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Recently, interest has turned to the mathematical concept of chaos as an explanation for a variety of
complex processes in nature. Chaotic systems, among other characteristics, can produce what
appears to be random output. Another property of chaotic systems is that they may exhibit abrupt
intermittent transitions between highly ordered and disordered states. Because of this property, it is
hypothesized that epilepsy may be an example of chaos. In this review, some of our basic concepts
of nonlinear dynamics and chaos are illustrated. Mathematical techniques developed to study the
properties of nonlinear dynamical systems are outlined. Finally, the results of applying these
techniques to the study of human epilepsy are discussed. The application of these powerful and
novel mathematical techniques to analysis of the electroencephalogram has provided now insights
into the epileptogenic process and may have considerable utility in the diagnosis and treatment of
epilepsy. The Neuroscientist 2:118-126, 1996
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Epilepsy is a group of disorders characterized by recurrent paroxysmal electrical discharges of the cerebral
cortex that result in intermittent disturbances of brain function. The bulk of research into human epilepsy
has emphasized the description and categorization of the clinical and electroencephalographic features of
seizures, defining clinical features of various epileptic syndromes, and correlating clinical and
electroencephalographic features with anatomical lesions of the brain or with genetic disorders. However,
this research has not addressed the essential feature of epilepsy, which is the fact that seizures come and go
over time - that seizures occur intermittently. The intermittency of seizures is difficult to explain according
to the concepts of linear dynamics because in linear systems sudden transitions in state occur only in
response to external input. In human epilepsy, however, external triggers have been observed only in
relatively rare syndromes, such as photoconvulsive epilepsy, or in reflex epilepsies, such as reading
epilepsy. For the vast majority of epilepsies, specific environmental triggers have not been identified. In
contrast to linear systems, nonlinear systems can exhibit a state of intermittency without any external
trigger. Therefore, a promising avenue for research into epileptogenesis is within the domain of nonlinear
systems.

Nonlinear Systems and Epilepsy

Intermittency is a dynamical phenomenon (see Box 1 for Glossary). The study of dynamics requires a
mathematical approach. Given the complexity of the brain and our incomplete knowledge of it, the
quantative analysis and mathematical modeling of normal and abnormal brain functions are formidable
tasks. Intuitively, one might assume that complex systems, such as the brain, am governed by many
variables which, in turn, would require mathematical models of high dimension (many variables), which
may not be practical. On the other hand, simpler, deterministic nonlinear models of low dimension (few
variables) can produce highly complex and even seemingly random behavior, such as that observed in
complex systems existing in nature (1-9). For example, Figure 1 depicts a complicated signal generated by
a low-dimensional nonlinear system (Box 2), which seeks to model global changes of the atmosphere using
only three variables (10). It is conceivable that the epileptogenic brain may behave as a nonlinear system in
which specific global activities are amenable to mathematical modeling.

Nonlinear systems can be modeled by sets of differential or difference equations where changes
over time are functions of one or more variables taken to powers different from one. An example is the
logistic difference equation where each subsequent value of the variable x is a function of the square of the
previous value:

Xn+1 = α ⋅ Xn ⋅ (1 – Xn)
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where α is the control parameter and n represents discrete steps in time. An interesting property of the
logistic equation, as well as of many nonlinear deterministic systems, is that for certain values of the
control parameters the system behaves chaotically - such a deterministic system (see Glossary) can
generate output that looks random. The formal mathematical definition of chaos is beyond the scope of this
article. However, certain properties of chaotic systems can be described qualitatively. For example, chaotic
systems exhibit strong dependence on initial conditions. In the can of the logistic equation, small
differences in the initial value x1, will result in big differences in the subsequent values xn over time. This
strong dependence on initial conditions means that predicting the long-term behavior of chaotic systems is
diff icult. Another important property of chaotic systems is the abili ty to show self-organization - to evolve
toward ordered temporal and spatial patterns (11). The transition from chaotic to ordered behavior, or the
reverse, can occur as an abrupt phase transition with a minute change in the control parameters. As we shall
see subsequently, abrupt phase transitions and self-organizing behavior have been demonstrated in
electroencephalographs (EEGs) from the epileptogenic foci in humans.

Historically, the mathematical models used to explore brain function have been applied to
individual neurons or to relatively small networks of neurons. In the case of human epileptogenesis, our
understanding of the underlying neuronal mechanisms and circuitry is insufficient It is premature,
therefore, to formulate mathematical models on which to base a conclusive dynamical analysis.
Mathematical modeling of simpler neuronal systems, however, has succeeded. For example, Freeman and
colleagues (12, 13) have developed mathematical models for EEG signals generated by the olfactory
system in rabbits. These models exhibit most of the important dynamical features observed in the EEG
from extracellular microelectrode recordings in the rabbit olfactory bulb, including transitions to states
reminiscent of epileptic seizures. These investigators have suggested that the learning and recognition of
novel odors, as well as the recall of famili ar odors, can be explained through the chaotic dynamics of the
olfactory cortex's electrical activity. Another group, Traub and colleagues (14, 15), have developed
nonlinear models for CA1 and CA3 hippocampal neurons. Their model incorporates many of the known
anatomical and physiological features of the rat hippocampus and reproduces many of the observed
phenomena in electrical recordings from the rat hippocampus. The degree to which this nonlinear model
can simulate faithfully the full range of the dynamical features of the hippocampus remains to be
determined.

An alternative to mathematical modeling, based an known properties of a system's components
and their connections, is to obtain empirical measures of the behavior of the system as a whole over time.
This macroscopic approach is particularly useful for biological systems, such as the brain, where exact
knowledge of the system is lacking. Analysis along these lines can provide insight into the global
dynamical properties of the system. After such information is extracted, it may be possible to derive useful
empirical models. The recent application of this approach to the analysis of EEG recordings in epileptic
patients has provided exciting discoveries regarding epileptogenesis. These observations will be
summarized in this review.

Methods for Nonlinear Dynamical Analysis - Application to the EEG

The EEG can be conceptualized as a series of numerical values (voltages) over time. Such a series is called
a "time series." The standard methods for time series analysis (e.g., power analysis, linear orthogonal
transforms, and parametric linear modeling) not only fail to detect the critical features of a time series
generated by an autonomous (no external input) nonlinear system, but may falsely suggest that most of the
series is random noise (16). In recent years, the methods developed for the dynamical analysis of complex
series have been applied to the investigation of signals produced by red biological systems, such as the
EEG.

The statistical properties of the EEG depend on both time and space (17). The characteristics of
the EEG, such a the existence of limit cycles (α activity), instances of bursting behavior (during light
sleep), jump phenomena (hysteresis), amplitude-dependent frequencies (the smaller the ampli tude, the
higher the EEG frequency), and frequency harmonics (e.g., under photic driving conditions), are among the
long catalog of typical properties that nonlinear systems can exhibit (18). Several researchers have provided
evidence that the EEG is a nonlinear signal with deterministic and, perhaps, chaotic properties (12, 13, 19-
25). Other groups have pointed out characteristic dynamical properties of EEG corresponding to specific
normal and pathological states, such as mental tasks, sleep, dementia, and coma (see [26] for a review).
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Figure 1: Output of the Lorenz system of equations Box 2) with control parameters δ = 16.0, r = 45.92, and b = 4.0.
Values for Y (vertical axis) are plotted as a function of time (horizontal axis). The resulting time series is chaotic. This
figure illustrates that a simple, low-dimensional nonlinear system can generate a complex and chaotic signal.

A well-established technique for visualizing the dynamical behavior of a multidimensional system
is to generate a phase space portrait of the system. A phase space portrait is created by treating each
time-dependent variable of the system as a component of a vector in the phase space. Each vector
represents an instantaneous state of the system. These time-dependent vectors are plotted sequentially in the
phase space to represent the evolution of the state of the system over time. For many systems, this graphic
display creates an object confined over time to a subregion of the phase space. Such subregions of the
phase space are called “attractors.” The geometrical properties of attractors provide information about the
global state of the system.

One of the problems in analyzing muitidimensional systems in nature is knowing which
observable (variable of the system that can be measured) to analyze. Experimental constraints may limit the
number of observables  that can be obtained. It turns out that when the behavior over time of the variables
of the system is related, which is always the case when a system exists, the analysis of a single observable
can provide information about all of the related variables of the system. In principle, through the method of
delays (Box 3) described by Packard et al. (27) and Takens (28), the sampling of a single variable of a
system over time can reproduce the attractors of a system in the phase space. To ill ustrate this point, the
Lorenz attractor is depicted in Figure 2, showing that the states of the system over time are confined within
a mask-like structure (the attractor) in the phase space (Fig. 2a) and that the method of delays well
approximates the attractor in the phase space (Fig. 2b).

This technique for the reconstruction of the phase space from one observable can be used for more
complex signals, such as the EEG. In Figure 3, a phase space portrait has been generated from an ictal EEG
signal recorded from a single electrode on the temporal cortex. The characteristics of the formed epileptic
attractor are typical of all of the seizures we have analyzed - trajectories are moving in and out of the main
body of do attractor. In Figure 3, the excursions correspond to spikes.

The geometrical properties of the phase portrait of a system can be expressed quantitatively using
measures that reflect the dynamics of the system. The complexity of an attractor is reflected by its
dimension. The larger the dimension of an attractor, the more complicated it appears in the phase space. It
is important to distinguish between the embedding dimension and the dimension of an attractor. The
embedding dimension p - always a positive integer - is the dimension of the phase space that contains the
attractor. On the other hand, the attractor dimension D may be a noninteger; it is directly related to the
number of variables of the system and inversely related to the existing coupling among them. For example,
with the Lorenz attractor, three variables are needed to specify each state of the system. Hence, a phase
space of p = 3 is needed to embed every state of the system. The dimension D of the Lorenz attractor itself,
however, is ~2.05 – less than 1 – because the three variables that define the Lorenz attractor are not
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independent; rather, they are nonlinearly coupled through the set of the three differential equations that
define the system.

Figure 2: The states of the Lorenz system of equations in the phase space (a). The result, a chaotic attractor in the
phase space, is projected onto the YZ plane. In (b), the phase space plot was generated from a single output variable
Y(t), using the method of delays (Box 3). A time lag τ of 3 was used. The resulting attractor is a good approximation of
the original attractor in (a). This figure il lustrates the point that it is possible to approximate an attractor generated by
a multidimensional system from the time series data of a single variable (observable).

According to Takens (28), the embedding dimension p should be at least equal to 2D + I for a
correct embedding of an attractor in the phase space. Of the many different methods used to approximate D
of an object in the phase space, each has its own practical problems (26, 29, 30). The measure used most
often to approximate D is the correlation dimension ν. Methods for calculating the correlation dimension
from experimental data have been described (31, 32).

A chaotic  attractor is an attractor where, on the average, orbits originating from nearby ictal
conditions diverge exponentiall y fast (expansion process); they stay close together only for a short time. If
these orbits belong to an attractor of finite size, they must fold back into it as time evolves (folding
process). The result is a layered structure (7). The measures that quantify the chaoticity of an attractor are
the Kolmogorov entropy and the Lyapunov exponents (33-35). For an attractor to be chaotic, the
Kolmogorov entropy or at least one of the Lyapunov exponents should be positive. The Kolmogorov (Sinai
or metric) entropy (K) measures the uncertainty about the future state of the system in the phase space,
given information about its previous states (positions) in the phase space. The Lyspunov exponents (Ls)
measure the average rate of expansion and folding that occurs along different local directions within an
attractor in the phase space. If the phase space is of p dimensions, we can estimate theoretically up to p
Lyapunov exponents. Methods for calculating these dynamical measures from experimental data have been
published (36-39). The estimation of the largest Lyapunov exponent (Lmax) in a chaotic system has been
shown to be more reliable and reproducible than the estimation of the remaining exponents (29, 40).

Another useful set of dynamical measures are the time dependence indices (8j), developed by Savit
and Green (41, 42). Time dependence indices measure, on the average, the dependencies between the
components of the vectors in the phase space. When the method of time delays is used, these dependencies
are translated into dependencies between values of the original signal at successive points in time,
separated by a time lag, r. If the phase space is of p dimensions, we can estimate theoretically up to p-1
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dependence indices. Applications of these methods are discussed by Wu et al. (43), Iasemidis et al. (44),
and Savit and Green (41, 42).

Dynamical Studies In Epilepsy

Dynamical analysis of EEG recordings from patients with epilepsy has provided novel perspectives
regarding epileptogenesis. Recent studies have provided evidence that epileptic seizures represent a
nonlinear chaotic process. The first evidence for chaos in human epilepsy was provided by Babloyanz and
Destexhe (45). They found that the EEG signal during a petit mal epileptic seizure could be characterized
by low-dimensional chaos, in that the attractor appeared to have a low fractal dimension (between 2 and 3)
and a positive Lyapunov exponent. Our group's studies of partial seizures of temporal lobe origin (46)
demonstrated the presence of limit cycles in the seizure discharges recorded from subdural electrodes
overlying the epileptogenic focus. The limit cycles are characteristic of nonlinear systems. We also found
evidence for low-dimensional chaos in partial seizure discharges of mesial temporal origin using an
embedding dimension p of 7 (low-dimensional attractors with a fractal dimension between 2 and 3, and a
positive maximum Lyapunov exponent of about 2 bits/sec) (47, 48). Chaotic attractors are usually of fractal
dimension and contain at least one positive Lyapunov exponent. Frank am co-workers (49) reported
evidence for chaotic dynamics in an EEG during a mixed generalized seizure.

Some authors have found only weak nonlinearities in the EEG and have postulated that its
dynamical properties may be explained by the theory of linear stochastic processes (50-52). In EEGs
recorded from patients with temporal lobe epilepsy, however, we have found evidence for nonlinearities
that could not be explained by linear deterministic or stochastic dynamics (Casdagli et al., manuscript in
preparation). In this work preictal, (before seizures), ictal (during seizures), and postictal (immediately after
seizures) EEG signals were recorded from bilaterally placed subdural and depth electrodes in a patient with
medically refractory complex partial seizures of mesial temporal origin. The most striking nonlinearities
were observed in the signals generated by the epileptogenic focus and in the signals recorded from
anatomical regions that generated interictal spikes. Further evidence that nonlinear deterministic processes
underlie the occurrence of seizures was obtained by analyzing the time intervals between individual
seizures, using the 8j measures (44). Taken together, these studies suggest that seizures are generated by
deterministic nonlinear chaotic systems; thus, the occurrence of epileptic seizures may represent the
intermittent phase transitions characteristic of such systems.
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Figure 3: The plot shown in (a) is a 14-second epoch of EEG at the onset of a seizure originating from the left temporal
cortex. X(t) (voltage in microvolts) is plotted against time (seconds). Projected onto two dimensions, (b) is a phase
space representation of the portion between A and B of the ictal shown in (a).

Our group went on to demonstrate that in temporal lobe epilepsy, the dynamical properties of the
preictal, ictal, and postictal states are distinctly different and can be defined quantitatively. This result was
derived by as analyzing EEG recordings from subdural and depth electrodes. As an example, the maximum
Lyapunov exponent over time profiles for one seizure in one patient as shown in Figure 4. The important
observation, subsequently confirmed in other patients, is that the chaoticity of the signal (reflected by the
value of Lmax) was highest during the postictal state, lowest during the seizure discharge, and intermediate
in the preictal state. Also, in all of the cases studied, the characteristic drop in the value of the Lmax

exponent at the time of the seizure's onset occurred first at electrode sites located where the seizure
discharge originated. Thus, from a dynamical perspective, the onset of a seizure represents a spatiotemporal
transition from a complex to a less complex (more ordered) state. It is likely that the more ordered ictal
EEG signal reflects the synchronized rhythmic firing pattern of neurons participating in the seizure
discharge.
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Figure 4: This figure depicts values for Lmax (vertical axis) versus time (horizontal axis) derived from EEG signals
recorded from eight different subdural and depth electrodes placed bilaterally. This segment of the recording began
~17 minutes before the onset of the seizure and continues for ~15 minutes after the seizure. Each line represents Lmax

values from a single electrode site. Note that for each site, Lmax values are lowest during the seizure, highest during the
immediate postictal period, and intermediate in the preictal period. Also note that at the beginning of the seizure, there
is a sudden drop in Lmax values for all electrodes. This plot demonstrates some of the characteristic dynamical
differences among preictal, ictal, and postictal states.

Figure 5: In (a) Lmax values versus time are plotted for signals recorded from left (black line) and right (blue line)
orbitofrontal electrode sites. The recording was obtained in a patient with seizures of left mesial temporal origin. The
plot begins ~12 minutes before the onset of the seizure (point B). At point B, there is a characteristic ictal drop in Lmax

at both electrode sites. Before the seizure, there are intermittent small drops in Lmax at both sites. In this case,
entrainment of Lmax for the two electrode sites has begun 8 minutes before the seizure (point A). Postictally, the sites
are disentrained with respect to Lmax values and phases. In (b), Lmax versus time plots were derived from EEG signals
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recorded from bilaterally placed subtemporal electrode sites in the same patient. Preictal phase locking of the Lmax

oscill ations is already evident 10 minutes before the seizure. Episodic preictal drops also are present in these plots.
Postictally, Lmax oscill ations in the two electrode sites are out of phase. Episodic drops in Lmax and phase locking of
Lmax are characteristic features of the preictal state in invasive EEG recordings from patients with temporal lobe
epilepsy.

How the phase transition from the preictal state to the ictal state occurs has recently been explored.
Traditionally, the investigation of physiological disturbances in epileptic patients has relied upon the visual
inspection of the electrographic trace and analysis via the traditional techniques of signal processing, such
as Fourier analysis and coherence measures (17). The detection of potentially epileptogenic foci from the
EEG of epileptic patients has depended upon the recognition of characteristic transient waveforms, such as
spikes and sharp waves, in the interictal or ictal periods (53-55). Research along these conventional hues of
analysis has unsuccessfully sought to detect precursors of the epileptic seizure (56, 54). Such approaches
have generated descriptive information regarding interictal and ictal epileptogenic physiological
phenomena, but they were not able to explain why seizures occur.

Perhaps the most exciting discovery to emerge from dynamical analysis of the EEG in temporal
lobe epilepsy is that seizures are preceded by dynamical changes in the EEG signal occurring several
minutes before the seizure. By analyzing the Lmax values over time for signals recorded from subdural
electrodes placed over the epileptogenic temporal lobe and regions of ipsilateral frontal and parietal cortex,
our group discovered that beginning several minutes before seizure onset, regions of the anterior temporal
cortex and, later, regions more distant from the focus become phase locked with respect to their content of
chaos. This observation indicated that, several minutes before a seizure, large regions of the cortex became
dynamically entrained (58-60). The same entrainment process was demonstrated subsequently in
recordings from hippocampal depth electrodes (61). This phenomenon could not be detected by visual
inspection of the original EEG signal or by other more traditional methods of signal processing. Examples
of preictal entrainment are il lustrated in Figures 5 and 6. The long-term nature of the process (order of
minutes) indicates that it may be possible to predict the onset of a seizure in time to intervene with abortive
therapy.

Another important finding is that, in the preictal states, the dynamical properties of the EEG
recorded from the epileptogenic hippocampus differ from those of the signal recorded from the
contralateral hippocampus. Preliminary studies in a few of our patients suggest that this difference may
hold true throughout much of the interictal period. We found that the epileptogenic hippocampus exhibited
a more ordered and less complex behavior interictally and preictally than the more normal hippocampus did
(62). These findings are ill ustrated in Figure 7, which compares the Lyapunov profiles obtained from the
epileptogenic and the more normal contralateral hippocampus, and in Figure 8, which compares δj profiles
between the two hemispheres, demonstrating that the time dependency structure of the EEG signal obtained
from the epileptogenic hippocampus differs strikingly from that recorded from the normal hippocampus.
Thus, in the preictal period, the dynamical state of the epileptogenic hippocampus is distinctly different
from that of the more normal contralateral hippocampus. We speculate that this altered dynamical state
renders the epileptogenic hippocampus more susceptible to an abrupt phase transition to the ictal state. We
further hypothesize that the conditions of spatiotemporal dynamical entrainment described above facil itate
this transition.
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Figure 6: Lmax versus time plots, obtained from EEG signals recorded from the left anterior hippocampus (blue line)
and the epileptogenic right anterior temporal hippocampus (black line), are shown for a period beginning ~60 minutes
before the seizure’s onset (point B). Note that oscil lations of Lmax for the two electrode sites are approximately in phase
but have different mean values until ~35 minutes before the seizure (point A). Subsequently, the two Lmax oscillations
have similar mean values (entrainment noted as in values). This preictal entrainment appears to represent a transition
from the interictal to the ictal state. Note that in the immediate postictal period (noted as out of values), the mean value
of Lmax for the epileptogenic electrode site is substantially lower than that of the more normal contralateral
hippocampus.

Figure 7: Lmax versus time profiles for signals recorded from the epileptogenic left hippocampus (black line) and a
homologous electrode site in the more normal right hippocampus (blue line) are compared for a period of ~1 hour
before the seizure. The typical ictal drop in Lmax occurs at both electrode sites (point C). Preictally, oscill ations in Lmax

are out of phase (e.g., points A) until ~10 minutes (point B) before the seizure. After point B, Lmax oscil lations for the
two electrodes are phase locked, and the mean values are more similar for each electrode site. Note that for the entire
1 hour preictal period, Lmax is consistently lower in the signal recorded from the epileptogenic hippocampus.
Postictally, Lmax profiles for the two sites are out of phase. The lower preictal values of Lmax obtained from signals
generated by the epileptogenic hippocampus have been observed in almost all cases examined thus far.

Conclusions and Prospects

The quantitative measures developed for the study of complex nonlinear systems hold promise for
advancing our understanding of the dynamical processes underlying the occurrence of epileptic seizures.
These techniques, which have the advantage of not depending on any models of normal or epileptic brain
function can detect information that is inaccessible by more traditional li near and spectral methods of signal
analysis. The cumulative evidence, based on the recent application of these powerful mathematical
techniques, supports the conclusion that the EEG is generated by mechanisms that obey nonlinear
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deterministic laws. There is strong evidence that these processes are chaotic. Further elucidation of these
dynamical processes of epileptogenic brain function will be necessary before realistic mathematical models
become possible. Then, such nonlinear models could be employed to address questions involving the basis
for the intermittency of epileptic seizures.

The observation that the signals from epileptogenic regions have different dynamics from
nonepileptogenic regions, even during the interictal state, may be of more immediate practical utili ty for
localization of seizure foci. Currently, clinicians rely primarily on ictal recordings for diagnostic evaluation
and for presurgical localization of the seizure onset zone The sampling of a sufficient number of seizures
requires recordings over many days. If the seizure focus can be identified through its interictal dynamical
properties, however, the diagnostic and presurgical recording time may be reduced dramatically and the
epileptogenic focus may be localized more reliably.

Finally, we have discovered that the evolution of a seizure involves not just two states -- interictal
and ictal -- but also a preictal transitional state that dynamically differs from the other two. This finding has
both scientific and clinical implications. One can anticipate that a more detailed and refined understanding
of this dynamical phenomenon could shed light on fundamental questions, including why seizures begin
when and where they do. As a result, it may be possible in the future to detect the preictal state with
implanted devices that could then prevent the impending seizure through physiological or pharmacological
interventions. This seizure detection, intervention, and prevention would be an example of controlli ng
chaos. The control of chaotic systems is an exciting new field of study (63). Evidence that such
interventions may be possible in epilepsy has been provided recently by in vitro experiments in the
hippocampal slice preparation by Schiff and colleagues (64). These investigators demonstrated that chaotic
dynamics in hippocampal slice preparations exist and can be controlled by low voltage electrical stimuli
administered at properly timed intervals.

Figure 8: Time dependency (δ1) plots versus time for an EEG sample beginning 1 hour before a seizure are plotted for
signals recorded from the left (epileptogenic) hippocampus (black line) and the more normal contralateral
hippocampus (blue line); (a) il lustrates typical profiles for δ1 (first lag dependency). In the preictal period, δ1 values
are consistently lower for EEG signals generated by the epileptogenic hippocampus. During the seizure, δ1 values drop
for both electrode sites. Immediately after the seizure, δ1 values for both electrodes are higher than preictal or ictal
values. The plot in (b) depicts δ2 versus time for the same EEG sample used in (a). The δ2 values are consistently
higher for preictal and postictal signals generated by the epileptogenic hippocampus. Together with the plots in Figure
7, these plots ill ustrate the finding that in temporal lobe epilepsy of unilateral mesial temporal origin, dynamical
properties of the epileptogenic hippocampus differ quantitatively from those of the more normal contralateral
hippocampus during the preictal and postictal states.
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Our overall working hypotheses are that dynamical characteristics of electrical signals generated
by the epileptogenic hippocampus differ from those generated by similar but healthy regions (e.g., the
contralateral hippocampus), that these signals can carry dynamical signatures of an impending epileptic
seizure, and that the characteristics of these signals can be quantified using nonlinear dynamical techniques.
A reasonable model, based upon studies to date, is that: 1) because of the pathological changes in the
neuronal makeup and damage to the neuronal connections within the hippocampus, this region of the brain
is susceptible to spontaneous phase transitions to more ordered states, and 2) the epileptogenic
hippocampus initiates or participates in a seizure if and only if conditions of a long-term (order of several
minutes) spatiotemporal dynamical entrainment of a critical mass of interconnected regions of temporal and
frontal cortex are met. Research directed toward further characterization of the process of transition
between the interictal and ictal states might lead to better understanding of epileptogenesis.

Box 1: Glossary

Dynamical: Refers to changes in the state of a system over time.
Deterministic System: A system in which future states can be predicted if one knows the initial conditions
     and mathematical rules (equations) that govern its behavior over time.
Stochastic System: A system for which future states can be determined only probabili stically, even if one
     knows the initial conditions and the equations that govern its behavior over time.
Nonlinear System: A system in which the states change over time in accordance with differential or
     difference equations that involve one or more variables taken to a power >1. Such systems, under certain
     conditions, exhibit sensitivity to initial conditions, self-organizing behavior, and intermittency.
Chaos: Dynamical state of a deterministic nonlinear system that looks stochastic. By definition, in a chaotic
     state, at least one positive Lyapunov exponent exists.
Phase Space: Representation of the states of a system in a geometrical space (also called “state space”) as
     they evolve with time.
Attractors: Regions within the phase space to which the states of the system evolve and remain confined
     until the structure of the system itself changes or an external input is imposed.
Dimension: A numerical value related to the number of “axes” required to construct the phase space
     (embedding dimension) or related to the number of variables required to span an attractor within the
     phase space (dimension of the attractor). When the dimension of the attractor is not an integer it is called
     “ fractal.”
Lyapunov Exponent: A numerical value that describes the average rate at which the trajectories of adjacent
     states in the phase space diverge or converge over time. An indicator of how chaotic a system is.
Kolmogorov Entropy: A numerical value indicating the uncertainty of predicting the state of a system at a
     subsequent point in time. A global indicator of how chaotic a system is.
Time Dependence: A quantity that indicates the strength of the relationship between a point in a time series
     and prior points in the series.
Intermittency: The tendency for a given pattern of behavior (state) to come and go over time.

Box 2: Lorenz System

                     •
                       x = δ ⋅ (y – x)
                       •
                       y = x ⋅ (r – z) – y
                       •
                       z = x ⋅ y – b ⋅ z

The Lorenz System is a model for air convection caused by heating and cooling in the atmosphere (7). This simple,
nonlinear system generates chaotic output for certain values of the control parameters (δ, r, and b). Figure 1 ill ustrates
the complex time series generated by this system for δ = 16.0, r = 45.92, and b = 4.0. Figure 2 ill ustrates the phase
space representation of the signal. In the phase space, an attractor (called the “Lorenz” attractor) is formed, and all
future states of the system are confined within it (10).

Box 3: Method of Delays
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The method of delays is one way of representing states in the phase space. In this representation, the dynamical state at
each point in time is represented by a vector X(t) in the phase space. The components of the vector are generated by
taking successive points of the original time series, x(t), separated by a final time delay, τ:

X(t) = [x(t), x(t - τ), …, x(t – (p – 1) ⋅ τ)]

Where x(t) is the original time series, X(t) is the state-vector in the phase space at time t, and p is the embedding
dimension of the reconstructed phase space. Information can be extracted only about variables of the system that are
coupled with the observable x(t). Information about a variable that is not coupled through a system’s equations with
x(t) may be obtained by increasing the number of observables.
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