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Juan José Jaramillo∗, R. Srikant

Coordinated Science Laboratory and Dept. of Electrical and Computer Engineering,

University of Illinois, Urbana-Champaign, IL 61820, United States

Abstract

In wireless ad hoc networks one way to incentivize nodes to forward other
nodes’ packets is through the use of reputation mechanisms, where cooper-
ation is induced by the threat of partial or total network disconnection if a
node acts selfishly. The problem is that packet collisions and interference
may make cooperative nodes appear selfish sometimes, generating unneces-
sary and unwanted punishments. With the use of a simple network model
we first study the performance of some proposed reputation strategies and
then present a new mechanism called DARWIN (Distributed and Adaptive
Reputation mechanism for WIreless ad hoc Networks), where we try to avoid
retaliation situations after a node is falsely perceived as selfish to help re-
store cooperation quickly. Using game theory, we prove that our mechanism
is robust to imperfect measurements, is collusion-resistant and can achieve
full cooperation among nodes. Simulations are presented to complement our
theoretical analysis and evaluate the performance of our algorithm compared
to other proposed reputation strategies.
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1. Introduction

Wireless ad hoc networks consist of a set of self-configuring nodes that do
not rely on any infrastructure to communicate among each other. To achieve
this goal, a source communicates with a distant destination through interme-
diate nodes that act as relays. It is usually assumed that in such networks,
nodes are willing to cooperate forwarding packets, but this assumption is
not necessarily true in the case where all nodes are not under the control of
a single authority. In these cases, there can be selfish nodes that want to
maximize their own welfare without regard to social welfare, where we define
a node’s welfare as the benefit of its actions minus the cost of its actions. In
such scenarios, cooperation cannot be taken for granted and therefore, it is
necessary to develop mechanisms that allow cooperation to emerge even in
the presence of selfish users.

Incentive mechanisms can be broadly divided in two categories: credit-
exchange systems and reputation-based systems. In credit-exchange systems
[2, 3, 4, 5, 6, 7, 8], cooperation is induced by means of payments received
every time a node acts as a relay and forwards a packet, and such credit can
later be used by these nodes to encourage others to cooperate. To guarantee
that nodes do not counterfeit payments, some strategies rely on the use of
tamper-proof hardware to store credit and guarantee the check and balances,
but this strategy may hinder their ability to find wide-spread acceptance;
other strategies rely on the presence of an off-line central trusted authority
which may be hard to guarantee in some scenarios. In reputation-based
strategies [9, 10, 11, 12, 13, 14, 15, 16, 17], a node’s behavior is measured
by other nodes in the network. Selfish behavior is then discouraged by the
threat of partial or total network disconnection. The problem is that due to
interference and collisions it is not always possible to perfectly estimate how
a node behaves, so sometimes cooperative nodes are perceived as being selfish
and punished accordingly; such scenarios can lead to retaliation situations
that may potentially decrease the throughput of cooperative nodes.

The contributions of this paper are twofold: first, we use a simple game-
theoretic network model to study the robustness of some previously pro-
posed reputation-based strategies. We show that some strategies are not
self-enforcing, meaning that there is an incentive to deviate from the ex-
pected behavior, while others punish selfish behavior at the expense of the
throughput of cooperative nodes, potentially leading to complete network
disconnection due to retaliation. Second, we propose a new strategy called
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Table 1: Payoff Matrix of the Prisoners’ Dilemma Game

Player 2

Cooperate Defect

Player 1
Cooperate 1 1 −1 2

Defect 2 − 1 0 0

DARWIN (Distributed and Adaptive Reputation mechanism for WIreless ad
hoc Networks) that effectively detects and punishes selfish behavior. We
derive conditions under which no node can gain from deviating from our
strategy, prove that full cooperation can emerge among nodes, and that our
scheme is collusion resistant.

Simulations are also presented to complement the theoretical contribu-
tions. Our results show that the throughput achieved with DARWIN is
better than any of the other strategies studied, and that DARWIN can be
implemented with low overhead.

The rest of the paper is organized as follows. Section 2 introduces some
concepts from game theory that are used in this paper. In Section 3 we de-
fine the network model which will be used in Section 4 to analyze some of
the previously proposed strategies. We introduce our strategy in Section 5,
analyze the conditions under which cooperation can emerge, study its perfor-
mance, and show that it is relatively insensitive to parameter choices. The
impact of collusion among nodes is also studied there. Section 6 presents
the results of a simulation-based study of DARWIN and how it compares to
other reputation-based strategies. Section 7 presents an overview of related
work. Finally, Section 8 presents the conclusions.

2. Basic Game Theory Concepts

Here we introduce the concepts from game theory [18] that are used in
this paper. As an illustration, we use a well-known game between two players
known as The Prisoners’ Dilemma. Both players have two possible pure
strategies, Cooperate (C) or Defect (D), and the payoffs they receive for
their actions are given in Table 1. Then player i’s strategy space Si is defined
to be the set of pure strategies available to it. In this case Si = {C,D} for
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i = {1, 2}. A strategy profile is defined to be an element of the product-space
of strategy spaces of each player. An example is for player 1 to play D and
player 2 to play C.

Definition 1. A Nash equilibrium is a strategy profile having the property
that no player can benefit by unilaterally deviating from its strategy.

Such a strategy profile is considered to be self enforcing. In this example, the
Nash equilibrium would be the strategy profile s = (D,D). Assume now that
this game is repeated infinitely many times, and for each k, the outcomes of
the k − 1 preceding plays are observed before the k-th stage begins. In this
case, the total payoff of the game for player i is the discounted sum of the
stage payoffs. Denoting the stage payoffs by u

(k)
i , the total payoff is given by

Ui =
∞

∑

k=0

wku
(k)
i ,

where w ∈ (0, 1) is the discount factor. The infinitely repeated game can
also be interpreted as a repeated game that ends after a random number of
repetitions. Under this interpretation, the length of the game is a geometric
random variable with mean 1/(1 − w).

In this game a player’s strategy specifies the action it will take at each
stage, for each possible history of play through previous stages. In our ex-
ample a strategy for player 1 could be to cooperate until player 2 defects,
and then defect forever. Since both players know the previous history, we
can view the game starting at stage k with a given history hk as a new game;
this is called a subgame of the original game.

Definition 2. For a given set of strategies that are in Nash equilibrium, his-
tory hk is on the equilibrium path if it can be reached with positive probability
if the game is played according to the equilibrium strategies, and is off the
equilibrium path otherwise.

Definition 3. A Nash equilibrium is subgame perfect if the player’s strate-
gies constitute a Nash equilibrium in every subgame.

Subgame perfection is a stronger concept that eliminates noncredible equi-
libria, since it analyzes the case when a game is on or off the equilibrium
path. This will later help us analyze whether a given reputation scheme
is robust enough to handle the case when due to inaccurate measurements
nodes appear to be out of their predicted behavior.
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Definition 4. A game is continuous at infinity if for each player i the payoff
Ui satisfies:

sup
h,h̃ s.t. hk=h̃k

∣

∣

∣
Ui(h) − Ui(h̃)

∣

∣

∣
→ 0 as k → ∞

Under this definition, events in the distant future are relatively unimportant.
This holds true if the total payoff of the game is the discounted sum of the
per-period payoffs u

(k)
i , and the per-period payoffs are uniformly bounded.

In our example this holds true since u
(k)
i ≤ 2 for all k.

Lemma 1 (One-Stage Deviation Principle). In an infinite-horizon multi-
stage game with observed actions that is continuous at infinity, strategy profile
s is subgame perfect if and only if there is no player i and strategy ŝi that
agrees with si except at a single stage k and hk, and such that ŝi gives a better
payoff than si conditional on history hk being reached.

For a proof see [18]. We say that s satisfies the One-Stage Deviation Principle
if no player can gain by deviating from s, either on or off the equilibrium
path, in a single stage.

In the rest of this paper we will develop a prisoner’s dilemma model for
wireless networks. Such an exercise has been carried out before in other
papers, but our approach and solution are quite different.

3. Network Model

We assume that nodes are selfish but not malicious. A selfish node is a
rational user that wants to maximize its own welfare, defined as the benefit
minus the cost of its actions. Links are assumed to be bidirectional. Wire-
less links are often bidirectional, and many MAC layers require bidirectional
packet exchanges to avoid collisions, as is the case in IEEE 802.11. Finally,
nodes are assumed to operate in promiscuous mode, so they are able to listen
to all packets transmitted by their neighbors.

Forwarding a packet consumes resources. We define the normalized re-
laying cost to be 1. The reward a node receives if its packet is relayed is α,
where we assume α ≥ 1 since the value of a packet should be at least equal
to the cost of the resources used to send it. We assume that the interaction
among nodes is reciprocal, i.e., any two neighbors have uniform network traf-
fic demands and need each other to forward packets. Thus, we can isolate
any pair of nodes and study the interaction between them as a two-player
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Table 2: Payoff Matrix of the Packet Forwarding Game

Node 2

Forward Drop

Node 1
Forward α − 1 α − 1 −α − 1 α

Drop α − α − 1 −α − α

Table 3: Affine Transformation to the Payoff Matrix of the Packet Forwarding Game

Node 2

Forward Drop

Node 1
Forward 1 1 −1

2α−1
2α

2α−1

Drop 2α
2α−1

−1
2α−1

0 0

game. Later in Section 6 we simulate a random network with asymmetric
and spatially non-uniform traffic without this assumption and test whether
our conclusions still hold.

In the two-player game, one way to model the nodes is to assume that
they send a packet to each other and then simultaneously decide whether to
drop or forward their respective packets, and repeat this game iteratively.
In this scenario the stage payoffs matrix is given in Table 2. Without loss
of generality, we do an affine transformation to the payoff matrix as shown
in Table 3 using the following formula: let x be any entry in Table 2, and
let y be the respective entry in Table 3, then y = (x + α)/(2α − 1) . Using
standard game theory notation, we will denote by i ∈ {1, 2} a generic node
and by −i its neighbor.

Since the interaction among nodes is asynchronous in nature, we refine the
game assuming that time is divided into slots and that slots last long enough
to allow each node to send a sufficiently large number of packets. At the
end of the slot each node finds the ratio of dropped packets by its neighbor;
if the number of packets exchanged is sufficiently large, then this ratio is a
good estimate of the probability of dropping a packet. This assumption is
implicitly used in other papers on reputation mechanisms as well [13, 14].
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Due to collisions, it is not always possible to detect whether a node for-
warded a packet or not. We define pe ∈ (0, 1) to be the probability that a
packet that has been forwarded was not overheard by the originating node.
We also assume that pe is the same for both nodes. (As mentioned before,
in Section 6 we test this assumption by simulating a non-uniform network
to compare with our analysis.) By listening to the channel, node i then es-

timates the perceived dropping probability p̂
(k)
−i of its neighbor at time slot

k ≥ 0. It must be noted that a packet is perceived to be dropped if ei-
ther −i dropped it or if it is not dropped but node i did not overhear the
transmission. Thus

p̂
(k)
−i = p

(k)
−i + (1 − p

(k)
−i )pe = pe + (1 − pe)p

(k)
−i , (1)

where p
(k)
−i is the probability that −i drops a packet.

Thus, using the payoffs of Table 3, the average payoff at time slot k is:

u
(k)
i =(1 − p

(k)
i )(1 − p

(k)
−i ) +

2α

2α − 1
p

(k)
i (1 − p

(k)
−i )

−
1

2α − 1
(1 − p

(k)
i )p

(k)
−i .

Rearranging terms:

u
(k)
i = 1 +

1

2α − 1
p

(k)
i −

2α

2α − 1
p

(k)
−i . (2)

The discounted average payoff of player i starting from time slot n is then
given by:

U
(n)
i =

∞
∑

k=n

wk−nu
(k)
i , (3)

where w ∈ (0, 1) is the discount factor. Since node i cannot know for sure

p
(k)
−i , it does not know its payoff either. However, we use the actual payoff in

the analysis since it tells us whether a given node can gain by deviating from
a strategy.

Given this game, each player is allowed to use a strategy to decide whether
to drop or forward packets based on the history. We use p̃

(k)
i S to denote the

dropping probability player i should use at time slot k according to strategy
S. For convenience, the definitions used are given in Table 4.
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Table 4: Summary of Notation

Meaning

α Reward a node receives if a packet has been

relayed

pe Probability that a packet that has been

forwarded was not overheard by originating node

p
(k)
i Dropping probability of player i at time slot k

p̂
(k)
i Perceived dropping probability of player i at

time slot k

p̃
(k)
i S Dropping probability player i should use at time

slot k according to strategy S

w Discount factor. Probability that both nodes

continue to interact after each time slot

u
(k)
i Player i’s average payoff at time slot k

U
(n)
i Discounted average payoff of player i starting

from time slot n

4. Analysis of Prior Proposals

To motivate our new protocol which we will present in the next section,
in this section we present a few strategies that have been proposed in prior
work and show their limitations.

4.1. Trigger Strategies

One idea to provide an incentive for cooperation is to develop a strategy
such that the cooperation of a node is measured and if the fraction of packets
it has dropped is above a threshold it is consider selfish and is disconnected
for a given amount of time. Formally, a n-step Trigger Strategy is defined as:

p̃
(0)
i nT = 0

p̃
(k)
i nT =

{

0 if p̂
(j)
−i ≤ T for all j ∈ {k − n, . . . , k − 1}

1 else
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where we define p̂
(j)
−i = 0 for j ∈ Z−. From (1) it is easy to see that if node

i cooperates then p̂
(k)
−i = pe for all k. Hence the optimal value of T = pe. In

reality we cannot perfectly estimate pe, so we have to analyze two cases:

1. If T < pe then we have that p̃
(k)
i nT = 1 for k ≥ 1, so cooperation will

never emerge.

2. If T > pe then player −i will be perceived to be cooperative as long as
it drops packets with probability:

p
(k)
−i ≤

T − pe

1 − pe

.

Therefore, since pe is unknown, any choice of threshold other than T = pe

results in either all packets being dropped or some fraction of packets being
dropped. In other words, full cooperation is never the Nash equilibrium point
with trigger strategies.

Variations on this strategy have been used in several reputation mecha-
nisms, where the different proposals focus on ideas on how to detect selfish
behavior and then proceed to isolate selfish nodes: Catch [14], CONFIDANT
[11], OCEAN [12], and the reputation-based mechanism in [16] are among
them.

4.2. Tit For Tat

A second alternative is to use a Tit For Tat (TFT) strategy [19]. It was
generalized in [20] for the wireless context as follows:

p̃
(0)
i TFT = 0

p̃
(k)
i TFT = p̂

(k−1)
−i for k ≥ 1.

However, Milan et al. [20] proved that this strategy does not provide the
right incentive either for cooperation in wireless networks.

In RMS [17] the selfishness of a node is classified into one of several dif-
ferent levels, and punishment is given according to the level. Such a strategy
can then be considered to implement a discretized version of TFT, as opposed
to the continuous version presented here.

4.3. Generous Tit For Tat

The problem with TFT is that it does not take into account the fact that
it is not always possible to determine whether a packet was relayed or not
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due to collisions. A way to deal with this is using a generosity factor g that
allows cooperation to be restored. Such a strategy is known as Generous
TFT (GTFT) [21] and in the case of wireless networks it can be defined [20]
as follows:1

p̃
(0)
i GTFT = 0

p̃
(k)
i GTFT = max{p̂

(k−1)
−i − g, 0} for k ≥ 1.

Lemma 2. If both nodes do not deviate from the GTFT strategy then the
generosity factor that maximizes the discounted average payoff is g∗ ≥ pe.

Proof. If g ≥ pe then from (1) we have for all k ≥ 0 and i ∈ {1, 2} that

p
(k)
i = 0. Using (2) and (3) we obtain:

U
(0)
i =

1

1 − w
. (4)

In the case g < pe we obtain:
p

(0)
i = 0

and for k ≥ 1:

p
(k)
i = (pe − g)

k−1
∑

n=0

(1 − pe)
n

= (pe − g)
1 − (1 − pe)

k

pe

.

So the stage payoffs for k ≥ 1 are:

u
(k)
i =

1

pe

[

g + (pe − g)(1 − pe)
k
]

.

Therefore the discounted average payoff is:

U
(0)
i = 1 +

w

pe

[

g

1 − w
+

(pe − g)(1 − pe)

1 − w(1 − pe)

]

. (5)

It can easily be checked that the payoff (5) is strictly less than the payoff (4).
�

1Note that this definition corresponds to a reputation-based mechanism, not to be
confused with the credit-based mechanism proposed in [4] that bears the same name.
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Figure 1: GTFT’s Subgame Perfect Nash Equilibrium (SPNE) region for α = 2

It is important to highlight that in the case g > pe GTFT is not a Nash
equilibrium since for player −i it pays to deviate dropping packets with a
probability

p
(k)
−i ≤

g − pe

1 − pe

.

The following theorem and corollary tell us that if the interaction between
two nodes lasts long enough then GTFT is a robust strategy where no node
can gain by deviating from the expected behavior, even if it is not able to
achieve full cooperation.

Theorem 1. GTFT is subgame perfect if and only if

g ≤ pe and w >
1

2α(1 − pe)
.

(See the proof on the appendix.)

Corollary 1. If both nodes use GTFT then cooperation is achieved on the
equilibrium path if and only if g = pe.

Note that in [20] a proof was done for the case g = pe but only considering
the equilibrium path. The subgame perfect region of GTFT is plotted in
Fig. 1 for α = 2. Fig. 2 shows how the shape of this region is affected by
different values of α. Note that when the value of a packet grows larger
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Figure 2: Sensitivity of GTFT’s subgame perfect region for different values of α

compared to the actual cost of transmitting it then cooperation has a better
chance to emerge since being connected is more important than reducing the
cost of helping other nodes. In summary, GTFT is not satisfactory because
in order to achieve full cooperation we need a perfect estimate of pe. Such a
strategy has been used in SORI [13] to punish selfish behavior.

5. DARWIN

In this section we introduce our algorithm, prove that our strategy is
subgame perfect, achieves cooperation on the equilibrium path, and can cope
with a group of colluding nodes. We end the section discussing some possible
security issues and how they can be solved.

5.1. Definition

Our goal is to propose a reputation strategy that does not depend on
a perfect estimation of pe to achieve full cooperation and that is also more
robust than previously proposed strategies. For the iterated Prisoners’ Di-
lemma a modification of TFT known as Contrite Tit For Tat (CTFT) [22, 23]
has been proposed based on the idea of contriteness: a player that made a
mistake and unintentionally defected should exercise contrition and try to
correct the error instead of going into a retaliation situation. This strategy
depends on the notion of good standing and is defined as follows. A player
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is always in good standing on the first stage. It remains in good standing as
long as it cooperates when CTFT specifies that it should cooperate. If an
individual is in bad standing it can get back in good standing by cooperating
on one stage. Then CTFT specifies that a player should cooperate if it is in
bad standing, or if its opponent is in good standing; otherwise the individual
should defect. Inspired by this strategy, for the case of wireless networks we
define the following strategy:

p̃
(k)
i DARWIN =

[

γ
(

q
(k−1)
−i − q

(k−1)
i

)]1

0
for k ≥ 0, (6)

where we define for i = {1, 2}:

q
(k)
i =

{
[

p̂
(k)
i − p̃

(k)
i DARWIN

]1

0
for k ≥ 0

0 for k = −1.
(7)

Additionally we define the function:

[x]10 =







1 if x ≥ 1
x if 0 < x < 1
0 if x ≤ 0

.

Recall that p̂
(k)
i denotes the estimated dropping probability and p̃

(k)
i DARWIN

is the dropping probability under DARWIN. Thus, if p̂
(k)
i > p̃

(k)
i DARWIN , it

means node i is perceived to be dropping more packets than it should un-
der DARWIN. The parameter q

(k)
i measures this deviation. In this case q

(k)
i

acts as a measurement of the bad standing of a node, and only the player
that has better standing should proportionally punish its opponent with the
difference in the two standings instead of the absolute value of the standing
of its opponent. The limitation on any strategy is that it requires that the
interaction between the nodes to last long enough for the reputation mecha-
nism to be effective. This is translated in a feasible set for the parameter w,
the probability that both nodes continue to interact after each time slot. In
the case of DARWIN, γ determines the set of feasible values of w: the larger
the punishment factor γ, up to an upper bound, the shorter the interaction
between the nodes can be. This relationship will be quantitatively presented
in Theorem 2.
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Figure 3: Sensitivity of DARWIN’s subgame perfect region for different values of α as-
suming (9) holds

5.2. Performance Guarantees

The following theorem proves that when the interaction between two
nodes lasts long enough DARWIN is a robust strategy where no node can
gain by deviating from the expected behavior.

Theorem 2. Assuming 1 < γ < p−1
e , DARWIN is subgame perfect if and

only if

w > max

{

1

γ
,

1

2α(1 − peγ) + peγ

}

. (8)

(See the proof on the appendix.)
From (8) it is clear that the optimum value of γ that minimizes this bound

is a function of α and pe. Since you cannot estimate α, a suboptimal strategy
could be to choose γ to be the average of the interval (1, p−1

e ):

γ =
1 + p−1

e

2
=

1 + pe

2pe

. (9)

In Fig. 3 it is shown the subgame perfect region of DARWIN for different
values of α assuming (9) holds, which is not significantly different from the
subgame perfect region if we would have used the optimal value of γ.

It must be highlighted that if both nodes use DARWIN then full cooper-
ation is achieved. This can easily be checked using (1) and the definition of
DARWIN to observe the game evolution.
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Lemma 3. If both nodes use DARWIN then cooperation is achieved on the
equilibrium path. That is, p

(k)
i = p

(k)
−i = 0 for all k ≥ 0.

Since this is the best any strategy S can achieve, we have that:

U
(0)
i S ≤ U

(0)
i DARWIN for any strategy S. (10)

It is also important to remember that for DARWIN to be subgame perfect
we need to estimate pe in order to achieve the bound γ < p−1

e . Since we
cannot do perfect estimation, we have that the estimated error probability
p

(e)
e is equal to

p(e)
e = pe + ∆,

where ∆ ∈ (−pe, 1 − pe) is the estimation error. If we choose γ using (9) we
have:

γ =
1 + p

(e)
e

2p
(e)
e

=
1 + pe + ∆

2pe + 2∆
.

So we have that γ < p−1
e if and only if:

∆ > −pe

(

1 − pe

2 − pe

)

.

Thus, for the DARWIN strategy, one does not need a precise estimate of pe,
an estimator that overestimates pe is sufficient for Theorem 2 to hold.

5.3. Collusion Resistance

We now consider the case when a group of colluding nodes work to-
gether to maximize their own benefit regardless of the social optimum. De-
fine U

(0)
i Si|S−i

to be the discounted average payoff of player i using strategy

Si when it plays against player −i using strategy S−i. Hence (10) can be
rewritten as:

U
(0)
i S|S ≤ U

(0)
i D|D for any strategy S. (11)

Also, a consequence of Theorem 2 is

U
(0)
i S|D < U

(0)
i D|D (12)

for any strategy S 6= D=DARWIN. Assume a group of colluding nodes im-
plementing strategy S enters the network. Define pS ∈ (0, 1) to be the
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probability that a node that implements DARWIN interacts with a colluding
node. Therefore the average payoff to a cooperative node will be:

U(D) = pSU
(0)
i D|S + (1 − pS)U

(0)
i D|D.

Similarly, if pD ∈ (0, 1) is the probability that a colluding node interacts with
a node implementing DARWIN we have:

U(S) = pDU
(0)
i S|D + (1 − pD)U

(0)
i S|S.

We have that the average payoff is bounded by

U(S) ≤ max
{

U
(0)
i S|D, U

(0)
i S|S

}

. (13)

So a group of colluding nodes cannot gain from unilaterally deviating if and
only if U(S) < U(D). Equivalently,

pS

[

U
(0)
i D|D − U

(0)
i D|S

]

< U
(0)
i D|D − U(S). (14)

From (11), (12) and (13) we know that

U
(0)
i D|D − U(S) ≥ 0.

Definition 5. Strategy S is a naive strategy if

U
(0)
i D|D < U

(0)
i D|S. (15)

That is, strategy S is exploited when matched against DARWIN. Further-
more, a non-naive strategy is one such that (15) does not hold.

From (14), we have proved the following theorem:

Theorem 3. DARWIN is collusion resistant against a naive strategy. Fur-
thermore, it is resistant against a non-naive strategy if and only if

pS <
U

(0)
i D|D − U(S)

U
(0)
i D|D − U

(0)
i D|S

.

Thus if cooperative nodes mostly interact among each other then DARWIN
can resist group attacks.

16



5.4. Security Issues

In this section, we will comment on possible security issues in implement-
ing DARWIN. Since our solutions to these issues rely on other works, our
discusion will be brief.

5.4.1. Short Term Identities and Sybil Attacks

Nodes can change identities to avoid detection or to help spread false
values to improve their own reputation. To cope with this we can use a
proof-of-effort approach, first suggested for ad hoc networks in [12]: a node
that claims to be entering the network for the first time must show that
it has spent some effort creating its identity, otherwise it is not allowed to
connect. Since memory access speeds vary across machines much less than
CPU speeds, it is used a memory-bound function [24, 25]. The main two
properties it has is that its computing time is determined by the memory
access speed and not the CPU speed, and that it is moderately hard to
compute but very easy to verify. This approach tends to be more egalitarian
and tries to avoid the problem selfish users with high-end computers pose
to the network, since they could potentially spend less CPU time with the
burden of creating new identities.

5.4.2. Node Impersonation

Selfish nodes can try to impersonate cooperative nodes in order to boost
their reputation or to request other nodes to forward their own packets.
This problem can be solved generating a shared secret key among each pair
of nodes and using it in conjunction with a Message Authentication Code.
The key can be safely exchanged over an insecure channel using the Diffie-
Hellman key exchange algorithm [26].

6. Simulations

In this section we first present a possible implementation of our reputation
mechanism and later we will present the settings and results of our simula-
tion study of the performance of DARWIN against the strategies studied in
Section 4.

6.1. Algorithm Implementation

Let N
(k)
i denote the set of one hop neighbors that node i has discovered in

time interval k by overhearing packet transmissions. For every node j ∈ N
(k)
i
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node i keeps two counters, one for the number of messages sent to j for
forwarding (S

(k)
ij ) in time slot k and another for the number of messages j

actually forwarded (F
(k)
ij ) in time interval k. At the end of the time slot it

computes the ratio

c
(k)
ij =

F
(k)
ij

S
(k)
ij

and proceeds to send c
(k)
ij to its neighbors. With the values gathered node i

estimates j’s average connectivity ratio

ĉ
(k)
j =

∑

m∈N
(k)
i

∪{i}

m6=j

c
(k)
im × c

(k)
mj

∑

m∈N
(k)
i

∪{i}

m6=j

c
(k)
im

,

where by definition c
(k)
ii = 1 for all k. It must be noted that the average is

weighted with the perceived connectivity ratio that node i measured from
node m. This helps to avoid sybil attacks to spread false values with the
hope to improve a selfish node’s reputation since all its other identities have
low connectivity too, so they have a small impact on the average. In a
similar way, node i will find ĉ

(k)
i , the average connectivity ratio its one-hop

neighborhood perceived from it during time slot k. We define p̂
(k)
j = 1− ĉ

(k)
j

and use (6) and (7) to find the dropping probability that node i will use while
forwarding packets for node j in time interval k + 1.

Since we need γ < p−1
e , we need to estimate pe. An interesting solution

was proposed in [14] probing a node with anonymous messages, but it in-
creases the overhead of the protocol. Instead, note that pe is the probability
that at least one terminal in N

(k)
i transmits when node j transmits. Thus

we estimate pe by measuring the fraction of time at least one node different
from j transmits. Call it p̂ej. Mathematically, if T

(k)
j is the fraction of time

node j has transmitted up to time interval k and T
(k)
c is the fraction of time

a collision occurred up to time interval k we have:

p̂ej = T (k)
c +

∑

n∈N
(k)
i

n6=j

T (k)
n .
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In case the MAC layer uses a CSMA/CA protocol, and due to the exposed
terminal problem, we will have that p̂ej ≥ pe. This overestimation is not a
problem for our algorithm since

γ <
1

p̂ej

≤
1

pe

.

6.2. Settings

Our goal is to study the network performance of the different strategies
presented in Section 4 and how they compare against DARWIN. To do that
we used the network simulator ns-2. For the propagation we used the two-ray
ground reflection model, while the IEEE 802.11 Distributed Coordination
Function (DCF) was used at the MAC layer. Nodes had a physical radio
range of 250 m and a raw bandwidth of 2 Mbps. Routing was performed by
the Dynamic Source Routing (DSR) protocol. We simulated a network of 50
nodes randomly placed in an area of 670×670 m2 that implement a reputation
mechanism in a given simulation run, where we randomly selected five nodes
that do not implement such strategy and behave selfishly dropping all packets
that are not destined to them. In the rest of this section, a selfish node will
be taken to mean a node that does not implement the reputation mechanism
and a cooperative node one which does. Unless otherwise noted, there are 14
source-destination pairs and each source transmits at a Constant Bit Rate
(CBR) of 2 packets/s, with a packet size of 512 bytes. The simulation time
is 800 s, where the time intervals used were 60 seconds long. Each figure
presented is the average of 120 randomly generated runs.

Since our goal is to study the different strategies and not specific im-
plementations, all cooperative nodes use the implementation suggested in
Section 6.1 to test node behavior and share reputation values. The only dif-
ference is on the strategy used to punish selfish behavior. For the case when
nodes implement the n-step Trigger strategy, the threshold T is set to be 0.2,
while n = 5. For GTFT we set the parameter g to be 0.1, while for DARWIN
we set γ to be 2.

6.3. Results

Before presenting the results of our simulation study, we would like to
emphasize the fact that, as proved in Sections 4 and 5, DARWIN can help
restore cooperation under a larger set of conditions on nodes interactions, is
more robust against imperfect knowledge of network parameters compared
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Figure 4: Number of forwarded packets for different numbers of source-destination pairs

to other strategies, and is a self enforcing strategy where no node or group of
colluding nodes can obtain a gain from deviating from our strategy. These
desirable characteristics for any reputation mechanism mean that the chances
that a rational user deviates from DARWIN and behaves selfishly are smaller
compared to the other strategies studied, which is the ultimate goal of a
mechanism that tries to incentivize cooperation. The simulations comple-
ment these theoretical conclusions by assuming that some nodes are rogue
users and behave selfishly.

To evaluate network performance, we measure the total number of for-
warded packets. In Figure 4 we explore the effect of varying the total number
of source-destination pairs. As it can be seen, the throughput gap for coop-
erative nodes increases with the number of connections. The reason for this
is that when there are more active connections the probability that a node
does not listen when a packet is being forwarded increases, leading to an in-
creased number of misunderstandings where cooperative nodes are deemed to
be acting as selfish. This increases the level of retaliation situations in TFT
and the n-step Trigger strategies. It can be noted that when the number of
connections is greater than 18 there is a decrease in throughput in GTFT
compared to DARWIN. As explained in Section 4.3, GTFT requires a perfect
estimation of the probability pe that a packet that has been forwarded was
not overheard by the originating node to achieve full cooperation. Since we
keep constant the generosity factor g in our simulations, once pe > g when
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Figure 5: Number of forwarded packets for different connection rates (for a packet size of
512 bytes)

the number of connections is large enough, we have that network through-
put starts to decrease. This behavior is also evident in Figure 5, where the
relationship between source rate and the number of forwarded packets is pre-
sented. Since DARWIN does not require a perfect estimate of pe but an
overestimation suffices, as explained in Section 5.2, and since it compensates
for the misunderstandings between cooperative nodes, we see that the ad-
vantage of using DARWIN over other strategies is more apparent when the
network becomes heavily congested.

Figure 6 explores the impact of the fraction of selfish nodes, where the
figure presented is the average of 240 randomly generated runs instead of 120
as the rest of the plots, showing the average number of forwarded packets
per node for both selfish and cooperative nodes. This was done because the
confidence intervals for this plot tended to be larger than for the other plots
when we only used 120 runs. Since the goal of this plot is to highlight the
difference in throughput between cooperative and selfish nodes, and not the
throughput difference between competing strategies as it has already been
studied in Figures 4 and 5, we run our simulations in the low traffic regime.

As expected, the total throughput of cooperative nodes decreased propor-
tionally when the number of selfish nodes increases. This is due to the fact
that since the number of selfish nodes increases, the total number of packets
being dropped increases proportionally. In this case, it can be seen that the
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Figure 6: Number of forwarded packets per node for different numbers of selfish nodes

average number of forwarded packets for cooperative nodes is larger than
the one for selfish nodes, even when 90% of the nodes act selfishly. The fact
that the difference between the throughput decreases is less relevant than
the fact that selfishness does not improve performance. It can also be noted
that of all the strategies simulated the n-step Trigger is the one that has
the harshest punishment for selfish behavior, but at the cost of significantly
decreasing network throughput for cooperative nodes.

In Figure 7 we study the effect of mobility on the effectiveness of the
punishment mechanisms, where the sources transmit at a rate of 4 packets/s.
The mobility model used is the random waypoint model, where a node moves
to a random destination at a speed uniformly distributed between 0 to 20 m/s,
and once it reaches the destination it remains there for a specified pause time
before choosing its next destination. To complement our simulation study, in
this figure we include in the comparison CORE [10, 15]. As can be observed,
the more the nodes move the less throughput nodes get, since the routing
algorithm sends packets to stalled routes, which eventually leads to packet
dropping. However, the performance gap of DARWIN compared to the other
strategies remains the same, showing that the mechanism is better able to
incentivize cooperation even in the case when nodes roam.

In summary, nodes that are selfish are punished similarly by most proto-
cols, but nodes that implement DARWIN get much better throughput than
nodes that implement n-step Trigger or TFT strategies. Furthermore, the
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Figure 7: Number of forwarded packets per node for different pause times

throughput of DARWIN is better in heavily loaded networks compared to
nodes that implement GTFT.

One important aspect of every protocol is the overhead that results from
its implementation. Figure 8 explores this for different source rates when all
nodes implement DARWIN compared to the same network when all nodes are
cooperative and do not run DARWIN. DARWIN (and any other reputation
mechanism for that matter) incurs a certain fixed overhead associated with
sharing and processing reputation information, thus, as is to be expected, the
fraction of overhead packets to data packets is higher at low loads but smaller
at high loads. This feature is desirable since resources are at a premium at
high loads.

7. Related Work

Incentive mechanisms can be broadly divided in two categories, according
to the techniques they use to enforce cooperation: credit-based schemes and
reputation-based schemes. Here we present a review of the previous work
done in both areas.

7.1. Credit-Based Schemes

The strategy proposed in [6] is based on a nuglet counter that increases
every time a node forwards a packet, and is decreased by the estimated num-
ber of intermediate nodes every time a packet is sent. A node is only allowed
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Figure 8: Overhead of DARWIN

to send a packet if its nuglet counter will remain positive after the operation.
Therefore, if a node wants to be able to transmit it has to cooperate. This
scheme requires tamper resistant hardware, but this kind of hardware must
be trusted with caution [27]. Sprite [5] avoids the use of tamper resistant
hardware by storing receipts of forwarded packets, and later they are cleared
with a central trusted authority that distributes the credits to cooperative
nodes. The drawback is the need of an infrastructure to operate, which
may hinder its ability to gain widespread acceptance, e.g., in post-disaster
networks.

An algorithm called Generous Tit For Tat (GTFT) has been proposed
in [4]: a node accepts to forward packets in a session if and only if the
throughput received by the node from the network so far is greater than the
throughput given to the network minus a generosity factor; if a node decides
to reject a session, it informs the source so it can establish another path.
Assuming that misbehaving nodes do not lie about their actual actions, [4]
proved that no node has an incentive to unilaterally deviate from the GTFT
strategy.

In [7], a pricing mechanism is studied through fluid-level simulations. It
has been demonstrated that users’ prices and credit balances stabilize for
fixed ad hoc networks, where nodes in the center of the network have an
advantage since they can act as relay nodes for a larger number of routes.
Ad hoc-VCG [8] is a reactive routing protocol that implements a variation of
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the VCG mechanism. As is mentioned in [8], the protocol has considerable
overhead on the route discovery phase if communication sessions between two
nodes are usually short or the routing path frequently changes during a ses-
sion; additionally, to guarantee truthfulness and cost-efficiency it is required
that every node has complete and up-to-date knowledge of the underlying
graph, so techniques such as route caches are not suitable with this protocol.

7.2. Reputation-Based Schemes

In [9] the reputation mechanism performs two functions: (i) identifies
misbehaving nodes by monitoring packet forwarding, and (ii) helps the rout-
ing protocol avoid those nodes by informing the source node that there are
selfish nodes on its path. The source node can use this information to find
alternate paths. Hence, the mechanism only tries to avoid selfish nodes, but
the behavior is not discouraged. CONFIDANT [11] goes one step further and
after a selfish node is detected, it is isolated; however, it relies on building a
“friends” list that is imprinted in every node on a user-to-user basis.

In SORI [13] and Catch [14] the spreading of reputation information is
limited to one-hop neighbors. SORI evaluates the reputation of a node by
weighting the information of all its neighbors and then punishes it, if nec-
essary, with a Generous Tit-For-Tat strategy. Catch uses control messages
to reduce the impact of collisions on estimating reputation, and to punish
selfish behavior it relies on a trigger strategy.

CORE [10, 15] keeps a counter to keep track of the neighbor’s last B
actions, where the counter is increased by 1 every time the node cooperates,
and it is decreased by 1 every time it defects. If the counter is positive,
CORE will cooperate, otherwise it will punish its neighbor by defecting.

8. Conclusions

In this paper we have studied how reputation-based mechanisms can help
cooperation emerge among selfish users. We first showed the properties of
previously proposed schemes, and with the insight gained from such under-
standing, we proposed a new mechanism called DARWIN. We showed that
DARWIN is robust to imperfect measurements, is also collusion-resistant and
is able to achieve full cooperation. We also showed that the algorithm is rel-
atively insensitive to parameter choices. Simulation results complement our
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theoretical analysis, and show that DARWIN can achieve a higher through-
put than any of the other strategies we studied; furthermore, we showed that
DARWIN can be implemented with low overhead.

It must be noted that in the definition of DARWIN it is assumed that
nodes share the perceived dropping probability with each other. This as-
sumption is made in order to facilitate the theoretical analysis by isolating a
pair of nodes, but in an implementation a mechanism is required to guaran-
tee that even if a node lies, the reputation scheme still works. To do that we
must rely on other cooperative nodes to tell the actual perceived dropping
probability of a node in order to minimize the impact of liars, and the aver-
age of the received values is the one to be used in this reputation scheme. In
[28, 29] it is proved that if the connectivity of the network is at least 2f + 1,
then using linear iterations it is possible for all nodes to share some initial
values to calculate an arbitrary function on them when there are up to f
malicious nodes in the network. In principle, such a scheme can be used in
our problem. However, the study of this in the context of wireless networks
is an interesting challenge and is a good topic for future research.

9. Appendix

Here we present the proofs of the theorems presented in this paper.
Theorem 1. GTFT is subgame perfect if and only if

g ≤ pe and w >
1

2α(1 − pe)
.

Proof. In Section 4.3 we have already seen that if g > pe then GTFT is
not a Nash equilibrium, so for the rest of the proof we will assume g ≤ pe.
It must be noted that GTFT is a one-stage history strategy because it only
needs to take into account what happened in the previous stage. With that
in mind, and without loss of generality, let us assume that any history hn is
represented as p

(0)
i = pi for i ∈ {1, 2}. If both nodes use GTFT then using

(1) we have the following subgame evolution:
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k p
(k)
i

0 pi

1 p−i(1 − pe) + pe − g

2 pi(1 − pe)
2 + (pe − g)

1
∑

n=0

(1 − pe)
n

3 p−i(1 − pe)
3 + (pe − g)

2
∑

n=0

(1 − pe)
n

...
...

or equivalently for k ≥ 1:

p
(k)
i = θ

(k)
i (1 − pe)

k +
(pe − g)

pe

[

1 − (1 − pe)
k
]

where

θ
(k)
i =

{

pi if k is even
p−i if k is odd.

Therefore from (2) the stage payoffs for k ≥ 1 are:

u
(k)
i = 1 +

1

2α − 1
p

(k)
i −

2α

2α − 1
p

(k)
−i .

If player i deviates at stage 1 using

p
(1)
iδ = p̃

(1)
i GTFT + δ

for some δ > 0 and later conforms to GTFT, we have the following dropping
probabilities:

k p
(k)
iδ

0 pi

1 p−i(1 − pe) + (pe − g) + δ

2 pi(1 − pe)
2 + (pe − g)

1
∑

n=0

(1 − pe)
n

3 p−i(1 − pe)
3 + (pe − g)

2
∑

n=0

(1 − pe)
n + δ(1 − pe)

2

...
...

or equivalently:

p
(2m+1)
iδ = p−i(1 − pe)

2m+1 +
(pe − g)

pe

[

1 − (1 − pe)
2m+1

]

+ δ(1 − pe)
2m
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p
(2m)
iδ = pi(1 − pe)

2m +
(pe − g)

pe

[

1 − (1 − pe)
2m

]

.

So we have:
p

(2m+1)
iδ = p

(2m+1)
i + δ(1 − pe)

2m for m ≥ 0

p
(2m)
iδ = p

(2m)
i for m ≥ 1.

Which leads to the following stage payoffs:

u
(2m+1)
iδ = u

(2m+1)
i +

1

2α − 1
δ(1 − pe)

2m for m ≥ 0

u
(2m)
iδ = u

(2m)
i −

2α

2α − 1
δ(1 − pe)

2m−1 for m ≥ 1.

Since the stage payoff received at stage 0 is independent of the action player
i takes at stage 1, we are only interested in finding the following discounted
average payoff:

U
(1)
iδ =

∞
∑

k=1

wk−1u
(k)
iδ

= U
(1)
i +

δ [1 − 2αw(1 − pe)]

(2α − 1) [1 − w2(1 − pe)2]
.

Where U
(1)
i is the discounted payoff received if δ = 0. Since we assume that

α ≥ 1, it does not pay to deviate if:

1 − 2αw(1 − pe) < 0.

But this is true if and only if:

w >
1

2α(1 − pe)
.

Then by the One-Stage Deviation Principle GTFT is subgame perfect. �

Theorem 2. Assuming 1 < γ < p−1
e , DARWIN is subgame perfect if

and only if

w > max

{

1

γ
,

1

2α(1 − peγ) + peγ

}

.
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Proof. The line of reasoning is similar to the one presented for Theorem 1.
DARWIN is a one-stage history strategy because it only needs to take into
account what happened in the previous stage. Hence, and without loss of
generality, any history hn can be represented as q

(0)
i = qi for i ∈ {1, 2}. If

both nodes do not deviate from DARWIN then using (1) we have for k ≥ 1
the following subgame evolution:

If qi ≥ q−i then:

p
(k)
i = 0

p
(k)
−i = pk−1

e γk−1 min{1, γ(qi − q−i)}

p̂
(k)
i = pe

p̂
(k)
−i = pe + pk−1

e γk−1(1 − pe) min{1, γ(qi − q−i)}

q
(k)
i = pe

q
(k)
−i = pe − pk

eγ
k−1 min{1, γ(qi − q−i)}

From (2) the stage payoffs for k ≥ 1 are:

u
(k)
i a = 1 −

2α

2α − 1

[

(peγ)k−1 min {1, γ(qi − q−i)}
]

.

If qi < q−i then:

p
(k)
i = pk−1

e γk−1 min{1, γ(q−i − qi)}

p
(k)
−i = 0

p̂
(k)
i = pe + pk−1

e γk−1(1 − pe) min{1, γ(q−i − qi)}

p̂
(k)
−i = pe

q
(k)
i = pe − pk

eγ
k−1 min{1, γ(q−i − qi)}

q
(k)
−i = pe

From (2) the stage payoffs for k ≥ 1 are:

u
(k)
i b = 1 +

1

2α − 1
pk−1

e γk−1 min {1, γ(q−i − qi)} .

If player i deviates at stage 1 using

p
(1)
iδ = p̃

(1)
i DARWIN + δ

for some δ > 0 and later conforms to DARWIN, we have the following game
evolution:

If qi ≥ q−i then:
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p
(1)
i = δ

p
(k)
i = 0

p
(1)
−i = min{1, γ(qi − q−i)}

p
(k)
−i = (peγ)k−2 min{1, γδ(1 − pe) + peγp

(1)
−i }

p̂
(1)
i = pe + δ(1 − pe)

p̂
(k)
i = pe

p̂
(1)
−i = pe + (1 − pe)p

(1)
−i

p̂
(k)
−i = pe + (peγ)k−2(1 − pe) min{1, γδ(1 − pe) + peγp

(1)
−i }

q
(1)
i = pe + δ(1 − pe)

q
(k)
i = pe

q
(1)
−i = pe − pep

(1)
−i

q
(k)
−i = pe − pk−1

e γk−2 min{1, γδ(1 − pe) + peγp
(1)
−i }

Therefore from (2) the stage payoffs are:

u
(1)
iδ = u

(1)
i a +

δ

2α − 1

u
(k)
iδ = u

(k)
i a −

2α(peγ)k−2

2α − 1
min{1 − peγp

(1)
−i , γδ(1 − pe)}.

Since the stage payoff received at stage 0 is independent of the action player
i takes at stage 1, we are only interested in finding the discounted average
payoff

U
(1)
iδ =

∞
∑

k=1

wk−1u
(k)
iδ

= U
(1)
i a +

1

2α − 1

[

δ −
2αw

1 − wpeγ
min{1 − peγp

(1)
−i , γδ(1 − pe)}

]

,

where U
(1)
i a is the discounted payoff received if δ = 0. It does not pay to

deviate if U
(1)
iδ < U

(1)
i a . Since we assume that α ≥ 1, we only have to check

two cases:

1. If 1 − peγp
(1)
−i < γδ(1 − pe) we need the following condition

δ −
2αw(1 − peγp

(1)
−i )

1 − wpeγ
< 0
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to be true for any δ. Equivalently:

w > max
0≤δ≤1

{

δ

2α(1 − peγp
(1)
−i ) + peγδ

}

.

So we get the bound:

w >
1

2α(1 − peγp
(1)
−i ) + peγ

. (16)

2. If 1 − peγp
(1)
−i ≥ γδ(1 − pe) we need the following condition:

δ −
2αwγδ(1 − pe)

1 − wpeγ
< 0.

Thus we have the bound:

w >
1

2αγ(1 − pe) + peγ
. (17)

For the case qi < q−i the analysis has to be more detailed. In stage 1 according
to DARWIN player i has to drop player −i’s packets with probability:

p̃
(1)
i DARWIN = min{1, γ(q−i − qi)}.

So if γ ≥ 1
q−i−qi

then player i cannot deviate at stage 1 for any value of w.

In the case that γ < 1
q−i−qi

we can only increase δ up to:

δ ≤ 1 − γ(q−i − qi).

Now the rest of the analysis will consider the following two cases:

δ ≤ min

{

1 − γ(q−i − qi),
peγ(q−i − qi)

1 − pe

}

(18)

peγ(q−i − qi)

1 − pe

< δ ≤ 1 − γ(q−i − qi) (19)

For the case when (18) is true we have the following evolution of the game:
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p
(1)
i = γ(q−i − qi) + δ

p
(k)
i = pk−1

e γk(q−i − qi) − δpk−2
e γk−1(1 − pe)

p
(1)
−i = 0

p
(k)
−i = 0

p̂
(1)
i = pe + γ(q−i − qi)(1 − pe) + δ(1 − pe)

p̂
(k)
i = pe + pk−1

e γk(q−i − qi)(1 − pe) − δpk−2
e γk−1(1 − pe)

2

p̂
(1)
−i = pe

p̂
(k)
−i = pe

q
(1)
i = pe − peγ(q−i − qi) + δ(1 − pe)

q
(k)
i = pe − pk

eγ
k(q−i − qi) + δpk−1

e γk−1(1 − pe)

q
(1)
−i = pe

q
(k)
−i = pe

In this case, and from (2), the stage payoffs are:

u
(1)
iδ = u

(1)
i b +

δ

2α − 1

u
(k)
iδ = u

(k)
i b −

δpk−2
e γk−1(1 − pe)

2α − 1
.

And the discounted average payoff starting from stage 1 is:

U
(1)
iδ =

∞
∑

k=1

wk−1u
(k)
iδ = U

(1)
i b +

δ

2α − 1

[

1 −
wγ(1 − pe)

1 − wpeγ

]

.

Since α ≥ 1 it does not pay to deviate if:

1 −
wγ(1 − pe)

1 − wpeγ
< 0.

Which leads to the following bound on w:

w >
1

γ
. (20)

For the case when (19) is true we have the following game evolution:
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p
(1)
i = γ(q−i − qi) + δ

p
(k)
i = 0

p
(1)
−i = 0

p
(k)
−i = pk−2

e γk−2 min{1, γδ(1 − pe) − peγ
2(q−i − qi)}

p̂
(1)
i = pe + γ(q−i − qi)(1 − pe) + δ(1 − pe)

p̂
(k)
i = pe

p̂
(1)
−i = pe

p̂
(k)
−i = pe + (1 − pe)p

(k)
−i

q
(1)
i = pe − peγ(q−i − qi) + δ(1 − pe)

q
(k)
i = pe

q
(1)
−i = pe

q
(k)
−i = pe − pep

(k)
−i

From (2), the respective stage payoffs are:

u
(1)
iδ = u

(1)
i b +

δ

2α − 1

u
(k)
iδ = u

(k)
i b−

(peγ)k−2

2α − 1

[

peγ
2(q−i − qi) + 2α min{1, γδ(1 − pe) − peγ

2(q−i − qi)}
]

.

The discounted average payoff starting from stage 1 is:

U
(1)
iδ =

∞
∑

k=1

wk−1u
(k)
iδ

= U
(1)
i b +

1

2α − 1

{

δ −
w [peγ

2Q + 2α min{1, γδ(1 − pe) − peγ
2Q}]

1 − wpeγ

}

.

Where Q = q−i − qi and U
(1)
i b is the discounted payoff received if player i

does not deviate. It does not pay to deviate if U
(1)
iδ < U

(1)
i b . Since we assume

α ≥ 1, we have:

1. If γδ(1 − pe) − peγ
2(q−i − qi) > 1 we need the condition

δ −
w[2α + peγ

2(q−i − qi)]

1 − wpeγ
< 0

to be true for any δ. Equivalently:

w > max
δ

{

δ

2α + peγ2(q−i − qi) + peγδ

}

.
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Since δ is bounded by (19) we get:

w >
1 − γ(q−i − qi)

2α + peγ2(q−i − qi) + peγ[1 − γ(q−i − qi)]
.

Simplifying:

w >
1 − γ(q−i − qi)

2α + peγ
. (21)

2. If γδ(1 − pe) − peγ
2(q−i − qi) ≤ 1 we need the following condition:

δ −
w [peγ

2Q + 2αγδ(1 − pe) − 2αpeγ
2Q]

1 − wpeγ
< 0.

Where Q was defined above. Thus we have the bound:

w > max
δ

{

δ

δ [2αγ(1 − pe) + peγ] − (2α − 1)peγ2Q

}

.

Since δ is bounded by (19) we get:

w >
1

γ
. (22)

So for a given history hn we have found five bounds that w has to fulfill in
order for DARWIN to be a Nash equilibrium in a given subgame. We first
start noting that (20) and (22) are identical, so we really have four bounds,
two of which are dependent on hn. In order to find the conditions under
which DARWIN is subgame perfect we need to find bounds that are history
independent. In the case of (16) the bound is maximized by:

w >
1

2α(1 − peγ) + peγ
. (23)

Similarly, (21) is maximized by:

w >
1

2α + peγ
. (24)

Comparing (17), (23) and (24) it is easy to check that (23) is the strictest
bound since we assumed γ > 1. In summary, we have the following bound
on w for DARWIN:

w > max

{

1

γ
,

1

2α(1 − peγ) + peγ

}

.

Thus if the bound holds true, by the One-Stage Deviation Principle DARWIN
is subgame perfect. �

34



Acknowledgements

Research supported by Motorola through the Motorola Center for Com-
munication.

References

[1] J. J. Jaramillo, R. Srikant, DARWIN: Distributed and adaptive repu-
tation mechanism for wireless ad-hoc networks, in: Proc. 13th Annual
International Conference on Mobile Computing and Networking (Mobi-
com), Montreal, Canada, 2007, pp. 87–97.

[2] L. Buttyán, J.-P. Hubaux, Enforcing service availability in mobile ad-hoc
WANs, in: Proc. International Symposium on Mobile Ad Hoc Network-
ing & Computing (MobiHoc ’00), Boston, MA, 2000, pp. 87–96.

[3] V. Srinivasan, P. Nuggehalli, C. F. Chiasserini, R. R. Rao, Energy effi-
ciency of ad hoc wireless networks with selfish users, in: Proc. European
Wireless Conference, Florence, Italy, 2002.

[4] V. Srinivasan, P. Nuggehalli, C. F. Chiasserini, R. R. Rao, Cooperation
in wireless ad hoc networks, in: Proc. IEEE INFOCOM ’03, Vol. 2, San
Francisco, CA, 2003, pp. 808–817.

[5] S. Zhong, J. Chen, Y. R. Yang, Sprite: A simple, cheat-proof, credit-
based system for mobile ad-hoc networks, in: Proc. IEEE INFOCOM
’03, Vol. 3, San Francisco, CA, 2003, pp. 1987–1997.

[6] L. Buttyán, J.-P. Hubaux, Stimulating cooperation in self-organizing
mobile ad hoc networks, ACM/Kluwer Mobile Networks and Applica-
tions 8 (5) (2003) 579–592.

[7] J. Crowcroft, R. Gibbens, F. Kelly, S. Östring, Modelling incentives for
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