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ABSTRACT

The inhomogeneity angle (the angle between the real and imaginary parts of
the wave vector) is seldom taken into account in estimating attenuation coef-
ficients from seismic data. Wave propagation through the subsurface, however,
can result in relatively large inhomogeneity angles ξ, especially for models with
significant attenuation contrasts across layer boundaries. Here, we study the in-
fluence of the angle ξ on phase and group attenuation in arbitrarily anisotropic
media using the first-order perturbation theory verified by exact numerical mod-
eling.
Application of the spectral-ratio method to transmitted or reflected waves yields
the normalized group attenuation coefficient Ag, which is responsible for the
amplitude decay along seismic rays. Our analytic solutions show that for a
wide range of inhomogeneity angles the coefficient Ag is close to the normalized
phase attenuation coefficient A computed for ξ = 0◦ (A|ξ=0◦). The coefficient

A|ξ=0◦ can be inverted directly for the attenuation-anisotropy parameters, so
no knowledge of the inhomogeneity angle is required for attenuation analysis of
seismic data. This conclusion remains valid even for uncommonly high attenua-
tion with the quality factor Q less than 10 and strong velocity and attenuation
anisotropy. However, the relationship between the group and phase attenuation
coefficients becomes more complicated for relatively large inhomogeneity angles
approaching so-called “forbidden directions.” We also demonstrate that the ve-
locity function remains practically independent of attenuation for a wide range
of small and moderate angles ξ.
In principle, estimation of the attenuation-anisotropy parameters from the co-
efficient A|ξ=0◦ requires computation of the phase angle, which depends on the
anisotropic velocity field. For moderately anisotropic models, however, the dif-
ference between the phase and group directions should not significantly distort
the results of attenuation analysis.

Introduction

In attenuative media, the direction of maximum atten-
uation of a plane wave can differ from the propagation
direction. This implies that the real part of the wave vec-
tor kR (“propagation vector”) deviates from the imag-
inary part kI (“attenuation vector”), as illustrated in
Figure 1. The angle between the vectors kR and kI is
called the “inhomogeneity angle,” denoted here by ξ.
When ξ = 0◦, the plane wave is often characterized
as “homogeneous;” when ξ 6= 0◦, it is called “inho-
mogeneous.” For plane-wave propagation, ξ represents
a free parameter except for certain “forbidden direc-
tions” (Krebes & Le, 1994; Carcione & Cavallini, 1995;

Červený & Pšenč́ık, 2005a,b) where solutions of the
wave equation do not exist. If the wavefield is excited by
a point source, the inhomogeneity angle is determined
by the medium properties including the boundary con-
ditions (Zhu, 2006; Vavryčuk, 2007).

Alternatively, the wave vector in attenuative me-
dia can be parameterized in terms of the “inhomogene-
ity parameter” D (Boulanger & Hayes, 1993; Declercq
et al., 2005; Červený & Pšenč́ık, 2005a):

k = ω(σn + iDm) , (1)

such that

m · n = 0 , (2)
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where D is real, while σ is complex. The vector n spec-
ifies the direction of wave propagation, while the vector
m is orthogonal to it. The main advantage of this pa-
rameterization is that it eliminates forbidden directions
from the solutions of the Christoffel equation (Červený
& Pšenč́ık, 2005a).

Many results on attenuation analysis are obtained
under the assumption that the inhomogeneity angle can
be ignored (Hauge, 1981; Dasgupta & Clark, 1998; Zhu
et al., 2007). For point-source radiation in homogeneous
media, the influence of the inhomogeneity angle is in-
deed small, unless the medium is anomalously attenua-
tive and anisotropic (Zhu, 2006; Vavryčuk, 2007).

During wave propagation in layered media, how-
ever, the angle ξ can attain significant values. For the
model in Figure 2, the wave vector in the elastic cap
rock is real, while that in the attenuative reservoir is
complex. Because the projections of the incident (real)
and transmitted (complex) wave vectors onto the inter-
face have to be the same according to Snell’s law, the
imaginary part kI of the wave vector in the reservoir
is orthogonal to the interface. This implies that the in-
homogeneity angle of the transmitted wave is equal to
the transmission angle, which can reach 90◦. It is also
clear that the inhomogeneity angle of the wave reflected
from the base of the reservoir can be large as well. This
situation, for example, is always encountered in soft ab-
sorbing sediments beneath the ocean bottom.

Existing measurements of the inhomogeneity an-
gle are limited to laboratory studies (Deschamps & As-
souline, 2000; Huang et al., 1994). Indeed, although the
angle ξ can be significant, its estimation from seismic
data is extremely difficult. It seems natural to expect
that the inhomogeneity angle should influence the at-
tenuation along the raypath (group attenuation), which
is the only relevant attenuation measurement in seismic
processing.

Attenuation analysis becomes particularly involved
in anisotropic media where the ray may significantly
deviate from both the phase direction and the direc-
tion of maximum attenuation. When the medium is
anisotropic, the relationship between the angle ξ and
the attenuation coefficients is obscured by the complex-
ity of the exact equations. It can be inferred from the
work of Gajewski & Pšenč́ık (1992) that in weakly at-
tenuative media the group attenuation coefficient yields
the quality factor of the medium. Numerical modeling
by Deschamps & Assouline (2000) also shows that group
attenuation reflects the intrinsic viscoelasticity of the
material. The analytic results of Vavryčuk (2008) and
Červený & Pšenč́ık (2008a) indicate that group atten-
uation is insensitive to the inhomogeneity parameter.
Their asymptotic analysis, however, is valid only for
weak attenuation and plane waves with small values of
the inhomogeneity parameter D.

Here, we use first-order perturbation theory to
study the influence of the inhomogeneity angle on the

Figure 1. Plane wave with a nonzero inhomogeneity angle
ξ. The wave propagates in the direction kR (perpendicular
to the planes of constant phase) and attenuates most rapidly
in the direction kI .

group and phase attenuation coefficients. By perturbing
an isotropic attenuative background, we obtain a weakly
anisotropic medium with angular dependence of both
velocity and attenuation. In contrast to the methodol-
ogy of Červený & Pšenč́ık (2008a) and Vavryčuk (2008),
our approach allows for arbitrarily large attenuation
and “strongly inhomogeneous” waves. Therefore, this
perturbation scheme helps us to analyze wave propaga-
tion for a wide range of angles ξ including the vicin-
ity of forbidden directions. First, we develop closed-
form linearized expressions for group and phase atten-
uation in arbitrarily anisotropic media, which provide
useful physical insight into the influence of the angle ξ.
The general equations are then simplified for the spe-
cial case of TI media by expressing them through the
Thomsen-style anisotropy parameters. Finally, the con-
clusions drawn from the analytic expressions are corrob-
orated by exact numerical modeling.

1 PHASE AND GROUP ATTENUATION

COEFFICIENTS

The Christoffel equation, which describes plane-wave
propagation in anisotropic media, can be solved for the
real (kR) and imaginary (kI) parts of the wave vector.
The ratio kI/kR yields the phase attenuation per wave-
length, which is called the normalized phase attenuation
coefficient A (Zhu & Tsvankin, 2006):

A =
kI

kR
. (3)

For a nonzero inhomogeneity angle ξ, the coefficient
A is a measure of attenuation along the vector kI rather
than kR. Also, in seismic data processing, the attenua-
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Figure 2. Illustration of the reflection/transmission prob-
lem at the interface between a purely elastic cap rock and
an attenuative reservoir. kR and kI are the real and imagi-
nary parts of the wave vector of the transmitted wave, while
kR,refl and kI,refl correspond to the reflected wave. As dis-
cussed in the text, the inhomogeneity angle ξ of the trans-
mitted wave is equal to the transmission angle θT .

tion is measured along the raypath, which deviates from
the phase direction kR when the medium is anisotropic.

Attenuation is commonly computed from seismic
data using the spectral-ratio method (e.g., Johnston &
Toksöz, 1981; Tonn, 1991), which has been extended to
anisotropic media (Zhu et al., 2007). If two receivers
record the same event at two different locations along
a raypath, the attenuation coefficient can be estimated
from the ratio S of the measured amplitude spectra:

lnS = lnG − kI
g l, (4)

where G contains the reflection/transmission coeffi-
cients, source/receiver radiation patterns, and geometri-
cal spreading along the raypath, kI

g is the average group
attenuation coefficient, and l is the distance between the
two receivers. Assuming that the medium between the
receivers is homogeneous, equation 4 can be rewritten
in terms of the group velocity Vg and traveltime t:

lnS = lnG − kI
g Vg t,

= lnG − ωAg t, (5)

where ω is the angular frequency and Ag = kI
g/k

R
g =

kI
g/(ω/Vg) is the normalized group attenuation coeffi-

cient. It follows from equation 5 that by estimating the
slope of lnS expressed as a function of ω, we can com-
pute the group attenuation along the raypath, if the
traveltime t is known. Therefore, Ag is the measure of
attenuation obtained from seismic data.

If the medium is anisotropic (or isotropic, but the
inhomogeneity angle is large, as discussed below), the
group-velocity vector Vg deviates from the phase direc-
tion parallel to kR. To simplify the analytic develop-
ment, we choose a coordinate frame in which kR coin-
cides with the axis x3 and kI is confined to the [x1, x3]-
plane (Figure 3). The group attenuation coefficient kI

g

can be found by projecting the phase attenuation vector
kI onto the group direction:

kI
g =

1

Vg

“

k
I · Vg

”

, (6)

= kI(cos ξ cosψ + sin ξ sinψ cosφ) , (7)

where ψ is the angle between kR and Vg (group angle)
and φ is the azimuth of Vg with respect to the [x1, x3]-
plane (Figure 3). If the vectors Vg, kR, and kI lie in
the same plane (i.e., φ = 0), kI

g is given by

kI
g = kI cos(ξ − ψ) . (8)

Using equation 7, the normalized group attenuation co-
efficient Ag can be represented as

Ag =
kI

g

kR
g

=
kI cos ξ cosψ (1 + tan ξ tanψ cosφ)

ω/Vg

. (9)

The group velocity can be obtained from the well-known
relation (e.g., Červený & Pšenč́ık, 2006):

1

ω
k

R · Vg = 1 , (10)

or

ω

Vg

= kR cosψ . (11)

Substituting equation 11 into equation 9 yields

Ag =
kI

kR
cos ξ (1 + tan ξ tanψ cosφ) . (12)

Equation 12 can be used to compute the exact coeffi-
cient Ag for arbitrarily anisotropic, attenuative media
and any angle ξ. If the group-velocity vector is confined
to the plane formed by kR and kI (see above), cos φ = 1
and equation 12 becomes

Ag =
kI

kR

cos(ξ − ψ)

cosψ
. (13)

For a zero inhomogeneity angle, the coefficient Ag re-
duces to

Ag(ξ = 0◦) =
kI

kR

˛

˛

˛

˛

ξ=0◦
= A|

ξ=0◦ . (14)

Equation 14 demonstrates that even for arbitrary
anisotropy, the group attenuation coefficient coincides
with the phase attenuation coefficient for ξ = 0◦ (Zhu,
2006). It is unclear, however, how Ag is related to phase
attenuation for a nonzero ξ and what role is played by
the inhomogeneity angle in the estimation of the atten-
uation coefficient.

2 ISOTROPIC MEDIA

To evaluate the influence of the inhomogeneity angle on
velocity and attenuation in isotropic media, we obtain
the real and imaginary parts of the vector k from the
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Figure 3. Plane wave propagating along the coordinate axis
x3 in an anisotropic attenuative medium. The group angle ψ
is the deviation of the group velocity vector Vg from the real
part kR of the wave vector. The azimuth of the vector Vg

with respect to the plane formed by kR and kI is denoted

by φ.

wave equation. The derivation, discussed in Appendix
A, shows that the solution exists only if kR · kI > 0,
which means that the inhomogeneity angle in isotropic
media should be smaller than 90◦ (we assume that
ξ > 0 because positive and negative inhomogeneity an-
gles are equivalent in the absence of anisotropy). There-
fore, the attenuation vector kI cannot deviate from kR

by 90◦ or more, and angles ξ ≥ 90◦ correspond to so-
called “forbidden directions.” Note that for isotropic
non-attenuative media, the inhomogeneity angle of an
evanescent (inhomogeneous) plane wave is always equal
to 90◦, which explains the properties of surface and non-
geometrical modes (Tsvankin, 1995).

The squared magnitudes of the vectors kR and kI

for ξ < 90◦ (Appendix A) are given by

(kR)2 =
ω2

2V 2

"s

1 +
1

(Q cos ξ)2
+ 1

#

, (15)

(kI)2 =
ω2

2V 2

"s

1 +
1

(Q cos ξ)2
− 1

#

, (16)

where V =
p

aR
33 is the real part of the medium veloc-

ity and aij is the density-normalized stiffness tensor.
The only approximation used to derive equations 15
and 16 is that quadratic and higher-order terms in the
inverse quality factor 1/Q [but not in 1/(Q cos ξ)] can
be neglected compared to unity. Equivalent solutions
for kR and kI in isotropic media are given in Červený
& Pšenč́ık (2005a).

2.1 Small and moderate inhomogeneity angles

The dependence of the wave vector on the inhomogene-
ity angle is controlled by the product Q cos ξ. If the an-
gle ξ is not close to 90◦ and the medium does not have
uncommonly strong attenuation, we can assume that
(Q cos ξ) ≫ 1 and simplify equations 15 and 16 to (see
Appendix A)

kR =
ω

V
, (17)

kI =
ω

2V Q cos ξ
. (18)

According to equation 17, for (Q cos ξ) ≫ 1 the velocity
of wave propagation is equal to V and is independent
of the inhomogeneity angle and of attenuation. Using
equations 17 and 18, we find the normalized phase at-
tenuation coefficient A as

A =
kI

kR
=

1

2Q cos ξ
. (19)

In general, the inhomogeneity angle also influences
the group velocity and the group angle. For (Q cos ξ) ≫
1, however, the influence of ξ is negligible (Appendix A):

tanψ =
tan ξ

1 + 2Q2
≪ 1 , (20)

and Vg ≈ V . The normalized group attenuation coeffi-
cient Ag (equation 12) then becomes

Ag =
kI cos ξ

kR
. (21)

If the wave vector is described by equations 17 and 18,
equation 21 yields

Ag =
1

2Q
= A|

ξ=0◦ . (22)

Therefore, for a wide range of common inhomogene-
ity angles, the group attenuation coefficient Ag does
not depend on the angle ξ and is close to the phase
attenuation coefficient A computed for ξ = 0◦. Later
we demonstrate that this result remains valid for much
more complicated models with anisotropic velocity and
attenuation functions. Equation 22 also shows that seis-
mic attenuation measurements (i.e., the coefficient Ag)
for isotropic media provide a direct estimate of the qual-
ity factor Q. This conclusion applies to both P- and
S-waves and a wide range of angles ξ (Figure 4).

2.2 Large inhomogeneity angles

For large inhomogeneity angles approaching 90◦, the
assumption (Q cos ξ) ≫ 1 used to derive equations 17
and 18 is no longer satisfied. In the limit of (Q cos ξ) ≪ 1
(ξ → 90◦), equations 15 and 16 give completely dif-
ferent approximate solutions for the wave vector (Ap-
pendix A):

kR =
ω

V
√

2Q cos ξ

„

1 +
Q cos ξ

2

«

, (23)
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kI =
ω

V
√

2Q cos ξ

„

1 − Q cos ξ

2

«

. (24)

Dropping quadratic and higher-order terms in Q cos ξ,
we find

A =
kI

kR
= 1 −Q cos ξ . (25)

The velocity of wave propagation, determined by the
denominator of the expression for kR (equation 23), is
proportional to

√
Q cos ξ and goes to zero when the in-

homogeneity angle approaches 90◦.
When ξ → 90◦, the influence of the inhomogeneity

angle on the group quantities ψ, Vg, and Ag is no longer
negligible. The group angle for large inhomogeneity an-
gles becomes (Appendix A)

tanψ =
1

Q
− cos ξ . (26)

Equation 26 demonstrates that for strong attenuation
(small Q) the group-velocity vector deviates from the
phase direction.

The coefficient Ag for large angles ξ can be obtained
by substituting equations 25 and 26 into equation 12:

Ag = (1 −Q cos ξ)

»

cos ξ +

„

1

Q
− cos ξ

«

sin ξ

–

. (27)

Linearizing equation 27 in cos ξ yields

Ag =
1

Q
− cos ξ . (28)

Equation 28 shows that the group attenuation coeffi-
cient Ag for large inhomogeneity angles reduces to just
tanψ (see equation 26). Therefore, whereas the real
and imaginary parts of the wave vector (equations 23
and 24) become infinite as ξ → 90◦, the group atten-
uation coefficient approaches 1/Q and is about twice
as large as A|

ξ=0◦ (Figure 4). Hence, for large angles
ξ close to 90◦, seismic attenuation measurements in
isotropic media do not provide a direct estimate of the
quality factor because Ag rapidly increases with ξ from
1/(2Q) to 1/Q.

Although the presence of anisotropy makes treat-
ment of wave propagation in attenuative media much
more complicated, several key conclusions drawn above
prove to be valid for models with anisotropic velocity
and attenuation functions.

3 ANISOTROPIC MEDIA

The dependence of attenuation on the inhomogeneity
angle ξ in anisotropic media is influenced by the an-
gular variation of the phase quantities and by the dif-
ference between the group and phase directions. Using
the Christoffel equation B1, the phase attenuation coef-
ficient A can be computed for arbitrary values of the
angle ξ. Then general group-velocity equations (e.g.,
Tsvankin, 2005) can be employed to obtain the group

(a)

(b)

Figure 4. Exact P-wave (a) and S-wave (b) coefficient
A|ξ=0◦ (equation 3, red curve) and the normalized group
attenuation Ag (equation 12, blue curve) in isotropic media
as a function of the inhomogeneity angle ξ (numbers on the
perimeter). The quality factors are QP = QS = 5.

attenuation coefficient. It would be useful, however, to
develop analytic expressions for phase and group attenu-
ation that provide physical insight into the contribution
of the inhomogeneity angle. To derive analytic expres-
sions for kR, kI , and Ag in arbitrarily anisotropic media,
we use the first-order perturbation theory, as discussed
in Appendix A. The analytic development is supported
by numerical modeling based on exact solutions.
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3.1 Perturbation of the complex wave vector

We consider an isotropic, attenuative background
medium, which is perturbed to obtain anisotropic veloc-
ity and attenuation functions. The real and imaginary
parts of the wave vector in the background are denoted
by kR,0 and kI,0, respectively. We choose the coordinate
frame in which kR,0 coincides with the x3-axis and kI,0

lies in the [x1, x3]-plane. The angle ξ is kept fixed, so the
real and imaginary parts of the perturbed wave vector
k = kR− ikI remain parallel to the corresponding parts
of the background vector k0.

First, we obtain linearized expressions for the per-
turbations ∆kR and ∆kI in arbitrarily anisotropic me-
dia using the coordinate frame defined by kR and kI

(equations B15–B20). To express ∆kR and ∆kI in a
fixed coordinate frame, one has to rotate the perturba-
tion density-normalized stiffness tensor ∆aijkl accord-
ingly. For example, to derive ∆kR and ∆kI for TI media
as a function of the phase angle θ (the angle between
kR and the symmetry axis), the tensor ∆aijkl in equa-
tions B15–B20 is rotated about the x2-axis by the angle
θ.

For the special case of P-wave propagation in TI
media, the perturbations ∆kR and ∆kI take the form

∆kR
P

kR,0
P

= −
`

δ sin2 θ cos2 θ + ǫ sin4 θ
´

, (29)

∆kI
P

kI,0
P

=δ
Q

sin2 θ cos2 θ + ǫ
Q

sin4 θ

− (δ sin2 θ cos2 θ + ǫ sin4 θ)

−
ˆ

δ + 2(ǫ− δ) sin2 θ
˜

sin 2θ tan ξ , (30)

where ǫ and δ are the Thomsen velocity-anisotropy
parameters, and ǫ

Q
and δ

Q
are the Thomsen-style

attenuation-anisotropy parameters (Zhu & Tsvankin,
2006). The parameter ǫ

Q
determines the fractional dif-

ference between the P-wave phase attenuation coeffi-
cients A|

ξ=0◦ in the horizontal and vertical directions,
while δ

Q
controls the coefficient A|

ξ=0◦ in the vicinity of
the symmetry axis. Equations 29 and 30 are derived for
the attenuation vector kI confined to the plane defined
by kR and the symmetry axis. Similar expressions for
SV- and SH-waves in TI media are given in Appendix C
(equations C1–C4).

Note that the real part ∆kR of the linearized per-
turbation in the wave vector in equations 29, C1, and
C3 is independent of the inhomogeneity angle and is en-
tirely governed by velocity anisotropy. This conclusion
is corroborated by the numerical example in Figure 5.
As the inhomogeneity angle varies from 0◦ to 70◦, there
is no noticeable change in kR even in the presence of ve-
locity anisotropy (Figures 5c and 5d) and attenuation
anisotropy (Figures 5e and 5f). The “isotropic” behav-

ior of kR in Figures 5e and 5f indicates that attenuation
anisotropy has little influence on the velocity function,
which is controlled by the velocity-anisotropy parame-
ters (Figures 5c and 5d). Whereas equations 29, C1, and
C3 remain accurate for a wide range of ξ (Figures 5b, 5d,
and 5f) and strong attenuation anisotropy, they break
down for the angle ξ approaching 90◦.

The attenuation vector kI (equations 30, C2, and
C4), on the other hand, is influenced by both veloc-
ity and attenuation anisotropy, as well as by the inho-
mogeneity angle ξ. The increase in ξ from 0◦ to 70◦

in Figure 6 causes a substantial change in kI , both
for isotropic and TI media. Figures 6d–6i illustrate
the dependence of kI on the velocity- and attenuation-
anisotropy parameters. It is interesting to note that
for small ξ the contribution of velocity and attenua-
tion anisotropy to kI (equations 30, C2, and C4) is of
the same order. With increasing ξ, however, the influ-
ence of velocity anisotropy (Figure 6f) becomes more
pronounced compared to that of attenuation anisotropy
(Figure 6i) because the tan ξ-term in equation 30 de-
pends just on ǫ and δ. Figure 6 also demonstrates that
equation 30 deviates from the exact kI only for large
angles ξ, with the error primarily controlled by the
velocity-anisotropy parameters.

3.2 Normalized group attenuation coefficient

As discussed above, for zero inhomogeneity angle the
normalized group attenuation coefficient Ag coincides
with A|

ξ=0◦ (equation 14). This conclusion, which is
valid for all wave modes, is supported by Figures 7a
and 7b where the coefficients A|

ξ=0◦ (red curve) and
Ag (blue) coincide when ξ = 0◦.

To examine the influence of the angle ξ on Ag , we
linearize equation 12 in terms of the perturbations of
the wave vector:

Ag =
kI,0 + ∆kI

kR,0 + ∆kR
cos ξ (1 + tan ξ tanψ cosφ)

=
kI,0

kR,0

„

1 +
∆kI

kI,0
− ∆kR

kR,0

«

cos ξ (1 + tan ξ tanψ cosφ) .

(31)

Taking into account that kI,0/kR,0 = 1/(2Q0 cos ξ)
(equation 19), we find

Ag =
1

2Q0

„

1 +
∆kI

kI,0
− ∆kR

kR,0

«

(1 + tan ξ tanψ cosφ).

(32)

Equation 32 is valid in arbitrarily anisotropic media for
all wave modes. Substituting equations B15 and B16
for ∆kR and ∆kI and equation B26 for the product
tanψ cosφ into equation 32, we obtain the group atten-
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(a) ξ = 0◦ (b) ξ = 70◦

(c) ξ = 0◦ (d) ξ = 70◦

(e) ξ = 0◦ (f) ξ = 70◦

Figure 5. Exact real part kR (in 100 m−1) of the P-wave vector k (solid lines) and approximate kR = kR,0 + ∆kR from
equation 29 (dashed lines) for ξ = 0◦ (a,c,e) and ξ = 70◦ (b,d,f) as a function of the phase angle (numbers on the perimeter).
The model in (a,b) is isotropic; in (c,d) it is anisotropic in terms of velocity but has isotropic attenuation, while in (e,f) it has
isotropic velocity and anisotropic attenuation (Table 1). The frequency is 30 Hz.
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(a) ξ = 0◦ (b) ξ = 45◦ (c) ξ = 70◦

(d) ξ = 0◦ (e) ξ = 45◦ (f) ξ = 70◦

(g) ξ = 0◦ (h) ξ = 45◦ (i) ξ = 70◦

Figure 6. Exact imaginary part kI of the P-wave vector k (solid lines) and approximate kI = kI,0 + ∆kI (in 100 m−1) from
equation 30 (dashed lines) for ξ = 0◦ (a,d,g), ξ = 45◦ (b,e,h) and ξ = 70◦ (c,f,i) as a function of the angle between kI and the
symmetry axis. In (a,b,c) both velocity and attenuation are isotropic; in (d,e,f) only velocity varies with angle, while attenuation
is isotropic; in (g,h,i) attenuation varies with angle, while velocity is isotropic. The model parameters are given in Table 1. The
frequency is 30 Hz.

uation coefficient for P-waves linearized in ∆aij :

Ag,P =
1

2QP0
− 1

2V 2
P0

„

∆aR
33

QP0
− ∆aI

33

«

, (33)

where QP0 and VP0 are the P-wave quality factor and
velocity, respectively, in the background. Similar expres-
sions for S1- and S2-waves are given in Appendix B
(equations B30 and B31).

Below we analyze equation 33 for the special case
of P-wave propagation in TI media with arbitrary
symmetry-axis orientation. As mentioned earlier, to ex-
press Ag through the phase angle θ with the symmetry
axis, the tensor ∆aijkl in equation 33 has to be rotated
around the x2-axis. Then we linearize Ag in the velocity-
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ξ ǫ δ γ QP0 QS0 ǫ
Q

δ
Q

γ
Q

Figs. 5a,b 0◦, 70◦ 0 0 0 10 10 0 0 0
5c,d 0◦, 70◦ 0.3 0.2 0 10 10 0 0 0
5e,f 0◦, 70◦ 0 0 0 10 10 0.6 0.4 0

Figs. 6a,b,c 0◦, 45◦, 70◦ Same as in Figures 5a,b
6d,e,f 0◦, 45◦, 70◦ Same as in Figures 5c,d
6g,h,i 0◦, 45◦, 70◦ Same as in Figures 5e,f

Fig. 7a 0◦ 0.3 0.2 0 10 10 0.6 0.4 0
7b 0◦ 0 0 0.3 10 10 0 0 0.5

Fig. 8 - 0.3 0.2 0 5 5 0.6 0.4 0
Fig. 9a 60◦ 0 0 0 10 10 0 0 0

9b 60◦ 0.3 0.2 0 10 10 0 0 0
9c 60◦ 0.6 0.4 0 10 10 0 0 0
9d 60◦ 0 0 0 10 10 0.6 0.4 0

Fig. 10a,b 60◦ 0.6 0.4 0 10 10 0.6 0.4 0

10c,d 60◦ 0 0 0.5 10 10 0 0 0.5
Fig. 11 - 0 0 0.3 5 5 0 0 0.5

Fig. 12a - 0 0 1 5 5 0 0 -0.5
12b - 0 0 0.3 5 5 0 0 -0.5

Table 1. Medium parameters used in the numerical tests. For all models, the P- and S-wave symmetry-direction velocities (VP0

and VS0) are 2800 m/s and 1700 m/s, respectively.

and attenuation-anisotropy parameters to obtain

Ag,P =
1

2QP0

`

1 + δ
Q

sin2 θ cos2 θ + ǫ
Q

sin4 θ
´

. (34)

Similar approximate expressions for the group attenu-
ation coefficient of SV- and SH-waves are given in Ap-
pendix C (equations C10 and C11).

Therefore, the inhomogeneity angle has no influ-
ence on the approximate group attenuation coefficient.
Furthermore, Ag,P in equation 34 coincides with the
linearized P-wave phase attenuation coefficient for a
zero inhomogeneity angle (A|

ξ=0◦ ) derived by Zhu and
Tsvankin (2006). Equation 34 deviates from the exact
Ag only when the angle ξ approaches forbidden direc-
tions (Figure 8); the behavior of Ag for large inhomo-
geneity angles is analyzed in more detail below.

Note that the linearized Ag (equations 34, C10, and
C11) is controlled by attenuation anisotropy and does
not depend on the velocity-anisotropy parameters. This
conclusion is confirmed by the exact modeling results
in Figures 9a and 9b where the coefficient Ag remains
insensitive even to strong velocity anisotropy with ǫ =
0.6 and δ = 0.4 when ξ = 60◦ (Figure 9c). The presence
of attenuation anisotropy, on the other hand, results in
a substantial change in Ag (Figure 9d).

3.3 Relationship between group and phase

attenuation

The normalized phase attenuation coefficient A|
ξ=0◦

can be obtained from the Christoffel equation and ex-
pressed through the attenuation-anisotropy parameters
(Zhu & Tsvankin, 2006). As shown above, the coeffi-
cient Ag coincides with A|

ξ=0◦ for a wide range of ξ in
isotropic media and for ξ = 0◦ in anisotropic media.

Using perturbation analysis, we obtained closed-
form expressions for the coefficient A|

ξ=0◦ in arbitrarily
anisotropic media linearized in ∆aij (Appendix B). For
P-waves,

A|
ξ=0◦,P

=
1

2QP0
− 1

2V 2
P0

„

∆aR
33

QP0
− ∆aI

33

«

. (35)

Similar expressions for S1- and S2-waves are given in
Appendix B. Comparison of equations 33 and 35 shows
that for a wide range of angles ξ (except for values close
to 90◦; see below), the linearized coefficient Ag coincides
with A|

ξ=0◦ . This conclusion is also valid for S1- and
S2-waves (compare equations B30 and B31 with equa-
tions B24 and B25).

The approximate P-wave phase attenuation coef-
ficient for TI media can be found as a simple func-
tion of the attenuation-anisotropy parameters (Zhu &
Tsvankin, 2006):

A|ξ=0◦,P =
1

2QP0

`

1 + δ
Q

sin2 θ cos2 θ + ǫ
Q

sin4 θ
´

.

(36)

Zhu & Tsvankin (2006) also provide similar linearized
expressions for SV- and SH-waves reproduced in Ap-
pendix B. As is the case for arbitrary ansisotropy, the
coefficient A|

ξ=0◦ in equation 36 coincides with Ag in
equation 34.

Figures 10a and 10b demonstrate that the max-
imum difference between the exact coefficients Ag and
A|

ξ=0◦ does not exceed 10% even for strong attenuation
(Q33 = 10) and uncommonly large anisotropy parame-
ters (ǫ = ǫ

Q
= 0.6 and δ = δ

Q
= 0.4). The coefficients

Ag and A|
ξ=0◦ are also close for SV- and SH-waves,

which confirms the analytic results of Appendix C (Fig-
ures 10c and 10d).
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(a)

(b)

Figure 7. Exact P-wave (a) and SH-wave (b) coefficients
A|ξ=0◦ (red curves) and Ag (blue curves) in TI media as
a function of the phase angle for ξ = 0◦. Because Ag =
A|ξ=0◦ , the red curves are coincident with the blue curves.
The model parameters are given in Table 1.

3.4 Group attenuation for large

inhomogeneity angles

The above conclusions about the influence of the inho-
mogeneity angle on phase velocity and attenuation no
longer hold for large inhomogeneity angles approach-
ing forbidden directions. As shown above for isotropic
media, when (Q cos ξ) ≪ 1, the group attenuation coef-
ficient varies with the angle ξ and differs from A|

ξ=0◦ .
To study the influence of large ξ analytically, we fol-

low the same perturbation-based approach (Appendix
B) but with different background values of the wave

Figure 8. Exact P-wave group attenuation coefficient Ag,P

(solid line) and approximate Ag,P from equation 34 (dashed
line) in TI media for θ = 45◦ as a function of the angle
ξ (numbers on the perimeter). The model parameters are
given in Table 1.

vector, group velocity, and group angle (equations 23–
26). For simplicity, here we analyze only the special case
of elliptical anisotropy in TI media (i.e., SH-waves);
more general solutions for shear waves in arbitrarily
anisotropic media are given in Appendix D. Numeri-
cal tests demonstrate that our conclusions remain valid
for all wave modes and any anisotropic symmetry.

According to equation D6, the coefficient Ag for
large inhomogeneity angles becomes a function of ξ and
cannot serve as a measure of intrinsic attenuation. As
was the case for isotropy, Ag in anisotropic media is
always finite (and does not go to zero), even though
the real and imaginary parts of the wave vector (equa-
tion D3) become infinite.

When the medium is isotropic, a physical solution
of the wave equation exists only for −90◦ < ξ < 90◦

[equation A5; also see Červený & Pšenč́ık (2005a)].
The bounds for the inhomogeneity angle in arbitrarily
anisotropic media depend on both velocity and attenu-
ation anisotropy and can be derived from equation D3
using the inequalities kR > 0 and kI > 0. For the special
case of elliptical anisotropy (equation D4), the inhomo-
geneity angle should satisfy

cos ξ +
γ sin 2θ

2
sin ξ >

γ
Q

cos 2θ

4QS0
, (37)

which yields the following bounds for ξ:

−β − α < ξ < β − α , (38)

where

α = tan−1

„

−γ sin 2θ

2

«

(39)
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(a) (b)

(c) (d)

Figure 9. Exact P-wave group attenuation coefficient Ag for ξ = 60◦ in isotropic (a) and TI (b,c,d) media. In (b,c) only
velocity varies with angle, while attenuation is isotropic; in (d) attenuation varies with angle, while velocity is isotropic. The
model parameters are given in Table 1.

and

β = cos−1

„

γ
Q

cos 2θ

4QS0

«

. (40)

Equivalent expressions for the bounds on ξ for SH-
wave propagation in the symmetry plane of a mono-
clinic medium are given by Červený & Pšenč́ık (2005a)
in terms of the inhomogeneity parameter D.

For wave propagation along the symmetry axis or
perpendicular to it (θ = 0◦ or 90◦), the angle α = 0◦ and
the bounds on ξ are symmetric with respect to ξ = 0◦

(equations 38 and 40; Figure 11). It is also clear from
equation 40 that β ≈ 90◦ because the ratio γ

Q
/QS0 typ-

ically is small. Hence, for θ = 0◦ and 90◦ anisotropy does

not signficantly change the bounds on ξ, which remain
close to ±90◦. As was the case for isotropic media, when
the angle ξ approaches the “forbidden directions,” the
group attenuation coefficient Ag rapidly increases with
|ξ| and reaches values approximately twice as large as
A|ξ=0◦ (Figure 11).

For oblique propagation angles, α does not vanish,
and the bounds on ξ become asymmetric with respect
to ξ = 0◦. This asymmetry is controlled by the velocity-
anisotropy coefficient γ and reaches its maximum for the
phase angle θ = 45◦ (equation 39). The model in Fig-
ure 12a, taken from Carcione & Cavallini (1995), has an
uncommonly large parameter γ equal to unity, and for
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(a) (b)

(c) (d)

Figure 10. Exact P-wave (a) and SH-wave (c) coefficients A|ξ=0◦ (red curve) and Ag (blue curve) and the percentage difference
|Ag − A|ξ=0◦ | (b,d) in TI media as a function of the phase angle θ for ξ = 60◦. The model parameters are listed in Table 1.

θ = 45◦ the inhomogeneity angle can vary between only
−64◦ and 116◦. Therefore, strong velocity anisotropy
may result in forbidden directions for angles |ξ| much
smaller than 90◦.

Still, the range of possible inhomogeneity angles
(2β) remains close to 180◦ because the parameter β ≈
90◦ (Figure 12a). For more common, smaller values of
the parameter γ, the bounds on ξ become more symmet-
ric with respect to ξ = 0◦ and do not differ significantly
from ±90◦ (Figure 12b). The behavior of the coefficient
Ag for large angles ξ in Figure 12 is similar to that in
isotropic media.

4 DISCUSSION

Our analytic and numerical results for plane-wave prop-
agation prove that the normalized group attenuation
coefficient Ag measured from seismic data is practically
independent of the inhomogeneity angle (except for an-
gles ξ approaching the forbidden directions) and is close
to the normalized phase attenuation coefficient A|

ξ=0◦ .
Behura & Tsvankin (2008) corroborate this conclu-
sion by applying attenuation layer stripping and the
spectral-ratio method to full-waveform P-wave synthetic
data generated by a point source in layered anisotropic
models. The interval coefficients Ag and A|

ξ=0◦ esti-
mated by Behura & Tsvankin (2008) from reflection am-
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(a)

(b)

Figure 11. Exact SH-wave coefficients A|ξ=0◦ (red curve)
and Ag (blue curve) in TI media for propagation in the di-
rections θ = 0◦ (a) and θ = 90◦ (b) plotted as a function
of the inhomogeneity angle ξ (numbers on the perimeter).
The black dashed line marks the bounds of ξ computed from
equations 38–40. The model parameters are listed in Table 1.

plitudes practically coincide even at large offsets where
the inhomogeneity angle reaches 60◦.

The coefficient A|
ξ=0◦ in TI and orthorhombic me-

dia can be inverted for the Thomsen-style attenuation-
anisotropy parameters using the formalism developed
by Zhu & Tsvankin (2006, 2007). Note that estimation
of the attenuation-anisotropy parameters from A|

ξ=0◦

requires computation of the corresponding phase an-
gle, which depends on the anisotropic velocity field.
Even in strongly anisotropic models, however, the in-
fluence of attenuation on velocity is of the second order

(a)

(b)

Figure 12. Exact SH-wave coefficients A|ξ=0◦ (red curve)
and Ag (blue) as a function of ξ (numbers on the perimeter)
for θ = 45◦ and γ = 1.0, γ

Q
= −0.5 (a) and γ = 0.3, γ

Q
=

−0.5 (b). The black dashed line marks the bounds of ξ com-
puted from equations 38–40. The model parameters are listed
in Table 1.

(see above), which implies that velocity analysis can be
performed using existing methods. The reconstructed
velocity field can then be employed to recompute the
known group direction into the phase direction needed
in the inversion for the attenuation-anisotropy param-
eters. Furthermore, given the large uncertainty of am-
plitude measurements, the difference between the phase
and group directions for moderately anisotropic models
should not significantly distort the results of attenuation
analysis.
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5 CONCLUSIONS

We applied the first-order perturbation theory to study
the influence of the inhomogeneity angle on velocity and
attenuation in arbitrarily anisotropic media. By adopt-
ing an attenuative, isotropic background medium, we
were able to specify a background wave vector with an
arbitrary inhomogeneity angle ξ. The perturbation anal-
ysis yields concise analytic expressions for the complex
wave vector k, the phase attenuation coefficient A|ξ=0◦

and the group attenuation coefficient Ag in terms of the
perturbations of the complex stiffness coefficients. To
gain physical insight into the influence of the inhomo-
geneity angle, we also derived closed-form expressions
for TI media by linearizing the general solutions in the
dimensionless velocity- and attenuation-anisotropy pa-
rameters.

For a wide range of small and moderate angles ξ,
the phase-velocity function is practically independent
of attenuation, while the group attenuation coefficient
Ag , which is measured from seismic data, is insensitive
to the inhomogeneity angle. Furthermore, Ag practi-
cally coincides with the phase attenuation coefficient
A|

ξ=0◦ , which can be treated as the angle-dependent
inverse quality factor in anisotropic media. This con-
clusion remains valid even for uncommonly high atten-
uation (Q ≈ 10) and strong velocity and attenuation
anisotropy. The negligible difference between Ag and
A|ξ=0◦ suggests that seismic data can be inverted for
the attenuation-anisotropy parameters without knowl-
edge of the inhomogeneity angle.

However, for larger angles ξ approaching the for-
bidden directions (i.e., the directions of the attenuation
vector kI for which solutions of the wave equation do not
exist) the inhomogeneity angle has a strong influence on
both attenuation and phase velocity. While for isotropic
media the inhomogeneity angle can vary between -90◦

and 90◦, velocity anisotropy makes the bounds on the
inhomogeneity angle asymmetric with respect to ξ = 0◦.
In the vicinity of the forbidden directions the coefficient
Ag rapidly increases with |ξ| and reaches values approx-
imately twice as large as A|ξ=0◦ . The range of such
“anomalous” inhomogeneity angles where Ag no longer
represents a direct measure of the intrinsic attenuation
becomes wider for highly attenuative models.
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APPENDIX A: COMPLEX WAVE VECTOR

FOR ISOTROPIC ATTENUATIVE MEDIA

We consider a harmonic plane wave with an arbitrary
inhomogeneity angle ξ propagating in isotropic attenu-
ative media:

A(x, t) = A0 e
i(ω t− k·x) , (A1)

where ω is the angular frequency and k = kR − ikI

is the complex wave vector responsible for the veloc-
ity and the attenuation coefficient. Substitution of the
plane wave A1 into the acoustic wave equation results
in

k2
1 + k2

2 + k2
3 =

ω2

V 2

„

1 +
i

Q

« , (A2)

where V is the real part of the medium velocity, and Q is
the quality factor. Dropping quadratic and higher-order
terms in 1/Q, we rewrite equation A2 as

(kR)2 − 2 ikR · kI − (kI)2 =
ω2

V 2

„

1 − i

Q

«

; (A3)

(a)

(b)

Figure A1. Isotropic attenuative background medium (a)
is perturbed to make it anisotropic (b). kR,0 and kI,0 are
the real and imaginary parts of the wave vector in the back-
ground, and kR = kR,0 + ∆kR and kI = kI,0 + ∆kI form
the wave vector in the perturbed medium; ξ is the inhomo-
geneity angle. The vectors kR,0 and kR are parallel to the
vertical x3 direction while kI,0 and kI are confined to the
[x1, x3]-plane. V0

g is the group velocity in the background;
ψ is the polar group angle after the perturbation, and φ is
the azimuth of the perturbed vector Vg with respect to the
[x1, x3]-plane.

kR = |kR| and kI = |kI |. Equation A3 can be separated
into the real and imaginary parts:

(kR)2 − (kI)2 =
ω2

V 2
, (A4)

k
R · kI =

ω2

2V 2Q
. (A5)

When the medium is non-attenuative and 1/Q = 0,
the right-hand side of equation A5 vanishes. Then the
vectors kR and kI of an inhomogeneous (evanescent)
plane wave have to be orthogonal, with the relationship
between kR and kI determined by equation A4.

Because the factor Q responsible for attenuation is
positive, equation A5 can be satisfied only if kR ·kI > 0,
which requires that cos ξ > 0 and ξ < 90◦. (We make
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the assumption that ξ > 0 because the solutions of equa-
tions A4 and A5 do not depend on the sign of ξ.) With
the inhomogeneity angle smaller than 90◦, equation A5
allows us to express kI through kR as

kI =
ω2

2 kR V 2Q cos ξ
. (A6)

Substitution of kI into equation A4 yields a quadratic
equation for (kR)2, which has only one positive solution:

(kR)2 =
ω2

2V 2

"s

1 +
1

(Q cos ξ)2
+ 1

#

. (A7)

The corresponding imaginary part kI can be obtained
from either equation A4 or A6:

(kI)2 =
ω2

2V 2

"s

1 +
1

(Q cos ξ)2
− 1

#

. (A8)

For typical large values of the quality factor, the
product (Q cos ξ) ≫ 1, unless the inhomogeneity angle
is close to 90◦. Expanding the radical in equations A7
and A8 in 1/(Q cos ξ)2, we find

kR ∼= ω

V

»

1 +
1

8(Q cos ξ)2

–

, (A9)

kI ∼= ω

2V Q cos ξ

»

1 − 1

8(Q cos ξ)2

–

. (A10)

Equations A9 and A10 can be simplified further
by neglecting the small (compared to unity) term
1/[8(Q cos ξ)2]:

kR =
ω

V
, (A11)

kI =
ω

2V Q cos ξ
. (A12)

A1 Large inhomogeneity angles

Although equations A11 and A12 are sufficiently ac-
curate for a wide range of inhomogeneity angles, they
break down when ξ → 90◦. For (Q cos ξ) ≪ 1, equa-
tions A7 and A8 can be approximated by

kR =
ω

V
√

2Q cos ξ

„

1 +
Q cos ξ

2

«

, (A13)

kI =
ω

V
√

2Q cos ξ

„

1 − Q cos ξ

2

«

. (A14)

The phase attenuation coefficient A can be found from
equations A13 and A14:

A =
kI

kR
= 1 −Q cos ξ ; (A15)

here, we have dropped the term quadratic in (Q cos ξ).

A2 Group angle

In elastic isotropic media, the group- and phase-velocity
vectors are always parallel. If, however, the medium is
strongly attenuative and ξ 6= 0◦, the group direction
might deviate from the phase direction. The group-
velocity vector in arbitrarily anisotropic, attenuative
media can be computed from (Červený & Pšenč́ık, 2006)

(Vg)i =
Si

S · pR

=
(aijkl gk g

∗

j pl)
R

(aijkl gk g
∗

i pl)R pR
j

, (A16)

where S is the energy flux, aijkl is the density-
normalized stiffness tensor, p is the slowness vector, and
g is the polarization vector; the superscripts “R” and
“∗” represent the real part and complex conjugate, re-
spectively.

For isotropic media, equation A16 yields the follow-
ing components of Vg:

Vg =
ω

kR

»

kI sin ξ

kRQ+ kI cos ξ
, 0, 1

–

. (A17)

From equation A17, we find the group angle ψ:

tanψ =
kI sin ξ

kR Q+ kI cos ξ
. (A18)

To obtain the group angle for small and moderate inho-
mogeneity angles, we substitute equations A11 and A12
into equation A18, yielding

tanψ =
tan ξ

1 + 2Q2
≪ 1 . (A19)

For angles ξ approaching 90◦, we substitute equa-
tion A15 into equation A18 and linearize the result in
cos ξ to get

tanψ =
1

Q
− cos ξ . (A20)

It is clear that for large inhomogeneity angles and
strongly attenuative media, the angle ψ may not be neg-
ligible.

APPENDIX B: PERTURBATION ANALYSIS

Here, we derive analytic expressions for the real and
imaginary parts of the wave vector in arbitrarily
anisotropic, attenuative media using first-order pertur-
bation theory. A homogeneous, isotropic, attenuative
full space is taken as the background medium (Fig-
ure A1a). The inhomogeneity angle ξ between the real
(kR,0) and imaginary (kI,0) parts of the wave vector
in the background can be arbitrarily large. The back-
ground medium is perturbed to make it anisotropic in
terms of both velocity and attenuation (Figure A1b),
which results in perturbations of the real (∆kR) and
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imaginary (∆kI) parts of the wave vector. Because the
inhomogeneity angle ξ is a free parameter, we choose
not to perturb it when making the medium anisotropic.
This implies that the vectors kR and kR,0, as well as kI

and kI,0, are parallel.
We choose k0 such that kR,0 coincides with the

axis x3 and kI,0 lies in the [x1, x3]-plane (Figures A1a
and A1b). This approach differs from the one adopted
by Jech & Pšenč́ık (1989), Červený & Pšenč́ık (2008b),
and Vavryčuk (2008), who used a fixed reference frame.
To compute the perturbations for a different vector k

in the same medium, we rotate the coordinate frame
such that kR coincides with the axis x3 and kI lies in
the [x1, x3]-plane. This approach involves the rotation of
the density-normalized stiffness tensor aijkl but obviates
the need for introducing two additional angles needed
to define the orientations of kR and kI .

B1 Real and imaginary parts of the wave

vector

We start with the Christoffel equation in the perturbed
medium:

(Gik − δik) gk = 0 , (B1)

where Gik = aijkl pj pl is the Christoffel matrix, p is
the complex slowness vector, and g is the polarization
vector of the plane wave. Perturbation of equation B1
yields
`

G0
ik + ∆Gik − δik

´ `

g
0
k + ∆gk

´

= 0 , (B2)

which can be linearized to obtain
`

G0
ik − δik

´

∆gk + ∆Gik g
0
k = 0 , (B3)

where g0 is the plane-wave polarization in the back-
ground and ∆g is the perturbation of the polarization
vector. The polarization g0 defines whether the wave
mode is P, SV, or SH. The mode obtained by perturb-
ing the SV-wave will be denoted S1, and the perturbed
SH-wave will be denoted S2. Multiplying equation B3
with g

0
i (Jech & Pšenč́ık, 1989) reduces equation B3 to

∆Gik g
0
i g

0
k = 0 , (B4)

with

∆Gik = ∆aijkl p
0
j p

0
l + 2a0

ijkl ∆pj p
0
l , (B5)

where a0
ijkl and p0 are defined in the isotropic back-

ground, and ∆aijkl and ∆p are the perturbations. The
tensors a0

ijkl and ∆aijkl are given by

a0
ijkl = aR,0

ijkl + iaI,0
ijkl = aR,0

ijkl

 

1 +
i

Q0
ijkl

!

, (B6)

∆aijkl = ∆aR
ijkl + i∆aI

ijkl , (B7)

where the superscripts “R” and “I” denote the real and
imaginary parts, and Q0

ijkl is the ratio aR
ijkl/a

I
ijkl. The

background slowness p0 and its perturbation ∆p can be
expressed as

p
0 =

h

−ipI,0 sin ξ, 0, pR,0 − ipI,0 cos ξ
i

, (B8)

∆p =
h

−i∆pI sin ξ, 0, ∆pR − i∆pI cos ξ
i

, (B9)

where pR,0, pI,0 and ∆pR, ∆pI are the magnitudes of
the real and imaginary parts of p0 and ∆p, respectively.

Assuming (Q0 cos ξ) ≫ 1, we solve equation B4 for
∆kR = ω∆pR and ∆kI = ω∆pI :

∆kR

kR,0
= −χ

R

2
− χI

2Q0

„

1 − sec2 ξ

2

«

, (B10)

∆kI

kI,0
= −χ

R

2
+Q0χI , (B11)

where χR and χI are the real and imaginary parts of
χ = ∆aijklp

0
jp

0
l g

0
i g

0
k. The above analysis is valid for all

three modes (P-, S1-, and S2-waves). By choosing the
corresponding k0 and χ, we can compute the perturba-
tions of the complex wave vector for any of the three
modes. The term χ for P-, S1-, and S2-waves has the
form

χP =
1

V 2
P0

„

∆aR
33 +

∆aI
33

QP0
+

2∆aI
35

QP0
tan ξ

«

+ i
1

V 2
P0

„

−∆aR
33

QP0
+ ∆aI

33 −
2∆aR

35

QP0
tan ξ

«

,

(B12)

χS1
=

1

V 2
S0

„

∆aR
55 +

∆aI
55

QS0
+

∆aI
15 − ∆aI

35

QS0
tan ξ

«

+ i
1

V 2
S0

„

−∆aR
55

QS0
+ ∆aI

55 − ∆aR
15 − ∆aR

35

QS0
tan ξ

«

,

(B13)

and

χS2
=

1

V 2
S0

„

∆aR
44 +

∆aI
44

QS0
+

∆aI
46

QS0
tan ξ

«

+ i
1

V 2
S0

„

−∆aR
44

QS0
+ ∆aI

44 − ∆aR
46

QS0
tan ξ

«

; (B14)

QP0 and QS0 are the P- and S-wave quality factors in
the background medium. Substituting equations B12–
B14 into equations B10 and B11 and retaining only the
terms linear in ∆aij yields

∆kR
P

kR,0
P

≈− 1

V 2
P0

»

∆aR
33

2
+

∆aI
33

QP0

„

1 − sec2 ξ

4

«

+
∆aI

35

QP0
tan ξ

–

, (B15)
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∆kI
P

kI,0
P

≈ − 1

V 2
P0

„

3∆aR
33

2
−QP0∆a

I
33 + 2∆aR

35 tan ξ

«

,

(B16)

∆kR
S1

kR,0
S1

≈− 1

V 2
S0

»

∆aR
55

2
+

∆aI
55

QS0

„

1 − sec2 ξ

4

«

+
∆aI

15 − ∆aI
35

2QS0
tan ξ

–

, (B17)

∆kI
S1

kI,0
S1

≈− 1

V 2
S0

„

3∆aR
55

2
−QS0∆a

I
55

+(∆aR
15 − ∆aR

35) tan ξ
”

, (B18)

∆kR
S2

kR,0
S2

≈− 1

V 2
S0

»

∆aR
44

2
+

∆aI
44

QS0

„

1 − sec2 ξ

4

«

+
∆aI

46

2QS0
tan ξ

–

, (B19)

and

∆kI
S2

kI,0
S2

≈ − 1

V 2
S0

„

3∆aR
44

2
−QS0∆a

I
44 + ∆aR

46 tan ξ

«

.

(B20)

B2 Normalized phase attenuation coefficient

We linearize the normalized phase attenuation coeffi-
cient A for ξ = 0◦ by retaining only the first-order
terms:

A|
ξ=0◦ =

kI

kR

˛

˛

˛

˛

ξ=0◦
=

kI,0 + ∆kI

kR,0 + ∆kR

˛

˛

˛

˛

ξ=0◦
(B21)

=
1

2Q0

„

1 +
∆kI

kI,0
− ∆kR

kR,0

«

. (B22)

By substituting ∆kR and ∆kI from equations B15–
B20 into equation B22, we obtain A|

ξ=0◦ in arbitrarily
anisotropic media for all three modes:

A|
ξ=0◦,P

=
1

2QP0
− 1

2V 2
P0

„

∆aR
33

QP0
− ∆aI

33

«

, (B23)

A|
ξ=0◦,S1

=
1

2QS0
− 1

2V 2
S0

„

∆aR
55

QS0
− ∆aI

55

«

, (B24)

A|
ξ=0◦,S2

=
1

2QS0
− 1

2V 2
S0

„

∆aR
44

QS0
− ∆aI

44

«

. (B25)

B3 Normalized group attenuation coefficient

To obtain the normalized group attenuation from equa-
tion 32, we find the quantity tanψ cosφ = Vg1/Vg3 from
equation A16:

tanψP cosφP =
2∆aR

35

V 2
P0

, (B26)

tanψS1
cosφS1

=
∆aR

15 − ∆aR
35

V 2
S0

, (B27)

and

tanψS2
cosφS2

=
∆aR

46

V 2
S0

, (B28)

where only the leading-order terms are retained.
Next, we substitute ∆kR and ∆kI from equa-

tions B15–B20 and tanψ from equations B26–B28 into
equation 32 and retain only the terms linear in ∆aij :

Ag,P =
1

2QP0
− 1

2V 2
P0

„

∆aR
33

QP0
− ∆aI

33

«

, (B29)

Ag,S1
=

1

2QS0
− 1

2V 2
S0

„

∆aR
55

QS0
− ∆aI

55

«

, (B30)

and

Ag,S2
=

1

2QS0
− 1

2V 2
S0

„

∆aR
44

QS0
− ∆aI

44

«

. (B31)

APPENDIX C: SHEAR-WAVE PHASE AND

GROUP QUANTITIES IN TI MEDIA

Here, we present closed-form expressions for the shear-
wave parameters ∆kR, ∆kI , A, and Ag in TI media.
Note that all equations in Appendix A are derived for
the coordinate frame defined by the vectors kR and kI .
Therefore, in order to obtain ∆kR, ∆kI , A, and Ag as
a function of the phase angle θ (the angle between kR

and the x3-axis), one needs to rotate the tensor ∆aijkl

accordingly. Since kI is assumed to lie in the plane de-
fined by kR, ∆aijkl in Appendix A is rotated by the
phase angle θ around the x2-axis.

By linearizing the rotated tensor ∆aijkl in the
Thomsen velocity-anisotropy parameters ǫ, δ, and γ and
in the Thomsen-style attenuation-anisotropy parame-
ters ǫ

Q
, δ

Q
, and γ

Q
(Zhu & Tsvankin, 2006), we ob-

tain the real (kR) and imaginary (kI) parts of the wave
vector from equations B17–B20:

∆kR
SV

kR,0
SV

= −σ sin2 θ cos2 θ , (C1)
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∆kI
SV

kI,0
SV

= (ǫ
Q
− δ

Q
)
g2

g
Q

sin2 θ cos2 θ

+ σ
2 − 3g

Q

g
Q

sin2 θ cos2 θ

− σ sin 2θ cos 2θ tan ξ , (C2)

∆kR
SH

kR,0
SH

= −γ sin2 θ , (C3)

∆kI
SH

kI,0
SH

= γ
Q

sin2 θ − γ sin2 θ − γ sin 2θ tan ξ , (C4)

where g = VP0/VS0, the parameter σ = g2(ǫ − δ) con-
trols the SV-wave phase velocity, g

Q
= QP0/QS0, and

the parameters γ and γ
Q

are responsible for the SH-
wave velocity and attenuation anisotropy, respectively
(Zhu & Tsvankin, 2006).

The normalized SV- and SH-wave phase attenua-
tion coefficients for ξ = 0◦ can be found from equa-
tions B24 and B25:

A|ξ=0◦,SV =
1

2QS0

`

1 + σ
Q

sin2 θ cos2 θ
´

, (C5)

A|ξ=0◦,SH =
1

2QS0

`

1 + γ
Q

sin2 θ
´

, (C6)

where the parameter σ
Q

(Zhu & Tsvankin, 2006) con-
trols the SV-wave attenuation coefficient:

σ
Q

=
1

g
Q

ˆ

2σ(1 − g
Q

) + g2(ǫ
Q
− δ

Q
)
˜

. (C7)

To obtain the linearized shear-wave group angles
in TI media, we use equations B27 and B28 (see also
Tsvankin, 2005):

tanψSV cosφSV = σ sin 2θ cos 2θ (C8)

and

tanψSH cosφSH = γ sin 2θ . (C9)

Substituting the anisotropy parameters into equa-
tions B30 and B31 yields the following group attenua-
tion coefficients:

Ag,SV =
1

2QS0

`

1 + σ
Q

sin2 θ cos2 θ
´

, (C10)

Ag,SH =
1

2QS0

`

1 + γ
Q

sin2 θ
´

. (C11)

APPENDIX D: ATTENUATION FOR

LARGE INHOMOGENEITY ANGLES

Here, we develop closed-form expressions for the wave
vector k and group attenuation coefficient Ag for large

angles ξ. For simplicity, we analyze only S2-waves; ex-
pressions for P- and S1-waves can be derived using the
same procedure. The development follows the same ap-
proach as that described in Appendix B. The group
angle ψ0 in the background, however, does not van-
ish (equation 26), and the background vector k0 =
kR,0 − ikI,0 is given by equations 23 and 24. (Note
that for small and moderate angles ξ considered in Ap-
pendix B, the group angle ψ0 was zero.) For large ξ, the
real (kR,0) and imaginary (kI,0) parts of the background
wave vector are related by (equation 25)

kI,0

kR,0
= 1 −Q0 cos ξ , (D1)

and the group angle ψ0 is expressed as (equation 26)

tanψ0 =
1

Q0
− cos ξ , (D2)

where Q0 is the background quality factor. The per-
turbation produces a change in both the wave vector
(∆kR − i∆kI) and the group direction.

First, we obtain kR and kI by solving equation B4
and linearizing the result in ∆aij . Eliminating terms
quadratic or higher-order in Q0 cos ξ and those propor-
tional to ∆aijQ

0 cos ξ, as well as setting terms quadratic
in sin ξ to one, we find

kR
S2

kR,0
S2

=
kI

S2

kI,0
S2

= 1 − 1

2V 2
S0

„

∆aR
46 +

∆aI
46

QS0

«

tan ξ

+
1

4V 2
S0 cos ξ

„

∆aI
44 − ∆aR

44

QS0
− ∆aI

66 +
∆aR

66

QS0

«

.

(D3)

For the special case of TI media, the S2-mode becomes
the SH-wave, and equation D3 (after eliminating terms
proportional to γ/Q2

S0 and γ
Q
/Q2

S0) takes the form

kR
S2

kR,0
S2

=
kI

S2

kI,0
S2

≈ 1+
γ sin 2θ

2
tan ξ−

γ
Q

cos 2θ

4QS0

1

cos ξ
. (D4)

The product tanψ cosφ needed to find Ag can be
obtained from equation A16:

tanψ cosφ =
1

QS0
− cos ξ − 1

4V 2
S0

»

2∆aI
46

QS0
− 6∆aR

46

+

„

3∆aR
44

QS0
+

∆aR
66

QS0
+ ∆aI

44 − 5∆aI
66

«

sin ξ

–

.

(D5)

The group attenuation coefficient Ag is found by
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substituting equations D1–D5 into equation 31:

Ag =
1

QS0
− cos ξ

− 1

4V 2
S0

»

3∆aR
44

QS0
+

∆aR
66

QS0
+ ∆aI

44 − 5∆aI
66

+

„

2∆aI
46

QS0
− 6∆aR

46

«

sin ξ

–

; (D6)

equation D6 is linearized in ∆aij and (QS0 cos ξ), and
terms proportional to (∆aijQS0 cos ξ) have been elim-
inated. The range of ξ for which equation D6 is valid
is set by the assumption QS0 cos ξ ≪ 1 which ensures
that Ag is positive. For the special case of TI media, Ag

takes a simpler form after linearization in the anisotropy
parameters:

Ag =
1

QS0
− cos ξ − 3γ sin 2θ

2
sin ξ

+
2γ cos 2θ

QS0
+
γ

Q
cos 2θ

4QS0
+
γ

Q
cos2 θ

4QS0
. (D7)


