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Recently, interest has turned to the mathematical concept of chaos as an explanation for a variety of
complex processes in nature. Chaotic systems, among other characteristics, can produce what
appears to be random output. Another property of chaotic systems is that they may exhibit abrupt
intermittent transitions between highly ordered and disordered states. Because of this property, it is
hypothesized that epilepsy may be an example of chaos. In this review, some of our basic concepts
of nonlinear dynamics and chaos are illustrated. Mathematical techniques developed to study the
properties of nonlinear dynamical systems are outlined. Finally, the results of applying these
techniques to the study of human epilepsy are discussed. The application of these powerful and
novel mathematical techniques to analysis of the electroencephalogram has provided now insights
into the epileptogenic process and may have considerable utility in the diagnosis and treatment of
epilepsy. The Neuroscientist 2:118-126, 1996
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Epilepsy isagroup of disorders charaderized by reaurrent paroxysmal eledricd discharges of the ceebral
cortex that result in intermittent disturbances of brain function. The bulk of reseach into human epil epsy
has emphasized the description and caegorization of the dinicd and eledroencephal ographic feaures of
seizures, defining clinicd features of various epileptic syndromes, and correlating clinicd and
eledroencephal ographic feaures with anatomicd lesions of the brain or with genetic disorders. However,
this research has not addressed the essential feaure of epil epsy, which is the fad that seizures come and go
over time - that seizures occur intermittently. The intermittency of seizuresis difficult to explain acwrding
to the mncepts of linea dynamics becaise in linea systems sudden transitions in state occur only in
response to external input. In human epilepsy, however, external triggers have been observed only in
relatively rare syndromes, such as photoconvulsive eilepsy, or in reflex epilepsies, such as realing
epilepsy. For the vast mgjority of epilepsies, spedfic environmental triggers have not been identified. In
contrast to linea systems, nonlinea systems can exhibit a state of intermittency without any external
trigger. Therefore, a promising avenue for research into epil eptogenesis is within the domain of nonlinea
systems.

Nonlinear Systems and Epilepsy

Intermittency is a dynamicd phenomenon (see Box 1 for Glossry). The study of dynamics requires a
mathematicd approach. Given the complexity of the brain and our incomplete knowledge of it, the
guantative analysis and mathematicd modeling of normal and abnormal brain functions are formidable
tasks. Intuitively, one might assume that complex systems, such as the brain, am governed by many
variables which, in turn, would require mathematicd models of high dimension (many variables), which
may not be pradicd. On the other hand, simpler, deterministic nonlinea models of low dimension (few
variables) can produce highly complex and even seemingly random behavior, such as that observed in
complex systems existing in nature (1-9). For example, Figure 1 depicts a complicated signal generated by
alow-dimensional nonlinea system (Box 2), which seeks to model global changes of the @mosphere using
only threevariables (10). It is concevable that the il eptogenic brain may behave & a nonlinea systemin
which spedfic global adivities are amenable to mathematicd modeling.

Nonlinea systems can be modeled by sets of differential or difference ejuations where danges
over time ae functions of one or more variables taken to powers different from one. An example is the
logistic difference euation where eah subsequent value of the variable x is a function of the square of the
previous value:
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where a is the ontrol parameter and n represents discrete steps in time. An interesting property of the
logistic equation, as well as of many nonlinea deterministic systems, is that for certain values of the
control parameters the system behaves chaoticdly - such a deterministic system (see Glossary) can
generate output that looks random. The forma mathematical definition of chaos is beyond the scope of this
article. However, certain properties of chaotic systems can be described qualitatively. For example, chaotic
systems exhibit strong dependence on initial conditions. In the can of the logistic equation, small
differences in the initia value x;, will result in big differences in the subsequent values x, over time. This
strong dependence on initial conditions means that predicting the long-term behavior of chaotic systemsis
difficult. Another important property of chaotic systems is the aility to show self-organizaion - to evolve
toward ordered temporal and spatial patterns (11). The transition from chaotic to ordered behavior, or the
reverse, can occur as an abrupt phase transition with a minute change in the wntrol parameters. As we shall
see subsequently, abrupt phase transitions and self-organizing behavior have been demonstrated in
eledroencephal ographs (EEGS) from the epil eptogenic foci in humans.

Historicdly, the mathematicd models used to explore brain function have been applied to
individual neurons or to relatively small networks of neurons. In the cae of human epil eptogenesis, our
understanding of the underlying neuronal mechanisms and circuitry is insufficient It is premature,
therefore, to formulate mathematicd models on which to base a onclusive dynamical analyss.
Mathematicd modeling of ssimpler neuronal systems, however, has sicceealed. For example, Freeman and
colleggues (12, 13) have developed mathematical models for EEG signals generated by the olfadory
system in rabbits. These models exhibit most of the important dynamicd feaures observed in the EEG
from extracdlular microeledrode reardings in the rabhit olfadory bulb, including transtions to states
reminiscent of epileptic seizures. These investigators have suggested that the leaning and recognition of
novel odars, as well as the recdl of familiar odars, can be explained through the chaotic dynamics of the
olfadory cortex's eledricd adivity. Another group, Traub and colleagues (14, 15), have developed
nonlinea models for CA1 and CA3 hippocampal neurons. Their model incorporates many of the known
anatomical and physiologicd feaures of the rat hippocampus and reproduces many of the observed
phenomena in eledricd recordings from the rat hippacampus. The degreeto which this nonlinea model
can simulate faithfully the full range of the dynamicd features of the hippocampus remains to be
determined.

An alternative to mathematicd modeling, based an known properties of a system's components
and their connedions, isto oltain empiricd measures of the behavior of the system as a whale over time.
This maaoscopic goproach is particularly useful for biologicd systems, such as the brain, where exad
knowledge of the system is lacking. Analysis along these lines can provide insight into the global
dynamicd properties of the system. After such information is extraded, it may be posshble to derive useful
empiricd models. The recent application of this approac to the analysis of EEG recordings in epil eptic
patients has provided exciting discoveries regarding epileptogenesis. These observations will be
summarized in this review.

Methodsfor Nonlinear Dynamical Analysis- Application to the EEG

The EEG can be conceptuali zed as a series of numericd values (voltages) over time. Such a seriesis cdled
a "time series." The standard methods for time series analysis (e.g., power analysis, linea orthogonal
transforms, and parametric linea modeling) not only fail to deted the aiticd fedures of a time series
generated by an autonomous (no external input) nonlinea system, but may falsely suggest that most of the
series is random noise (16). In recent yeas, the methods developed for the dynamicd analysis of complex
series have been applied to the investigation of signals produced by red hiologicd systems, such as the
EEG.

The statisticd properties of the EEG depend on both time and space(17). The charaderistics of
the EEG, such a the existence of limit cycles (a adivity), instances of bursting behavior (during light
de), jump phenomena (hysteresis), amplitude-dependent frequencies (the smaller the amplitude, the
higher the EEG frequency), and frequency harmonics (e.g., under photic driving conditi ons), are among the
long caalog of typicd properties that nonlinea systems can exhibit (18). Several researchers have provided
evidence that the EEG is a nonlinea signal with deterministic and, perhaps, chaotic properties (12, 13, 19-
25). Other groups have pointed out charaderistic dynamicad properties of EEG corresponding to spedfic
normal and pathologicd states, such as mental tasks, dee, dementia, and coma (see[26] for areview).
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Figure 1: Output of the Lorenz g/stem of equations Box 2) with control parameters d = 16.0, r = 45.92, and b = 4.0.
Values for Y (vertical axis) are plotted as a function of time (horizontal axis). The resulting time series is chaotic. This
figureillustrates that a simple, low-dimensional nonlinear system can generate a complexand chacatic signal.

A well-establi shed technique for visualizing the dynamicd behavior of a multidimensional system
is to generate aphase space portrait of the system. A phase space portrait is creaed by treding eah
time-dependent variable of the system as a component of a vedor in the phase space Each vedor
represents an instantaneous gate of the system. These time-dependent vedors are plotted sequentially in the
phase spaceto represent the evolution of the state of the system over time. For many systems, this graphic
display creaes an objed confined over time to a subregion of the phase space Such subregions of the
phase space ae cdled “attradors.” The geometricd properties of attradors provide information about the
global state of the system.

One of the problems in analyzing muitidimensional systems in nature is knowing which
observable (variable of the system that can be measured) to analyze Experimental constraints may limit the
number of observables that can be obtained. It turns out that when the behavior over time of the variables
of the system is related, which is always the cae when a system exists, the analysis of a single observable
can provide information about all of the related variables of the system. In principle, through the method o
delays (Box 3) described by Padkard et al. (27) and Takens (28), the sampling of a single variable of a
system over time can reproduce the atradors of a system in the phase space To ill ustrate this point, the
Lorenz atrador isdepicted in Figure 2, showing that the states of the system over time ae cnfined within
a mask-like structure (the dtracor) in the phase space (Fig. 2a) and that the method o delays well
approximates the dtractor in the phase space(Fig. 2b).

Thistechnique for the reconstruction of the phase spacefrom one observable can be used for more
complex signals, such asthe EEG. In Figure 3, a phase spaceportrait has been generated from anictal EEG
signal recorded from a single dedrode on the temporal cortex. The charaderistics of the formed epil eptic
attrador are typicd of al of the seizures we have analyzed - trgjedories are moving in and out of the main
body of do attrador. In Figure 3, the excursions correspond to spikes.

The geometrica properties of the phase portrait of a system can be expressed quantitatively using
measures that reflect the dynamics of the system. The mmplexity of an attrador is refleded by its
dimension. The larger the dimension of an attrador, the more wmplicated it appeas in the phase space It
is important to distinguish between the embedding dimension and the dimension of an attracor. The
embedding dimension p - always a positive integer - is the dimension of the phase spacethat contains the
attractor. On the other hand, the attracor dimension D may be anoninteger; it is diredly related to the
number of variables of the system and inversely related to the existing coupling among them. For example,
with the Lorenz attrador, three variables are needed to spedfy each state of the system. Hence a phase
spaceof p = 3 is nealed to embed every state of the system. The dimension D of the Lorenz attrador itself,
however, is ~2.05 —lessthan 1 — kecause the three variables that define the Lorenz attradtor are not



independent; rather, they are nonlinealy coupled through the set of the three differential equations that
define the system.
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Figure 2: The states of the Lorenz g/stem of equations in the phase space (a). The result, a chaotic attractor in the
phase space is projeded orto the YZ plane. In (b), the phase space plot was generated from a single output variable
Y(t), using the method of delays (Box 3). A time lag 1 of 3 was used. The resulting attractor is a good approximation of
the original attractor in (a). Thisfigure illustrates the point that it is possble to approximate an attractor generated by
a multidimensional system from the time series data of a single \ariable (observable).

According to Takens (28), the embedding dimension p should be & least equal to 2D + | for a
corred embedding of an attracor in the phase space Of the many different methods used to approximate D
of an objed in the phase space ead has its own pradicd problems (26, 29, 30). The measure used most
often to approximate D is the arrelation dimension v. Methods for cdculating the correlation dimension
from experimental data have been described (31, 32).

A chaotic atrador is an attrador where, on the average, orbits originating from neaby ictal
conditions diverge exponentialy fast (expansion procesy; they stay close together only for a short time. If
these orbits belong to an attractor of finite size, they must fold badk into it as time evolves (folding
process. The result is alayered structure (7). The measures that quantify the dhaoticity of an attrador are
the Kolmogorov entropy and the Lyapunov exponents (33-35). For an attrador to be caotic, the
Kolmogorov entropy or at least one of the Lyapunov exponents should be positive. The Kolmogorov (Sinai
or metric) entropy (K) measures the uncertainty about the future state of the system in the phase space
given information about its previous dates (positions) in the phase space The Lyspunov exponents (Ls)
measure the average rate of expansion and folding that occurs along different locd diredions within an
attrador in the phase space If the phase spaceis of p dmensions, we @an estimate theoreticdly up to p
Lyapunov exponents. Methods for cdculating these dynamicd measures from experimental data have been
published (36-39). The estimation of the largest Lyapunov exponent (L) in a daotic system has been
shown to be more reliable and reproducible than the estimation of the remaining exponents (29, 40).

Another useful set of dynamicd measures are the time dependenceindices (8), developed by Savit
and Green (41, 42). Time dependence indices measure, on the average, the dependencies between the
components of the vedors in the phase space When the method o time delays is used, these dependencies
are trandated into dependencies between values of the origina signal at successive points in time,
separated by a time lag, r. If the phase spaceis of p dmensions, we @n estimate theoreticdly up to p-1



dependence indices. Applicaions of these methods are discussed by Wu et a. (43), lasemidis et a. (44),
and Savit and Green (41, 42).

Dynamical Studies|n Epilepsy

Dynamical analysis of EEG recordings from patients with epilepsy has provided novel perspedives
regarding epil eptogenesis. Reeent studies have provided evidence that epileptic seizures represent a
nonlinea chaotic process The first evidence for chaos in human epil epsy was provided by Babloyanz and
Destexhe (45). They found that the EEG signal during a petit mal epil eptic seizure wuld be tharaderized
by low-dimensional chaos, in that the dtrador appeaed to have alow fradal dimension (between 2 and 3)
and a positive Lyapunov exponent. Our group's gudies of partial seizures of tempora lobe origin (46)
demonstrated the presence of limit cycles in the seizure discharges rearded from subdural eledrodes
overlying the eoileptogenic focus. The limit cycles are charaderistic of nonlinea systems. We dso found
evidence for low-dimensional chaos in partia seizure discharges of mesial temporal origin using an
embedding dimension p of 7 (low-dimensional attradors with a frada dimension between 2 and 3, and a
pasitive maximum Lyapunov exponent of about 2 hits/sec) (47, 48). Chaotic dtradors are usually of fradal
dimension and contain at least one positive Lyapunov exponent. Frank am co-workers (49) reported
evidencefor chaotic dynamicsin an EEG during a mixed generali zed seizure.

Some aithors have found only weak nonlineaities in the EEG and have postulated that its
dynamicd properties may be explained by the theory of linea stochastic processes (50-52). In EEGs
recorded from patients with temporal lobe eoilepsy, however, we have found evidence for nonlineaities
that could not be explained by linea deterministic or stochastic dynamics (Casdagli et al., manuscript in
preparation). In thiswork preictal, (before seizures), ictal (during seizures), and patictal (immediately after
seizures) EEG signals were reaorded from bil aterally placed subdural and depth eledrodesin a patient with
medicdly refradory complex partial seizures of mesial temporal origin. The most striking nonlineaities
were observed in the signals generated by the epileptogenic focus and in the signals recorded from
anatomical regions that generated interictal spikes. Further evidence that nonlinea deterministic processes
underlie the occurrence of seizures was obtained by analyzing the time intervals between individual
seizures, using the 8; measures (44). Taken together, these studies suggest that seizures are generated by
deterministic nonlinea chaotic systems; thus, the occurrence of epileptic seizures may represent the
intermittent phase transitions charaderistic of such systems.
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Figure 3: The plot shownin (a) isa 14secnd epoch of EEG at the onset of a seizure originating from the left temporal
cortex X(t) (voltage in microvolts) is plotted against time (seconds). Projeded orto two dimensions, (b) is a phase
spacerepresentation d the portion between A and B of theictal shown in (a).

Our group went on to demonstrate that in temporal lobe il epsy, the dynamical properties of the
preictal, ictal, and pastictal states are distinctly different and can be defined quantitatively. This result was
derived by as analyzing EEG recordings from subdural and depth eledrodes. As an example, the maximum
Lyapunov exponent over time profiles for one seizure in one patient as shown in Figure 4. The important
observation, subsequently confirmed in other patients, is that the chaoticity of the signal (refleded by the
value of L) Was highest during the postictal state, lowest during the seizure discharge, and intermediate
in the preictal state. Also, in al of the ases gudied, the charaderistic drop in the value of the L
exponent at the time of the seizure's onset occurred first at eledrode sites located where the seizure
discharge originated. Thus, from a dynamica perspedive, the onset of a seizure represents a spatiotemporal
transition from a complex to a less complex (more ordered) state. It is likely that the more ordered ictal
EEG signa reflects the synchronized rhythmic firing pattern of neurons participating in the seizure
discharge.
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Figure 4: This figure depicts values for L, (vertical axis) versus time (horizontal axis) derived from EEG signals
recrded from eight different subdural and depth eledrodes placed bilaterally. This ssgment of the recording began
~17 minutes before the onset of the seizure and continues for ~15 minutes after the seizure. Each line represents Ly
values from a single dedrode site. Note that for each site, L. values are lowest during the seizure, highest during the
immediate postictal period, and intermediate in the preictal period. Also haethat at the beginning of the seizure, there

is a sudden drop in L.y values for all eledrodes. This plot demonstrates me of the daracteristic dynamical
differences among preictal, ictal, and pctictal states.
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Figure 5: In (a) Ly Values versus time are plotted for signals recorded from left (black line) and right (blue line)
orbitofrontal eledrode sites. The recrding was obtained in a pdient with seizures of left mesial temporal origin. The
plot begins ~12 minutes before the onset of the seizure (paint B). At point B, there is a characteristic ictal dropin Lyux
at both eledrode sites. Before the seizure, there are intermittent small drops in L. at both sites. In this case,
entrainment of L for the two eledrode sites has begun 8 minutes before the seizure (point A). Postictally, the sites
are disentrained with resped to L values and phases. In (b), L.y versus time plots were derived from EEG signals




recorded from bilaterally placed subtemporal eledrode sites in the same patient. Preictal phase locking of the L
oscill ations is already evdent 10 minutes before the seizure. Episodic preictal drops also are present in these plots.
Postictally, L oscill ations in the two eledrode sites are out of phase. Episodic drops in L and phase locking of
Lnx are characteristic features of the preictal state in invasive EEG rerdings from patients with temporal lobe
epil epsy.

How the phase transition from the preictal state to theictal state occurs has recantly been explored.
Traditionally, the investigation of physiologicd disturbances in epil eptic patients has relied upon the visual
inspedion of the electrographic trace ad analysis via the traditional techniques of signal processng, such
as Fourier analysis and coherence measures (17). The detedion of patentially epil eptogenic foci from the
EEG of epil eptic patients has depended upon the recognition of charaderistic transient waveforms, such as
spikes and sharp waves, in the interictal or ictal periods (53-55). Reseach along these cnventional hues of
analysis has unsuccessfully sought to deted preaursors of the epileptic seizure (56, 54). Such approaches
have generated descriptive information regarding interictal and ictal epileptogenic physiologicd
phenomena, but they were not able to explain why seizures occur.

Perhaps the most exciting discovery to emerge from dynamicd analysis of the EEG in temporal
lobe eilepsy is that seizures are precaled by dynamicd changes in the EEG signal occurring several
minutes before the seizure. By analyzing the L values over time for signals recorded from subdural
eledrodes placel over the epil eptogenic temporal lobe ad regions of ipsilateral frontal and perietal cortex,
our group discovered that beginning several minutes before seizure onset, regions of the aterior temporal
cortex and, later, regions more distant from the focus beaome phase locked with resped to their content of
chaos. This observation indicated that, several minutes before aseizure, large regions of the mrtex became
dynamicdly entrained (58-60). The same entrainment process was demonstrated subsequently in
recordings from hippocampal depth eledrodes (61). This phenomenon could not be deteded by visual
inspedion of the original EEG signal or by other more traditi onal methods of signal processng. Examples
of preictal entrainment are illustrated in Figures 5 and 6. The long-term nature of the process (order of
minutes) indicaes that it may be possble to predict the onset of a seizure in time to intervene with abortive
therapy.

Another important finding is that, in the preictal states, the dynamicd properties of the EEG
recorded from the epileptogenic hippacampus differ from those of the signal recorded from the
contralateral hippocampus. Preliminary studies in a few of our patients suggest that this difference may
hold true throughout much of the interictal period. We found that the epil eptogenic hippocampus exhibited
amore ordered and lesscomplex behavior interictally and preictally than the more normal hippocampus did
(62). These findings are ill ustrated in Figure 7, which compares the Lyapunov profiles obtained from the
epil eptogenic and the more normal contralateral hippocampus, and in Figure 8, which compares §; profiles
between the two hemispheres, demonstrating that the time dependency structure of the EEG signal obtained
from the eoileptogenic hippacampus differs grikingly from that recorded from the normal hippocampus.
Thus, in the preictal period, the dynamicd state of the eoileptogenic hippacampus is distinctly different
from that of the more normal contralateral hippocampus. We speaulate that this altered dynamicd state
renders the gil eptogenic hippacampus more susceptible to an abrupt phase transition to the ictal state. We
further hypothesize that the @nditions of spatiotempora dynamicd entrainment described above fadlitate
thistransition.
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Figure 6: L versus time plots, obtained from EEG signals recrded from the left anterior hippocampus (blue line)
and the epil eptogenic right anterior temporal hippocampus (black line), are shown for a period beginning ~60 minutes
before the seizure’ s onset (point B). Note that oscil lations of L, for the two eledrode sites are approximately in phase
but have different mean values until ~35 minutes before the seizure (point A). Subsequently, the two L, 0scillations
have similar mean values (entrainment noted as in values). This preictal entrainment appears to represent a transition
fromtheinterictal to theictal state. Note that in the imnediate postictal period (noted as out of values), the mean value
of Ly for the epileptogenic dedrode site is substantially lower than that of the more normal contralateral

hippocampus.
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Figure 7: L vVersus time profiles for signals recorded from the epil eptogenic left hippocampus (black line) and a
homologous eledrode site in the more normal right hippocampus (blue line) are compared for a period of ~1 hour
before the seizure. The typical ictal drop in L Occurs at both eledrode sites (point C). Preictally, oscill ations in Ly
are out of phase (e.g., points A) until ~10 minutes (point B) before the seizure. After point B, L oscillations for the
two eledrodes are phase locked, and the mean values are more similar for each eledrode site. Note that for the entire
1 hour preictal period, Loy iS consistently lower in the signal recorded from the epil eptogenic hippocampus.
Postictally, L profiles for the two sites are out of phase. The lower preictal values of L,y Obtained from signals
generated by the epil eptogeni ¢ hippocampus have been observed in almost all cases examined thus far.

Conclusions and Prospects

The quantitative measures developed for the study of complex nonlinear systems hold promise for
advancing our understanding of the dynamicd processes underlying the occurrence of epileptic seizures.
These techniques, which have the alvantage of not depending on any models of normal or epileptic brain
function can deted information that is inacessble by more traditional linea and spedral methods of signal
analysis. The aimulative evidence, based on the recent applicaion of these powerful mathematica
techniques, suppats the anclusion that the EEG is generated by mechanisms that obey nonlinea
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deterministic laws. There is drong evidence that these processs are chaotic. Further elucidation of these
dynamicd processes of epil eptogenic brain function will be necessary before redi stic mathematicd models
beome paosdble. Then, such nonlinea models could be employed to addressquestions involving the basis
for the intermittency of epil eptic seizures.

The observation that the signals from epileptogenic regions have different dynamics from
nonepil eptogenic regions, even during the interictal state, may be of more immediate pradicd utility for
locdization of seizure foci. Currently, clinicians rely primarily onictal recordings for diagnostic evaluation
and for presurgicd locdizaion of the seizure onset zone The sampling of a sufficient number of seizures
requires recordings over many days. If the seizure focus can be identified through its interictal dynamicd
properties, however, the diagnostic and presurgicd recording time may be reduced dramaticdly and the
epil eptogenic focus may be locdized more reliably.

Finally, we have discovered that the evolution of a seizure involves not just two states -- interictal
and ictal -- but also a preictal transitional state that dynamicadly differs from the other two. This finding has
baoth scientific and clinicd implicaions. One @n anticipate that a more detail ed and refined understanding
of this dynamical phenomenon could shed light on fundamental questions, including why seizures begin
when and where they do. As a result, it may be posdble in the future to deted the preictal state with
implanted devices that could then prevent the impending seizure through physiological or pharmaalogicad
interventions. This sizure detedion, intervention, and prevention would be an example of controlling
chaos. The mntrol of chaotic systems is an exciting rew field of study (63). Evidence that such
interventions may be possble in epilepsy has been provided recently by in vitro experiments in the
hippacampal dlice preparation by Schiff and coll eagues (64). These investigators demonstrated that chaotic
dynamics in hippacampal dlice preparations exist and can be cntrolled by low voltage dedricd stimuli
administered at properly timed intervals.
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Figure 8: Time dependency (&) plots versus time for an EEG sample beginning 1 hour before a seizure are plotted for
signals reacorded from the left (epil eptogenic) hippocampus (black line) and the more normal contralateral
hippocampus (blue line); (a) illustrates typical profiles for &, (first lag dependency). In the preictal period, J; values
are onsistently lower for EEG signals generated by the goileptogenic hippocampus. During the seizure, &, values drop
for both eledrode sites. Immediately after the seizure, &, values for both eledrodes are higher than preictal or ictal
values. The plot in (b) depicts J, versus time for the same EEG sample used in (a). The J, values are mnsistently
higher for preictal and postictal signals generated by the il eptogenic hippocampus. Together with the plotsin Figure
7, these plots ill ustrate the finding that in temporal lobe eilepsy of unilateral mesial temporal origin, dynamical
properties of the epileptogenic hippocampus differ quantitativdy from those of the more normal contralateral
hippocampus during the preictal and postictal states.



11

Our overal working hypotheses are that dynamica charaderistics of eledricd signals generated
by the epileptogenic hippacampus differ from those generated by similar but hedthy regions (e.g., the
contralateral hippocampus), that these signals can carry dynamicd signatures of an impending epil eptic
seizure, and that the charaderistics of these signals can be quantified using nonlinea dynamicd techniques.
A reasonable model, based upon studies to date, is that: 1) because of the pathologica changes in the
neuronal makeup and damage to the neuronal connedions within the hippacampus, this region of the brain
is susceptible to spontaneous phase transitions to more ordered states, and 2) the epileptogenic
hippacampus initiates or participates in a seizure if and only if conditions of a longterm (order of several
minutes) spatiotemporal dynamicd entrainment of a aiticd massof interconneded regions of temporal and
frontal cortex are met. Reseach direded toward further charaderizaion of the process of transition
between the interictal and ictal states might lead to better understanding of epil eptogenesis.

Box 1: Glossary

Dynamical: Refersto changesin the state of a system over time.

Deterministic System: A system in which future states can be predicted if one knows theinitial conditions
and mathematicd rules (equations) that govern its behavior over time.

Sochastic System: A system for which future states can be determined orly probabili sticdly, even if one
knows the initial conditions and the equations that govern its behavior over time.

Nonlinear System: A system in which the states change over time in acordancewith differentia or
difference euations that involve one or more variables taken to a power >1. Such systems, under certain
conditi ons, exhibit sensitivity to initial conditi ons, self-organizing behavior, and intermittency.

Chacs: Dynamical state of a deterministic nonlinea system that looks gochastic. By definition, in a chaotic
state, at least one pasitive Lyapunos exponent exists.

Phase Space Representation d the states of a system in ageometricd space(also cdled “state space”) as
they evolve with time.

Attractors: Regions within the phase spaceto which the states of the system evolve and remain confined
until the structure of the system itself changes or an external input isimposed.

Dimension: A numericd value related to the number of “axes” required to construct the phase space
(embedding dimension) or related to the number of variables required to span an attrador within the
phase space(dimension d the dtrador). When the dimension d the atrador isnot an integer it is cdled
“fradal.”

Lyapunov Exponent: A numericd value that describes the average rate a which the trajedories of adjacent
states in the phase spacediverge or converge over time. An indicator of how chaotic asystemiis.

Kolmogorov Entropy: A numericd vaueindicating the uncertainty of predicting the state of asystem at a
subsequent point in time. A global indicaor of how chaotic asystemis.

Time Dependence A quantity that indicaes the strength of the relationship between apoint in atime series
and prior pointsin the series.

Intermittency. The tendency for a given pattern of behavior (state) to come and go over time.

Box 2: Lorenz System

X=0[y-x)

y=xr-z-y
z=x[y-b[z

The Lorenz System is a model for air convedion caused by heaing and cooling in the @mosphere (7). This smple,
nonlinea system generates chaotic output for certain values of the cntrol parameters (3, r, and b). Figure 1 ill ustrates
the complex time series generated by this system for & = 16.0, r = 45.92, and b = 4.0. Figure 2 ill ustrates the phase
spacerepresentation d the signal. In the phase space an attrador (cdled the “Lorenz” attrador) is formed, and all
future states of the system are confined within it (10).

Box 3: Method of Delays
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The method d delaysis one way of representing states in the phase space In this representation, the dynamicd state &
ead pdnt in time is represented by a vedor X(t) in the phase space The cmmporents of the vedor are generated by
taking successve points of the original time series, x(t), separated by afinal time delay, T:

X(@) = [X(O), X(t - 1), .. XE— (p—1) [T)]

Where x(t) is the origina time series, X(t) is the state-vedor in the phase space atimet, and pis the embedding
dimension d the recnstructed phase space Information can be extraded only abou variables of the system that are
couped with the observable x(t). Information about a variable that is not coupled through a system’s equations with
x(t) may be obtained by increasing the number of observables.
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