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Parametric  Analysis of Queuing Networks 

Abstract: We  consider a  queuing  network with M exponential service  stations  and with N customers.  We  study  the behavior of a 
subsystem u, which has a single node as input and a single node as  output, when the  subsystem  parameters  are varied. An “equivalent” 
network is constructed in which all queues  except  those in subsystem u are replaced by a single composite queue. We  show  that  for 
certain  classes of system  parameters,  the behavior of subsystem u in the equivalent  network is the  same  as in the given network.  The 
analogy to  Norton’s  theorem in electrical  circuit  theory is demonstrated.  In addition, the equivalent network analysis  can be applied 
to  open exponential  networks. 

Introduction 
Queuing  models are widely used to  analyze and design 
a  variety of systems. These models are generally  used to 
study the variation of certain system parameters  such  as 
response time as a  function of the network structure  and 
service  times. In this paper,  the  authors  determine a re- 
lationship that  exists  between some  queuing networks 
and electrical networks, with customers and  throughput 
(rate of flow of customers) being analogous to electrical 
charge  and electrical current, respectively. The  authors 
show how to directly  apply  some methods from  electrical 
circuit theory, in particular Norton’s  theorem [ 11, to 
queuing  networks. 

Consider  an electrical  circuit  consisting of batteries 
and resistors, Fig. 1 .  To study the behavior of a subsys- 
tem u between terminals 1 and 2 of Fig. 1 as  the sub- 
system parameters  are  varied,  construct  an “equivalent” 
circuit in which all the  components of the given circuit, 
except  those of subsystem u, are replaced by a single 
current  source and  a parallel internal resistance, Fig. 2. 
The value of the  current  source is set equal to  the  current 
flowing between terminals 1 and 2 when subsystem u 

Figure 1 Electrical network. 
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is replaced by a “short,” Fig. 3,  and  the value of the in- 
ternal  resistance is determined by the  open circuit voltage. 
The  behavior of subsystem u in the equivalent  circuit 
is the  same  as in the given circuit. This is referred to  as 
Norton’s theorem [ 11. The  analysis of the equivalent 
circuit  requires  less  computation  than  the analysis of the 
original circuit; sensitivity  analysis may hence be effi- 
ciently  carried out on the equivalent  circuit. 

Consider a  closed  queuing network with N customers. 
We study the  behavior of subsystem u between ter- 
minals 1 and 2, as  the  subsystem  parameters  are varied, 
Fig. 4. Construct  an equivalent  network in which all 
the  queues,  except  those in subsystem u, are replaced 
by a single composite queue, Fig. 5. Let T ( n )  be the 
service  rate  for  the composite queue when n is the num- 
ber of customers waiting for  or being served at this queue 
( n  = 0, 1; . ., N ) .  Set T ( n )  equal to  the  rate  at which cus- 
tomers pass (throughput) between  terminals 1 and 2, 
when there  are n customers in the given  network  and 
when subsystem u is replaced by a “short,” i.e., when 
the  service times of all the  servers in subsystem u are 
set  to  zero, Fig. 6. The  behavior of subsystem u in 
the equivalent  network is the same  as in the given  net- 
work. Although there  does not exist a strict  correspon- 
dence  to internal resistance in the queuing network,  the 
concept of flow rate and the shortening of the  subsystem 
suggests an  approach analogous to  Norton’s theorem in 
circuit theory.  Therefore, we shall refer to it as  Norton’s 
theorem for queuing  networks. 

In this paper  we show that  Norton’s theorem does 
hold for certain classes of queuing networks  that obey 
local balance [2, 31; however,  the theorem does not 
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Figure 2 Equivalent  electrical  network. 

Figure 4 Queuing  network. 

necessarily hold for  those  networks in which local bal- 
ance  does not hold. In particular, Norton's  theorem holds 
for  the exponential networks studied by Gordon  and 
Newell [4] and other locally balanced networks analyzed 
in [3]. Norton's theorem  can also be applied to  open net- 
works  that satisfy local balance. 

Example Consider  the  central-server model shown in 
Fig. 7 in which all service times are independent expo- 
nential  random  variables [5]. We  investigate the  CPU's 
throughput,  queue length and queue time  distributions 
as  the  CPU service  time is varied.  We determine the 
throughput  through the network when the  CPU service 
time is reduced to  zero, Fig. 8, and when there  are n cus- 
tomers in the  system, n = 0, 1; . ., N .  The throughputs as 
a  function of the level of multiprogramming are shown 
in the table in Fig. 8. The equivalent  network is shown 
in Fig. 9. The behavior of the CPU in the equivalent  net- 
work of Fig. 9 is the  same  as in Fig. 7. 

Joint  probability distribution 
We restrict  our  attention  to  the  class of closed  queuing 
models with exponential servers studied by Gordon  and 
Newell [ 41. Let  ,there be M queues in the  network, which 
are indexed 1, 2 , .  ' ., M ,  and N customers.  The  service 
rate  for  the ith queue  when  there  are k customers in the 
queue is Ui(k),  where i = 1; . ., M and k = 1; . ., N .  The 
service discipline for all servers is first come, first served. 
When  a customer  has been  served in queue i he  joins 
queue j with  probability p i j  independent of the  current 

r _""" 

Figure 3 Subsystem u shorted. 
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Figure 5 Equivalent  queuing  network. 

state of the  system  (i, j = 1 , .  . ., M )  . The  states of the  sys- 
tem are "tuples ( n l , .  . ., nM) , where ni is the number of 
customers in queue i including the  customer  that is being 
served  (i = 1 , .  . ., M) . Clearly n,, i = 1 , .  . ., M ,  are non- 
negative  integers and n ,  +.. .+ nM = N .  Let P ( n , , .  . ., nM) 
be the probability that  the system is in state (n1; . ., nMM) , 
which is assumed to be  a  feasible state.  Gordon and 
Newell [4] showed that P(n,, ..., n M )  may be ex- 
pressed by 

P(n, , . . . ,  n M )  = g ( n , ; . . ,  n , ) lG,  (1 )  

where 

'$1 

g ( n l ,  . . ., nM) = fl xi(ni) for any  feasible state, 
i = l  

= 0 otherwise, ( 2 )  

and G is a normalizing constant. 
The  quantities x i (  n i )  are defined recursively as follows: 

~ ~ ( 0 )  = 1, xi(k) = x i ( k  - 1) yi/  Ui(k), 

f o r k =  l ; . . ,  N ;  i =  l;", M ,  (3 )  

with yi ,  i = 1 , .  . ., M ,  being a solution of the following M 
linear equations: 
dl 

y i p i j = y j , j =  1 ,  2 ; . . ,  M .  
i = l  

(The  set of numbers yi is unique up to a normalizing con- 
stant [ 41 .) 37 
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Figure 6 Subsystem u shorted. 
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Figure 7 Central server model. 

We briefly review  some of the computational  tech- 
niques developed by Buzen [ 51. We define a "convolu- 
tion" between  two ( R  + 1)-dimensional vectors A = 
[ a ( O ) , a ( l ) ; . . , a ( R ) ]  a n d B = [ b ( O ) , b ( l ) ; . . , b ( R ) ] a s  
an ( R  + 1 )  dimensional vector C = [c(O),  c ( l ) ,  ..., 
c ( R ) ] ,  where c ( i )  = cy=, a ( j ) b ( i  - j )  and  denote  the 
operation by *. Thus C = A * B. Note  that  the  result of 
our convolution operation  consists of the first R + 1 ele- 
ments of the result of a  regular  convolution. Let us de- 
fine an ( N  + l)-dimensional  vector Xi = [x,(O), ..., 
x i ( N ) ] ,  where x i (  .) is defined in equation (3). We de- 
fine M + l vectors G,, G,, . . ., G, each of dimension 
N +  1 :  

G,= (1 ,  0,  O;.., 0 ) ;  ( 5 )  

G i = X 1 * X , * . . . * X i , f o r i = 1 ; . . , M ,  (6) 

where 

Gi = Gi-, * X i ,  for i = 1,. . ., M .  

Let G , ( r )  represent  the rth element of Gi, r = 0 ,  1; . ., N. 
From  the definition of convolution it follows that 

Gi(r)  = g(n,, . . ., ni, 0,. . ., 01, (8)  

w h e r e 9 = { ( n i + . . . + n i = r }  . 
w 

Therefore  the normalizing factor C in equation ( 1 )  is 
equal to G,( N )  . 38 
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Marginal probability distribution 
Let P,(n) be the marginal probability that  there  are n 
customers in queue i .  Let us restrict our attention  to 
queue M .  Note  that 

p ( n l , .  "3 HM-1' n) = . ., n"1' 0 )  x&) /G .  ( 9 )  

Summing over all the  states in which there  are n custom- 
ers in queue M we get 

P,( n) = x,( n) G,-l ( N  - n) / G for n = 0, 1,. . ., N. 
(10) 

The marginal probability for  any given queue  can  be ob- 
tained by renumbering the  queues so that  the given queue 
is indexed M .  

Throughput 
Let Fi be  the  throughput of queue i ,  i.e.; the  rate  at which 
customers get  serviced  and leave  the  queue: 

Y 

y M =  p,(n) u,+f(n)' ( 1 1 )  
n = l  

From equation (3) 

x,(n) U,(n)=x,(n- 1 )  y,, ~ t =  l ; . . ,  N. (12 )  

From  equations ( IO) ,  (1  1 )  and (12) 

Y,=Y,  1 xM(n- 1 )  G , - , ( N - n ) / G  
N 

n = l  

= y M  C,(N - l ) / G .  (13) 

Queue length  distribution at arrival 
Let Q i ( n )  be the probability that  an arriving customer 
at  queue i finds himself in the nth  place in the  queue. We 
now compute Q,(n) for n = 1 , .  . ., N as follows: Let  the 
states Si and S be represented by the tuples (n,; . ., ni + 1 ,  

rate  at which the  system  transits from state Si to  state 
S when  a customer  arrives  at  queue M after being served 
by the i server is 

. . .  , n.w - 1) and (n1; . ., ni; . ., nM) , respectively. The  net 

f v , )  U i ( q  + 1 )  PiM 

- - ~ i ~ i ~ g ( n ~ , . ' . ,  nM-,, nM- 1 ) / C .   ( 1 4 )  

Hence  the  net  rate  at which the  system  transits  into  state 
S = ( n,; . ., n,) due  to a customer's arrival at  queue M is 

r , (S)  = P ( S i )  Ui(ni + 1 )  piM 
M 

i = l  

= (i Yi  Pi, &J(n,,. . ., n"13 nzy - 1 ) /  G 

- - y ~ g ( n 1 7 " ' ,  n,-19 I)/'. (15)  

Note:  For simplicity, p M M  is assumed  to be zero; how- 
ever,  the  same method  can  be  applied to  thegeneral  cases 
where pMM # 0. 
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During  a long time  interval T ,  the number of transitions Levels ofmultiprogramming, n = I ,2,3 

into state S due  to a customer's arrival at  queue M is 
approximately  equal to r , (S )  multiplied by T .  Hence, 
considering all the  arrivals of customers  at  queue M ,  the 
probability p that such  an arrival causes a transition into 
state S is 

p = r , ( S ) T / Z r , ( S ) T =   r , ( S ) / z r , ( S ) ,  (16) 

where  the summation is over all the  states, and therefore 
p i s  proportional to r , ( S ) .  

Let r , (n )  be the total  net rate  at which the  number of 
customers in queue M is increased  from n - 1 to n. Figure 8 Central  server model (CPU shorted). 

Let us define JV = { n ,  f.. + n,-, = N - n} .  Then it 
follows that from Eq. ( 1 5 )  that 

r , ( n ) = C g ( n ,  ,..., n , - , , n - - l ) y , / G  
I '  

= [ y , x , ( n -  1 ) / G l  g(n,, . . . ,  n",' 0)  
; 
1 =[y,x,(n- 1 ) / G l  G,- , (N-n)  

, t' 

for n =  l ; . . ,  N.   (17 )  

Since Q,(n) is directly  proportional to r , ( n ) ,  it follows 
that Q,( n )  is directly  proportional to x, ( n  - 1 ) GM-l ( N  - 
n )  for n = 1 ; .  ., N .  By setting Q,( 1 )  +. . .+ Q,(N) = 1 ,  
we obtain Q,(n). 

Norton's theorem for queuing  networks 

Closed  networks 
Consider  the closed  network of M queues of the last 

I queue M as a  function of the service rate parameter.  We 
construct  an equivalent network consisting of queue M 
and  a  composite queue with  service rate T ( n ) ;  n is the 
number of customers in the composite queue, n = 0, 1 ,  
. . ., N .  Set T ( n )  equal to  the throughput of queue M when 
there  are n customers in the given network and the ser- 
vice  time for  queue M is reduced to  zero.  Let P L ( n )  be 

I section.  We determine  the  queue length distribution for 

~ 

4 

I - 1 

Service rate = 1 > 1  
Figure 9 Central  server model (equivalent network), 

for a  detailed  derivation of the  above  see [ 4 ] .  When the 
mean service  time of queue M is reduced to  zero  we  have 
x,(n) = 1 for n = 0 and x,(n) = 0 for n # 0; in this case 
we get 

T ( N )  = Y ,  G,-,(N - 1 ) / G M - l ( N ) .  ( 1 9 )  

Similarly, 

T ( n )  = Y ,  G,_ , (n -  l ) / G M - l ( n ) j  n =  I , . . . ,  N .  (20) 

Substituting (20) in ( 1 8 )  we find that P k ( n )  is directly 
proportional to 

the marginal probability of the queue length of M in the 
equivalent  network. x,(n) G,_,(N - n )  for n = 0, 1 ;  . ., N .  

Theorem I The  queue length distribution for  queue M i 
in the equivalent network is the same as in the given  net- Hence, ~ 

work. In  other  words, 

P $ ( n )  = P,(n)  for n = 0, l ; . . ,  N .  i 

Proof From Eqs. ( 1 ) , ( 2 )  and (3)  it follows that  the But from ( I O ) ,  
probability P L ( n )  of N - n customers in the composite 
queue  and n customers in queue M in the equivalent  net- P,(n)  0~ x,(n) G M - l ( N  - n )  for n = 0, 1; . ., N .  (23 ) 

i 

work is directly  proportional to I 
Hence, 

i 

fi l/U,(J 5 l / T ( k ) ;   ( 1 8 )  ~ 

( 2 1 )  ~ 

(Y,)" G"l (0) 
I 

PL(n) a x,(n) G,-,(N - n )  for n = 0, l ; . . ,  N .  (22) ~ 

~ 

i 

j = 1  k= 1 P k ( n )  = P,(n) for n = 0;. ., N.  (24) 39 I 
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work such  that all customers  enter  subsystem u at 
point 1 and leave subsystem u at point 2. Construct 
an equivalent open network which consists of a com- 
posite  Poisson source and subsystem u, Fig. 1 1. Let 
T be the  rate  at which customers  are  generated by the 
composite  Poisson source; T is  set equal to  the through- 
put of subsystem u in the given network when the 
service times of all queues in the  subsystem  are reduced 
to  zero.  The  queue length  distributions for all queues in 
subsystem u in the equivalent  network are  the same 
as in the given network.  This is stated without proof 
since  the  arguments are very similar to  those invoked in 
the  case of closed  networks. 

Sink 

Figure 10 Open  queuing  network. 

Theorem 2 The  queue length  distribution at arrival for 
queue M in the equivalent  network is the  same as in the 
given network: 

Proof Following the  same  argument  as  that  for  Theorem 
1 ,  we observe  that Q,(n) is directly  proportional to 
x,(n - 1 )  G,+- , (N  - m ) .  

Corollary The  queue time  distribution of arrival for  queue 
M in the equivalent network is the  same  as in the given 
network. 

Discussion Consider a  closed  exponential  queuing 
network with M queues indexed 1 ,  2,.  . ., M and N cus- 
tomers. Consider  an equivalent  closed  network  consist- 
ing of some queue i ,  1 5 i 5 M ,  and a composite  queue. 
The service rate T ( n )  for  the  composite  queue, when 
there  are n customers in it, is set equal to  the throughput 
of queue i in the original network  when  there are n cus- 
tomers in it and when the mean  service  time of queue i 
is reduced to  zero.  The  queuf length and  queue time dis- 
tributions of queue i in the equivalent  network are  the 
same  as in the given network. This follows  from Theo- 
rems 1 and 2  and the Corollary by renumbering the 
queues so that  queue i is renumbered M .  

From  the  above discussion we can  conclude  that Nor- 
ton’s  theorem  holds for closed networks when the sub- 
system CT is a single queue.  The proof for the  general 
case follows the  same line and is omitted. 

Open networks 
Consider  an  open queuing  network  consisting of servers 
with exponential service times  and  Poisson  arrivals (Fig. 
10) for which equilibrium conditions exist,  Let  subsys- 
tem u consist of one  or  more  queues of the given  net- 40 
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Networks which satisfy local balance 
We extend the results of the previous  section to a  class 
of networks which satisfy local balance [2, 31. We  re- 
strict  our  attention  to this  class of networks  because they 
form  a  natural extension,  for investigation, to  networks 
studied by Gordon and Newel1 [ 41. 

In  the following we discuss  the general  queuing  net- 
works in which customers from  more  than one  class  are 
being served. In  order  to be specific about  the  class of 
customers being served we have  to  introduce  the term 
stage of service. Stage of service is defined as  the 
ordered-pair server-class. Stage (i, j )  implies that  server 
i is serving customers of class j .  

From  Markov  process analysis we know that  the num- 
ber of states  and  the complexity of the balance equations 
increase rapidly with the complexity of the queuing  net- 
works.  In  the analysis of networks which satisfy local 
balance,  the problem  can  be  partitioned into  stages  and 
the computation is greatly simplified [ 2,3]. 

Basically, networks  are said to satisfy local balance if 
the  rate of flow into a state  caused by customers entering 
a  stage of service is equal  to  the  rate of flow out of this 
state  caused by customers leaving this stage of service. 

Many networks fall into  this  category. Chandy  et al. 
[3]  show  that  for  networks which satisfy local balance,  the 
steady  state probability  has the product form of Eq.  (27). 
Consider a  closed  queuing  network with M queues in- 
dexed 1 ,  . . ., M .  Let  there be V classes of customers in- 
dexed 1 ,  . . ., u, . . ., V .  Let N (  u)  be the total number of 
customers of class u. 

Let p i j ( u )  be the probability that a customer of class 
u joins  queue j after being served by server i. Let y i (  u)  , 
i =  l;..,Mandu=l;..,L’,beasetofnumberssuchthat 

Let  the  event  that  there  are n,(u)  customers of class u 
in queue i be represented by the matrix { n i v } ,  i =  1; . ., M 
and u = 1, . . ., V .  We say  that { niv} is a  feasible state if 
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ni (u)  1 0 i = I ; . . , M a n d u = l ; . . , V ,  

and 
M E n i ( u )  = N ( u )  for u =  I , . . . ,  V .  
i= l  

Equivalent Poisson source 

If {n , , }  is feasible, the probability of the  event {n iu}  has 
the  product form 

P[{n,,}l = " n x i [ n i ( l ) , . . . , n i ( V ) 1 '  (27) l M  
G i-1 

wherexi[.] isafunctionofni(l);..,ni(V) fo r i= l ; . . ,M 
and G is a normalizing constant.  In analogy to  the pre- 
vious section, we define a real function g over  the matrix 
{ niU} where 

M 

g[{n,,}l = n  x,[n,(l),. .;   ni(V)l.  (28) 
i = l  

In a manner similar to  the single class problem, we 
define Fi as an  array of dimension V and with respective 
lengths of components 1 + N (  1) , 1 + N (  2) ; . ., 1 + N (  V ) .  
In  other  words,  for  the  component u, the  index ranges 
from 0 to N ( u )  . The  elements of the  array  are, respective- 

Consider two arrays d and 9, both of dimension V 
and of the  same  component lengths as shown above. 
Again as in the  case of a single class problem, we define 
the convolution of d and 9 as  an  array %? with the  same 
dimension and  structure  as d or !A?. The  elements of V 
are  as follows: 

ly, x , [ n ( l ) ,  n ( 2 ) , . . . n ( V ) I .  

c [ n ( l ) ,  n (2) ; . .n (V) l  
n(v) n(2) n ( l )  

= . . .  . "  E a[ rn( l ) , rn(2) ; . . rn(V)]  

X b [ n ( l )  -rn(l),n(2)  --rn(2);.. ,n(V) - r n ( V ) ] .  

rn(V)=O rn(2)=0 r n ( l ) = O  

(29) 

We represent  the convolution as 

%?=d*%. (30) 

Define M arrays Yi, i = 1 , .  . ., M ,  where 

Y i = z l ' . . . * R '  i = l ,  . . .  
i' , M .  (3 1) 

Note that 

Y i = ~ i _ l * ~ i f o r i = l , . . . , M ,  (32) 

where q0 is an  array containing all zero  elements  except 
for go( 0 , .  . ., 0) = 1. 

Recall that {n iu}  is a  matrix.  Analagous to  the  expres- 
sion for  the single class problem as shown in Eq. ( 8 ) ,  we 
derive  the  expression  as  Gj[r( 1) ; . . r(   V)],  where 

Gj[r(l)>"(V)l =x d{n,,11, ( 3 3 )  
3" 

I 
I 
I 
I 
I 
I 
I 

Sink 

Subsystem 
a 

Figure 11 Equivalent open queuing  network. 

where 

The  set { r( I ) ,  . . ., r(  V )  } includes those  states { niu} 
which satisfy the defining relation similar to  Eq.  (8) for 
every  component u ;  i.e., 

j E n i ( u )  = r(u)  and ni (u)  = 0 for i > j  

for u = 1;.. V .  
i= l  

Let P i [  n (  1) , . . ., n (  V )  ] be the marginal probability 
that  there  are n ( u )  customers of class u in queue  i, u = 1, 
. . ., V .  Using the  same  arguments  as in the previous  sec- 
tions we get 

P M [ n ( l ) , " . $  n(v) l  = x ~ [ n ( ~ ) , " ' ,  n(V)l 

x G",[N(l) - n ( l ) ; . . . . .  > N ( V )  - n ( V ) I / G .  

(34) 

Let T M ( u )  be the throughput of customers of class u of 
queue  M. By arguments similar to  that of the previous 
section we obtain 

Y M = y y ( u )  G,[N(I);.., N ( u -  I ) ,  N ( u )  - 1, N ( u  

N ( u +  I ) ; . . ,  N ( V ) l / G .  (35) 

It can  be shown  that  Norton's theorem  holds for the 
class of networks which  satisfy local balance, using an 
approach identical to  that of the previous  section. The 
statement of Norton's  theorem  for this class of networks 41 
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is as follows: For a  closed system  the  service  rate  for 
customers of type s in the  composite  queue, when there 
are n(u)  customers in the composite queue, is set equal 
to  the throughput of customers of class s through the 
short when there  are n( u )  customers of class u in the 
shorted  network, u = 1 ,  . . ., V ,  for any s in { 1 , .  . ., V } .  
In an  open  network, all the  queues in the  system, ex- 

cept in the  subsystem  under consideration, are replaced 
by  a single composite  Poisson source which generates 
customers of all classes,  where  each  class is generated 
independently. The  rate  at which the composite source 
generates  customers of class u is set  equal  to  the through- 
put of customers of class u through the  short of the sub- 
system under consideration. 

References 
1. C. E. Smith, Communication Circuit Fundamentals, 

McGraw-Hill Book Co., Inc.,  New York 1949. 
2. K. M.  Chandy,  “The Analysis  and  Solutions for  General 

Queueing  Networks,” Proceedings of Sixth Annual Prince- 
ton  Conference on Information  Sciences and Systems, 
Princeton  University,  Princeton, NJ 1972. 

3.  F. Baskett, K. M. Chandy, R. R. Muntz,  and F. Palacios- 
Gomez,  “Open, Closed  and  Mixed Networks of Queues 
with Different Classes of Customers,”  to  be published in 
J .  ACM. 

4. W. J. Gordon  and G. F. Newell, “Closed Queueing  Systems 
with  Exponential Servers,” Oper.  Res. 15, 254 (1967). 

5 .  J.  Buzen,  “Queueing Network Models of Multiprogram- 
ming,” Ph.D.  Thesis,  Harvard  University, Cambridge, 
MA 1971. 

i 

Conclusion 
We have  shown  that a  theorem  analogous to  Norton’s 
theorem  from  the  theory of electrical networks  holds 
for a class of queuing networks which satisfy  local bal- 
ance.  In certain design problems where a subsystem can 
be selected for  parametric analysis,  Norton’s theorem can 
be  applied in order  to simplify the  amount of computation. 
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