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Abstract

In this paper, linear transceiver design for multi-hop amplify-and-forward (AF) multiple-input

multiple-out (MIMO) relaying systems with Gaussian distributed channel estimation errors is inves-

tigated. Commonly used transceiver design criteria including weighted mean-square-error (MSE) min-

imization, capacity maximization, worst-MSE/MAX-MSE minimization and weighted sum-rate maxi-

mization, are considered and unified into a single matrix-variate optimization problem. A general robust

design algorithm is proposed to solve the unified problem. Specifically, by exploiting majorization theory

and properties of matrix-variate functions, the optimal structure of the robust transceiver is derived

when either the covariance matrix of channel estimation errors seen from the transmitter side or the

corresponding covariance matrix seen from the receiver side is proportional to an identity matrix. Based

on the optimal structure, the original transceiver design problems are reduced to much simpler problems

with only scalar variables whose solutions are readily obtained by iterative water-filling algorithm. A
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number of existing transceiver design algorithms are found to be special cases of the proposed solution.

The differences between our work and the existing related work are also discussed in detail. The

performance advantages of the proposed robust designs are demonstrated by simulation results.

Index Terms

Amplify-and-forward (AF), MIMO relaying, matrix-variate optimization, robust transceiver

design.

I. INTRODUCTION

With significant potential to enable the emerging requirements for high speed ubiquitous

wireless communications, cooperative communications has been adopted as one of the key

components in future wireless communication standards such as long term evolution (LTE),

international mobile telecommunications-advanced (IMT-Advanced), the Winner project, etc.

Specifically, these developments involve the deployment of relays to enhance the coverage

of base stations and to improve the communication quality of wireless links [1]. In general,

relays can adopt different relaying strategies, e.g., amplify-and-forward (AF), decode-and-forward

(DF) and compress-and-forward (CF). Among these relaying strategies, the AF scheme is the

most attractive for practical implementation due to its low complexity and independence of

the underlying modulation. On the other hand, it is well-established that employing multiple

antennas provides spatial diversity and multiplexing gain in a wireless communication system. It

is straightforward to combine AF transmission with multi-input multi-output (MIMO) systems

so that the virtues of both techniques can be obtained. The resulting system (termed an AF

MIMO relaying system) has attracted considerable interest [2] in recent years.

Transceiver design for AF MIMO relaying systems, which refers to the design of source

precoder, relay amplifier and receiver equalizer, has been widely discussed in the literature

[3]–[16]. Generally speaking, transceiver design varies from system to system and depends

heavily on the design criteria and objectives. The most commonly used criteria are capacity

maximization [3], [4], [8] and data mean-square-error (MSE) minimization [5]–[8]. Usually

these two criteria are contradictory to each other and call for different algorithms to solve

the optimization problems. Interestingly, in [8] a unified framework which is applicable to both

capacity maximization and MSE minimization is proposed for transceiver design in dual-hop AF

MIMO relay systems. Since multi-hop AF transmission is a promising technique to increase the
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coverage of a transmitter, transceiver design for a multi-hop system is further investigated in [10].

It reveals that optimal solutions for both capacity and MSE criteria in a multi-hop system should

have diagonal structures. However, in most of the previous works on transceiver design including

[8] and [10], channel state information (CSI) is assumed to be perfectly known/estimated. This

is difficult to achieve in practice and channel estimation errors are inevitable due to limited

training and quantization operation, resulting in significant performance degradation. In order to

mitigate the performance degradation, such channel estimation errors are necessary to be taken

into account in the transceiver design process. This kind of transceiver is called robust transceiver.

It has been shown in [17] and [18] that robust transceiver design is essentially different from the

transceiver design with perfect CSI. It is more challenging and different algorithms are required

to solve the challenging robust design problem.

In general, channel estimation errors can be modeled in two different ways: norm-bounded

errors with known error bound and random errors with certain distribution. Correspondingly,

robust transceiver designs can also be classified into two main categories: worst-case robust

design for norm-bounded errors [19] and Bayesian robust design for randomly distributed er-

rors [20]. For linear channel estimators, the estimation errors can be accurately modeled as

being random with a Gaussian distribution [11]. Under this kind of Gaussian estimation errors,

Bayesian robust transceiver design for dual-hop AF relaying systems has been investigated in

[14] and solutions for capacity maximization and MSE minimization respectively are proposed

by implicitly approximating a design-variable dependent covariance matrix (the matrix A in [14])

as being constant. Since the approximation is tight only when the covariance matrix of channel

estimation errors seen from the receiver side is proportional to an identity matrix, the proposed

solutions are sub-optimal for general cases. In [11] and [12], Bayesian robust transceiver design

targeting at weighted MSE minimization is discussed for dual-hop AF relaying systems and

an optimal solution is found without considering the source precoder. The optimality of the

proposed solution is proved to hold under a wide range of cases, i.e., when either the covariance

matrix of channel estimation errors from the transmitter side or the corresponding covariance

matrix seen from the receiver side is proportional to an identity matrix. These works have been

extended to systems with source precoder design and an iterative algorithm has been proposed

to find a good solution without guaranteed optimality [15]. Similarly, the robust transceiver

design for maximizing mutual information rate for dual-hop AF relaying systems under Gaussian
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channel estimation errors at all nodes has been investigated in [16] and a solution without global

optimality is proposed with an iterative algorithm. Unfortunately, the aforementioned algorithms

are applicable only to dual-hop AF systems and their extension to multi-hop AF systems is by

no means straightforward as shown in [10].

In this paper, we investigate robust transceiver design for a general multi-hop AF relaying

system with Gaussian distributed channel uncertainties. The robust design problem is significantly

different from that in the literature and is challenging due to the existence of random channel

uncertainties and the complexity of the multihop system. A number of widely used design criteria

including weighted MSE minimization, capacity maximization, worst case MSE minimization,

and weighted sum-rate maximization are considered and their corresponding robust design prob-

lems are unified into one matrix-variate optimization problem. A general robust design algorithm

is proposed to solve the unified problem, i.e., to jointly design the precoder at the source, multiple

forwarding matrices at the relays, and the equalizer at the destination. Specifically, the structure

of the optimal solution for the unified problem is derived based on majorization theory [21], [22]

and properties of matrix-monotone functions [22]. It is demonstrated that the derived optimal

structure is significantly different from its counterpart with perfect CSI [10] and its optimality

holds under a wide range of cases, i.e., when either the covariance matrix of channel estimation

errors seen from the transmitter side or the corresponding covariance matrix seen from the

receiver side is proportional to an identity matrix. With the optimal structure, the robust design

problem is simplified into a design problem with only scalar variables. An iterative water-filling

algorithm is then proposed to obtain the remaining unknown parameters in the transceiver. The

performance of the proposed robust designs is finally corroborated by simulation results. In

addition, it is shown that the proposed solutions cover some existing transceiver design solutions

as special cases.

The rest of the paper is organized as follows. In Section II, the signal model for a multi-

hop AF system is introduced. Then a unified robust transceiver design problem applicable to

weighted MSE minimization, capacity maximization, MAX-MSE minimization and weighted

sum-rate maximization, is formulated in Section III. In Section IV, the optimal structure for

the robust transceiver is derived and the unified transceiver design problem is reduced to a

problem of finding a set of diagonal matrices, which can be solved by an iterative water-filling

algorithm. The performance of the proposed robust designs is demonstrated by simulation results
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in Section V. Finally, this paper is concluded in Section VI.

The following notation is used throughout this paper. Boldface lowercase letters denote vectors,

while boldface uppercase letters denote matrices. The notation ZH denotes the Hermitian of the

matrix Z, and Tr(Z) is the trace of the matrix Z. The symbol IM denotes the M ×M identity

matrix, while 0M,N denotes the M × N all zero matrix. The notation Z1/2 is the Hermitian

square root of the positive semidefinite matrix Z, such that Z1/2Z1/2 = Z and Z1/2 is also a

Hermitian matrix. The symbol λi(Z) represents the ith largest eigenvalue of Z. The symbol ⊗

denotes the Kronecker product. For two Hermitian matrices, C ≽ D means that C − D is a

positive semi-definite matrix. The symbol Λ ↘ represents a rectangular diagonal matrix with

decreasing diagonal elements.

II. SYSTEM MODEL

In this paper, a multi-hop AF MIMO relaying system is considered. As shown in Fig. 1, one

source with N1 antennas wants to communicate with a destination with MK antennas through

K − 1 relays. The kth relay has Mk receive antennas and Nk+1 transmit antennas. It is obvious

that the dual-hop AF MIMO relaying system is a special case of this configuration when K = 2.

At the source, an N×1 data vector s with covariance matrix Rs = E{ssH} = IN is transmitted

after being precoded by a precoder matrix P1. The received signal x1 at the first relay is x1 =

H1P1s+n1 where H1 is the MIMO channel matrix between the source and the first relay, and

n1 is an additive Gaussian noise vector at the first relay with zero mean and covariance matrix

Rn1 = σ2
n1
IM1 .

At the first relay, the received signal x1 is multiplied by a forwarding matrix P2 and then the

resulting signal is transmitted to the second relay. The received signal x2 at the second relay

is x2 = H2P2x1 + n2, where H2 is the MIMO channel matrix between the first relay and the

second relay, and n2 is an additive Gaussian noise vector at the second relay with zero mean and

covariance matrix Rn2 = σ2
n2
IM2 . Similarly, the received signal at the kth relay can be written

as

xk = HkPkxk−1 + nk (1)

where Hk is the channel matrix for the kth hop, and nk is an additive Gaussian noise vector

with zero mean and covariance matrix Rnk
= σ2

nk
IMk

.
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Finally, for a K-hop AF MIMO relaying system, the received signal at the destination is

y = [
K∏
k=1

HkPk]s+
K−1∑
k=1

{[
K∏

l=k+1

HlPl]nk}+ nK , (2)

where
∏K

k=1Zk denotes ZK × · · ·×Z1. It is generally assumed that Nk and Mk are greater than

or equal to N in order to guarantee that the transmitted data s can be recovered at the destination

[5].

In practical systems, because of limited length of training sequences, channel estimation errors

are inevitable. With channel estimation errors, the channel matrix can be written as

Hk = H̄k +∆Hk, (3)

where H̄k is the estimated channel matrix in the kth hop and ∆Hk is the corresponding channel

estimation error matrix whose elements are zero mean Gaussian random variables. Moreover,

the Mk × Nk matrix ∆Hk can be decomposed using the widely used Kronecker model as

∆Hk = Σ
1/2
k HW,kΨ

1/2
k [11]–[13], [17], [18], [20]. The elements of the Mk ×Nk matrix HW,k

are independent and identically distributed (i.i.d.) Gaussian random variables with zero mean

and unit variance. The specific properties of the row correlation matrix Σk and the column

correlation matrix Ψk are determined by the training sequences and channel estimators being

used [11], [17]. Note that Σk and Ψk correspond to the covariance matrices of the channel

estimation errors seen from the transmitter and receiver sides, respectively.

At the destination, a linear equalizer G is employed to detect the desired data vector s.

The resulting data MSE matrix equals to Φ(G, {Pk}Kk=1) = E{(Gy − s)(Gy − s)H}, where

the expectation is taken with respect to random data, channel estimation errors, and noise1.

Following a similar derivation in dual-hop systems [12], the MSE matrix is derived to be

Φ(G, {Pk}Kk=1) =E{(Gy − s)(Gy − s)H}

=G[H̄KPKRxK−1
PH

KH̄
H
K + Tr(PKRxK−1

PH
KΨK)ΣK

+RnK
]GH + IN − [

K∏
k=1

H̄kPk]
HGH −G[

K∏
k=1

H̄kPk], (4)

1Here the channel estimation errors are assumed unknown at all the nodes. The data MSE matrix at the receiver should thus be

computed by taking expectation against all the unknown random variables including data, noise and channel estimation errors.
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where the received signal covariance matrix Rxk
at the kth relay satisfies the following recursive

formula:

Rxk
= H̄kPkRxk−1

PH
k H̄

H
k + Tr(PkRxk−1

PH
kΨk)Σk +Rnk

, (5)

and Rx0 = Rs = IN represents the signal covariance matrix at the source.

III. TRANSCEIVER DESIGN PROBLEMS

A. Objective Functions

There are various performance metrics for transceiver design. In the following, four widely

used metrics are discussed.

(1) Weighted MSE: With the data MSE defined in (4), weighted MSE can be directly written

as

Obj 1: Tr[WΦ(G, {Pk}Kk=1)] (6)

where the weighting matrix W is a positive semi-definite matrix [23]. Here W is not restricted

to be a diagonal matrix. Given any two matrices N and M satisfying N ≽M ≽ 0, we have

Tr[WN ] ≥ Tr[WM ]. The weighted MSE is thus a matrix-monotonically increasing function

of Φ(G, {Pk}Kk=1) [32]. Clearly, transceiver design with weighted MSE minimization aims at

minimizing the distortion between the recovered and the transmitted signal [5], [24], [25].

(2) Capacity: Capacity maximization is another important and widely used performance metric

for transceiver design. Denoting the received pilot for channel estimation as r, the channel

capacity between the source and destination is I(s;y|r) [26]. To the best of our knowledge, the

exact capacity of MIMO channels with channel estimation errors is still open even for point-to-

point MIMO systems [18], [26]. However, a lower bound of the capacity can be found as

−log|Φ(G, {Pk}Kk=1)| ≤ I(s;y|r). (7)

The equality in (7) holds when perfect CSI is known [4], [24]. For imperfect CSI, the tightness

of this bound is extensively investigated in [26], [29]. This lower bound −log|Φ(G, {Pk}Kk=1)|

can be interpreted as the sum-rate of multiple transmitted data streams when linear equalizer G

is employed. It has been widely used to replace the unknown exact capacity as a performance
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metric. Based on this lower bound, the robust transceiver design maximizing capacity can be

replaced by minimizing the following objective function [18], [29]:

Obj 2: log|Φ(G, {Pk}Kk=1)|. (8)

(3) Worst MSE: Notice that capacity maximization criterion (Obj 2) does not impose any

fairness on the simultaneously transmitted multiple data streams, while the weighted MSE

minimization criterion (Obj 1) imposes only a limited degree of fairness on the data as it involves

only a linear operation on the MSE. When fairness is required to balance the performance across

different data streams, worst MSE minimization is a good alternative for such transceiver design.

In general, the worst MSE can be represented as [24]

Obj 3: ψ1[d(Φ(G, {Pk}Kk=1))] (9)

where ψ1(•) is an increasing Schur-convex function and d(Φ(G, {Pk}Kk=1)) denotes a vector

consisting of the diagonal elements of Φ(G, {Pk}Kk=1), i.e.,

d(Φ(G, {Pk}Kk=1)) =
[
[Φ(G, {Pk}Kk=1)]1,1 · · · [Φ(G, {Pk}Kk=1)]N,N

]T
, (10)

with the symbol [Z]i,j representing the (i, j)th entry of Z. It follows that ψ1[d(Φ(G, {Pk}Kk=1))]

is also a matrix-monotonically increasing function with respect to Φ(G, {Pk}Kk=1). Note that the

objective function in (9) is applicable to other design criteria involving fairness considerations.

(4) Weighted sum rate: When a preference is required to be given to a certain data stream

(e.g., loading more resources to the data streams with better channel state information so that

the weighted sum rate is maximized), the objective function can be written as [24]

Obj 4: ψ2[d(Φ(G, {Pk}Kk=1))] (11)

where ψ2(•) is an increasing Schur-concave function. Similarly to (9), this function ψ2[d(Φ(G, {Pk}Kk=1))]

is a matrix-monotonically increasing function with respect to Φ(G, {Pk}Kk=1).

Remark 1: Some objective functions on signal to inference plus noise ratio (SINR) and bit error

rate (BER) can also be formulated as (9) or (11) and thus can be incorporated into our framework.

For example, when the objective is to maximize a sum of weighted SINRs, the objective function

can be formulated as the form of (11) as an increasing Schur-concave function of the diagonal

elements of the MSE matrix. Similarly, when the objective is to maximize the harmonic mean of

SINRs or to maximize the minimal SINR, the objective function can be formulated as the form
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of (9) as an increasing Schur-convex function of the diagonal elements of the MSE matrix. On

the other hand, when BER minimization is concerned, when all the data streams are modulated

using the same scheme, the average BER can be approximated as an increasing Schur-convex

function of the diagonal elements of the MSE matrix [21] and can be incorporated into the

category of Objective 3 in (9).

B. Problem Formulation

Although the above four criteria aim at different objectives, they have one common feature,

that is, the objective functions are matrix-monotonically increasing functions with respect to the

data MSE. The corresponding transceiver design problems can therefore be unified into a single

form:

min
Pk,G

f(Φ(G, {Pk}Kk=1))

s.t. Tr(PkRxk−1
PH

k ) ≤ Pk, k = 1, · · · , K (12)

where f(•) is a real-value matrix monotonically increasing function with Φ(G, , {Pk}Kk=1) as its

argument. Notice that the constraints here are imposed on the powers averaged over the channel

estimation errors.

With the definition of the data MSE (4) and by differentiating the trace of the MSE with respect

to G and setting the result to zero, we can easily obtain a linear minimum MSE (LMMSE)

equalizer as [27]

GLMMSE = [
K∏
k=1

H̄kPk]
H[H̄KPKRxK−1

PH
KH̄

H
K + Tr(PKRxK−1

PH
KΨK)ΣK +RnK

]−1, (13)

with the following property [23], [24]:

Φ(GLMMSE, {Pk}Kk=1) ≼ Φ(G, {Pk}Kk=1). (14)

The above equality holds when G = GLMMSE. Because f(•) is matrix-monotonically increasing,

it follows easily from (14) that f(Φ(GLMMSE, {Pk}Kk=1)) ≤ f(Φ(G, {Pk}Kk=1)). It means that

f(Φ(GLMMSE, {Pk}Kk=1)) is a tight lower bound of the objective function in (12). Together with
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the fact that the equalizer G is not involved in the constraints in (12), the optimization problem

in (12) is equivalent to

min
Pk

f(Φ(GLMMSE, {Pk}Kk=1))

s.t. Tr(PkRxk−1
PH

k ) ≤ Pk, k = 1, · · · , K. (15)

It implies that the optimal equalizer of (12) is GLMMSE in (13). Substituting the optimal equal-

izer into Φ(G, {Pk}Kk=1) in (4) and denoting Φ(GLMMSE, {Pk}Kk=1) = ΦMMSE({Pk}Kk=1) for

simplicity, we have

ΦMMSE({Pk}Kk=1) = IN − [
K∏
k=1

H̄kPk]
H[H̄KPKRxK−1

PH
KH̄

H
K

+ Tr(PKRxK−1
PH

KΨK)ΣK +RnK
]−1[

K∏
k=1

H̄kPk]. (16)

For multi-hop AF MIMO relaying systems, the received signal at the kth relay depends on

the forwarding matrices at all preceding relays, causing the power allocations at different relays

to be coupled to each other (as seen in the constraints of (15)), and thus making the problem

(15) difficult to solve. To proceed, we define the following new variables in terms of Pk:

F1 , P1Q
H
0 ,

Fk , PkK
1/2
Fk−1

(K
−1/2
Fk−1

H̄k−1Fk−1F
H
k−1H̄

H
k−1K

−1/2
Fk−1

+ IMk−1︸ ︷︷ ︸
,Πk−1

)1/2QH
k−1 (17)

where KFk
, Tr(FkF

H
kΨk)Σk+σ2

nk
IMk

and Qk is an unknown unitary matrix. The introduction

of Qk is due to the fact that for a positive semi-definite matrix M, its square root has the form

M1/2Q where Q is a unitary matrix. With the new variables, the MMSE matrix ΦMMSE({Pk}Kk=1)

(16) is reformulated as

ΦMMSE({Pk}Kk=1) = IN −QH
0 [

K∏
k=1

QkΠ
−1/2
k K

−1/2
Fk

H̄kFk]
H[

K∏
k=1

Qk Π
−1/2
k K

−1/2
Fk

H̄kFk︸ ︷︷ ︸
,Ak

]Q0

= IN −QH
0A

H
1 Q

H
1 · · ·AH

KQ
H
KQKAK · · ·Q1A1Q0. (18)

Meanwhile, the power constraint in the kth hop (i.e., Tr(PkRxk−1
PH

k ) ≤ Pk) can now be rewritten

as

Tr(FkF
H
k ) ≤ Pk. (19)
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It is clear that with the new variables Fk, the constraints become independent of each other.

Moreover, the latter transformation of the objective function in the unified problem will not

affect the constraints, thus improving the tractability of the problem. Putting (18) and (19) into

(15), the unified transceiver design problem can be reformulated as

P1: min
Fk,Qk

f(IN −QH
0 ΘQ0)

s.t. Tr(FkF
H
k ) ≤ Pk, k = 1, · · · , K

Θ = AH
1 Q

H
1 · · ·AH

KQ
H
KQKAK · · ·Q1A1

QH
kQk = IMk

. (20)

From the definition of Ak in (18) and noticing that KFk
= Tr(FkF

H
kΨk)Σk + σ2

nk
IMk

, it

can be seen that the design variable Fk appears at multiple positions in the objective function

and is involved in matrix inversion and square root operations through KFk
. This is significantly

different from transceiver design for multi-hop MIMO relaying systems with perfect CSI in [10].

Therefore, the optimization problem is much more complicated than its counterpart with perfect

CSI. Indeed, as demonstrated by, e.g., [11] and [17], [18], [20], robust transceiver design is much

more complicated and challenging than its counterpart with perfect CSI even for point-to-point

or dual-hop relaying MIMO systems.

IV. OPTIMAL SOLUTION FOR THE ROBUST TRANSCEIVER

Clearly from the formulation of P1 in (20), two sets of matrix variables (i.e., Fk,Qk) need to

be determined. In this section, their optimal structures will be derived first, which enables the

simplification of the optimization problem in (20) into a problem with only scalar variables. An

iterative water-filling algorithm is then applied to solve the simplified problem. The relationship

between our proposed solution and a number of existing solutions will also be discussed in

detail.

A. Optimal Qk

Based on the formulations of the objectives given in (6), (8), (9) and (11), we have the

following property of the optimization problem P1.
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Property 1: At the optimal value of P1, QH
0 ΘQ0 and the objective function f(IN −QH

0 ΘQ0)

can be written respectively as

QH
0 ΘQ0 = UΩdiag[λ(Θ)]UH

Ω, (21)

f(IN −QH
0 ΘQ0) = f(IN −UΩdiag[λ(Θ)]UH

Ω) , g[λ(Θ)], (22)

where g(•) is a monotonically decreasing and Schur-concave function with respect to λ(Θ) 2;

the vector λ(Θ) = [λ1(Θ), · · · , λN(Θ)]T with λi(Θ) being the ith largest eigenvalue of Θ; and

UΩ =


UW for Obj 1

UArb for Obj 2

QDFT for Obj 3

IN for Obj 4

. (23)

In (23), the matrix UW is unitary and defined from the eigen-decomposition of the weighting

matrix W, i.e., W = UWΛWUH
W with ΛW ↘; the matrix UArb is an arbitrary unitary matrix;

and QDFT is the discrete Fourier transform (DFT) matrix making QDFTdiag[λ(Θ)]QH
DFT have

identical diagonal elements.

Proof: See Appendix A. �
We notice that the equality in (21) will hold directly, when

Q0 = UΘU
H
Ω (24)

where UΘ is the unitary matrix corresponding to the eigen-decomposition of Θ with eigenvalues

in decreasing order. Since Q0 is not involved in the constraints in (20), it follows from Property

1 that Q0 = UΘU
H
Ω is the optimal solution of Q0 for P1.

Using Property 1, the objective function of (20) can be directly replaced by g[λ(Θ)] and

thus the optimization problem is equivalent to

P2: min
Fk,Qk

g[λ(Θ)]

s.t. Θ = AH
1 Q

H
1 · · ·AH

KQ
H
KQKAK · · ·Q1A1

Tr(FkF
H
k ) ≤ Pk, QH

kQk = IMk
, k = 1, · · · , K. (25)

2The specific expressions for g(•) are given in Appendix A, but they are not important for the derivation of the optimal

structures.

January 16, 2013 DRAFT



Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

13

For this optimization problem, we have another property as follows.

Property 2: As g(•) is a decreasing and Schur-concave function, the objective function in P2

satisfies

g(λ(Θ)) ≥ g([γ1({Fk}Kk=1) · · · γN({Fk}Kk=1)]
T︸ ︷︷ ︸

,γ({Fk}Kk=1)

) (26)

with γi({Fk}Kk=1) ,
K∏
k=1

λi(F
H
k H̄

H
kK

−1
Fk
H̄kFk)

1 + λi(FH
k H̄

H
kK

−1
Fk
H̄kFk)

, (27)

with the equality in (26) holds when

Qk = VAk+1
UH

Ak
, k = 1, · · · , K − 1, (28)

and QK is an arbitrary unitary matrix. In (28), unitary matrices UAk
and VAk

are defined based

on the singular value decomposition (SVD) Ak = UAk
ΛAk

VH
Ak

with ΛAk
↘.

Proof: See Appendix B. �
It is clear from (28) that Qk, k = 1, · · · , K − 1 can be uniquely computed from Ak which

is determined only by Fk as shown in (18). Similarly, according to (24) and the definition of

Θ, it can be concluded that Q0 is determined by Qk, k = 1, · · · , K and Ak, and therefore it

is eventually determined only by Fk. With this fact and Property 2, the optimization problem

with two set of variables of Fk and Qk in P2 (25) can be reduced to the optimization problem

with only one set of variables of Fk as follows:

P3: min
Fk

g[γ({Fk}Kk=1)]

s.t. γi({Fk}Kk=1) =
K∏
k=1

λi(F
H
k H̄

H
kK

−1
Fk
H̄kFk)

1 + λi(FH
k H̄

H
kK

−1
Fk
H̄kFk)

Tr(FkF
H
k ) ≤ Pk, k = 1, · · · , K (29)

B. Optimal Structure of Fk

Since g(•) is a monotonically decreasing function of its vector argument, we have the fol-

lowing additional property of the optimal solution of Fk in P3.

Property 3: The optimal solutions of the optimization problem P3 in (29) always occur on the

boundary, i.e., Tr(FkF
H
k ) = Pk and the power constraint is equivalent to

Tr[FkF
H
k (αkPkΨk + σ2

nk
INk

)]/ηfk = Pk, (30)
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where αk is a constant as αk = Tr(Σk)/Mk and

ηfk , Tr(FkF
H
kΨk)αk + σ2

nk
. (31)

Proof: See Appendix C. �
With Property 3, the optimal solution of the optimization problem (29) is exactly the optimal

solution of the following optimization problem with different constraints:

P4: min
Fk

g[γ({Fk}Kk=1)]

s.t. γi({Fk}Kk=1) =
K∏
k=1

λi(F
H
k H̄

H
kK

−1
Fk
H̄kFk)

1 + λi(FH
k H̄

H
kK

−1
Fk
H̄kFk)

Tr[FkF
H
k (αkPkΨk + σ2

nk
INk

)]/ηfk = Pk. (32)

Now defining unitary matrices UHk
and VHk

based on the following SVD:

(KFk
/ηfk)

−1/2H̄k(αkPkΨk + σ2
nk
INk

)−1/2 = UHk
ΛHk

VH
Hk

(33)

with singular values in decreasing order, we have the key result about the optimal structure of

Fk as follows.

Property 4: When Ψk ∝ I or Σk ∝ I, the matrix KFk
/ηfk is constant and independent of Fk.

Meanwhile, the optimal solution of the optimization problem (32) has the following structure:

Fk,opt =
√
ξk(ΛFk

)(αkPkΨk + σ2
nk
INk

)−1/2VHk,NΛFk
UH

Fk,N
, (34)

where VHk,N and UFk,N are the matrices consisting of the first N columns of VHk
and UFk

,

respectively; UFk
is an arbitrary unitary matrix; ΛFk

is a N × N unknown diagonal matrix;

and the scalar ξk(ΛFk
) is a function of ΛFk

and equals

ξk(ΛFk
) = σ2

nk
/{1− αkTr[V

H
Hk,N

(αkPkΨk + σ2
nk
INk

)−1/2Ψk(αkPkΨk + σ2
nk
INk

)−1/2VHk,NΛ
2
Fk

]}

= ηfk . (35)

Proof: See Appendix D. �
Remark 2: When reversing the direction of data transmission in the multi-hop system, we can

get a dual multi-hop system where the estimated channel matrix in its (K−k+1)th hop becomes

H̄H
k and the roles of row correlation matrices and column correlation matrices are interchanged.

Using (17) and Property 4 and after some tedious manipulation, the optimal precoder matrices
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P′
k,opt for the dual multi-hop system can be found to be βkP

H
k,opt where βk is a scalar. This

means that there exists an uplink-downlink duality in the multi-hop AF MIMO relaying systems

with channel estimation errors.

In the optimal structure given by (34), the scalar variable ξk(ΛFk
) can be uniquely determined

by the matrix ΛFk
and therefore the only unknown variable in (34) is ΛFk

. The computation

of ΛFk
will be addressed in detail in the following subsection.

C. Computation of ΛFk

Substituting the optimal structures given by Property 4 into P4 and defining [ΛHk
]i,i = hk,i

and [ΛFk
]i,i = fk,i for i = 1, · · · , N , the optimization problem for computing ΛFk

becomes

min
fk,i

g[γ({Fk}Kk=1)]

s.t. γi({Fk}Kk=1) =

∏K
k=1f

2
k,ih

2
k,i∏K

k=1(f
2
k,ih

2
k,i + 1)

N∑
i=1

f 2
k,i = Pk. (36)

The exact expression for g(•) depends on the specific design criterion used for transceiver design.

For all four criteria discussed in Section III-A, a widely used and computationally efficient

iterative algorithm can be applied to solve for fk,i from (36) [31], even though the optimization

problem (36) is non-convex in nature. For completeness, the optimal solution for fk,i will be

given case by case in the following.

1) Weighted MSE Minimization: For weighted MSE minimization, it is proved in Appendix A

that g[γ({Fk}Kk=1)] =
∑N

i=1(wi −wiγi({Fk}Kk=1)) where wi = [ΛW]i,i. Therefore, the optimiza-

tion problem (36) can be rewritten as

min
fk,i

N∑
i=1

(
wi −

wi

∏K
k=1 f

2
k,ih

2
k,i∏K

k=1(f
2
k,ih

2
k,i + 1)

)

s.t.
N∑
i=1

f 2
k,i = Pk. (37)
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Using the iterative water-filling algorithm, fk,i can be directly computed with given fl,i’s where

l ̸= k as

f 2
k,i =

√ wi

µkh2
k,i

√√√√∏
l ̸=k

{
f 2
l,ih

2
l,i

1 + f 2
l,ih

2
l,i

} − 1

h2
k,i

+

, i = 1, · · · , N, (38)

where µk is the Lagrange multiplier that makes
∑N

i=1 f
2
k,i = Pk. Notice that this iterative water-

filling algorithm is guaranteed to converge, as discussed in [31].

2) Capacity Maximization: As proved in Appendix A, the objective function for capacity

maximization is given by g[γ({Fk}Kk=1)] =
∑N

i=1 log
(
1− γi({Fk}Kk=1)

)
, based on which the

optimization problem (36) can be written as

min
fk,i

N∑
i=1

log

(
1−

∏K
k=1 f

2
k,ih

2
k,i∏K

k=1(f
2
k,ih

2
k,i + 1)

)

s.t.
N∑
i=1

f 2
k,i = Pk. (39)

Similarly, the iterative water-filling algorithm can be used to solve for fk,i with guaranteed

convergence. More specifically, when the fl,i’s are given with l ̸= k, the solution for fk,i can be

derived as

f 2
k,i =

1

h2
k,i

−ak,i +
√
a2k,i + 4(1− ak,i)ak,ih2

k,i/µk

2(1− ak,i)
− 1

+

i = 1, · · · , N

with ak,i =
∏
l ̸=k

f 2
l,ih

2
l,i/(f

2
l,ih

2
l,i + 1) (40)

where µk is the Lagrange multiplier that makes
∑N

i=1 f
2
k,i = Pk hold.

3) MAX-MSE Minimization: MAX-MSE is in fact a special case of Obj 3 and in this case,

ψ1(d(ΦMSE({Pk}Kk=1))) = max[ΦMSE({Pk}Kk=1)]i,i. As shown in Appendix A, g(λ({Fk}Kk=1)) =

ψ1[1N − (
∑N

i=1λi({Fk}Kk=1)/N)⊗ 1N ]. It follows that g[γ({Fk}Kk=1)] equals

g[γ({Fk}Kk=1)] = max
{
1N − (

∑N

i=1
γi({Fk}Kk=1)/N)⊗ 1N

}
= 1− 1

N

N∑
i=1

γi({Fk}Kk=1). (41)

Clearly this expression for g(•) is similar to that for weighted MSE minimization. The optimal

solution for fk,i can then be easily found as (38) with wi = 1.
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4) Weighted Sum-Rate Maximization: Under weighted sum-rate maximization, the objective

function Obj 4 can be further specified as

ψ2(d(ΦMMSE({Pk}Kk=1))) =
N∑
i=1

vilog(d[N−i+1](ΦMMSE({Pk}Kk=1)))

where vi is the ith largest positive weighting factor and d[i](ΦMMSE({Pk}Kk=1)) is the ith largest

diagonal element. Roughly speaking, this design scheme exhibits preference for data streams with

better channel state information. It is proved in Appendix A that for this objective, g(λ({Fk}Kk=1)) =

ψ2[1N − λ({Fk}Kk=1)]. It follows that

g[γ({Fk}Kk=1)] =
N∑
i=1

vilog
(
1− γi({Fk}Kk=1)

)
(42)

and the optimization problem is formulated as

min
fk,i

N∑
i=1

vilog

(
1−

∏K
k=1 f

2
k,ih

2
k,i∏K

k=1(f
2
k,ih

2
k,i + 1)

)

s.t.
N∑
i=1

f 2
k,i = Pk. (43)

The optimization problem in (43) has a similar form to that in (39), except that there are a

number of weighting factors vi in the objective function of (43). Therefore, the iterative water-

filling solution of fk,i can be obtained similarly to that in (40) but with µk replaced by µk/vk.

D. Relationship with Existing Solutions

By comparing our proposed optimal solution given by Property 4 with existing solutions for

various systems in the literature, we find that our proposed solution reduces to the following

existing solutions by setting some system parameters accordingly:

• the robust design with weighted MSE minimization for a dual-hop AF MIMO relaying system

without source precoder in [11], by setting K = 2, Σ2 ∝ IM2 , and P1 = IN ;

• the robust design for a dual-hop AF MIMO relaying system in [12], by setting K = 2,

Ψ2 ∝ IN2 , and P1 = IN ;

• the transceiver design with weighted MSE minimization for a dual hop system with perfect

CSI in [5], by setting K = 2, Ψk = Σk = 0, W = IN and P1 = IN ;

• the transceiver design for a dual hop system with perfect CSI in [8], by setting K = 2,

Ψk = Σk = 0 and W = IN ;
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• the transceiver design with capacity maximization for a dual hop system with perfect CSI in

[4], by setting K = 2, Ψk = Σk = 0 and P1 = IN ;

• the robust design with weighted MSE minimization for a point-to-point MIMO system in [17],

by setting K = 1; and

• the robust design with capacity maximization for a point-to-point MIMO system [18], by

setting K = 1.

In other words, our proposed solution covers the above designs as special cases. It further

verifies the correctness and optimality of our proposed solution.

E. Discussions

The optimal structure of Fk in (34) is derived under the condition Ψk ∝ I or Σk ∝ I. This

condition can be easily satisfied in practice. We notice that the expressions for Ψk and Σk

generally depend on specific channel estimation algorithms. Denote the transmit and receive

antenna correlation matrices and the channel estimation error variance in the kth hop as RT,k,

RR,k and σ2
e,k, respectively. Applying the widely used channel estimation algorithms in [17]

and [18], the covariance matrices for channel estimation errors can be written as Ψk = RT,k

and Σk = σ2
e,k(IMk

+ σ2
e,kR

−1
R,k)

−1. Clearly, when the receive antennas are spaced widely, i.e.,

RR,k ∝ IMk
, we directly have Σk ∝ IMk

. Moreover, when the length of training is long, the

value of σ2
e,k will be small and IMk

+σ2
e,kR

−1
R,k ≈ IMk

. As a result, Σk can be approximated as an

identity matrix even when RR,k ̸∝ IMk
. Furthermore, when the channel statistics are unknown

and the least-squares channel estimator is applied, it can be derived that Σk ∝ IMk
[11]. On

the other hand, when the transmit antennas are spaced widely, i.e., RT,k ∝ INk
, we can obtain

Ψk ∝ INk
.

For the general case when Ψk ̸∝ INk
and Σk ̸∝ IMk

, to the best of our knowledge, finding a

closed-form optimal solution of the robust design problem is still open, even for point-to-point

MIMO systems [17], [20]. The main difficulty comes from the fact that when Ψk ̸∝ INk
and

Σk ̸∝ IMk
, KFk

/ηfk varies with Fk, and so is not a constant. However, for this general case,

KFk
/ηfk in (33) can be replaced by

KFk
/ηfk ≈ Pkλ1(Ψk)/(Pkλ1(Ψk)αk + σ2

nk
)Σk + σ2

nk
/(Pkλ1(Ψk)αk + σ2

nk
)IMk

, (44)

such that it is not a function of Fk. Notice that the above inequality becomes an equality when

Ψk ∝ INk
or Σk ∝ IMk

. Then the proposed solution can still be applied for this general case.
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When there are two hops (K = 2), our proposed optimal structure is different from that

derived in [14] (comparing (34) with Equation (16) in [14]). In [14], the solution structure is

obtained by implicitly approximating a design-variable-dependent covariance matrix (the matrix

A in [14]) as constant. Since the approximation is tight only when the covariance matrix of

channel estimation errors seen from the receiver side is proportional to an identity matrix, i.e.,

Ψk ∝ INk
, k = 1, 2, the proposed solution in [14] is sub-optimal when Ψk ̸∝ INk

, k = 1, 2. Using

the duality between the uplink and downlink discovered in our paper, the optimal solution for the

case of Σk ∝ INk
, k = 1, 2, can also be obtained based on the approach of [14]. Unfortunately,

this result has not been discovered in [14]. Generally speaking, with the duality, the work of [14]

can lead to the optimal solution when Σk ∝ INk
, k = 1, 2 or Ψk ∝ INk

, k = 1, 2. However, even

for dual-hop systems, our proposed solution is optimal under a wider range of cases than that in

[14], since it is optimal when either Σk or Ψk, ∀k, is proportional to an identity matrix3. Notice

that the condition of (Σk ∝ INk
or Ψk ∝ INk

), ∀k is more relaxed than that of (Σk ∝ INk
, ∀k

or Ψk ∝ INk
, ∀k). In conclusion, our solution is more general than that in [14].

With respect to the complexity, it is clear from (34) that the complexity of our algorithm is

due to two kinds of operations, i.e., the iterative water-filling computation for the inner diagonal

matrix in (34) and the decomposition/multiplication for the matrices on the lefthand and righthand

sides of the diagonal matrix in (34). Comparing the structures of the solution in (34) and that

in [14], similar operations are needed to obtain the solution in [14]. So we can expect that the

complexity of our approach is comparable to that in [14].

V. SIMULATION RESULTS

In this section, the performance of the proposed robust designs is evaluated by simulations.

In the simulations, the number of antennas at each node is set to four. At the source node,

four independent data streams are transmitted and in each data stream, NData = 104 inde-

pendent quadrature phase shifting keying (QPSK) symbols are transmitted. The correlation

matrices corresponding to the channel estimation errors are chosen according to the widely

used exponential model, i.e., [Ψk]i,j = σ2
eα

|i−j| and [Σk]i,j = β|i−j|, where α and β are

3It is possible to extend the work of [14] to multi-hop systems. With the duality found in our paper, the extension would

lead to the optimal solution for the cases of (Σk ∝ INk , ∀k or Ψk ∝ INk , ∀k). However, the extension is by no means

straightforward as shown in [10].
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the correlation coefficients, and σ2
e denotes the variance of the channel estimation error [12],

[20]. The estimated channel matrices H̄k’s, are generated following the widely used complex

Gaussian distributions, H̄k ∼ CNMk,Nk
(0Mk,Nk

, (1− σ2
e)/σ

2
eΣk ⊗ ΨT

k ) [12], [28], such that

channel realizations Hk = H̄k + ∆Hk have unit variance. The signal-to-noise ratio (SNR)

for the kth link is defined as Pk/σ
2
nk

and each point in the following figures shows an average

result of 104 trials.

A dual hop system (K = 2) with error correlation coefficients of α = 0.6 and β = 0

(i.e., Ψk ̸∝ I,Σk ∝ I, k = 1, 2) is considered first. Fig. 2 shows the weighted MSE at the

destination when the weighting matrix is arbitrarily chosen as W = diag{[0.3 0.3 0.26 0.26]}

and Pk/σ
2
nk

= 30dB. For comparison, the performance of the algorithm based on the estimated

channel only (labeled as non-robust design) [8], the robust algorithm proposed by Rong in [14]

and the robust algorithm without source precoding in [12] is also shown. It is clear from the figure

that our proposed robust design offers the best performance, while the non-robust design is the

worst. Fig. 3 shows the sum-rates of various algorithms for the considered two-hop AF MIMO

relaying system. It can be seen that the robust algorithms generally have better performance

than the algorithm based on estimated CSI only. Furthermore, the performance of the proposed

robust design is much better than that of the robust algorithm in [14].

Next a three-hop AF MIMO relaying system, i.e., K = 3, is considered to further investigate

the effectiveness of the proposed robust design. Since there are few (if any) robust transceiver

design algorithms proposed for multi-hop AF MIMO systems in the literature, our proposed

robust design is mainly compared with the non-robust design in [10] in the following. With the

weighting matrix being arbitrarily selected as W = diag{[0.26 0.25 0.25 0.24]}, Fig. 4 shows

the weighted MSE at the destination when Pk/σ
2
nk

= 30dB. Here two sets of error correlation

coefficients, (α = 0.6, β = 0), and (α = 0, β = 0.6), are taken as examples. They correspond

to the cases of (Ψk ̸∝ I,Σk ∝ I) and (Ψk ∝ I,Σk ̸∝ I), respectively. It can be seen that the

proposed algorithm shows similar performance for the two cases and always outperforms the

non-robust design based on the estimated CSI only. When there is no channel estimation error,

i.e., σ2
e = 0, the performance of the two algorithms is the same as expected.

Fig. 5 shows the sum-rates at different SNRs (SNR = Pk/σ
2
nk

) for the three-hop system. The

SNRs at various hops are set as the same for simplicity. The correlation coefficients for the

channel estimation errors are taken as α = 0.6 and β = 0. It is further demonstrated that the
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proposed algorithm shows better performance than the non-robust algorithm based on estimated

CSI only. Furthermore, as the estimation errors increase, the performance gap between the two

algorithms enlarges. This result coincides with that for the weighted-MSE-based robust design

shown in Fig. 4. The performance of the maximum MSE across four data streams with α = 0

and β = 0.6 is then shown in Fig. 6. Similarly, it is observed that the performance gain of the

proposed robust design over the non-robust design with estimated CSI only becomes larger as

SNR increases. The performance gap is also more apparent when σ2
e increases.

Finally, Fig. 7 shows the bit-error-rate (BER) performance for the three-hop systems with

different design criteria: capacity maximization, sum MSE minimization (i.e., weighted MSE

minimization with W = I) and MAX-MSE minimization. The parameters are chosen as α = 0.6,

β = 0 and σ2
e = 0.004. It can be seen that in terms of BER performance, the former two criteria

perform worse than the latter one since the latter criterion targets the BER performance more.

Moreover, the non-robust design with capacity maximization based on estimated CSI only is also

given and the results further verify the performance advantage of the proposed robust designs

over the non-robust design with estimated CSI only.

VI. CONCLUSIONS

Bayesian robust transceiver design for multi-hop AF MIMO relaying systems with channel

estimation errors has been considered. Various transceiver design criteria including weighted

MSE minimization, capacity maximization, worst MSE minimization and weighted sum-rate

maximization have been discussed and formulated into a unified optimization problem. Using

majorization theory and properties of matrix-variate functions, the optimal structure of the robust

transceivers has been derived. Then the transceiver design problems have been greatly simplified

and solved by iterative water-filling algorithm. The performance of the proposed transceiver

designs has been demonstrated via simulation results.

APPENDIX A

PROOF OF PROPERTY 1

The proof of Property 1 depends on the specific objective function in (20). In the following,

we will discuss the optimization problem (20) with different objective functions case by case.
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Obj 1: With the objective function of (6) and the MMSE matrix in (18), we have

f(IN −QH
0 ΘQ0) = Tr(W)− Tr(WQH

0 ΘQ0) ≥ Tr(W)−
N∑
i=1

λi(W)λi(Θ)︸ ︷︷ ︸
,g(λ(Θ))

(45)

where the inequality follows from the fact that for two positive semi-definite matrices W and

Θ, Tr(WQH
0 ΘQ0) ≤

∑
i λi(W)λi(Q

H
0 ΘQ0) with λi(Z) denoting the ith largest eigenvalue of

Z. Furthermore, the second equality in (45) holds when QH
0 ΘQ0 = UWdiag(λ(Θ))UH

W where

λ(Θ) = [λ1(Θ), · · · , λN(Θ)]T and UW is the unitary matrix containing the eigenvectors of

W as columns [32]. It implies that the optimal value of f(IN −QH
0 ΘQ0) is g(λ(Θ)) and is

achieved when QH
0 ΘQ0 = UWdiag(λ(Θ))UH

W.

Using the Lemma 2.A.2 [32] and the definition of g(λ(Θ)) in (45), it can be easily found that

g(λ(Θ)) is a Schur-concave function with respect to λ(Θ). Furthermore, for two vectors v ≤ u

(i.e., vi ≤ ui), from the definition of g(λ(Θ)) in (45), it can be concluded that g(v) ≥ g(u). It

means that g(•) is a decreasing function.

Obj 2: For the second objective function given by (8), it is directly obtained that

f(IN −QH
0 ΘQ0) = log|IN −QH

0 ΘQ0| =
N∑
i=1

log[1− λi(Θ)]︸ ︷︷ ︸
,g(λ(Θ))

. (46)

Obviously, the above equality holds unconditionally and thus the objective function f(IN −

QH
0 ΘQ0) is independent of Q0. It follows from the optimization problem (20) that Q0 can take

any arbitrary unitary matrix since it is only involved in the constraint of QH
0 Q0 = I. Therefore,

QH
0 ΘQ0 = UArbdiag(λ(Θ))UH

Arb with UArb being an arbitrary unitary matrix always holds.

Meanwhile, the optimal value of f(IN −QH
0 ΘQ0) can always be written as g(λ(Θ)). Based on

the Lemma 2.A.2 [32] and the definition of g(λ(Θ)) in (46), it can also be proved that g(λ(Θ))

is a decreasing Schur-concave function with respect to λ(Θ).

Obj 3: For the diagonal elements of the positive semi-definite matrix ΦMMSE({Pk}Kk=1) = IN −

QH
0 ΘQ0, we have the following majorization relationship [32]:

d(IN −QH
0 ΘQ0) ≻ 1N − (

∑N

i=1
λi(Θ)/N)⊗ 1N (47)

where the equality holds if and only if [QH
0 ΘQ0]i,i =

∑N
i=1λi(Θ)/N , and 1N is the N × 1

all-one vector.
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For the third objective function in (9), as ψ1(•) is increasing and Schur-convex, the objective

function in (20) satisfies [24]

f(IN −QH
0 ΘQ0) = ψ1(d(IN −QH

0 ΘQ0)) ≥ ψ1

(
1N − (

∑N

i=1
λi(Θ)/N)⊗ 1N

)
︸ ︷︷ ︸

,g[λ(Θ)]

, (48)

with equality if and only if [QH
0 ΘQ0]i,i =

∑N
i=1λi(Θ)/N . As shown in [24], when QH

0 ΘQ0 =

QDFTdiag(λ(Θ))QH
DFT where QDFT is a DFT matrix, QH

0 ΘQ0 has identical diagonal elements.

It follows that when QH
0 ΘQ0 = QDFTdiag(λ(Θ))QH

DFT, the objective function f(IN−QH
0 ΘQ0)

will take minimum/optimal value of g(λ(Θ)).

Based on the fact that ψ1(•) is an increasing and Schur-convex function, it can be directly

concluded from (48) that g(λ(Θ)) is a decreasing function of λ(Θ). Furthermore, based on the

Lemma 2.A.2 [32], ψ1(•) is also a Schur-concave function of λ(Θ).

Obj 4: Notice that for the positive semi-definite matrix ΦMMSE({Pk}Kk=1) = IN − QH
0 ΘQ0,

d(IN −QH
0 ΘQ0) ≺ λ(IN −QH

0 ΘQ0) [24]. With the Schur-concave function of ψ2(•) in (11),

we have

f(IN −QH
0 ΘQ0) = ψ2(d(IN −QH

0 ΘQ0)) ≥ ψ2([1N − λ(Θ)])︸ ︷︷ ︸
,g[λ(Θ)]

, (49)

where the equality holds when [QH
0 ΘQ0]i,i = λi(Θ). It is easy to see that when QH

0 ΘQ0 =

INdiag(λ(Θ))IN , the preceding condition is satisfied and then the objective function f(IN −

QH
0 ΘQ0) achieves its minimum/optimal value of g(λ(Θ)).

Since ψ2(•) is increasing and Schur-concave, it is clear that g(λ(Θ)) is decreasing with

respect to λ(Θ). Moreover, using [32, 3.A.6.a], it can be proved that ψ2(1N − λ(Θ)) is also

Schur-concave with respect to λ(Θ).

APPENDIX B

PROOF OF PROPERTY 2

First notice that for two matrices A and B with compatible dimensions, λi(AB) = λi(BA)

[32, 9.A.1.a]. Together with the fact that for two positive semi-definite matrices A and B,
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∏k
i=1 λi(AB) ≤

∏k
i=1 λi(A)λi(B) [32, 9.H.1.a], we have4

k∏
i=1

λi(A
H
1 Q

H
1 · · ·AH

KQ
H
KQKAK · · ·Q1A1)

≤
k∏

i=1

λi(A
H
2 Q

H
2 · · ·AH

KQ
H
KQ

H
KAK · · ·A2Q2)λi(Q1A1A

H
1 Q

H
1 )︸ ︷︷ ︸

=λi(A1A
H
1 )

k = 1, · · · , N. (50)

Repeating this process, we have the following inequality:
k∏

i=1

λi(A
H
1 Q

H
1 · · ·AH

KQ
H
KQKAK · · ·Q1A1) ≤

k∏
i=1

λi(A
H
KAK)λi(A

H
K−1AK−1) · · ·λi(A

H
1A1)︸ ︷︷ ︸

,γi({Fk}Kk=1)

.

(51)

Based on (51) and 5.A.2.b in [32], we directly have

λ(AH
1 Q

H
1 · · ·AH

KQ
H
KQKAK · · ·Q1A1) ≺w [γ1({Fk}Kk=1) · · · γN({Fk}Kk=1)]

T , γ({Fk}Kk=1)

(52)

where a ≺w b denotes that a is weakly majorized by b [32] and the equality holds if and only

if the neighboring Ak’s satisfy

Qk = VAk+1
UH

Ak
, k = 1, · · · , K − 1 (53)

where UAk
and VAk

are defined based on the following singular value decomposition: Ak =

UAk
ΛAk

VH
Ak

with ΛAk
↘. As g(•) is a decreasing and Schur-concave function, we have [32]

g[λ(Θ)] ≥ g[γ({Fk}Kk=1)] (54)

with equality if and only if (53) holds. Finally, based on the definition of Ak in (18), using the

matrix inversion lemma, the following equality holds:

AH
kAk = IMk

− (FH
k H̄

H
kK

−1
Fk
H̄kFk + IMk

)−1. (55)

It follows that λi(A
H
kAk) = λi(F

H
k H̄

H
kK

−1
Fk
H̄kFk)/[1 + λi(F

H
k H̄

H
kK

−1
Fk
H̄kFk)]. Based on this

result, γi({Fk}Kk=1) in (51) equals

γi({Fk}Kk=1) =
K∏
k=1

λi(F
H
k H̄

H
kK

−1
Fk
H̄kFk)

1 + λi(FH
k H̄

H
kK

−1
Fk
H̄kFk)

. (56)

4Note that in general Ak is not a square matrix.
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APPENDIX C

PROOF OF PROPERTY 3

Suppose at the moment that using the optimal Fk, denoted by Fk,opt, transmission is not at

the maximum power, i.e., Tr(Fk,optF
H
k,opt) < Pk; then we have a ,

√
Pk/Tr(Fk,optFH

k,opt) > 1.

Defining F̂k , aFk,opt, it follows that

F̂H
k H̄

H
kK

−1

F̂k
H̄kF̂k

=FH
k,optH̄

H
k (Tr(Fk,optF

H
k,optΨk)Σk + σ2

nk
/a2I)−1H̄kFk,opt

≽FH
k,optH̄

H
k (Tr(Fk,optF

H
k,optΨk)Σk + σ2

nk
I)−1︸ ︷︷ ︸

K−1
Fk,opt

H̄kFk,opt. (57)

Note that A ≽ B means that λi(A) ≥ λi(B) for all i, and therefore (57) implies

λi(F̂
H
k H̄

H
kK

−1

F̂k
H̄kF̂k) ≥ λi(F

H
k,optH̄

H
kK

−1
Fk,opt

H̄kFk,opt). (58)

Moreover, it is clear from the definition of γi({Fk}Kk=1) in (27) that γi({Fk}Kk=1) is an increas-

ing function of λi(F
H
k H̄

H
kK

−1
Fk
H̄kFk). It then follows that γ({Fk = F̂k}Kk=1)) ≥ γ({Fk =

F̂k,opt}Kk=1). Together with the fact that g(•) is a decreasing function, it is concluded that

g[γ({Fk = F̂k}Kk=1))] ≤ g[γ({Fk = F̂k,opt}Kk=1)]. It is obvious that this result contradicts the

optimality of Fk,opt, and therefore a necessary condition for the optimal Fk is Tr(FkF
H
k ) = Pk.

Furthermore, when Tr(FkF
H
k ) = Pk, the following equality holds:

Tr[FkF
H
k (αkPkΨk + σ2

nk
I)] = αkPkTr(FkF

H
kΨk) + σ2

nk
Tr(FkF

H
k )︸ ︷︷ ︸

=Pk

= αkPkTr(FkF
H
kΨk) + σ2

nk
Pk. (59)

Defining ηfk = αkTr(FkF
H
kΨk)+σ2

nk
with αk = Tr(Σk)/Mk, (59) can be rewritten as Tr[FkF

H
k (αkPkΨk+

σ2
nk
I)] = Pkηfk . In other words, the power constraint Tr(FkF

H
k ) = Pk is equivalent to

Tr[FkF
H
k (αkPkΨk + σ2

nk
I)]/ηfk = Pk. (60)

APPENDIX D

PROOF OF PROPERTY 4

Problem reformulation: As shown in (27), γi({Fk}Kk=1) is a complicated function of λ(FH
k H̄

H
kK

−1
Fk
H̄kFk).

Clearly, Fk appears in multiple positions. In particular, KFk
is a function of Fk which complicates
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the derivation of optimal solutions. In order to simplify the problem, λ(FH
k H̄

H
kK

−1
Fk
H̄kFk) is

reformulated as

λ(FH
k H̄

H
kK

−1
Fk
H̄kFk) =λ[F̃

H
k (αkPkΨk + σ2

nk
INk

)−1/2H̄H
k (KFk

/ηfk)
−1/2

× (KFk
/ηfk)

−1/2H̄k(αkPkΨk + σ2
nk
INk

)−1/2︸ ︷︷ ︸
,Hk

F̃k], (61)

where F̃k is defined as

F̃k = 1/
√
ηfk(αkPkΨk + σ2

nk
INk

)1/2Fk. (62)

The right hand side of (61) is easier to handle than the left hand side. This is because when

Ψk ∝ INk
or Σk ∝ IMk

, Hk is independent of F̃k. In the following, we will prove this in detail.

It is obvious that Hk being independent of F̃k is equivalent to KFk
/ηfk being independent

of F̃k. First consider Ψk ∝ INk
, i.e., Ψk = βkINk

. With the definitions of KFk
in (17) and ηfk ,

KFk
/ηfk equals

KFk
/ηfk = [βkTr(FkF

H
k )Σk + σ2

nk
IMk

]/[βkαkTr(FkF
H
k ) + σ2

nk
]

= (βkPkΣk + σ2
nk
IMk

)/(αkβkPk + σ2
nk
), (63)

where the second equality is based on the fact that Tr(FkF
H
k ) = Pk for the optimal Fk. On the

other hand, when Σk ∝ IMk
(i.e, Σk = αkIMk

), KFk
/ηfk equals

KFk
/ηfk = [αkTr(FkF

H
kΨk)INk

+ σ2
nk
INk

]/[αk[Tr(FkF
H
kΨk) + σ2

nk
]

= INk
. (64)

Therefore, when Ψk ∝ INk
or Σk ∝ IMk

, KFk
/ηfk is independent of F̃k.

Using the substitution (62), the optimization problem (32) is reformulated as

min
F̃k

g[γ({F̃k}Kk=1)]

s.t. γi({F̃k}Kk=1) =
K∏
k=1

λi(F̃
H
kHH

kHkF̃k)

1 + λi(F̃H
kH

H
kHkF̃k)

Tr(F̃kF̃
H
k ) = Pk. (65)
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Structure of optimal F̃k: For the optimal F̃k, denoted as F̃k,opt, based on the following singular

value decompositions:

HkF̃k,opt = UMk
ΛMk

VH
Mk

with ΛMk
↘ and Hk = UHk

ΛHk
VH

Hk
with ΛHk

↘,

(66)

we can construct a matrix F̄k,

F̄k = VHk
ΛXk

VH
Mk

, (67)

where ΛXk
is an unknown diagonal matrix with the same rank as ΛMk

and ΛHk
ΛXk

/b = ΛMk
,

and the scalar b is chosen to make Tr(F̄kF̄
H
k ) = Pk hold.

Because Hk is independent of the unknown variable F̃k, using Lemma 12 in [24], we have

F̄H
kHH

kHkF̄k ≽ F̃H
k,optHH

kHkF̃k,opt. (68)

Taking eigenvalues of both sides, we have λi(F̄
H
kHH

kHkF̄k) ≥ λi(F̃
H
k,optHH

kHkF̃k,opt) [32]. Since

γi({F̃k}Kk=1) is an increasing function of λi(F̃
H
kHH

kHkF̃k), we directly have that γ({F̃k = F̄k}Kk=1) ≥

γ({F̃k = F̃k,opt}Kk=1). Furthermore, as the objective function g(•) of (65) is a decreasing function,

we finally have g[γ({F̃k = F̄k}Kk=1)] ≤ g[γ({F̃k = F̃k,opt}Kk=1)]. Because F̃k,opt is the optimal

solution, F̃k,opt must be in the form of F̄k. Therefore, the structure of optimal F̃k is given by

(67), i.e., F̃k,opt = VHk
ΛXk

VH
Mk

.

As the minimum dimension of Ak is N , on substituting (67) into γi({Fk}Kk=1) (51), it can be

seen that for the optimal solution only the N ×N principal submatrix of ΛXk
can be nonzero,

which is denoted as ΛFk
. As a result, F̃k,opt has the following structure:

F̃k,opt = VHk,NΛFk
VH

Mk,N
. (69)

It is clear that the values of VMk
’s do not affect the values of λi(F̃

H
kHH

kHkF̃k), the constraint

Tr(F̃kF̃
H
k ) = Pk and the objective function in the optimization problem (65). Therefore, VMk

can be an arbitrary unitary matrix.

Structure of optimal Fk: Based on the relationship between Fk and F̃k given in (62),

Fk,opt =
√
ηfk(αkPkΨk + σ2

nk
INk

)−1/2F̃k,opt. (70)

Putting the structure of Fk,opt in (70) into ηfk in (31), ηfk can be solved to be

ηfk = σ2
nk
/{1− αkTr[V

H
Hk,N

(αkPkΨk + σ2
nk
INk

)−1/2Ψk(αkPkΨk + σ2
nk
INk

)−1/2VHk,NΛ
2
Fk

]}.

(71)

Clearly in (71), ηfk is a function of ΛFk
and it can be denoted as ηfk = ξk(ΛFk

) for clarification.
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