1

There is an increasing interest of the operations research community in ad-
dressing optimization problems that include in their mathematical formulation
uncertain, stochastic, and dynamic information. Problem solving under uncer-
tainty has a very high impact on real world contexts, since optimization prob-
lems arising in practice are becoming increasingly complex and dynamic, also
thanks to the fast development of telecommunications that makes not only the
perception but also the changes of the world more rapid, stochastic and difficult
to forecast. The focus of this paper is on Stochastic Combinatorial Optimiza-
tion Problems (SCOPs), a wide class of combinatorial optimization problems

Metaheuristics in
Stochastic Combinatorial Optimization:
a Survey

Leonora Bianchif Marco Dorigo, Luca Maria Gambardella,

and Walter J. Gutjahr
March 24, 2006

Abstract

Metaheuristics such as Ant Colony Optimization, Evolutionary Compu-
tation, Simulated Annealing, Tabu Search and Stochastic Partitioning
Methods are introduced, and their recent applications to a wide class
of combinatorial optimization problems under uncertainty are reviewed.
The flexibility of metaheuristics in being adapted to different modeling ap-
proaches and problem formulations emerges clearly. This paper provides
also a description and classification of the modeling approaches of opti-
mization under uncertainty. Moreover, a formal description of the main
formulations corresponding to more classical domains in the literature is
provided. In this survey, the reader familiar to metaheuristics finds also
pointers to classical algorithmic approaches to optimization under uncer-
tainty, while the reader new to metaheuristics should find a good tutorial
in those metaheuristics that are being applied to optimization under un-
certainty.

Introduction

*IDSIA - Dalle Molle Institute for Artificial Intelligence, Via Cantonale, Galleria 2, 6928

Manno, Switzerland. E-mail: leonora@idsia.ch



under uncertainty, where all or part of the information about the problem data
is unknown, but some knowledge about its probability distribution is assumed.

In recent years, metaheuristic algorithms such as Ant Colony Optimiza-
tion (ACO), Evolutionary Computation (EC), Simulated Annealing (SA), Tabu
Search (TS), Stochastic Partitioning Methods (SPM), and others, are emerging
as successful alternatives to classical approaches based on mathematical and
dynamic programming for solving SCOPs. In fact, due to the high complex-
ity and difficulty of optimization problems under uncertainty, often classical
approaches (that guarantee to find the optimal solution) are feasible only for
small size instances, and they could require a lot of computational effort. In
contrast, approaches based on metaheuristics are capable of finding good and
sometimes optimal solutions to problem instances of realistic size, in a generally
smaller computation time. Table [1] lists some papers in the literature providing
evidence about the advantages in solving SCOPs! via metaheuristics instead of
using exact classical methods.

This survey paper is the first attempt to put under a unifying view the several
applications of metaheuristics to SCOPs, and it should contribute in balancing
the literature, where a number of surveys and books about solving SCOPs via
classical techniques exist, but none about using metaheuristics, despite the re-
search literature is already quite rich. The remainder of the paper is organized
as follows. Section [2] proposes a classification of the modeling approaches to
uncertainty according to dynamicity and type of description of uncertain data,
and precisely defines the scope of SCOPs. Section [3| recalls the main formal
definitions of both static and dynamic SCOPs from the literature, by provid-
ing links to the corresponding algorithmic domains, with the aim of giving a
clear view of the intersection between classical approaches and new ones based
on metaheuristics. This section also introduces the issue of objective function
computation in SCOPs, which may involve different types of objective function
approximations. Section [4] reviews the main applications to SCOPs of meta-
heuristics for which a significant amount of interesting literature exist, namely
ACO, EC, SA, TS, SPM, Progressive Hedging (PH), and Rollout Algorithms
(RO). Section [5| discusses some remarks drawn by taking a transversal view
on the reviewed metaheuristics, and proposes possible directions of research.
Finally, section [f] highlights the conclusions.

!Legend for the SCOPs of Table VRPSD = vehicle routing problem with stochastic
demands, SCP = set covering problem, TSPTW = traveling salesman problem with stochastic
time windows, PTSP = probabilistic traveling salesman problem, SSP = shop scheduling
problem, SDTCP = stochastic discrete time-cost problem, SOPTC = sequential ordering
problem with time constraints, VRPSDC = vehicle routing problem with stochastic demands
and customers.



Reference(s) | SCOP Metaheu- Exact method Advantage of the meta-
ristic(s) heuristic(s) over the exact
method
Beraldi and|SCP SPM (Beam | Branch and Bound Maximum deviation from
Ruszczyniski Search) optimal solution is 5%,
[13] (2005) and in some cases Beam
Search finds the opti-
mal solution. The run-
ning time reduction with
respect to Branch and
Bound is roughly between
20% and 90%
Bianchi et | VRPSD |ACO, SA,|Integer L-shaped method | ACO, SA, TS, ILS, EC ad-
al. [21] [22] TS, ILS, | by Gendreau et al. [65] | dress instances with up to
(2005) EC solves instances with up | 200 customers
to 70 customers
Gutjahr [75] | TSPTW |[ACO Complete Enumera- | ACO and SA solve in-
(2004) tion solves in about 4 |stances with up to 20 cus-
hours instances with 10 | tomers in a few seconds
customers
Branke and |PTSP ACO, SA | Branch and Cut by La- | In [241[25], ACO addresses
Guntsch porte et al. [T00] solves |instances with up to 200
[33] (2003) instances with up to 50| customers. In [33] [34]
[34 (2004), customers ACO addresses instances
Bowler et with up to 400 customers.
al. [32] In [32], SA addresses in-
(2003), stances with up to 120
Bianchi [24] customers
5] (2002)
Finke et al.|SSP TS Mixed Integer Linear |29 out of 30 small in-
[56] (2002) Programming solves | stances solved to optimal-
instances with up to 10 |ity. Instances with up to
jobs and 5 machines 20 jobs and 10 machines
have been addressed.
Gutjahr SDTCP |SPM Complete Enumera- | Stochastic Branch and
et al. [79] (Stochastic |tion  approaches fail| Bound outperforms clas-
(2000) Branch and | to generate results | sic techniques both in
Bound) within a  reasonable | solution quality and in
amount of time even for | runtime
medium-size problems
Costa  and | SOPTC | TS Branch and Bound solves | TS is much faster (always
Silver  [44] instances with up to 14 |0.1 or 0.2 seconds for the
(1998) causes, with a compu- |small instances with up to
tation time from 0.1 to| 14 customers). Addressed
about 30000 seconds also big instances with up
to 500 customers
Gendreau VRPSDC| TS Integer L-shaped method | TS is faster (from Tables
et al. [66] by Gendreau et al. [65] |I and II of [66] the time
(1996) solves instances with up | gain of T'S with respect to

to 70 customers

the exact method may be
computed)

Table 1: Evidence about some of the advantages in solving SCOPs via meta-
heuristics instead of using exact classical methods.




2 Modeling approaches to uncertainty

In defining the scope of SCOPs one faces the difficulty of considering the many
ways in which uncertainty may be formalized. Uncertainty is included in the for-
mulation of optimization problems in order to go nearer to real world conditions,
but models should also be a bit simplified, in order to be tractable analytically or
numerically. The efforts done in reaching a good trade-off between usefulness of
the model and tractability of the problem have produced a multitude of formal-
izations of uncertainty. This is even more evident for metaheuristics, because,
due to their simplicity, they may be easily applied to complex formulations that
would be considered intractable for many classical algorithmic approaches.

When considering models of optimization problems under uncertainty, there
are mainly two aspects to define: first, the way uncertain information is for-
malized, and second, the dynamicity of the model, that is, the time uncertain
information is revealed with respect to the time at which decisions must be
taken. The several modeling approaches differ in the way the first and/or the
second aspects are defined. Here, we propose a classification of models accord-
ing to these two aspects, uncertainty and dynamicity, as schematized in Figure
For space limitations, this paper will then focus only on a subset of models,
that correspond to our definition of SCOPs.

uncertainty
Pure
total uncertainty Online
Problems
interval values - ‘ Robust COPs ‘
fuzzy values - ‘ Fuzzy COPs ‘
random variables Stoc(hsaggcpf)OPs
perfect knowledge | | Determ. COPs
(DCOPs) -
dynamicity
1 1
static dynamic

Figure 1: Scheme for the conceptual classification of Combinatorial Optimiza-
tion Problems (COPs) under uncertainty. This paper focuses on Stochastic
COPs (SCOPs) and to solution methods based on metaheuristics.

Uncertain information may be formalized in several ways (vertical axis of
Figure . The case of perfect knowledge about the data of the problem corre-
sponds to the classical field of solving (Deterministic) Combinatorial Optimiza-
tion Problems (DCOPs) (low left corner of Figure [1). Here, all information is



available at the decision stage, and it is used by optimization algorithms to find
a possibly optimal solution. The concrete application of a solution found would
lead exactly to the cost of the solution as computed by the optimization algo-
rithm, therefore DCOPs are also considered static problems, because from the
point of view of the decision maker, there is nothing else to be decided after the
optimization took place?. A typical example of DCOP is the well known Travel-
ing Salesman Problem (TSP) [73], where, given a set of customers and the set of
distance values among each couple of customers, one must find the Hamiltonian
tour (that is, a tour visiting once each customer) of minimal length. Despite its
simple formulation, the TSP is an NP-hard problem, like many DCOPs.

Let us now consider problem formulations involving uncertainty (upper lev-
els of Figure . One possibility is to describe uncertain information by means
of random variables of known probability distributions. This is what we assume
in SCOPs (a more precise definition and examples of SCOPs will be given in
section . Under this assumption, the optimization problem is stochastic, and
the objective function strongly depends on the probabilistic structure of the
model. Typically, the objective function involves quantities such as an expected
cost, the probability of violation of some constraint, variance measures, and so
on. In SCOPs one can distinguish a time before the actual realization of the ran-
dom variables, and a time after the random variables are revealed, because the
associated random events happen. Static SCOPs are characterized by the fact
that decisions, or, equivalently, the identification of a possibly optimal solution,
is done before the actual realization of the random variables. This framework is
applicable when a given solution may be applied with no modifications (or very
small ones) once the actual realization of the random variables are known. The
literature sometimes addresses this type of problems as ‘a-priori’ optimization.
As an example of this class of problems, consider the probabilistic TSP (PTSP),
that consists in finding a Hamiltonian tour visiting all customers (the ‘a priori’
tour) of minimum expected cost, given that each customer has a known prob-
ability of requiring a visit. Once the information of which customers actually
require a visit on a certain day is known, the customers requiring a visit are
visited in the order of the ‘a priori’ tour, simply skipping the customers not
requiring a visit.

Dynamic SCOPs arise when it is not possible or not convenient to design a
solution that is usable as it is for any realization of the random variables. In
this case, decisions that need an optimization effort must be taken also after
the random events have happened. This could also be done in stages, because
it is often the case that the uncertain information is not revealed all at once,
but in stages. As an example of dynamic SCOP, consider for instance a TSP
where new customers of known positions appear with a certain probability while
the salesman has already started to visit the customers known a priori. In this
case an a priori tour must be modified dynamically in order to include the new

2Nevertheless, a solution algorithm may use a ‘dynamic’ or ‘stochastic’ mechanism also in
these cases, as, for example, the dynamic programming algorithm applied to (deterministic,
static) shortest path problems, or algorithms that involve some random choice such as virtually
all metaheuristics and local search procedures.



customers in the visiting tour.

Another way of formalizing uncertainty is to identify the uncertain infor-
mation with fuzzy quantities (vectors or numbers), and constraints with fuzzy
sets. This approach has its roots in Bellman and Zadeh [12] and in Zimmermann
[144], but currently occupies a minor portion of the optimization literature.

An approach which is receiving increasing attention in the last years is the
one of robust optimization, which assumes that uncertain information is known
in the form of interval values. For example, one could consider the robust TSP,
where the cost of arcs between couples of customers is given by interval values.
These costs could have the meaning of travel times, being small if there is no
or little traffic, and being high in case of traffic congestion. The robustness
approach consists in finding solutions that hedge against the worst contingency
that may arise, given that no knowledge about the probability distribution of
random data is known. One possible way of quantifying robustness is the min-
maz criterion, under which the robust decision is that for which the highest
level of cost taken across all possible future input data scenarios is as low as
possible. Both static and dynamic versions of robust optimization problems
may be formulated. For a good introduction to robust optimization, see for
instance the book by Kouvelis and Yu [99].

On the highest level of Figure [T we placed problems that we call Pure Online,
where the input is modeled as a sequence of data which are supplied to the
algorithm incrementally, but without making any assumption that can help to
make a prevision on the new data. An algorithm for a Pure Online Problem
produces the output incrementally without knowing the complete input, and its
performance is evaluated with respect to an abstract competitor, who knows
all the complete (past and future) data, and that is able to solve the offline
problem optimally. This way of evaluating algorithms is called in the literature
competitive analysis [3,[31]. An example of Pure Online problem is the Dynamic
Traveling Repair Problem [91], where a set of servers move from point to point
in a metric space; the speed of each server is constant, so the time it takes to
travel from one point to another is proportional to the distance between two
points; time is continuous and at any moment a request for service can arrive
at any point in the space; each job also specifies a deadline; if a job is serviced,
a server must reach the point where the request originated by its deadline; the
goal is to service as many incoming request as possible by their deadlines.

We should again remark that in this paper we restrict to SCOPs (the shaded
box in Figure. SCOPs are combinatorial optimization problems, that is, prob-
lems where the decision space is finite but possibly too big to be enumerated,
and/or problems having a combinatorial structure because solutions are encoded
by permutations, binary vectors or other combinatorial objects. By this choice
we neglect the vast field of continuous optimization under uncertainty, although
the scheme we have just proposed for classifying problems under uncertainty
equally applies to continuous problems.

SCOPs are relevant in many practical contexts, such as vehicle routing prob-
lems, where stochasticity is due to variable customers demands, or variable
travel times, routing on information networks, where stochasticity is due to



the variability of traffic and the related speed of information packages, finance,
scheduling, location problems and many other contexts. All these problem do-
mains may be, and usually are, also modeled as DCOPs. The advantage of using
SCOPs over DCOPs is that the solutions produced may be more easily and bet-
ter adapted to practical situations where uncertainty cannot be neglected, such
as thrash collection, cash collection from banks, location of emergency services,
and so on. Of course, the use of SCOPs instead of DCOPs comes at a price:
first, the objective function is typically much more computationally demanding
in SCOPs than in DCOPs; second, for a practical application of SCOPs, there
is the need to assess probability distributions from real data or subjectively, a
task that is far from trivial. For a discussion about the issue of computational
burden and complexity in certain SCOP formulations, see for instance Haneveld
and van der Vlerk [83], and Dyer and Stougie [62]. The ways this issue is man-
aged in metaheuristics applied to SCOPs will be described in detail in section

@

3 Formal descriptions of SCOPs

The class of SCOPs is so important and has impact in so many domains that sev-
eral research areas are dedicated to its study: Stochastic Integer Programming,
Markov Decision Processes (which is part of Stochastic Dynamic Programming)
and Simulation Optimization being the main ones. Each research area corre-
sponds to a particular way of modeling, formulating and solving optimization
problems under uncertainty, and it is often treated separately in the optimiza-
tion literature. The application of metaheuristics to SCOPs is a quite recent
and fast growing research area, and it is thus natural that many of the pa-
pers borrow from the classical SCOP literature the same problem formulations.
In this section we first give a general definition of a SCOP, then, in sections
and we recall the main formal definitions of both static and dynamic
SCOPs from the literature, by giving pointers to the research areas that origi-
nally proposed them. In section[3.3] we introduce the issue of objective function
computation in SCOPs, which may involve different types of objective function
approximations.

Let us now give a general definition of SCOP, as proposed by Kall and
Wallace [96]. (Throughout the paper we use the minimization form for opti-
mization problems, the maximization form is equivalent and can be derived in
a straightforward manner by substituting the word ‘min’ with the word ‘max’).

Definition 1 (SCOP)

Consider a probability space (Q, %2, P) ([T2]), where Q is the domain of random
variables w (typically a subset of R¥ ), ¥ is a family of “events”, that is subsets
of Q, and P is a probability distribution on X, with P(Q) = 1. Consider also a
finite set S of decision variables . S is typically a subset of R™. The random
variable w could also depend on the decision variable x, in that case it is denoted
by wy. Given a cost function G and constraint functions H;, i = 1,2,...,m,



mapping (z,w) € (S,Q) to R, find

“min”zes G(x,w), )
subject to Hi(z,w) <0,4i=1,2,...,m. (1)
Note, however, that according to the above definition, a SCOP is not well de-
fined, since the meaning of “min” as well as of the constraints are not clear at
all [96]. In fact, how could one take a decision on z before knowing the value of
w, and how could one verify if H;(x,w) < 0, if w is not yet known? Moreover,
since w is a random variable, also G(z,w) and H;(z,w) are random variables.
For these reasons, the definition of SCOPs must be refined. There are several
possibilities to do this, giving rise to different SCOP variants, both static and
dynamic. These are also called deterministic equivalents of Definition [I] Let us
first focus on static SCOPs, and later on dynamic SCOPs.

3.1 Static SCOPs

Definition 2 (Stochastic Integer Program - SIP)

Given a probability space (2,3, P), a finite set S of feasible solutions x, a real
valued cost function G(x,w) of the two variables x € S and w € 2, and denoting
by Ep(G(x,w)) the expected value of G(x,w) over Q@ according to P, find

min {g() = Ep(G(x,w))}- (2)
The above definition is maybe the simplest SCOP formulation, and it does not
consider random constraints (observe, though, that deterministic constraints
could be implicitly included in the definition of the domain S of decision vari-
ables).
In some cases the cost function G is deterministic, that is, G only depends on
2 and not on the random variable w, but constraints do depend on the random
variable w. In such situation it might be impossible to enforce H;(x,w) < 0
for all w € Q. Thus, one could relax the notion of constraint satisfaction by
allowing constraint violation, and by imposing that constraints are satisfied at
least with some given probabilities. This leads to the following

Definition 3 (Chance Constrained Integer Program - CCIP)
Given a probability space (2,3, P), a finite set S of feasible solutions x, a real
valued cost function G(x), a set of real valued constraint functions H;(z,w), and

a set of constraint violation probabilities a;;, with0 < o; <1 andi=1,2,...,m,
find
min G(z),
{ zeS (3)
subject to Prob{H;(z,w) <0} >1—q;, i=1,2,...,m.

Both the Stochastic and Chance Constrained Program formulations have
been originally proposed in the context of Mathematical Programming applied



to SCOPs, and this field is also called in the literature Stochastic Integer Pro-
gramming (SIP), a subset of the broader field of Stochastic Programming [2§].
The Stochastic Programming community has a very active website [129] where
updated bibliographic references and papers are available. Recent surveys on
SIP include [83] and [97] (the latter overviews SIP applications in the context
of location routing problems). Let us now focus on some dynamic SCOP deter-
ministic equivalents of Definition

3.2 Dynamic SCOPs

Informally, a stochastic dynamic problem is a problem where decisions are taken
at discrete times ¢t = 1,...,T, the horizon T being finite or infinite. Decisions
taken at time ¢ may influence the random events that happen in the environment
after t. In dynamic SCOPs the concept of solution used in static SCOPs is no
longer valid. For example, in the dynamic TSP that we described in section
a tour among the set of customers known at the beginning of the day cannot be
traveled as it is in practice, but it must be modified when new observations (new
customers) are known. What the decision maker can do before the observation-
decision process starts is to decide which policy (or strategy) to adopt, that is, to
specify a set of rules that say what action will be taken for each possible random
future event. For example, in the dynamic TSP, a possible policy consists in re-
optimizing the portion of route among the not-yet-visited customers each time
that a new customer appears. Another policy, which is less computationally
expensive, but that possibly leads to a more costly tour, is to re-optimize at
stages, only after a certain number of new customers has appeared. Note that
in solving dynamic SCOPs one has to make a double effort: first, decide which
policy to adopt, second, given the policy, solve the optimization sub-problems
emerging dynamically. Both parts have influence on the final solution cost, but
often the choice of the policy is due to factors that are outside the control of
the decision maker. For instance, in the dynamic TSP one could be forced not
to optimize every time a new customer arrives, in case customers want to know
in advance the vehicle arrival time.

Among the dynamic formulations the most common ones are those belonging
to the class of Stochastic Programming with Recourse (Two-stage and Multiple-
stage Integer Stochastic Programs) and Markov Decision Processes.

Definition 4 (Two-stage Stochastic Integer Program - TSIP)
Given a probability space (Q, %, P), a finite set Sy of first-stage decisions x1, a
finite set Sy of second-stage decisions xa, and real valued cost functions f1 and

f27 .ﬁnd

rfflelgl {g1(21) == fi(z1) + Ep(G(z1,w))}, (4)
where
G(z1,w):= min  fo(z1,22,w). (5)

z2€S52(x1,w)



Given the above definition, solving a Two-stage Stochastic Integer Program
consists in solving two problems: a DCOP for the second-stage (equation ),
and a Stochastic Integer Program (Definition [2]) for the first-stage (equation
(). The meaning of the two-stage decision process is the following. The first-
stage decision x1 must be taken before knowing the actual value of the random
variable w. After the value of w is observed, it may be convenient or necessary to
take some other decision (the second-stage decision x5) in order to better adapt
to the new situation discovered. The second-stage decision is also called recourse
action, because in some practical situations it has the effect of ‘repairing’ the
consequences of an action (z1) taken before knowing the value of the random
variable. Informally, a Two-stage Stochastic Integer Program cosists in finding
the best decision now, with the hypothesis that I will also take the best decision
when I will know the value of the random quantities. A practical example of
a Two-stage Integer Program is the Vehicle Routing Problem with Stochastic
Demands (VRSPD), where a vehicle tour among a set of customers is decided,
prior of knowing the actual demand of each customer. The vehicle travels along
the tour, and the driver discovers the actual demand of a customer only when
arriving at that customer. When a customer demand is known and the customer
has been serviced, the next best decision may be to go back to the depot for
replenishment, or to proceed to the next planned customer. The choice between
these options is part of the second-stage optimization problem. In this context,
the tour planned a priori may be interpreted as the first-stage decision x1, while
the set of return trips to the depot may be interpreted as the second-stage
decision xs.

The Two-stage Stochastic Integer Program may be easily extended to the
general Multi-stage case.

Definition 5 (Multi-stage Stochastic Integer Program - MSIP)
Consider T decision stagest = 1,2,...,T, and correspondingly, T decision vari-
ables x; € Sy (with Sy finite subsets depending on (x1,...,Ti—1,w1,...We—1)),
and T random variables wy belonging to probability spaces (4, %, Py). The
problem consists in finding

min {g(x) = fi(z1) + Ep, (Cr(a1,01))} (6)

where, fort =1,2,...,T — 2,

Gt(:cl,...,xt,wl,...wt) = min [ft+1(:z:1,...,xt+1,w1,...,wt+1)
Tt41€St41 7
+EPt+1(Gt+1(x17'-')xt+13w13-"7wt+1))])
and
GT—1(CE1,~~~793T—17w17--~,wT—1):wmein fr(zy,...,xr,wi,. .. wr).  (8)
TEST

Observe that, from the above definition, solving a Multi-stage Stochastic Integer
Program consists in solving one DCOP for the last stage (equation (§)), and

10



T — 1 Stochastic Integer Programs for the intermediate stages (equations @
and (7).

Let us now introduce the framework of Markov Decision Processes (MDP).
The central concept in MDP is the state, which at each time step describes
the knowledge about the problem (called here system). In MDP the Markov
property is assumed, that is, future behavior of the system does only depend on
past history through the current state and the current decision taken. Obviously,
this also depends on the way a state is defined. Often, the state corresponds to
the physical description of the system, but this is not always the case. We now
briefly provide a standard formulation of MDP. For a complete discussion, see
for instance [115].

Definition 6 (Markov Decision Process - MDP)
Consider a j-tuple (X, A, P,C), where X is a finile state space, and A is a
finite set of possible actions or decisions. At state x, we denote the set of
admissible actions by A(xz). For each x € X, A(x) is a finite set. P is a state
transition function, that describes the stochastic behavior of the system over
time: at time t, if the current state is x € X, and action a € A is chosen,
then the next state is y with probability P(y|x,a). P is thus a function from
X x A(X) ={(z, A(z)|x € X)} to a probability distribution over X. C specifies
the costs of actions depending on the state in which they are performed. Taking
an action a at state x has a cost ¢(x,a). C is a function from X x A(X) to R.

A policy m is defined as a mapping from X to A(X) that associates to every x
a feasible action a € A(x), and II is the set of all possible policies. Informally,
a policy tells what actions need to be taken at which state, and this is what
the decision maker needs to know in order to take a decision at each discrete
decision time, once the actual state of the system is known.

Let us now define the cost associated to a policy. Let X3, t =0,1,2,...,T be
a random variable that denotes the state at time t. For a given policy w € 1I,
and a given initial state Xog = xq, if the decision maker follows the policy m
over time, a particular system path is given as a sequence of state and action
(X() = .%‘Q,CLQ,Xl = .’17170,17...,Xt = xt,at,XHl = xt+17at+17...,aT,1,XT =
xT), where a; is the action taken at time t and a; = w(x:) with xx € X. Over the
system path, the system accumulates the discounted costs defined, for T < oo,

as
T

Z’th’(:ct,ﬂ(:ct)), with v € (0,1]. (9)
t=0

For T = oo, 7y (that is called discount factor) must be smaller than 1. Given a
policy 7, the accumulated discounted cost (equation @ ) is a random quantity,
due to the randomness of the system path. The expected discounted cost of a
policy over all possible system paths may be computed as follows:

T
J(m)= > Pr(xo,x1,...,27) [Z MO (4, w(xt))l , (10)
T t=0

050y &T

11



with v € (0,1], and where the probability of a particular path is
Pr(zg, 21, .. x7) = 8(x0) Ty P2y 1| 2e, 7(24)), (11)

0(xo) being the probability that state Xo = xg.

Given a 4-tuple (X,A,P,C) and the associated finite set of policies 1, an

MDP consists in finding
min J (). (12)

The model we have defined is known both as Markov Decision Process and
Stochastic Dynamic Programming. The first term comes from the fact that for
any fixed policy, the resulting model is a Markov chain. The second term comes
from the family of solution methods based on Dynamic Programming [14], origi-
nally designed for solving optimal control problems. Dynamic Programming and
MDP are also related to (and could be seen as part of) Reinforcement Learning
[131] and Neuro-Dynamic Programming [I7], which mainly focus on methods
for approximating optimal solutions of MDP and for dealing with incomplete
information about the state of the system. Stochastic Dynamic Programming
is also related to Stochastic (Mathematical) Programming, and in particular to
Multi-stage Integer Programs. For a clear exposition on the relation between
these two domains, see for instance Kall and Wallace [96]).

Finding the optimal policy can be a prohibitive task unless the state and/or
action space is very small, which is usually not the case. For example Value
Iteration, a well known exact method for solving MDP [I15], has a computa-
tional complexity polynomial in | X|, |A|, and 1/(1 —~), and one single iteration
takes O(|X|? - |A]). There are several approximation algorithms (that is, al-
gorithms that do not guarantee to find the optimal solution) that try to find
good solutions in a feasible computation time via techniques such as structural
analysis, aggregation, sampling feature extraction and so on. See, for example,
[115] 131], [I7]. Recently, also some metaheuristics have been applied to approx-
imately solve MDP, and they are discussed in the remainder of this paper.

3.3 Objective function computation

As we have seen, all the above SCOP formulations involve the computation of
one or more expected values for evaluating the objective function. As a con-
sequence, three different situations may arise when computing SCOP objective
functions:

1. closed-form expressions for the expected values are available, and the ob-
jective function is computed exactly based on these objective values;

2. as in case 1, closed-form expressions for the expected values are avail-
able, but the objective function is considered to be too time consuming to
be always computed during optimization. Therefore, ad-hoc and fast ap-
prozimations of the objective are designed and used during optimization
(possibly alternating exact and approximated evaluations);

12



’ H Exact ‘ Ad-hoc approximation ‘ Simulation approximation ‘

SIP 53], 24, 251, 331, 341, 240, | [74], [75], 270, 139, [142], [43],
34 | 221, [55] 1921, [63], [77], [78], [120], [58],
6], [5], [89], [, [38], [80], [121],
[104], [56], 5], 441, [76], [79],
[114]
CCIP 3] 8]
TSIP || [I05) G0J
MSIP 119], [103], @3]
MDP || (2], [101], [102]
[43]

Table 2: Classification of metaheuristics papers according to SCOP formulation
(rows) and type of objective function computation (columns).

3. the problem is so complex in terms of decision variables and/or in terms
of probabilistic dependences, that no closed-form expression exists for the
expected values, therefore, the objective function is estimated by simula-
tion.

All the three above situations have been addressed by the metaheuristics lit-
erature under consideration in this survey, as summarized by Table 2] Let us
now give some introductory information on the use of ad-hoc and sampling
approximations in SCOPs.

3.3.1 Ad-hoc approximations

The design of ad-hoc approximations is strongly problem dependent, and no
general rule exists for finding efficient approximations of the objective function.
Examples of ad-hoc approximations in the literature include: the use of the
objective function of a DCOP similar in some respects to the SCOP considered;
the use of truncated expressions for the expected values, by neglecting terms
that are estimated to be small; the use of scenarios, instead of considering the
true probabilistic model. Ad-hoc approximations, if on one side accelerate the
evaluation and comparison among solutions, on the other side introduce a sys-
tematic error in the computation of objective values. Usually, the systematic
error cannot be reduced unless a different, more precise ad-hoc approximation is
designed, and it can only be evaluated by comparison with the exact objective
value. Thus, metaheuristics typically alternate exact and approximated eval-
uations during the optimization process. More details about the way ad-hoc
approximations are used by metaheuristics will follow in section

13



3.3.2 Simulation approximation

When a closed-form expression for the expected value(s) is not available, one
common choice is to estimate expectations by Monte Carlo-type simulations.
For example, in the case of the Stochastic Integer Program (Definition , the
objective function g(z) is typically approximated by the sample average

N

1
gn(z) == i ZG(w,wj) (13)
j=1
where wi,ws,...,wy is a random sample of N independent, identically dis-

tributed (i.i.d.) realizations of the random vector w. The sample average is also
referred to as sample estimate, and the random realizations as random scenarios.
In this paper, we will use these terms interchangeably.

The main difference between SCOPs requiring simulation for estimating the
objective function and DCOPs, or SCOPs with exactly computable objective
function is that, in the first-mentioned case, it is not possible to decide with
certainty whether a solution is better than another one. This can only be tested
by statistical sampling, obtaining a correct comparison result only with a certain
probability. Thus, the way simulation approximation is used in metaheuristics
largely depends on the way solutions are compared and the best solution among
a set of other solutions is selected (‘selection-of-the-best’ method).

A huge research area devoted to solving problems with simulated objective
function is Simulation Optimization. Following the definition given by Fu [60],
Simulation Optimization means “searching for the settings of controllable deci-
sion variables that yield the maximum or minimum expected performance of a
stochastic system that is presented by a simulation model.” A compact picture
of the field is given by the reviews of the Winter Simulation Conference [, [TTT].
The latest one by Olafsson and Kim [IT1] emphasizes discrete problems and
practical approaches, including some references to metaheuristics. Until a few
years ago, the literature on Simulation Optimization was especially focussed on
theoretical results of convergence of mathematically elegant algorithms. Inter-
estingly, as noted by Fu [59], the many new commercial software packages for
simulation do not take advantage of the theoretical results of the literature. On
the contrary, most of them rely on metaheuristics such as Genetic Algorithms
and Neural Networks, that are more easily adaptable to complex real-world sim-
ulations, but often their integration into commercial packages lacks rigor and is
not provably convergent. Fu speculates that an interesting direction of research
would be the development of algorithms that take advantage of the theoreti-
cal results of the literature, but are still flexible and applicable to real-world
situations, so to fill the gap between theory and practice. Indeed, recent devel-
opments in Simulation Optimization, especially relying on metaheuristics, go in
this direction.

14



4 Metaheuristics for SCOPs

A metaheuristic is a set of concepts that can be used to define heuristic methods
that can be applied to a wide range of different problems. In other words, a
metaheuristic can be seen as a general algorithmic framework which can be
applied to different optimization problems with relatively few modifications to
make them adapted to a specific problem.

Metaheuristics that have been applied to SCOPs include: ACO, EC, SA, and
TS (acronyms are explained in Table . For a review and comparison among
these and other metaheuristics in the context of DCOPs, see for instance the
paper by Blum and Roli [30], and the publications pointed to by [51]. Besides
these metaheuristics, there are some algorithms such as SPM, PH, and RO (see
Table that could be called metaheuristics, even if they are not commonly
known as such, or that make use of metaheuristics as part of the algorithmic
procedure.

The following subsections focus on the cited metaheuristics. The format of
subsections describing respectively ACO, EC, SA, TS and
SPM is the same: first some background information on the principles of the
metaheuristic is given, then the results and issues of applying the metaheuristic
to SCOPs are reviewed. For each metaheuristic, the reviewed papers have been
grouped in different paragraphs, respectively focussing on:

e SCOPs with exactly computed objective or ad-hoc approximations;
e SCOPs with simulation approximation;
e Markov Decision Processes.

MDPs have been treated separately because they require a particular modeling
effort for each metaheuristic, which is quite different from the modeling of static
SCOPs and of TSIPs and MSIPs. Subsection briefly gives references to the
SCOP literature involving metaheuristics that are still at their early stage in
the SCOP domain (PH and RO).

4.1 Ant Colony Optimization

The first algorithms based on the ant colony analogy appeared at the beginning
of the nineties in a paper by Dorigo et al. [48] later published as [49]. ACO is
now a widely studied metaheuristic for combinatorial optimization problems, as
the recent book by Dorigo and Stiitzle [50] testifies.

The inspiring concept that links optimization with biological ants is based
on the observation of their foraging behavior: when walking on routes from the
nest to a source of food, ants seem to find not simply a random route, but a quite
‘good’ one, in terms of shortness, or, equivalently, in terms of time of travel;
thus, their behavior allows them to solve an optimization problem. This kind of
success of biological ants is entirely explained by their type of communication

15



’ Acronym Metaheuristic

ACO Ant Colony Optimization

EC Evolutionary Computation

= (EP + ES + GA) =(Evolutionary Programming + Evolutionary
Strategies + Genetic Algorithms)

SA Simulated Annealing

TS Tabu Search

SMP Stochastic Partitioning Methods

= (BS + SBB + NP)  =(Beam Search + Stochastic Branch and Bound +
Nested Partitions)

PH Progressive Hedging

RO Rollout Algorithms

Table 3: Acronyms used for the metaheuristics described in this paper.

and by their way of deciding where to go: While walking, ants deposit a chemical
called pheromone on the ground, and they tend to choose routes marked by
strong pheromone concentrations. Given two initially unexplored routes, a short
and a long one, between the nest and the source of food, ants choose at first
randomly which one to walk. Ants that have chosen, at first by chance, the
shorter route are the first to reach the food and to start their return to the nest.
Therefore, pheromone starts to accumulate faster on the shorter route than on
the longer one. Subsequent ants tend to follow the shorter route because it
has more pheromone, thus reinforcing it more and more, and further attracting
other ants on the good route.

Combinatorial problems addressed by ACO are usually encoded by a con-
struction graph G = (V, A), a completely connected graph whose nodes V are
components of solutions, and arcs A are connections between components. Find-
ing a solution means constructing a feasible walk in G. For example, in the TSP
nodes correspond to customers, arcs correspond to streets connecting customers,
and a feasible solution is a Hamiltonian path on the graph. The construction
graph encoding is also used in current ACO applications to SCOPs and to dy-
namic optimization problems. Some examples are also described in [50].

The ACO algorithm is essentially the interplay of three procedures [46]:
ConstructAntsSolutions, UpdatePheromones, and DeamonActions, as represented
by Algorithm [I]

ConstructAntsSolutions is the process by which artificial ants construct walks
on the construction graph incrementally and stochastically. For a given ant, the
probability px; to go from a node k to a feasible successor node [ is an increasing
function of 7¢; and 1y (u), where 7y is the pheromone on arc (k,1), and 7y (u)
is the heuristic value of arc (k,1), which should be a reasonable guess of how
good arc (k,1) is (for example, in the TSP 7y, is the reciprocal of the distance
between customer k and customer ). The heuristic value may depend on the
partial walk wu.

16



UpdatePheromones is the process by which pheromone is modified on arcs.
Pheromone may be both increased and decreased. Pheromone is modified (de-
creased) by each ant on each arc as soon as it is added to a partial walk on the
construction graph, this operation is called local update. Moreover, pheromone
is further modified (increased) on selected good solutions to more strongly bias
the search in future iterations, and this operation is called global update. De-
creasing pheromone on selected arcs is important, in order to avoid too rapid
convergence of the algorithm to suboptimal solutions. Interestingly, pheromone
decreases also in the biological environment, due to evaporation.

DeamonActions are centralized operations, such as comparing solution val-
ues among ants in order to find the best solution, or running a local search
procedure.

Algorithm 1 Ant Colony Optimization (ACO)
while termination condition not met do
ScheduleActivities
ConstructAntsSolutions
UpdatePheromone
DeamonActions
end ScheduleActivities
end while

4.1.1 ACO for SCOPs

The investigation of ACO applications to SCOPs is at its early stages, the first
works being appeared at conferences after year 2000. Nevertheless, the ACO
literature contains both theoretical and experimental works that cover both
static and dynamic SCOPs.

Exact objective or ad-hoc approximation The first SCOPs that have
been addressed by ACO are the probabilistic TSP (PTSP), in Bianchi et al. [24]
25] and Branke and Guntsch [33] [34], and the vehicle routing with stochastic
demands (VRPSD) in Bianchi et al. [2I] 22]. These problems are Stochastic
Integer Programs with closed form expression for the objective function, that
is, the objective function is computable a priori, independently from particular
random realizations of the stochastic variables.

The PTSP and the VRPSD have in common the fact that their solution
structure (and the corresponding construction graph) is very similar to their
deterministic counterpart (the TSP, respectively capacitated VRP). The main
difference with the respective deterministic counterpart problem is the much
higher computational complexity of the objective function in the stochastic ver-
sion of the problem. In the PTSP, the objective function is computable in O(n?)
time, n being the number of customers, while in the TSP it only requires O(n)
time. In the VRPSD, the objective requires O(nK(Q), where n is the num-
ber of customers, K is the number of possible demand values of each customer,

17



and @ is the vehicle capacity, while the capacitated VRP objective only requires
O(n) time. The fact that the difference between the stochastic and deterministic
versions of these problems mainly lies in the objective function makes them par-
ticularly appropriate for studying a first application of ACO to SCOPs. In fact,
in this case it is possible to apply to the stochastic problem an ACO algorithm
originally designed for the deterministic problem with almost no modifications.

In [24] 25], the authors experimentally investigate on the PTSP two versions
of ACO: ACS and pACS. ACS, that was originally designed for the TSP by
Gambardella and Dorigo [61] and by Dorigo and Gambardella [47], solves the
PTSP using the objective function of the TSP (the length of a Hamiltonian
path) as a rough but fast approximation of the PTSP objective function. The
second version of ACO considered in [24] 25], pACS, is identical to ACS except
from the fact that it uses the PTSP objective function (the expected length).
Such difference implies that pACS considers as good solutions different solutions
with respect to ACS, and so pACS reinforces pheromone (during global updat-
ing) on different solutions with respect to ACS, with the consequence that ants
in pACS converge on different solutions. Note, however, that ACS and pACS
use the same, TSP specific, heuristic information (the reciprocal of the distance
between two customers). Experimental results on PTSP instances with homoge-
neous customers probabilities have shown that pACS is better than ACS, except
for the case when the customers probabilities are close to 1, in which case ACS is
more efficient than pACS. This means that the overhead of the time consuming
PTSP objective function is not justified in those cases where the approximate
objective function, which can be computed much faster, is close enough to the
exact one. The idea to employ faster approximations of the exact objective
function has been further developed in [33] [34]. The authors propose an ad-hoc
approximation of the expected cost that neglects the least probable customers
configurations. This approximation is shown experimentally to accelerate con-
vergence without significantly worsening the solution quality. Another issue
addressed by [33] 34] is the design of PTSP-specific heuristics to guide the ants
construction process. The authors experimentally analyze different heuristics,
and show that one of them indeed improves the quality of solution constructed
by ants, but at the cost of a higher computational time.

An important aspect in designing ACO for SCOPs (but also for classical
DCOPs), is the application of a local search procedure to improve solutions
found by ants (the local search is part of the DeamonActions of Algorithm [1)).
In order to be competitive with state-of-the-art algorithms, it has been neces-
sary for ACO algorithms to use a local search both in the PTSP [34] and the
VRPSD [21]. Unfortunately, designing an effective local search for a stochastic
problem with a computationally expensive objective function may be a quite
challenging task. The reason is that in local search it is very important to
compute efficiently the change, or ‘delta’, of the objective function between two
neighboring solutions. When the objective function is complex like in most
SCOPs, it is difficult to find a delta expression which is both exact and fast to
be computed. For the PTSP it has been possible to derive for two local search
operators, the 1-shift and the 2-p-opt, recursive, fast and exact expressions for

18



the objective function delta [26] 23]. The 1-shift and 2-p-opt are very efficient,
since they can explore the whole neighborhood of a solution in O(n?) time, the
same time it would take for the same operators in the TSP. For the VRPSD,
a local search operator is available, the OrOpt, with an efficient delta expres-
sion which is not exact, but approximated, and has been introduced by Yang et
al. in [T40] (we will call this ‘Yang approximation’). In Bianchi et al. [2] 22],
besides the Yang approximation, one based on computing the length difference
between two neighboring solutions has been considered. This last approxima-
tion is equivalent to treat a VRPSD solution (which is a Hamiltonian path)
like a solution for the TSP, and it is faster but less accurate than the Yang
approximation. In [2T], 22], the impact of using the two above types of delta
approximation has been tested on several metaheuristics, namely ACO, EC, SA,
TS, and Iterated Local Search. In ACO, the use of the rough but efficient TSP
approximation lead to better results than the Yang approximation (even though
ACO was not able to reach the quality of the best performing metaheuristics,
that were Iterated Local Search and EC).

Sampling approximation When ACO is applied to this type of problems,
the DeamonActions procedure (Algorithm [1)) must implement ways of perform-
ing statistical tests for comparing the sample average values of the solutions
generated by ants, in order to select the best solution (or a set of best so-
lutions). Sampling could also be used in ConstructAntsSolutions, in order to
estimate heuristic values 7y ;(u), when the chosen heuristic depends on random
variables.

The first sampling-based ACO, called S-ACO, has been proposed and an-
alyzed by Gutjahr in two papers [74], [75]. The first paper [74] theoretically
analyzes S-ACO, by proving convergence to the optimal solution with probabil-
ity one. The second paper [75] experimentally studies S-ACO on two stochastic
routing problems, the PTSP, and the TSP with time windows and stochastic
service times (TSPTW). S-ACO has been applied in a third paper by Rauner
et al. [116] to a policy optimization problem in healthcare management. Al-
gorithm [2] summarizes the functioning of S-ACO, showing in particular how
sampling is used; for details about procedures ConstructAntsSolutions and Up-
datePheromone, see [74][75]. In every iteration, after ants have constructed their
solutions z,, only one ant solution z is selected for being further compared with
the current best solution (step 3 of Algorithm . Interestingly, for the sake of
convergence, it does not matter how the ant solution is selected [74]. A possible
way to do it, which has been chosen in [75], is to evaluate each x, on a same
random scenario drawn specifically for a given iteration, and to take x as the
solution with the best value. In the case of the more complex problem treated in
[116], selecting x, based on a single random scenario turned out as suboptimal;
better results were obtained by choosing several (but not too many) scenarios.
After x has been selected, it is then again evaluated, together with the current
best solution z*, in order to decide whether it is better than x*. This is done by
estimating = by sampling over N scenarios w, and z* over Nj scenarios w!,. In

19



Algorithm 2 S-ACO
1: for iteration k =1,2,... do

2:  ConstructAntsSolutions [s ants construct their walk z,, 0 = 1,2,...,s on
the graph G]

3:  from {x1,...,xs} select a walk z;

4: if k=1 then

5: set o* = x [x* is the current approximation of the optimal solution]

6: else

7: based on NV; independent random scenarios w,, compute a sample es-

timate gx(x) = 1/Ng Zivzkl G(z,w,) of z;

8: based on Ny independent random scenarios w),, compute a sample es-
timate gg(z*) = 1/N YN G(a*,w),) of &%

9: if gr(z) < gx(z*) then

10: set x* = x;

11: end if

12:  end if

13:  UpdatePheromone

14: end for

the convergence proof of [74], it has been necessary to impose that w, and w),
are independent, but in practice [75], if w, = w!, S-ACO also performs well. The
number of sample scenarios Ny is a critical parameter of S-ACO: if too small,
the estimate and comparison of solutions will be often faulty, but if Ny is too
big, the computational time required for one solution evaluation could become
a problem. As shown in [74], for proving convergence it is sufficient that Ny in-
creases linearly with the iteration number k. This result is interesting especially
if compared with the faster than quadratic increase recognized as necessary for
the corresponding SA approach in [77, [89]. In practical implementations of S-
ACO, it may be more convenient to choose the sample size Ny adaptively, based
on some statistical test. In [75], one version of S-ACO establishes the sample
size by means of a parametric statistical test: Ny is gradually increased till when
the difference between the sample estimation for the two solutions being com-
pared is larger than 3 times their estimated standard deviation. This kind of
sample schedule, also known as variable-sample strategy, has been theoretically
analyzed in the context of random search algorithms by Homem-de-Mello [90].

More recently, the ACO/F-Race algorithm has been proposed by Birattari
et al. [27], where at each iteration the selection of the new best solution (steps
3 to 12 of Algorithm [2|) is done with a procedure called F-Race, which is more
sophisticated than the simple parametric test of S-ACO. As explained in [27], F-
Race consists in a series of steps at each of which a new scenario w is sampled and
is used for evaluating the solutions that are still in the race (at the beginning,
all solutions generated by ants in a given iteration, together with the current
best solution, are in the race). At each step, a Friedman test is performed and
solutions that are statistically dominated by at least another one are discarded

20



from the race. The solution that wins the race is stored as the new current
best solution. Preliminary experiments on homogeneous instances of the PTSP
problem have shown that ACO/F-Race improves over the parametric procedure
adopted by S-ACO.

Markov Decision Processes To our knowledge, there are only two papers
that use ACO to solve MDP, the first one by Chang et al. [42] and the second
one by Chang [41]. Both papers design ACO algorithms to solve MDP, and
theoretically analyze their properties by providing convergence proofs.

Chang et al. [42] focus on MDP with infinite horizon (that is, T = cc). This
simplifies a little the problem, because in this case the optimal policy is station-
ary, that is, it does not depend on time. The construction graph on which ACO
algorithms proposed in [42] are based is represented in Figure The states in X

(X, Aa)

Figure 2: Construction graph of the ACO algorithm proposed in [42] for solving
Markov Decision Processes with stationary policies.

are arranged in an arbitrary order O; each state x € X corresponds to a vertex
of the construction graph, and each arc of the construction graph corresponds to
a pair (z,a) of state x € X and an admissible action a € A(z). The direction of
the arc goes from the current state x to the next state with respect to the order
O. A particular ant traverses all the states in the construction graph following
the order O from the first state of O. When it moves from a state x to a state vy,
it traverses randomly the arc (x,a) with a transition probability that depends
on the pheromone on that arc, and on some heuristic appropriately defined (see
[42] for details). Once an ant finishes the tour, it has generated a stationary
policy, which, in the context of MDP, is a candidate solution to the problem.
In [42], two ACO versions are proposed, ANT-PI and ANT-TD. The first one
is inspired by a well-known exact method for MDP, policy iteration (PI) [115],
and assumes that the state transition probabilities P of the MDP system are
known. The second one considers the case of unknown P, and uses one the
well-known reinforcement learning algorithms called temporal difference learn-
ing (TD) [131] for evaluating the average value of a given policy. It is proven
that both ANT-PI and ANT-TD probabilistically converge to the optimal solu-
tion. For practical implementations, due to the high computational complexity

21



inherent to the problem, the authors suggest that parallel implementations of
the proposed ACO algorithms are used.

In Chang [41], the focus is on MDP with completely unknown system dy-
namics, that is, unknown state transition probability P and unknown costs C.
A finite horizon T is considered and, for simplicity, it is assumed that every
action is admissible at every state. An ACO algorithm called ANT-EE is pro-
posed, which is based on a TD algorithm for evaluating a policy, similarly to the
ANT-TD algorithm of [42]. Theorems are provided that show that ANT-EE has
the same convergence properties as Q-learning [136], one of the most important
basic techniques in reinforcement learning.

4.2 Evolutionary Computation

EC [20] is a collective term for all variants of optimization algorithms that are
inspired by Darwinian evolution. In this context, a solution to a given opti-
mization problem is called individual, and a set of solutions is called population.
The basic structure of an EC algorithm is represented by Algorithm [3] Every
iteration of the algorithm corresponds to a generation, where certain operators
are applied to some individuals of the current population to generate the indi-
viduals of the population of the next generation. Typical operators are those
of recombination, that recombine two or more individuals to produce new indi-
viduals, and mutation, that modify single individuals to obtain self-adaptation.
At each generation, only some individuals are selected for being elaborated by
recombination and mutation operators, or for being just repeated in the next
generation without any change, on the base of their fitness measure (this can be
the objective function value, or some other kind of quality measure). Individuals
with higher fitness have a higher probability to be selected.

In the literature there are mainly three different categories of EC that have
been developed independently from each other: Evolutionary Programming
(EP), proposed by Fogel et al. in 1966 [57], Evolutionary Strategies (ES) pro-
posed by Rechenberg in 1973 [117], and Genetic Algorithms proposed by Hol-
land in 1975 [88]. Presently, algorithms that fall in the EP and ES category
mostly apply to continuous optimization problems, while GA are more specific
for discrete and combinatorial optimization problems. Recent overviews about
EC include Hertz and Kobler [86], and Calégari et al. [39]. For the convergence
properties of EC and GA, see for instance Rudolph [123], Vose [138], and Reeves
and Rowe [I1§].

4.2.1 EC for SCOPs

There is a very large amount of literature on applying EC to optimization prob-
lems ‘under uncertainty’, such as problems with noisy fitness, with time varying
and dynamic fitness, and with approximated fitness. For a recent survey on how
the EC literature addresses different types of uncertainty, see Jin and Branke
[04]. Other reviews include a book by Arnold [9], and a paper by Beyer [19].
Although SCOPs are a particular case of optimization under uncertainty, the

22



Algorithm 3 Evolutionary Computation (EC)

P = GeneratelnitialPopulation()
while termination condition not met do
P’ = Recombine(P)
P” = Mutate(P’)
Evaluate(P")
P = Select(P" U P)
end while

translation to the SCOP domain of the results from the EC literature on opti-
mization under uncertainty is not easy. The main difficulty is that most papers
focus on continuous optimization, and they often restrict their attention to the
optimization problem characterized by ad-hoc test functions, such as the ‘spher-
ical’ objective function f(x) = xTx, x € RY. Also when discrete optimization
problems are considered, experiments are often restricted to the ‘onemax bit-
counting’ function, which can be regarded as the counterpart of the spherical
objective function in binary search spaces.

In the following, we outline the contributions of EC in the SCOP domain,
and we also highlight the main ideas and methods proposed for problems under
uncertainty that may be relevant for SCOPs, even if they have not been directly
tested on specific problems from this domain.

Exact objective or ad-hoc approximation The EC literature addressing
this kind of problems may be roughly divided in two groups. In the first group
([63, 105]) EC algorithms use the exactly computable objective function as it
is, even if computationally expensive, while in the second group ([211 22], and
references cited in [93]) EC exploits also computationally more efficient objective
function (fitness) approximations. Let us briefly analyze these two groups of
papers.

In [53] Easton and Mansour apply a distributed GA to three different la-
bor scheduling problems, one of which is formulated as a stochastic goal pro-
gramming problem. Their algorithm operates in parallel on a network of three
workstations. Separate sub-populations evolve independently on each processor,
but occasionally the fittest solutions migrate over the network to join the other
sub-populations. Also infeasible solutions are accepted (with a fitness penalty)
in order to encourage the exploration of promising regions of the search space.
The proposed GA is compared experimentally to a SA and a TS metaheuristic
previously developed by other authors (respectively in [36] [37] and in [54]), and
it is shown to outperform both of them.

In [I05] Guo and Mak consider a vehicle routing problem with stochastic
demand and soft time windows, which is formulated as a Two-stage Stochastic
Integer Program (Definition . The authors propose an EC algorithm called
Age-GA where, instead of being replaced by their offspring after each iteration,
individuals may grow up and generate new offspring continuously before death,

23



and the population comprises individuals from various age-groups. With the
same amount of computational effort, it is possible to use a larger population
size in Age-GA than in a canonical GA. The paper shows that, on a set of
eighteen randomly generated instances, Age-GA outperforms a canonical GA
without the aging mechanism.

To the group of papers using in SCOPs efficient approximations of the fit-
ness function belong [21} 22] by Bianchi et al. (also cited in section [4.1), that
compare a simple EC with other metaheuristics (ACO, SA, TS, and Iterated
Local Search) for the VRPSD. Similarly to the other metaheuristics, EC is in-
tegrated with the OrOpt local search operator, where two approximations for
the objective value difference between neighboring solutions have been tested,
the Yang and the TSP approximation. The exact VRPSD objective function is
used for accepting a new solution in the local search, and for the selection of
a new population. EC, like ACO and Iterated Local Search, performs better
with the TSP approximation. Interestingly, EC is improved even more when in
[22], instead of OrOpt, a more TSP-specific local search (3-opt) is used. EC,
together with Iterated Local Search, is shown to be the best performing among
the tested metaheuristics.

Here, it is useful to note that there is a thread in the EC literature that
focuses on the use of computationally efficient approximations of the original
fitness in continuous optimization problems. Some aspects of this issue that
are developed in the context of continuous optimization may be relevant to
SCOPs as well. Fitness approximations are also known as approximate models,
meta-models or surrogates. A comprehensive survey on fitness approximation
in EC has been written by Jin [93]. This growing research area is particularly
oriented to continuous optimization problems with extremely time consuming
objective function computations, such as, for instance, structural design opti-
mization [I0], where one single fitness evaluation may take over ten hours on a
high-performance computer. The issue of how the approximate model can be
incorporated in the EC algorithm, which has been widely addressed by the EC
literature on fitness approximation, is quite independent from the continuous or
discrete nature of the optimization problem. Nevertheless, most of the ideas still
haven’t been applied to SCOPs. For a review and pointers to existing literature,
see Section 4 of [93].

Sampling approximation The EC literature about optimization with noisy
fitness function is also relevant for SCOPs with sampling estimated objective
function. In fact, noise is mostly assumed to be additive with zero-mean, which
is the case when Monte Carlo sampling is used to estimate the objective function.
Section IT of Jin and Branke [94] is a good overview about the methodological
approaches used in EC to deal with noisy fitness functions. The authors iden-
tify three main strategies for dealing with noise: explicit averaging, implicit
averaging, and modifying the selection process.

Explicit averaging corresponds to the computation of sample averages of the
fitness function performing repeated measures of the noisy fitness and computing

24



their average. This is very similar to the Simulation Optimization technique
we have illustrated in section Aizawa and Wah [2] propose either to
increase the number of samples with the generation counter, or to higher the
number of samples for individuals that have a high estimated variance. Stagge
[128] proposes to adjust the number of samples according to the probability
of an individual of being among the p best ones. Branke and Schmidt [35]
also propose an adaptive sampling method that takes additional samples of two
individuals participating in a tournament until the normalized fitness difference
between the two individuals falls below some threshold. The normalized fitness
difference is obtained dividing the difference of the observed fitnesses by the
standard deviation of the difference: (gn () — gn(y))/0q. Canti-Paz [40] uses
an adaptive sampling method that consists in taking the smallest number of
samples necessary to make a decision between competing individuals during the
selection process. Their approach is very similar to Branke and Schmidt’s, but
differs in that they take samples one at a time from the individual with the
highest observed variance, and they use standard statistical tests to select the
winner of the tournament with a certain probability. Similar to the approach
of Canti-Paz, Teller and Andre [I33] propose a method that allocates varying
numbers of samples to evaluate individuals. Individuals are initially evaluated
with a small number of samples, and are further evaluated only if there is some
chance that the outcome of the tournaments they participate in can change. A
similar technique has been developed by Giacobini et al. [67].

The second type of strategy for dealing with noise in EC is implicit averaging.
Its aim is to reduce the influence of noise by using a large population size, instead
of performing more fitness measures of a single individual. The intuition behind
implicit averaging is the following ([94], p.305): Because promising areas of the
search space are sampled repeatedly by the EC algorithm, and there are usually
many similar solutions in the population, when the population is large, the
influence of noise in evaluating an individual is very likely to be compensated
by that of a similar individual. This can be regarded as an implicit averaging
effect. In the literature, conflicting conclusions have been reported on whether
it is more effective the use of implicit or explicit averaging, given a fixed fitness
evaluation number per generation is allowed. For a summary about the history
of implicit averaging we direct the reader to [94] and to the references cited
therein.

The third strategy used in EC to reduce the influence of noise is modifying
the selection process of individuals. One example is to accept an offspring
individual only if its fitness is better that that of its parents by at least a
predefined threshold, as done by Markon et al. [I06]. Beielstein and Markon
[11] study the relationship between threshold selection and hypothesis testing
techniques. Another way of modifying the selection process with respect to
standard EC is to eliminate random choices during selection, in order to exploit
the uncertainty due to the noisy fitness as a sort of randomization effect. This
method has been proposed by Branke and Schmidt [35].

Convergence properties of EC and the dynamics of the fitness function when
noise is present have been analyzed in several papers, for example by Miller and

25



Goldberg [108] and by Beyer [19].

In all the above cited papers aiming at reducing the influence of noise via
implicit and explicit averaging, or via modifications of the selection process,
the computational experience is unfortunately limited to ad-hoc continuous or
discrete test functions. It appears that an experimental validation of the various
techniques in the SCOP domain is still missing in the literature. In fact, the
few papers applying EC to SCOPs that we are going to outline below, either
use very simple techniques for dealing with noise or rely on methods that are
unrelated to the main EC literature on noisy fitness functions.

Watson et al. [I39] address a stochastic warehouse scheduling problem where
the objective function must be estimated by simulation. The authors consider a
GA, a solution construction heuristic specific for that problem, two local search
and a random search algorithm. Two versions of the GA and the local search
algorithms are considered where the (set of) starting solution(s) is randomly
generated in one case, and provided by the constructive heuristic in the other
case. In order to keep the run time of the algorithms feasible, the simulator is
used in a fast but inaccurate mode. Only final solutions are eventually evaluated
with a more accurate - two order of magnitude slower - simulator mode. The
constructive heuristic exploits specific knowledge about the internal states of the
simulator in order to construct a solution. Instead, in the GA and local search
algorithms the simulator is used as a black box, that, provided a solution, returns
a real value indicating the solution quality. Experimental results show that
GA initialized with the domain-specific construction heuristic outperforms all
the other algorithms. Moreover, all algorithms perform worse when initialized
by random solutions. The results also highlight an interesting phenomenon
related to the use of a black box, fast but inaccurate simulator for the evaluation
of solutions during the execution of the GA. As better and better solutions
according to this simulator are found, it is observed that the correlation with
solution values given by the slow-accurate simulator (evaluated a posteriori)
decreases. This implies that the final solution returned by the GA as best
solution may be quite bad with respect to the nearly-exact objective value. It
is reasonable to think that this is a general phenomenon that can happen in
any metaheuristic exploiting a non-exact or noisy objective function evaluation,
particularly when estimating the objective function by sampling and with a
fixed (low) number of samples. One possibility to overcome this problem is to
keep in memory a set of promising solutions encountered during the execution
of the algorithm, and to evaluate them a posteriori with the accurate simulator,
or to apply more sophisticated adaptive sampling techniques. Yoshitomi [142)
and Yoshitomi and Yamaguchi [I43] use GA for solving the stochastic job-shop
scheduling problem. In both papers, the best solution is extracted among the
set of solutions that have been more frequently present through the generations
of the GA. In [143], Monte Carlo sampling is used to select among the set of
most frequent solutions the best final solution. Other applications of GA based
on Monte Carlo sampling are the ones by Sudhir Ryan Daniel and Rajendran
[130] applying GA to the inventory optimization problem in a serial supply
chain, and by Jellouli and Chéatelet [92] using GA for addressing a supply-chain

26



management problem in a stochastic environment.

Markov Decision Processes Chang et al. [43] propose an EC algorithm
called Evolutionary Policy Iteration (EPI) for solving inifinite horizon discounted
reward MDPs. EPI is particularly suited for problems where the state space is
small but the action space is very large. This situation makes the use of the well-
known policy iteration (PI) algorithm [115] for solving MDPs impractical, since
PI must perform a maximization over the entire action space. EPI eliminates
the need of maximizing over the entire action space by directly manipulating
policies via a method called policy switching that generates an improved pol-
icy from a set of given policies. The computation time for running the policy
switching is on the order of the state space size. The algorithmic structure of
EPI is that of standard GA, with appropriate modifications and extensions re-
quired for the MDP setting. EPI iteratively generates a population or a set of
policies such that the performance of the best policy for a population monoton-
ically improves with respect to a defined fitness function. In [43], it is proved
that EPI converges with probability one to a population whose best policy is
an optimal policy.

Lin et al. [I01L [102] focus on finite horizon partially observed Markov decision
processes (POMDPs), an extension of MDPs that consider situations such as:
State observations are costly; sensors that measure the current state value are
noise-corrupted; at least part of the current state value is inaccessible. In [T0T]
102], a GA is developed for finding a good approximation of the value function.
In [T02], the GA is combined with a mixed integer programming algorithm, and
this combination is capable of determining the value function and of finding the
optimal policy in less computation time than other exact methods.

Yokoama and Lewis III [I41], address a stochastic dynamic production cy-
cling problem whose original formulation is that of an MDP. In order to reduce
the search space dimensionality, the problem is first re-formulated in a two-level
problem. The first level consists in a DCOP that, in order to be solved, needs
that a series of MDP sub-problems (constituting the second level) are solved.
The first level DCOP is addressed by a GA, which calls dynamic programming
algorithms as sub-routines to solve the second level MDPs.

4.3 Simulated Annealing

The SA algorithm has been introduced in the area of combinatorial optimization
by Kirkpatrick et al. [08]. It relies on a model developed by Metropolis et al. [T07]
for simulating the physical annealing process, where particles of a solid arrange
themselves into a thermal equilibrium. An introduction to SA can be found in
van Laarhoven and Aarts [I37] or Aarts and Korst [I].

The standard type of applications concerns combinatorial optimization prob-
lems of the form

minges g(z),

where S is a finite set of feasible solutions. The algorithm uses a pre-defined

27



neighborhood structure on S. A control parameter which is called “tempera-
ture” in analogy to the physical annealing process governs the search behavior.
In each iteration, a neighbor solution y to the current solution z is computed.
If y has a better objective function value than z, the solution y is “accepted”,
that is, the current solution z is replaced by y. If, on the other hand, y has
a worse objective function value than z, the solution y is only accepted with
a certain probability depending on (i) the difference of the objective function
values in z and y, and (ii) the temperature parameter.

In pseudocode, the SA algorithm can be represented as follows (cf. [I], p. 16):

Algorithm 4 Simulated Annealing (SA)

Initialize state x and temperature parameter T7;
for iteration k =1,2,... do

select y randomly from S(x);

if g(y) < g(z) then

set x = y;
else if exp (%f@)) < uniform[0,1] then
set x = y;
end if
update Ty to Tk41;
end for
Therein,

e z and y are feasible solutions from S;

o T\, T,,...is a (usually decreasing) sequence of values for the temperature
parameter; the update of the values T} is done according to a so-called
cooling schedule;

e the sets S(x) form the pre-defined neighborhood structure: to each feasible
solution x € S, a set S(z) C S\ {z} of “neighbor solutions” is assigned,;

e uniform[w, §] is a procedure selecting a uniformly distributed (pseudo-)ran-
dom number from the interval [«, G].

Several results showing convergence of SA to the set of optimal solutions
under suitable cooling schedules have been obtained by diverse authors, for
example Geman and Geman [64], Gelfand and Mitter [62], or Hajek [81]. Es-
sentially, convergence can be assured by a cooling schedule where T}, is decreased
as I'/log k, with sufficiently large T'. In practice, cooling is usually done faster
for computation time reasons. (For more details, see [1].)

4.3.1 SA for SCOPs

In the literature, several extensions of the SA algorithm above have been sug-
gested for treating Stochastic Integer Programs (Definition , both in the case

28



of exact objective and ad-hoc approximation, and sampling approximation.

Exact objective or ad-hoc approximation One early application of SA
in the context of SCOPs is due to Teodorovi¢ and Pavkovié [I34]. The authors
address a VRPSD with multiple vehicles, and use SA in two stages, first for
partitioning the customers among the different vehicles, and second to improve
the single vehicle routes. In this preliminary work, computational results are
reported only for one instance of 50 customers.

More recently, the already cited papers [21], 22] by Bianchi et al. (see sec-
tion and have applied to the VRPSD a simple SA algorithm, together
with other metaheuristics (ACO, EC, TS, and Iterated Local Search). Similarly
to the other metaheuristics, two approximations for the objective value differ-
ence between neighboring solutions generated according to the OrOpt scheme
have been tested, the Yang and the TSP approximation. Differently from what
happens for ACO, SA performs better when using the more accurate but more
computationally expensive Yang approximation. On average, SA does not per-
form significantly different from ACO, and it is not able to reach the quality of
the best performing metaheuristics, that are EC and Iterated Local Search.

Sampling approximation Algorithm [5] shows a typical basic structure of
an SA modification to the solution of Stochastic Integer Programs (Definition
with sampling estimated objective function. The approaches from the liter-
ature outlined below follow this general scheme. Differences stay particularly
in the way step 5 (estimation of the objective value), step 11 (choice of a new
approximation of the optimal solution), and step 12 (temperature level) are
implemented in Algorithm

Algorithm 5 Stochastic Simulated Annealing (SSA)

1: Initialize state x, temperature parameter T} and sample size Ni;

2: Set * = x [x* is the current approximation of the optimal solution];

3: for iteration k =1,2,... do

4:  select y randomly from S(z);

5. compute sample average estimates gi(z) and gx(y) for the costs in x

resp. ¥;
6:  if gi(y) < gr(z) then

7 set x = y;

8: elseif exp (%}c%(y)) < uniform[0,1] then
9: set ©x = y;

10:  end if

11:  compute a new current approximation x* of the optimal solution;
12:  update T} to Tg41;

13:  update Ni to Njyq;

14: end for

Gelfand and Mitter [63] investigate the case where the observation of the

29



objective function g(x) is disturbed by random noise Wy in iteration k of the SA
process, such that instead of g(x), the estimate gy (x) = g(x) + W, is observed.
They show that if W, is normally distributed with mean zero and variance o7, if
certain conditions on the values o} and on acceptance probabilities are satisfied,
and if a suitable cooling schedule (ensuring convergence of ordinary SA) is used,
then the convergence property of ordinary SA remains valid.

Gutjahr and Pflug [77] follow a similar approach by showing that under suit-
able conditions on the “peakedness” (Birnbaum [29]) of the noise distribution,
convergence of the current solutions to the set of optimal solutions can be guar-
anteed. To be more specific, let us call a symmetric distribution 1 more peaked
around zero than a symmetric distribution pue, if for all ¢ > 0, the probability
mass on the interval [—t, ] is larger or equal under p; than under py. Then, if
the distribution of the noise Wp, is more peaked around zero than a normal dis-
tribution N(0,03), where o, = O(k™7) with a constant v > 1, the distribution
of the solution in iteration k converges as k — oo to the uniform distribution on
the set of global optimizers, provided that a suitable cooling schedule (ensuring
convergence of ordinary SA) is used. Decreasing oy, with the required rate can
be achieved by increasing the sample size Ny more than quadratically in k, that
is, by imposing that Ny = O(k*) with p > 2. An application of the technique
of [T7] to a discrete time/cost tradeoff problem in activity planning has been
reported in [78].

Other approaches have been presented by Roenko [120], who proposes to
store the feasible solutions produced during the execution of the algorithm and
to compare them with the solution generated in each current iteration, and by
Fox and Heine [58], who derive a convergence result based on the assumption
that with probability one, the objective function estimates g (z) coincide af-
ter some finite time with the true objective function values g(z), as it can be
achieved by consistent estimators in the case of only finitely many possible ob-
jective function values. The last assumption can also be relaxed, if some more
complicated condition can be verified, but Fox and Heine argue that in each
computer representation, objective function values are taken from some finite
domain (given by the machine number precision) anyway. The algorithm in-
dicated by Fox and Heine does not use independent sampling from scratch in
each iteration, as it is done in [63] and [77], but cumulates the sampling results,
which is of course advantageous from a computation time viewpoint.

Alrefaei and Andradéttir [6] pursue a different idea by keeping the temper-
ature parameter T} constant during the process instead of decreasing it toward
zero (as usual in ordinary SA). To obtain convergence, two alternative techniques
are suggested. The first, let us call it Al, consists in the following procedure:
In each iteration k, for the current solution x chosen in this iteration, a counter
Vi () is increased by one in order to register how often x has been visited since
the start of the algorithm. The current number Vi (z) of visits is divided by the
number D(z) of neighbors of z. The estimated optimal solution z* in iteration &
is then defined as that solution 2* = « for which Vi (z)/D(z) is maximal, among
all the solutions x that have been encountered so far. The second technique,
let us call it A2, is to estimate the objective function value of solutions z and y

30



(step 5 of Algorithm , by cumulating previous estimates of x and y (if any),
and then, choose as new approximation z* of the optimal solution at iteration
k the solution with the smaller estimated objective value, among all solutions
evaluated so far. Both A1l and A2 compute sample averages with an increasing
number of samples at each iteration k.

Alrefaei and Andradéttir show that both alternatives guarantee, under mild
conditions, convergence with probability 1 to the set of optimal solutions. Their
article also reports on experimental comparisons showing a superiority of the
introduced new algorithms over the previous approaches in [63], [77] and [58];
among the two new algorithms, A2 turns out to yield better results than Al.
The experiments are restricted to a test instance with only 50 feasible solutions,
therefore it is not clear whether the results can be generalized to larger search
spaces; nevertheless, the empirical findings give some evidence that using the
solution with best objective function estimate so far as the proposed solution
may be a very good choice. Interestingly, for the considered test instance, a
random-search-like neighborhood structure including all elements of S (different
from z) into the neighborhood S(z) of x produces, for all tested algorithms,
better results than a more restricted neighborhood. This seems to indicate that
in the stochastic case, the hill-climbing feature of SA gains importance only for
larger solution spaces S.

A further important contribution of [6] is that the article discusses optimiza-
tion both in a transient and in a steady-state simulation context. It is shown
that if g(x) is given as the expectation of a functional G(x,w) of a stochastic
process in either a transient or a steady-state situation, then the theoretical
result derived for the simple static SCOP case (corresponding to our Definition
still remains valid.

One practical limitation of approaches such as the two just described by
Alrefaei and Andradéttir [6] and the one by Roenko [120] is that they require
the storage of information about all or most of the solutions encountered by the
algorithm, and this is an infeasible task for problems that have a combinatorial
nature.

Alkhamis et al. [5] use again a decreasing cooling schedule for the parameters
T). They propose to decide on acceptance or rejection of a neighbor solution ¥y
by means of a statistical significance test: A confidence interval for the difference
between the true objective function values in x resp. y is computed; depending
on the position of the value zero in relation to this confidence interval, the
neighbor solution is judged as equal, better or worse than the current solution
x. After that, the usual acceptance rule of SA is applied. The authors are able
to show that on certain conditions on sample size and cooling schedule, the
classical SA convergence property is still satisfied.

Homem-de-Mello [89], [90] presents a comprehensive framework for describ-
ing and analyzing variants of SA for SCOPs. The framework enables a thorough
theoretical analysis and opens a broader range of flexibility in the choice of sam-
pling distributions. Using ergodicity theory, Homem-de-Mello proves in [89] a
rather general convergence theorem for a variable-sample modification of SA.
The theorem includes the result in [77] as a special case, but does not make use of

31



any normality assumptions related to noise distributions anymore. In [90], this
approach is further generalized beyond the area of SA, although the described
analytical techniques and algorithmic ideas remain applicable in a SA context,
as well as in the context of other metaheuristics dealing with SCOPs with ob-
jective function estimated by sampling. In particular, the author presents the
interesting idea of adaptively modifying the sample size Nj, during the iterations
of the algorithm, in such a way that Ny is usually only increased if the result
of a t-test indicates that higher accuracy of the objective function estimates is
required. To preserve the convergence property, the sample size is increased at
some specific points in time regardless of the ¢-test.

In Alkhamis and Ahmed [4], the acceptance rule based on confidence inter-
vals developed in [5] is modified by applying the constant-temperature schedule
of [6] instead of the classical decreasing temperature schedule. As the current es-
timated solution, the authors take the solution with the maximum (normalized)
number of visits so far. Again, a convergence result is given.

There are also some purely experimental papers involving SA and SCOPs
with sampling estimated objective function. The earliest is a paper by Bulgak
and Sanders [38] addressing a buffer allocation problem in the context of a
complex manufacturing system. The objective function to be maximized (the
efficiency of the system) is estimated by means of a discrete event simulator.
Similarly to [90], an adaptive sampling procedure is used, where the number
of samples is gradually increased for testing whether a candidate solution is
statistically better than the current best solution.

Haddock and Mittenthal [80] investigate the feasibility of using an SA al-
gorithm in conjunction with a simulation model to find the optimal parameter
levels at which to operate a system. The authors modify Kirkpatrick et al. [98)]
by substituting an estimate of the expected value of the system response (the ob-
jective function) in all places requiring a deterministic objective function value.

Rosen et al. [I2I] propose a combined procedure, called RS team method,
that improves the SA of Haddock and Mittenthal [80] by initially searching for
good solutions to be then employed as starting solutions by SA. The initial
search for good starting solutions is done by the use of first-order linear approx-
imations of the model, adapting the technique of response surface methodology
to the case of a discrete decision space. The RS team method is tested on a
simulation model of a semi-conductor manufacturing process consisting of over
40 workstations, and it is experimentally compared with the SA algorithm of
Haddock and Mittenthal [80].

Bowler et al. [32] use a stochastic SA algorithm to experimentally analyze the
asymptotic behavior of (sub)optimal homogeneous PTSP solutions, in the limit
of pn (customers probability times number of customers) going to infinity. The
PTSP objective function is estimated by sampling, and the sampling estimation
error is used instead of the annealing temperature. Temperature decrease during
the execution of the SA algorithm is mimicked by an increase in the accuracy
of the objective function estimation, which, in turn, is obtained by increasing
the number of samples.

Finally, two papers [75] and [I14] focus on different metaheuristics, but in-

32



volve SA in experimental comparison. The paper by Gutjahr [75] that we also
cited in section focuses on S-ACO, and reports experimental comparisons
between S-ACO and the SSA algorithm of Gutjahr and Pflug [77]. Pichitlamken
and Nelson [IT4], while focusing on a Stochastic Partitioning Method that will
be described in section [4.5] use the SA algorithm of Alrefaei and Andradottir
[6] as a term of comparison in the experimental analysis of their algorithm.

Although variants of SA for SCOPs have received a great deal of attention
in the last decade, such that, for example, the question under which conditions
convergence to the optimal solution is ensured can now be considered as rel-
atively well understood, there is a comparably smaller body of comprehensive
experimental results aiming at interesting questions such as: Which properties
of the problem instance make which algorithmic variant well-suited? In partic-
ular, there seems still to be little empirical knowledge about the influence of the
search space size on the performance of the single variants.

4.4 Tabu Search

The main ideas characterizing the TS metaheuristic were independently pro-
posed in the eighties by Glover [68] and Hansen [84], and since then TS has
been widely applied to combinatorial optimization problems. A comprehensive
introduction to TS can be found in the book by Glover and Laguna [71], or in
Hertz, Taillard and de Werra [87].

TS is essentially a sophisticated and improved type of local search, an algo-
rithm that in its simplest form, also known as Hill Climbing, works as follows.
Consider a starting current solution, evaluate its neighboring solutions (accord-
ing to a given neighborhood structure), and set the best or the first found
neighbor which is better than the current solution as new current solution. It-
erate this process until an improving solution is found in the neighborhood of
a current solution. The local search stops when the current solution is better
than all its neighbors, that is, when the current solution is a local optimum.

Such a simple and very general local search behaves quite poorly in prac-
tice, particularly because when a local optimum is found, the algorithm stops
improving, and combinatorial problems often have local optima whose objective
values are much worse than that of the global optimum. The strength of the T'S
metaheuristic with respect to simple local search is that, by employing three T'S-
specific concepts, it avoids to get prematurely stuck in a local optimum. These
TS-specific concepts are: best improvement, tabu lists, and aspiration criteria.

Best improvement means that each current solution is always replaced by
its best neighbor, even if the best neighbor is worse than the current solution.
This is clearly a way not to get stuck in local optima. Using best improvement
poses the problem of possible cycling among already visited solutions, because
it is possible, for example, that the best neighbor of a solution is indeed the
last visited current solution. In order to avoid cycling, choosing recently visited
solutions is forbidden, by storing some attributes of these solutions in the so-
called tabu lists. Whole solutions are not stored in a tabu list, because this would
require too much memory for most combinatorial optimization problems. The

33



choice of attributes is a delicate point. Typically, tabu lists store the ‘moves’
that should be performed in order to go from one solution to another, or the
differences between solutions. In this way the memory requirement of tabu lists
is feasible, but another problem arises: forbidding all solutions corresponding to
a tabu attribute may forbid also solutions that have not yet been visited, and
possibly also very good or optimal solutions. TS employs aspiration criteria for
solving this problem. An aspiration criterion is a condition that, if satisfied,
allows to set as new current solution a solution obtained by performing a tabu
move. A typical example of aspiration criterion is requiring that a solution is
better than the best solution found from the beginning of the algorithm.

In pseudocode, the TS metaheuristic may be represented as in Algorithm
[l where z,y are feasible solutions of the combinatorial optimization problem,

Algorithm 6 Tabu Search (TS)

Generate a starting current solution x
Initialize the tabu lists
for iteration k =1,2,... do R
Set A(z, k) ={y € S(x)\T(x, k) UT(z,k)}
Set x = argminge a(qk) 9(¥)
Update the tabu lists and the aspiration criteria
end for

A(z, k) is the set of solutions among which the new current solution is chosen
at iteration k, S(x) is the set of neighbors of z, T'(z,k) is the set of tabu
moves at iteration k, and T (x, k) is the set of tabu moves satisfying at least one
aspiration criterion. In TS, typical stopping criteria may be a maximum CPU
time, a maximum number of consecutive iteration not producing an improving
solution, or the emptiness of the set A(z, k).

Theoretical properties of convergence of TS to the optimal solutions has
been analyzed only quite recently by Hanafi [82] and by Glover and Hanafi [70].
Both papers derive convergence results for a version of TS where the choice of
a given neighborhood and a decision criterion for selecting moves force some
solutions to be revisited before exploring other new ones.

4.4.1 TS for SCOPs

In comparison to the wide literature about T'S for DCOPs, there are still very few
papers applying TS to SCOPs. These works are all experimental, and address
static SCOPs both in the case of exact objective and ad-hoc approximation,
and sampling approximation.

Exact objective or ad-hoc approximation As we have already pointed
out, one of the major difficulties when solving SCOPs is that the objective
function, even if explicitly computable, is computationally expensive. In local
search algorithms, TS included, it is crucial to be able to evaluate the neigh-
borhood of a solution efficiently. Therefore, one of the main issues of applying

34



TS to SCOPs is indeed to find efficient approximations of the objective value
difference between couples of neighboring solutions.

Gendreau et al. [66] propose a TS algorithm for solving the vehicle routing
problem with stochastic demands and customers. One of the major contribution
of their paper is indeed the development of an easily computed approximation
for the objective function, used for the evaluation of potential moves. The
proposed TS was quite successful in experiments: for instances up to about 50
customes, it was able to find optimal solutions in about 90% of cases, with an
average deviation of 0.38% from optimality.

Other papers applying T'S to SCOPs are the already cited |21} 22] by Bianchi
et al. (see section and 7 where a simple TS algorithm has been com-
pared with other metaheuristics (ACO, EC, SA, and Iterated Local Search).
Similarly to the other metaheuristics, two approximations for the objective
value difference between neighboring solutions generated according to the OrOpt
scheme have been tested, the Yang and the TSP approximation. Even if the
two approximations have different characteristics (the first one is more accurate
but more computationally expensive than the second), the quality of results
produced by the two versions of T'S seemed to be quite insensitive to the type
of approximation. In [22], TS obtained results better than ACO and SA, but
worse than EC.

Sampling approximation In the literature two types of contributions may
be distinguished: papers that inside TS use simulation as a black box for the
evaluation of the objective value of solutions, and papers that adapt the sim-
ulation procedure to the different components of TS, such as neighborhood
exploration, setting of tabu moves, verification of aspiration criteria, in order to
speed up the computation.

To the first group belong the papers by Lutz et al. [104], Finke et al. [56],
Dengiz and Alabas [45]. These papers apply quite standard TS techniques, and
are usually very time consuming, since the evaluation of solutions by simulation
is a time consuming process often relying on extern or commercial simulation
packages. The advantage of using simulation is that in this way the real objective
function is considered, in problems where a rigorous mathematical programming
formulation would impose severe unrealistic restrictions.

Among the second group of papers (adapting simulation to the different
components of TS), we describe in some detail the works by Costa and Sil-
ver [44] and by Aringhieri [§]. Costa and Silver [44] describe a TS algorithm
for a problem in the context of cause-effect analysis, where the true cause of
an undesirable effect must be recognized and eliminated. Given that the time
to investigate a cause is a random variable with known probability distribu-
tion, the goal is to establish a fixed sequence of n causes so as to maximize the
expected reward associated with discovering the true cause within a specified
time horizon. This problem is also called stochastic ordering problem with time
constraint (SOPTC).

The TS developed in this context, called NTS (Noisy TS), is based on sam-

35



pling and statistical tests, and is suited for all optimization problems where
the evaluation of the objective function is computationally expensive due to the
presence of noise in the problem definition. In the following we only describe
the characteristics of NTS that are directly related to the stochastic nature of
the problem. What we do not describe, is part of standard TS techniques for
permutation problems. The objective value of a new current solution is com-
puted by a sample average of the type of eq. . N samples are generated
according to the so-called descriptive sampling technique as described in [95],
in order to obtain substantial variance reduction with respect to other sampling
methods. Descriptive sampling has been adopted by Costa and Silver also be-
cause in this way the quality of estimation of the exact objective value does not
depend on the quality of the pseudo-random generator used. The estimation of
the objective function takes O(Nn) time, and if N is large enough to guarantee
a good estimation quality, this computation may be quite time consuming. For
this reason, the evaluation of the (possible many) neighbors of a solution is done
with the following method relying on a smaller number of samples. A statistical
test is used to decide whether a considered neighbor y. € A(x, k) is better than
the best neighbor y, € A(x, k) examined so far in the current iteration k. The
decision is done in two phases. First, a small number N, < N of samples is
randomly generated for estimating the expected value gy, (y.) of y.. The de-
cision as to wether the true objective value of y., is higher than that of y; is
done by hypothesis testing. Second, if the test ‘has decided’ that y,. is better
than y,, this is further ascertained, by using all the IV samples. If it results that
gn (ye) > gn(ys), than yp is replaced by y.. Since N is finite, notwithstanding
the use of this double-check procedure, there is a certain probability that y; is
not truly the best feasible neighbor, and that the best solution so far is updated
with not the truly best solution so far. In order to lesser the risk of missing a
very good solution due to the bad quality of sampling, NTS keeps track of the
ns best solutions encountered so far. At the end of the run all solutions in this
list are re-evaluated with a number of samples k > N, and the best solution
according to this new estimation is the solution returned by NTS.

In [44], the influence on the performance NTS of several factors has been ex-
perimentally analyzed: the hypothesis testing technique (the t-test, the Wilcoxon
test, and the Median test have been compared), and the number of samples
N, N, and & to be used in the different phases of NTS. NTS has been compared
also with a TS that is similar in everything to NT'S, except for the fact that the
objective function is computed exactly on the base of a closed form expression
available for SOPTC, and no hypothesis test is performed. TS outperforms
NTS both in computation time and solution quality, but the solution quality is
only slightly better than NTS. This is a result that encourages the use of NTS
for problems with very complex, or impossible to compute, objective functions.
Note, however, that when a closed form expression for the objective function is
available, even if it is quite computationally expensive like in SOPTC, it may
still be more efficient to use the classical TS algorithm, instead of N'TS.

An application where sampling is employed to save time with respect to
using the exact objective function is the one by Aringhieri [8], that applies T'S

36



to a Chance Constrained Program (Definition . Constraints are supposed to
be linear functions, that is, in Definition [3| we pose H;(z,w) = Zj a;jx; —bi(w),
withj =1,2...,nand x € S C R™. Note that in this problem, only the vector b
is assumed to be random. In the proposed TS, sampling is used to estimate the
probability p;(z, k) that at iteration k solution x violates constraint b;. Given a
set of Nm random samples b; ,, ¢ =1,2,...,m, r =1,2,... N, the probabilities
are estimated as follows

- Zi\]:l (52‘77‘ _ 1 if Zj Qi T — bi,r >0
pi(w, k) = N where 0; . = 0 otherwise (14)

Probabilities p;(z, k) are used to define the concept of probably tabu moves that
in practice extends the set of tabu moves. A move is probably tabu at iteration
k, if it leads to a solution x for which p;(x,k) > «;, ¢ = 1,2,...,m (compare
this with eq. ) Given the set P(x, k) of probably tabu neighbors of z, the
new TS, called SIMTS-CCP (simulation TS for Chance Constrained Programs),
can be obtained from algorithm |§| by modifying the computation of A(z, k) as

Az, k) = {y € S@)\T(x,k)\P(z,k) UT(z, k)}. (15)

In [8] the SIMTS-CCP algorithm has been applied to two NP-hard optimization
problems arising in the design of telecommunication networks. Preliminary
computational results show that solution quality is comparable to that obtained
by a TS algorithm that addresses the problem as deterministic, and the increase
in computation time is acceptable.

4.5 Stochastic Partitioning Methods

We have grouped under the name of SPM the Beam Search heuristic applied to
SCOPs [13], [55], the Stochastic Branch and Bound [109] [110], and the combined
procedure inspired by Nested Partitions [114]. These methods, explicitly de-
signed for SCOPs, follow in different ways the same search strategy: the search
space is recursively partitioned in sub-spaces, and the computation effort is con-
centrated on the sub-spaces that are estimated to be the most promising ones.
SPM are not usually considered as belonging to the class of metaheuristics, but
they could, since inside the general search strategy, several heuristics may be
employed for the evaluation of search sub-spaces, for the improvement of solu-
tions, and for the estimation and comparison among solutions. In the following,
we introduce the different SPM methods in the context of the type of SCOP
that each method mainly focus on.

Exact objective or ad-hoc approximation The Beam Search (BS) heuris-
tic is a heuristic strategy closely related to Branch and Bound, where the search
space is recursively partitioned in sub-spaces, for which upper and lower bounds
for the objective function are computed, in order to guide the search in the more
promising partitions. Unlike Branch and Bound, BS reduces the width of the
search moving downward in the search tree only from a limited number of best

37



promising nodes. The success of BS depends on the evaluation function that
is used to select the nodes that will be further explored. Typically, in BS dif-
ferent evaluation functions are used. First, a simple but imprecise evaluation
function is used at to discard some nodes (this phase is called filtering); second,
nodes that survive filtering are subject to a more precise and time consuming
evaluation. Thus, the main principles behind BS (partitioning the search space
and dosing the computation effort in specific partitions) are similar to those
of SBB and NP. The BS has been only recently applied to SCOPs. Beraldi
and Ruszezynski [13] consider chance constrained problems like the ones we
described in section [3.1] They apply BS to a set covering problem with proba-
bilistic constraints, and show experimentally that BS allows a considerable time
saving with respect to an exact Branch and Bound algorithm, and the solution
quality of BS goes from optimal to 5% worse than optimal. Erel, et al. [55]
present a BS-based method for the stochastic assembly line balancing problem
in U-lines. Computational experiments indicate that the average performance
of the proposed method is better than the best-known heuristic in the literature
for the traditional straight-line problem.

Sampling approximation Stochastic Branch and Bound (SBB) has been
first proposed by Norkin, Ermoliev, and Ruszczyniski [109], as a method for
solving problems where the objective function must be estimated by sampling
as described in section This algorithm extends to SCOPs the main prin-
ciple of the classical Branch and Bound, that is, the computation of upper and
lower bounds for the objective function of portions of the search space, in order
to guide the search. The main difference with respect to classical Branch and
Bound is that here, due to the stochastic and non-exact estimation of the ob-
jective function (and thus of the upper and lower bounds), sub-spaces cannot
in general be cut during the search, but a sort of backtracking into previously
evaluated sub-spaces may be necessary.

The SBB algorithm proposed in [109] is represented by the pseudocode of
Algorithm [7}, and works as follows. Given the search space S, the algorithm
constructs increasingly finer partitions of S, denoted by P = {S!,S2,...}. The
original problem of finding ¢*(S) := min,ecs{g(x)} (see eq. (2)), is divided into
the sub-problems of finding ¢*(S") := minges~{g(x)}, with » = 1,2,..., and
9*(S) = mingrep{g*(ST)}. Assume that there exist functions L and U from P
to R such that, for each S™ € P, L(S") < g*(S") < U(S"), and U(S") = g(Z) for
some T € S, and if S” is a singleton set, then L(S") = ¢*(S") = U(S"). Sup-
pose that the lower and upper bounds L(S™) and U(S") cannot be exactly com-
puted, but instead estimates A'(S”) and v™(S") are used, respectively, assuming
that almost surely lim; o, A'(S™) = L(S7), and lim,,, ., v™(S") = U(S").

Norkin et al. [I09] proved the following convergence result: Suppose the
indices Il and myj are chosen in such a way that whenever a subset S” is an
element of Py, for infinitely many k, then limy_. o [ = 0o and limy_, o mg = 0.
Then with probability one there exists an iteration kg such that for all & > kg,
the lowest-bound subsets S, are singletons and contain optimal solutions only.

38



Algorithm 7 Stochastic Branch and Bound (SBB)
1: Set Py =S, Ao(S) = Ao(S), vo(S)=rv"0(9);
2: for iteration k =0,1,2,...do
3:  Select the lowest-bound subset Sy € argming. cp, {\x(S™)} and a current
solution z* € argming, cp, {v(S")};

4: if the lowest-bound subset Sj is a singleton then

5: Pry1 = Pr;

6: else

7 Construct a partition of the lowest-bound subset P (S*) =
{S_'f, 55’ ) S’Tlik}a

8: Construct a new full partition Pgi1 = Px\{Sk} U P} (5%);

9:  end if

10:  for all subsets S” € P, do

11: Update the estimates of lower and upper bounds Ax(S") = A*(S"),

vp(ST) = v (ST);
12:  end for
13: end for

As suggested in [I09], the estimation of a lower bound L(S™) for ¢*(S"), may
be done by exchanging the minimization and the expectation operator, since
g*(57) = mingegr g(x) = mingesr Ep(G(z,w)) > Ep(mingesr G(z,w)). Thus,
one may chose L(S") = Ep(mingegr G(x,w)), and the estimation of the lower
bound L(S") may be computed by the sample average

N

T 1 :
MV (ST = ¥ o on G(z,w;), (16)
Jj=1
where w1, ws,...,wx is an independent, identically distributed (i.i.d.) random

sample of N realizations of the random vector w.

In general, the practical application of SBB implies one major difficulty:
computing an estimation of the lower bound by eq. requires solving a possi-
bly NP-hard deterministic combinatorial optimization problem, min,es- G(x,w;),
for every sample scenario wj;, and this is unfeasible in a reasonable amount of
computation time, unless very small problem instances are addressed.

Gutjahr et al. [76] use SBB to solve small instances of the single-machine-
tardiness scheduling problem. They consider different sampling techniques for
estimating lower bounds, and report computational experiments.

As a way to make SBB more efficient, Gutjahr et al. [79] propose to use
heuristics or metaheuristics to approximately solve the deterministic subprob-
lems for the lower bound estimation of eq. , as schematized by Figure
The authors focus on the problem of Activity Crashing in Project Management,
and show experimentally that the replacement of an exact solution to deter-
ministic subproblems by a heuristic one (in this case a local search algorithm)
is very advantageous. The authors also say that it is possible to extend the

39



convergence results of [T09] to cases in which the deterministic subproblems
are approximately solved by a search heuristic with a random starting point,
keeping track of the best solution found so far. Another practical enhancement
of the SBB proposed in [79] is the use of Importance Sampling as a technique
to reduce the variance of the sample average estimates. Without the use of a
variance-reduction technique, the number of Monte Carlo samples (and thus of
computation time) required to obtain a sample average with the same variance
would be much greater.

‘ Stochastic Branch and Bound (SBB) ‘

Solution of the determ. subproblems

exact heuristic
Complete Branch and Dynamic
Enumeration || Bound Programming
1761

[ Local search | [Aco |[EC |[sA |[Ts
1791

Figure 3: Possible ways of solving the deterministic subproblems for the com-
putation of the lower bound (eq. (16])) in SBB.

Pichitlamchen and Nelson [I14] propose a combined procedure extending
the Nested Partitions (NP) method by Shi and Olafsson [127] to SCOPs where
the objective is estimated by sampling. NP is based on identifying a sequence
of ‘most promising’ subsets of the search space S, and concentrating the search
of good solutions there. At each iteration, the most promising subset of S is
partitioned into M subsets, and the entire surrounding region is aggregated into
one single subset of S. Thus, at each iteration NP looks at a partition of M + 1
subsets of the search space S. From each of these M + 1 subsets, a random
solution is chosen using some random sampling scheme, and the objective value
of each solution is evaluated, in order to decide which is the most promising
subset of the next iteration. With respect to NP, the combined procedure of
Pichitlamchen and Nelson applied to SCOPs includes a number of enhance-
ments. First, in each of the current M + 1 subsets, more than one solution is
randomly chosen for evaluating the most promising subset. Second, solutions
here are evaluated by the sample average estimation the objective value (see
eq. ) Moreover, in order to select the best solution of each subset, and the
best solution of all subsets, a statistical procedure called Sequential Selection
with Memory (SMM) is used. SMM guarantees to select the best or near-best
alternative among a set of solutions with a user-specified probability. It also

40



exploits memorized information (samples and sample averages) on previously
encountered solutions. The spirit of SMM is similar to the F-Race procedure
proposed in the context of ACO [27] (see section [4.1)), since it consists in a series
of steps in which a set of competing solutions is evaluated and the worst of them
are eliminated. For details about SMM, see also [I12] [113]. The combined pro-
cedure based on NP also applies a Hill Climbing local search (HC) to the best
solution of each iteration. In this way, the computational effort is concentrated
on the most promising subset of the search space. Another specific character-
istic of the combined procedure of Pichitlamchen and Nelson is that at the end
of the algorithm, the solution having the smallest sample average accumulated
over all visits to that solution is returned as final solution. Pichilamchen and
Nelson call their combined procedure NP+SMM-+HC, a name that underlines
its main building blocks just described. In [114], they provide a proof that, with
probability one, NP+SMM+HC finds one of the optimal solutions as the num-
ber of iterations goes to infinity. Moreover, numerical experiments applying the
algorithm to an (s,S) Inventory Problem and to a Three-Stage Buffer allocation
problem show that NP4+SMM+HC has a good performance in comparison to a
pure random search and to a SA algorithm. While the convergence guarantee of
NP+SMM+HC is due to the global guidance system provided by NP, the prac-
tical performance is enhanced by the use of SMM selection-of-the-best method
and HC local search.

4.6 Other algorithmic approaches to SCOPs

In this section we briefly give some references to other approaches for solving
SCOPs, such as Progressive Hedging and Rollout Algorithms, that we have not
reviewed in the previous sections because too little developed in the literature.
Nevertheless, we include this section because the referenced approaches may be
either classified as metaheuristics, or they may involve metaheuristics as part of
their solution strategy.

Progressive Hedging (PH) is an algorithm proposed by Rockafellar and Wets
[119] for solving multistage stochastic programs. It is based on considering a
set of few representative scenarios that capture the uncertain future; for each
of these scenarios, a deterministic optimization subproblem is solved; in this
way one ends up with more solutions, neither of which is in general feasible
for the original problem. Therefore, a sort of averaging procedure among the
solutions of the subproblems is performed, in order to obtain a ‘blended’ solution
that hedges against future uncertainty. Some extensions of PH involve the
use of heuristics or metaheuristics to solve the deterministic subproblems. For
example, Lokketangen and Woodruff [103] integrate TS in the PH framework
and apply this combined procedure to mixed integer (0,1) multistage stochastic
programming. Haugen et al. [85] propose an extension of PH that is explicitly
proposed as a metaheuristic: rather that using a heuristic algorithm to solve
deterministic subproblems, it uses an algorithm for subproblems that is exact in
its usual context, but severs as a heuristic for the proposed PH metaheuristic.

Rollout algorithms (RO) are an emerging class of methods for solving combi-

41



natorial optimization problems, that are capable of improving the performance
of a given heuristic through sequential applications. Originally, the ideas un-
derlying RO have been proposed by Tesauro and Galperin in 1997 [I35] for
developing a simulation-based algorithm to play blackgammon. In the same
year, Bertsekas et al. [I§] formalized RO for combinatorial optimization prob-
lems, by applying them to a machine maintainance and repair problem. RO
are based on the Policy Iteration algorithm, which is part of the Dynamic Pro-
gramming framework for solving MDP [14] (see the paragraph about Markov
Decision Processes of section [3.2). Some authors (Bertsekas et al. in Section
2 of [I§], and Bertsekas on page 528 of [15]), emphasize that RO also share
some ideas with Tabu Search, particularly with the sequential fan candidate list
strategy (Glover and Laguna [71]) and its extended variant, the fan and filter
method (Glover [69]). Among the papers that apply RO to SCOPs, we cite the
works of Secomandi on the vehicle vouting problem with stochastic demands
[124] 125] and on the TSP with stochastic travel times [126], and the paper by
Bertsekas and Castaflon [16] on stochastic scheduling.

5 Discussion

This section takes a transversal view on the reviewed metaheuristics, and points
out the main open issues and possible directions of research.

Using the simulation approximation We have seen that the selection-
of-the-best method that a metaheuristic uses for performing sample averages
and for comparing solutions can have a great impact on the effectiveness of
the algorithm, but it is still hard to say which method is the most effective in
relation to the metaheuristic where it is employed, and this is an interesting
open issue.

Table [ reports some successful selection-of-the-best methods described in
the previous sections in the context of the metaheuristic where they have been
used. In some cases ([74} [77, [6] B B89]), the use of a particular method has
been justified mainly by the need to derive rigorous properties of convergence,
and the application to other metaheuristics is not very meaningful. But in
more experimental oriented papers, a method which is particularly efficient in
one metaheuristic, could be advantageous also in others. This is the case, for
instance, of F-Race [27], SMM [I14], and the adaptive sampling procedures
used in [75], [00], and [44]. In looking for efficient selection-of-the-best methods
to be applied in metaheuristics, the literature about statistical procedures of
ranking, selection, and multiple comparisons (see, for example, [59] [132] and the
references cited therein) could be a good source of inspiration. Moreover, for
speeding up the sample average computations, it could be useful the application
of variance-reduction techniques, such as, for example, those belonging to the
field of Rare Event Simulation [122].

Given the above observations, a selection-of-the-best method working as a
black box simulation that does not allow to specify how samples are chosen

42



is not advisable. Another requirement that seems necessary is the possibility
to increase the accuracy of objective function estimates, particularly when the
algorithm has identified good or near optimal solutions. The intuitive reason
is that often in SCOPs there are many local optima, whose values may be also
quite near, and in order to discriminate between local optima one needs that
the estimation error is small with respect to the difference between the exact
value of local optima. We have seen a practical confirmation of this in several
experimental papers, for instance [139] and [44]. A more rigorous argument in
favor of this requirement is that all metaheuristics with provable convergence
properties need to use a number of samples increasing with the iteration counter.

It has been recognized that completely different discrete stochastic optimiza-
tion algorithm may be needed for small and for large search spaces, respectively
(cf. [59]). Also the “degree of randomness”, that is, the size of noise compared
to the undisturbed objective function values, is an important factor. It cannot
be expected that a metaheuristic variant working well for large solution spaces
with small noise will also perform optimally for small solution spaces with a
large amount of noise, and vice versa. It appears that a characterization of
metaheuristic variants for SCOPs with respect to their appropriate domains of
problem instance types still waits for being elaborated.

Experimental comparisons among different metaheuristics At the mo-
ment, most of the papers in the SCOP literature focus on one single metaheuris-
tic, which is compared either to variants of the same metaheuristic, or to simple
heuristics such as random search, or to exact methods when these are available.
Only a very small number of papers perform comparisons among different meta-
heuristics, as reported in Table [5| Thus, it is still impossible to give guidelines
on which metaheuristic is better in which situation.

One important aspect that experimentation with different metaheuristics
could reveal is whether the effectiveness of a metaheuristic is due to the partic-
ular adjustments to speed up the computation (like approximating the objective
function or using carefully designed sampling and statistical comparison strate-
gies), or to the intrinsic search trajectory of the metaheuristic.

Theoretical convergence properties Papers analyzing theoretical conver-
gence properties of metaheuristics applied to SCOPs are summarized in Table
[6] Note that in the table SCOPs with exactly computable objective function
are missing. In fact, when a metaheuristic always uses an exact expression for
the objective value of a solution, its convergence behavior is equivalent, from
a theoretical point of view, to that of applying the metaheuristic to a DCOP
(pointers to theoretical analyses of metaheuristics for DCOPs have been pro-
vided in the previous sections while introducing each metaheuristic). On the

43



titioned, and random so-
lutions selected from the
neighborhood of the current
solution during local search

Reference(s) Selection-of-the-best method Metaheuristic(s)
where the method
is used

Way of evaluating a Solutions compared
solution

Gutjahr [74] Sample average with num- Current solution with cur- ACO

ber of samples increasing rent estimation of optimal
linearly with the iteration solution
counter
Gutjahr [75] Sample average with num- Current solution with cur- ACO, SA
ber of samples decided rent estimation of optimal
adaptively on the base of a solution
statistical test
Birattari et Sample averages integrated All solutions belonging to ACO
al. [27] with the F-Race statistical the (dynamic) set of solu-
procedure tions in the race
Gutjahr and Sample average with num- Current solution with cur- SA
Pflug [77] ber of samples increasing rent estimation of optimal
more than quadratically solution
with the iteration counter
Alrefaei and Sample average and normal- All solutions visited so far SA
Andradéttir ized number of visits

6]

Alkhamis et Sample average with num- Current solution with cur- SA

al. [5] ber of samples increasing rent estimation of optimal

with iterations, comparison solution
with a statistical signifi-
cance test

Homem- Sample average with num- Current solution with cur- SA

de-Mello ber of samples decided rent estimation of optimal

[89, [90] adaptively on the base of a solution

t-test
Costa and Sil- Descriptive sampling, sta- Current solution with cur- TS
ver [44] tistical test in two stages rent estimation of optimal
(using a higher number of solution, keeping in memory
samples only if first stage of a given number of good so-
the test is positive) lutions for final, more accu-
rate comparison

Gutjahr et Sample average using Lower and upper bounds SBB (SPM)

al. [76] the Importance Sampling of all subsets in which the

variance-reduction tech- search space has been parti-
nique, and number of tioned

samples increasing with the

iteration counter

Pichitlamchen Sample averages integrated Random selected solutions NP+SMM+HC

and  Nelson with the SMM statistical in each subset in which the (SPM)

[114] procedure search space has been par-

Table 4: Main selection-of-the-best methods used in the metaheuristics litera-
ture for SCOPs where the objective function must be estimated by sampling.

44




’ Reference ‘ SCOP Metaheuristics compared “Winner”

Bianchi et al. [21l | VRPSD ACO, EC, SA, TS, ILS EC, TS
29]
Gutjahr [75] TSPTW ACO, SA ACO
Pichitlamken and | Inventory Problem and | SPM, SA SPM
Nelson [114] Three-stage Buffer Alloca-

tion Problem
Easton and Man- | Stochastic Goal Program- | EC, SA, TS EC
sour [53] ming

Table 5: Papers with comparisons among different metaheuristics.

contrary, when ad-hoc approximations of the objective function are used, the
systematicness of the error makes a theoretical analysis very difficult.

Theoretical convergence analyses do exist for static SCOPs with sampling
estimated objective function. The most studied metaheuristic from this point
of view is certainly SA, followed by ACO and SPM. TS and EC still miss this
kind of analysis. Interstingly, Homem-de-Mello [90] suggests that the results
he derives for a simple variable-sample random search algorithm can be readily
adapted to show the convergence of variable-sample versions of more sophisti-
cated methods, in particular, those methods for which the proof of convergence
in the DCOP domain relies on the convergence of pure random search. The
author indicates explicitly EC (GA) as one of these, by referring to the work of
Rudolph [123].

Finally, metaheuristics with provable convergence properties (ACO and EC)
have been designed to solve MDPs. Actually, at the moment MDPs have been
addressed only theoretically by metaheuristics. Therefore, there is the need to
validate their effectiveness also by experimental investigations.

6 Conclusion

In this paper, a wide class of combinatorial optimization problems under un-
certainty addressed by metaheuristics is considered. The domain of Stochastic
Combinatorial Optimization Problems (SCOPs) is clearly identified by provid-
ing the formal description of several SCOPs. Metaheuristics that have been
applied so far to SCOPs are introduced and the related literature is throughly
reviewed. In particular, the following properties of metaheuristics have emerged
from this survey: they are a valid alternative to exact classical methods for
addressing real-sized SCOPs; they are flexible, since they can be quite easily
adapted to solve different SCOPs formulations, both static and dynamic. The
main open issues that need further investigation are: given a particular SCOP,
which is the most promising metaheuristic to be applied; given a particular
SCOP, which is the best way to use objective function approximations in the

45



Metaheuristic SCOP category ‘ Referece(s)
ACO sampling estimated objective Gutjahr [74]
SA “ Alrefaei and Andradéttir [6]
SA “” Alkhamis et al. [5]
SA “ Homem-de-Mello [89)
SA “” Alkhamis and Ahmed [4]
SBB (SPM) sampling estimated objective Norkin et al. [I09]
SA objective function subject to mnor- | Gelfand and Mitter [63]
mally distributed noise
SA objective function subject to noise re- | Fox and Heine [58]
ducing to zero after a certain number
of iterations
SA objective function subject to noise | Gutjahr and Pflug [77]
distributed according to a sufficiently
‘peaked’ distribution
ACO infinite horizon MDP Chang et al. [42] and Chang
Z81]
EC infinite horizon MDP Chang et al. [43]
EC finite horizon partially observed MDP | Lin et al. [102]

Table 6: Papers with theoretical convergence proofs.

optimization process. As far as this last point, this survey highlights some meth-
ods that are less promising than others, providing some guidelines and references
for future research.

Acknowledgments

The authors would like to thank Nicola Secomandi for the useful suggestions
and informations he provided during the writing phase of the paper.

References

[1] E. Aarts and J. Korst. Simulated Annealing and the Boltzmann Machine.
John Wiley & Sons, New York, NY, USA, 1990.

[2] A.N. Aizawa and B. W. Wah. Scheduling of genetic algorithms in a noisy
environment. Fvolutionary Computation, 2:97-122, 1994.

[3] S. Albers. Online algorithms: A survey. Mathematical Programming,
97(1-2):3-26, 2003.

[4] T. M. Alkhamis and M. A. Ahmed. Simulation-based optimization using
simulated annealing with confidence intervals. In R. G. Ingalls, M. D.
Rossetti, J. S. Smith, and B. A. Peters, editors, Proceedings of the 2004

46



[9]

[10]

Winter Simulation Conference (WSCO04), pages 514-518. IEEE Press, Pis-
cataway, NJ, USA, 2004.

T. M. Alkhamis, M. A. Ahmed, and W. Kim Tuan. Simulated annealing
for discrete optimization with estimation. Furopean Journal of Opera-
tional Research, 116:530-544, 1999.

M. H. Alrefaei and S. Andradéttir. A simulated annealing algorithm with
constant temperature for discrete stochastic optimization. Management
Science, 45:748-764, 1999.

S. Andradottir. A review of simulation optimization techniques. In D. J.
Medeiros, E. F. Watson, J. S. Carson, and M. S. Manivannan, editors,
Proceedings of the 1998 Winter Simulation Conference (WSC98), pages
151-158. IEEE Press, Piscataway, NJ, USA, 1998.

R. Aringhieri. Solving chance-constrained programs combining tabu
search and simulation. In C. C. Ribeiro and S. L. Martins, editors, Pro-
ceedings of the 3rd International Workshop on Experimental and Efficient
Algorithms (WEAO04), volume 3059 of Lecture Notes in Computer Science,
pages 30—41. Springer, Berlin, Germany, 2004.

D. Arnold. In Noisy Optimization with Evolutionary Strategies, volume 8
of Genetic Algorithms and Evolutionary Computation Series. Kluwer Aca-
demic Publishers, Boston, MA, USA, 2002.

J.-F. M. Barthelemy and R. T. Haftka. Approximation concepts for op-
timum structural design - a review. Structural Optimization, 5:129-144,
1993.

T. Beielstein and S. Markon. Threshold selection, hypothesis tests, and
DOE methods. In Proceedings of the IEEE Congress on Evolutionary
Computation (CEC 2002), volume 1, pages 12-17. IEEE Press, Piscat-
away, NJ, USA, 2002.

R. Bellman and L. A. Zadeh. Decision-making in a fuzzy environment.
Management Science, 17:141-161, 1970.

P. Beraldi and A. Ruszczyniski. Beam search heuristic to solve stochastic
integer problems under probabilistic constraints. Furopean Journal of
Operational Research, 167(1):35-47, 2005.

D. P. Bertsekas. Dynamic Programming and Optimal Control, Volumes 1
and 2. Athena Scientific, Belmont, MA, USA, 1995.

D. P. Bertsekas. Network Optimization: Continuous and Discrete Models.
Athena Scientific, Belmont, MA, USA, 1998.

D. P. Bertsekas and D. A. Castanon. Rollout algorithms for stochastic
scheduling problems. Journal of Heuristics, 5:89-108, 1998.

47



[17]

[18]

[19]

[20]

[21]

[25]

D. P. Bertsekas and J. N. Tsitsiklis. Neuro-dynamic Programming. Athena
Scientific, Belmont, MA, USA, 1996.

D. P. Bertsekas, J. N. Tsitsiklis, and C. Wu. Rollout algorithms for com-
binatorial optimization. Journal of Heuristics, 3(3):245-262, 1997.

H.-G. Beyer. Evolutionary algorithms in noisy environments: Theoretical
issues and guidelines for practice. Computer Methods in Applied Mechan-
ics and Engineering, 186(2-4):239-267, 2000.

H.-G. Beyer, E. Brucherseifer, W. Jakob, H. Pohlheim, B. Send-
hoff, and T. Binh To. Evolutionary algorithms - terms and
definitions. http://lsll-www.cs.uni-dortmund.de/people/beyer/
EA-glossary/def-engl-html.htmll

L. Bianchi, M. Birattari, M. Chiarandini, M. Manfrin, M. Mastrolilli,
L. Paquete, O. Rossi-Doria, and T. Schiavinotto. Metaheuristics for the
vehicle routing problem with stochastic demands. In X. Yao, E. Burke,
J. A. Lozano, J. Smith, J. J. Merelo Guervés, J. A. Bullinaria, J. Rowe,
P. Tino, A. Kaban, and H.-P. Schwefel, editors, Proceedings of the Sth
International Conference on Parallel Problem Solving from Nature (PPSN
VIII), volume 3242 of Lecture Notes in Computer Science, pages 450-460.
Springer, Berlin, Germany, 2004.

L. Bianchi, M. Birattari, M. Manfrin, M. Mastrolilli, L. Paquete, O. Rossi-
Doria, and T. Schiavinotto. Hybrid metaheuristics for the vehicle routing
problem with stochastic demands. Journal of Mathematical Modelling and
Algorithms. To appear.

L. Bianchi and A. M. Campbell. Extension of the 2-p-opt and 1-shift
algorithms to the heterogeneous probabilistic traveling salesman problem.
European Journal of Operational Research. To appear.

L. Bianchi, L. M. Gambardella, and M. Dorigo. An ant colony op-
timization approach to the probabilistic traveling salesman problem.
In J. J. Merelo Guervés, P. Adamidis, H.-G. Beyer, J.-L. Fernandez-
Villacanas, and H.-P. Schwefel, editors, Proceedings of the 7th Inter-
national Conference on Parallel Problem Solving from Nature (PPSN-
VII), volume 2439 of Lecture Notes in Computer Science, pages 883-892.
Springer, London, UK, 2002.

L. Bianchi, L. M. Gambardella, and M. Dorigo. Solving the homogeneous
probabilistic traveling salesman problem by the ACO metaheuristic. In
M. Dorigo, G. Di Caro, and M. Sampels, editors, Proceedings of the 3rd
International Workshop on Ant Algorithms (ANTS 2002), volume 2463
of Lecture Notes in Computer Science, pages 176—187. Springer, London,
UK, 2002.

48


http://ls11-www.cs.uni-dortmund.de/people/beyer/EA-glossary/def-engl-html.html
http://ls11-www.cs.uni-dortmund.de/people/beyer/EA-glossary/def-engl-html.html

[26]

[27]

[34]

[35]

L. Bianchi, J. Knowles, and N. Bowler. Local search for the probabilistic
traveling salesman problem: correction to the 2-p-opt and 1-shift algo-
rithms. European Journal of Operational Research, 162(1):206-219, 2005.

M. Birattari, P. Balaprakash, and M. Dorigo. ACO/F-Race: ant colony
optimization and racing techniques for combinatorial optimization under
uncertainty. In R. F. Hartl et al., editor, Proceedings of the 6th Meta-
heuristics International Conference (MIC 2005), 2005. To appear.

J. R. Birge and F. Louveaux. Introduction to Stochastic Programming.
Springer, New York, NY, USA, 1997.

Z. W. Birnbaum. On random variables with comparable peakedness. An-
nals of Mathematical Statistics, 19:76-81, 1948.

C. Blum and A. Roli. Metaheuristics in combinatorial optimiza-
tion: overview and conceptual comparison. ACM Computing Surveys,
35(3):268-308, 2003.

A. Borodin and R. El-Yaniv. Online Computation and Competitive Anal-
ysis. Cambridge University Press, Cambridge, MA, USA, 1998.

N. E. Bowler, T. M. A. Fink, and R. C. Ball. Characterization of the
probabilistic traveling salesman problem. Physical Review E, 68(036703),
2003.

J. Branke and M. Guntsch. New ideas for applying ant colony optimization
to the probabilistic TSP. In Proceedings of the 3rd European Workshop
on Evolutionary Computation in Combinatorial Optimization (EvoCOP
2003), volume 2611 of Lecture Notes in Computer Science, pages 165—
175. Springer, Berlin, Germany, 2003.

J. Branke and M. Guntsch. Solving the probabilistic TSP with ant
colony optimization. Journal of Mathematical Modelling and Algorithms,
3(4):403-425, 2004.

J. Branke and C. Schmidt. Selection in the presence of noise. In E. Cantu-
Paz, J. A. Foster, K. Deb, D. Davis, R. Roy, U. M. O'Reilly, H.-G. Beyer,
R. Standish, G. Kendall, S. Wilson, M. Harman, J. Wegener, D. Dasgupta,
M. A. Potter, A. C. Schultz, K. Dowsland, N. Jonoska, and J. Miller, ed-
itors, Proceedings of the Genetic and Evolutionary Computation Confer-
ence (GECCO 2003), pages 766—777. Springer, Berlin, Germany, 2003.

M. Brusco and L. Jacobs. A simulated annealing approach to the cyclic
staff-scheduling problem. Nawval Research Logistics, 40(1):69-84, 1993.

M. Brusco and L. Jacobs. A simulated annealing approach to the solution
of flexible labour scheduling problems. Journal of the Operational Research
Society, 44(12):1191-1200, 1993.

49



[38]

A. A. Bulgak and J. L. Sanders. Integrating a modified simulated anneal-
ing algorithm with the simulation of a manufacturing system to optimize
buffer sizes in automatic assembly systems. In M. Abrams, P. Haigh, and
J. Comfort, editors, Proceedings of the 1988 Winter Simulation Confer-
ence (WSC98), pages 684—690. IEEE Press, Piscataway, NJ, USA, 1988.

P. Calégari, G. Coray, A. Hertz, D. Kobler, and P. Kuonen. A taxon-
omy of evolutionary algorithms in combinatorial optimization. Journal of
Heuristics, 5:145-158, 1999.

E. Cantu-Paz. Adaptive sampling for noisy problems. In K. Deb, R. Poli,
W. Banzhaf, H.-G. Beyer, E. Burke, P. Darwen, D. Dasgupta, D. Flore-
ano, J. Foster, M. Harman, O. Holland, P. L. Lanzi, L. Spector, A. Tet-
tamanzi, D. Thierens, and A. Tyrrell, editors, Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO 2004), volume 3103
of Lecture Notes in Computer Science, pages 947-958. Springer, Berlin,
Germany, 2004.

H. S. Chang. An ant system based exploration-exploitation for reinforce-
ment learning. In Proceedings of the IEEE Conference on Systems, Man,
and Cybernetics, pages 3805-3810. IEEE Press, Piscataway, NJ, USA,
2004.

H. S. Chang, W. J. Gutjahr, J. Yang, and S. Park. An ant system ap-
proach to Markov decision processes. In Proceedings of the 23rd American
Control Conference (ACCO04), volume 4, pages 3820-3825. IEEE Press,
Piscataway, NJ, USA, 2004.

H. S. Chang, H-G. Lee, M. Fu, and S. I. Marcus. Evolutionary policy
iteration for solving Markov decision processes. IEEE Transactions on
Automatic Control, 2005. To appear.

D. Costa and E. A. Silver. Tabu search when noise is present: an illus-
tration in the context of cause and effect analysis. Journal of Heuristics,
4:5-23, 1998.

B. Dengiz and C. Alabas. Simulation optimization using tabu search.
In J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, editors,
Proceedings of the 2000 Winter Simulation Conference (WSC00), pages
805-810. IEEE Press, Piscataway, NJ, USA, 2000.

M. Dorigo, G. Di Caro, and L. M. Gambardella. Ant algorithms for
discrete optimization. Artificial Life, 5(2):137-172, 1999.

M. Dorigo and L. M. Gambardella. Ant Colony System: A cooperative
learning approach to the traveling salesman problem. IEEE Transactions
on Evolutionary Computation, 1:53—66, 1997.

50



[48]

M. Dorigo, V. Maniezzo, and A. Colorni. The ant system: an autocatalytic
optimization process. Technical Report 91-016, Department of Electronics,
Politecnico di Milano, Milan, Italy, 1991.

M. Dorigo, V. Maniezzo, and A. Colorni. Ant system: Optimization by a
colony of cooperating agents. IFEE Transactions on Systems, Man, and
Cybernetics — Part B, 26(1):29-41, 1996.

M. Dorigo and T. Stiitzle. Ant Colony Optimization. MIT Press, Cam-
bridge, MA, USA, 2004.

M. Dorigo (European Project Coordinator). Metaheuristics network web
site. http://www.metaheuristics.org/|

M. Dyer and L. Stougie. Computational complexity of stochastic program-
ming problems. Technical Report SPOR-report 2003-20, Department of
Mathematics and Computer Science, Technische Universiteit Eindhoven,
Eindhoven, The Netherlands, 2003.

F. Easton and N. Mansour. A distributed genetic algorithm for deter-
ministic and stochastic labor scheduling problems. Furopean Journal of
Operational Research, 118(3):505-523, 1999.

F. Easton and D. Rossin. A stochastic goal program for employee schedul-
ing. Decision Sciences, 27(3):541-568, 1996.

E. Erel, I. Sabuncuoglu, and H. Sekerci. Stochastic assembly line bal-
ancing using beam search. International Journal of Production Research,
43(7):1411-1426, 2005.

D. A. Finke, D. J. Medeiros, and M. Traband. Shop scheduling using tabu
search and simulation. In E. Yiicesan, C. H. Chen, J. L. Snowdon, and
J. M. Charnes, editors, Proceedings of the 2002 Winter Simulation Con-
ference (WSC02), pages 1013-1017. IEEE Press, Piscataway, NJ, USA,
2002.

L. J. Fogel, A. J. Owens, and M. J. Walsh. Artificial intelligence through
simulated evolution. John Wiley & Sons, New York, NY, USA, 1966.

B. L. Fox and G. W. Heine. Probabilistic search with overrides. Annals
of Applied Probability, 4:1087-1094, 1995.

M. C. Fu. Optimization for simulation: Theory vs. practice. INFORMS
Journal on Computing, 14(3):192-215, 2002.

M. C. Fu. Guest editorial of the ACM TOMACS special issue on “sim-
ulation optimization”. ACM Transactions on Modeling and Computer
Simulation, 13(2):105-107, 2003.

o1


http://www.metaheuristics.org/

[61]

[62]

[70]

[71]

[72]

L. M. Gambardella and M. Dorigo. Solving symmetric and asymmetric
TSPs by ant colonies. In Proceedings of the 1996 IEEFE International Con-
ference on Evolutionary Computation (ICEC’96), pages 622-627. IEEE
Press, Piscataway, NJ, 1996.

S. B. Gelfand and S. K. Mitter. Analysis of simulated annealing for op-
timization. In Proceedings of the 24th IEEE Conference on Decision and
Control (CDC’85), volume 2, pages 779-786. IEEE Press, Piscataway, NJ,
USA, 1985.

S. B. Gelfand and S. K. Mitter. Simulated annealing with noisy or im-
precise measurements. Journal of Optimization Theory and Applications,
69:49-62, 1989.

D. Geman and S. Geman. Stochastic relaxation, Gibbs distributions, and
the Bayesian restoration of images. In IFEFE Transactions of Pattern
Analysis and Machine Intelligence, volume 6, pages 721-741, 1984.

M. Gendreau, G. Laporte, and R. Séguin. An exact algorithm for the
vehicle routing problem with stochastic demands and customers. Trans-
portation Sciences, 29(2):143-155, 1995.

M. Gendreau, G. Laporte, and R. Séguin. A tabu search heuristic for the
vehicle routing problem with stochastic demands and customers. Opera-
tions Research, 44(3):469-477, 1996.

M. Giacobini, M. Tomassini, and L. Vanneschi. Limiting the number
of fitness cases in genetic programming using statistics. In J. J. Merelo
Guervos, P. Adamidis, H.-G. Beyer, J.-L. Ferndndez-Villacanas, and H.-
P. Schwefel, editors, Proceedings of the 7th International Conference on
Parallel Problem Solving from Nature (PPSN-VII), volume 2439 of Lecture
Notes in Computer Science, pages 371-380. Springer, London, UK, 2002.

F. Glover. Future paths for integer programming and links to artificial
intelligence. Computers €& Operations Research, 13:533-549, 1986.

F. Glover. Future paths for integer programming and links to artificial
intelligence. In J.-K. Hao, E. Lutton, E. Ronald, M. Schoenaurer, and
D. Snyers, editors, Artificial Evolution, volume 1363 of Lecture Notes in
Computer Science. Springer, Berlin, Germany, 1998.

F. Glover. Tabu search and finite convergence. Discrete Applied Mathe-
matics, 119:3-36, 2002.

F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers,
Norwell, MA, USA, 1997.

G. R. Grimmett and D. R. Stirzaker. Probability and Random Processes,
8rd Edition. Oxford University Press, New York, NY, USA, 2001.

92



[73]

[74]

[75]

[84]

[85]

G. Gutin and A. Punnen, editors. The Traveling Salesman Problem and
its Variations. Kluwer Academic Publishers, Dordrecht, The Netherlands,
2002.

W. J. Gutjahr. A converging ACO algorithm for stochastic combinatorial
optimization. In Proceedings of the 2nd Symposium on Stochastic Algo-
rithms, Foundations and Applicaions (SAGA 2003), volume 2827 of Lec-
ture Notes in Computer Science, pages 10-25. Springer, Berlin, Germany,
2003.

W. J. Gutjahr. S-ACO: An ant-based approach to combinatorial optimiza-
tion under uncertainty. In Proceedings of the 4th International Workshop
on Ant Colony Optimization and Swarm Intelligence (ANTS 2004), vol-
ume 3172 of Lecture Notes in Computer Science, pages 238-249. Springer,
Berlin, Germany, 2004.

W. J. Gutjahr, A. Hellmayr, and G. Ch. Pflug. Optimal stochastic single-
machine tardiness scheduling by stochastic branch-and-bound. Furopean
Journal of Operational Research, 117:396-413, 1999.

W. J. Gutjahr and G. Ch. Pflug. Simulated annealing for noisy cost
functions. Journal of Global Optimization, 8:1-13, 1996.

W. J. Gutjahr, C. Strauss, and M. Toth. Crashing of stochastic activities
by sampling and optimization. Business Process Management Journal,
6:65-83, 2000.

W. J. Gutjahr, C. Strauss, and E. Wagner. A stochastic branch-and-
bound approach to activity crashing in project management. INFORMS
Journal on Computing, 12:125-135, 2000.

J. Haddock and J. Mittenthal. Simulation optimization using simulated
annealing. Computers & Industrial Engineering, 22:387-395, 1992.

B. Hajek. Cooling schedules for optimal annealing. Mathematics of Op-
erations Research, 13:311-329, 1988.

S. Hanafi. On the convergence of tabu search. Journal of Heuristics,
7:47-58, 2000.

W. K. K. Haneveld and M. H. van der Vlerk. Stochastic integer pro-
gramming: state of the art. Annals of Operations Research, 85:39-57,
1999.

P. Hansen. The steepest ascent mildest descent heuristics for combinato-
rial programming. Talk presented at the Congress on Numerical Methods
in Combinatorial Optimization, Capri, Italy, 1986.

K. K. Haugen, A. Lokketangen, and D. L. Woodruff. Progressive hedging
as a meta-heuristic applied to stochastic lot-sizing. Furopean Journal of
Operational Research, 132:116-122, 2001.

93



[36]

[87]

[97]

[98]

A. Hertz and D. Kobler. A framework for the description of evolutionary
algorithms. FEuropean Journal of Operational Research, 126:1-12, 2000.

A. Hertz, E. Taillard, and D. de Werra. Tabu search. In E. H. L. Aarts
and J. K. Lenstra, editors, Local Search in Combinatorial Optimization,
pages 121-136. John Wiley & Sons, New York, NY, USA, 1997.

J. H. Holland. Adaptation in natural and artificial systems. The University
of Michigan Press, Ann Harbor, MI, USA, 1975.

T. Homem-de-Mello. Variable-sample methods and simulated annealing
for discrete stochastic optimization. Stochastic Programming E-Print Se-
ries, http://hera.rz.hu-berlin.de/speps/, 2000.

T. Homem-de-Mello. Variable-sample methods for stochastic optimiza-
tion. ACM Transactions on Modeling and Computer Simulation, 13:108—
133, 2003.

S. Irani, X. Lu, and A. Regan. On-line algorithms for the dynamic trav-
eling repair problem. Journal of Scheduling, 7(3):243-258, 2004.

O. Jellouli and E. Chatelet. Monte Carlo simulation and genetic algorithm
for optimising supply chain management in a stochastic environment. In
Proceedings of the 2001 IEEE Conference on Systems, Man, and Cyber-
netics, volume 3, pages 1835-1839. IEEE Press, Piscataway, NJ, USA,
2001.

Y. Jin. A comprehensive survey of fitness approximation in evolutionary
computation. Soft Computing, 9(1):3-12, 2005.

Y. Jin. Evolutionary optimization in uncertain environments - a survey.
IEEFE Transactions on Evolutionary Computation, 9(3):303-317, 2005.

H. Joénsson and E. A. Silver. Some insights regarding selecting sets of
scenarios in combinatorial stochastic problems. Journal of Production
FEconomics, 45:463—-472, 1996.

P. Kall and S. W. Wallace. Stochastic Programming. John Wiley & Sons,
Chichester, UK, 1994. Wiley has released the copyright on the book, and
the authors made the text available to the scientific community: it can
be downloaded for free at http://www.unizh.ch/ior/Pages/Deutsch/
Mitglieder/Kall/bib/ka-wal-94.pdf.

A. Kenyon and D. P. Morton. A survey on stochastic location and routing
problems. Central Furopean Journal of Operations Research, 9:277-328,
2002.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220:671-680, 1983.

o4


http://hera.rz.hu-berlin.de/speps/
http://www.unizh.ch/ior/Pages/Deutsch/Mitglieder/Kall/bib/ka-wal-94.pdf
http://www.unizh.ch/ior/Pages/Deutsch/Mitglieder/Kall/bib/ka-wal-94.pdf

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

P. Kouvelis and G. Yu. Robust Discrete Optimization and Its Applica-
tions, volume 14 of Nonconvex optimization and its applications. Kluwer
Academic Publishers, Dordrecht, The Netherlands, 1997.

G. Laporte, F. Louveaux, and H. Mercure. An exact solution for the a
priori optimization of the probabilistic traveling salesman problem. Op-
erations Research, 42(3):543-549, 1994.

Z.-Z. Lin, J. C. Bean, and C. C. White III. Genetic algorithm heuristics
for finite horizon partially observed Markov decision processes. Techni-
cal Report 98-24, Department of Industrial and Operations Engineering,
University of Michigan, Ann Arbor, MI JUSA, 1998.

Z.-Z. Lin, J. C. Bean, and C. C. White III. A hybrid genetic/optimization
algorithm for finite-horizon, partially observed Markov decision processes.
INFORMS Journal on Computing, 16(1):27-38, 2004.

A. Lokketangen and D. L. Woodruff. Progressive hedging and tabu search
applied to mixed integer (0,1) multistage stochastic programming. Journal
of Heuristics, 2:111-128, 1996.

C. M. Lutz, K. R. Davis, and M. Sun. Determining buffer location and size
in production lines using tabu search. Furopean Journal of Operational
Research, 106:301-316, 1998.

K. L. Mak and Z. G. Guo. A genetic algorithm for vehicle routing problems
with stochastic demand and soft time windows. In M. H. Jones, S. D.
Patek, and B. E. Tawney, editors, Proceedings of the 2004 IEEE Systems
and Information Engineering Design Symposium (SIEDS04), pages 183—
190. IEEE Press, Piscataway, NJ, USA, 2004.

S. Markon, D. V. Arnold, T. Béck, T. Beielstein, and H.-G. Beyer. Thresh-
olding — a selection operator for noisy ES. In Proceedings of the IEEE
Congress on Evolutionary Computation (CEC 2001), volume 1, pages
465-472. IEEE Press, Piscataway, NJ, USA, 2001.

N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller.
Equation of state calculations by fast computing machines. Journal of
Chemical Physics, 21:1087-1092, 1953.

B. L. Miller and D. E. Goldberg. Genetic algorithms, selection schemes,
and the varying effects of noise. Fvolutionary Computation, 4(2):113-131,
1997.

V. L. Norkin, Y. M. Ermoliev, and A. Ruszczynski. On optimal alloca-
tion of indivisibles under uncertainty. Operations Research, 46(3):381-395,
1998.

%)



[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

V. I. Norkin, G. Ch. Pflug, and A. Ruszczynski. A branch and bound
method for stochastic global optimization. Mathematical Programming,
83:425-450, 1998.

S. Olafsson and J. Kim. Simulation optimization. In E. Yiicesan, C. H.
Chen, J. L. Snowdown, and J. M. Charnes, editors, Proceedings of the
2002 Winter Simulation Conference (WSC02), pages 89-84. IEEE Press,
Piscataway, NJ, USA, 2002.

J. Pichitlamken. A combined procedure for optimization via simulation.
PhD thesis, Department of Industrial Engineering and Management Sci-
ences, Northwestern University, Evanston, IL, USA, 2002.

J. Pichitlamken and L. B. Nelson. Selection-of-the-best procedures for
optimization via simulation. In B. A. Peters, J. S. Smith, D. J. Medeiros,
and M. W. Rohrer, editors, Proceedings of the 2001 Winter Simulation
Conference (WSC01), pages 401-407. IEEE Press, Piscataway, NJ, USA,
2001.

J. Pichitlamken and L. B. Nelson. A combined procedure for optimization
via simulation. ACM Transactions on Modeling and Computer Simulation,
13(2):155-179, 2003.

M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. John Wiley & Sons, New York, NY, USA, 2005.

M. Rauner, S. C. Brailsford, W. J. Gutjahr, and W. Zeppelzauer. Optimal
screening policies for diabetic retinopathy using a combined discrete event
simulation and ant colony optimization approach. In J. G. Andersen and
M. Katzper, editors, Proceedings of the 15th International Conference on
Health Sciences Sitmulation, Western MultiConference 2005, pages 147—
152. SCS - Society of Computer Simulation International, San Diego, CA,
USA, 2005.

R. I. Rechenberg. FEwvolutionsstrategie: Optimierung Technischer Sys-
teme nach Prinzipien der biologischen FEwvolution. Frommann-Holzboog,
Stuttgart, Germany, 1973.

C. R. Reeves and J. E. Rowe. Genetic Algorithms: Principles and Perspec-
tives - a Guide to GA Theory. Operaations Research/Computer Science
Interfaces Series. Kluwer Academic Publishers, Boston, MA, USA, 2003.

R. T. Rockafellar and R. J.-B. Wets. Scenarios and policy aggregation
in optimization under uncertainty. Mathematics of Operations Research,
16:119-147, 1991.

N. Roenko. Simulated annealing under uncertainty. Technical report,
Institute for Operations Research, University of Zurich, Switzerland, 1990.

96



[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

S. L. Rosen and C. M. Harmonosky. An improved simulated annealing
simulation optimization method for discrete parameter stochastic systems.
Computers € Operations Research, 32(2):343-358, 2005.

R. Y. Rubinstein. Simulation and the Monte Carlo method. John Wiley
& Sons, New York, NY, USA, 1981.

G. Rudolph. Convergence of evolutionary algorithms in general search
spaces. In Proceedings of the IEEE International Conference on Evolu-
tionary Computation (ICEC’96), pages 50-54. IEEE Press, Piscataway,
NJ, USA, 1996.

N. Secomandi. Comparing neuro-dynamic programming algorithms for
the vehicle routing problem with stochastic demands. Computers & Op-
erations Research, 27(5):1171-1200, 2000.

N. Secomandi. A rollout policy for the vehicle routing problem with
stochastic demands. Operations Research, 49(5):796-802, 2001.

N. Secomandi. Analysis of a rollout approach to sequencing problems with
stochastic routing applications. Journal of Heuristics, 9:321-352, 2003.

L. Shi and S. Olafsson. Nested partitions method for global optimization.
Operations Research, 48(3):390-407, 2000.

P. Stagge. Averaging efficiently in the presence of noise. In A. E. Eiben,
T. Béck, M. Schoenauer, and H.-P. Schwefel, editors, Proceedings of the
5th International Conference on Parallel Problem Solving from Nature
(PPSN-V), volume 1498 of Lecture Notes in Computer Science, pages
188-200. Springer, Berlin, Germany, 1998.

Stochastic Programming Community Homepage. http://stoprog.org/.

J. Sudhir Ryan Daniel and C. Rajendran. A simulation-based genetic
algorithm for inventory optimization in a serial supply chain. International
Transactions in Operational Research, 12(1):101-127, 2005.

R. S. Sutton and A. G. Barto. Reinforcement Learning. The MIT Press,
Cambridge, MA, USA, 1998.

J. R. Swisher, S. H. Jacobson, and E. Yiicesan. Discrete-event simulation
optimization using ranking, selection, multiple comparison procedures:
a survey. ACM Transactions on Modeling and Computer Simulation,
13(2):134-154, 2003.

A. Teller and D. Andre. Automatically choosing the number of fitness
cases: The rational allocation of trials. In J. R. Koza, D. Kalyanmoy,
M. Dorigo, D. B. Fogel, M. Garzon, H. Iba, and R. L. Riolo, editors,
Proceedings of the 2nd Annual Genetic Programming Conference (GP-
97), pages 321-328. Morgan Kaufmann, San Francisco, CA, USA, 1997.

o7


http://stoprog.org/

[134]

[135]

[136]

[137]

[138]

[139)

[140]

[141]

[142]

[143]

[144]

D. Teodorovi¢ and G. Pavkovié. A simulated annealing technique ap-
proach to the vehicle routing problem in the case of stochastic demand.
Transportation Planning and Technology, 16:261-273, 1992.

G. Tesauro and G. R. Galperin. On-line policy improvement using monte
carlo search. Advances in Neural Information Processing Systems, 9:1068—

1074, 1997.

J. N. Tsitsiklis. Asyncronous stochastic approximation and Q-learning.
Machine Learning, 16:185-202, 1994.

P. J. M. van Laarhoven and E. H. L. Aarts. Simulated Annealing: The-
ory and Applications. D. Reidel Publishing Company, Dordrecht, The
Netherlands, 1987.

M. Vose. The Simple Genetic Algorithm: Foundations and Theory. The
MIT Press, Cambridge, MA, USA, 1999.

J. P. Watson, S. Rana, L. D. Whitley, and Howe A. E. The impact
of approximate evaluation on the performance of search algorithms for
warehouse scheduling. Journal of Scheduling, 2(2):79-98, 1999.

W. Yang, K. Mathur, and R. H. Ballou. Stochastic vehicle routing problem
with restocking. Transportation Science, 34(1):99-112, 2000.

M. Yokoyama and H. W. Lewis III. Optimization of the stochastic dynamic
production problem by a genetic algorithm. Computers € Operations
Research, 30:1831-1849, 2003.

Y. Yoshitomi. A genetic algorithm approach to solving stochastic job-shop
scheduling problems. International Transactions in Operational Research,
9(4):479-495, 2002.

Y. Yoshitomi and R. Yamaguchi. A genetic algorithm and the Monte Carlo
method for stochastic job-shop scheduling. International Transactions in
Operational Research, 10(6):577-596, 2003.

H. J. Zimmermann. Fuzzy Set Theory and its Application. Kluwer Aca-
demic Publishers, Boston, MA, USA, 2nd edition, 1991.

98



	Introduction
	Modeling approaches to uncertainty
	Formal descriptions of SCOPs
	Static SCOPs
	Dynamic SCOPs
	Objective function computation
	Ad-hoc approximations
	Simulation approximation


	Metaheuristics for SCOPs
	Ant Colony Optimization
	ACO for SCOPs

	Evolutionary Computation
	EC for SCOPs

	Simulated Annealing
	SA for SCOPs

	Tabu Search
	TS for SCOPs

	Stochastic Partitioning Methods
	Other algorithmic approaches to SCOPs

	Discussion
	Conclusion

