estimate and remove the noise correlation matrix

Rnn. The latter approach is already known from the literature on instantaneous BSS.



150 4. Extensions for Blind Source Separation in Noisy Environments

There, usually spatially and temporally uncorrelated Gaussian noise is assumed, i.e.,

Rnn is a diagonal matrix (see, e.g., [CDA98, DCA98, HKO01, CA02]). Moreover, most

approaches assume Rnn is known a-priori and stationary. However, in realistic scenarios

usually temporally correlated background noise is present at the sensors. The noise can

often be described by a diffuse sound field, leading to noise signals which are also spatially

correlated for low frequencies (see Section 2.2.4.3). Additionally, background noise is in

general nonstationary and its stochastic properties can at best be assumed slowly time-

variant which thus requires a continuous estimation of the correlation matrix Rnn based

on short-time stationarity according to (4.6). The following bias removal techniques,

aiming at the noise signal n or the noise correlation matrix Rnn, will be examined under

these conditions.

4.1.1.1 Single-channel noise reduction

If the estimation and suppression of the noise components np is desired for each sensor

signal xp individually, then for each channel p = 1, . . . , P a single-channel noise reduction

algorithm can be used. The estimation and suppression of background noise using one

channel is already a long-standing research topic. In general, all algorithms consist of

two main building blocks: the estimation of the noise contribution and the computation

of a weighting rule to suppress the noise and enhance the desired signal. An overview of

various methods can be found, e.g., in [HS04, BMC05].

In all well-known noise estimation methods in the literature usually the noise power

spectral density (psd) is estimated without recovering the phase of the clean signal but

using the phase of the noisy signal instead. This is motivated by the fact that for power

spectral density estimates the Wiener filter, which only modifies the signal amplitude, is

optimal. Additionally, it was shown in [WL82] that the human perception of speech is

not much affected by a modification of the phase of the clean signal. However, for BSS

algorithms the relative phase of the signals acquired by different microphones is crucial

as this information is implicitly used to suppress signals depending on their different

direction of arrival. To evaluate the importance of amplitude and phase for pre-processing

techniques applied to BSS algorithms, we will in the following generate pre-processed

sensor signals by using the DFT-domain amplitude of the clean mixture signals and the

phase of the noisy mixture signals. This corresponds to an optimum single-channel speech

enhancement algorithm which perfectly estimates the amplitude of the clean mixture

signal and thus, suppresses the background noise completely. These signals are then used

as inputs for the second-order statistics BSS algorithm given in (3.222).

For this experiment we use two noisy scenarios. The first one is a car environment

which is described in Appendix C.4. A pair of omnidirectional microphones with a spacing

of 20 cm was used. The long-term SNR was adjusted to 0 dB which is a realistic value

commonly encountered inside car compartments. Analogously to the BSS experiments in
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Chapter 3 a male and a female speaker were convolved with the acoustic impulse response

measured for the driver and co-driver positions. The second scenario corresponds to the

cocktail party problem which is usually described by the task of listening to one desired

point source in the presence of speech babble noise consisting of the utterances of many

other speakers. The long term statistics of speech babble are well described by a diffuse

sound field, however, there may also be several other distinct noise point sources present.

In our experiments we simulated such a cocktail party scenario inside a living room

environment (see Appendix C.2) where speech babble noise was generated by a circular

loudspeaker array with a diameter of 3m. The two omnidirectional microphones with a

spacing of 20 cm were placed in the center of the loudspeaker array from which 16 speech

signals were reproduced to simulate the speech babble noise. Additionally, two distinct

point sources at a distance of 1m and at the angles of 0◦ and −80◦ were used to simulate

the desired and one interfering point source, respectively. For more details on the layout

of the environment, see Appendix C.2. The long-term input SNR at the microphones

has been adjusted for the living room scenario to 10 dB. This is realistic, as due to the

speech-like spectrum of the background noise the microphone signals exhibiting higher

SNR values are perceptually already as annoying as those with significantly lower SNR

values for lowpass car noise.

Due to the perfect estimation of the clean signal amplitude the background noise is

almost inaudible. However, the results in Fig. 4.1 show that due to the noisy phase for

the car environment no improvement in terms of separation performance can be obtained.

Similarly, for the cocktail party scenario only a small improvement in terms of separation

of the point sources can be achieved. Further experiments also indicated that when using

a realistic state-of-the-art noise reduction algorithm as, e.g., proposed in [Mar01a], then

also the improvements shown in Fig. 4.1b disappear. Therefore, it is concluded that pre-

processing by single-channel noise reduction algorithms only suppresses the background

noise, but does not improve the degraded separation performance of the subsequent BSS

algorithm. To improve the separation, it is crucial that both, amplitude and phase of

the clean mixture signals are estimated. This usually requires multi-channel methods as

presented in the next section.

4.1.1.2 Multi-channel bias removal

To also account for the phase contribution of the background noise there are some meth-

ods initially proposed for instantaneous BSS which aim at estimating and subsequently

removing the noise correlation matrix Rnn. For convolutive BSS there have only been a

few approaches proposed: In [HZ05] the special case of spatio-temporally white noise was

addressed and has been extended to the diffuse noise case in [HZ06]. There, stationar-

ity of the noise was assumed and the preceding noise-only segments have been used for

the estimation of the correlation matrix. Already earlier in [ABK04, ABYK06] a similar
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Figure 4.1: Segmental SIR improvement ∆SIRseg depicted over time for two noisy environments.

Speech separation results are shown for the BSS outputs adapted with the noisy mixtures and

for BSS with pre-processing by restoring the magnitude of the clean mixture signals but with

the phase of the noisy mixtures.

procedure was proposed where the minimum statistics approach [Mar01a] was used for

the estimation of the noise characteristics. This method operates in the DFT domain

and is based on the observation that the power of a noisy speech signal frequently decays

to the power of the background noise. Hence by tracking the minima an estimate for

the auto-power spectral density of the noise is obtained. However, due to the spatial

correlation not only the auto- but also the cross-power spectral densities of the noisy

signal xp and the background noise np are required. They are estimated and averaged

recursively for each DFT bin whenever we detect a minimum (i.e. speech pause) of the

noisy speech signals. Thus, for slowly time-varying noise statistics this method gives an

accurate estimate of the noise spectral density matrix used for the bias removal. This has

been applied as a pre-processing technique for the second-order statistics BSS algorithm.
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Figure 4.2: Segmental SIR improvement ∆SIRseg depicted over time for the noisy car environ-

ment. Speech separation results are shown for the BSS outputs adapted with the noisy mixtures

and for BSS with pre-processing by multi-channel bias removal.

As the pre-processing is done in each DFT bin independently, we also used the narrow-

band second-order statistics BSS algorithm (3.223) which allows an easier integration of

the pre-processing technique. In Fig. 4.2 the separation of the two point sources is de-

picted in terms of the segmental SIR improvement. It can be seen that the pre-processing

slightly improves the separation performance for the noisy car environment. In the cock-

tail party scenario this approach did not achieve good results as the noise statistics are

more time-variant and due to only few speech pauses of the point sources the noise psd

cannot be estimated very well. Multi-channel bias removal approaches do not achieve any

background noise reduction as they merely aim at providing a better estimate of the cor-

relation matrix of the point sources which is then used for the adaptation of the demixing

filter weights. To additionally suppress the background noise, this approach would have

to be complemented by a post-processing technique. Note also that due to fewer speech

pauses it is more difficult to estimate the noise correlation matrix for multiple active

speakers compared to a single speaker as typically encountered in single-channel speech

enhancement applications. Therefore, the estimation of the noise contribution may be

done more reliably after the BSS stage where already a partial suppression of the inter-

fering point sources is achieved. This will be investigated in detail for the post-processing

approach discussed in Section 4.2

4.1.2 Subspace methods

Subspace methods are an attractive alternative to bias removal methods if more sensors

than microphones are available, i.e., P > Q. Even if the main scope of this thesis is

on the case P = Q, we will briefly review the history of subspace approaches and their
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application to BSS algorithms and present some new ideas for future work.

Originally, subspace methods were proposed in [DBC91] for single-channel speech

enhancement. There, it was shown that by using the singular value decomposition of

a Toeplitz matrix containing several sensor signal samples, one could decompose the

sensor signal into a signal-plus-noise subspace and a noise subspace. This decomposition

is possible if the clean signal can be modeled by a low-rank model, which is known to be

appropriate for speech. Similar results are obtained by the eigenvalue decomposition of the

single-channel sensor signal correlation matrix [ET95]. After the decomposition, the noise

subspace is removed and the clean speech signal is estimated from the remaining signal-

plus-noise subspace. The resulting temporal filtering can be interpreted as an adaptive

extraction of the most important formants of the speech signal, thereby reducing the

amount of noise [DM02]. Moreover, it can be shown that this algorithm is analogous to

the frequency-domain Wiener filter with the DFT replaced by an adaptive transform which

projects the input speech into the signal subspace (see, e.g., [JC05]). Thus, as typical for

single-channel speech enhancement algorithms, there is always a trade-off between noise

reduction and signal distortion. A good review of single-channel approaches based on

subspace techniques can be found, e.g., in [JC05].

More recently, this principle has been extended to multi-microphone approaches in

[JC01, DM02]. The introduction of multiple sensors allows, additionally to the temporal

filtering used in the single-channel case, also for spatial filtering. This means that in

addition to the temporal samples now also the spatial degrees of freedom can be used to

decompose the noisy sensor signals into a signal-plus-noise subspace and a noise subspace.

This is achieved either by means of a generalized singular value decomposition of the

stacked Toeplitz sensor signal matrices of all channels or the eigenvalue decomposition of

the spatio-temporal sensor signal correlation matrices. Subsequently, the noise subspace

is discarded by dimensionality reduction. Moreover, in [DM02] it is proposed to use

multi-channel Wiener filtering for a further reduction of the noise in the signal-plus-

noise subspace leading to the optimum minimum mean-squared error (MMSE) estimator.

Similarly to BSS, the approach in [DM02] does not require any information about the

positions of the desired sources nor is it affected by microphone tolerances. However, as

the filtering is based on the multi-channel Wiener filter, an adaptation control is required

to estimate the noise correlation matrix which is usually assumed to be slowly time-

variant. The spatial directivity pattern presented in [DM02] showed that the solution

obtained by the subspace approach can be interpreted as a beamformer whose adaptation

relies on an adaptation control but does not require any geometrical information.

All subspace approaches discussed so far are based on the decomposition of time-

domain quantities. Alternatively, one could also apply subspace methods in transform

domains such as the DFT domain. In [AMAM00, AIO+03] a DFT-domain subspace

approach was proposed as a pre-processing step for a narrowband BSS algorithm. By
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assuming P > Q and by having a-priori information about how many point sources Q

are present, the dimensionality is reduced in each DFT bin from P to Q. This method is

computationally efficient as in each DFT bin only an eigenvalue decomposition of small

P × P spatial correlation matrices is performed instead of using larger spatio-temporal

correlation matrices. However, due to the independent bin-wise decomposition, no cou-

pling between the DFT bins is retained and thus, it is not ensured that a permutation of

the output channels of the subspace method is avoided. For narrowband BSS algorithms

this is not critical as they are also applied independently to each DFT bin so that the

permutation problem has to be resolved anyway. But due to this problem, narrowband

subspace methods are not applicable to broadband algorithms without additional repair

mechanisms which restore a consistent order of the output signals of the pre-processing

scheme. Nevertheless, a combination of subspace methods and broadband BSS algorithms,

which showed the best performance in the previous chapter, would be desirable.

A suitable subspace pre-processing scheme for broadband BSS algorithms could be

developed by using a decomposition of a time-domain sensor signal matrix or sensor

signal correlation matrix into the signal-plus-noise and the noise subspace analogously

to [DM02]. In contrast to [DM02] only the noise subspace should be removed without

additionally filtering the signal-plus-noise subspace. This means that only a dimension

reduction from P sensor signals to Q signals in the signal-plus-noise subspace should

be carried out. The filtering of the signal-plus-noise subspace, which usually requires

an adaptation control, is then performed by the subsequent BSS algorithm. Hence, the

adaptation control becomes unnecessary and the only required a-priori information is the

number of the point sources Q, i.e., the number of dimensions to be retained. By this

procedure, all point sources are preserved and the information of additional sensors is

exploited to suppress background noise signals for the broadband algorithms considered

in this thesis. This can be interpreted as a concatenation of a beamformer reducing the

dimensionality from P to Q and a BSS system. Due to the focus of this dissertation on

BSS models assuming P = Q, the discussion of this topic is not deepened here but may

be considered as a future research topic.

4.2 Post-processing for suppression of residual

crosstalk and background noise

In Section 4.1 several pre-processing approaches have been discussed. It could be seen

that for the case P = Q only multi-channel bias removal methods achieved some noise

robustness of the BSS algorithm. For this a reliable voice activity detection is crucial but

it might be difficult to realize this in environments with several speech point sources so

that in such cases post-processing methods are a preferable alternative. Post-processing
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methods have the advantage that the BSS system already achieves a suppression of the

interfering point sources so that in each BSS output channel only some remaining inter-

ference of the other point sources is present. As will be shown later, this simplifies the

estimation of the quantities required by the post-processing method. A suitable post-

processing scheme is given by a single-channel postfilter gq,κ applied to each BSS output

channel as shown in Fig. 4.3. The motivation of using a single-channel postfilter for each
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h11,κ

hP1,κ

h1P,κ

hPP,κ

x1

xP

n1

nP

w11,κ

w1P,κ
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wPP,κ
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yP

g1,κ

gP,κ

z1

zP

mixing system BSS postfiltering

Figure 4.3: Noisy BSS model combined with postfiltering.

BSS output channel is twofold:

Firstly, it is desired that the remaining background noise is reduced at the BSS output

channels. The background noise, usually described by a diffuse sound field, cannot be

suppressed by the BSS algorithm as the demixing filters of the BSS system act for each

output channel as a blind adaptive interference canceller aiming at the suppression of

the interfering point sources (see Section 3.1.3). It is known from adaptive beamforming

(e.g., [MMS98, SBM01]) that in environments with diffuse noise the concatenation of

an adaptive interference canceller with a single-channel postfilter can improve the noise

reduction.

Secondly, BSS algorithms are in noisy environments usually not able to converge to

the optimum solution due to the bias introduced by the background noise. Moreover,

moving point sources or an insufficient demixing filter length, which only partly covers

the existing room reverberation, may lead to reduced signal separation performance and

thus, to the presence of residual crosstalk from interfering point sources at the BSS output

channels. In such situations, the single-channel postfilter should be designed such that it

provides also additional separation performance. Analogously, similar considerations have

led to a single-channel postfilter in acoustic echo cancellation which was first proposed in

[MA95, AF95].

The reduced separation quality due to an insufficient demixing filter length in realistic
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environments was the motivation of several single-channel postfilter approaches that have

been previously proposed in the BSS literature [MASM02b, MASM02a, VL03, VRM04,

CJLK04, PPSK06]. Nevertheless, a comprehensive treatment of the simultaneous sup-

pression of residual crosstalk and background noise is still missing and will be presented

in the following sections. We will first discuss in Section 4.2.1 the advantages of the

implementation of the single-channel postfilter in the DFT domain and will introduce a

spectral gain function requiring the power spectral density (psd) estimates of the residual

crosstalk and background noise. Then, the signal model for the residual crosstalk and

the background noise will be discussed in Section 4.2.2 allowing to point out the rela-

tionships to previous post-processing approaches. The chosen signal model will lead to

the derivation of a novel residual crosstalk psd estimation and additionally the estimation

of the background noise will be addressed. Subsequently, experimental results will be

presented which illustrate the improvements that can be obtained by the application of

single-channel postfilters both, in terms of SIR and SNR.

4.2.1 Spectral weighting function for a single-channel postfilter

In Chapter 2, the decomposition of the BSS output signals yq(n), q = 1, . . . , P was already

given in (2.41) for the q-th channel as

yq(n) = ysr,q(n) + yc,q(n) + yn,q(n), (4.7)

where ysr,q is the component containing the desired source sr(n). As a possible per-

mutation of the separated sources at the BSS outputs, i.e., r 6= q does not affect the

post-processing approach we will simplify the notation and denote in the following the

desired signal component in the q-th channel as ys,q. The quantity yc,q is the residual

crosstalk component from the remaining point sources that could not be suppressed by

the BSS algorithm and yn,q denotes the contribution of the background noise.

From single-channel speech enhancement (e.g., [Mar05]) or from the literature on

single-channel postfiltering for beamforming (e.g., [SBM01]) it is well-known that it is

beneficial to utilize the DFT-domain representation of the signals and estimate the single-

channel postfilter in the DFT domain. Thus, Npost samples are combined to an output

signal block which is, after applying a windowing operation, transformed by the DFT of

length Rpost ≥ Npost yielding the DFT-domain representation of the output signals as

Y (ν)
q (m) = Y (ν)

s,q (m) + Y (ν)
c,q (m) + Y (ν)

n,q(m) (4.8)

where ν = 0, . . . , Rpost − 1 is the index of the DFT bin and m denotes the block time

index. The advantage is that in the DFT domain speech signals are sparser, i.e., we can

find regions in the time-frequency plane where the individual speech sources do not over-

lap (see e.g., [BAM03, YR04]). This property is often exploited in underdetermined blind



158 4. Extensions for Blind Source Separation in Noisy Environments

source separation where there are more simultaneously active sources than sensors (e.g.,

[Div05, WB06]). Here, this sparseness is used for the estimation of the quantities neces-

sary for the implementation of the spectral gain function. A block diagram showing the

main building blocks of a DFT-based postfilter is given in Fig. 4.4. There it can already

yq(n) zq(n)Y
(ν)
q

Ê{|Y (ν)
c,q |2}

Ê{|Y (ν)
n,q|2}

Z
(ν)
q
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windowing and
overlap-add

spectral weighting

function G
(ν)
q

residual cross
-talk psd
estimation

background
noise psd
estimation

a-priori information

a-priori information

Figure 4.4: DFT-based single-channel postfiltering depicted for the ν-th DFT bin in the q-th

channel.

be seen that analogously to single-channel speech enhancement or post-filtering applied

to beamforming or acoustic echo cancellation, the DFT bins are treated in a narrowband

manner as all computations are carried out independently in each DFT bin. Because of

the narrowband treatment we have to ensure that circular convolution effects, appearing

due to the signal modification by the spectral weighting, are not audible. Thus, the en-

hanced output signal zq, which is the estimate ŷs,q of the clean desired source component,

is computed by means of an inverse DFT using a weighted overlap-add method including a

tapered analysis and synthesis windows as suggested in [GL84, MC99]. This is in contrast

to the BSS algorithms treated in Chapter 3 where the linear convolution of the sensor

signals with the estimated FIR demixing system is implemented without approximations

equivalently in the DFT domain by the overlap-save method. In Chapter 3, selective nar-

rowband approximations have only been made in the adaptation process of the demixing

filters to obtain efficient BSS algorithms.

According to Fig. 4.4 a spectral gain function G(ν)
q in the ν-th DFT bin aiming at

simultaneous suppression of residual crosstalk and background noise has to be derived.

The output signal of the post-processing scheme is the estimate of the clean desired source
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signal Z(ν)
q = Ŷ

(ν)

s,q and is given as

Z(ν)
q (m) = G(ν)

q (m)Y (ν)
q (m). (4.9)

According to [AZBK06] we choose in this thesis to minimize the mean-squared error

E

{(
Z(ν)

q (m) − Y (ν)
s,q (m)

)2
}

with respect to G(ν)
q . This leads to the ν-th bin of the well-

known Wiener filter for the q-th channel given as (see, e.g., [Mar05, DHP00])

G(ν)
q (m) =

E{|Y (ν)
s,q (m)|2}

E{|Y (ν)
q (m)|2}

. (4.10)

With the assumption that the desired signal component, the interfering signal components

and the background noise in the q-th channel are all mutually uncorrelated, (4.10) can be

expressed as

G(ν)
q (m) =

E{|Y (ν)
s,q (m)|2}

E{|Y (ν)
s,q (m)|2} + E{|Y (ν)

c,q (m)|2} + E{|Y (ν)
n,q(m)|2}

. (4.11)

From this equation it can be seen that for regions with desired signal and residual crosstalk

or background noise components the output signal spectrum is reduced, whereas in regions

without crosstalk or background noise the signal is passed through. On the one hand

this fulfills the requirement that an undisturbed desired source signal passes through the

Wiener filter without any distortion. On the other hand, if crosstalk or noise is present,

the magnitude spectrum of the noise or crosstalk attains a shape similar to that of the

desired source signal, so that noise and crosstalk are therefore partially masked by the

desired source signal. This effect was already exploited in postfiltering for acoustic echo

cancellation aiming at the suppression of residual echo. There, this effect has been termed

“echo shaping” [Mar96]. Moreover, it can be observed in (4.11) that if the BSS system

achieves the optimum solution, i.e., the residual crosstalk in the q-th channel Y (ν)
c,q = 0,

then (4.11) reduces to the well-known Wiener filter for a signal with additive noise used in

single-channel speech enhancement. To realize (4.11) in a practical system, the ensemble

average E{·} has to be estimated and thus, it is usually replaced by a time average Ê{·}.
Thereby, the Wiener filter is approximated by

G(ν)
q (m) ≈

Ê{|Y (ν)
q (m)|2} − Ê{|Y (ν)

c,q (m)|2} − Ê{|Y (ν)
n,q(m)|2}

Ê{|Y (ν)
q (m)|2}

, (4.12)

where Ê{|Y (ν)
q |2}, Ê{|Y (ν)

c,q |2}, and Ê{|Y (ν)
n,q|2} are the psd estimates of the BSS output

signal, residual crosstalk, and background noise, respectively. Due to the reformulation in

(4.12) the unobservable desired signal psd E{|Y (ν)
s,q (m)|2} does not have to be estimated.

However, the main difficulty is still to obtain reliable estimates of the unobservable residual
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crosstalk and background noise psds. A novel method for this estimation process leading

to high noise reduction with little signal distortion will be shown in the next section.

Moreover, an estimate of the observable BSS output signal psd is required. The psd

estimates can be used to implement spectral weighting algorithms other than the Wiener

filter as described, e.g., in [HS04, Mar05].

4.2.2 Estimation of residual crosstalk and background noise

In this section a model for the residual crosstalk and background noise is introduced.

Subsequently, based on the residual crosstalk model an estimation procedure will be

given which relies on an adaptation control. Different adaptation control strategies will

be outlined. Moreover, also the estimation of the background noise psd will be discussed.

4.2.2.1 Model of residual crosstalk and background noise

We restricted our scenario to the case that the number of microphones equals the max-

imum number of simultaneously active point sources. Therefore, the BSS algorithm is

able to provide an estimate of one separated point source at each output yq. As pointed

out above, due to movement of sources or long reverberation, the BSS algorithm might

not converge fast enough to the optimum solution and thus, some residual crosstalk from

point source interferers, denoted in the DFT domain by Y (ν)
c,q , remains in the BSS out-

put. To obtain a good estimate of the residual crosstalk psd E{|Y (ν)
c,q |2} as needed for the

post-filter in the q-th channel, we first need to set up an appropriate model.

In Fig. 4.5a the concatenation of the mixing and demixing is expressed by the overall

system matrix Č = HLW̌ which was introduced in (3.10). The entries cqr of Č denote

the path from the q-th source to the r-th output. For simplicity, we have depicted the

case Q = P = 2 in Fig. 4.5. As can be seen in Fig. 4.5a, the crosstalk component yc,1(n)

of the first output channel is determined in the case Q = P = 2 by the source signal

s2(n) and the filter c21. However, as neither the original source signals nor the overall

system matrix are observable, the crosstalk component yc,1(n) is expressed in Fig. 4.5b in

terms of the desired source signal component ys,2(n) at the second output. This residual

crosstalk model could be used if a good estimate of ys,2(n) is provided by the BSS system,

i.e., if the source in the second channel is well-separated.

It should also be noted that even if ys,2(n) is available, then this model does not

allow a perfect estimation of the residual crosstalk yc,1(n). This is due to the fact that

for a perfect replica of yc,1(n) based on the input signal ys,2(n), the filter b21 has to

model the combined system of c21 and the inverse of c22. However, c22 is in general a

non-minimum phase FIR filter and thus, cannot be inverted in an exact manner by a

single-input single-output system as was shown in [MK88]. Hence, analogously to single-

channel blind dereverberation approaches, it is only possible to obtain an optimum filter
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Figure 4.5: (a) Representation of mixing and demixing system for the case P = 2 by using the

overall system FIR filters cqr. (b) Resulting model for the residual crosstalk yc,1(n).

b21 in the least-squares sense [MK88]. We will see in the following that due to the usage

of additional a-priori information this model is nevertheless suitable for the estimation of

the residual-cross talk psd.

The model in Fig. 4.5b requires the desired source signal component ys,2(n) in the

second BSS output. However, in practice it cannot be assumed that the BSS system

always achieves perfect source separation. Especially in the initial convergence phase or

with moving sources, there is some residual crosstalk remaining in all outputs. Therefore,

we have to modify the residual crosstalk model so that only observable quantities are

used. Hence, in Fig. 4.6 the desired signal component ys,i for the i-th channel is replaced

by the signal y̆i,q which denotes the BSS output signal of the i-th channel but without any

interfering crosstalk components from the q-th point source (i.e., desired source sq). This

means that the overall filters cqi from the q-th source to the i-th output (i = 1, . . . , P , i 6=
q) are assumed to be zero. In practice, this condition is fulfilled by an adaptation control

which determines time-frequency points where the desired source sq is inactive. This a-

priori information about desired source absence is important for a good estimation of the

residual crosstalk psd and thus, for achieving additional residual crosstalk cancellation. A

detailed discussion of the adaptation control will be given in Section 4.2.2.3. Due to the

bin-wise application of the single-channel postfilter we will in the following formulate the

model in the DFT domain. Consequently, the model for the residual crosstalk in the q-th

channel based on observable quantities is expressed for the ν-th DFT bin (ν = 1, . . . , Rpost)
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Figure 4.6: Model of the residual crosstalk component yc,q contained in the q-th BSS output

channel yq illustrated for the first channel, i.e., q = 1. In contrast to Fig. 4.5b this model is

solely based on observable quantities.

as

Y (ν)
c,q (m) =

P∑

i=1,i6=q

Y̆
(ν)

i,q (m)B
(ν)
i,q (m)

= y̆(ν)T

q
(m)b(ν)

q (m), (4.13)

where Y̆
(ν)

i,q and B
(ν)
i,q are the DFT-domain representations of y̆i,q and biq, respectively.

The variable y̆(ν)

q
is the P −1 dimensional DFT-domain column vector containing Y̆

(ν)

i,q for

i = 1, . . . , P , i 6= q, and b(ν)
q is the column vector containing the unknown filter weights

B
(ν)
i,q for i = 1, . . . , P , i 6= q.

It should be pointed out that the adaptation control only ensures that the desired

source sq is absent in the i-th BSS output channel Y̆
(ν)

i,q . However, the background noise

Y
(ν)
n,i is still present in the i-th BSS output channel as can also be seen in Fig. 4.6. If the

background noise is spatially correlated between the q-th and i-th BSS output channel,

then the coefficient B
(ν)
i,q would not only model the leakage from the separated source in

i-th channel, but B
(ν)
i,q would also be affected by the spatially correlated background noise.

However, as an additional measure, the noise psd E{|Y (ν)
n,q|2} is estimated individually in

each channel by one of the noise estimation methods known from single-channel speech en-
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hancement. Therefore, if the background noise is already included in the residual crosstalk

model, this would lead to an overestimation of the noise psd. In Chapter 2 the character

of the background noise such as car or babble noise was examined and the correlation

of the noise sources between the sensors was evaluated using the magnitude-squared co-

herence (MSC). It was concluded that the MSC of such background noise exhibits the

same characteristics as a diffuse sound field leading to strong spatial correlation for low

frequencies but to very small spatial correlation at higher frequencies. The model of the

residual crosstalk is based on the BSS output signals and hence, it is of interest how the

BSS system changes the MSC of the noise signals. In Fig. 4.7a and Fig. 4.7b the MSC
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Figure 4.7: Magnitude-squared coherence (MSC) of the car (a) and speech babble (b) background

noise between the sensors and between the BSS outputs. The long-term noise psds of car noise

and speech babble are shown in (c) and (d), respectively.

of car noise and babble noise, which was estimated recursively according to (2.33), (2.35)

with the parameters R = 512, γ = 0.9, α = 2, is plotted. For the car scenario described
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in the Appendix C.4 a two-microphone array with a spacing of 4 cm was mounted at

the interior mirror and the driver and co-driver were speaking simultaneously. Then the

block-online BSS algorithm given in (3.222) was applied. The same experiment was per-

formed with two sources in the reverberant room described in the Appendix C.2 where

the babble noise was generated by a circular loudspeaker array using 16 individual speech

signals. As pointed out in the previous chapter, the BSS algorithm tries to achieve source

separation by aiming at mutual independence of the BSS output signals. From Fig. 4.7

it can be seen that in the presence of background noise this also leads to a spatial decor-

relation of the noise signals at the BSS outputs. The car noise which is dominant at low

frequencies (see Fig. 4.7c) has a MSC close to zero at these frequencies (see Fig. 4.7a).

Only at higher frequencies, where the noise signal has much less energy, a larger MSC

can be observed. The reduction of the MSC for the relevant frequencies can analogously

also be observed for the babble noise. This observation shows that the background noise

is spatially decorrelated at the BSS outputs and thus, confirms that the model for the

residual crosstalk introduced in (4.13) is valid even in the case of background noise. This

also justifies the independent estimation of the background noise in each channel and

thus, we can apply noise estimation methods previously derived for single-channel speech

enhancement algorithms. The residual cross-talk, however, is correlated across the out-

put channels. These characteristics of residual cross-talk and background noise will be

exploited in the next section to derive suitable estimation procedures.

After introducing the residual crosstalk model and validating it for the case of existing

background noise, we briefly discuss the relationships to the models used in previous pub-

lications on post-processing for BSS. In [PPSK06] a Wiener-based approach for residual

crosstalk cancellation is presented for the case P = 2. There, a very simple model is used

where all coefficients B
(ν)
i,q (i, q = 1, 2, i 6= q) are assumed to be equal to one. Similarly, in

[VRM04] one constant factor was chosen for all B
(ν)
i,q . A model closer to (4.13), but based

on magnitude spectra, was given in [CJLK04] which was then used for the implementation

of a spectral subtraction rule. In contrast to the estimation method presented in the next

section, the frequency-dependent coefficients of the model were learned by a modified

least-mean-squares (LMS) algorithm. In [MASM02b] and [MASM02a] more sophisti-

cated models were proposed allowing for time-delays or FIR filtering in each DFT bin.

The model parameters were estimated by exploiting correlations between the channels or

by using an NLMS algorithm. In all of these single-channel approaches the information

of the multiple channels is only exploited to estimate the psds necessary for the spectral

weighting rule. Alternatively, if also the phase of Y (ν)
c,q is estimated, then it is also possible

to directly subtract the estimate of the crosstalk component Y (ν)
c,q from the q-th channel.

This was proposed in [LNT04] resulting in an adaptive noise canceller (ANC) structure

[WGM+75]. The ANC was adapted by a leaky LMS algorithm [Gre98] which includes a

variable step size to allow also for strong desired signal activity without the necessity of
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an adaptation control.

The background noise component in the q-th channel Y (ν)
n,q is usually assumed to be

more stationary than the desired signal component Y (ν)
s,q . This assumption is necessary

for the noise estimation methods known from single-channel speech enhancement which

will be used to estimate the noise psd Ê{|Y (ν)
n,q|2} in each channel and which are briefly

discussed in the next section.

4.2.2.2 Estimation of residual crosstalk and background noise power spectral

densities

After introducing the residual crosstalk model (4.13) we need to estimate the psds

E{|Y (ν)
c,q |2} of the residual crosstalk and E{|Y (ν)

n,q|2} of the background noise for evalu-

ating (4.12). To obtain an estimation procedure based on observable quantities we first

calculate the cross-power spectral density vector s
(ν)
y̆qYc,q

between y̆(ν)

q
and Y (ν)

c,q given as

s
(ν)
y̆qYc,q

(m) = Ê{y̆(ν)∗

q
(m)Y (ν)

c,q (m)}

= Ê{y̆(ν)∗

q
(m)y̆(ν)T

q
(m)}b(ν)

q (m)

=: S
(ν)
y̆qy̆q

(m)b(ν)
q (m), (4.14)

where in the first step b(ν)
q was assumed to be slowly time-varying. Using (4.13), the

power spectral density estimate Ê{|Y (ν)
c,q |2} can be expressed as

Ê{|Y (ν)
c,q (m)|2} = Ê{Y (ν)H

c,q (m)Y (ν)
c,q (m)}

= b(ν)H

q (m)S
(ν)
y̆q y̆q

(m)b(ν)
q (m). (4.15)

Solving (4.14) for b(ν)
q and inserting it into (4.15) leads to

Ê{|Y (ν)
c,q (m)|2} = s

(ν)H

y̆qYc,q
(m)

(
S

(ν)
y̆qy̆q

(m)
)−1

s
(ν)
y̆qYc,q

(m). (4.16)

As Y (ν)
c,q , Y (ν)

s,q , and Y (ν)
n,q in Fig. 4.6 are assumed to be mutually uncorrelated, s

(ν)
y̆qYc,q

can

also be estimated as the cross-power spectral density s
(ν)
y̆qYq

between y̆(ν)

q
and q-th output

of the BSS system Y (ν)
q leading to the final estimation procedure:

Ê{|Y (ν)
c,q (m)|2} = s

(ν)H

y̆qYq
(m)

(
S

(ν)
y̆qy̆q

(m)
)−1

s
(ν)
y̆qYq

(m). (4.17)

Thus, the power spectral density of the residual crosstalk for the q-th channel can be

efficiently estimated in each DFT bin ν = 0, . . . , R − 1 by computing the 1 × P − 1

cross-power spectral density vector s
(ν)
y̆qYq

between input and output of the model shown

in Fig. 4.6 and calculating the P − 1 × P − 1 cross-power spectral density matrix S
(ν)
y̆qy̆q

of the inputs. One possible implementation for estimating this expectation is given by



166 4. Extensions for Blind Source Separation in Noisy Environments

an exponentially weighted average Ê{a(m)} = (1 − γ)
∑

i γ
m−ia(i), where a(m) is the

quantity to be averaged. The advantage is that this can also be formulated recursively

leading to

S
(ν)
y̆qy̆q

(m) = γS
(ν)
y̆qy̆q

(m− 1) + (1 − γ)y̆(ν)∗

q
(m)y̆(ν)T

q
(m), (4.18)

s
(ν)
y̆qYq

(m) = γs
(ν)
y̆qYq

(m− 1) + (1 − γ)y̆(ν)∗

q
(m)Y (ν)T

q (m). (4.19)

In summary, the power spectral density of the residual crosstalk for the q-th channel can

be efficiently estimated in each DFT bin ν = 0, . . . , R − 1 using (4.17) together with the

recursive calculation of the P − 1× P − 1 cross-power spectral density matrix (4.18) and

the P − 1 × 1 cross-power spectral density matrix vector (4.19). It should be noted that

such an estimation technique has also been used to determine a post-filter for residual

echo suppression in the context of acoustic echo cancellation (AEC) [TGSB97, EMV02a].

However, the method presented in [TGSB97, EMV02a] is different in two ways: Firstly,

in contrast to BSS where several interfering point sources may be active, the AEC post-

filter was derived for a single channel, i.e., the residual echo originates from only one

point source and thus all quantities in (4.17) reduce to scalar values. Secondly, in the

AEC problem a reference signal for the echo is available. In BSS however, y̆(ν)

q
is not

immediately available as it can only be estimated if the desired source signal in the q-th

channel is currently inactive. Strategies how to determine such time intervals are discussed

in the next section.

The estimation of the psd of the background noise Ê{|Y (ν)
n,q|2} is already a long-standing

research topic in single-channel speech enhancement and an overview on the various meth-

ods can be found, e.g., in [HS04]. Usually it is assumed that the noise psd is at least more

stationary than the desired speech psd. The noise estimation can be performed during

speech pauses, which have to be detected properly by a voice activity detector. As voice

activity detection algorithms are rather unreliable in low SNR conditions, several methods

have been proposed which can track the noise psd continuously. One of the most promi-

nent methods is the minimum statistics approach proposed in [Mar94]. This method is

based on the observation that the power of a noisy speech signal frequently decays to the

power of the background noise. Hence, by tracking the minima the power spectral density

of the noise is obtained. In [Mar01a] an improved version was proposed which includes

an optimal smoothing of the noise psd together with a bias correction and which will be

applied in the experiments in Section 4.2.3. Other methods providing continuous noise

psd estimates can be found, e.g., in [CB01, Coh03, HS04].
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4.2.2.3 Adaptation control based on SIR estimation

In the previous sections it was shown that the estimation of the residual crosstalk power

spectral density in the q-th channel is only possible at time instants when the desired

point source of the q-th channel is inactive. As pointed out already above, speech signals

can be assumed to be sufficiently sparse in the time-frequency domain so that even in re-

verberant environments regions can be found where one or more sources are inactive (see,

e.g., [BAM03, YR04]). This fact will be exploited by constructing a DFT-based adap-

tation control necessary for the estimation of the residual cross-talk psd. In this section

we will first briefly review an adaptation control approach which is already known from

the literature on post-processing for BSS. Due to the similarity of the adaptation con-

trol necessary for estimating the residual crosstalk and the control necessary for adaptive

beamformers applied to acoustic signals, also the existing approaches in the beamforming

literature will be briefly summarized. A sophisticated bin-wise adaptation control origi-

nally proposed in [HTK03, HNK04] in the context of adaptive beamforming will then be

applied in a slightly modified version to the post-processing scheme.

In general, all adaptation controls aim at estimating the SIR in the time domain or in

a bin-wise fashion in the DFT domain. For the latter, the SIR estimate is given for the

ν-th DFT bin as the ratio of the desired signal psd and the psd of the interfering signals.

Thus, the SIR estimate at the q-th BSS output is given as

ŜIR
(ν)

q (m) =
Ê{|Y (ν)

s,q (m)|2}
Ê{|Y (ν)

c,q (m)|2}
. (4.20)

For the case of a BSS system with two output channels (P = 2) together with the

assumption that the number of simultaneously active point sources Q ≤ P , a simple

SIR estimate is given by approximating the desired signal component Y (ν)
s,q with the BSS

output signal Y (ν)
q of the q-th channel and approximating the interfering signal component

by the BSS output signal of the other channel. This yields, e.g., for the approximated

SIR estimate in the first BSS output channel

ŜIR
(ν)

1 (m) ≈ Ê{|Y (ν)
1 (m)|2}

Ê{|Y (ν)
2 (m)|2}

. (4.21)

This approximation is justified if the BSS system already provides enough separation per-

formance so that the BSS output signals can be seen as estimates of the point sources.

In [MASM02b, MASM02a] the time-average Ê{·} in (4.21) has been approximated by

taking the instantaneous psd values and the resulting approximated SIR was used suc-

cessfully as a decision variable for controlling the estimation of the residual crosstalk. If

ŜIR
(ν)

1 (m) < 1, then the crosstalk Y
(ν)
c,1 was estimated and for ŜIR

(ν)

1 (m) > 1 the crosstalk

of the second channel Y
(ν)
c,2 was determined. In [AZBK06] this adaptation control was re-

fined by the introduction of a safety margin Υ to improve reliability. By comparing (4.21)
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to a fixed threshold Υ it is ensured that a certain SIR value ŜIR
(ν)

1 (m) < Υ has to be at-

tained to allow the conclusion that the desired signal is absent and thus, allow estimation

of the residual crosstalk Y
(ν)
c,1 . The safety margin Υ has to be chosen between 0 < Υ ≤ 1

and was set in [AZBK06] to Υ = 0.9. For an extension of this mechanism to P,Q > 2

a suitable approximation for Ê{|Y (ν)
c,q (m)|2} in the SIR estimate (4.20) is important. In

[AZBK06] it was suggested for P,Q > 2 to use the maximum psd of the remaining chan-

nels Ê{|Y (ν)
i (m)|2}, i 6= q. For increasing P,Q this requires a very careful choice of Υ. In

such scenarios, it is advantageous to replace the fixed threshold Υ by adaptive threshold-

ing. As we will see in the following, such sophisticated adaptation controls were treated in

the beamforming literature and will now be applied to the BSS post-processing scheme.

If adaptive beamformers, such as the generalized sidelobe canceller (GSC) [GJ82], are

applied to acoustic signals, then usually an adaptation control is required for the adaptive

filters aiming at interference cancellation. Analogously to the residual crosstalk estima-

tion procedure discussed in Section 4.2.2.2, the adaptation of the adaptive interference

canceller has to be stalled in the case of a strong desired signal. This analogy allows to

apply the approaches in the literature on adaptive beamforming to the post-processing of

the BSS output signals. To control the adaptation of beamformers, a correlation-based

method was proposed in [GZ92] and recently in a modified form also in [HSLF06]. Another

approach relies on the comparison of the outputs of a fixed beamformer with the main

lobe steered towards the desired source and a complementary beamformer which steers

a spatial null towards the desired source [HS99]. The ratio of the output signal powers,

which constitutes an estimate of the SIR is then compared to a threshold to decide if the

adaptation should be stopped. As both methods were suggested in the time-domain, this

corresponds to a full-band adaptation control, so that in case of a strong desired signal

the adaptation is stopped for all DFT bins. It has been pointed out before that speech

signals are sparse in the DFT domain and thus, better performance of the adaptation

algorithm can be expected when using a bin-wise adaptation control. This was the moti-

vation in [HTK03, HNK04] for transferring the approach based on two fixed beamformer

outputs to the DFT domain leading to a frequency-dependent SIR estimate. Instead of

a fixed threshold Υ, additionally an adaptive threshold Υ(ν)
q (m) for each channel and

DFT bin has been proposed leading to a more robust decision. The application of this

adaptation control to the estimation of the residual crosstalk, which is required for the

post-processing algorithm, will be discussed in the following.

In [HTK03, HNK04] the estimate Ê{|Y (ν)
s,q (m)|2} of the desired signal required for the

SIR estimate (4.20) is obtained by a delay-and-sum beamformer. This requires an array

of several microphones which should have a spacing that is sufficiently large to allow the

suppression of the interfering signals also at low frequencies. Moreover, the positions of

the microphones are assumed to be known. This is in contrast to the BSS application

where the sensors can be arbitrarily positioned and where there might be only a small
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number of sensors available (e.g., P = 2). Therefore, instead of a fixed beamformer output

we will use the q-th BSS output signal psd Ê{|Y (ν)
q (m)|2} as an estimate of the desired

signal psd Ê{|Y (ν)
s,q (m)|2}.

The estimate of the interfering signal components required for the SIR estimate (4.20)

are obtained in [HTK03, HNK04] by a complementary beamformer which places a spatial

null towards the desired source. The difference to the procedure in [HS99] is that this is

done in a bin-wise manner. In our application we will use the psd of a complementary

BSS signal Ȳ
(ν)
q which is obtained analogously to [HTK03, HNK04] as

Ê{|Ȳ (ν)
q (m)|2} = Ê{|X(ν)

q (m)|2} − Ê{|Y (ν)
q (m)|2}. (4.22)

Similarly to the approach in [HTK03, HNK04], it is assumed here that the filtering due to

the BSS demixing system is approximately linear phase and that the BSS output signal

and the microphone signal have been properly time-aligned before subtracting their psd

estimates. It should be noted that due to the usage of a broadband BSS algorithm,

the permutation at the BSS output signals is not frequency-dependent. Therefore, a

possible permutation of the BSS output channels has no effect on the calculation of the

complementary BSS signal.

Usually recursive averaging is used for the time-average indicated by the operator Ê{·}
which leads to the psd estimates

S(ν)
xqxq

(m) = γS(ν)
xqxq

(m− 1) + (1 − γ)|X(ν)
q (m)|2, (4.23)

S(ν)
yqyq

(m) = γS(ν)
yqyq

(m− 1) + (1 − γ)|Y (ν)
q (m)|2, (4.24)

necessary for the estimation of the SIR in the q-th BSS output channel. The SIR estimate

(4.20) can thus be expressed as

ŜIR
(ν)

q (m) ≈
S(ν)

yqyq
(m)

S(ν)
xqxq

(m) − S(ν)
yqyq

(m)
. (4.25)

The SIR estimate (4.25) is then compared to an adaptive threshold Υ(ν)
q (m). If

ŜIR
(ν)

q (m) < Υ(ν)
q (m), then the absence of the desired signal in the q-th channel can

be assumed. The adaptive threshold is given as the minimum of SIR estimate ŜIR
(ν)

q (m)

which is determined for each DFT bin by taking into account the last DΥ blocks [Mar01a].

In practice DΥ must be large enough to bridge any peak of desired signal activity but

short enough to track the nonstationary SIR variations in case of absence of the desired

signal. Here, we choose an interval equivalent to a time period of 1.5 s. Moreover, for

small variations
∣∣∣
(
ŜIR

(ν)

q (m) − Υ(ν)
q (m)

)
/Υ(ν)

q (m)
∣∣∣ ≤ ∆Υ the threshold Υ(ν)

q (m) is up-

dated immediately. In Fig. 4.8 the SIR estimate ŜIR
(ν)

q and the adaptive threshold Υ(ν)
q

determined by minimum tracking are illustrated for the DFT bin corresponding to 1 kHz.
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Figure 4.8: Estimate 10 log10 ŜIR
(ν)

q of the SIR and adaptive threshold Υ
(ν)
q determined by

minimum tracking illustrated for the DFT bin corresponding to 1 kHz.

The results are based on the output signals of the BSS system applied to the car envi-

ronment described in Appendix C.4. It can be seen that due to the parameter ∆Υ = 0.3

the threshold follows small changes of the SIR estimate immediately. Moreover, it should

be pointed out that the SIR estimate in Fig. 4.8 exhibits high positive values due to the

good convergence of the BSS algorithm. This is the reason why even in speech pauses of

the desired signal, the SIR estimate does rarely exhibit negative SIR values.

In Fig. 4.9 the decision of the adaptation control is illustrated for the first output

channel of the BSS system applied to the car environment (P = Q = 2). The desired

component, residual crosstalk, and background noise component at the first BSS output

are depicted in (a)-(c). The decision of the adaptation control is obtained by estimating

the SIR according to (4.25) solely based on observable quantities. Especially due to the

existence of background noise yn,q this leads to a biased SIR. Nevertheless, the adaptation

control is very robust due to the adaptive threshold Υ
(ν)
1 based on minimum tracking and

the parameter ∆Υ = 0.3 which allows for small variation of the threshold. This can be

seen, when comparing the results of the adaptation control with the true SIR illustrated

in (e) which is estimated based on unobservable quantities according to (4.20). In case of

high SIR values ŜIR
(ν)

1 , the desired signal in the first channel is present and the residual

crosstalk psd Ê{|Y (ν)
c,2 (m)|2} of the other channel is estimated. Vice versa, a low SIR in

the first channel allows to adapt Ê{|Y (ν)
c,1 (m)|2}.

In case that the adaptation control stalls the estimation of the residual crosstalk for the

ν-th DFT bin in one of the P BSS output channels, the residual crosstalk estimate from

the previous block has to be used. As speech is a nonstationary process and therefore,

the statistics of the residual crosstalk are quickly time-varying, this would deteriorate
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Figure 4.9: BSS output signal components for the car environment (Appendix C.4) with an

input SNR at the sensors of 0 dB showing the desired signal (a), residual crosstalk (b) and

background noise (c) in the first channel. Based on the SIR estimate (4.25) and the adaptive

threshold Υ
(ν)
1 the decision of the adaptation control is shown in (d). For comparison, the SIR

(4.20) computed for the true signal components in the first channel is illustrated in (e).
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1. Estimate S(ν)
xqxq

(m) and S(ν)
yqyq

(m) according to (4.23) and (4.24)

2. Estimate ŜIR
(ν)

q (m) according to (4.25)

3. Estimate Ê{|Y (ν)
n,q(m)|2} by minimum statistics algorithm

4. Tracking of minima of ŜIR
(ν)

q (m):

If |(ŜIR(ν)

q (m) − Υ(ν)
q (m))/Υ(ν)

q (m)| ≤ ∆Υ

Replace all values of Υ(ν)
q (i) inside the buffer, i.e.,

Υ(ν)
q (i) = ŜIR

(ν)

q (m), i = m, . . . ,m−DΥ + 1

If ŜIR
(ν)

q (m) is the minimum of Υ(ν)
q (m− i), i = 0, . . . , DΥ − 1

Set current value of buffer Υ(ν)
q (m) = ŜIR

(ν)

q (m)

5. If minimum is detected, i.e., ŜIR
(ν)

q (m) ≤ Υ(ν)
q (m):

Calculate residual crosstalk Ê{|Y (ν)
c,q (m)|2} according to (4.17)

Compute postfilter (4.12) for residual crosstalk and noise

6. If no minimum is detected, i.e., ŜIR
(ν)

q (m) > Υ(ν)
q (m):

Compute postfilter (4.26) for noise only

Table 4.1: Adaptation control and application of the postfilter for the q-th BSS output channel

and ν-th DFT bin.

the performance of the postfilter G(ν)
q . On the other hand, as pointed out above, the

minimum statistics algorithm can provide continuous noise psd estimates even in periods

with desired signal activity. Therefore, for those time instants where the estimate of

residual crosstalk cannot be updated, i.e., where the desired source signal is dominant, a

postfilter

G(ν)
n,q(m) =

Ê{|Y (ν)
q (m)|2} − Ê{|Y (ν)

n,q(m)|2}
Ê{|Y (ν)

q (m)|2}
(4.26)

merely aiming at suppression of the background noise is applied.

In Table 4.1 the adaptation control and the resulting application of the postfilters is

outlined for the q-th BSS output channel.

4.2.3 Experimental results

In the evaluation of the postfiltering algorithm summarized in Table 4.1 the same two

noisy scenarios have been considered as in Section 4.1 and their description is briefly

summarized. The first one is a car environment which is described in Appendix C.4. A

pair of omnidirectional microphones with a spacing of 20 cm was used with a male and

female speaker at the driver and co-driver positions, respectively. The long-term SNR was

adjusted to 0 dB which is a realistic value commonly encountered inside car compartments.

The second scenario corresponds to the cocktail party problem which is usually described
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by the task of listening to one desired point source in the presence of speech babble noise

consisting of the utterances of many other speakers. Speech babble is well described by a

diffuse sound field, however, there may also be several other distinct noise point sources

present. In our experiments we simulated such a cocktail party scenario inside a living

room environment (see Appendix C.2) where speech babble noise was generated by a

circular loudspeaker array with a diameter of 3m. The two omnidirectional microphones

with a spacing of 20 cm were placed in the center of the loudspeaker array from which

16 speech signals were reproduced to simulate the speech babble noise. Additionally, two

distinct point sources at a distance of 1m and at the angles of 0◦ and −80◦ were used

to simulate the desired and one interfering point source, respectively. For more details

on the layout of the environment, see Appendix C.2. The long-term input SNR at the

microphones has been adjusted for the living room scenario to 10 dB. This is realistic, as

due to the speech-like spectrum of the background noise the microphone signals which

exhibit higher SNR values are perceptually already as annoying as those with significantly

lower SNR values for lowpass car noise.

The second-order statistics BSS algorithm with the narrowband normalization given in

(3.222) is applied to the two noisy scenarios. To evaluate the performance two measures

have been used: The segmental SIR which is defined as the ratio of the signal power

of the desired signal to the signal power of the residual crosstalk stemming from point

source interferers and the segmental SNR defined as the ratio of the signal power of the

desired signal to the signal power of the possibly diffuse background noise. In both cases,

the SIR and SNR improvement due to the application of the postfilter is measured and

averaged over both channels. The segmental SIR improvement ∆SIRseg(m) defined in

(2.50) is plotted as a function of the block index m to illustrate the convergence effect of

the BSS system. The channel-averaged segmental SNR improvement ∆SNRseg is given

as the average over all blocks. To assess the desired signal distortion, the unweighted

log-spectral distance (SD) defined in (2.54) has been measured between the input and the

output of the postfilter. The DFT length for computing the SD is usually set to be small

so that speech can be assumed stationary. In our experiments we used R = 256 and set

KS large enough to cover the whole signal length.

To reduce artifacts such as, e.g., musical noise, the postfilter (4.12) is usually calculated

using an adaptive oversubtraction factor ξ
(ν)
q as proposed in [BSM79]. Moreover, negative

gains of the postfilters are set to zero. Hence in the experiments the postfilter

G(ν)
q (m) =

max
[(

Ê{|Y (ν)
q (m)|2} − ξ

(ν)
q

(
Ê{|Y (ν)

n,q(m)|2} + Ê{|Y (ν)
c,q (m)|2}

))
, 0
]

Ê{|Y (ν)
q (m)|2}

. (4.27)

was used. For the post-processing algorithm, γ = 0.9 and a DFT length of Rpost = 2048

was chosen. The block length Npost was equal to the DFT length and an overlap factor

α = 4 was used. The parameters of the adaptation control are given as ∆Υ = 0.3 and



174 4. Extensions for Blind Source Separation in Noisy Environments

DΥ = 94 corresponding to a period of 1.5 s over which the minimum is tracked.

In Fig. 4.10 the results for the separation of the two speech point sources can be seen.

For both scenarios the separation performance of the combined system of BSS and single-
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(a) Car environment with traffic noise (SNR = 0 dB)
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(b) Living room with speech babble (SNR = 10 dB)
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Figure 4.10: Segmental SIR improvement ∆SIRseg depicted over time for two environments

containing two speech point-source and additional background noise: (a) car compartment with

background noise consisting of car and traffic noise (SNR = 0dB) and (b) living room scenario

with speech babble background noise from 16 speakers (SNR = 10 dB). Speech separation

results are shown for BSS outputs and postfilter outputs.

channel postfilter (solid) outperforms the BSS performance (dashed). In contrast to the

BSS system which possesses an inherent adaptation control implied by the normalization

term in the update equation, the postfilter relies on a-priori information provided by the

adaptation control. Hence, it is possible to accurately estimate the residual crosstalk at

the BSS outputs and therefore, to further improve the speech separation performance.

The reduced absolute level of the SIR improvement in the cocktail party scenario, i.e., in

the reverberant living room (Fig. 4.10b) is due to longer reverberation and especially due
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∆SNRseg at BSS

outputs

∆SNRseg at post-

filter outputs

SD at postfilter

outputs
Car scenario 3.0 dB 4.9 dB 1.0 dB

Cocktail party scenario 0.2 dB 1.3 dB 1.6 dB

Table 4.2: Segmental SNR and unweighted log-spectral distortion for both scenarios

to the background babble noise which exhibits a speech-like long-term spectrum.

Moreover, in the both scenarios also the background noise could be partially sup-

pressed. In Table 4.2 the segmental SNR averaged over all output channels of the BSS

system and of the postfilter is shown. It can be observed that the postfilter achieves an

additional SNR gain. As the car noise is more stationary compared to the speech babble

noise, the minimum statistics algorithm can better estimate the noise psd and thus a

higher SNR improvement can be achieved by the postfilter.

To assess the speech quality, the unweighted log-spectral distortion between the desired

signal at the input and output of the post-filter was calculated and averaged over both

output channels. The small values in Table 4.2 indicate that the quality of the desired

signal is preserved. This was also confirmed by informal listening tests where additionally

no musical noise was observed.

4.3 Summary

In this chapter the convolutive BSS framework presented in Chapter 3 for reverberant

environments has been extended to the case of noisy mixtures. As realistic background

noise types often have a diffuse sound field characteristic it is not possible to address

their suppression or separation from the point sources by the standard convolutive BSS

model. Therefore, different pre- and post-processing methods have been investigated to

complement the BSS algorithms. These methods have to achieve two different goals:

First, the adaptation of the BSS filters should be robust against background noise and

second, the background noise should be suppressed at the outputs.

In Section 4.1 this was addressed by pre-processing techniques which have to estimate

and remove the bias introduced by the background noise components. This can be done

either by an estimation of the noise contribution at the sensors or by an estimation of the

noise correlation matrix. The former can be achieved by applying single-channel speech

enhancement techniques to each sensor signal individually. All well-known single-channel

approaches only aim at recovering the clean speech signal magnitude and do not aim at

the estimation of the phase. This is motivated by the fact that only noise power spectral

density estimates are available so that a Wiener filter, which only modifies the magnitude

of the noisy signal is optimal. Moreover, human perception is not affected very much by a
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modification of the clean signal phase. However, for BSS algorithms the relative phase of

the signals acquired by the different microphones is very important. This was confirmed by

the experiments which showed that only a restoration of the clean sensor signal magnitude

does not lead to improved results. Hence, a multi-channel bias removal technique was

investigated which aims at the estimation of the noise correlation matrix. This has been

achieved by using an adaptation control based on jointly evaluating multiple sensor signals

which provided information on the time instants when only noise is present. This method

showed some improvement in the separation performance of the BSS algorithm. However,

for multiple speakers less speech pauses are present and thus the estimation of the noise

correlation matrix can be performed at fewer time instants. Moreover, the pre-processed

correlation matrix is only used for the adaptation of the demixing system so that in

contrast to the single-channel pre-processing method another technique for a suppression

of the background noise would be required. Due to these reasons, post-processing methods

are a favorable alternative. For completeness, also subspace methods which are applicable

to the case of more sensors than sources, i.e., P > Q have been briefly discussed.

In Section 4.2 post-processing methods based on single-channel postfiltering have been

investigated. As the BSS performance will deteriorate in the presence of noise, these

methods have to account for both, suppression of the residual crosstalk from the interfering

point sources and suppression of the background noise. A novel estimation procedure has

been presented for the estimation of the residual crosstalk power spectral density (psd)

necessary for the Wiener-based weighting rule of the postfilter. An adaptation control

known from adaptive beamforming has been applied in a modified form which made the

estimation of the residual crosstalk psd quite robust. In contrast to the pre-processing

techniques, the adaptation control utilizes the BSS outputs where the interfering point

sources are already partially suppressed. For the background noise psd estimation a

conventional noise estimator from single-channel speech enhancement has been used. The

resulting postfilter has led to an increased separation performance and also to a partial

suppression of the background noise in both, a noisy car environment and a cocktail party

scenario where babble noise is encountered.
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5 Summary and Conclusions

In recent years a lot of research has been devoted to convolutive BSS algorithms for acous-

tic signals. There are several reasons why there are many efforts to apply the technique

of BSS to acoustic human-machine interfaces which is an area where fixed and adaptive

beamforming schemes are still predominant. One reason is that BSS approaches only rely

on the assumption of mutual independence of the source signals and do not need addi-

tional a-priori information, such as the array geometry or the positions of the desired and

interfering sources. Moreover, different frequency characteristics of the individual micro-

phones do not affect the performance of BSS algorithms. Another reason is that in several

applications such as surveillance of public spaces, it is desirable to simultaneously focus

on several different point sources instead of extracting one desired source as common in

beamforming. Furthermore, the mean-squared error approaches, commonly encountered

in adaptive beamforming, are inherently based on second-order statistics. In contrast to

these methods, BSS algorithms can be based on information theoretic criteria which allow

to incorporate also higher-order statistics into the adaptation algorithms. Due to these

advantages, BSS techniques for acoustic signals have received a great deal of attention in

the signal processing community in the last few years.

The topic of this thesis has been aiming at BSS for acoustic signals and the main

achievements can be described as follows. We presented several important special cases of

a generic BSS framework which was termed TRINICON (“TRIple-N Independent compo-

nent analysis for CONvolutive mixtures”) in [BAK03a]. This framework allows a unified

view on convolutive BSS algorithms leading to novel algorithms and showing also rela-

tionships to popular state-of-the-art algorithms. Here, we presented some approximations

which lead to highly efficient algorithms while still preserving the superior properties of

the general framework relative to other known algorithms. A second major contribution

is that, beyond existing BSS literature, we addressed in this thesis the application of BSS

to reverberant and noisy environments by presenting several pre- and post-processing

techniques in a coherent treatment. The algorithms allow to maintain a high separation

performance of the BSS algorithms also in noisy scenarios and additionally, are capable

of suppressing the undesired diffuse background noise which cannot be treated by the

convolutive BSS model.

To achieve these results, we first introduced a broadband time-domain optimization

criterion based on a generalization of the mutual information measure. This criterion is

based on the mutual independence of the source signals but allows temporal dependencies



178 5. Summary and Conclusions

within each source signal. By using multivariate probability density functions (pdfs) in

the criterion it is possible to account for the nonwhiteness of the source signals. This

allowed us to exploit all three usable (i.e., “TRIple-N”) signal properties nongaussianity,

nonwhiteness and nonstationarity by a broadband time-domain criterion.

Subsequently, several broadband iterative gradient descent and natural gradient de-

scent BSS algorithms have been derived from the TRINICON optimization criterion. The

estimation of the multivariate pdfs in the update equations has been tackled by assuming

spherically invariant random processes (SIRPs) which are known to be a good model for

speech signals. This has considerably simplified the implementation of the update equa-

tions. Moreover, by using the multivariate Gaussian pdf as a special case of a SIRP pdf,

efficient BSS algorithms solely based on second-order statistics have been obtained.

All these considerations have so far been carried out in the time domain. To allow

efficient DFT-domain implementations, the generic broadband time-domain update equa-

tions have been formulated equivalently in the DFT domain. This equivalence has been

achieved by using a matrix notation which allows to express the resulting Toeplitz ma-

trices in terms of circulant matrices together with window matrices. Subsequently, the

circulant matrices have been transformed to the DFT domain. The rigorous application of

this procedure yielded equivalent broadband update equations expressed by DFT-domain

quantities. Due to the broadband nature, several constraint matrices appear in the up-

date equations which ensure a coupling between the DFT bins. This is in contrast to

narrowband optimization where each DFT bin is considered independently and where

then also the scaling and permutation ambiguities occur in each DFT bin independently.

The broadband DFT-domain formulation was the starting point to introduce selective

narrowband approximations, i.e., to selectively discard some constraint matrices. This

allows to compute, e.g., a matrix inverse efficiently by approximating it as a scalar in-

version in each DFT bin. However, at the same time, several constraint matrices are

retained which ensures that there is still some coupling between the DFT bins. Such

hybrid algorithms still avoid that the BSS ambiguities appear independently in each DFT

bin, but already offer a reduced computational complexity. This procedure of introducing

selective approximations also allowed to establish several links to popular state-of-the-art

BSS algorithms. These relationships support the claim that the TRINICON framework

allows a unified view on convolutive BSS algorithms.

Up to this point, the framework presented in this work was based on the noiseless

convolutive BSS model which only allows for point sources but does not account for

(possibly diffuse) background noise. To ensure the applicability of the previously derived

BSS algorithms also in noisy environments, either a noise-robust optimization criterion

has to be found or the algorithms have to be complemented by pre- or post-processing

approaches. As the former is difficult for realistic background noises, we focused on pre-

and post-processing. The aim of these methods is twofold: First, they have to maintain
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the separation performance and second, they have to suppress also the background noise

which the BSS algorithms cannot cope with. It was shown that pre-processing methods

are only of limited applicability due to the difficult task of developing a robust adaptation

control and due to the fact that it is crucial to restore not only the magnitude spectra

but also the phase of the noiseless mixture signals. In contrast, post-processing methods

can achieve a better simultaneous suppression of background noise and residual cross-

talk. A method based on single-channel postfiltering has been presented and several links

to existing approaches have been shown. It has been demonstrated that this technique

considerably improves the separation performance and also reduces the background noise.

This thesis also pointed out some starting points of future research work. In [Buc] also

partitioned adaptive filtering is considered for the TRINICON framework. Partitioned

filters allow to address the two contradicting requirements of a small block length de-

manded by the nonstationarity of the acoustic signals and a large demixing filter length

needed to cover all reflections of the reverberant environments. Thus, further work may

include the development of efficient BSS algorithms based on partitioned adaptive filter-

ing. Moreover, it was shown in the context of postfiltering for acoustic echo cancellation

in [EMV01, EMV02b, EMV02a] that the partitioning results in better estimation of the

power spectral densities required for the postfilter. Thus, by using partitioning it can be

expected that the good results for the BSS postfilter are even improved. Furthermore, the

partitioning would also allow for low-delay implementations as desired e.g., for binaural

hearing aid applications.

Another rewarding future research topic may be the development of other suitable

approximations to efficiently compute the nonlinearity in the BSS algorithms based on

higher-order statistics. Moreover, the examination of more robust nonlinearities, e.g.

based on robust statistics [Hub81] are a promising research topic as has been shown

recently for the instantaneous BSS in [CD06] and for broadband convolutive BSS in [Buc].

Last but not least, in certain applications such as video-/audio conferencing, the num-

ber of sensors may outnumber the number of active sources. In such a case subspace ap-

proaches, as briefly discussed in Section 4.1.2, are a promising but not yet fully explored

technique to utilize the additional sensors. Moreover, if information about the array geom-

etry is available, then adaptive beamforming approaches exploiting information-theoretic

criteria rather than the conventional mean-square error-based criteria constitute another

option. This would ideally allow to exploit all three signal properties nongaussianity, non-

whiteness and nonstationarity and the adaptation could be done without an adaptation

control as usually required in adaptive beamforming. First approaches addressing this

problem have been presented in [FP01b, PA02, KMG+07, Buc].



180 5. Summary and Conclusions



181

A Operators for Block Matrices and

Block-Sylvester Matrices

A.1 Operators generating diagonal and block-

diagonal matrices

In this section operators for generating diagonal or block-diagonal matrices are defined.

As illustrated in Fig. A.1, a diagonal matrix is obtained if all off-diagonals are set to zero

by applying the operator diag{A} to the square matrix A. Similarly, we can generate a

diag{A}Diag{a}

vector a matrix Adiagonal matrix

0

0

Figure A.1: Illustration of the diag and Diag operators.

diagonal square matrix from a given vector a by applying the operator Diag{a}.
In this thesis usually MIMO systems are considered and therefore, often block matrices

occur which consist of several submatrices. These submatrices usually correspond to

the different channels of the MIMO systems. To simplify the notation in this thesis, a

counterparts to the diag and Diag operators are necessary, which take the block structure

into account. Fig. A.2 illustrates a block matrix A, which exhibits P columns and P

rows, consisting of the submatrices Apq. It should be noted that the submatrices are not

required to be square matrices. As a special case, the submatrices may even correspond

to row or column vectors. As depicted in Fig. A.2, the bdiag{A} operator yields a

block-diagonal matrix by setting all off-diagonal submatrices Apq, p 6= q of the block

matrix A to zero. The block-diagonal matrix can also be generated by using the operator

Bdiag{A11, . . . ,APP} leading to a block-diagonal matrix with the submatrices App, p =

1, . . . , P on its main diagonal.
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bdiag{A}
Bdiag{A11,
. . . ,APP}

submatrices App,
p = 1, . . . , P

block matrix A
consisting of

submatrices Apq

p, q = 1, . . . , P

block-diagonal
matrix

0

0

Figure A.2: Illustration of the bdiag and Bdiag operators for the case P = 4.

A.2 Block-determinant and block-adjoint operators

According to unpublished previous work [BA05] we will define in this section the block-

determinant and the block-adjoint operators for block matrices consisting of column vec-

tors which contain FIR filters. These operators are required for the derivation of the

BSS optimum solution in Section 3.1. The block matrices are defined as a compact rep-

resentation of a MIMO system consisting of FIR filters. In Section 3.1.1 this MIMO

representation is used to model the acoustic impulse responses from the sources to the

microphones which leads according to (3.3) to a mixing system given as the QM × P

matrix

Ȟ =




h11 · · · h1P

...
. . .

...

hQ1 · · · hQP


 . (A.1)

The column vectors hqp = [hqp,0, . . . , hqp,M−1]
T contain the acoustic impulse responses

modeled as FIR filters of lengthM . To allow a concatenation of MIMO systems containing

FIR filters also a block-Sylvester matrix HL is defined in (3.9) as

HL =




H11,L · · · H1P,L

...
. . .

...

HQ1,L · · · HQP,L


 , (A.2)

where each submatrix exhibits a Sylvester structure as defined in (3.8) and the subscript L

denotes the width of each channel-wise Sylvester matrix. The advantage is that due to the

Sylvester structure of the submatrices a convolution of two sequences can be written as

a matrix-vector product. Thus, a convolution of two FIR MIMO systems can be written

as the multiplication of a matrix in block-Sylvester structure (A.2) with a block matrix

containing the individual FIR filters as column vectors (A.1). This representation is used
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in (3.10) in Section 3.1.1 when determining the overall system matrix Č resulting as a

concatenation of mixing MIMO system HL and demixing MIMO system W̌.

In the following we define the block determinant and the block-adjoint operator for

block matrices exemplarily for the mixing system Ȟ by using the two representations

given in (A.1) and (A.2). It is assumed that the block matrices exhibit the same number

of rows and columns of submatrices (Q = P ), which means that they represent P × P

MIMO systems containing P 2 FIR filters of a certain length.

Block-determinant operator bdetP{·}

The block determinant bdetP{·} of a block matrix Ȟ, containing the P 2 FIR mixing

filters of length M , will be first discussed for the special case Q = P = 2. In general, the

subscript P of the block determinant operator denotes the number of rows and columns

of its argument, i.e., of the block matrix. In the case Q = P = 2, bdetP{Ȟ} is defined as

bdet2{Ȟ} = H11,Mh22 −H12,Mh21, (A.3)

where, due to the Sylvester structure of the 2M −1×M matrices H11,M and H12,M , each

matrix-vector product denotes a linear convolution resulting in an FIR filter of length

2M−1. Thus, the dimension of bdet2{Ȟ} is determined by the resulting FIR filter length

as 2M − 1 × 1. Equation (A.3) shows that the block determinant is defined analogously

to the ordinary determinant in linear algebra with the scalar multiplications replaced by

matrix-vector products which represent linear convolutions. As the convolution is com-

mutative, the order of the FIR filters in the matrix-vector products can be interchanged,

i.e, H11,Mh22 is equal to H22,Mh11 and thus, (A.3) may also be expressed as

bdet2{Ȟ} = H22,Mh11 −H21,Mh12. (A.4)

Analogously to the ordinary determinant in linear algebra (see, e.g., [Har97]), the block

determinant can be generalized straightforwardly for block matrices with Q = P and

P,Q > 2. In linear algebra determinants of square matrices larger than 2 × 2 are ex-

pressed by the cofactors of the matrix [Har97]. This procedure can be extended to block

determinants as follows: First a submatrix Ȟsub,ij is obtained by removing the subvectors

of the block matrix Ȟ in the i-th row and j-th column. The block determinant of this

(P −1)M × (P −1) submatrix bdetP−1{Ȟsub,ij} is called the block-minor of the subvector

hij . The block-cofactor of hij is then given as the block-minor multiplied by the scalar

factor (−1)i+j . Using the definition of the block-cofactors the block determinant can in

the general case be expressed as

bdetP{Ȟ} =
P∑

j=1

(−1)i+jHij,(P−1)(M−1)+1bdetP−1{Ȟsub,ij}. (A.5)
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In general, the size of bdetP{Ȟ} for Q = P and P,Q > 2 is given as P (M − 1) + 1 × 1

due to the linear convolutions performed inside the block determinant.

To illustrate the calculation of the block determinant we show the procedure exem-

plarily for the case Q = P = 3:

bdet3{Ȟ} = H11,2M−1bdet2

{[
h22 h23

h32 h33

]}
− H12,2M−1bdet2

{[
h21 h23

h31 h33

]}
+

+H13,2M−1bdet2

{[
h21 h22

h31 h32

]}

= H11,2M−1(H22,Mh33 − H23,Mh32) − H12,2M−1(H21,Mh33 − H23,Mh31) +

+H13,2M−1(H21,Mh32 −H22,Mh31) (A.6)

It should again be pointed out that in contrast to the regular determinant operator which

yields a scalar value, the block determinant is a vector containing a sum of linear convo-

lutions. This can be seen in (A.6) where each element of the sum consists of two linear

convolutions which are written as a matrix-vector product by exploiting the Sylvester

structure of the submatrices Hqp,.... As the mixing FIR filters contained in Ȟ all have the

length M , the result of the block determinant for Q = P = 3 is a column vector of length

2M − 1.

Block-adjoint operator badjP{·}

For any P × P matrix A = {aij}, the P × P matrix whose ji-th element is the cofactor

of aij is called the cofactor matrix of A. The transpose of this matrix is called the

adjoint matrix of A and is denoted by the symbol adj{A} [Har97]. For block matrices

containing P × P submatrices or subvectors we can analogously define a block-adjoint

operator badjP{·}. In the previous paragraph the block-cofactor of hij was defined as

(−1)i+jbdetP−1{Ȟsub,ij}. Using the block-cofactors the block adjoint can be defined for

the general case Q = P , P,Q ≥ 2 as

badj{Ȟ}P =




(−1)2bdetP−1{Ȟsub,11} . . . (−1)1+P bdetP−1{Ȟsub,1P}
...

. . .
...

(−1)P+1bdetP−1{Ȟsub,P1} . . . (−1)2P bdetP−1{Ȟsub,PP}




T

(A.7)

Due to the linear convolution inside the block determinant the dimensions of the block-

adjoint badjP{Ȟ} are given as P (P − 1)(M − 1)+1×P . For the special case Q = P = 2

the block-adjoint for the block matrix Ȟ is given as

badj2{Ȟ} =

[
h22 −h12

−h21 h11

]
. (A.8)
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An important property of the adjoint of a P × P matrix A is [Har97]

A adj{A} = det{A}IP×P

= Diag {det{A}, . . . , det{A}} , (A.9)

where the operator det{A} denotes the determinant of A and IP×P is the P ×P identity

matrix.

For a block matrix H(P−1)(M−1)+1 consisting of P rows each containing P Sylvester

submatrices of size (P (M −1)+1)× ((P −1)(M −1)+1), this property can be expressed

analogously as

H(P−1)(M−1)+1 badjP{Ȟ} = Bdiag
{
bdetP{Ȟ}, . . . , bdetP{Ȟ}

}
, (A.10)

which results in a block-diagonal matrix with the block determinants of Ȟ on its block-

diagonal.
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B Derivations

B.1 Derivation of the magnitude-squared coherence

function for diffuse sound fields

The definition of the magnitude-squared coherence (MSC) of a diffuse sound field was

first given in [CWB+55] but the derivation was only sketched in a few steps. The MSC of

diffuse sound fields is used in many contexts (e.g., beamforming literature [BW01]) but

a detailed derivation can hardly be found in any paper. Therefore, a complete derivation

is given in this section following the steps outlined in [Mar95].

In Fig. 2.5 it was shown that the diffuse sound field can be modeled as statistically in-

dependent sound sources which are uniformly distributed on a sphere and emit monochro-

matic plane waves. The microphone array consisting of omnidirectional microphones is

located in the spatial origin. The monochromatic plane wave (2.7) of the point source

located at the area element Ã and with frequency ω0 = 2πf0f
−1
s and amplitude p̂ = 1

generates a signal q1 at the microphone x1. After sampling with the sampling frequency

fs this signal is given for the time instant n and frequency ω0 as

q1(n, ω0, ϕ, θ) = cos(ω0n+ φ(ϕ, θ))dÃ, (B.1)

where φ(ϕ, θ) is an arbitrary phase which depends on the direction of the incident wave

and is uniformly distributed between 0 and 2π. To allow for aliasing-free reconstruction

of the magnitude squared coherence of time-discrete signals only frequencies in the range

0 ≤ ω0 < π are considered. The integration over all area elements dÃ on the sphere leads

to the microphone signal x1(n)

x1(n) =

∫

Ã

cos(ω0n + φ(ϕ, θ))dÃ (B.2)

=

∫ 2π

0

∫ π

0

cos(ω0n + φ(ϕ, θ)) sin(θ)dθdϕ. (B.3)

The signal generated from the plane wave emitted at the area element Ã at the second

microphone is given analogously to (B.1) as

q2(n, ω0, ϕ, θ) = cos

(
ω0n+ φ(ϕ, θ) − ω0fsd sin(θ)

c

)
dÃ. (B.4)
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It should be noted that compared to (B.1) a phase difference has to be considered which

depends on the distance of the microphones (see also Fig. 2.2). The second microphone

signal x2(n) is calculated analogously by integrating over the source signals from all di-

rections leading to

x2(n) =

∫

Ã

cos

(
ω0n+ φ(ϕ, θ) − ω0fsd sin(θ)

c

)
dÃ (B.5)

=

∫ 2π

0

∫ π

0

cos

(
ω0n+ φ(ϕ, θ) − ω0fsd sin(θ)

c

)
sin(θ)dθdϕ. (B.6)

The definition of the cross-correlation function of two signals x(n) and y(n) is given as

rxy(ν) = lim
N→∞

1

2N + 1

N∑

i=−N

x(i+ ν)y(i) (B.7)

and thus can determine the cross-correlation between the microphone signal x1(n) and

the signal q2(n, ω0, ϕ̄, θ̄) arising from one area element on the sphere dĀ yielding

rx1q2(ϕ̄,θ̄)(ν) = lim
N→∞

∫ 2π

0

∫ π

0

dĀ

2N + 1

N∑

n=−N

cos(ω0n + ω0ν + φ(ϕ, θ))

· cos

(
ω0n+ φ(ϕ̄, θ̄) − ω0fsd sin(θ̄)

c

)
sin(θ)dθdϕ. (B.8)

Now the trigonometric addition formula

cos(x)cos(y) =
1

2
(cos(x− y) + cos(x+ y)) (B.9)

is applied to (B.8). The model for the diffuse sound field assumes that the signals orig-

inating from different areas on the sphere exhibit a phase φ(ϕ, θ) which is uniformly

distributed from 0 to 2π. Thus, the cross-correlations between signals originating from

different areas on the sphere disappear due to the averaging over these components and

therefore, the cross-correlation is only for the coherent, i.e., for components arising from

the area Ā, not equal to zero [Kut00]. Hence, (B.8) together with (B.9) reduces to

rx1q2(ϕ̄,θ̄)(ν) =
1

2
cos

(
ω0ν +

ω0fsd sin(θ̄)

c

)
dĀ. (B.10)

To obtain the cross-correlation function of the two microphone signals x1(n) and x2(n)

we have to integrate over all area elements on the sphere leading to

rx1x2(ν) =
1

2

∫

Ã

cos

(
ω0ν +

ω0fsd sin(θ̄)

c

)
dÃ. (B.11)

The auto-correlation function of the microphone signal xp, p = 1, 2 results from (B.11) as

rxpxp
(ν) =

1

2

∫

Ã

cos (ω0ν) dÃ. (B.12)
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The power spectral densities which are necessary to determine the magnitude squared

coherence function in (2.24) are given by

Sxpxq
=

∞∑

ν=−∞
rxpxq

(ν) exp(−jων). (B.13)

The transformation relation of a cosine with frequency ω◦ is given as [OSB98]
∞∑

ν=−∞
cos(ω0ν + ψ) exp(−jων)|ω=ω0

= π

∞∑

k=−∞
(exp(jψ)δ(ω − ω0 + 2πk) + exp(−jψ)δ(ω + ω0 + 2πk))|ω=ω0

= π exp(jψ).

(B.14)

This yields an expression for the cross-power spectral density for the frequency range

0 ≤ ω < π

Sx1x2(ω) =
1

2

∫ 2π

0

∫ π

0

∞∑

ν=−∞
cos

(
ων +

ωfsd sin(θ)

c

)
exp(−jων) sin(θ)dθdϕ

=
π

2

∫ 2π

0

∫ π

0

exp
(
jωfsd sin(θ)c−1

)
sin(θ)dθdϕ

= π2

∫ π

0

exp
(
jωfsd sin(θ)c−1

)
sin(θ)dθ. (B.15)

The solution of the integral in (B.15) can be found in Section 3.915 in [GR65, p. 482] and

thus (B.15) reduces to

Sx1x2(ω) =
2π2

jωfsd c−1
sinh

(
jωfsd c

−1
)
. (B.16)

The hyperbolic sine function is defined for a complex argument as

sinh (j · a) =
eja − e−ja

2
= sin (a) , (B.17)

and therefore the cross-power spectral density (B.16) simplifies to

Sx1x2(ω) =
2π2

jωfsd c−1
sin
(
ωfsd c

−1
)
. (B.18)

The auto-power spectral density for the p-th microphone signal is given analogously to

(B.15) as

Sxpxp
(ω) = π2

∫ π

0

sin(θ)dθ

= 2π2 (B.19)

Inserting (B.18) and (B.19) in the definition of the magnitude squared coherence (2.24)

finally yields

|Γx1x2(ω)|2 =
sin2 (ωfsd c

−1)

(ωfsd c−1)2 . (B.20)
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B.2 Derivation of the gradient of the time-domain

optimization criterion

We will present in this section a detailed derivation of the gradient ∇WJ̃ (m,W) based on

unpublished previous work [BA03]. To be able to calculate the gradient we will show in

Section B.2.1 how the output signal pdf can be transformed by the block-Sylvester matrix

W so that the cost function J̃ (m,W) can be expressed in terms of W. Subsequently, in

Section B.2.2 the derivation of the gradient is given.

B.2.1 Transformation of the output signal pdf by a block-

Sylvester matrix

In general, the joint statistics of a vector y of length Ky, which is related by a reversibly

unambiguous and differentiable mapping g(·) to a vector x of length Kx given as

y = g(x), (B.21)

can be determined in terms of the joint statistics of x [Pap02]. The mapping g(x) is a

set of Ky functions g1(x), . . . , gKy(x). For the case that both vectors are of equal length,

i.e., Ky = Kx, the transformed joint pdf is given as

p̂y,Ky(y) =
p̂x,Kx(x)

|J(x)| , (B.22)

where

J(x) = det








∂g1

∂x1
. . . ∂g1

∂xKx
...

. . .
...

∂gKy

∂x1
. . .

∂gKy

∂xKx








(B.23)

is the Jacobian of the transformation g(x).

If the length of the vector y is less than the length of x, i.e., Ky < Kx, then we could

first form the joint pdf p̂yx̃,Kx(y, x̃) of the vector y and of Kx−Ky elements x̃ of the vector

x so that both multivariate pdfs p̂yx̃,Kx(y, x̃) and p̂x,Kx(x) have the same dimensionality.

The transformation is then given as

p̂yx̃,Kx(y, x̃) =
p̂x,Kx(x)

|J(x)| . (B.24)

Subsequently, the joint pdf p̂yx̃,Kx(y, x̃) has to be reduced to p̂y,Ky(y) by integration for

x̃ leading to [Pap02]

p̂y,Ky(y) =
1

|J(x)|

∫ ∞

−∞
· . . . ·

∫ ∞

−∞
p̂x,Kx(x)dx̃. (B.25)
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These well-known relationships are now used to express the PD-dimensional joint

output pdf p̂y,PD(y(n)) in terms of the 2PL-dimensional joint input pdf p̂x,2PL(x(n)).

The linear relation between the input and output signals was given in (3.33) as

y(n) = WTx(n), (B.26)

with x(n) and y(n) containing the stacked channel-wise input and output vectors given

as

x(n) = [xT
1 (n), . . . ,xT

P (n)]T, (B.27)

y(n) = [yT
1 (n), . . . ,yT

P (n)]T, (B.28)

and the 2PL× PD demixing matrix

W =




W11 · · · W1P

...
. . .

...

WP1 · · · WPP


 (B.29)

which is termed block-Sylvester since each 2L × D submatrix Wpq exhibits a Sylvester

structure. The transformation matrix W is not quadratic since D ≤ L and thus, (B.25)

has to be applied. This requires first to extend the output signal vector to a length of

2PL by appending values of the input signal vector x(n). As we are dealing with MIMO

systems, it is convenient to extend the vector y(n) in a channel-wise manner so that the

linear relation (B.26) is modified to

[yT
1 (n), x̃T

1 (n), . . . ,yT
P (n), x̃T

P (n)]T = W̃Tx(n), (B.30)

where x̃p(n) denotes the 2L−D last elements of the p-th input channel vector xp(n). The

new quadratic transformation matrix W̃ of dimensions 2PL× 2PL is given as

W̃ =




W11

[
0D×2L−D

I2L−D×2L−D

]
. . . W1P 02L×2L−D

...
. . .

...

WP1 02L×2L−D . . . WPP

[
0D×2L−D

I2L−D×2L−D

]



. (B.31)

Using the relationship for vectors of different lengths given in (B.25) leads to

p̂y,PD(y(n)) =
1

| det{W̃}|

∫ ∞

−∞
· · ·
∫ ∞

−∞
p̂x,2PL(x(n))dx̃1 · . . . · dx̃P . (B.32)

Defining the column vector x̆(n) of length PD obtained by removing the last 2L − D

values of x(n) in each channel, we can write (B.32) as

p̂y,PD(y(n)) =
1

| det{W̃}|
p̂x,PD(x̆(n)). (B.33)
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This equation can be further simplified if we use the fact that the value of a determinant

does not change if any rows or columns are exchanged. Therefore, the matrix W̃ can be

reordered to result in a block-triangular matrix as shown in Fig. B.1. It is known that

D 2D

2D2L

2L−D

2L−D

2L−D

W11 W12

W21 W22

0

0

00

0

0

0

Sylvester matrices Wpq

Identity matrix I(2L−D)×(2L−D)

windowed Sylvester matrices
resulting in D ×D submatrices

Figure B.1: Illustration of W̃ defined in (B.31) shown for the case P = 2 and subsequent

reordering of the columns and rows of W̃ for simplified calculation of the determinant.

the determinant of a block-triangular matrix can be calculated as [Har97]

det








A11 0 . . . 0

A21 A22 0
...

...
. . .

AP1 AP2 . . . APP








= det{A11} · det{A22} · . . . · det{APP}. (B.34)

Thus, the determinant of the 2PL× 2PL matrix W̃ can be replaced by the determinant

of the PD × PD matrix (upper left corner of the reordered matrix in the illustration

in Fig. B.1). This PD × PD matrix can be obtained by constraining the size of the

2PL× PD block-Sylvester matrix W. This can be done by multiplying each channel of

W with a window matrix defined in (3.57) as

W1D0
2L×D =

[
ID×D, 0D×(2L−D)

]T
. (B.35)

A combination of all channels leads to a window matrix defined in (3.56) as

W1D0
2PL×PD = Bdiag

{
W1D0

2L×D, . . . ,W
1D0
2L×D

}
. (B.36)
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Using this window matrix, (B.33) can finally be expressed as

p̂y,PD(y(n)) =
1∣∣∣det

{(
W1D0

2PL×PD

)T
W
}∣∣∣
p̂x,PD(x̆(n)). (B.37)

B.2.2 Derivation of the gradient update

Using the result (B.37) of the previous section we can write the optimization criterion

J̃ (i,W) given in (3.43) as

J̃ = − 1

N

N−1∑

j=0

{
P∑

q=1

log
(
p̂yq,D(yq(iL+ j))

)
+ log

(∣∣∣det
{(

W1D0
2PL×PD

)T
W
}∣∣∣
)}

+ const.

(B.38)

where the constant corresponds to the estimate of the entropy of the input signals

log(p̂x,PD(x̆)). This quantity does not depend on the demixing system W and there-

fore, does not have to be taken into account for the optimization. To obtain the gradient

∇WJ̃ , we take the derivative of (B.38) with respect to the Sylvester matrix W. The

derivative of the first term in the braces is obtained by applying the chain rule, rather

than transforming the pdfs. The derivative can be expressed element-wise with respect to

[Wrs]kj where the indices rs denote the channel-wise submatrix Wrs and [·]kj are the ele-

ment indices within the submatrices. Then, the chain rule can be expressed element-wise

as

−
∑

q

∂ log p̂yq,D(yq)

∂ [Wrs]kj

= −
∑

q

∂ log p̂yq,D(yq)

∂ [yq]g
·
∂ [yq]g
∂ [Wrs]kj

. (B.39)

Writing the linear relation (B.26) between input and output signals element-wise yields

[yq]g =
∑

p,h

[Wpq]hg [xp]h . (B.40)

Inserting (B.40) into (B.39) leads to

−
∑

q

∂ log p̂yq,D(yq)

∂ [Wrs]kj

= −
∑

q

∂ log p̂yq,D(yq)

∂ [yq]g
·
∑

p,h

∂

∂ [Wrs]kj

[Wpq]hg [xp]h

= −
∑

q

∂ log p̂yq,D(yq)

∂ [yq]g
·
∑

p,h

[xp]h δr,pδs,qδh,kδg,j

= −∂ log p̂ys,D(ys)

∂ [ys]j
[xr]k , (B.41)

where the Kronecker delta δa,b was defined in (3.49). Combining (B.41) for all elements

r, s ∈ {1, . . . , P}, j ∈ {1, . . . , D}, k ∈ {1, . . . , 2L}, and using matrix notation allows to

finally write for the derivative of the first term

−
∑

q

log
(
p̂yq,D(yq)

)

∂W
= x · ΦT(y), (B.42)
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where Φ(y) denotes a PD × 1 column vector given as the concatenation of the score

functions of each channel yielding

Φ(y) =

[(
−∂ log p̂y1,D(y1)

∂y1

)T

, . . . ,

(
−∂ log p̂yP ,D(yP )

∂yP

)T
]T

=




−

∂p̂y1,D(y1)

∂y1

p̂y1,D(y1)




T

, . . . ,


−

∂p̂yP ,D(yP )

∂yP

p̂yP ,D(yP )




T


T

. (B.43)

Analogously, the derivative of the second term in the braces of (B.38) can be expressed

by the chain rule as

− ∂

∂W
log
(∣∣∣det

{(
W1D0

2PL×PD

)T
W
}∣∣∣
)

= − 1∣∣∣det
{(

W1D0
2PL×PD

)T
W
}∣∣∣

·

·
∂
∣∣∣det

{(
W1D0

2PL×PD

)T
W
}∣∣∣

∂ det
{(

W1D0
2PL×PD

)T
W
} ·

∂ det
{(

W1D0
2PL×PD

)T
W
}

∂W
.

(B.44)

The derivative of the absolute value is given by the signum function sign(·)

∂
∣∣∣det

{(
W1D0

2PL×PD

)T
W
}∣∣∣

∂ det
{(

W1D0
2PL×PD

)T
W
} = sign

(
det
{(

W1D0
2PL×PD

)T
W
})

, (B.45)

with the signum function sign(x) defined as

sign(x) =

{
0 for x = 0
x
|x| for x 6= 0

(B.46)

The remaining derivative in (B.44) can be computed by using the following matrix deriva-

tive (see e.g. [CA02]) given as

∂AXB

∂X
= det {AXB}AT(BTXTAT)−1BT. (B.47)

Thus, we obtain

∂ det
{(

W1D0
2PL×PD

)T
W
}

∂W
= det

{(
W1D0

2PL×PD

)T
W
}

W1D0
2PL×PD

(
WTW1D0

2PL×PD

)−1
.

(B.48)

Inserting (B.45) and (B.48) into (B.44) and noting that sign(x) · x = |x| we finally obtain

the derivative of the second term

− ∂

∂W
log
(∣∣∣det

{(
W1D0

2PL×PD

)T
W
}∣∣∣
)

= −W1D0
2PL×PD

(
WTW1D0

2PL×PD

)−1
. (B.49)
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By using (B.42) and (B.49) we can express the gradient of the optimization criterion

(B.38) with respect to the Sylvester matrix W as

∇WJ̃ (i,W) =
1

N

N−1∑

j=0

{
x(iL+ j)ΦT(y(iL+ j)) −W1D0

2LP×DP

(
WTW1D0

2LP×DP

)−1
}
.

(B.50)

B.3 Derivation of the block-online update

A numerical offline optimization for W̌ is given for any choice of β(i,m) by

W̌ℓ(m) = W̌ℓ−1(m) − µ∆W̌ℓ(m). (B.51)

The update ∆W̌ℓ(m) is for gradient adaptation set to ∇W̌J (m,Wℓ−1(m)) and for nat-

ural gradient adaptation to ∇NG
W̌

J (m,Wℓ−1(m)). As in this thesis only natural gradient

algorithms are considered, we choose only natural gradient adaptation leading to

W̌ℓ(m) = W̌ℓ−1(m) − µ∇NG
W̌

J (m,Wℓ−1(m))

= W̌ℓ−1(m) − µ

∞∑

i=0

β(i,m)∇NG
W̌

J̃ (i,Wℓ−1(i)) (B.52)

From (B.52) a recursive block-online algorithm can be derived by inserting the block-

online weighting function given in (3.244) as

β(i,m) =
1 − λ

K

m∑

m′=0

λm−m′

ǫm′K,m′K+K−1(i),

yielding

W̌ℓ(m) = W̌ℓ−1(m) − µ
1 − λ

K

∞∑

i=0

m∑

m′=0

λm−m′

ǫm′K,m′K+K−1(i)∇NG
W̌

J̃ (i,Wℓ−1(i))

= W̌ℓ−1(m) − µ(1 − λ)

m∑

m′=0

λm−m′ 1

K

m′K+K−1∑

i=m′K

∇NG
W̌

J̃ (i,Wℓ−1(i))

︸ ︷︷ ︸
=:∇NG

W̌
J̃K(m′,Wℓ−1(m′))

. (B.53)

The quantity ∇NG
W̌

J̃K(m′,Wℓ−1(m′)) contains an average over K update terms

∇NG
W̌

J̃ (i,Wℓ−1(i)). This simultaneous optimization for K blocks allows to exploit the

nonstationarity of the source signals as for each block the source statistics change and

thus new conditions are generated. The iterative offline update (B.51) can also be ex-

pressed in an explicit manner

W̌ℓ(m) = W̌0(m) − µ

ℓmax∑

k=1

∆W̌k(m). (B.54)
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Expressing (B.53) analogously in an explicit manner leads to

W̌ℓ(m) = W̌0(m) − µ

ℓmax∑

k=1

(1 − λ)

m∑

m′=0

λm−m′∇NG
W̌

J̃K(m′,Wk−1(m′)). (B.55)

It can be seen in (B.55) that for every block m a processing of all the data up to the

block m is required. Analogous to the derivation of the RLS algorithm from the Newton-

Raphson method in [SS89, p. 329] and [BBGK06] we need to introduce an approximation

to produce an implementable recursive algorithm. Thus, analogously to [SS89, BBGK06]

it is assumed that the Sylvester matrix Wk−1(m′ − 1), generated from the filter weights

contained in W̌k−1(m′ − 1), is the minimum point of ∇NG
W̌

JK(m′ − 1,Wk−1(m′ − 1))

allowing the following approximation:

∇NG
W̌

JK(m′ − 1,Wk−1(m′ − 1)) = 0 (B.56)

Using (B.56) we can reduce (B.55) to

W̌ℓ(m) = W̌0(m) − µ

ℓmax∑

k=1

(1 − λ)∇NG
W̌

JK(m,Wk−1(m)). (B.57)

Adding at the right-hand side of (B.57) the term λW̌0(m) − λW̌0(m) = 0 yields

W̌ℓ(m) = λW̌0(m) + (1 − λ)

(
W̌0(m) − µ

ℓmax∑

k=1

∇NG
W̌

JK(m,Wk−1(m))

)
. (B.58)

To obtain a block-online procedure allowing a combination of offline and online update, the

algorithm will increase the block index m every ℓmax-th iteration by one block. Therefore,

we define W̌(m) := W̌ℓ(m), W̌(m − 1) := W̌0(m). Additionally, the offline update

∆W̌(m) for the m-th block is defined as

∆W̌(m) := W̌0(m) − µ

ℓmax∑

k=1

∇NG
W̌

JK(m,Wk−1(m))

= W̌(m− 1) − µ

ℓmax∑

k=1

∇NG
W̌

JK(m,Wk−1(m)). (B.59)

With these definitions (B.58) can be expressed as a recursive online update

W̌(m) = λW̌(m− 1) + (1 − λ)∆W̌(m). (B.60)

The offline update (B.59) containing ℓmax iterations can also be written recursively for

ℓ = 1, . . . , ℓmax as
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W̌ℓ(m) = W̌ℓ−1(m) − µ∇NG
W̌

JK(m,Wℓ−1(m))

= W̌ℓ−1(m) − µ
1

K

mK+K−1∑

i=mK

∇NG
W̌

J̃ (i,Wℓ−1(i)). (B.61)

Thus, the final block-online procedure consists of an online part given by the recursive

formulation (B.60) and an offline part given by the iterative procedure (B.61) which is

computed for ℓ = 1, . . . , ℓmax.
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C Acoustic Environments Used in

the Experiments

In this appendix we will describe the acoustic environments used for the evaluations pre-

sented in this thesis. The BSS algorithms derived from the generic framework presented

in Chapter 3 were evaluated in several rooms with varying reverberation time. First,

in Section C.1 the low reverberation chamber used for examining the different BSS al-

gorithms is shown. Subsequently, more realistic environments such as a living room or

lecture room scenario (Sections C.2 and C.3) are introduced. Additionally, setups with

different types of background noise are needed to evaluate the noisy BSS algorithms pre-

sented in Chapter 4. Babble noise was simulated by a circular loudspeaker array placed

inside the living room scenario (Section C.2). Moreover, recordings inside a car have been

carried out to address the case of car noise (Section C.4).

C.1 Low reverberation chamber

In Sections 3.6.2 - 3.6.4 different aspects of the generic SOS natural gradient algorithm

(3.112) were examined. Due to the high complexity of the generic algorithm a low re-

verberant room was desired to allow for a short demixing filter length and thus, keep

the complexity at a moderate level. For this reason, the low reverberation chamber de-

picted in Fig. C.1 was chosen. The reverberation time of this room was determined from

the energy decay curve of a measured impulse response according to Section 2.2.2 and is

given as T60 = 50ms. An omnidirectional microphone pair with a spacing of d = 20 cm

has been used for the measurements. Four different source positions with the angles

θ = −70◦, 45◦, 70◦, 90◦ have been simulated by loudspeakers and the acoustic impulse

responses between sources and microphones have been measured. The source-sensor dis-

tance was chosen to 1m.

C.2 Living room

A more realistic scenario is given by the room shown in Fig. C.2. This room is used as a

multimedia room at the Chair of Multimedia Communications and Signal Processing at

the University of Erlangen-Nuremberg. The dimensions are similar to a typical living room
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Figure C.1: Setup for the evaluations in the low reverberation chamber (lengths/distances in

centimeters).

and due to the retractable curtains the reverberation time can be modified. In this thesis

we use two conditions: all curtains closed and all curtains opened. For the former one

the reverberation time was determined to be T60 ≈ 200ms and by opening the curtains,

thereby exposing concrete walls and windows leading to hard reflections, the reverberation

time increases to T60 ≈ 400ms. An omnidirectional microphone pair with a spacing of

20 cm was placed in the center of a circular loudspeaker array with a radius of 1.5m. The

loudspeaker array comprises 48 loudspeakers and is usually used for wavefield synthesis

research [STKR04]. In this thesis the loudspeaker array is used for the simulation of diffuse

speech babble noise to evaluate the noisy BSS algorithms in Chapter 4. Therefore, the

impulse responses from each loudspeaker to each microphone have been measured for both

setups: curtains opened and closed. For the simulation of diffuse speech babble noise only

every third loudspeaker is used as already 16 loudspeakers emitting 16 different speech

signals produce a magnitude-squared coherence (MSC) function which is characteristic for

a diffuse sound field. Moreover, the impulse responses to different point source positions

have been measured for various angles θ = −20◦, 0◦, 20◦, 40◦, 80◦, at a distance of 1m and

in the case of θ = ±20◦ additionally for the source-sensor distances 2m and 4m.
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Figure C.2: Setup for the evaluations in a living room scenario (lengths/distances in centimeters).

C.3 Lecture room

To examine the effect of reverberation on the BSS algorithms in Section 3.6.6 also a

very reverberant lecture room depicted in Fig. C.3 was used. The room exhibits a large

reverberation time of T60 ≈ 850ms. An omnidirectional microphone pair with a spacing

of d = 20 cm has been used for the measurements. The impulse responses between the

sensors and the point source positions have been measured for the angles θ = ±20◦ at a

distance of 1m.
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C.4 Car environment

To evaluate the performance of BSS algorithms also in a car environment, a microphone

pair with two omnidirectional microphones with a spacing of 20 cm was mounted at the

interior mirror. The acoustic impulse responses between the sources and the sensors have

been measured for the driver and co-driver positions. The reverberation time for these

positions was determined as T60 = 50ms. Additionally, car background noise was recorded

while driving through a suburban area at a speed of approximately 100 km/h.
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D Real-Time Implementation of

Broadband BSS Algorithms

The work presented in this thesis has also led to a real-time implementation of two efficient

broadband BSS algorithms introduced in Section 3.3 and evaluated experimentally in

Section 3.6.5. Both real-time algorithms are based on second-order statistics and differ

by the type of normalization. In the following, we will briefly describe each algorithm and

give a summary using pseudo-code. The algorithms were implemented on a conventional

PC system using the block-online adaptation procedure. In addition to the pseudo code an

estimate of the computational complexity in terms of the number of arithmetic operations

per sample will be given for different parameter settings.

D.1 BSS algorithm using a normalization based on

diagonal matrices in the time domain

Algorithm summary

To achieve a fast convergence, both real-time algorithms have been implemented using the

block-online adaptation procedure presented in in Section 3.5.3. This approach consists

of an online part combined with an offline part. The online processing allows for a

continuous processing of new samples and returns the current demixing filter coefficients

W̌(m) according to

W̌(m) = λW̌(m− 1) + (1 − λ)W̌ℓmax(m), (D.1)

where m denotes the block index and λ is the forgetting factor. The variable W̌ℓmax

denotes the demixing filter weights obtained from the offline part after ℓmax iterations of

the update rule

W̌ℓ(m) = W̌ℓ−1(m) − µ
1

K

mK+K−1∑

i=mK

∇NG
W̌

J̃ (i,Wℓ−1(i)). (D.2)

Both BSS algorithms are based on second-order statistics using the natural gradient

∇NG
W̌

J̃ (i,Wℓ−1(i)) = SCR
{
Wℓ−1(i)

(
R̃yy(i) − bdiag R̃yy(i)

)
bdiag−1 R̃yy(i)

}
, (D.3)
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which was derived in Section 3.3.7.2. For increased versatility, the Sylvester constraint

SCR is applied as it also allows for initializations leading to acausal filter taps as discussed

in Section 3.3.6. The cross-correlation matrices are estimated using the computationally

efficient correlation method given as

R̃yy(i) =
1

N
Ỹ(i)ỸH(i), (D.4)

with Ỹ(i) defined in (3.82). By using the correlation method, all submatrices R̃ypyq
(i)

exhibit Toeplitz structure

R̃ypyq
(i) =




r̃ypyq
(i, 0) · · · r̃ypyq

(i, D − 1)

r̃ypyq
(i,−1)

. . . r̃ypyq
(i, D − 2)

...
. . .

...

r̃ypyq
(i,−D + 1) · · · r̃ypyq

(i, 0)



, (D.5)

where the elements are defined as

r̃ypyq
(i, ṽ) =





1

N

iL+N−ṽ−1∑

n=iL

yp(n + ṽ)y∗q (n) for ṽ ≥ 0

1

N

iL+N−1∑

n=iL−ṽ

yp(n+ ṽ)y∗q(n) for ṽ < 0

, (D.6)

and depend on the relative time-lag ṽ ∈ {−D + 1, . . . , D − 1} of the signals yp(n) and

yq(n).

The complexity of the inverses of the autocorrelation matrices R̃yqyq
, q = 1, . . . , P

contained in bdiag−1 R̃yy in (D.3) prohibits a real-time implementation. Therefore, in

Chapter 3 different approximations of the normalization were proposed. One possibility

is to approximate the auto-correlation matrices by diagonal matrices, i.e., by the output

signal variances σ2
yq

and additionally ensure the robustness by adding a regularization

parameter δyq
leading to

R̃yqyq
(i) =

1

N

iL+N−1∑

n=iL

y2
q(n)I + δyq

= (σ2
yq

(i) + δyq
)I. (D.7)

The algorithm (D.3) with the normalization approximated by (D.7) together with the

block-online update rule (D.1), (D.2) constitutes the first real-time algorithm. An exper-

imental evaluation of this algorithm can be found in Section 3.6.5 where it was denoted

as algorithm (C) in Table 3.1. The pseudo code of the implementation of this real-time

algorithm is briefly summarized in Table D.1.
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Table D.1: Pseudo code of the efficient block-online broadband BSS algorithm implementation

approximating the normalization as a diagonal time-domain matrix. The pseudo code is ex-

emplarily shown for the update ∆w11(m) for the case P = Q = 2 and the memory length

D = L.

Online part:

1. Get KL + N new samples xp(mKL/α), . . . , xp((m + 1)KL/α + N − 1) of the

sensors xp, p = 1, 2 for each block m = 0, 1, 2, . . . and with the overlap factor α

Offline part:

Compute for each iteration ℓ = 1, . . . , ℓmax:

2. Compute output signals yq(mKL), ..., yq((m + 1)KL + N − L − 1), q = 1, 2

by convolving xp with filter weights W̌ℓ−1 from previous iteration

3. Generate K blocks of N samples [yq(iL), . . . , yq(iL + N − 1)] with offline

block index i = mK, . . . , mK + K − 1 to exploit nonstationarity

Compute for each block i = mK, . . . , mK + K − 1:

4. Calculate the signal energy of each block m

σ2
y1

(i) = r̃y1y1
(i, 0) =

∑iL+N−1
n=iL y2

1(n)

5. Compute cross-correlation matrix R̃y2y1
(i) by r̃y2y1

(i, ṽ) for

ṽ = −L + 1, . . . , L − 1 according to (D.6)

6. Normalize by elementwise division with regularized signal energy

r̃y2y1
(i, ṽ)/(σ2

y1
(i) + δy1

) for ṽ = −L + 1, . . . , L − 1

7. Compute the matrix product Wℓ−1
12 (m)

R̃y2y1
(i)

σ2
y1

(i)+δy1

as a convolution

according to Fig. 3.4b (Sylvester constraint SCR). Thus, the natural

gradient w.r.t. each filter weight wℓ
11,κ, κ = 0, . . . , L − 1 is calculated as:

∇NG
w11,κ

J̃ (i,Wℓ−1(i)) =
∑L−1

n=0 wℓ−1
12,n(m)r̃y2y1

(i, n − κ)/(σ2
y1

(i) + δy1
)

8. Compute Steps 4-7 analogously for the other channels

9. Compute update equation (D.2) for the offline part:

W̌ℓ(m) = W̌ℓ−1(m) − µ 1
K

∑mK+K−1
i=mK ∇NG

W̌
J̃ (i,Wℓ−1(i))

Online part:

10. Compute the recursive update (D.1) of the online part yielding the demixing

filter W̌(m) used for separation:

W̌(m) = λW̌(m − 1) + (1 − λ)W̌ℓmax(m)

11. Use the demixing filters W̌(m) as the initial filters for the offline part

W̌0(m + 1) = W̌(m)
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Computational complexity

In the following we discuss the computational complexity of the algorithm summarized

in Table D.1 in terms of arithmetic operations, i.e., the number of real multiplications

and real additions. Divisions are usually counted as multiplications, assuming inverted

constants and subtraction is addition by negated number. Thereby, each complex multipli-

cation is realized by 4 real multiplications and 2 real additions and each complex addition

is realized by 2 real additions. Moreover, the discrete Fourier transform of length R is

computed using the FFT routine devised by [SJHB87] which requires 2R log2R− 3R
2
− 4

operations.

Table D.2 shows the computational complexity and in Fig. D.1 the complexity is il-

lustrated as a function of filter length L and for P = 2, 3, 4 source and sensor signals.

Additionally, the dependency of the complexity on the number K of simultaneously pro-

Table D.2: Computational complexity for the block-online broadband SOS BSS algorithm im-

plementation using the normalization based on diagonal matrices in the time domain.

Arithmetic OPs for K blocks and P channels

Compute offline part for each iteration ℓ:

Perform filtering of xp with Wℓ−1:

FFT of demixing filter with FFT length KL + N P 2(2(KL + N) log2[KL + N ] − 3(KL + N)/2 − 4)

FFT of sensor signals xp P (2(KL + N) log2[KL + N ] − 3(KL + N)/2 − 4)

Compute convolution in DFT domain (4P 2 + P )(KL + N + 2)

IFFT to obtain time-domain signals yq P (2(KL + N) log2[KL + N ] − 3(KL + N)/2 − 4)

Compute for each block i = 1, . . . , K:

Calculate scaling factor σ2
yq

(i) after (D.7) P (N + (K − 1)(4L + 2))

Calculate cross-correlations r̃ypyq (i, ṽ)

for ṽ = −L + 1, . . . , L − 1:

FFT of output signals yq with length 2N PK(4N log2[2N ] − 3N − 4)

Compute cross-power spectral densities 3(P 2 − P )K(N + 1)

IFFT to obtain cross-correlations (P 2 − P )K(4N log2[2N ] − 3N − 4)/2

normalize r̃ypyq (i, ṽ) using σ2
yq

(i) 2(P 2 − P )KL

Calculate matrix product as convolution:

FFT of demixing filters wpq,κ of length 2L P 2(4L log2[2L] − 3L − 4)

FFT of cross-correlations of length 2L (P 2 − P )K(4L log2[2L] − 3L − 4)/2

Compute convolution in DFT domain P 2(8P − 10)K(L + 1)

IFFT P 2K(4L log2[2L] − 3L − 4)

offline update rule (D.2) 2P 2L + P 2(K − 1)L

online update rule (D.1) 3P 2L

cessed blocks to exploit the nonstationarity is illustrated by comparing K = 4 (solid)

to K = 8 (dashed). The overlap factor of the online part (Step 1 in Table D.1) has

been chosen as α = K to ensure a blockshift of L samples independent of the choice of

K. The number of iterations and the block length have been chosen analogously to the

experiments in Section 3.6.5 as ℓmax = 5, N = 2L. The curves illustrate that, essentially,

the complexity depends logarithmically on the filter length L, linearly on the number of

blocks K, but quadratically on the number of channels P . For comparison it should be



D.2. BSS algorithm using a narrowband normalization 209

noted that the well-known (single-channel) NLMS algorithm used in supervised adaptive

filtering [Hay02] has a complexity of 4L + 7 arithmetic operations. Thus, e.g., the com-

plexity of the two-channel BSS algorithm for K = 4 and L ≈ 2000 corresponds, according

to Fig. D.1 approximately to that of a single-channel NLMS algorithm for the same filter

length.
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Figure D.1: Computational complexity for various filter lengths L and number of channels (P =

2, 3, 4) for simultaneous processing of K = 4 (solid) and K = 8 (dashed) blocks, respectively.

D.2 BSS algorithm using a narrowband normaliza-

tion

Algorithm summary

In Section 3.4.3.1 a more sophisticated narrowband normalization was presented which

was derived by expressing the BSS algorithms equivalently in the DFT domain and sub-

sequently introducing suitable approximations. This allowed to express the inverse of the

Toeplitz matrix R̃yqyq
as an inverse of a circulant matrix CỸqỸq

leading to

R̃−1
yqyq

(i) ≈ N · W01D

D×RC−1

ỸqỸq
W01D

R×D, (D.8)
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with the circulant given as

CỸqỸq
(i) = F−1

R Ỹq(i)Ỹ
H

q (i)FR. (D.9)

The diagonal matrix Ỹp contains the DFT-domain values of the BSS output signal samples

yq and is defined as

Ỹp(i) = Diag
{
FR[0, . . . , 0, yp(iL+N − 1), . . . , yq(iL), 0, . . . , 0]T

}
. (D.10)

As was shown in Section 3.4.3.1, to obtain improved results in realistic environments a

regularization term should be added to CỸqỸq
before inversion leading to

C̆ỸpỸq
(i) = F−1

R

(
ρỸq(i)Ỹ

H

q (i) + (1 − ρ)σ2
yq

(i)I
)

FR. (D.11)

Inserting (D.11) in (D.8) finally yields the narrowband normalization

R̃−1
yqyq

(i) ≈ N · W01D

D×RF−1
R

(
ρỸq(i)Ỹ

H

q (i) + (1 − ρ)σ2
yq

(i)I
)−1

FRW01D

R×D. (D.12)

Thus, the second real-time implementation is given by (D.3) together with the normaliza-

tion by (D.12) and the block-online update rule (D.1), (D.2). This algorithm corresponds

to algorithm (B) in Table 3.1 in Section 3.6.5 where it was experimentally evaluated. The

pseudo code of the algorithm is summarized in Table D.3.

Computational complexity

Compared to the previous algorithm, the complexity is increased due to several DFT

and IDFT operations appearing due to the application of the improved normalization as

summarized in Step 5-10 of Table D.3. The computational complexity of the algorithm

using the narrowband normalization is described in Table D.4. Moreover, we illustrate

again the dependency of the complexity on the number K of simultaneously processed

blocks in Fig. D.2 by comparing K = 4 (solid) to K = 8 (dashed). The parameters

α = K, ℓmax = 5, and N = 2L have been chosen analogously to the previous section. The

curves illustrate that, similar to the first real-time algorithm, the complexity depends

again logarithmically on the filter length L, linearly on the number of blocks K, but

quadratically on the number of channels P .
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Table D.3: Pseudo code of the efficient block-online broadband BSS algorithm implementa-

tion using a narrowband normalization. The pseudo code is exemplarily shown for the update

∆w11(m) for the case P = Q = 2 and the memory length D = L.
Online part:

1. Get KL + N new samples xp(mKL/α), . . . , xp((m + 1)KL/α + N − 1) of the

sensors xp, p = 1, 2 for each block m = 0, 1, 2, . . . and with the overlap factor α

Offline part:

Compute for each iteration ℓ = 1, . . . , ℓmax:

2. Compute output signals yq(mKL), ..., yq((m + 1)KL + N − L − 1), q = 1, 2

by convolving xp with filter weights W̌ℓ−1 from previous iteration

3. Generate K blocks of N samples [yq(iL), . . . , yq(iL + N − 1)] with offline

block index i = mK, . . . , mK + K − 1 to exploit nonstationarity

Compute for each block i = mK, . . . , mK + K − 1:

4. Compute cross-correlation matrix R̃y2y1
(i) by r̃y2y1

(i, ṽ) for

ṽ = −L + 1, . . . , L − 1 according to (D.6)

5. Calculate the values on the diagonal of Ỹ1 by computing the DFT of

length R of the i-th output signal block of length N of Step 3

6. Calculate the signal energy of each block i as σ2
y1

(i) =
∑iL+N−1

n=iL y2
1(n)

7. Calculate Ỹ
H

1 Ỹ1 by scalar multiplication in each DFT bin and

perform narrowband regularization according to (D.11) by using the

signal energy σ2
y1

: Sy1y1
(i) = ρỸ1(i)Ỹ

H

1 (i) + (1 − ρ)σ2
y1

(i)I

8. Perform scalar inversion of the DFT-domain values on the main

diagonal of Sy1y1
(i) as given in (D.12) and apply the inverse DFT to the

resulting vector. As the inverse of a circulant yields again a circulant, the

vector represents the first column of the circulant matrix C−1

Ỹ1Ỹ1

(i)

9. In (D.8) the circulant matrix C−1

Ỹ1Ỹ1

(i) is constrained to yield the

approximation of the inverse of the Toeplitz matrix R̃−1
y1y1

(i). Matrix

R̃−1
y1y1

(i) can be generated by picking the first L and last L − 1 values

of the resulting vector from Step 8

10. Compute the matrix product R̃y2y1
(i)R̃−1

y1y1
(i) in (D.3) by fast

convolution techniques exploiting the Toeplitz structure of both matrices.

The result Ay2y1
(i) of the matrix product may be approximated due to

complexity reasons by calculating only the entries [a(i, 0), . . . , a(i,−L + 1)]

in the first column and the entries [a(i, 0), . . . , a(i, L − 1)] in the first

row and generate a Toeplitz structure from these values.

11. Compute the matrix product Wℓ−1
12 (m)Ay2y1

(i) as a convolution using

Sylvester constraint SCR. Thus, the natural gradient w.r.t. each filter

weight wℓ
11,κ, κ = 0, . . . , L − 1 is calculated as:

∇NG
w11,κ

J̃ (i,Wℓ−1(i)) =
∑L−1

n=0 wℓ−1
12,n(m)a(i, n − κ)

14. Compute Steps 4-11 analogously for the other channels

12. Compute update equation (D.2) for the offline part:

W̌ℓ(m) = W̌ℓ−1(m) − µ 1
K

∑mK+K−1
i=mK ∇NG

W̌
J̃ (i,Wℓ−1(i))

Online part:

13. Compute the recursive update (D.1) of the online part yielding the demixing

filter W̌(m) used for separation: W̌(m) = λW̌(m − 1) + (1 − λ)W̌ℓmax(m)

14. Use demixing filters W̌(m) as initial filters for offline part: W̌0(m + 1) = W̌(m)
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Table D.4: Computational complexity for the block-online broadband SOS BSS algorithm im-

plementation using the narrowband normalization.

Arithmetic OPs for K blocks and P channels

Compute offline part for each iteration ℓ:

Perform filtering of xp with Wℓ−1:

FFT of demixing filter with FFT length KL + N P 2(2(KL + N) log2[KL + N ] − 3(KL + N)/2 − 4)

FFT of sensor signals xp P (2(KL + N) log2[KL + N ] − 3(KL + N)/2 − 4)

Compute convolution in DFT domain (4P 2 + P )(KL + N + 2)

IFFT to obtain time-domain signals yq P (2(KL + N) log2[KL + N ] − 3(KL + N)/2 − 4)

Compute for each block i = 1, . . . , K:

Calculate cross-correlations r̃ypyq (i, ṽ)

for ṽ = −L + 1, . . . , L − 1:

FFT of output signals yq with length 2N PK(4N log2[2N ] − 3N − 4)

Compute cross-power spectral densities 3(P 2 − P )K(N + 1)

IFFT to obtain cross-correlations (P 2 − P )K(4N log2[2N ] − 3N − 4)/2

Compute normalization term:

Compute DFT values on the diagonal of Ỹq PK(2R log2[R] − 3R/2 − 4)

Calculate regularization term σ2
yq

(i) P (N + (K − 1)(4L + 2))

Narrowband computations in first R
2

+ 1 DFT bins:

Calculate ỸqỸ
H

q 3PK(R/2 + 1)

Compute regularization 3PK(R/2 + 1)

Compute scalar inversion PK(R/2 + 1)

Compute IFFT of length R PK(2R log2[R] − 3/2R − 4)

Compute normalization by fast convolution:

FFT of cross-correlations with FFT length R (P 2 − P )K(2R log2[R] − 3R/2 − 4)/2

FFT of normalization term with FFT length R PK(2R log2[R] − 3R/2 − 4)

Compute convolution in DFT domain 6(P 2 − P )K(R/2 + 1)

IFFT to obtain normalized cross-correlation values (P 2 − P )K(2R log2[R] − 3R/2 − 4)

Calculate matrix product of Wℓ−1
pq (m) with

normalized cross-correlation as convolution:

FFT of demixing filters wpq,κ of length 2L P 2(4L log2[2L] − 3L − 4)

FFT of [a(i,−L + 1), . . . , a(i, L + 1)] of length 2L (P 2 − P )K(4L log2[2L] − 3L − 4)/2

Compute convolution in DFT domain P 2(8P − 10)K(L + 1)

IFFT P 2K(4L log2[2L] − 3L − 4)

offline update rule (D.2) 2P 2L + P 2(K − 1)L

online update rule (D.1) 3P 2L
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2, 3, 4) for simultaneous processing of K = 4 (solid) and K = 8 (dashed) blocks, respectively.
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E Notations

E.1 Conventions

In this thesis we use lower case boldface for vectors describing the concatenation of several

elements and upper case boldface denotes matrices. Vectors denoting directional quan-

tities are instead denoted by an arrow. Underlined quantities (·) represent vectors or

matrices in the DFT domain. An underlined quantity with a superscript (·)(ν) denotes

the ν-th DFT bin of the corresponding DFT-domain quantity (·) containing all DFT bins.

E.2 Abbreviations and Acronyms

ANC adaptive noise canceller

BSS blind source separation

CASA computational auditory scene analysis

DFT discrete Fourier transform

DTFT discrete-time Fourier transform

FDAF frequency-domain adaptive filtering

FFT fast Fourier transform

FIR finite impulse response

GSC generalized sidelobe canceller

HOS higher-order statistics

IDFT inverse discrete Fourier transform

i.i.d. independent identically distributed

IIR infinite impulse response

ITU International Telecommunication Union

LMS least-mean-squares

MCBD multichannel blind deconvolution

MCBPD multichannel blind partial deconvolution

ME maximum entropy

MIMO multiple-input multiple-output

ML maximum likelihood

MMI minimum mutual information

MMSE minimum mean-squared error
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MSC magnitude-squared coherence

NLMS normalized least-mean-squares

PCA principle component analysis

pdf probability density function

RLS recursive least-squares

SD spectral distance

SIR signal-to-interference ratio

SIRP spherically invariant random process

SNR signal-to-noise ratio

SRR signal-to-reverberation ratio

SOS second-order statistics

TRINICON triple-N-independent component analysis for convolutive mixtures

E.3 Mathematical Symbols

Operators

∗ convolution operator

(·)T transpose of (·)
(·)∗ conjugate complex of (·)
(·)H hermitian, i.e., conjugate transpose of (·)
(·)−1 inverse operation of (·)
| · | absolute value of (·) (scalar)

‖ · ‖F Frobenius (or Euclidean) norm of (·) (vector or matrix)

E{·} expectation operator

Ê{·} estimate of the expectation by a time-average

∇W gradient with respect to W

∇NG
W natural gradient with respect to W

∇2 Laplacian operator

∂/∂x partial derivative with respect to x

δi,j Kronecker delta

tr{·} trace of a matrix, i.e., sum of elements on main diagonal

rank{·} rank of the argument

diag{A} operator setting all off-diagonal values of matrix A to zero (see Ap-

pendix A)
Diag{a} operator generating a square matrix with the elements of vector a on

its main diagonal (see Appendix A)
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bdiag{A} operator setting all block-off-diagonal submatrices of matrix A to zero

(see Appendix A)
Bdiag{A11, operator generating a block-diagonal square matrix with the

. . . ,APP} elements A11, . . . ,APP on its main block-diagonal (see Appendix A)

det{·} determinant of a square matrix

bdetP{·} block-determinant of a partitioned matrix with P 2 submatrices (see Ap-

pendix A)
badjP{·} block-adjoint of a partitioned matrix with P 2 submatrices (see Ap-

pendix A)
O(·) order

SC{·} Sylvester constraint

SCC{·} column Sylvester constraint

SCR{·} row Sylvester constraint

Symbols

0...×... zero matrix with the size indicated in the subscript

α overlap factor

αq arbitrary scaling factor due to the scaling ambiguity

αab,i absorbtion coefficient of the i-th wall

ᾱab average of the individual absorbtion coefficients

β(i,m) general weighting function

δ(n) unit impulse at position n = 0

δyq
dynamical regularization for the q-th BSS output signal

δmax maximum value of the dynamical regularization

∆C update of the overall MIMO system matrix C

∆SIRseg,q(m) segmental signal-to-interference ratio improvement for the q-th channel

calculated at the m-th block of length NS

∆SIRseg(m) segmental signal-to-interference ratio improvement averaged over all

channels calculated at the m-th block of length NS

∆SIRseg,q segmental signal-to-interference ratio improvement for the q-th channel

calculated at the m-th block of length NS

∆SIRseg segmental signal-to-interference ratio improvement averaged over all

channels calculated at the m-th block of length NS

∆SNRseg,q segmental signal-to-noise ratio improvement for the q-th channel calcu-

lated at the m-th block of length NS

∆SNRseg segmental signal-to-noise ratio improvement averaged over all channels

calculated at the m-th block of length NS

∆W̌ update of the MIMO demixing matrix W̌

∆W̌ update of the MIMO DFT-domain demixing matrix W̌

ǫa,b(m) rectangular window function
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γ forgetting factor for recursive estimation

γs directivity factor of a source

γx directivity factor of a sensor

|Γxpxq
(ω)|2 magnitude squared coherence between the signals xp and xq at frequency

ω
|Γypyq

(ω)|2 magnitude squared coherence between the signals yp and yq at frequency

ω
|Γ(ν)

xpxq
(m)|2 magnitude squared coherence between the signals xp and xq at the ν-th

DFT bin and m-th block
|Γ̄(ν)

xpxq
|2 magnitude squared coherence between the signals xp and xq at the ν-th

DFT bin averaged over K blocks
|Γyy(ω)|2 generalized coherence function taking into account all BSS output chan-

nels
λ forgetting factor for online or block-online adaptation

λ0 wavelength of a monochromatic wave

Λα diagonal matrix containing the arbitrary scaling factors for each BSS

output channel
Λq(m) diagonal matrix containing the nonlinear weighting of Rypφ(yq)(m) based

on a multivariate SIRP pdf
Λ(m) diagonal matrix containing all matrices Λq(m)

Λq(m) DFT-domain representation of the nonlinear weighting matrix Λq(m)

Λ(m) DFT-domain matrix of size PR× PR containing Λq(m) on the block-

diagonal
µ stepsize

µ(m) time-dependent stepsize given for the m-th block

µ(ν)(m) time- and frequency-dependent stepsize given for the ν-th DFT bin and

the m-th block
ν DFT bin index

ω continuous frequency

ϕ elevation angle

φyq,D(·) SIRP score of the q-th BSS output channel

φ
yq,1

(·) DFT-domain univariate score of the q-th BSS output channel

Φq,i(yq) i-th element of the multivariate score function Φq(yq) of dimension D

for the q-th BSS output channel
Φq(yq) multivariate score function of dimension D for the q-th BSS output

channel
Φ(y) multivariate score function consisting of the stacked channel-wise score

functions Φq(yq)

ρ factor for attenuating the offdiagonal values of a correlation matrix prior

to inversion
σ2

yq
(m) variance of the q-th BSS output signal in the m-th block
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σ
(ν)2

Y q
estimate of the variance of the q-th BSS output signal in the ν-th DFT

bin
σ0 parameter determining the decay of the dynamical regularization

θ azimuthal angle of the point source measured counter-clockwise w.r.t.

the axis perpendicular to the microphone array axis
Υ saftey margin parameter for the adaptation control of the post-

processing approach
Υ(ν)

q (m) adaptive threshold for the adaptation control of the post-processing

approach given for the m-th block and ν-th DFT bin
ξ

(ν)
q oversubtraction factor for the q-th channel and the ν-th DFT bin

A area of all walls of the room

Ai area of the i-th wall of the room

AWpq
gain of the filter Wpq(z)

AHqp
gain of the filter Hqp(z)

B(ν)
p,q coefficient modelling the residual crosstalk in the q-th BSS output chan-

nel based on the signal Y̆
(ν)

p,q

bpq vector containing the filter coefficients modelling the contribution of the

p-th BSS output channel to the residual cross-talk yc,q in the q-th BSS

output channel
bq DFT-domain vector containing the coefficients B(ν)

p,q for all p = 1, . . . , P ,

p 6= q
c sound velocity

cqr,κ κ-th FIR filter tap of the overall system FIR filter from the q-th source

to the r-th output
cqr vector of length M+L−1 containing the taps cqr,κ of the overall system

FIR filter from the q-th source to the r-th output
C number of samples for which temporal dependencies of the source signals

exist
C80 clarity index, a measure for subjective music perception in reverberant

environments
Č MIMO overall system matrix of dimensions Q(M+L−1)×Q containing

the overall system FIR filters cqr of length M + L− 1
C MIMO block-Sylvester overall system matrix of dimensions Q(M+2L−

1) ×QD
CUp

circulant R×R matrix generated from the sensor signal matrix Up

CWpq
circulant R×R matrix generated from the MIMO demixing matrix Wpq

CXp
circulant R×R matrix generated from the sensor signal matrix Xp

CYp
circulant R×R matrix generated from the output signal matrix Yp

CỸp
circulant R×R matrix generated from the output signal matrix Ỹp

CYpYp
circulant R×R matrix generated from the matrix product YpY

H
p

CỸpỸp
circulant R×R matrix generated from the matrix product ỸpỸ

H
p
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d distance between a pair of sensors

D memory leading to D output signal samples concatenated in the vector

yq(n)

D50 “definition”, a measure for subjective sound perception in reverberant

environments
Edecay(n) energy decay at discrete time n

E(t) sound energy at continous time t

E0 initial sound energy

fs sampling frequency

fyq,D(·) scalar function determined by the univariate pdf chosen for the multi-

variate SIRP pdf
fY q,D(·) scalar function determined by the univariate pdf chosen for narrowband

BSS algorithms
FR DFT matrix of size R× R

gq,κ κ-th filter tap of the postfilter for the q-th BSS output channel

G(ν)
q (m) DFT-domain postfilter for the ν-th DFT bin and m-th block aiming at

cancellation of residual crosstalk and background noise in the q-th BSS

output signal
G(ν)

n,q(m) DFT-domain postfilter for the ν-th DFT bin and m-th block aiming at

cancellation of background noise in the q-th BSS output signal
G...

...×... channel-wise constraint matrix consisting of the matrix product of DFT

matrix, window matrix and IDFT matrix, with dimensions indicated in

the subscript and the type of window matrix indicated in the superscript
hqp,κ κ-th FIR filter tap of the FIR filter from the q-th source to the p-th

microphone
Hqp(z) z-domain representation of the mixing FIR filter hqp

hqp vector of length M containing the taps of the FIR filter from the q-th

source to the p-th microphone
Ȟ MIMO mixing matrix of dimensions QM ×P containing the FIR filters

hqp of length M

Hqp,L Sylvester mixing matrix of dimensions M +L−1×L containing the M

filter taps of the mixing filter hqp

HL MIMO block-Sylvester mixing matrix of dimensions Q(M+L−1)×PL
containing the submatrices Hqp,L

Hsub,q submatrix obtained by removing q-th row of submatrices from HL

I identity matrix

I
(ν)
xpxq(m) modified cross-periodogram between signals xp(n) and xq(n) for the ν-th

DFT bin and m-th block
J (m,W) TRINICON BSS optimization criterion for the m-th block including a

general weighting function
J (ν)(m,W(ν)) narrowband optimization criterion for the ν-th DFT bin
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Jgen(m,W) generalized TRINICON optimization criterion

J̃ (i,W) optimization criterion for the i-th block without the general weighting

function
~k wavenumber vector

K number of blocks

KS number of blocks for the estimation of segmental SIR and SNR

Ksig number of blocks available for the entire signal using offline adaptation

Kν ν-th order modified Bessel function of the second kind

ℓ superscript index denoting the iteration number for offline or block-

online adapation
ℓmax maximum iteration number for block-online adapation

L filter length of the demixing system FIR filters

Lopt optimum BSS filter length

LI block-diagonal matrix consisting of column vectors containing only ones

m discrete-time block index

M filter length of the mixing system FIR filters

n discrete-time index

N block length for the BSS algorithms

NS block length for the estimation of segmental SIR and SNR

Npost block length for the postfiltering algorithm

np(n) background noise signal at the p-th sensor as a function of the discrete

time n
n50 critical delay time for speech signals

n80 critical delay time for music signals

np(n) vector containing 2L background noise signal samples at the p-th sensor

n(n) background noise signal vector of length 2PL containing all vectors

np(n)
p(~r, t) propagating wave observed at position ~p at time t

p̂ amplitude of the propagating wave

psq,1(·) univariate pdf for the q-th source

ps,Q(·) Q-dimensional joint pdf of all sources

psq,C(·) multivariate pdf of the q-th source capturing time-dependencies of C

samples
ps,QC(·) joint pdf of dimension QC taking C samples of all Q source signals into

account
p̂yq,D(·) D-dimensional pdf for the q-th BSS output channel

p̂y,PD(·) PD-dimensional joint pdf over all BSS output channels

p̂(ν)

Y q,1
(·) univariate pdf of the q-th BSS output channel in the ν-th DFT bin

P number of microphones

Q number of simultaneously active sources
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~r observation position vector

|~rqp| distance between q-th source and p-th microphone

rh critical distance

rypyq
(i, u, v) element in the u-th row and v-th column of the cross-correlation matrix

Rypyq
estimated using the covariance method

r̃ypyq
(i, ṽ) element for the ṽ-th time-lag of the cross-correlation matrix R̃ypyq

esti-

mated using the correlation method
R DFT length for the BSS algorithms

Rpost DFT length for the postfiltering algorithm

Rnn(m) cross-correlation matrix of size 2PL × 2PL between all P background

noise signals estimated using the covariance method
Rss(m) cross-correlation matrix of size P (2L+M−1)×P (2L+M−1) between

all P source signals estimated using the covariance method
Rypyq

(m) cross-correlation matrix of size D × D between the p-th and q-th BSS

output signals estimated using the covariance method
Ryy(m) cross-correlation matrix of size PD × PD between all P BSS output

signals estimated using the covariance method
R̃ypyq

(m) cross-correlation matrix of size D × D between the p-th and q-th BSS

output signals estimated using the correlation method
R̃yy(m) cross-correlation matrix of size PD × PD between all P BSS output

signals estimated using the correlation method
RxΦ(y)(m) higher-order statistics cross-relation matrix of size 2PL× PD between

the P microphone signals and the P BSS output signals
Rypφ(yq)(m) higher-order statistics cross-relation matrix of size D ×D between the

p-th and q-th BSS output signal based on multivariate SIRPs
Ryφ(y)(m) higher-order statistics cross-relation matrix of size PD × PD based on

multivariate SIRPs
RypΦq(yq)(m) higher-order statistics cross-relation matrix of size D ×D between the

p-th and q-th BSS output signals
RyΦ(y)(m) higher-order statistics cross-relation matrix of size PD × PD between

all P BSS output signals
sq(n) q-th source signal as a function of the discrete time n

s
(ν)
y̆qYc,q

(m) DFT-domain vector of size P −1×1 containing the power spectral den-

sities between all channels contained in y̆(ν)

q
and the residual crosstalk

Y (ν)
c,q in the q-th BSS output channel

s
(ν)
y̆qYq

(m) DFT-domain vector of size P − 1 × 1 containing the power spectral

densities between all channels contained in y̆(ν)

q
and the q-th BSS output

signal Y (ν)
q

Sxpxq
(ω) cross-power spectral density between signals xp and xq at frequency ω

S(ν)
xpxq

(m) cross-power spectral density between signals xp and xq at ν-th DFT bin

and m-th block
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S(ν)
ypyq

(m) ν-th element on the diagonal of Sypyq
(m) denoting the cross-power spec-

tral density between the p-th and q-th BSS output channels for the ν-th

DFT bin
Sypyq

(m) DFT-domain diagonal matrix of size R×R containing the DFT values of

the cross-power spectral density between the p-th and q-th BSS output

channels on the diagonal
Syy(m) DFT-domain matrix of size PR×PR containing all matrices Sypyq

(m)

S
(ν)
y̆q y̆q

(m) DFT-domain matrix of size P −1×P −1 containing the power spectral

densities between all channels contained in y̆(ν)

q

SDsr,q unweighted log-spectral distance for the desired signal sr at the q-th

channel
SIRseg,xq

(m) segmental signal-to-interference ratio for the q-th sensor calculated at

the m-th block of length NS

SIRseg,xq
segmental signal-to-interference ratio for the q-th sensor averaged over

KS blocks of length NS

SIRyq
signal-to-interference ratio for the q-th BSS output channel

SIRseg,yq
(m) segmental signal-to-interference ratio for the q-th BSS output channel

calculated at the m-th block of length NS

SIRseg,yq
segmental signal-to-interference ratio for the q-th BSS output averaged

over KS blocks of length NS

ŜIRq estimate of the signal-to-interference ratio for the q-th BSS output

needed for the postfilter adaptation control
SNRseg,xq

segmental signal-to-noise ratio for the q-th sensor averaged over KS

blocks of length NS

SNRseg,yq
segmental signal-to-noise ratio for the q-th BSS output averaged over

KS blocks of length NS

SRRp,sq
signal-to-reverberation ratio for the source signal sq at the p-th sensor

t continous observation time

T60 reverberation time

TC room temperature

Ts sampling period

uq argument of the function fyq ,D(uq)

U energy of the window function wf(n)

Up sensor signal matrix of size N × L in Toeplitz structure

V volume of the room

VH
...×... channel-wise transformation of a window matrix in the DFT domain

with the size of the matrix indicated in the subscript
wf(n) window function as a function of the discrete time n

wpq,κ κ-th FIR filter tap of the FIR filter from the p-th sensor to the q-th

output
Wpq(z) z-domain representation of the demixing FIR filter wpq
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wcol,q q-th column of the demixing FIR filter matrix W̌

wpq vector of length L containing the taps of the demixing FIR filter from

the p-th microphone to the q-th output
wpq vector of length R containing the DFT-domain representation of the

demixing FIR filter wpq

W̌ MIMO demixing matrix of dimensions PL×Q containing all FIR filters

wpq of length L

W̌opt optimum MIMO demixing matrix of dimensions PL×Q

Wpq Sylvester demixing matrix of dimensions 2L×D containing the L filter

taps of the demixing filter wpq in each column
W MIMO demixing matrix of dimensions 2PL × PD in block-Sylvester

structure containing all Sylvester matrices Wpq

W...
...×... Window matrix with dimensions indicated in subscript and the position

of ones and zeros indicated in the superscript
Wpq DFT-domain diagonal demixing matrix of dimensions R×R containing

the filter coefficients wpq on the main diagonal

W DFT-domain MIMO demixing matrix of dimensions PR×PR contain-

ing all matrices Wpq

W(ν) DFT-domain MIMO demixing matrix of dimensions P ×P for the ν-th

DFT bin
W̌ DFT-domain MIMO demixing matrix of dimensions PR×PQ contain-

ing all column vectors wpq

xp(n) p-th sensor signal as a function of the discrete time n

xsr ,p(n) desired signal component at the p-th sensor containing the desired

source signal sr(n)
xc,p(n) crosstalk signal at the p-th sensor as a function of the discrete time n

xp(n) vector containing 2L samples from the p-th sensor

x(n) sensor signal vector of length 2PL containing all vectors xp(n)

Xp(m) Toeplitz matrix of of size 2L×N containing the p-th sensor signal

X(m) Toeplitz matrix of of size 2PL×N containing all matrices Xp

X(ν)
p (m) DFT-domain representation of p-th sensor signal for the ν-th DFT bin

and m-th block
yq(n) q-th BSS output signal as a function of the discrete time n

ysr,q(n) desired signal component at the q-th BSS output containing the desired

source signal sr(n)
yc,q(n) residual crosstalk signal at the q-th BSS output as a function of the

discrete time n
yn,q(n) background noise signal at the q-th BSS output as a function of the

discrete time n
y̆p,q(n) p-th BSS output signal as a function of the discrete time n without the

contribution of the desired source in the q-th BSS output channel
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yq(n) vector containing D output signal samples of the q-th BSS output chan-

nel
ȳq(n) vector containing N output signal samples of the q-th BSS output chan-

nel
y(n) output signal vector of length PD containing all vectors yq(n)

y̆(ν)

q
(m) DFT-domain vector containing Y̆

(ν)

p,q(m) for all p = 1, . . . , P , p 6= q

Yq(m) output signal matrix of size D×N containing N +D− 1 output signal

samples of the q-th BSS output channel
Y(m) output signal matrix of size PD ×N containing all matrices Yq(m)

Yφ(m) matrix containing the channel-wise multiplication of Λq and Yq

Y (ν)
q (m) ν-th element on the diagonal of Yq(m) denoting the DFT-domain rep-

resentation of the q-th output signal for the ν-th DFT bin and m-th

block
Y (ν)

s,q (m) DFT-domain representation of the desired source component of the q-th

output signal for the ν-th DFT bin and m-th block
Y (ν)

c,q (m) DFT-domain representation of the residual crosstalk component of the

q-th output signal for the ν-th DFT bin and m-th block
Y (ν)

n,q(m) DFT-domain representation of the noise component of the q-th output

signal for the ν-th DFT bin and m-th block
Ȳ

(ν)
q (m) complementary BSS signal in the ν-th DFT bin at the m-th block

Y̆
(ν)

p,q(m) DFT-domain representation of the p-th output signal y̆p,q for the ν-th

DFT bin and m-th block
Yq(m) DFT-domain diagonal output signal matrix of dimensions R × R con-

taining the DFT-domain representation of N + D − 1 output signal

samples on the main diagonal
Yφ,q(m) DFT-domain matrix of dimensions R × R containing the DFT-domain

representation of the q-th nonlinearly weighted BSS output signal
Y(m) DFT-domain output signal matrix of size PR×R containing all matrices

Yq(m)

Yφ(m) DFT-domain matrix of dimensions PR × R containing all matrices

Yφ,q(m)

Y(ν)(m) DFT-domain output signal vector of dimensions P ×1 for the ν-th DFT

bin
Ỹq(m) output signal matrix of size D×N +D− 1 containing N output signal

samples of the q-th BSS output channel
Ỹ(m) output signal matrix of size PD × N + D − 1 containing all matrices

Ỹq(m)

Ỹq(m) DFT-domain diagonal output signal matrix of dimensions R × R con-

taining the DFT-domain representation of N output signal samples on

the main diagonal
Ỹ(m) DFT-domain output signal matrix of size PR×R containing all matrices

Ỹq(m)
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zq(n) output signal of the post-processing algorithm in the q-th channel as a

function of the discrete time n
Z(ν)

q (m) DFT-domain representation of the q-th output signal of the post-

processing scheme for the ν-th DFT bin and m-th block
z0Hqp,ν ν-th zero of the filter Hqp(z)

z0Wpq ,ν ν-th zero of the filter Wpq(z)
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F.3 Einleitung

In den letzten Jahren wurden auf dem Gebiet der akustischen Mensch-Maschine Schnitt-

stelle sowohl in der Grundlagenforschung als auch in der Produktentwicklung große Fort-

schritte erzielt. Viele Bemühungen auf diesem Gebiet sind der Entwicklung von End-

geräten für Multimedia- oder Telekommunikationsdienste gewidmet. Durch die vielfälti-

gen Einsatzbereiche müssen diese Endgeräte ihre Funktionalität in den unterschiedlich-

sten Szenarien unter Beweis stellen. Mögliche Anwendungsgebiete umfassen z.B. Audio-

/Videokonferenzsysteme, Freisprecheinrichtungen in Kraftfahrzeugen oder durch Blue-

tooth Kopfhörer, Diktiersysteme, oder öffentliche Informationssysteme. Die digitalen Si-

gnalverarbeitungsalgorithmen zielen in diesen Anwendungen darauf ab ein gewünsch-

tes Quellensignal zu schätzen. Dieses Signal kann jedoch von mehreren punktförmigen

Störquellen wie z.B. konkurrierenden Sprechern überlagert werden. Möglicherweise sind

auch zusätzliche räumlich diffuse Hintergrundgeräusche vorhanden, welche z.B. von Kraft-

fahrzeugen oder der Überlagerung vieler Sprachsignale z.B. in einer Kantine verursacht

werden. Da sich die Endgerätebenutzer wünschen, möglichst natürlich und räumlich un-

gebunden das Gerät benutzen zu können, ist eine Verwendung von Nahbesprechungsmi-

krophonen ausgeschlossen. Dies erhöht die Komplexität der Schätzung des gewünschten

Quellensignals bedeutend, da damit auch Reflexionen des Wunschsignals und der Störsi-

gnale aufgenommen werden.

Bis vor einigen Jahren enthielten die meisten akustischen Mensch-Maschine Schnitt-

stellen nur ein Mikrophon zur Audiosignalaufnahme. Dies beschränkte die Ansätze zur

Wiedergewinnung des gewünschten Signals auf einkanalige Geräuschreduktionsalgorith-

men wie z.B. [Bol79, EM84]. Auch heute ist dieses Thema weiterhin ein wichtiges For-

schungsgebiet wie z.B. in [BMC05, Sri05] gesehen werden kann. Durch gefallene Hardwa-

rekosten beginnen jedoch heutzutage die Hersteller ihre Produkten mit mehreren Mikro-

phonen auszustatten und ermöglichen damit die Anwendung von mehrkanaligen Signal-

verarbeitungsalgorithmen. Beispiele von Produkten, welche Mikrophongruppen benutzen,
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können auf verschiedenen Gebieten beobachtet werden wie z.B. bei Freisprecheinrichtun-

gen im Pkw [Per02], Bluetooth Kopfhöhrern für Mobiltelefone [VTDM06, Bra07], inte-

grierten Mikrophongruppen in Multimedia Laptops [Mic05] oder digitalen Hörgeräten

[HCE+05].

Die Benutzung von mehr als einem Sensor erlaubt zusätzlich zur zeitlichen Filterung

auch eine räumliche Filterung der aufgenommenen Signale. Dieser neue Freiheitsgrad wird

durch die traditionellen Mehrkanal- oder sogenannten “Array”-Signalverabeitungsansätze

ausgenutzt. Diese Algorithmen wurden ursprünglich für schmalbandige Signale entwickelt

wie sie z.B. in Radar- oder Sonaranwendungen anzutreffen sind [JD93, Hay02]. Bereits vor

mehreren Jahrzehnten gab es erste Versuche diese Methoden auf breitbandige Signale wie

z.B. Sprache anzuwenden. Seit diesen Anfängen hat sich das Gebiet weiterentwickelt und

es sind verschiedene Methoden verfügbar um ein akustisches gestörtes Signal zu verbessern

[BW01, Her05]. Typischerweise nehmen diese sogenannten “beamforming”-Ansätze an

dass die Positionen der Sensoren, d.h. die Geometrie der Sensorgruppe bekannt ist und

versuchen dann eine kohärente Überlagerung des Wunschsignals zu erreichen, während

die Störsignale inkohärent überlagert werden. Dies bedeutet dass diese Algorithmen das

Vorhandensein einer einzigen Wunschquelle annehmen deren Position a-priori bekannt sein

muss oder von geeigneten Quellenlokalisierungsalgorithmen geschätzt werden muss. Durch

die Anwendung linearer adaptiver Filteralgorithmen, basierend auf der Minimierung des

mittleren quadratischen Fehlers, ist es zusätzlich möglich die Bahnen der zeitvarianten

Wunschquelle und Störquellen zu verfolgen.

In mehreren Anwendungen sind Ansätze wünschenswert welche anstatt der Extrakti-

on einer gewünschten Quelle eine Trennung von mehreren akustischen Quellen zum Ziel

haben. Ein Beispiel sind intelligente Besprechungsräume welche mit mehreren Mikropho-

nen und Kameras ausgestattet sind und Audio-/Videokonferenzen erlauben [Moo02]. Die

Möglichkeit eine Besprechung aufzuzeichnen erlaubt eine Nachverarbeitung wie z.B. die

Indizierung der Sprecher oder Transkription der Besprechung durch automatische Spra-

cherkennung und erleichtert damit den Zugang zu wichtigen Informationen für Perso-

nen welche nicht an der Besprechung teilnehmen konnten [CRG+02]. Da alle Teilnehmer

“Wunschquellen” sind, müssen alle Sprachsignale wiedergewonnen werden und für evtl.

überlappende Sprachsegmente wären Methoden zur Quellentrennung notwendig. Ein an-

deres Gebiet in dem eine Trennung von mehreren akustischen Quellen anstatt der Extrak-

tion einer gewünschten Quelle bevorzugt ist, stellt die Sicherheits- und Überwachungstech-

nik dar. Außerdem sind in solchen Anwendungen oftmals die Positionen der Wunschquel-

len unbekannt, sodass Ansätze welche auf weniger a-priori Information angewiesen sind

wünschenswert sind. Zudem ist es möglich dass in einigen Anwendungen die Geometrie

der Mikrophongruppe nicht bekannt ist wie z.B. in einem Besprechungsraum bei auf der

Tischplatte aufgestellten Mikrophonen. Ein weiteres Anwendungsgebiet welches nur unge-

naue Informationen über die Position der Sensoren zur Verfügung stellt, ist die binaurale
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Verarbeitung der Mikrophonsignale von digitalen Hörgeräten [PKRH04, ABZK07].

Eine mögliche Lösung solcher Probleme sind Methoden zur blinden Quellentrennung

(engl. “blind source separation (BSS)”) welche keine Informationen über Quellen- und

Sensorpositionen benötigen. Dieses fehlende a-priori Wissen wird dadurch kompensiert

dass die beobachteten Signale basierend auf ihrem Informationsgehalt durch informati-

onstheoretische Signalverarbeitungsalgorithmen verarbeitet werden. Dies ist im Gegen-

satz zu den linearen adaptiven Filteralgorithmen welche auf der Minimierung des mittle-

ren quadratischen Fehlers basieren und damit nur die statistischen Eigenschaften zweiter

Ordnung der Sensorsignale ausnutzen. Die der BSS zugrunde liegende Annahme welche

diese Sichtweise erlaubt ist die wechselseitige statistische Unabhängigkeit der Quellen-

signale. Durch die Formulierung von Optimierungskriterien basierend auf statistischen

Größen wie Entropie oder Abstandsmaßen welche die Ähnlichkeit von Wahrscheinlich-

keitsdichten bestimmen, kann Statistik höherer Ordnung in die Adaptationsalgorithmen

integriert werden. Zusätzlich können andere Signaleigenschaften wie Instationarität oder

zeitliche Abhängigkeiten (sogenannte “Nichtweißheit”) der Quellensignale ausgenutzt wer-

den. In einem kürzlich erschienenen Überblicksartikel [EP06] wurde darauf hingewiesen,

dass dieses Konzept der Anwendung von informationstheoretischen Kriterien auf die ad-

aptive Signalverarbeitung auch in benachbarten Gebieten, wie z.B. Merkmalsextraktion,

Clustering oder Systemidentifikation verbesserte Ergebnisse liefert. Jedoch sind in die-

sen Gebieten heutzutage immer noch Verfahren vorherrschend, welche auf dem mittleren

quadratischen Fehler und damit inhärent auf Statistik zweiter Ordnung basieren.

Das Konzept der blinden Quellentrennung kann bis zum Anfang der 80’er Jahre

zurückverfolgt werden und seit dem Anfang der frühen 90’er stieß es auch in der Signal-

verarbeitungsgemeinde auf wachsendes Interesse [JT00]. Damals beschäftigten sich die

meisten Forschungsarbeiten mit der verzögerungsfreien Überlagerung der Quellensignale

und erst seit Mitte der 90’er Jahre werden Mischsysteme betrachtet welche Reflexionen,

wie in der Akustik vorkommend, betrachten [Tor99]. Seitdem wurde eine umfangreiche

Anzahl von Forschungsarbeiten auf dem Gebiet der akustischen blinden Quellentrennung

in geräuschlosen Umgebungen veröffentlicht.

Im Gegensatz zu der überwiegenden Literatur werden wir in dieser Dissertation die

blinde Quellentrennung in verhallten und störbehafteten Umgebungen betrachten. Der

Hauptbeitrag dieser Dissertation ist von zweifacher Natur: Zum Einen wird gezeigt wie

das informationstheoretische Kriterium der Transinformation benutzt werden kann um

zum ersten Mal alle drei Signaleigenschaften Nicht-Gaußheit, Instationarität und Nicht-

weißheit, d.h. zeitliche Abhängigkeiten auszunutzen. Basierend auf diesem Kriterium wird

ein generelles Konzept zur blinden Quellentrennung präsentiert. Der Nutzen des vorge-

schlagenen Konzepts ist die vereinheitlichte Sicht auf BSS Algorithmen. Dies erlaubt zu

erkennen auf welchen Näherungen derzeitige Algorithmen basieren und zeigt damit viel-

versprechende neue Forschungsrichtungen auf um neue Algorithmen mit wenigeren oder
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zutreffenderen Näherungen zu erhalten. Basierend auf dieser Betrachtungsweise werden

mehrere neue und effiziente Algorithmen hergeleitet und Beziehungen zu bekannten Algo-

rithmen der BSS Literatur hergestellt. Der zweite Hauptbeitrag dieser Dissertation ist die

Präsentation von mehreren Vor- und Nachverarbeitungstechniken um eine geräuschrobu-

ste Adaption der BSS Algorithmen zu gewährleisten, damit die BSS Algorithmen auch in

Umgebungen mit starken Hintergrundgeräuschen angewendet werden können. Außerdem

wird gezeigt, wie diese Erweiterungen eine Unterdrückung des Hintergrundgeräuschs bei

gleichzeitiger Trennung der Punktquellen erreichen.

Die Arbeit welche in dieser Dissertation präsentiert wird ist folgendermaßen struktu-

riert: In Kapitel 2 wird das BSS Modell eingeführt. Nachdem kurz der einfachste Fall,

gegeben durch das verzögerungsfreie BSS Modell, beschrieben wird, konzentrieren wir

uns auf das BSS Modell mit Faltungsmixturen. Dieses Modell berücksichtigt, dass in

akustischen Umgebungen auch Reflexionen der ursprünglichen Quellensignale durch die

Sensoren aufgenommen werden. Anschließend wird der Zusammenhang des BSS Modells

mit den Grundlagen der Akustik diskutiert. Danach werden die Signaleigenschaften un-

tersucht, welche von den BSS Ansätzen genutzt werden können. Außerdem werden die

durch die Blindheit der BSS Methoden auftretenden Mehrdeutigkeiten adressiert.

Basierend auf dem BSS Modell für Faltungsmixturen wird in Kapitel 3 ein allgemei-

nes Konzept zur blinden Quellentrennung in verhallten Umgebungen eingeführt. Zuerst

werden die optimale BSS Lösung und deren Auswirkungen diskutiert. Basierend auf der

Unterscheidung zwischen breitbandiger und schmalbandiger Optimierung wird das allge-

meine BSS Konzept durch die Formulierung eines generischen breitbandigen Zeitbereichs-

optimierungskriterium eingeführt. Ein generischer gradientenbasierter Algorithmus wird

hergeleitet und es wird gezeigt wie mehrere effiziente neue und altbekannte Algorithmen

durch das Einführen bestimmter Näherungen erhalten werden können. Außerdem wird

die Herleitung breitbandiger Algorithmen im diskreten Fourier Transformationsbereich

(DFT-Bereich) präsentiert. Diese breitbandigen Algorithmen sind äquivalent zu ihren Ge-

genstücken im Zeitbereich und weisen daher, im Gegensatz zu den rein schmalbandigen

Algorithmen, die BSS Mehrdeutigkeiten nicht unabhängig in jedem DFT Frequenzband

auf. Außerdem können durch selektive Näherungen auch effiziente Hybridalgorithmen und

reine Schmalbandalgorithmen hergeleitet werden. Nach der Behandlung der verschiede-

nen Aktualisierungsstrategien werden die in Kapitel 3 hergeleiteten verschiedenen BSS

Algorithmen in mehreren verhallten Räumen experimentell untersucht.

Zusätzlich zu den punktförmigen Störquellen werden in Kapitel 4 auch Hintergrund-

geräusche betrachtet. Das BSS Modell für Faltungsmixturen beschreibt eine Überlage-

rung von mehreren Punktquellen und kann daher durch den diffusen Schallfeldcharakter

mehrerer realistischer Geräuscharten, wie z.B. Fahrzeuggeräuschen oder ein Gewirr von

Stimmen, keine Trennung von gewünschten Punktquellen und Hintergrundgeräuschen be-

wirken. Deshalb werden in Kapitel 4 mehrere Erweiterungen des allgemeinen BSS Kon-
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zepts diskutiert. Zuerst werden mehrere Vorverarbeitungsmethoden betrachtet welche eine

geräuschrobuste Adaption der BSS Algorithmen erlauben. Anschließend werden Nachver-

arbeitungsansätze untersucht, in denen einkanalige Nachfilter in jedem BSS Ausgangska-

nal angewendet werden. Durch die Hintergrundgeräusche verringert sich die Trennungslei-

stung der BSS Algorithmen, sodass das Nachfilter sowohl eine Unterdrückung des restli-

chen Übersprechens von punktförmigen Störquellen, als auch eine Verringerung des Hinter-

grundgeräuschs bewirken muss. Die vorgestellten Vor- und Nachverarbeitungsalgorithmen

werden danach experimentell untersucht.

Abschließend wird die Dissertation in Kapitel 5 zusammengefaßt. Außerdem werden

Schlußfolgerungen und Vorschläge für zukünftige Arbeiten diskutiert.

In den Anhängen A und B werden mathematische Operatoren definiert und mehrere

Herleitungen detailliert ausgeführt. Aßerdem sind im Anhang C alle in den Experimenten

benutzten Umgebungen beschrieben.

F.4 Zusammenfassung and Schlussfolgerungen

In den letzten Jahren gab es viele Forschungsarbeiten auf dem Gebiet der blinden Quel-

lentrennung (engl. “blind source separation (BSS)”) für Faltungsmixturen im Bereich der

akustischen Signalverarbeitung. Hier ist vor allem das Gebiet der akustischen Mensch-

Maschine Schnittstelle von Interesse, welches noch immer von der Anwendung von festen

und adaptiven “Beamformern” geprägt ist. Allerdings gibt es mehrere Gründe, warum

es in den letzten Jahren viele Bemühungen gab, BSS auf dieses Gebiet anzuwenden.

Ein Grund ist, dass BSS Ansätze nur auf der Annahme der wechselseitigen statistischen

Unabhängigkeit der Quellensignale basieren und keine zusätzliche a-priori Information,

wie z.B. die Geometrie der Sensorgruppe oder die Positionen der punktförmigen Wunsch-

oder Störquellen, benötigen. Außerdem wird die Leistungsfähigkeit eines BSS Algorithmus

durch unterschiedliche Frequenzgänge der einzelnen Mikrophone nicht beeinträchtigt. Ein

weiterer Grund ist, dass es in mehreren Anwendungen, wie z.B. bei der Überwachung von

öffentlichen Plätzen, gewünscht ist, mehrere unterschiedliche Punktquellen zu verfolgen,

anstatt eine gewünschte Punktquelle zu extrahieren wie es normalerweise beim “Beamfor-

ming” der Fall ist. Außerdem zielen die Ansätze, welche beim adaptiven “Beamforming”

verwendet werden, darauf ab den mittleren quadratischen Fehler zu minimieren und ba-

sieren daher von Natur aus auf Statistik zweiter Ordnung. Im Gegensatz dazu können

BSS Algorithmen informationstheoretische Maße benutzen welche es erlauben, Statistik

höherer Ordnung in die Adaptionsalgorithmen zu integrieren. Aufgrund dieser Vorteile

wurde den BSS Ansätzen in den letzten Jahren eine große Beachtung in der Signalverar-

beitungsgemeinde zuteil.

Das Thema dieser Dissertation beschäftigt sich mit der blinden Quellentrennung von

akustischen Signalen und die Errungenschaften dieser Arbeit können wie folgt beschrie-
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ben werden. Ein Hauptbeitrag dieser Arbeit ist die Präsentation mehrerer wichtiger Spe-

zialfälle eines allgemeinen BSS Konzepts welches in [BAK03a] TRINICON (“TRIple-N

Independent component analysis for CONvolutive mixtures”) genannt wurde. Dieses Kon-

zept erlaubt eine vereinheitlichte Betrachtungsweise der BSS Algorithmen für Faltungs-

mixturen und ermöglicht die Herleitung neuer Algorithmen und zeigt außerdem Verbin-

dungen zu bekannten Algorithmen aus der BSS Literatur. In dieser Arbeit haben wir

einige Näherungen präsentiert, welche zu höchst effizienten Algorithmen geführt haben

während gleichzeitig, im Gegensatz zu anderen bekannten Algorithmen, die überlegenen

Eigenschaften des allgemeinen Konzepts beibehalten wurden. Ein zweiter Hauptbeitrag

ist die in sich stimmige und über die existierende BSS Literatur hinausgehende Betrach-

tung der Anwendung von BSS auf verhallte und störbehaftete Umgebungen. Dies wurde

ermöglicht durch eine Erweiterung des allgemeinen Konzepts mit einigen Vor- und Nach-

verarbeitungsmethoden welche die hohe Trennungsleistung der BSS Algorithmen auch in

störbehafteten Umgebungen erhalten. Zusätzlich erlauben diese Methoden auch eine Un-

terdrückung des unerwünschten Hintergrundrauschens, welches durch das BSS Modell für

Faltungsmixturen nicht behandelt werden kann.

Um diese Resultate zu erreichen wurde zuerst ein breitbandiges Zeitbereichsoptimie-

rungskriterium, basierend auf einer Verallgemeinerung der Transinformation, eingeführt.

Dieses Kriterium basiert auf der statistischen Unabhängigkeit der Quellensignale, erlaubt

aber zeitliche Abhängigkeiten innerhalb jedes Quellensignals. Durch die Verwendung von

multivariaten Wahrscheinlichkeitsdichtefunktionen (engl. “probability density functions

(pdfs)”) innerhalb des Kriteriums, ist es möglich die zeitlichen Abhängigkeiten, d.h., die

Nichtweißheit der Quellensignale zu berücksichtigen. Dies erlaubt uns eine Ausnutzung

aller drei (d.h., “TRIple-N”) Signaleigenschaften Nichtgaußheit, Nichtweißheit und Insta-

tionarität durch ein breitbandiges Zeitbereichskriterium.

Anschließend wurden, ausgehend von dem TRINICON Optimierungskriterium, meh-

rere breitbandige iterative BSS Algorithmen hergeleitet, welche auf dem Gradientenab-

stieg und natürlichem Gradientenabstieg basieren. Die Schätzung der multivariaten pdfs

in den Aktualisierungsgleichungen wurde durch die Annahme von sphärischen rotations-

invarianten Zufallsprozessen (engl. “spherically invariant random processes (SIRPs)”),

welche bekanntermaßen ein gutes Modell für Sprachsignale darstellen, ermöglicht. Dieses

Modell vereinfacht die Implementierung der Aktualisierungsgleichungen erheblich. Au-

ßerdem konnten durch die Benutzung der multivariaten Gauß-Dichte als einen Spezialfall

einer SIRP pdf effiziente und ausschließlich auf Statistik zweiter Ordnung basierende BSS

Algorithmen erhalten werden.

Alle diese Betrachtungen wurden bis hierher im Zeitbereich ausgeführt. Um effiziente

Implementierungen im DFT Bereich zu erhalten wurden die generischen Zeitbereichsak-

tualisierungsgleichungen äquivalent im DFT Bereich formuliert. Diese Äquivalenz wur-

de durch eine Matrixschreibweise erreicht, welche es erlaubt, die resultierenden Töplitz-
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Matrizen durch zirkulante Matrizen zusammen mit Fenstermatrizen darzustellen. An-

schließend wurden die zirkulanten Matrizen in den DFT Bereich transformiert. Die strenge

Anwendung dieser Prozedur lieferte äquivalente breitbandige Aktualisierungsgleichungen

ausgedrückt durch DFT-Bereichsgrößen. Durch die breitbandige Natur tauchen mehrere

Matrizen (engl. “constraint matrices”) auf, welche eine Kopplung zwischen den DFT Fre-

quenzbändern erzwingen. Dies steht im Gegensatz zur schmalbandigen Optimierung bei

der jedes Frequenzband unabhängig betrachtet wird und wodurch auch die Skalierungs-

und Permutationsmehrdeutigkeiten in jedem Frequenzband unabhängig auftreten.

Die breitbandige DFT-Bereichsimplementierung war der Startpunkt für die

Einführung selektiver Schmalbandnäherungen, d.h. der selektiven Entfernung einiger die-

ser “Constraint”-Matrizen. Dies erlaubt es z.B. eine Matrixinverse effizient durch eine

skalare Inversion in jedem DFT Frequenzband zu berechnen. Durch die gleichzeitige Bei-

behaltung einiger “Constraint”-Matrizen ist jedoch weiterhin eine Kopplung zwischen

den DFT Frequenzbändern gesichert. Damit vermeiden solche Hybridalgorithmen, dass

die BSS Mehrdeutigkeiten in jedem Frequenzband unabhängig auftreten und erzielen da-

bei eine gleichzeitige Reduktion der Rechenkomplexität. Durch die Einführung selektiver

Näherungen konnten außerdem einige Verbindungen zu bekannten BSS Algorithmen in

der Literatur aufgezeigt werden. Diese Zusammenhänge unterstützen den Anspruch ei-

ner vereinheitlichten Sichtweise auf BSS Algorithmen für Faltungsmixturen durch das

allgemeine TRINICON Konzept.

Bis zu diesem Punkt basierte das allgemeine Konzept, welches in dieser Arbeit präsen-

tiert wurde, auf einem BSS Modell für Faltungsmixturen welches nur Punktquellen, je-

doch keine (möglicherweise diffusen) Hintergrundgeräusche erlaubt. Um die Anwendung

der vorher hergeleiteten BSS Algorithmen auch in störbehafteten Umgebungen sicherzu-

stellen, muss entweder ein störrobustes Optimierungskriterium gefunden werden, oder die

Algorithmen müssen durch Vor- oder Nachverarbeitungsansätze ergänzt werden. Da eine

Formulierung von störrobusten Kriterien für realistische Hintergrundgeräusche schwierig

ist, konzentrierten wir uns in dieser Arbeit auf Vor- und Nachverarbeitung. Das Ziel dieser

Methoden ist von zweifacher Art: Erstens müssen sie sicherstellen, dass die Trennungs-

leistung der BSS Algorithmen erhalten bleibt, und zweitens müssen sie die Hintergrund-

geräusche, welche der BSS Algorithmus nicht adressieren kann, unterdrücken. Es wurde

gezeigt, dass Vorverarbeitungsmethoden nur von beschränkter Anwendbarkeit sind, wegen

der schwierigen Aufgabe eine robuste Adaptationssteuerung zu entwickeln und wegen der

Tatsache, dass eine Wiederherstellung nicht nur des Betragsspektrums, sondern auch der

Phase der geräuschfreien überlagerten Punktquellensignale entscheidend ist. Im Gegen-

satz dazu können Nachverarbeitungsmethoden eine bessere gleichzeitige Unterdrückung

von Hintergrundgeräuschen und restlichem Übersprechen erreichen. Eine auf einkanali-

ger Nachfilterung basierende Methode wurde präsentiert und mehrere Verbindungen zu

existierenden Ansätzen wurden aufgezeigt. Durch Experimente wurde bestätigt, das die-
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ser Ansatz eine erhebliche Verbesserung der Trennungsleistung erzielt und außerdem die

Hintergrundgeräusche reduziert.

Diese Dissertation zeigt auch einige Startpunkte für zukünftige Forschungsarbeiten

auf. Ein zukünftiges Themengebiet könnte die Entwicklung von BSS Algorithmen ba-

sierend auf partitionierter adaptiver Filterung sein. Dies würde es erlauben, die zwei

widersprüchlichen Forderungen nach einer kurzen Blocklänge, wegen der Instationarität

der akustischen Signale, und nach einer großen Entmischfilterlänge, zur Abdeckung aller

Reflexionen in verhallten Umgebungen, zu erfüllen. Außerdem wurde auf dem Gebiet der

Nachfilterung für akustische Echokompensation in [EMV01, EMV02b, EMV02a] gezeigt,

dass eine Partitionierung in einer besseren Schätzung der spektralen Leistungsdichten,

welche für das Nachfilter benötigt werden, resultiert. Deshalb kann durch eine Partitio-

nierung auch eine Verbesserung der bereits sehr guten Ergebnisse für ein BSS Nachfilter

erwartet werden. Zusätzlich würde eine Partitionierung auch eine Echtzeitimplementie-

rung mit sehr geringer Verzögerung erlauben, wie sie z.B. bei Hörgeräten erwünscht ist.

Ein weiteres lohnendes zukünftiges Forschungsthema könnte die Entwicklung anderer

geeigneter Näherungen darstellen, welche die Nichtlinearität innerhalb der auf Statistik

höherer Ordnung basierenden BSS Algorithmen effizient berechnen. Außerdem ist die Un-

tersuchung von robusteren Nichtlinearitäten, z.B. basierend auf robuster Statistik [Hub81]

ein vielversprechendes Forschungsthema wie vor kurzem für den Schmalbandfall in [CD06]

und für den Breitbandfall in [Buc] gezeigt wurde.

Nicht zuletzt stehen in gewissen Anwendungen wie z.B. Video- oder Audiokonferenz-

systemen mehr Sensoren zur Verfügung als aktive Quellen vorhanden sind. In diesem Fall

stellen die in Abschnitt 4.1.2 kurz diskutierten Unterraumverfahren eine vielversprechende

Methode dar, die Information mehrerer Sensoren auszunutzen. Außerdem ist es möglich,

dass Information über die Geometrie der Sensorgruppe vorliegt. In diesem Fall wäre es

wünschenswert diese a-priori Informationen auszunutzen, jedoch unter Verwendung der in

dieser Dissertation benutzten informationstheoretischen Kriterien anstatt der konventio-

nellen adaptiven “Beamforming”-Ansätze. Damit könnten idealerweise weiterhin alle drei

Signaleigenschaften Nichtgaußheit, Nichtweissheit und Instationarität ausgenutzt werden

und es könnte auf eine Adaptionssteuerung, wie gemeinhin bei adaptiven “Beamformern”

benötigt, verzichtet werden. Erste Ansätze, welche dieses Problem adressieren, wurden in

[FP01b, PA02, KMG+07] präsentiert.
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[Däm57] P. Dämmig. Zur Messung der Diffusität von Schallfeldern durch Korrela-

tion. Acustica, 7:387ff., 1957. In German.

[Dav52] W.B. Davenport. An experimental study of speech wave propability dis-

tribution. J. Acoust. Soc. Amer., 24(4):390–399, 1952.

[DBC91] M. Dendrinos, S. Bakamidis, and G. Carayannis. Speech enhancement

from noise: A regenerative approach. Speech Communication, 10:45–57,

1991.

[DC98] S. Douglas and A. Cichocki. Adaptive step size techniques for decor-

relation and blind source separation. In Proc. 32nd Asilomar Conf. on

Signals, Systems, and Computers, pages 1191–1195, Pacific Grove, CA,

USA, November 1998.

[DCA98] S.C. Douglas, A. Cichocki, and S.-I. Amari. A bias removal technique

for blind source separation with noisy measurements. Electronic Letters,

34(14):1379–1380, July 1998.

[DHP00] J.R. Deller, J.H.L. Hansen, and J.G. Proakis. Discrete-Time Processing

of Speech Signals. IEEE Press, New York, 2000.

[Div05] P. Divenyi, editor. Speech Separation by Humans and Machines. Kluwer

Academic Publishers, MA, USA, 2005.

[DM02] S. Doclo and M. Moonen. GSVD-based optimal filtering for single and

multimicrophone speech enhancement. IEEE Trans. Signal Processing,

50(9):2230–2244, September 2002.



248 Bibliography

[DMH06] M. Dyrholm, S. Makeig, and L.K. Hansen. Model structure selection in

convolutive mixtures. In Proc. 6th Int. Conf. on Independent Component

Analysis and Blind Signal Separation, volume 3889 of LNCS, pages 74–81.

Springer, 2006.

[Doc03] S. Doclo. Multi-microphone noise reduction and dereverberation tech-

niques for speech applications. PhD thesis, Katholieke Universiteit Leu-

ven, Leuven, May 2003.

[DSM03] S. Douglas, H. Sawada, and S. Makino. Natural gradient multichannel

blind deconvolution and equalization using causal FIR filters. In Proc.

IEEE Asilomar Conf. on Signals, Systems, and Computers, pages 197–

201, Pacific Grove, CA, USA, November 2003.

[DSM04a] S. Douglas, H. Sawada, and S. Makino. A causal frequency-domain im-

plementation of a natural gradient multichannel blind deconvolution and

source separation algorithm. In Proc. Int. Congr. on Acoustics, volume 1,

pages 85–88, Kyoto, Japan, April 2004.

[DSM04b] S. Douglas, H. Sawada, and S. Makino. Natural gradient multichannel

blind deconvolution and source separation using causal FIR filters. In

Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing (ICASSP),

volume 5, pages 477–480, Montreal, Canada, May 2004.

[EKL06] T. Eltoft, T. Kim, and T.-W. Lee. On the multivariate Laplace distribu-

tion. IEEE Signal Processing Lett., 13(5):300–303, May 2006.

[Eks73] M.P. Ekstrom. A spectral characterization of the ill-conditioning in nu-

merical deconvolution. IEEE Trans. Audio Electroacoust., AU-21(4):344–

348, August 1973.

[Elk01] G.W. Elko. Spatial coherence functions for differential microphones in

isotropic noise fields. In M. Brandstein and D. Ward, editors, Micro-

phone Arrays: Signal Processing Techniques and Applications, pages 61–

85. Springer, Berlin, 2001.

[EM84] Y. Ephraim and D. Malah. Speech enhancement using a minimum

mean-square error short-time spectral amplitude estimator. IEEE Trans.

Acoust., Speech, Signal Processing, ASSP-32(6):1109–1121, December

1984.

[EMV01] G. Enzner, R. Martin, and P. Vary. On spectral estimation of resid-

ual echo in hands-free telephony. In Proc. Int. Workshop on Acoustic



Bibliography 249

Echo and Noise Control (IWAENC), pages 211–214, Darmstadt, Ger-

many, September 2001.

[EMV02a] G. Enzner, R. Martin, and P. Vary. Partitioned residual echo power esti-

mation for frequency-domain acoustic echo cancellation and postfiltering.

Eur. Trans. Telecommun., 13(2):103–114, 2002.

[EMV02b] G. Enzner, R. Martin, and P. Vary. Unbiased residual echo power estima-

tion for hands-free telephony. In Proc. IEEE Int. Conf. Acoustics, Speech,

Signal Processing (ICASSP), volume 2, pages 1893–1896, Orlando, FL,

USA, May 2002.

[EP06] D. Erdogmus and J.C. Principe. From linear adaptive filtering to non-

linear information processing. IEEE Signal Processing Magazine, pages

14–33, November 2006.

[ET95] Y. Ephraim and H.L. Van Trees. A signal subspace approach for speech

enhancement. IEEE Trans. Speech Audio Processing, 3(4):251–266, July

1995.

[Eyr30] C.F. Eyring. Reverberation time in “dead” rooms. J. Acoust. Soc. Amer.,

1(2A):217–241, January 1930.

[Fle81] R. Fletcher. Practical Methods of Optimization. Volume 2: Constrained

Optimization. John Wiley & Sons, 1981.

[FP01a] C.L. Fancourt and L. Parra. The coherence function in blind source sep-

aration of convolutive mixtures of non-stationary signals. In Proc. IEEE

Int. Workshop Neural Networks for Signal Processing (NNSP), pages 303–

312, 2001.

[FP01b] C.L. Fancourt and L. Parra. The generalized sidelobe decorrelator. In

IEEE Workshop on Applications of Signal Processing to Audio and Acous-

tics (WASPAA), October 2001.

[GC88] H. Gish and D. Cochran. Generalized coherence. In Proc. IEEE Int.

Conf. Acoustics, Speech, Signal Processing (ICASSP), volume 5, pages

2745–2748, April 1988.

[GC95] S. Van Gerven and D. Van Compernolle. Signal separation by symmet-

ric adaptive decorrelation: Stability, convergence and uniqueness. IEEE

Trans. Signal Processing, 43(7):1602–1612, July 1995.



250 Bibliography

[GJ82] L.J. Griffiths and C.W. Jim. An alternative approach to linearly con-

strained adaptive beamforming. IEEE Trans. on Antennas and Propaga-

tion, AP-30(1):27–34, January 1982.

[GL84] D.W. Griffin and J.S. Lim. Signal estimation from modified short-time

fourier transform. IEEE Trans. Acoust., Speech, Signal Processing, ASSP-

32(2):236–243, April 1984.

[GL96] G.H. Golub and C.F. Van Loan. Matrix Computations. The John Hopkins

University Press, Baltimore, ML, 3rd edition, 1996.
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