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1 IntroductionIn systems involving multiple agents, system builders have traditionally analyzed the taskdomain of interest and, based on their analyses, imposed upon the agents certain rules (laws,protocols) that constrain the agents into interacting and communicating according to patternsthat the designer deems desirable. Thus, research into coordination techniques has often led toprescriptions for task-sharing protocols, such as the Contract Net [69], for rules of interactionsuch as social laws [67], for negotiation conventions [65], and so on. The emphasis in this workhas been to provide the agents with ready-to-use knowledge that guides their interactions, sothat their coordination achieves certain properties desirable from the designer's point of view,for example conict avoidance, stability, fairness, or load balancing.The fundamental problem we will address in this paper, on the other hand, is how agentsshould make decisions about interactions in cases where they have no common pre{establishedprotocols or conventions to guide them. Our argument is that an agent should rationally ap-ply whatever it does know about the environment and about the capabilities, desires, andbeliefs of other agents to choose (inter)actions that it expects will maximally achieve its owngoals. While this kind of agent description adheres to the knowledge-level view (articulatedby Newell [53]) that is a cornerstone of arti�cial intelligence, operationalizing it is a complexdesign process. Our work, as discussed in this paper, contributes to formalizing a rigorous,computational realization of an agent that can rationally (inter)act and coordinate in a multi-agent setting, based on knowledge it has about itself and others, without relying on protocolsor conventions.In our work, we use a decision-theoretic paradigm of rationality, according to which all ofan agent's undertakings in its environment are guided by its drive to maximize its expectedutility. We, as well as other authors [16, 19, 22, 31, 38], view this paradigm as very promisingfor the design of autonomous intelligent agents, since it can be shown (see, for example [12, 24])that it results in an optimal choice of a course of an agent's action, given its beliefs aboutthe world and its preferences. In other words, rationality is a way to combine the agent'spreferences, or goals, on one hand, with its beliefs about the world on the other hand, and toarrive at the optimal course of action.1To help the reader put our work in perspective we should stress that the representations wepostulate here are only used for the purpose of decision-making in multiagent situations, i.e.,we do not postulate a general knowledge-representation and reasoning formalism. Thus, therepresentations we discuss are invoked only when there is a need for making a decision aboutwhich course of action to pursue, and our methods are embedded among many of the othercomponents constituting a full-edged autonomous agent. These usually include a suitablydesigned knowledge base2, sensing and learning routines that update the KB, planning routines1The rational course of action is optimal only from the point of view of the agent in question. Thus, therational choice of one agent may be judged as suboptimal by another agent equipped with a richer knowledgeabout the world. Intuitively, therefore, rationality is a subjective optimality, subject to uncertainties andlimitations of the knowledge of the decision-making agent.2Our implementations use a KB con�gured as an ontology of object/frames.
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that propose alternative courses of action, and so on. This paper will not address any of thedi�cult challenges posed by the above components; we will concentrate solely on the issue ofdecision-making, understood as choosing among alternative courses of action generated, say,by a symbolic planning system.The expected utilities of alternative courses of action are generally assessed based on theirexpected results. That is, an agent is attempting to quantify how much better o� it would be ina state resulting from it having performed a given action. In a multiagent setting, however, anagent usually cannot anticipate future states of the world unless it can hypothesize the actionsof other agents. Therefore, an agent has to model other agents inuencing its environmentto fully assess the outcomes and the utilities of its own actions. We say that an agent iscoordinating with other agents precisely when it considers the anticipated actions of others asit chooses its own action.An agent that is modeling other agents to determine what they are likely to do, however,also should consider the possibility that they are similarly modeling other agents in choosingtheir actions. To anticipate the action of another agent, therefore, an agent could model howthat other agent might be modeling other agents. In fact, this nested modeling could continueon to how an agent is modeling how an agent is modeling how an agent is modeling, and soon.Thus, to be able to rationally choose its action in a multiagent situation, an agent hasto be able to represent and solve the recursive modeling problem. A related problem is thefamiliar minimax method for searching game trees [54], which assumes turn taking on thepart of the players during the course of the game. Another related area of research is the wide�eld of game theory, but we postpone a more detailed look at related work (Section 5) untilafter we have described our approach in full. In the next section, we introduce an example re-cursive modeling, while Section 3 formally presents the Recursive Modeling Method's (RMM)representation of nested knowledge and its solution concept. Section 4 illustrates the solutionmethod through example. We then contrast RMM to other relevant work (Section 5), anddiscuss the complexity issues of RMM (Section 6. We conclude by describing some promisingapplication domains, and some of our experiments (Section 6.1) , and by summarizing RMM'scontributions and open research problems (Section 7).2 An Example of Recursive ModelingThe main goal of our method is to represent and reason with the relevant information thatan agent has about the environment, itself, and other agents, in order to estimate expectedutilities for its alternative courses of action, and thus to make a rational decision in its mul-tiagent situation. To choose an action that maximizes its individual utility, an agent shouldpredict the actions of others. The fact that an agent might believe that other agents couldbe similarly considering the actions of others in choosing an action gives rise to the recursivenesting of models.For the purpose of decision-making, RMM compactly folds together all of the relevantinformation an agent might have in its knowledge base, and summarizes the possible uncer-3



tainties as a set of probability distributions. This representation can reect uncertainty as tothe other agents' intentions, abilities, preferences, and sensing capabilities. Furthermore, ona deeper level of nesting, the agents may have information on how other agents are likely toview them, how they themselves think they might be viewed, and so on.To facilitate the analysis of the decision-making behavior of the agents involved, the rele-vant information on each of the recursive levels of modeling is represented in RMM as a set ofpayo� matrices. In decision and game theory, payo� matrices have been found to be powerfuland compact representations, fully summarizing the current content of an agent's model ofits external environment, the agent's capabilities for action in this environment, the relevantaction alternatives of the other agents involved, and �nally, the agent's preferences over thepossible joint actions of the agents.Given a particular multiagent situation, a payo� matrix can be constructed by variousmeans. For example inuence diagrams, widely used in the uncertainty in AI community,can be compiled into unique payo� matrices by summarizing the dependence of the utility ofagent's actions on the environment and on others' actions. Other methods include equippingprobabilistic or classical planners with multiattribute utility evaluation modules, as in thework reported in [31, 35], and in our early system called the Rational Reasoning System(RRS) [29], which combined hierarchical planning with a utility evaluation to generate thepayo� matrices in a nuclear power plant environment. Still another method was used inthe air-defense domain we report on in Section 6.1. Because, as we mentioned, RMM isindependent of methods used to generate payo� matrices in a speci�c domain, we will notconsider these issues in much depth in this paper.To put our description of RMM in concrete terms, we will consider a particular decision-making situation encountered by an autonomous outdoor robotic vehicle, called R1 (Figure 1),attempting to coordinate its actions with another robotic vehicle, R2. We will assume thatthe vehicles' task is to gather as much information about their environment as possible, whichcan be done by moving to vantage points that command a wide view, while minimizing cost.From the perspective of robot R1, whose point of view we will take in analyzing this situation,two possible vantage points P1 and P2 are worth considering. P2 has a higher elevation andwould allow twice as much information to be gathered as P1, and so, the robot is willingto incur greater cost to go to P2. Based on domain-speci�c knowledge, in this example R1expects that gathering information at P2 will be worth incurring a cost of 4 (or, put anotherway, the information gathered from P2 has an expected value of 4), while the observationfrom P1 will be worth 2.R1 thus has three possible courses of action: it can move to P1 and gather informationthere (a11); it can move to P2 and gather information there (a12); or it do neither and justsit still (a13).3 The expected cost (time or energy) to R1 of pursuing each of these courses ofaction is proportional to the distance traveled, yielding a cost of 1 for a11, 2 for a12, and 0 for3These courses of action could have been proposed as plausible by a symbolic planner, and each of themmay have to be further elaborated by the robot. While all possible detailed plans for these high-level coursesof action could be enumerated and represented in a payo� matrix, it is clearly desirable to include just a fewabstract actions or plans.
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Figure 1: Example Scenario of Interacting Agentsa13. We further assume in this example that each of the robots can make only one observation,and that each of them bene�ts from all information gathered (no matter by which robot), butincurs cost only based on its own actions.Given the above information, residing in robot R1's knowledge base, R1 can build a payo�matrix that summarizes the information relevant to its decision-making situation. The relevantalternative behaviors of R2 that matter will be labeled a21 through a23, and correspond to R2'salternative plans of taking the observation from point P1, P2, and staying put or doingsomething else, respectively. Thus, the entry in the matrix corresponding to R1's pursuingits option a11 and R2's pursuing a22 is the payo� for R1 computed as the total value of theinformation gathered by both robots from both P1 and P2 minus R1's own cost: (2+4) - 1 =5. The payo� to R1 corresponding to R1's pursuing a11 and R2's pursuing a21 is (2+0) - 1 =1, since the information gathered is worth 2 and redundant observations add no value. All ofthe payo�s can be assembled in the payo� matrix depicted on top of the structure in Figure 2.In order to arrive at the rational decision as to which of its three options to pursue, R1 hasto predict what R2 will do. If R2 were to take the observation from the point P2, i.e., its a22option, it would be best for R1 to observe from P1. But if R2 decided to stay put, R1 shouldobserve from the point P2, i.e., pursue its option a12. In general, R1 might be uncertain as towhich action R2 will take, in which case it should represent its conjecture as to R2's action asa probability distribution over R2's possible alternative courses of action. If R1 thinks that R2will attempt to maximize its own expected utility, then R1 can adopt the intentional stancetoward R2 [18], treat R2 as rational, and model R2's decision-making situation using payo�matrices. R2's payo� matrix, if it knows about both observation points, arrived at analogouslyto R1's matrix above, has the form depicted in the right branch in Figure 2.That is not all, though, because R1 realizes that robot R2 possibly does not know about
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the observation point P2 due to the trees located between R2 and P2. R1, therefore, has todeal with another source of uncertainty: there are two alternative models of R2's decision-making situation. If R2 is unaware of P2, then it will not consider combinations of actionsinvolving a12 or a22 and its payo� matrix is 2 � 2, as depicted in the left branch in Figure 2.R1 can represent its uncertainty as to which of the models of R2 is correct by assigning asubjective belief to each. In this example, we assume that R1, having knowledge about thesensors available to R2 and assessing the density of the foliage between R2 and P2, assigns aprobability for R2 seeing through the trees as 0.1.Let us note that R2's best choice of action, in each of the intentional models that R1 has,also depends on what it, in turn, thinks that R1 will do. Thus, R1 should, in each of thesemodels, represent what it knows about how R2 models R1. If it were to model R1 as rationalas well, the nesting of models would continue. It might have some subjective probabilitiesover R1's actions, based on some simpli�ed model of R1 or on past experiences with R1. Thiswould mean that the nesting terminates in what we call a sub-intentional model. If, on theother hand, R2 were to lack the information needed to build a model of R1's preferences overjoint actions, then the nesting of models would terminate in what we call a no-informationmodel.To keep this example simple and illustrative, let us make some arbitrary assumptions abouthow R1's state of knowledge terminates, as follows: in the case that R1 supposes that R2 is ofthe type4 that cannot see through the trees, then R1 knows that R2 does not know anythingabout R1. But in the event that R2 is of the type that can see through the trees, then R1itself has no knowledge in its knowledge base about how it might be modeled by R2.While the scenario used here seems relatively simple, we invite the reader to develop hisor her own intuitions at this point by considering the problem facing our robot R1: What isthe best course of action, given the information R1 has about the situation and about R2?Should R1 move to P1 and hope that R2 will cooperate by observing from P2? Or should R1go to P2 itself, due to the importance of this observation and in the face of uncertainty as toR2's behavior? How does the probability of R2's knowing about P2 inuence R1's choice? Wewill provide the answers in Section 4.According to our approach in RMM, R1's knowledge as to the decision-making situationthat it faces can be cast into the representation depicted in Figure 2, which we will call therecursive model structure. The top level of this structure is how R1 sees its own decision-making situation, represented as R1's payo� matrix. On the second level are the alternativemodels R1 can form of R2, with the alternative branches labeled with the probabilities R1assigns to each of the models being correct.The third level is occupied by no-information models that terminate the recursive nestingin this example. These models represent the limits of the agents' knowledge: The modelNo-Info2 represents the fact that, in the case when R2 cannot see P2, R1 knows that R2 hasno knowledge that would allow it to model R1. Thus, the uncertainty is associated with R2,and the model's superscript speci�es that the state of no information is associated with itsancestor on the second level of the structure in Figure 2. The No-Info1 model, terminating4Our use of this term coincides with the notion of agent's type introduced by Harsanyi in [36].6
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Figure 3: The Explicit Sub-branching Due to the No-Info1 Model in Example 1.The no-information model No-Info2 in the left branch in Figure 2 expresses the fact thatR1 knows that if R2 cannot see P2 then R2 has no information based on which it could predictR1's behavior. Again, this translates into all of the legal 2-vector distributions, now emanatingfrom the model on the second level, being possible and equally likely. It can be shown, forexample using the principle of interval constraints (see [52] for de�nition), that the set of allof these legal distributions can be equivalently represented by a uniform distribution over R1'spossible actions, a11 and a13, themselves: [0:5; 0:5]. This distribution precisely represents R2'slack of knowledge in this case, since its information content is zero.3 General Form of the Recursive Modeling MethodWe �rst formally de�ne the payo� matrix, which is the basic building block of RMM's modelingstructure. A payo� matrix represents the decision-making situation an agent �nds itself inwhen it must choose an action to take in its multiagent environment. Following the de�nitionused in game theory [61], we de�ne the payo� matrix, PRi, of an agent Ri as a triple PRi =(R;A; U).R is a set of agents in the environment, labeled R1 through Rn (n � 1). R will be takento include all possible decision-making agents impacting the welfare of the agent Ri.A is de�ned as a cross product: A = A1 � A2 � � � � � An, where set Aj = faj1; aj2 � � �g8



represents the alternative actions of agent Rj. The elements of A are the joint moves of the nagents in question. Additionally, we now de�ne a joint move of the other agents as an elementof the following set: A�i = A1 � A2 � � � � � Ai�1 � Ai+1 � � � � � An. The joint move of theother agents speci�es the moves of all of the agents except the agent Ri. We further demandthat the sets of alternative actions of the agents be exhaustive, and that the alternatives bemutually exclusive.Finally, U is a payo� function that assigns a number (expected payo� to the agent Ri)to each of the joint actions of all of the agents: U : A �! R, where R is the set of realnumbers. Intuitively, any purposeful agent has reason to prefer some actions (that further itspurposes in the current situation) to others [72]. Our ability to represent agents' preferencesover actions as payo�s follows directly from the axioms of utility theory, which postulate thatordinal preferences among actions in the current situation can be represented as cardinal,numeric values (see [12, 19] for details). We represent Ri's payo� associated with a jointaction (a1k; � � � ; a1m; � � � ; anl ) as uRia1k���aim���anl .We now de�ne the recursive model structure of agent Ri, RMSRi , as the following pair:RMSRi = (PRi; RMRi); (1)where PRi is Ri's payo� matrix, and RMRi is Ri's recursive model, which contains the knowl-edge Ri has about the other n � 1 agents in the environment. A recursive model RMRi isde�ned as a probability distribution over the alternative models of the other agents. Thus, ifM (Ri ;�) is taken to denote one of Ri's alternative models of the other agents, i.e., all agentsexcept Ri, then Ri's recursive model assigns to it a probability, pRi� . These probabilities repre-sent Ri's subjective belief that each of the alternative models is correct. We call pRi� 's modelingprobabilities. They sum to unity: Pm�=1 pRi� = 1. To make our exposition more transparentwe have assumed above that the set of alternative models is �nite, but one could generalizethe modeling probability to be de�ned over a measurable in�nite space of alternative models.7Each of the alternative models of the other agents consists simply of the list of models of eachof the agents: M (Ri ;�) = (M (Ri;�)R1 ; :::;M (Ri;�)Ri�1 ;M (Ri;�)Ri+1 ; ::;M (Ri;�)Rn ): (2)The models M (Ri ;�)Rj , that Ri can have of Rj, come in three possible forms:M (Ri ;�)Rj = 8>><>>: Intent(Ri ;�)Rj { the intentional model,No-Info(Ri;�);�Rj { the level-� no-information model,Sub� Int(Ri;�)Rj { the sub-intentional model. (3)The intentional model corresponds to Ri modeling Rj as a rational agent. It is de�ned as:Intent(Ri;�)Rj = RMS(Ri;�)Rj ; (4)7In the next subsection we show how an in�nite space of models can be transformed into an equivalent�nite set. 9



that is, it is the recursive model structure that agent Ri ascribes to agent Rj. This structure,as de�ned in Equation 1, further consists of the payo� matrix that Ri ascribes to Rj in thismodel, P (Ri;�)Rj , and the recursive model RM (Ri;�)Rj containing the information Ri thinks Rj hasabout the other agents.The level-� no-informationmodel, No-Info(Ri;�);�Rj , represents the limits of knowledge associ-ated with the (ancestor) agent modeled on the � level of nesting. In other words, No-Info(Ri;�);�Rjlocated on a level l, represents Ri's belief that the agent modeled on level � has run out ofknowledge at level l of Ri's modeling structure. According to this semantics, the superscript ofthe no-information model has to be between 1 (corresponding to the agent Ri running out ofinformation) and a value one less than the level on which the no-information model is locatedin the recursive structure. Thus, for a no-information model, No-Info�, located on level l, wehave: 1 � � � l � 1.The no-information models assign uniform probabilities to all of the alternative distribu-tions over the actions of the other agents and contain no information [52] beyond the currentlyconsidered level of nesting, representing the limits of knowledge reached at a particular stageof recursive modeling. The use of no-information models in our decision-making frameworkreects a situation in which a symbolic KB of the agent in question contains the agent's beliefsabout the others' beliefs nested to some level, but does not contain any information nesteddeeper.The sub-intentional model is a model which does not include the ascription of beliefs andpreferences, and does not use rationality to derive behavior,8 as in the model of the bush in thepreceding section. Besides the intentional stance, Dennett [18] enumerates two sub-intentionalstances: The design stance, which predicts behavior using functionality (such as how thefunctions of a console controller board's components lead to its overall behavior [34]), and thephysical stance, which predicts behavior using the description of the state of what is beingmodeled along with knowledge of its dynamics (like in the qualitative model of a bouncing ball[23], or �nite state automata models in [10]). For the purpose of our work presented in thispaper, we assume that an agent can incorporate techniques such as model-based reasoning orqualitative physics to make predictions about the behavior of sub-intentional entities, resultingin a probability distribution over their alternative behaviors, as enumerated in the agent'spayo� matrix. Further, any informative conjecture, i.e., a probability distribution over others'actions, can be treated as a sub-intentional model, if it has been arrived at without the useof intentionality ascription. For example, a conjecture as to another's actions may be derivedfrom plan recognition, from past actions (as in [37]), or from information related by a thirdagent, and it can be given a probabilistic weight according to the assessment of its faithfulnesswithin the RMM framework.The de�nition of the recursive model structure and the intentional model are recursive, but,as we argue in more detail later, it is likely to be �nite due to practical limitations in attainingin�nitely nested knowledge. In other words, in representing the content of its KB about its8According to Dennett [18], such a sub-intentional agent does not even satisfy the basic requirement ofagenthood. It is simply an entity, then, rather than an agent proper.
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own decision-making situation, the situations of the other agents, and of what the other agentsknow about others, the agent is likely to run out of knowledge at some level of nesting, inwhich case the recursion terminates with a level-1 no-information model. Of course somerecursive branches can also terminate with higher level no-information models representingthe possible limitations of other agents' knowledge, or with sub-intentional models that donot lead to further recursion. Thus, the no-information models are not intended as an ad hocmeans to terminate the recursive structure of models. Rather, in our knowledge-based view,the branches of the recursive structure terminate with a no-information model when, and onlywhen, the limits of the agents' knowledge, contained in its KB, are reached. In that way, allof the agent's knowledge relevant to the decision-making process is used to derive the rationalcoordinated choice of action.3.1 Solving RMM Using Dynamic ProgrammingThe recursive nature of RMM makes it possible to express the optimal choice on a given levelof modeling in terms of choices of the agents modeled on deeper levels. Thus, a solutionusing dynamic programming can be formulated. The solution traverses the recursive modelstructure propagating the information bottom-up. The result is an assignment of expectedutilities to the agent's alternative actions, based on all of the information the agent has athand about the decision-making situation. The rational agent can then choose an action withthe highest expected utility.Clearly, the bottom-up dynamic programming solution requires that the recursive modelstructure be �nite and terminate. Thus, we make a following assumption:Assumption 1: The recursive model structure, de�ned in Equation 1 is �nite, and ter-minates with either a sub-intentional or a no-information model.The expected utility of them-th element, aim, of Ri's set of alternative actions are evaluatedas: uRiaim = X(a1k ;:::;anp )2A�i pRia1k:::anpuRia1k ���aim���anp (5)where pRia1k :::anp represents the Ri's conjecture as to the joint actions of the other agents, i.e., itis an element of the probability distribution over the set of joint moves of the other agentsA�i. We will refer to pRia1k:::anp as intentional probabilities. uRia1k���aim���anp is Ri's expected payo�residing in its payo� matrix, PRi.Ri can determine the intentional probabilities pRia1k :::anp by using its modeling knowledge ofother agents contained in the recursive model RMRi . As de�ned in the preceding section,Ri can have a number of alternative models M (Ri ;�) of the other agents, and a modelingprobability, pRi� , associated with each of them. If we label the predicted probability of jointbehavior of the other agents resulting from a model M (Ri;�) as p(Ri;�)a1k:::anp , we can express theoverall intentional probability of the other agents' joint moves, pRia1k:::anp , as:pRia1k:::anp =X� pRi� � p(Ri;�)a1k:::anp : (6)
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The joint probability, p(Ri;�)a1k:::anp , of the other agents' behaviors resulting from a modelM (Ri;�),can in turn be expressed as a product of the intentional probabilities for each of the agentsindividually, p(Ri;�)ajk , resulting from a model M (Ri;�)Rj :p(Ri;�)a1k :::anp = p(Ri;�)a1k � � � � � p(Ri;�)anp (7)If the model M (Ri;�)Rj is in the form of the sub-intentional model, then the probabilitiesp(Ri;�)ajk indicating the expected behavior of the entity can be derived by whatever techniques(statistical, model-based, qualitative physics, etc.) Ri has for predicting behavior of suchentities.If Ri has assumed an intentional stance toward Rj in its modelM (Ri ;�)Rj , i.e., if it is modelingRj as a rational agent, then it has to model the decision-making situation that agent Rj faces,as speci�ed in Equations 3 and 4, by Rj's payo� matrix P (Ri;�)Rj and its recursive modelRM (Ri ;�)Rj . Ri can then identify the intentional probability p(Ri;�)ajk as the probability that thek-th alternative action is of the greatest utility to Rj in this model:p(Ri;�)ajk = Prob(u(Ri;�);Rjajk = Maxk0(u(Ri;�);Rjajk0 )): (8)u(Ri;�);Rjajk0 is the utility Ri estimates that Rj assigns to its alternative action ajk0 in this model,and it can be further computed as:u(Ri;�);Rjajk0 = X(a1o;:::;anr )2A�j p(Ri;�);Rja1o:::anr u(Ri;�);Rja1o���ajk0 ���anr (9)This equation is analogous to Equation 5 except it is based on Ri's model of Rj. Theu(Ri;�);Rja1o���ajk0 ���anr are Rj's payo�s in the payo� matrix P (Ri;�)Rj . The intentional probabilities p(Ri;�);Rja1o:::anrare what Ri thinks Rj assigns to other agents' intentions. The probabilities p(Ri;�);Rja1o:::anr can inturn be expressed in terms of the models that Ri thinks Rj has of the other agents in theenvironment, contained in RM (Ri;�)Rj , and so on.The intentional stance Ri uses to model Rj is formalized in Equation 8. It states thatagent Rj is an expected utility maximizer and, therefore, its intention can be identi�ed as thecourse of action that has the highest expected utility, given Rj's beliefs about the world andits preferences.What the intentional stance does not specify, however, is how Rj will make its choice ifit �nds that there are several alternatives that provide it with the maximum payo�. Con-sequently, using the principle of indi�erence once more, Ri will assign an equal, nonzeroprobability to Rj's option(s) with the highest expected payo�, and zero to all of the rest.9Formally, we can construct the set of Rj's options that maximize its utility:9An alternative view, that an action with twice the utility should be twice as likely, could be consideredand seems particularly useful to model human behavior, as described in [9].12



Amax(Ri ;�)j = fajk j ajk 2 A(Ri;�)j ^ u(Ri;�);Rjajk = Maxk0(u(Ri;�);Rjajk0 )g: (10)Then, the probabilities are assigned according to the following:p(Ri;�)ajk = 8<: 1jAmax(Ri;�)j j if ajk 2 Amax(Ri ;�)j0 otherwise: (11)Finally, if Ri's model terminates with a no-information model, two cases arise. The �rstoccurs when we have a no-information model No-Info� located on level � + 1 describing thelimits of knowledge possessed by the agent modeled on level �. This model is a shorthandfor all legal distributions being possible and equally likely.10 As could be expected, it can beshown, for example using the principle of interval constraints (see [52] for de�nition), thatit can be equivalently represented by a uniform distribution over the other agents' possibleactions at this level, yielding the probabilities p(Ri;�)ajk = 1jAj j speci�ed in this model.The second, more complex case, occurs when a model No-Info� is located on level deeperthan �+1. In this case we note that Equation 8 and Equation 9 de�ne a �nite number of equiv-alence classes among the in�nite sub-branches represented by these no-information models.Namely, an intentional probability distribution used in Equation 9 to compute the intentionalprobabilities higher up the recursive model in Equation 8 is equivalent to another such dis-tribution, provided that it also favors the same alternatives chosen as optimal in Equation 8.It follows that the no-information model in this case can be equivalently represented by a�nite number (jAjj at most) of discrete branches, each representing such an equivalence class.The resulting discrete branches have a modeling probability, associated with the equivalenceclasses they represent, de�ned on the measurable space of possible intentional probability dis-tributions in the leaves of the sub-branches. These branches can be terminated with any ofthese equivalent distributions on the level �+ 1, or simply with the resulting probability dis-tribution computed in Equation 8 on level �. The information contained in these branches canthen propagated upwards directly. We provide examples of these calculations in the followingsection.4 Solving the Example InteractionIn this section, we solve the example decision-making problems presented in Section 2. Webegin by noting that some of the probability triples in the sub-branches in Figure 3, whenused to calculate the expected utilities of R2's actions in the matrix above, will make R2'saction a22 the most preferable, while other triples may favor other actions. For example, if R2models R1's expected behavior using the probability distribution [1; 0; 0] over the actions a11,a12, and a13, then, given R2's payo� matrix, the expected utilities of R2's alternatives a21, a22,10The principle of indi�erence is applied here to the probability itself. See, for example, the discussion in[15] Section 1.G.
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Figure 4: The Transformed Recursive Model Structure for Example 1and a23, according to Equation 5 are 0, 5, and 2, respectively, and the action a22 is preferredfor R2. Another distribution, say, [0:9; 0:1; 0] also favors a22 and thus belongs to the sameequivalence class as [1; 0; 0]. The distribution [0:1; 0:9; 0], on the other hand, makes the actiona23 preferable for R2, and belongs to a di�erent equivalence class.The modeling probability of the branch representing the class favoring the action a22 iscomputed as the proportion of all of the 3-vectors in Figure 3 that favor a22, among all of thelegal distributions over the three actions of R1, [x1; x2; x3], such that x1+x2+x3 = 1 and 0 �xi � 1, for i equal to 1 through 3. All of these legal 3-vectors form a triangular part of a planein the three dimensional space spanned by the axes of x1, x2, and x3. The area of this trianglecan be computed [47] as p3 1R0 1�x1R0 dx2dx1 = p32 . The part of the area of the legal 3-vectors thatfavor the action a22, can be computed (again, see [47]) as p3[0:25R0 0:75R0 dx2dx1+ 1R0:25 1�x1R0 dx2dx1] =p3� 1532 , and the area that favors a23 can be computed as p3 1R0:75 1�x2R0 dx1dx2 = p332 .11 Thus, twoequivalence classes among the 3-vectors that favor a22 and a23 have probabilities equal to 1516 and11We found the method of logic sampling to be an e�ective approximate way to compute the values of theintegrals here.
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116 , respectively, and these are the only classes that have a nonzero probability. Now, all ofthe sub-branches that favor each of the separate alternative actions can be safely lumped intoa sub-branch ending with a single representative probability 3-vector favoring this particularaction on level 3, or simply with the intentional distribution reecting the favored action onlevel 2. The resulting recursive structure for our example is depicted in Figure 4.The recursive structure in Figure 4 can be solved bottom-up as follows. The intentionalprobability distribution in the leftmost leaf in Figure 4|representing R1's knowing that R2has no information about how to model R1's intentions is: p(R1;1);R2R1 = [p(R1;1);R2a11 ; p(R1;1);R2a13 ] =[0:5; 0:5]. Given R2's payo� matrix in this case, the expected utilities of its alternatives in thismodel are computed (Equation 9) as the probabilistic sum of the payo�s:u(R1;1);R2a21 = p(R1;1);R2a11 � 0 + p(R1;1);R2a13 � 0 = 0u(R1;1);R2a23 = p(R1;1);R2a11 � 2 + p(R1;1);R2a13 � 0 = 1Since the set of R2's alternatives that maximize its expected payo� in this model has onlyone element (Amax(R1 ;1)2 = fa23g) the probability distribution of the intentions of agent R2(Equations 10 and 11) is: p(R1;1)R2 = [p(R1;1)a21 ; p(R1;1)a23 ] = [0; 1]. Thus, R1 knows that if R2 cannotsee point P2 it will remain stationary.The probability distributions over R2's alternatives in the other two branches specify thatR2 will move toward P2 and make an observation from there (this is the case when R2 cansee P2 and its model of R1 indicates that pursuing P2 is better), with the probability of0:1 � (15=16). Further, with the probability 0:1 � (1=16) = 0:09375, R2 will remain stilleven though it knows about P2, since its model of R1 indicates that R1 is likely to pursueobservation from P2.The three alternative models of R2's behavior can be combined into the overall intentionalprobabilities as a probabilistic mixture of R2's intentions in each of the alternative models(Equation 6):pR1R2 = [pR1a21 ; pR1a22 ; pR1a22 ] = :90625� [0; 0; 1] + 0:09375� [0; 1; 0] = [0; 0:09375; 0:90625]:The expected utilities of R1's alternative actions in its own decision-making situation (topmatrix in Figure 4) can now be computed (Equation 5) as:uR1a11 = :09375 � 5 + :90625 � 1 = 1:375uR1a12 = :09375 � 2 + :90625 � 2 = 2uR1a13 = :09375 � 4 + :90625 � 0 = 0:375Thus, the best choice for R1 is to pursue its option a12, that is, to move toward point P2and make an observation from there. It is the rational coordinated action given R1's state15



of knowledge, since the computation included all of the information R1 has about agent R2'sexpected behavior. Intuitively, this means that R1 believes that R2 is so unlikely to go to P2that R1 believes it should go there itself.Let us note that the traditional tools of equilibrium analysis do not apply to this examplesince there is no common knowledge. However, the solution obtained above happens to coin-cide with one of two possible solutions that could be arrived at by traditional game-theoreticequilibrium analysis, if a number additional assumptions about what the agents know weremade in this case. Thus, if R1 were to assume that R2 knows about the point P2, and thatR2 knows that R1 knows, and so on, then R1's move toward P2 would a part of the equilib-rium in which R1 goes to P2 and R2 goes to P1. This shows that the solutions obtained inRMM analysis can coincide with game-theoretic solutions, but that it depends on fortuitousassumptions about agents' knowledge. It is also not di�cult to construct a �nite state ofR1's knowledge that would result in R1's rational action to be pursuing observation from P1and expecting R2 to observe from P2, which happens to be the other equilibrium point thatcould be derived if the agents were assumed to have common knowledge [3] about P2. Thecoincidence would, again, be a matter of making ad hoc assumptions about the agents' statesof knowledge.5 Related WorkSome of the most relevant works are ones that bear upon our Assumption 1 in Section 3.1,postulating �niteness of knowledge nesting in the recursive model structure12. A well-knownparticular case of in�nitely nested knowledge is based on the notion of common knowledge[2]. A proposition, say p, is common knowledge if and only if everyone knows p, and everyoneknows that everyone knows p, and everyone knows that everyone knows that everyone knows p,and so on ad in�nitum. However, in their pioneering paper [33], Halpern and Moses show that,in situations in which agents use realistic communication channels which can lose messagesor which have uncertain transmission times,13 common knowledge is not achievable in �nitetime unless agents are willing to \jump to conclusions," and assume that they know morethan they really do.14In other related work in game theory, researchers have begun to investigate the assumptionsand limitations of the classical equilibrium concept [5, 25, 39, 62, 70], and an alternative hasbeen proposed [3, 7, 39, 60], called a decision-theoretic approach to game theory. Unlikethe outside observer's point of view in classical equilibrium analysis, the decision-theoreticapproach takes the perspective of the individual interacting agent, with its current subjectivestate of belief, and coincides with the subjective interpretation of probability theory used in12Here, knowledge about the world is taken as something the agent is acquiring through sensing, as opposedto merely assuming.13To our best knowledge, all practically available means of communication have such imperfections.14Halpern and Moses consider the concepts of epsilon common knowledge and eventual common knowledge.However, in order for a fact to be epsilon or eventual common knowledge, other facts have to be commonknowledge within the, so called, view interpretation. See [33] for details.16



much of AI (see [11, 52, 57] and the references therein). Its distinguishing feature seems bestsummarized by Myerson ([50], Section 3.6):The decision-analytic approach to player i's decision problem is to try to predictthe behavior of the players other than i �rst, and then to solve i's decision problemlast. In contrast, the usual game-theoretic approach is to analyze and solve thedecision problems of all players together, like a system of simultaneous equationsin several unknowns.Binmore [5] and Brandenburger [7] both point out that unjusti�ability of common knowl-edge leads directly to the situation in which one has to explicitly model the decision-makingof the agents involved given their state of knowledge, which is exactly our approach in RMM.This modeling is not needed if one wants to talk only of the possible equilibria. Further,Binmore points out that the common treatment in game theory of equilibria without any ref-erence to the equilibrating process that achieved the equilibrium15 accounts for the inability ofpredicting which particular equilibrium is the right one and will actually be realized, if therehappens to be more than one candidate.16Our de�nition of the recursive model structure above is closely related to interactive beliefsystems considered in game theory [3, 36, 48]. Our structures are somewhat more expressive,since they also include the sub-intentional and no-information models. Thus, they are ableto express a richer spectrum of the agents' decision making situations, including their payo�functions, abilities, and information they have about the world, but also the possibility thatother agents should be views not as intentional utility maximizers, but as mechanisms orsimple objects.Apart from game theory we should mention related work in arti�cial intelligence. In hisphilosophical investigations into the nature of intentions Bratman [8] distinguishes betweenmere plans, say as behavioral alternatives, and mental states of agents when they \have aplan in mind" which is relevant for having an intention (see also [1]). Our approach of viewingintentions as the results of rational deliberations over alternatives for action, given an agent'sbeliefs and preferences, is clearly very similar. Closely related is also the concept of practicalrationality in [59]. Another strand of philosophical work that we follow, as we have mentionedbefore, is Dennett's formulation of the intentional stance [18], and his idea of the ladder ofagenthood (see [51] for a succinct discussion), the �rst �ve levels of which we see as actuallyembodied in RMM.Shoham's agent-oriented programming (AOP) [67] takes more of a programming-languageperspective. Shoham de�nes many mental attitudes, for example belief, obligation, and choice,as well as many types of messages that the agents can exchange, and he has developed a15Binmore compares it to trying to decide which of the roots of the quadratic equation is the \right" solutionwithout reference to the context in which the quadratic equation has arisen.16Binmore [6], as well as others in game theory [40, 41, 13, 14] and related �elds [68], suggest the evolutionaryapproach to the equilibrating process. The centerpiece of these techniques lies in methods of belief revision,which we see as an interesting area for investigation in the context of RMM in the future.
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preliminary version of an interpreter. However, while Shoham has proposed it as an extension,decision-theoretic rationality has not yet been included in AOP.The issue of nested knowledge has also been investigated in the area of distributed systems[21] (see also [20]). In [21] Fagin et. al. present an extensive model-theoretic treatment ofnested knowledge which includes a no-information extension (like the no-information modelin RMM) to handle the situation where an agent runs out of knowledge at a �nite level ofnesting; however, no sub-intentional modeling is envisioned. Further, they do not elaborate onany decision mechanism that could use their representation (presumably relying on centrallydesigned protocols). Another related work on nested belief with an extensive formalism isone by Ballim and Wilkes [4]. While it concentrates on mechanisms for belief ascription andrevision, primarily in the context of communication, it does not address the issues of decisionmaking. Korf's work on multi-agent decision trees also considers issues in nested beliefs, wherethe beliefs that agents have about how each other evaluate game situations can vary [43].The applications of game-theoretic techniques to the problem of interactions in multiagentdomains have also received attention in the Distributed AI literature, for example in [63, 64,65]. This work uses the traditional game-theoretic concept of equilibrium to develop a familyof rules of interaction, or protocols, that would guarantee the properties of the system as awhole that are desirable by the designer, like stability, fairness and global e�ciency. Otherwork by Koller [42] on games with imperfect information, and Wellman's WALRAS system[74, 73] also follow the more traditional lines and global view of equilibrium analysis.6 ComplexityOne look at the branching nested representations proposed in this paper is enough to suggestthat complexity may become an issue. Indeed, if we were to characterize the size of a problemfor RMM to solve by the number of agents, n, it is easy to show that the complexity of buildingand solving the recursive models grows exponentially as O(jAjn �ml), where jAj is the numberof alternative actions considered, m is the branching factor of the recursive model structure,and l is the level of nesting included.Luckily, an exhaustive evaluation of the full-blown RMM hierarchy can be simpli�ed in anumber of ways. For lack of space, we briey list some of the most intuitive methods (see [26]for more details). First, the dynamic programming solution of the recursive model structuretakes advantage of the property of overlapping subproblems (see [17], section 16.2), whichavoids repeated redundant solutions of similar branches in the recursive model structure. Theextend to which problems do overlap, is, of course, case dependent. However, in environmentslike the pursuit problem, described in Section 6.1, the overlap in subproblems leads to reducingcomplexity down to a polynomial.A powerful idea for further reducing the complexity of agent coordination in large groups isto neglect the models of agents with which the interaction is weak. First, it can be shown thatmodels of some agents can be safely neglected, since they possibly cannot change the solution.Second, some models that potentially could inuence the solution, will do so with only a verysmall probability. This family of simpli�cations is clearly similar to strategies of coordinating18



humans; we usually worry about the people in our immediate vicinity and about the fewpersons we interact with most closely, and simply neglect the others within, say, the building,organization, or the society at large. As it turns out, the payo� matrices lend themselves toan e�cient assessment of the strength of interaction between agents by analyzing variabilityof the payo� values. For details of these and other simpli�cation methods, see [26, 71], andrelated work in [58, 66].7 Application Domains and ExperimentsRMM �lls a niche among multiagent reasoning techniques based on pre-established protocolsin many realistic domains for two main reasons. First, in many domains the environment is toovariable and unpredictable for pre-established protocols to remain optimal in circumstancesthat could not be foreseen by the designers. Second, frequently, the group of interactingagents is not speci�ed before hand17, and one cannot rely on the agents knowing which, if any,protocol to follow. Examples include numerous human-machine coordination tasks, such asmany realistic space applications, in which robots need the ability to interact with both otherrobots and humans, as well as applications in defense-related domains, characterized by theirinherently unpredictable dynamics. Other examples include telecommunications networks,exible manufacturing systems, and �nancial markets.In our work, we looked more closely at applying RMM to coordinate autonomous manufac-turing units [30], and applications to coordination and intelligent communication in human-computer interaction [27].Finally, we have implemented RMM in three examples of multiagent domains. Our aim hasbeen to assess the reasonableness of the behavior resulting from our approach in a number ofcircumstances, and to assess its robustness and performance in mixed environments composedof RMM and human-controlled agents. Our interest in mixed environments is intended to showthe advantage of RMM as a mechanism for coordination that relies on modeling the otheragents' rationality, as opposed to relying on coordination protocols.We should note that all of the examples of coordination below were achieved without anycommunication among the RMM-based and the human-based agents that participated.7.1 Coordination in the Pursuit ProblemThe pursuit problem is usually described as one during which four agents, called predators,have to coordinate their movements to pursue, surround, and capture the �fth agent, calleda prey. Our RMM implementation of the predators' decision-making uses the evaluation ofexpected utility of alternative positions of the agents, resulting from their alternative moves,including the factors of how close the agents are to the prey, and how well the prey is sur-rounded and blocked o�, as discussed in [46]. The expected utilities of alternative moves17These are the, so called, open systems.
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were then assembled into payo� matrices and used by the RMM agents in recursive modelstructures ending on the �fth level with no information models.In this domain we ran �ve sets of experiments, each consisting of �ve runs initialized bya randomly generated con�guration of predators and prey. The �ve sets of runs containeddi�erent numbers of RMM and human agents, and typical runs in each set can be viewed athttp://dali.uta.edu/Pursuit.html.Using the time-to-capture as the measure of quality of the coordination among predators,we found that the best results were obtained by the all-human team (average time-to-captureof about 16 time units), followed by the all RMM team (average time-to-capture about 22units), with the mixed RMM-human teams exhibiting the times of about 24 time steps (typicalstandard deviation for a set was 3.8). The above shows that the RMM-controlled agents werefairly competent and able to coordinate among themselves, as well as with human-controlledagents. We think that the high quality results obtained by human teams can be explained bythe highly visual character of the task. Humans made their choices by eyeing the screen andchoosing their actions based on how best to surround the prey. RMM agents, of course, didnot have the advantage of visual input.7.2 Coordination in the Air Defense DomainOur air defense domain consists of some number of anti-air units whose mission is to defend aspeci�ed territory from a number of attacking missiles. The defense units have to coordinateand decide which missiles they are to attempt to intercept, given the characteristics of thethreat, and given what they can expect of the other defense units. The utility of the agents'actions in this case expresses the desirability to maximize the overall survival prospects of thedefended territory. The threat of an attacking missile was assessed based on the size of itswarhead and its distance from the defended territory. Further, the defense units consideredthe hit probability with which their interceptors would be e�ective against each of the hostilemissiles. The product of this probability and a missile threat was the measure of the expectedutility of attempting to intercept the missile.We ran three sets of experiments, of ten runs each, with two anti-air units. In the �rstset of experiments both defense units were RMM agents, the second set involved one RMMand one human agent, and the third set consisted of human-controlled units only. In eachrun, each of the defense units had three interceptors, and the protected territory was be-ing attacked by six incoming missiles. (The runs typical for each set can be viewed onhttp://dali.uta.edu/Air.html.)The quality of the results was measured as the combined expected tonnage of the missilesthat penetrated the defense. In this domain, the all-RMM team scored the best (score of318, with standard deviation 82.3), followed by the mixed RMM-human team (score of 511,standard deviation 194), with the all-human team coming in last (score 643, standard deviation282). For the sake of brevity, we refer interested readers to [55, 56] and to the above URL fordetails.
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7.3 Cooperative Assembly DomainWe simulated a cooperative assembly tasks, characteristic of many space and manufacturingapplications, using the blocks world in which the agents were to assemble the blocks into simplegiven con�gurations. In this domain, again, we tested the behavior of RMM agents whenpaired o� with other RMM and human agents. The point was to observe the agents properlydividing the tasks of picking up various blocks, not wasting the e�ort in attempting to pick upthe same blocks, and so on. The typical runs can be found on http://dali.uta.edu/Blocks.html.In summary, our experiments in the three domains above provide a promising initial con�r-mation of the ability of the RMM algorithm to achieve coordination among agents in unstruc-tured environments with no pre-established coordination protocols. We found the behaviorof RMM agents to be reasonable and intuitive, given that there was no possibility of com-munication. RMM agents were usually able to predict the behavior of the other agents,and to successfully coordinate with them. Given the nature of the application domains weoutlined earlier and the frequent need for competence in interactions with humans, we �ndthe experiments involving a heterogeneous mix of RMM and human participants particularlypromising.8 Discussion and ConclusionsThe starting point for our explorations in this paper has been the presumption that coordina-tion should emerge as a result of rational decisions in multiagent situations, where we de�nedrationality as maximization of expected utility. We have documented how our explorationnaturally brings us to concepts from game theory, but our concern with providing a decision-making apparatus to an individual agent, rather than providing an observer with analyticaltools, has led us away from the traditional concern with equilibrium solutions. Instead, weuse a newly proposed decision-theoretic approach to game theory, implemented using dynamicprogramming. Our agent-centered perspective, as well as our assumption that the knowledgeof the agent is �nitely nested, are the two main di�erences between our approach in RMMand the traditional game theoretic analysis. To summarize, the solution concept presentedin this paper complements the game-theoretic solution: When the knowledge of an agent isnested down to a �nite level, a decision-theoretic approach implemented using dynamic pro-gramming is applicable, but when the in�nitely nested common knowledge is available, thesolution naturally reveals itself to be one of the �xed-points, which precisely correspond tothe classical equilibria.Our investigations can be extended in numerous ways. First, in practical situations, theintentional stance can be only one of the guides to the expected behavior of other agents;the agents also have to be able to update models of each other through observation andplan recognition. The challenge is in integrating the normative, intentional modeling usingother's rationality with techniques based on observation. Our work in this direction willutilize Bayesian learning, for which RMM, given its probabilistic character, is naturally suited.Second, we are exploring how the deeper reasoning in RMM, having been done once, can be21
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