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Abstract. We present in this study a novel approach to predicting EEG epileptic seizures: we accurately model
and predict non-ictal cortical activity and use prediction errors as parameters that significantly distinguish ictal
from non-ictal activity. We suppress seizure-related activity by modeling EEG signal acquisition as a cocktail party
problem and obtaining seizure-related activity using Independent Component Analysis. Following recent studies
intricately linking seizure to increased, widespread synchrony, we construct dynamic EEG synchronization graphs
in which the electrodes are represented as nodes and the pair-wise correspondences between them are represented
by edges. We extract 38 intuitive features from the synchronization graph as well as the original signal. From
this, we use a rigorous method of feature selection to determine minimally redundant features that can describe
the non-ictal EEG signal maximally. We learn a one-step forecast operator restricted to just these features, using
autoregression (AR(1)). We improve this in a novel way by cross-learning common knowledge across patients and
recordings using Transfer Learning, and devise a novel transformation to increase the efficiency of transfer learning.
We declare imminent seizure based on detecting outliers in our prediction errors using a simple and intuitive method.
Our median seizure detection time is 11.04 minutes prior to the labeled start of the seizure compared to a benchmark
of 1.25 minutes prior, based on previous work on the topic. To the authors’ best knowledge this is the first attempt to
model seizure prediction in this manner, employing efficient seizure suppression, the use of synchronization graphs
and transfer learning, among other novel applications.

1 Introduction

Epilepsy is one of the most common disorders of the central nervous system characterized by recurring seizures. An
epileptic seizure is described by abnormally excessive or synchronous neuronal activity in the brain [24]. Epilepsy
patients show no pathological signs of the disease during inter-seizure periods, however, the uncertainty with regards
to the onset of the next seizure deeply affects the lives of the patients.

Seizure prediction refers to predicting the onset of epileptic seizures by analyzing electroencephalographic (EEG)
recordings without any apriori knowledge of the exact temporal location of the seizure [22]. A method with the capacity
to successfully predict the occurrence of an epileptic seizure would make it possible for the patient to be administered
therapeutic treatments thereby alleviating the pain [21]. Many approaches have been suggested as possible seizure
prediction algorithms, with modest levels of success. The first attempt at a seizure prediction algorithm was made by
Viglione and Walsh in 1975 [71] and investigated spectral components and properties of EEG data. This was followed
in the 80s decade by different groups attempting to apply linear approaches, in particular autoregressive modeling,
to seizure prediction [59,60,62]. Moving forward 20 years, Mormann et al. posed the question whether characteristic
features can be extracted from the continuous EEG signal that are predictive of an impending seizure [48]. In 2002, the
First International Workshop on Seizure Prediction [41] was conducted to bring together experts from a wide range of
background with the common goal of improving the understanding of seizures, and thus advancing the current state of
seizure prediction algorithms on a joint data set [41].

Most general approaches to the seizure prediction problem share several common steps including (i) processing
of multichannel EEG signals, (ii) discretization of the time series into fixed-size overlapping windows called epochs,
(iii) extraction of frequency bands to analyze the signal in frequency and/or time domains using techniques such as
wavelength transformation [1], (iv) extraction of linear and non-linear features from the signal or its transformations;
these features can be univariate, computed on each EEG channel separately, or multivariate, computed between two



or more EEG channels, and (v) learning a model of the seizure statistics given the features by using supervised ma-
chine learning techniques such as Artificial Neural Networks [26,34,64,69,70], or Support Vector Machines [10,11].
A thorough survey of the various linear and non-linear features can be found in [23,25,57]. These features are usually
calculated over epochs of predetermined time duration (around 20 seconds) via a moving window analysis. It has been
found that univariate features, such as Lyapunov exponents, correlation dimension, and Hjorth parameters, calculated
from the EEG recordings performed poorly as compared to bivariate and multivariate features [16,22,27,29,31,39,50].
This is understandable given that the seizure spreads to all the electrodes, whereas not all electrical activity in the brain
may result in the onset of a seizure - it might be a localized discharge at a certain electrode. Although it has been
shown that univariate features are less significant for seizure prediction, the importance of non-linear features over lin-
ear features is not quite as straightforward. It has recently been observed that non-linear techniques might not enhance
the performance of the seizure prediction algorithm considerably over linear techniques, and also have considerable
limitations with respect to computational complexity and description of epileptic events [14,15,43,49,51].

A phase-locking bivariate measure, which captures brainwave synchronization patterns, has been shown to be im-
portant in differentiating interictal from pre-ictal states [37,38]. In particular, it is suggested that the interictal period
is characterized by moderate synchronization at large frequency bands while the pre-ictal period is marked by a de-
crease in the beta range synchronization between the epileptic focus and other brain areas, followed by a subsequent
hypersynchronization at the time of the onset of the ictal period [47].

Many different approaches have been applied towards determining these features, such as frequency domain
tools [8,53], wavelets [28,52], Markov processes [45], autoregressive models [3,11,68], and artificial neural net-
works [44]. If it were possible to reliably predict seizure occurrence then preventive clinical strategies would be
replaced by patient specific proactive therapy such as resetting the brain by electrical or other methods of stimulation.
While clinical studies show early indicators for a pre-seizure state including increased cerebral blood flow, heart rate
change, the research in seizure prediction is still not reliable for clinical use.

Recently there has been an increased focus in analyzing multivariate complex systems such as EEG recordings
using concepts from network theory [4,7,18,42,54,67], describing the topology of the multivariate time-series through
interaction networks. The interaction networks enable characterization of the pair-wise correlations between elec-
trodes using graph theoretical features over time [9,66]. In the spatio-temporal interaction networks, nodes (vertices)
represent the EEG channels and the edges (links) represent the level of neuronal synchronization between the different
regions of the brain. This approach has been exploited in the analysis of various neuropsychiatric diseases including
schizophrenia, autism, dementia, and epilepsy [36,66,73]. Within epilepsy research, evolution of certain graph features
over time revealed better understanding of the interactions of the brain regions and the seizures. For instance, Schindler
et al. analyzed the change in path lengths and clustering coefficients to highlight the evolution of seizures on epileptic
patients [61], Kramer et al. considered the evolution of local graph features including betweenness centrality to explain
the coupling of brain signals at seizure onset [35], and Douw et al. recently showed epilepsy in glioma patients was
attributed to the theta band activity in the brain [20]. In [46] authors independently suggest a similar approach that
combines tensor decompositions with graph theory. Even with this significant body of research what remained unclear
was whether the network-related-approach can adequately identify the inter-ictal to pre-ictal transition [36]. In this
paper, we continue studying a form of interaction networks dubbed synchronization graphs [19] and introduce new
features as the early indicators of a seizure onset, thereby identifying the inter-ictal to pre-ictal transition.

Summarily, the current approaches aim to develop features that are naturally characteristic of seizure activity.
While these approaches are both intuitive and instructive, ictal activity is often a small portion of the available data, and
statistical learning techniques, which require a large corpus of data for reliable prediction, can be expected to perform
poorly as seizure-predictors. However, these techniques seem promising for accurate prediction of non-ictal activity
with respect to which ictal activity may be identified as an anomaly. Provided that the only anomalous activity in the
data is the seizure, or that other anomalies present with discernible signatures, this provides an equivalent method of
predicting seizure. In general we operate under the paradigm that any feature or parameter that distinguishes between
ictal and non-ictal activity is a mathematical characteristic of seizure, although it may not be a natural physiological
indicator. We rigorously define the notion of what it means to be a good mathematical characteristic of a seizure, rate
our seizure-discriminating parameter accordingly, systematically increase how well it discriminates between ictal and
non-ictal activity, and qualify our predictions using such a discriminating parameter.
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Furthermore, since cortical activity is continuously recorded as EEG signals, it can be represented as a time-series,
and analyzed using time-series forecasting methods. The objective of time-series forecasting is to use equally spaced
past and current observations to accurately predict future values. Autoregressive models (AR) are commonly used
tools for time-series prediction, and have been used to capture the spatio-temporal properties of EEG signals [3,68].
We further improve on the AR model by using Transfer Learning [56] to learn the best forecast operator for a particular
EEG recording from other EEG recordings. Transfer learning is a general form of learning such that there need not
be any similarity in the distributions of the training and testing data. In our context, transfer learning does not require
the past values and future values of the output variable to be correlated. In addition, transfer learning is particularly
useful when data is only partially available or corrupted by noise, where such data can be effectively supplemented by
clean data from a different experiment. We further improve on the transfer learning by modifying the transfer set into
the most similar form to the dataset being investigated by means of a simple transformation (based on the Procrustes
problem [72]).

The three main contributions of this work are as follows: (i) Formulating seizure prediction as a problem of
anomaly detection and developing a discriminating parameter for the anomaly (ii) bridging the two concepts of AR
modeling and interaction graphs by constructing an AR(1) model on the features extracted from the time-evolving
EEG synchronization graphs (as well as other features obtained from the EEG signal itself), and (iii) introducing the
concepts of transfer and transformation learning to improve the predictions of the AR(1) model.

The organization of the paper is as follows: in Section 2, we describe our methodology starting with the epilep-
tic EEG dataset, initial noise removal, and procedure to construct EEG synchronization graphs and extract features
from the graph. We then detail the working of a feature selection method based on quadratic programming, build
autoregressive models on the selected features, and transfer and transformation learn on these features. Finally, we
use an alarm-based detection system to signal the seizure. In Section 3 we present and discuss the results for seizure
prediction, and comparison to a benchmark. We provide an overview and outline possible extensions to this study, in
Section 4.

2 Methodology

Our seizure-prediction paradigm is centered around discriminating between seizure and non-seizure activity. So we
attempt to learn from normal activity maximally and from seizure activity minimally. We then interpret consistent and
clear deviations from our understanding of normal activity as seizure. To this end: we initially suppress seizure activity;
develop synchronization graphs to describe the seizure-suppressed cortical activity well; select maximally descriptive,
minimally redundant features; cross-learn common attributes of seizure-suppressed activites across patients; and mea-
sure how well we predict on data from which the seizure has not been suppressed. Conditioned on this sequence of
operations performing well, we reason that any prediction error on the data where the seizure has not been suppressed
is due to seizure-related activity. We develop a simple way to determine when such seizure-related activity is reliable
enough to declare an imminent seizure, and use it to make such a declaration. The following sections describe the steps
involved from taking the EEG signal as input to predicting the seizure. The steps are illustrated in the block diagram
shown in Fig. 1.

2.1 Epileptic EEG Data Set

Our dataset consists of scalp EEG recordings of 41 seizures from 14 patients. All the patients were evaluated with
scalp video-EEG monitoring in the international 10-20 system (as described in [30]), magnetic resonance imaging
(MRI), fMRI for language localization, and position emission tomography (PET). All the patients had Hippocampal
Sclerosis (HS) except one patient (Patient-1) who suffered from Cortical Dysplasia (CD). After selective amygdalo-
hippocampectomy, all the patients were seizure free. The patient information is provided in Table 1. For 4 patients, the
seizure would onset from the right, whereas for 10 patients the seizure would onset from the left.

The recordings include sufficient pre-ictal and post-ictal periods for the analysis. Two of the electrodes (A1 and
A2) were unused and Cz electrode was used for referential montage that yielded 18-channel EEG recordings. A team
of doctors diagnosed the initiation and the termination of each seizure and reported these periods as the ground truth
for our analysis. An example of such a recording can be found in Fig. 2 in [63]. Seizures were 77.12 seconds long on

3



Independent 
Component 

Analysis

EEG Signal
(Training Set)

Synchronization 
Graphs

Feature
Extraction

Autoregressive 
Model: AR(1)

Quad Prog 
Feature Selection

Best features for 
normal signal

Transfer 
Learning

Transformation 
Learning

EEG Signal
(Testing Set)

Seizure 
Prediction

EEG Signal
(Training Set)EEG Signal

(Testing Set)

Thursday, January 8, 2015

Fig. 1. Block diagram representing the entire sequence of steps involved in the methodology. We apply Independent Component
Analysis (ICA) for artifact removal and noise reduction, which allows us to learn non-ictal activity. This step is carried out only on
the training set of EEG recordings, and the testing set of EEG recordings is kept separate. Synchronization graphs are constructed
by using Phase Lag Index as explained in Section 2.3. These graphs are constructed for both the training and testing sets. Based
on the features extracted from the synchronization graphs and the signal itself, an autoregressive model is built 2.6, and this model
allows us to identify predictive importance of features that are determined via a Quadratic Programming Feature Selection (QPFS)
technique 2.5. The feature selection technique is applied only on the training set. The important features are then used for transfer
and transformation learning 2.7 which improves the performance of seizure prediction 2.8.

average and their standard deviation was 48.94 seconds. The high standard deviation of the data is an indication of the
vast variability in the data which makes the task of seizure prediction complicated.

Table 1. Patient Types. Almost all the patients (except one) exhibited hippocampal sclerosis (HS). There are two types of lateral-
izations in HS: left (L) and right (R). One patient (Patient-1) exhibited cortical dysplasia (CD).

Patient Pathology Lateralization Number of Recordings Length of Individual Recordings (in minutes)

Patient-1 CD R 2 30
Patient-2 HS R 2 30
Patient-3 HS R 3 60
Patient-4 HS R 5 60
Patient-5 HS L 1 60
Patient-6 HS L 1 30
Patient-7 HS L 2 60
Patient-8 HS L 2 60
Patient-9 HS L 3 60
Patient-10 HS L 3 30
Patient-11 HS L 2 60
Patient-12 HS L 5 41
Patient-13 HS L 5 35
Patient-14 HS L 5 35

2.2 Seizure Suppression

In order to suppress seizure-activity, we resort to modeling EEG signal acquisition as follows. We assume that: (1)
seizure activity is statistically independent of normal activity and (2) there may be numerous statistically independent
cortical activities, both seizure related and otherwise, that combine to provide the signal captured by a single electrode
(3) the seizure activity is non-gaussian. Based on these two assumptions, we look to locate and discard the seizure-
related activity, thereby suppressing the seizure. Under the assumptions stated above, the problem of extracting seizure-
related activity is mathematically equivalent to the cocktail party problem exemplifying blind source separation, which
is solved by the state of the art technique of Independent Component Analysis [12,13,33], which has thus far been used
mainly to remove artifacts from EEG data [17,32,40]. Here we use ICA to locate seizure-related activity and remove
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it in a manner similar to artifact-removal. Formally, given that X ∈ Rn,d is a linear mixture of k d-dimensional
independent components contained in S ∈ Rk,d, we may write

X = AS,

where A ∈ Rn×k is the mixing matrix and S ∈ Rk. In general, both A and S are unknown and we compute the
independent components, with respect to an independence maximization measure, as S = WX, where W is the
inverse of the mixing matrix.
Once A is computed, we discard seizure related activity by zeroing the columns having the lowest euclidean norms.
We reason this as follows: since much of the data is normal function, the independent components corresponding to
seizure-related activity do not contribute to most of the data; their contribution is concentrated in time (correspond-
ing to concentration in row-indices of A). Due to the inherent scaling-degeneracy in the problem of blind source
separation, we obtain an A having unit row-norms. This leads to the coefficients corresponding to seizure-related in-
dependent components to be tightly controlled, resulting in columns corresponding to the seizure-related independent
components being of low euclidean norm. We heuristically zero the lowest two columns of A to form Ao and declare

Xo = AoS

to be the seizure-suppressed EEG data. It is important to note that the seizure is not completely suppressed, but the
independent components retrieved allow us to model the non-ictal activity more precisely.

2.3 Construction of EEG Synchronization Graphs

For the signal fX[i,m], we construct epochs of equal lengths with an overlap of 20% between the preceding and
following epochs. The number of epochs, n, is equal to 1.25M/L, where L is the duration of the epoch in same time
units. Since the EEG recordings contain both temporal and spatial information, we construct time-evolving EEG Syn-
chronization Graphs on the EEG datasets. A synchronization graph is constructed for each epoch, giving an indication
of the spatio-temporal correspondence between electrodes - these relationships can then be utilized to obtain changes
in the network by identifying descriptive features. The nodes represent the EEG electrodes and the edges represent a
closeness relationship between the nodes in a given epoch. We use an epoch length of 5 seconds.

A sample time-evolving graph on an EEG recording is shown in Fig. 2. The pair-wise relationships between the
electrodes during an epoch are used to construct the graph edges. If the pair-wise distance between two nodes i and k,
where i, k ∈ {1, . . . , 18}, and i 6= k, for epoch t, given as dni,k, is less than a specified threshold, τ , then an edge is
inserted into the graph between the two nodes. Note that smaller threshold values seek higher correlation between the
electrodes, thereby yielding sparser graphs. Similarly, higher threshold values would establish an edge even if there
is small correlation between the data, thereby yielding denser graphs. For our analysis, we performed a parametric
search and found the best value of τ to be 1.

Several synchronization measures have been proposed as plausible options for dni,k to set up the edges in the graph.
Based on earlier results presented in [19], we chose Phase Lag Index (PLI) [65] for dni,k. PLI is defined as follows:

PLIi,k(n) =
1

Lfs

∣∣∣∣∣
Lfs∑
m=1

sgn (φn
i (m)− φn

k (m))

∣∣∣∣∣ (1)

where φn
i = arctan(

f̂x
n
i

fxn
i

) is the angle of the Hilbert transform f̂x
n

i of the signal fxni .

2.4 Feature Extraction from EEG Synchronization Graphs

We extract 26 features from the EEG synchronization graph for each epoch. These features quantify the compactness,
clusteredness, and uniformity of the graph. Apart from these graph-based features, we compute two spectral features
- the variance of the stationary distribution on an undirected markov chain on the graph, and the second largest eigen-
value of the Laplacian of the graph. In addition we compute certain natural statistics: the mean jump size between
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Fig. 2. Sample EEG Synchronization Graphs for pre-ictal, ictal, and post-ictal epochs. It is clearly seen that the ictal period has
more coherence between different regions of the brain. The Phase Lag Index measure is used as the synchronization measure (or
cost function) to set up edges between the nodes in the graph.

epochs and its variance, to measure the similarity to a Weiner process, and finally the hinged mean and hinged vari-
ance, defined as the mean and variance, respectively, of the signal at the current epoch centered/hinged at the mean
of a strictly trailing window. These features arise naturally in change-point-detection and are motivated by the natu-
ral belief that, as a stochastic process, the EEG signal undergoes a statistical change when a seizure begins. To this
feature set we also added time-domain and spectral features. The time-domain features include the Hjorth parameters
- activity, mobility, and complexity, and the frequency-domain features include skewness of amplitude spectrum and
spectral entropy [1]. In all, we calculated 38 features.

In subsequent text, we refer to the feature matrix as D ∈ Rn,d, with n epochs and d features. We refer to the feature
vector at time t (row t of D) as dt, and the time-series corresponding to feature i (column i of D) as di. A complete
list of the features used in this work and their definitions is listed in Table 2. For further information regarding the
features, we refer the reader to [1,6].

2.5 Determining The Significance of Features

The computed features were motivated by discussions with the subject matter experts, with the view of casting a mean-
ingful but wide net to capture attributes of an epileptic seizure. However, this doesn’t strictly preclude the possibility
that certain features may be redundant or low in predictive importance. Furthermore, we wish to select features that
are particularly descriptive of the non-ictal activity, of which the data is largely comprised. Therefore, we quantify the
predictive significance of the features in a natural but effective way, and score the features to maximize their predictive
importance for the entire data, and minimize redundancy, using the method in [58], which we summarize here. The
primary advantages of using QPFS are as follows: (i) QPFS is based on efficient quadratic programming technique [5].
The quadratic term quantifies the dependence between each pair of variables, whereas the linear term quantifies the
relationship between each feature and the class label. (ii) QPFS provides a considerable time complexity improvement
over current methods on very large data sets with high dimensionality.

Measuring Redundancy Our notion of redundancy arises naturally from the interpretation of brain activity as a
stochastic process, whence the usual notion of linear dependence is replaced with the notion of statistical correlation.
Specifically, suppose the data matrix, D ∈ Rn,d, spanning n epochs and consisting of d features. We define, the
correlation matrix, Q ∈ Rd,d, element-wise, where Q(i, j) is the Pearson correlation coefficient between the feature
vectors di,dj ∈ Rn:

Q(i, j) =
d>i dj

‖di‖ ‖dj‖
.
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Table 2. Names and description of EEG global graph features. Features 1–26 are computed on the synchronization graph, features
27 and 28 are signal-based. Features 29–31 are representative of change-point detection, and features 32 and 33 are spectral features.
Features 34–36 and 37–38 are time-domain and frequency-domain features, respectively.

Index Feature Name Description

1 Average Degree Average number of edges per node

2 Clustering Coefficient C Average of the ratio of the links a node’s neighbors have in between
to the total number that can possibly exist

3 Clustering Coefficient D Same as feature 2 with node added to both numerator and denominator

4 Average Eccentricity Average of node eccentricities, where the eccentricity of a node is the
maximum distance from it to any other node in the graph

5 Diameter of graph Maximum of node eccentricities
6 Radius of graph Minimum of node eccentricities
7 Average Path Length Average hops along the shortest paths for all possible pairs of nodes

8 Giant Connected Component Ratio Ratio between the number of nodes in the largest connected component
in the graph and total the number of nodes

9 Number of Connected Components Number of clusters in the graph excluding the isolated nodes
10 Average Connected Component Size Average number of nodes per connected component
11 % of Isolated Points % of isolated nodes in the graph, where an isolated node has a degree 0
12 % of End Points % of endpoints in the graph, where an endpoint has a degree 1
13 % of Central Points % of nodes in the graph whose eccentricity is equal to the graph radius
14 Number of Edges Number of edges between all nodes in the graph
15 Spectral Radius Largest eigenvalue of the adjacency matrix
16 Adjacency Second Largest Eigenvalue Second largest eigenvalue of the adjacency matrix
17 Adjacency Trace Sum of the adjacency matrix eigenvalues
18 Adjacency Energy Sum of the square of adjacency matrix eigenvalues
19 Spectral Gap Difference between the magnitudes of the two largest eigenvalues
20 Laplacian Trace Sum of the Laplacian matrix eigenvalues
21 Laplacian Energy Sum of the square of Laplacian matrix eigenvalues
22 Normalized Laplacian Number of 0’s Number of eigenvalues of the normalized Laplacian matrix that are 0
23 Normalized Laplacian Number of 1’s Number of eigenvalues of the normalized Laplacian matrix that are 1
24 Normalized Laplacian Number of 2’s Number of eigenvalues of the normalized Laplacian matrix that are 2
25 Normalized Laplacian Upper Slope The sorted slope of the line for the eigenvalues that are between 1 and 2
26 Normalized Laplacian Trace Sum of the normalized Laplacian matrix eigenvalues
27 Mean of EEG recording Mean of EEG signal for each electrode and epoch
28 Variance of EEG recording Variance of EEG signal for each electrode and epoch
29,30 Change-based Features Mean and variance of jump size in EEG signal for each electrode and epoch

31 Change-based Feature 3 Variance of EEG signal for particular electrode in given epoch after
subtracting the mean of up to 3 previous windows

32 Spectral Feature 1 Variance of eigenvector of the product of the adjacency matrix
and the inverse of the degree matrix

33 Spectral Feature 2 Second largest eigenvalue of the Laplacian matrix
34,35,36 Hjorth parameters (time-domain) Activity, Mobility, and Complexity
37,38 Frequency-domain features Skewness of amplitude spectrum and Spectral entropy

The quadratic form x>Qx thus has the natural interpretation of yielding the sample-covariance of a compound feature,
with coefficients contained in x, which is the notion of redundancy that we wish to minimize.

Measuring Predictive Importance We first recall that the activity of the brain at time t is completely captured by dt.
We define the predictive importance, fi, of the feature i, as the r.m.s. influence of dt

i on dt+1
j , 1 ≤ j ≤ n, measured

by the coefficients in the forecast operator corresponding to i. Formally, let Ψ ∈ Rd,d+1 be the forecast operator. Then
our best prediction of dt+1 is d̃t+1 where

d̃t+1 = dtΨ>.

The influence, pi(j), of feature i on j, contained in pi ∈ Rd, may be determined by predicting via Ψ using its indicator
vector, ei:

pi = eiΨ
>,

whence the r.m.s. influence, fi, of i is simply

fi = ‖pi‖ = ‖Ψi‖ ,
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the column-norm of the forecast operator corresponding to column i. We define f ∈ Rd such that fi = ‖Ψi‖, as the
predictive importance vector.

Optimizing Redundancy and Predictive Importance We obtain a significance-distribution over the features that
maximizes predictive importance and minimize redundancy by solving

x∗ = arg min q(x);
subject to x ∈ Rd, x ≥ 0,

∑
i xi = 1,

(2)

where the constraints arise from forcing the resulting vector to be a distribution, from which we omit an appropriately
sized tail, or select just the support if it is small. To make the objective function stable under scaling of the data, we
normalize f to obtain

f̂ = f/ ‖f‖∞ .

To effect a meaningful trade-off between minimizing redundancy and maximizing predictive importance, we take a
convex combination of the corresponding terms:

q(x) = (1− α)x>Qx− αf̂>x,

where α is chosen, as in [58] as

α =

∑
i,j Q(i, j)/d2∑

i,j Q(i, j)/d2 +
∑

k fk/d
.

Since both the predictive importance and the correlation matrix are statistical in nature, they are less affected by
the relatively fleeting seizure. So we expect the significant features obtained via QPFS to be features that are highly
predictive of non-ictal activity. We use the MATLAB utility quadprog to solve Eq. 2.

2.6 Autoregressive Modeling on Feature Data

Research has indicated that promising results regarding early detection or prediction of the seizure can be achieved by
application of an autoregressive model (AR) to the EEG signal [2,11]. Also, AR models are linear and as shown in
prior research are comparable to non-linear models in their predictive capability [14,15,43,49,51]. We expand on these
earlier results by applying an autoregressive model to the features extracted both from the graph and the signal itself.

An autoregressive model of order 1, AR(1), is applied to the matrix D, extracted from the time-evolving EEG
synchronization graphs. For an AR(1) model the output at time t is only dependent on the values of the time-series at
time t− 1. As a result, the implicit assumption when using AR(1) is that dt is a markov chain indexed by t. Formally

dt
i = ρi0 + ρi1d

t−1
1 + ρi2d

t−1
2 + . . .+ ρimdt−1

m + εt (3)

where ρij are the linear coefficients computed via autoregression. In matrix form, (3) is [D]t1 = Ψ · [1,D]t−10 + ε,
where the notation [A]ba denotes a matrix containing all rows from a to b of A, including rows a, b. We compute Ψ to
minimize the error ε in euclidean norm,

Ψ = arg min
Z

∣∣∣∣[D]t1 − Z · [1,D]t−10

∣∣∣∣2
F
, (4)

Ψ = [D]t1 ·
(
[1,D]t−10

)†
.

where A† denotes the moore-penrose pseudoinverse of A. The role of the operator Ψ is to predict D(t) as a function
of D(t − 1). Any operator that does this will be called subsequently as the forecast operator. Thus, using an AR(1)
model we arrive at a forecast operator, Ψ.
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2.7 Transfer Learning and Transformation Learning on Autoregressive Model

We critically improve this forecast operator obtained from AR(1) in two directions. First, we improve it under the
assumption that the data obtained from different patients are not completely independent of each other; that data
obtained from one patient holds some information common to all patients, along with information specific to the
patient. Thus, we transfer knowledge from one patient to another, motivated by the existing work on Transfer Learning.
Specifically, given a feature data set D, the feature transfer set, D̂, and the corresponding forecast operators Ψ and Ψ̂
respectively we transfer knowledge from D̂ to D by regularizing (4) with

λ||Ψ− Ψ̂||2F .

The parameter λ, playing the familiar role of the Tikhonov Regularizer, is the transfer coefficient, governing how much
we learn from D̂ onto D. The forecast operator obtained from this transfer learning is simply

Ψ̄ = arg min

{∥∥[D]0t−1 ∗Ψ− [D]1t
∥∥2
F

+ λ
∥∥∥Ψ− Ψ̂

∥∥∥2
F

}
, (5)

the analytical solution for which is:

Ψ = Ψ̂ +
(

[D]0t−1
>

[D]0t−1 + λI
)† (

[D]0t−1
)> (

[D]1t − [D]0t−1
>

Ψ̂
)

(6)

As more data is obtained for D, the value of λ is reduced because now the core set is getting better at predicting its
own future values. To test our estimates, we use the following split between the training and testing data. First, we split
D into training (TR) and testing (TE) sets. Within the training set, we create a further split thereby creating training
prime (TR) and validation (V al) sets. We then train our AR(1) model on TR, and then use Ψ̂ to improve this estimate
by testing on V al. Then, we retrain the model using the learned parameters on the entire training set TR and finally
test on TE.

Next, we account for the differences in the collected data that may arise as a result of non-uniformities in the
process of acquiring data. We do this under the assumption that the spectral nature of the data is minimally variant
with changes across the various setups for acquiring data from multiple patients, and that the flow of time is immutable.
To learn from D̂ onto D, we find the object, D̂D, retaining the spectral nature of D̂, and respecting the directionality
of time, that is the closest to D. Formally, we find a rotation Γ(D̂,D) such that

D̂D = D̂Γ(D̂,D),

Γ(D̂,D) = arg min
U

U>U=I

∣∣∣∣∣∣D− D̂U
∣∣∣∣∣∣ .

This is the Procrustes problem that has been well-studied [72], and has a closed form solution in terms of the SVD of
D, D̂. Let these SVDs be

D = UDΣDV>D, D̂ = UD̂ΣD̂V>
D̂
.

Then
Γ(D̂,D) = VD̂V>D,⇒ D̂D = UD̂ΣD̂V>D.

We now transfer-learn using D̂D. In summary, we first notice that knowledge can be transferred from other but similar
data and then transform such similar data sets into their most learnable forms using a simple transformation.

2.8 Declaration Of Imminent Seizure

We use the prediction errors incurred by the use of our forecast operator as the eventual ictal discriminator. We
compute an estimate of the probability of deviation towards seizure using these errors, and declare that a seizure is
imminent when this probability is reliably high. We outline how we compute this probability and quantify the sense of
reliability we use, in that order.
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Probability Of Deviation Towards Seizure Let ε(t) be the prediction error at time, t. Using a moving window of size
∆ = 30, we first use a simple statistical thresholding on the errors to determine if an alarm has to be thrown, which
signifies an outlier to normal function, and a potential seizure. Specifically, let κ(t) be the binary variable indicating
whether or not an alarm is thrown - 1 when it is thrown and 0 when it is not. Let µ(t,∆), σ(t,∆) denote the mean and
standard deviation of the sequence ε(t), ε(t+ 1), · · · , ε(t+∆). Then

κ(t) =

{
1 if ε(t+∆)− µ(t,∆) > τ∗σ(t,∆)
0 otherwise

where τ∗ is a tolerance/sensitivity parameter. Clearly, κ is an indicator of the one-sided tail of the distribution from
which ε(t) is drawn. Under our assumption that a recorded activity is either normal function or seizure, the measure
of the tail of the distribution of errors during normal function is an appropriate estimate of the probability of seizure.
We estimate the size of this tail of normality for an interval by the ensemble average of κ(t) for the interval. When
κ(t) indicates seizure repeatedly in a manner highly unlikely to have arisen from random sampling from the tail of
normality, we declare an imminent seizure. In practice, we choose τ∗ = 3, and declare a seizure when we see 3
consecutive alarms. We justify this choice as follows: in the case where κ(t) indicates the result of the high-entropy
fair coin toss (i.e. 1 and 0 with equal probability), the probability of obtaining 3 consecutive alarms is 12.5%. In
practice our estimate of the size of the tail of normality is significantly below 1/5, resulting in our three-in-a-row rule
to be an even rarer occurrence than once in 125 occurrences or 0.8%.

3 Results

We present results for the Quadratic Programming Feature Selection algorithm, determining the best forecast operator,
and a comparison of the performance of our seizure prediction algorithm on basic autoregression vs. with the addition
of transfer and transformation learning.

3.1 Quadratic Programming Feature Selection Results

The feature-significance vectors obtained from solving the QPFS problem in (2) were found to be highly sparse, and
the features that were supported by these vectors were chosen without exception - 9 in all: (i) Average Degree, (ii)
Diameter of graph, (iii) Average Path Length, (iv) Giant Connected Component Ratio, (v) Number of Connected
Components, (vi) Percentage of Isolated Points, (vii) Number of eigenvalues with value 0 of the normalized Laplacian
matrix, (viii) Number of eigenvalues with value 2 of the normalized Laplacian matrix, and (ix) Normalized Laplacian
trace.

3.2 Baseline SVM results

To establish a baseline to validate the efficacy of our results, we compare our algorithm to the following benchmark
algorithm:
Application of Support Vector Machine to feature matrix D:
We provide as input the features identified by QPFS from D to a two-class Support Vector Machine (SVM). We learn
a model of the inter-ictal and ictal states based on their respective feature values. We then classify using the SVM the
seizure onset in the pre-ictal region based on the feature values in that region. The intuition being that the initial part
of the pre-ictal region will have features similar to the inter-ictal region, whereas the latter part will be more similar
to the ictal region in the feature space. We consider the pre-ictal region to start 10 minutes prior to the onset of the
seizure.

We found that the benchmark did not predict the seizure in 14 of the 41 analyzed recordings. The median prediction
time for the recordings for which seizures were predicted was 1.25 minutes prior to the seizure.
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3.3 Autoregression vs transfer and transformation learning

One of the objectives of this study was to improve the basic autoregressive model by the application of transfer learning
and transformation learning. We now show that the additional functionality makes the prediction either at least as good
as that by the AR(1) model or better for a significant percentage of the dataset. We found that in 60% of the analyzed
EEG recordings, transformation learning was able to predict the seizure prior to AR(1), or transfer learning. In 52.5%
of the analyzed EEG recordings, transfer learning performed better than the AR(1) model predicting the seizure earlier.
Finally, in 67.5% of the cases, either transfer learning or transformation learning was better than the AR(1) model. The
median prediction times prior to the occurrence of the seizure for the three methods are 10 min, 10.96 min, and 11.04
min for AR(1), transfer learning, and transformation learning, respectively. Considering only the recordings where
transformation learning or transfer learning outperformed AR(1), the median prediction times change to 9.33 min for
AR(1), 11.17 min for transfer learning, and 11.92 min for transformation learning.

In Fig. 3, the first row ((a)–(c)) consists of an analyzed EEG recording where the AR(1) model was able to predict
the seizure before the other two techniques. The second row ((d)–(f)) consists of an analyzed EEG recording where
the AR(1) model with transfer learning and transformation learning was able to predict the seizure before the other
two techniques. Finally, the third row ((g)–(i)) consists of an anomalous result where the AR(1) model with transfer
learning predicted the seizure before either AR(1) model or the AR(1) model with transfer and transformation learning.

4 Conclusions and Future Work

In this study, we outline a seizure prediction algorithm designed for EEG epileptic seizure data by constructing an
autoregressive model improved by the addition of transfer learning and transformation learning on features extracted by
building synchronization graphs on the independent components of the EEG signal. We use a quadratic programming
algorithm called Quadratic Programming Feature Selection (QPFS) to select the features with the highest predictive
importance and minimal redundancy.

One of the primary concerns with the seizure prediction area is the definition of a Seizure Prediction Horizon
(SPH). In the literature prediction horizons have varied from several minutes to a few hours [55]. We would like to
come up with a more rigorous theoretical basis for assigning prediction horizons. Another future direction is with
respect to the various thresholds used in the study. Although, well-motivated and justified from the literature, we
would like to obtain these thresholds from first principles. Examples of these thresholds include epoch lengths for
the synchronization graphs, sensitivity parameters for raising an alarm, and number of columns to zero out from the
mixing matrix in Independent Component Analysis (ICA). Yet another important future direction is analyzing the
partial contribution of each module in the pipeline to determine the effect of individual modules in improving the
basic prediction. Specifically, we would like to examine the influence of ICA vs. transformation learning to determine
which of the two is better used for the initial surgery to suppress seizure - to ensure that we don’t use a gas-engine
for the short haul and a horse for the long one. Furthermore, we would like to qualify the use of transfer learning
based on the similarity of the data sets being learned across: establish a metric of closeness of data sets/learnability
across patients and recordings. Finally, the problem of seizure prediction is accompanied by the problem of localizing
seizure, which, apart from requiring new methods, also sets a higher standard for understanding seizure. We hope to
contribute to this problem in the future as well.
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(e) AR(1) model with transfer learning
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(h) AR(1) model with transfer learning
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Fig. 3. Comparison of the AR(1) model ((a), (d), and (g)) with the AR(1) model improved by transfer learning ((b), (e), and (h))
and transformation learning ((c), (f), and (i)). The epoch at which the seizure is detected is shown in blue, the start and end of
the seizure region are marked in red. The first row is an example of where the AR model does better than both transfer learning
and transformation learning. The second row is a typical example of the AR(1) model with transfer and transformation learning
outperforming both the AR(1) model and the AR(1) model enhanced by transfer learning. The third row is an example of an
anomaly where the AR(1) model with transfer learning performs much better than the AR(1) model and the AR(1) model with
transfer and transformation learning.
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