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Abstract—In this paper, the network planning problem in
wireless ad hoc networks is formulated as the problem of allo-
cating physical and medium access layer resources or supplies to
minimize a cost function, while fulfilling certain end-to-end com-
munication demands, which are given as a collection of multicast
sessions with desired transmission rates. We propose an iterative
cross-layer optimization, which alternates between: 1) jointly op-
timizing the timesharing in the medium access layer and the sum
of max of flows assignment in the network layer and 2) updating
the operational states in the physical layer. We consider two
objectives, minimizing aggregate congestion and minimizing
power consumption, respectively, corresponding to operating in a
bandwidth-limited regime and in an energy-limited regime. The
end result is a set of achievable tradeoffs between throughput and
energy efficiency, in a given wireless network with a given traffic
pattern. We evaluate our approach quantitatively by simulations
of community wireless networks and compare with designs that
decouple the layers. We demonstrate that significant performance
advantages can be achieved by adopting a full-fledged cross-layer
optimization. Furthermore, we observe that optimized solutions
generally profit from network coding, physical-layer broadcasting,
and traffic-dependent physical states.

Index Terms—Capacity, cross-layer design, interference, multi-
cast, network coding, wireless ad hoc networks.

I. INTRODUCTION

NETWORK planning is concerned with the cost-effective
deployment of a communication infrastructure to provide

adequate coverage, throughput, and quality for end user ser-
vices. In this paper, we investigate dynamic service provisioning
in wireless ad hoc networks. Abstractly, the network planning
problem considered in this paper is the problem of allocating
physical and medium access layer resources or supplies to mini-
mize a cost function, while fulfilling certain transport layer com-
munication demands.

We model the demands in a set of network nodes
as a collection of multicast sessions in the form

,
where in each multicast session , a source transmits
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common information to a set of destinations at rate
(bits per second). We model the allocation of supplies as a
timesharing within a collection of all possible physical layer
states.

This formulation necessitates an interaction across the net-
work protocol stack. However, the unique physical and link
layer characteristics of wireless communication render cross-
layer optimization especially challenging. The key to practical
cross-layer optimization is to find an appropriate abstraction of
each layer. To form these abstractions, we introduce the notion
of a capacity graph. A capacity graph can be regarded as a net-
work of lossless channels, each capable of carrying information
between neighboring nodes at a certain rate. We denote a ca-
pacity graph by a tuple , where and are a set
of vertices and edges respectively and is function assigning
to each edge a nonnegative edge capacity . A
capacity graph is used as the interface between the lower and
upper layers: the physical and link layers provide bit-rate re-
sources in the form of a supported capacity graph, taking into
account interference and other wireless channel characteristics,
and the network layer consumes these bit-rate resources to de-
liver information from the source to the destinations, without
being concerned with how the capacity graph is realized in the
physical and link layers.

The physical layer can be abstracted as a set of elementary
capacity graphs. An elementary capacity graph is a capacity
graph that represents a physical layer state, correponding to an
arrangement of concurrently active links between neighbors.
The set of elementary capacity graphs depend on the wire-
less channel characteristics, most importantly, the interference
among concurrent links, as well as the communication schemes,
e.g., power control, modulation, channel encoding.

The link layer (or more precisely, the medium access layer)
can be abstracted by a set of all possible timesharings between
the elementary capacity graphs. A timesharing or convex com-
bination, of elementary capacity graphs is itself a supported
capacity graph, representing a specific allocation of bit-rate
resources.

The network layer transforms the end-to-end traffic demand
into a link-by-link traffic demand compatible with a supported
capacity graph . For this purpose, we assume that network
coding can be used for the multicast sessions. Network coding
generalizes the traditional routing paradigm in which interior
nodes in the network can only replicate and forward informa-
tion received, by allowing nodes to perform arbitrary operations
on the information received to generate the output. In their pio-
neering theoretical work on network coding, Ahlswede et al. [1]
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have demonstrated that it is in general suboptimal to restrict the
intermediate nodes to perform only routing. They show that the
multicast capacity, which is defined as the maximum rate that
a source can communicate common information to a set of des-
tinations, can be achieved with network coding. Using network
coding, the capacity subgraph of given by a sum of max
of flows is sufficient to accommodate multiple multicast ses-
sions, corresponding to a “separation” solution where the ses-
sions are first allocated disjoint shares of bit-rate resources, and
then each session communicates using its share. We show that
with this separation approach, the set of all sum of max of flows
that can accommodate a given load can be characterized by a
linear system of equalities and inequalities.

Degrees of freedom exist in the lower layers when choosing
a convex combination of elementary capacity graphs, and in the
upper layers when choosing the sum of max of flows. As we
will show, these can be jointly optimized using a linear program.
However, computational difficulties can arise since the number
of elementary capacity graphs is generally exponential in the
size of the network. To alleviate these difficulties, we propose
an iterative optimization procedure, which alternates between:
1) heuristically selecting a manageable collection of elemen-
tary capacity graphs and 2) jointly optimizing (using the linear
program) the allocation of supplies and the flow assignment. In
essence, feedback is now introduced, potentially allowing the
network supplies to more efficiently match the traffic demand.

The rest of this paper is organized as follows. From the per-
spective of layering, Section II summarizes the physical layer,
Section III summarizes the network layer, and Section IV is de-
voted to the iterative cross-layer joint optimization, including
determination of timesharing in the link layer. Simulation re-
sults are presented in Section V. A review of related work is
given in Section VI.

II. CAPACITY GRAPHS FOR WIRELESS NETWORKS

We use the name physical state to represent a “snapshot” of
all the nodes in the physical layer, such as which nodes are trans-
mitting and what transmitting powers are being used. A physical
state can support a set of concurrent links in the physical layer.
In a wireless network, a single transmission by a certain trans-
mitter may result in multiple nodes recovering the transmitted
signals. This physical-layer broadcast property was called the
wireless multicast advantage in [2]. To model this effect, we
consider the general case of point-to-multipoint links. Let
denote the set of nodes in the network. A link can be described
as , where is the transmitter, is the
set of associated receivers, and is the associated bit rate in a
reliable communication.

Each set of concurrent links supported by a certain physical
state corresponds to an elementary capacity graph (ECG). By
timesharing among different physical states, it is possible to
achieve any convex combination of the ECGs. That is, if
is the relative share of time for the ECG ,
then it is possible to achieve on average the capacity graph

, where the edge capacities

are each extended to in the obvious way. We denote such
combinations in this paper. The capacity graphs
resulting from timesharing the ECGs will be referred to as sup-
ported (composite) capacity graphs. Hence, a distinguishing
feature of wireless networks is the characterization of supported
capacity graphs as convex combinations of ECGs. This can be
stated mathematically as

where is the entire set of capacity graphs supported/spanned
by the set of all feasible ECGs . It may take an enormous
number of ECGs to completely cover the entire set of capacity
graphs. From a practical standpoint, we are interested in identi-
fying a few “promising” ECGs that provide a reasonably good
span for a specific application. With a finite set of ECG’s

, the convex set of supported capacity graphs becomes

where the dependence on is explicitly shown.

A. Elementary Capacity Graphs

We now state some modeling assumptions and discuss the
elementary capacity graphs under these assumptions.

Consider a set of concurrent links (abbreviated as a link set)
, where is the set of trans-

mitters and is the set of nodes receiving common information
from . A given link set is said to be feasible if there exists a
physical state supporting it. We now show how to determine the
feasibility of a given link set and if it is feasible, how to find
a physical state supporting it. As a modeling simplification, we
assume that if a physical state supports a link , then the
communication rate is a unit rate. Thus, we may drop from
the notation of a link and write instead.

For each transmitter , let denote its transmitting
power. Denote the path loss factor from node to node by
and the noise variance by . Then, the signal-to-interference
and noise ratio (SINR) at a node receiving information
from can be expressed as

SINR (1)

Link set is said to be supported by the physical state with
transmitting powers if and only if

SINR (2)

where is a fixed threshold.
We further assume that the transmission power of each node

can be flexibly adjusted in the system. The following linear
program minimizes the total transmission power over variables

subject to the SINR requirements

subject to: SINR
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Fig. 1. Modeling a physical-layer broadcast link by introducing a virtual
vertex that has an incoming edge from the transmitter and outgoing edges with
the receivers. Please note the terminology used: a link is represented in the
capacity graph by several edges.

With power control, a link set is said to be feasible if the
corresponding linear program for power control has a feasible
solution. If a link set is feasible, a physical state supporting it
can be constructed from the solution of the linear program.

A feasible link set cor-
responds to an ECG in a natural way: for each link ,
the ECG contains an edge with capacity 1 from to a new vir-
tual vertex , and an edge with capacity 1 from to each node

in , as illustrated in Fig. 1. More examples can be found
in Fig. 7. The virtual vertex plays the role of an artificial bot-
tleneck which constrains the rate of new information going out
of the transmitter. Since these virtual vertices do not physically
exist, they can only perform routing, instead of arbitrary net-
work coding. In other words, for a virtual vertex , information
flowing on its outgoing edges are not allowed to be general func-
tions of information flowing on the incoming edges. Fortunately,
the following Theorem 1 shows that there is no need to perform
network coding on these virtual vertices, as far as throughput is
concerned.

Theorem 1: Suppose in a capacity graph , the
vertex set is composed of two disjoint sets, and , and

. Each vertex has only one incoming
edge and multiple outgoing edges

, and . The
maximum rate for multicasting from source to destinations

can still be achieved even if each vertex can only
perform routing instead of arbitrary network coding.

Proof: See [3].

B. Initialization of Elementary Capacity Graphs

Suppose ECG’s are to be generated.
For each , a simple random packing strategy is adopted here.
Fix a radius which is a typical value for the communication
range and a larger radius as the interference range. In each
step, we randomly select a node as the transmitter, draw two
circles originated from it with radius and , respectively.
If some existing receivers associated with other transmitters fall
into the larger interference circle, then this node does not qualify
as a transmitter. If the node passes this test, then its associated
receivers are chosen to be those nodes that are inside the com-
munication circle with radius and outside any other existing
interference circles. Next, we include this link into the linear
program for power control. If a feasible solution exists, then the
link is packed. Otherwise, the steps above are repeated until no
links can be further packed.

III. MULTISESSION MULTICAST

Let us temporarily assume that one capacity graph
has been given exogenously as the provi-

sion of bit-rate resources. This section addresses the following
question: Given the end-to-end demands as multiple multicast
sessions, how should one assign the traffic on each edge and,
hence, coordinate the information flow in the network?

A. Max of Flows

Given a capacity graph and two vertices
, an - -flow is a nonnegative-valued function on edges sat-

isfying the following constraints:

and the flow value is

We use the notation to
indicate that is a subgraph of , and

. Given a set of flows on
with being an - -flow, the max of flows is a subgraph

, where the function is

(3)

The subgraph has a multicast capacity greater than or equal
to because the multicast capacity is equal to the
minimum of the maximum flow values from to each
[1]. Thus, any max of flows (assuming ) is
sufficient to provide a rate with network coding. Conversely,
if a subgraph can provide rate , then it is
easy to see that where is a max of
flows providing the same rate . This shows the necessity of
max of flows.

B. Sum of Max of Flows

The problem of multisession multicast, where multiple multi-
cast sessions need to be communicated over a network, remains
open. Yeung [4] has shown that it is generally suboptimal to
simply superimpose the different streams of information, even
if the streams are independent. In other words, it is suboptimal to
separate the communications of different sessions. Conversely,
cross-session network coding is in general needed to achieve
optimality.

Albeit suboptimal, superimposing communications for dif-
ferent streams is still a viable approach to this problem, espe-
cially from a practical standpoint. The following Theorem 2
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shows that different ways of superimposing the multiple ses-
sions can be conveniently characterized by a linear system of
equalities and inequalities.

Theorem 2 (Sum of Max of Flows): Consider a capacity
graph and a collection of multicast sessions

as the end-to-end traffic
demands. The sessions can be accommodated in by allo-
cating disjoint shares of bit-rate resources to the sessions and
letting each session communicate using its share, if and only if
the following system of linear equalities and inequalities has a
feasible solution

(4)

(5)

(6)

(7)

Constraints (5)–(7) state that a capacity subgraph
with is used by the -th session to
achieve multicast rate . Constraint (4) states that for each
edge, the sum of the rates consumed by the sessions has to be
less than or equal to the total available rate.

Theorem 2 is essentially a result of the sufficiency and neces-
sity properties of max of flows discussed in the previous sub-
section, based on which a proof can be established.

For a feasible flow assignment, we use the name sum of
max of flows (or, multicommodity max of flows) to denote a
capacity graph, where the capacity on edge is specified as

. Accordingly, we call the solution
space of (4)–(7) the sum of max of flows polyhedron. When
a cost function is specified, we call a solution of (4)–(7) that
minimizes the cost function a minimum-cost sum of max of
flows. When referring to a sum of max of flows, the symbol
will often be used in the sequel.

IV. CROSS-LAYER ITERATIVE OPTIMIZATION

As discussed in Sections I and II, the physical layer provides
to the upper layers a convex set of capacity graphs supported by
a finite set or basis of elementary capacity graphs .
The set of all possible ECG’s grows exponentially in the
number of network nodes. Indeed, plenty of degrees of freedom
exist in these lower layers, and the choice of is typically far
from unique. Similarly, as discussed in Section III, for any fixed

, the traffic demands in the transport layer may be accommo-
dated by a sum of max of flows . Since flows are gener-
ally far from unique, any sum of max of flows is generally far
from unique. The objective is to pick a basis , cor-
responding timesharing coefficients and a sum of max of
flows , such that satisfies the traffic demands

and the capacity graph , which
supplies , minimizes a desired cost function.

In this section, we show how to select and jointly,
using an iterative descent optimization algorithm that minimizes
a desired cost function at each step. With fixed, the opti-
mization over and turns out to be a linear program.
Given feedback on the traffic loads that are to be supported, a
heuristic scheme is proposed that updates the basis of ECG’s .
The proposed optimization alternates between these two steps
until convergence.

A. Cost Functions

1) Bandwidth-Limited Regime: When system bandwidth is
scarce, it is of interest to find the maximum supportable traffic
load given the bandwidth constraints. Specifically, given the de-
mands , it is of interest to find the
largest possible rate-scaling factor that when multiplied by the
rates , still leads to a feasible sum of max of
flows solution.

Given a set of ECG’s , we use to denote the enlarged
vertex set including the physical nodes in and the introduced
virtual vertices, and to denote the union of the edges. With
fixed, maximizing the rate scaling factor results in the following
linear program, where the timesharing coefficients , as well
as the flows are treated as variables

subject to: (8)

(9)

(10)

(11)

(12)

(13)

(14)

The main difference between this linear program and (4)–(7)
is that the bit-rate supply in (5) is now replaced by

in (9), which can be adjusted by changing .
Note that scaling the demands can be converted into scaling
the supplies. Consequently, after some mathematical manipula-
tions, it can be shown that the reciprocal of the maximum rate
scaling factor admits a more explicit formulation:

subject to: (15)

(16)

(17)

(18)
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(19)

(20)

Consequently, for a feasible solution to the system of in-
equality constraints (16)–(20), we can regard the quantity

as the “cost” of the generalized allocation of supplies
. It is termed a generalized allocation since the

constraint is not enforced. If is indeed less
than one, then corresponds to a feasible arrangement in the
physical and link layers. In this case, if the traffic demands

are gradually increased at a common rate,
can be proportionally scaled to accommodate the traffic, until

it becomes infeasible. When the traffic is so heavy that the net-
work is operating at a point near infeasibility, “congestion” is
said to occur. Thus, this quantity bears an interpretation
as a congestion measure of the network.

Definition 1: Aggregate Congestion Measure: In a wire-
less network, consider the end-to-end traffic demands

. The aggregate congestion
measure, which quantifies the congestion induced to the net-
work by the given traffic demands, is defined as for a
generalized allocation of supplies dominating a sum
of max of flows and, hence, satisfying the traffic demands.

2) Energy-Limited Regime: To minimize the required en-
ergy subject to traffic contraints, we can choose total power con-
sumption as the cost function for the linear optimization. Specif-
ically, we substitute for (15) the objective

(21)

where is the power consumption for and add the
constraint .

3) Refinement With a Secondary Linear Program: After the
above optimization is done, we can further improve the quality
of the solution by removing redundancies (e.g., cycles) in the
flow definitions. A secondary linear program can be used for
this purpose, where the objective (15) is replaced by

(22)

where the timesharing coefficients are now treated as
known constants with values substituted from the solution of
the primary linear program (minimizing congestion or power).
This secondary linear program also has the effect of ensuring
that . This refinement will not
further improve the objective of the primary linear program di-
rectly. However, improvement may be achieved in conjunction
with the heuristic refinement of the basis of ECGs.

4) Summary: In the above, we have described two example
definitions of optimization objectives. Many other possibilities
exist in defining an appropriate cost function. For example, we
can minimize the maximum power consumption over all nodes

so as to reflect some load balancing/fairness considerations.
It can be shown that the revised formulation incorporating
min–max type performance criteria would remain a linear
program.

B. Optimization by Iterative Descent

Up to this point, we have assumed that the basis of elemen-
tary capacity graphs is fixed and given. For any , we
have shown how to solve for the timesharing coefficients ,
as well as the edge loads such that the sum of max of
flows satis-
fies the given demands while minimizing a desired cost func-
tion. However, the number of physical states and, hence, the
number of possible ECG’s are exponential in the number
of nodes in the network. A computational difficulty would arise
if contained all such possible ECGs. Ideally, it is desirable
to have a small but “efficient” basis of ECGs. However, the ul-
timate efficiency measure is the cost of fulfilling the given de-
mands or dominating the sum of max of flows , which intro-
duces loops in reasoning. Rather than preparing a large basis
without any knowledge of demands, our idea is to introduce
feedback into the optimizations to gradually improve the effi-
ciency of the basis. To start the computations, one can initialize

without any knowledge of demand and run the linear program
to find . However, it cannot be expected that such a choice
of will provide an efficient match between and .
Some of the bit-rate supplies may be unbalanced and redundant.
Removal of these redundancies can reduce the cost function,
e.g., power consumption, by shutting off unnecessary transmit-
ters and reducing interference. Thus, it is possible to refine
to reduce the cost function for a given . This leads to an iter-
ative descent algorithm that alternates between optimizing the

s and s and updating . This procedure is described
as follows.

Step 1) Initialize the set of ECG’s .
Step 2) Given , solve the linear programs discussed

in Section IV-A to get the coefficients
and the minimum-cost sum of max of flows

.
Step 3) Given and , heuristically update to reduce

the cost function.
Step 4) Repeat Steps 2) and 3).

Since this is an iterative descent algorithm, convergence is guar-
anteed if the cost function is nonnegative. The complexity of the
algorithm depends on the size of the linear program (and, thus,
the size of ), the complexity of the heuristic operations, and
the convergence speed of the iterations. Because of the heuristic
operations involved, it is difficult to obtain a theoretical analysis
regarding the convergence speed. The algorithm has been em-
pirically observed to converge after a small number of iterations,
on the example networks in the simulations section.

C. Heuristic Refinement of Elementary Capacity Graphs

In this section, we investigate heuristic refinement of the set of
elementary capacity graphs , with the objective of lowering the
cost of fulfilling the link-layer demands . In the simulations
section, we will walk through the procedures to be described
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below, in a small example network consisting of nine nodes. For
ease of understanding, it might be suggested that the rest of this
section be read together with Section V-A.

From the linear programs discussed in Section IV-A, a de-
composition of is readily available

(23)

First of all, we can distribute the traffic load of to the
edges in . This step essentially removes redundancies in
the set of ECGs. More specifically, first choose a large enough
integer (e.g., 200) and round , and

into integers , and
. Next, we initialize the new set of ECGs

with copies of for . Recall that one virtual
vertex is introduced for each point-to-multipoint link. For a
link in ECG , suppose the cor-
responding virtual vertex is . Then, we distribute the traffic
load to those elementary capacity
graphs. For each session , these branching edges with

can be pruned from the link and copies
of the link (after pruning) are needed, out of the copies.
Denote the resulting set of ECGs by .

1) Deflation: The deflation operation is invoked when the
aggregate congestion measure is adopted as the minimization
objective. The basic observation is that the “space” previously
occupied by the redundant links (and/or branches of links) may
be used to “deflate” and, hence, leave more room for new
traffic. Since each ECG in contributes approximately
to , if we can pack all its constituent links into other
ECGs, the aggregate congestion measure will be reduced by that
amount. Note that this opportunity of reducing the aggregate
congestion measure could not have been discovered through the
linear program alone, since an ECG is treated as a basic oper-
ating unit in the optimization.

Now, we describe a deflation procedure, which heuristically
reduces the number of required ECGs. Define a primitive action
as moving one link from a source ECG to a destination
ECG , which we shall denote with . Let
us temporarily assume we have a function which eval-
uates the crowdedness factor for a given ECG. This crowded-
ness factor is a physical layer measure of congestion in each
ECG. It is introduced as an immediate metric used to guide
the heuristic operations toward minimizing the aggregate con-
gestion measure. Then, accompanying the primitive operation

, the crowdedness factor of the source will
decrease from to , while the crowdedness
factor of the destination will increase from to

. If the sum of the crowdedness factors is used as the criterion,
the net reduction in the sum crowdedness factor is

. We set the maximum
number of trials to be performed, where in each trial we select a
source ECG and try to move all the links in it to other ECGs.
The source ECG can be heuristically chosen to be the one with
the smallest crowdedness factor from those ECGs that have
not been tried as a source. With fixed, we loop over all the

links . Each link can be moved into the destination
ECG with the least increase in the crowdedness factor.

2) Inflation: The inflation operation is invoked when the
power consumption is adopted as the minimization objective.
The basic observation is that links may be moved among ECGs
such that overall the set of ECGs become less crowded and,
hence, require less transmission power. In particular, if a certain
ECG has more than one link and , that is, there
are some empty ECGs, then the total power consumption will
be reduced by “moving” a link from into an empty ECG.
This result can be established with the following Theorem 3. In-
tuitively, Theorem 3 says that power reduction can be achieved
by spreading out links in ECGs.

Theorem 3 (Triangle Inequality of Power Consumption):
Consider a feasible link set .
Suppose can be partitioned into two disjoint sets of links
and . Then

(24)

Proof: Let denote an optimal solution to the
linear program for power control, with link set .
Let and denote the set of transmitters for and , re-
spectively. Then, (with respect to ) give a feasible
solution to the linear program for power control with link set
(with respect to ), since a reduction in the interference level
can never decrease the SINR. Hence, the result.

Similar to the deflation procedure above, we can construct a
heuristic inflation procedure. Assume for now there is a crowd-
edness factor , possibly different from . We set the
maximum number of trials to be performed, where in each trial
we try to move a link in a selected source ECG into other
ECGs. The source ECG can be heuristically chosen to be the
one with the largest crowdedness factor . With fixed, we
can search for the action with the largest re-
duction in the sum crowdedness factor.

3) Crowdedness Factor: We propose to use the power con-
sumption of an ECG as the crowdedness factors and for
two reasons. First, it is a linear metric, i.e., the power consump-
tion of a linear combination of ECGs is the corresponding linear
combination of the power consumptions of the ECGs. Second,
a crowded ECG will typically incur a large power consump-
tion, because the heavy interference condition necessitates high
transmission power in order to maintain the SINR above the
threshold .

V. SIMULATION RESULTS

We conduct simulations on two test networks, shown in
Fig. 2(a) and (b), respectively. We consider these two networks
as example community wireless networks, formed by wireless
devices in a neighborhood. In Fig. 2, the locations of the houses
are marked with dots.

Fig. 2(a) is a toy example, consisting of nine houses spaced
uniformly on a 3 3 grid. It is included mainly for ease in under-
standing the proposed optimizations. The end-to-end demands
for this smaller network are set to be and
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(a) (b)

Fig. 2. House locations and end-to-end traffic demands for the (a) smaller network and (b) the larger network.

(a) (b)

Fig. 3. Main performance results: Bits-per-Joule versus rate scaling factor (traffic level). (a) Results for the smaller network. (b) Results for the larger network.

, as illustrated in Fig. 2(a) by a dotted line
and three dashed lines.

Fig. 2(b) is a more realistic example, consisting of 58 houses
spaced roughly in three rows. The locations of the houses
are obtained from measurement. The end-to-end demands
for this larger network are set to be

, and .

We focus our experimental investigations on two per-
formance criteria: the aggregate congestion and the power
efficiency. For the former, we evaluate , which is the
largest rate scaling factor that can be supported. For the latter,
we evaluate the (scaled) bits-per-Joule. Combining the two
criteria, we choose the primary performance measure to be a
curve showing the (scaled) bits-per-Joule as a function of the
traffic level . As a convention, we define the value of to
be zero if the traffic level cannot be carried. Thus, this curve
will cut off to zero at . The corresponding curves for the

two test networks are shown in Fig. 3(a) and (b), respectively.
These amount to the main simulation results. We discuss these
in detail shortly.

Let denote the vector of . Define

(25)

if rate scaling factor can be supported by , other-
wise, let

(26)

The condition that can be supported by refers to the
existence of a feasible flow assignment on a given supported ca-
pacity graph, which is obtained by timesharing ECGs in with
parameter . Specifically, the condition can be checked by ex-
amining the feasibility of the system of constraints in (9)–(14),
with variables and .
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Fig. 4. Initial basis of ECGs obtained by the random packing procedure.

We implement two benchmark algorithms and compare them
with the proposed iterative cross-layer optimization. The objec-
tive is to quantitatively evaluate the advantages of cross-layer
coupling. Benchmark A models the case where the physical and
link layers are decoupled from the network layer. The composite
capacity graph , which is used to represent the physical and
link layers, is fixed and given by equally timesharing each ECG
in the initial basis of ECGs. That is

, where denotes the initial basis of ECGs, constructed by
the random packing procedure. The maximum achievable rate-
scaling factor, , can be found by solving the linear program
in (8)–(14), with . Since the composition of the com-
posite capacity graph is fixed, the bits-per-Joule index will be
constant. In essence, for benchmark A, the bits-per-Joule/traffic
curve will be

(27)

where is the vector of all 1’s.

Benchmark B decouples the physical layer from the link layer
and above by using a fixed basis , but allowing the timesharing
proportions to be jointly optimized, together
with the flow assignment. The maximum achievable rate-scaling
factor , can be found by solving the linear program in
(8)–(14), with treated as variables. Then, for
each traffic level , the maximum bits-per-Joule can

be obtained through the linear program minimizing the power
consumption. Hence, the bits-per-Joule/traffic curve will be

(28)

In comparison, given a traffic level , the full-fledged
cross-layer optimization adjusts both the timesharing propor-
tions and the basis of ECG’s . Hence, the
bits-per-Joule/traffic curve will be

(29)

The basis of ECGs starts with an initial set and gets iteratively
refined with feedback information about the link traffic load.

Some simulation parameters are set up as follows. The SINR
threshold is set to be 4 dB. The path loss coefficients are set
as , where is the distance between node
and . The noise level is set to be 1. Since the normalization ren-
ders the absolute value of power consumption less meaningful,
we examine the relative power efficiencies for different schemes
in the subsequent discussions. The number of ECG’s in the
intermediate steps of deflation/inflation is around 200.

A. “Toy” Network

We first consider the toy example in Fig. 2(a). Fig. 4 shows
the initial basis of ECG’s , constructed by the random packing
procedure in Section II-B. Since session related information is
unavailable at the beginning, every node could potentially serve
as a source, a relay, or a destination. To ensure that each node
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Fig. 5. (a) Set of ECGs after pruning redundancies. (b) Resulting basis of ECGs after iteratively minimizing the aggregate congestion measure.

serves as a transmitter at least once and as a receiver at least
once, when packing each ECG, the first transmitter loops over
the set of all nodes.

The communication range and the interference range
are both set to be 120 m. Each link is denoted by a circle at the
transmitter and arrows pointing from the transmitter to the re-
ceivers. Circles are used to highlight the fact that a point-to-mul-
tipoint link cannot be simply treated as a collection of indepen-
dent point-to-point links, each pointing directly from the trans-
mitter to a receiver. This is because distinct information may be
loaded on these point-to-point links in the latter scenario. In the
underlying graph, a virtual vertex is introduced for each trans-
mitter in each ECG.

First, assume the operating regime is bandwidth-limited and
the goal is to economically allocate resources in order to leave
more room to accommodate new traffic. Equivalently, the op-

timization objective is to minimize the aggregate congestion
measure. In Fig. 4, a column vector is shown on the right of
each vertex. This vector gives the assigned link traffic load for
each session, i.e., the vector of max of flows whose en-
tries are . In each link of an ECG, e.g.,

with being the virtual vertex, the
vector is shown on the right of the transmitter , and
the vector is shown on the right of the receiver . The
maximum of over all edges in the ECG is

, in the solution of the linear program (15)–(20). Thus, it can
be checked that the aggregate congestion measure is 4.0
with .

The heuristic refinement of ECGs starts by pruning redun-
dancies in , according to the assigned link loads. First, di-
vide the vector of max of flows and by , such
that the aggregate congestion measure becomes 1 after this nor-
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Fig. 6. Resulting bases obtained by iteratively minimizing the power consumption. (a) � = 99%� . (b) � = 90%� . (c) � = 80%� . (d) � =

70%� . (e) � = 60%� . (f) � = 50%� .

malization. Next, multiply the normalized vectors by
and compute the ceiling. Denote the nine ECGs in

by . Retain 50 copies of , 23 copies of ,
25 copies of , 50 copies of , 27 copies of , and 26
copies of . Then, process one by one these six types of ECGs

, the links for each type, and the ses-
sions. Take the link in as an example. Session 2
has zero load on this link. For session 1, since the branch to
node 4 has zero load, this edge is pruned from the broadcast
link. Then, 50 copies of the link appear in the first 50 ECGs,
corresponding to ECG #1 in Fig. 5(a).

The set of ECGs after pruning is given in Fig. 5(a). The de-
flation operation is then applied to this set. After this, the next

iteration is started. Fig. 5(b) shows the resulting set of ECGs
after iteratively minimizing the aggregate congestion measure.
In fact, it has converged after only two iterations. It can be seen
that ECG #2 and #4 in Fig. 5(a) have been successfully merged
to form ECG #3 in Fig. 5(b). We denote this converged set in
Fig. 5(b) with . It can be seen that the aggregate congestion
measure has been reduced to 3.0. Hence, .
Comparing Fig. 4 with Fig. 5(b), it can be observed that the links
in the initial set tend to be omnidirectional, whereas iterative and
heuristic refinement has made the resulting ECGs match better
with the end-to-end traffic demands.

Let us now switch attention from the bandwidth-limited
regime to the energy-limited regime and discuss the entire



146 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 1, JANUARY 2005

(a) (b)

Fig. 7. (a) First nine ECGs in the initial basis B obtained by the random packing procedure. (b) Initial connectivity.

(a) (b)

Fig. 8. (a) First nine ECGs in the resulting basis B obtained by iteratively minimizing the aggregate congestion measure. (b) Connectivity after iteratively
minimizing the aggregate congestion measure.

bits-per-Joule/traffic curve . Fig. 6(a)–(f) shows the re-
sulting sets of ECGs after iteratively minimizing the power
consumption, for traffic levels ranging from % to

% . The result for % is obtained with
[Fig. 5(b)] being the initial basis of ECGs. The resulting

basis of ECGs is used as the initialization for % ,
and so on. The inflation operation is called in each iteration,
trying to arrange interfering links “spaciously.” Moving from
Fig. 6(a) to Fig. 6(f), as the traffic becomes lighter and lighter,
links become more and more spread out in the ECGs and routes
become more and more energy efficient. Note the congestion
measure is 1 with all these six resulting sets, although the
offered traffic levels are only fractions of . This confirms
that available “space” should be used as much as possible for
power reduction, as dictated in Theorem 3. Fig. 6(f) shows one

extreme case where the traffic demand is so light that every link
can afford to occupy an ECG alone.

Now, let us come back to the main simulation results in
Fig. 3(a), which shows the (scaled) bits-per-Joule performance
as a function of the traffic level. The top curve corresponds to
the full-fledged iterative cross-layer optimization. The sets of
ECGs for the rightmost six data points (from right to left) in
the top curve are those in Fig. 6(a)–(f), respectively. The curve
in the middle is for Benchmark B, where a fixed set of ECG’s

is used. The cut-off point of this curve is its maximum
rate scaling factor . The curve is flat and much
lower than the top one, showing that in this case the limited
degrees of freedom in adjusting the timesharing parameters are
not powerful enough to effectively achieve power reduction.
The bottom curve is for Benchmark A, where the composite
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(a) (b)

Fig. 9. (a) Connectivity after iteratively minimizing the power consumption, at a light traffic level � = 10%� . (b) Graph for information multicast from
node 28 to node 6 and node 52. The traffic demand is � = 0:0182, which has been rounded to 0.02. All the edges have unit capacity. Each link has an associated
“price,” which is the energy-per-bit, i.e., power per unit rate. In the figure, the cost for using a link u ! fv g is charged to edge uu . The multicast scheme
achieving the required (low) multicast rate while consuming the least amount of resources is given by performing network coding on the minimum-cost max of
flows. Two numbers have been marked on each edge: the left one is the price (scaled power) and the right one is the assigned max of flows g(vw) returned by the
linear program minimizing the total power consumption.

capacity graph is fixed. It has the worst performance in both
aspects: and the bits-per-Joule stays at a low level.

B. Larger Network

Next, we consider the more realistic example in Fig. 2(b).
Fig. 7(a) shows the first nine ECGs out of the initial set with
58 ECGs, constructed by the random packing procedure with
the communication range m and the interference range

m. Taking the union of the ECGs in this set, we can
obtain the connectivity graph of the network, shown in Fig. 7(b).

Fig. 8(a) shows part of the resulting set after iteratively
minimizing the aggregate congestion measure, which has 34
distinct ECGs. Similar to the smaller network, effects of the
pruning and deflation operations can be observed. Comparing
Fig. 7(b) with Fig. 8(b), it can be clearly seen that with om-
nidirectional and randomly packed physical-layer broadcasts,
the network is more connected. Given the traffic information,
unnecessary connectivity has been removed in Fig. 8(b). The
remaining sparser connectivity graph can promise a larger
throughput for the demands.

At the other extreme sits energy-efficient communica-
tion under very light traffic load. The offered traffic level

% is so light that each ECG has only one link.
Fig. 9(a) gives the corresponding connectivity graph. It can be
seen that a distribution tree is used for the information multicast
from 28 to . The multicast from 28 to
turns out to be very illustrative of the unique advantages of
network coding. We have extracted this part of the network as
Fig. 9(b). In Fig. 9(b), all the edges have unit capacity. Each

link has an associated “price,” which is the energy-per-bit,
i.e., power per unit rate. The cost for using a link
is charged to edge . The multicast scheme achieving the
required (low) multicast rate while consuming the least amount
of resources is given by performing network coding on the min-
imum-cost max of flows. Coincidentally, the structure of this
graph and its solution closely resemble the (classical) example
in [1], which demonstrates that network coding can achieve a
higher throughput than routing. The current example, in con-
trast, shows that network coding can be more economic in using
network resources than routing. Generally, the characterization
of sum of max of flows as linear constraints facilitates finding
network coding solutions that are efficient in using resources.

The main performance results are given in Fig. 3(b). Among
the three schemes, Benchmark A has the smallest achievable
rate scaling factor . For Benchmark B

, which is 3.1 times larger than . The it-
erative cross-layer optimization has the largest rate,

% larger than . In terms of energy-efficiency,
Benchmark A has the worst performance since a significant
amount of energy is not contributing to the traffic demands. The
curve for Benchmark B is monotonically decreasing. A proof
is as follows. If , we can always accommo-
date the lower traffic level by proportionally scaling the time-
sharing coefficients used in accommodating

. The curve for Benchmark B is not flat, showing that the de-
gree of freedom for adjusting can be useful in improving the
power efficiency. This effect can also be seen from Fig. 6(a)–(c)
for the toy network, which exhibit different power efficiency
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with the same basis of ECGs. The top curve is for the iterative
cross-layer optimization. The data points were collected from
right (heaviest traffic) to left (lightest traffic) and in collecting
each data point, the resulting basis of ECGs associated with the
previous data point is adopted as an initialization. For a traffic
level around 0.02, the bits-per-Joule value of the iterative op-
timization is 3.44 times larger than that for Benchmark B.

C. Summary

Overall, the major performance results have been presented in
Fig. 3 as the bits-per-Joule versus traffic level curves. In Fig. 3,
the cut-off points characterize the maximum supportable traffic
level and the part of the curves before cut-off gives the energy
efficiency. The iterative cross-layer optimization has been com-
pared with Benchmark A, which decouples the physical and link
layers from the network layer, and Benchmark B, which decou-
ples the physical layer from the link layer and above. The per-
formance gaps in these curves provide evidence for the benefits
of cross-layer coupling, and for the need for the physical states
to be traffic-dependent.

The usefulness of physical-layer broadcast in supporting
end-to-end multicast energy-efficiently is empirically con-
firmed. From the simulation results, network coding has been
observed to offer unique advantages over routing in economi-
cally using network resources.

VI. RELATED WORK

In recent years, many works have focused on the performance
characterization of multihop wireless networks. These works
can be roughly classified into two categories. The first category
focuses primarily on how the system scales with space and the
number of users. In their seminal paper [5], Gupta and Kumar
show that in a network with nodes, the throughput in bit-me-
ters per second is assuming random node dis-
tribution and random traffic pattern. This throughput limit arises
fundamentally as a result of mutual interference among concur-
rent transmissions. Since the primary interest of the works in this
category is on growth rate, these works model the cross-layer
coupling from a higher abstraction level than that pursued in
the current paper.

The second category aims at a detailed performance char-
acterization in a deterministic setting. Previous papers [7] and
[8] fall into this category. Both papers [7] and [8] consid-
ered bounding the maximum throughput for multiple unicast
sessions. Both papers combine the linear constraints that char-
acterize the allocated bit-rate resources and the constraints
that characterize feasible multicommodity flow (sum of flows)
assignment to arrive at joint linear programs. Using the “free of
secondary interference” model [6], Kodialam and Nandagopal
[7] presented a linear program that can be used to find an
achievable rate for a unicast session, which can be guaranteed
to be within 67% of the optimal solution under the model. They
also considered multiple unicast sessions. Jain et al. [8] intro-
duced the notion of a conflict graph to model interference and
established a framework for the joint optimization of routing,
medium access control, and physical layer transmissions, for
interference-limited wireless networks. They also showed

that finding the maximum throughput is NP-hard under the
interference model.

In this paper, we have pursued this line further, starting with
a converse problem: given the traffic demands, how to econom-
ically allocate the network resources to minimize certain cost
functions. More specifically, we considered minimizing the con-
gestion measure (equivalently, maximizing the throughput) and
minimizing the total power consumed in providing different
achievable rates for multiple multicast sessions. We presented
models for power control and physical-layer broadcast in the
physical layer, and network coding in the network layer. We pro-
posed an iterative optimization as a new computational method.
The result is a set of achievable tradeoffs between throughput
and energy efficiency, in a given wireless network with a given
traffic pattern.

In general, finding the optimal tradeoffs between throughput
and energy efficiency is difficult because of the combinatorial
nature of the problem that arises due to the effects of interfer-
ence. The proposed method in this paper yields achievable but
possibly suboptimal performance because of the heuristic ini-
tialization and the greedy updates of the ECGs, etc. In another
paper [9], [10], we focus on the ultimate energy-limited regime
and consider finding the minimum energy-per-bit for multicas-
ting information from a source to multiple destinations, under
the layered model. It was observed that if the required rate is suf-
ficiently small, then the effect of interference becomes immate-
rial, enabling one to find the minimum energy-per-bit in polyno-
mial time. Consequently, the entire space of pertinent supported
capacity graphs becomes a convex combination of a polyno-
mial number of ECGs. Given this observation, the minimum en-
ergy-per-bit can be found by a linear program that identifies a
supported capacity graph and a max of flows assignment, such
that the ratio of the power consumption achieved to the multi-
cast rate achieved, that is, the energy-per-bit, is minimized. A
solution to the minimum energy-per-bit in a mobile ad hoc net-
work, where the effect of mobility was modeled by introducing
a time dimension into the capacity graph was also proposed in
[9] and [10].

VII. CONCLUSION AND FUTURE WORKS

In this paper, we have formulated the network planning
problem in wireless ad hoc networks as economically allo-
cating network resources (information carrier supplies) such
that certain end-to-end communication demands are fulfilled.
We model the demands as a collection of multicast sessions
in the transport layer. We represent an allocation of supplies
as the choice of one capacity graph, out of a vast collection of
supported capacity graphs. This network planning formulation
necessitates an interaction across the network stack. In this
paper, a cross-layer approach is undertaken, which jointly
optimizes the flow assignment, timesharing in the link layer,
and coordination of concurrent links.

At the physical layer, the network operates in many different
physical states, each corresponding to an elementary capacity
graph. At the link layer, by timesharing among different phys-
ical states, convex combinations of the elementary capacity
graphs can be achieved, hence presenting to the upper layers
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a set of supported composite capacity graphs. At the network
layer, given a capacity graph, the end-to-end traffic demands are
transformed into link-by-link traffic loads, with which network
coding can be applied. Integrating these components, an iter-
ative cross-layer optimization is proposed. Two optimization
objectives, minimizing an aggregate congestion measure and
minimizing the power consumption, are considered, depending
on whether the operating regime is bandwidth-limited or
energy-limited.

Simulations have been conducted on community wireless net-
works. Benefits of a cross-layer approach have been quantita-
tively evaluated by comparing with designs that decouple the
layers. These results demonstrate that significant performance
advantages, in terms of congestion reduction and energy effi-
ciency, can be achieved by adopting a full-fledged cross-layer
optimization.

The proposed method outputs a set of achievable tradeoffs
between throughput and energy efficiency. These results are po-
tentially suboptimal because: 1) the layered model is subop-
timal from an information theoretic perspective; 2) the sum of
max of flows leads to a suboptimal solution to the multisession
multicast problem; and 3) the selection of ECGs is potentially
suboptimal. Better performance may be obtained by improving
along these directions. It would also be interesting to investigate
(upper) bounds to the optimal tradeoffs between throughput and
energy efficiency.

The proposed method has been presented as a centralized al-
gorithm. In the future, we are interested in devising and ana-
lyzing practical and distributed schemes with practical cross-
layer coupling.
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