Designing a Distributed Multimedia Synchronization Scheduler

Jerzy P. Jarmasz and Nicolas D. Georganas
Multimedia Communications Research Laboratory
Department of Electrical and Computer Engineering

University of Ottawa, Canada.
jerzy@mcrlab.uottawa.ca, georgana@mcrlab.uottawa.ca

Abstract

Distributed multimedia applications need an effective
synchronization strategy to deal with the temporal
disturbancesintroduced into the data streamsby the
transport and operating systemn essentialpart of this
strategy is scheduling - i.e. determining optirtiaies for
the retrieval of data from the data servers.The CITR
News-On-Demangroject prototype currently uses a
centralizedsynchronizationsystemwhich lacks effective
high-level scheduling. This paper looks at how to tdd
functionality without seriously disturbing the components
already in place. The proposedsolution is a distributed
synchronization scheduler, desigramtlimplementedn a
way which makes use of the current prototype’s
components.

1. Introduction

Multimedia technology - still one of thgrimary areas
of researchin the computingworld - is the ability to
integrate the traditional media formats, i.e. texgphics,
soundand moving images,into a single document.The
mediawhich werefirst usedin computerapplications-
text and graphics - are relatively simjhethat they have
no implicit time semanticsor constraints;only their
spatial semantics(e.g., where a paragraphshould be
placedon a screenor how big the font should be) are
relevantto the user.Audio and video, however, are so-
called time-continuousor time-dependentmedia: they
only make sense if they are played backhiaright order
andat the right speed.Displaying and integrating these
media types, therefore,requiressome kind of temporal
coordination.This meansthat a multimedia application
cannot be designed without taking the temporal
relationships between its componentsinto account.
Multimedia synchronization usually refers to these
temporal relationships among the different media [1].

Synchronizatiorerrors- disturbancesn the temporal

semantics of data, such as a varying frame rate for video -

are due to all the mechanisms wich tet datafrom the
storage medium to the display devices at the user’s end of
the application. Briefly, these mechanismsare: the
retrieval of datafrom the storagemedium,the transport
service betweethe storagemedium and the displaying
application, the displaying application itself, and the
underlying operatingsystemsand protocolswhich run
the other mechanismsSynchronizatiormethodscan be
either preventiveor corrective. Preventive mechanisms
aredesignedo minimize synchronizationerrors as data
move through the systemto the user. Theseinclude
scheduling, which is the processof organizing and
coordinating the retrieval of data from the storage
medium, and efficient transport mechanisms and
operating systems, which allow for the precise cordfol
timing constraints. Corrective methods invok@justing
the presentation of the data ontbey are receivedby the
displaying application so that the appearance of
synchronyis maintained.Synchronizationstrategiesin
multimedia applicationsuse thesemethodsin varying
degrees.

An exampleof suchan applicationis the News-on-
Demand system being developed as part of the research in
the BroadbandServicesmajor project of the Canadian
Institute for Telecommunications Reseaf€HTR). This
project is made up of many sub-projects being carried out
by different researchteams. The sub-projectsinclude a
file systemfor time-dependenmedia (the Continuous
Media File Server, or CMFS), a Quality-of-Service
negotiation andnonitoring system,databasdéechnology
and synchronization of data.

The synchronization research is bethapeby a team
from the Multimedia Communications Research
Laboratory (MCRLab), of the University of Ottawa’s
Electrical and Computer Engineeringdepartment.The
MCRLab’s synchronizationstrategylooks at both the
preventive and corrective aspectsof synchronization.
Preventionis mainly at the schedulinglevel. Due to
technical considerations,the current overall project
prototype uses centralizeddesignfor the scheduler2].

This meansthat only one module,locatedat the client,

organizesand coordinateghe retrieval of the dataform

the storagemedium- in this case,the CMFS and the
text database.However, there is research[3] which

suggestghat a distributed schedulerwhere the servers
participatein the schedulingof the multimedia data,
would be more efficient, particularly for the client. The
MCRLab hasthereforecommitteditself to re-designing
the schedulerin the current prototype to make it

distributed.

This paper will thereforstudy the issuesinvolved in
changing from a centralized todéstributedschedulerand
the implementationof sucha schedulerThe restof the
paper is organized as follows. Section two studies
synchronization issues. Section three presents and
comparegdifferent schedulerarchitectures Section four
discusseswhat needsto be changedin the current
prototype to move to a distributed scheduler. Section five
discussesthe actual implementationof the scheduler.
Sectionsix points to further researchand concludesthe
paper.

2. Synchronization Concepts

2.1 Media granularity and semantics

There can be many different types of temporal
relations between the componenfsmultimediadata. A
good way to classify them is to look at the different
semantic levels of multimedia data. A reference model for
organizingtheselevels has beengiven in [1]. Briefly
stated, this model recogniztéweelevels of organization
inside multimediadocumentsandone level “above” the
documentwhich allows the authorof the documentto
specify temporal relationg.he levels inside a document
are:

- the media layenwvhich looks at the semanticdnside
a single stream of time-dependdaita. The streamis
viewed as a successionof Logical Data Units, or
LDUs, which denote the lowest level of data
granularity seenby the application. This could be
frames, groups of frames, data blocks, etc.
Synchronizatiorat this level is referredto as intra-
stream synchronization.

- the stream layer, which looks at the relations

- the objectlayer, which integratesstreamsand time-
independentatasuch as text and still images.The
difference between the two types of objemtshidden
here. Synchronizationat this level is called inter-
object synchronization.

These levels allow us torganizeand study the types
of temporal constrainbetweenmultimediadata,andthe
synchronization errors that occur during the playback of a
multimedia document.

2.2 System components and how they affect
synchronization.

As it was said before, there are many links in the
chain which moves data from its storage &ite¢he user.
Each of these links performs a certain task and affhets
datain a different way. They all tend to introduce
synchronization errors, unless care is takeavimd this.
Servers store data and put thatainto the network;the
network transports the data the client; the client reads
the datafrom the network and presentsit to the user;
operatingsystemsand protocolsallow thesesystemsto
run and do their work.

Obviously, given the specialtemporalconstraintsof
multimediadata,as well as their resourcerequirements
(high bandwidth and high resolutidar good video), the
systemsdescribedabovehaveto be designedor chosen
with care. In particular, the servers mbstableto store
large amountsof datain sucha way that retrieval is
quick and efficient; networks must provide high
bandwidth and low transmission rate variations;
operating systemsand applications must be able to
provide real-time data processing (retrieval, re-
synchronization, display) [4].

Synchronizatiormethodsusually aim at making the
best of the properties and functionalities of the
“infrastructure” an applicationis using, not to change
them; the synchronizatioresearchat the MCRLab thus
concentrates mainly on server- and client- side
application-level strategies.

2.3 Synchronization strategies

2.3.1 Prevention. Preventingsynchronizationerrors
involves minimizing these errors. This requires

between whole streams, and groups of streams. LDUs eIiminating any inefficiencies and latencies in the

are hidden athis level, streamsare seenas a whole.
Synchronizationat this level is known as inter-
stream synchronization.

mechanisms which move data from the storage medium to
the user. Thesemainly involve disk-readingscheduling
policies, network transport protocols and operating
systemswhich allow for real-time computing and for
temporal semanticsof datato be taken into account.

Looking at the data semantics introduestdlier,it canbe
said that “infrastructure” systentake careof intra-stream
synchronization, while applications usually use this
“infrastructure” to ensure inter-streamand inter-object
synchronization, although sonogperatingsystemsmight
provide facilities for inter-streamsynchronizatior{1] and
some applications might delve into intra-stream
synchronization.At any rate, the prevention methods
developed at the MCRLatoncentraten providing inter-
object schedulingusing lower-level mechanismsand a
temporal notation called Time Flow Grapfig-G) [5]. A
scheduler uses the specifications for a presentation
describedwith this notation to createa schedulefor the
delivery of the objects to the client by the servers
(delivery schedule) and the presentation of thdgectsto
the userby the client application (presentatiorschedule)
[6]. This schedulercanbe centralized- entirely locatedat
the client - or distributed - the delivery scheduling
functionalities are shared among the servers andlitbet.
So far researchinto the distributed schedulerhas been
mainly theoretical; later sections of this paper will discuss
the actual implementation of such a scheduler.

2.3.2 Correction. If errorscan't be prevented- and
this being the real world, they can't - they must be
rectified. This is to be doneby the client application
receiving thedata. The methodusedby the MCRLab is

the Stream SynchronizationProtocol (SSP)[2]: units
which control and monitor the client-end of the data
connectionscomparethe real arrival times of datawith

the ones predicted by the presentation schedul@atify

the schedulerof any discrepanciesThese discrepancies
are thencompensatetbr by the schedulerwhich delays

the display of data that are “ahead” of other data, allowing
the late data to “catchp.” Sincethis is doneentirely at

the client sidethe architectureof the scheduledoesnot
affect the SSP, and the SSP does not affect the servers.

3. Scheduler Models

3.1 The centralized scheduler

As has been previously stated, in this model athef
object-level schedulingis performedat the client by a
processcalled a scheduler.When a user requestsan
article, the scheduler receives from the database shever
scenariofor the article. Theschedulerthen computesa

The client decides when it wants to present data and when
it wants to request the dati@m the servers.The servers

take care of low-level (i.a@ntra-stream)schedulingonly.

The client then takes care of high-level and low-level
synchronization with the SSP. Figure 1 shows a diagram
of the current system prototype that has been
implemented using a centralized scheduler [7].

The user interactswith the application through a
Graphical User Interface (GUI). The udest choosesan
article from the list ofavailablearticlesthat is presented
to him/herby the GUI. This requestis then sentto the
DatabaseServer.The DatabaseServerreturnsthe article
scenarioto the scheduler, which takes care of all
scheduling tasks (starting data readers, computing
schedules,and so on) in the client application. The
scheduleruses the scenarioto compute an acceptable
presentation schedule. Following this schedule, the client

LEGEND

COMPONENTS:

DBS: Database Server

CMFS: Continuous Media File Sever (A/V)
TEXT: Text Server

Transport Network
Client Application
Graphical User Interface
Scheduler Process

Data Reader Process
Media PlayBack Process
(Audio, Video, Text)

TEXT

D DS
= COMMUNICATIONS:
R CcM

cm < MPB
c| | mPe
c M

Nw:
CLIENT
GUL
SCH:
DR:

‘ MPB:

Control Messages

DS Data Streams
Meta-Information
(Scenario & Scheduling)

o™ SYNCHRONIZATION FUNCTIONALITIES:

CLIENT

High-Level Scheduling (Streams, Objet
Low-Level Scheduling (Inside Streams;
Correction (SSP Protocol)

Figure 1. System prototype with a
centralized scheduler

opens connectionsbetweenitself and the serversand
requeststhe different media that needsto presentthe
article. Thereis no explicit delivery schedulein this
model. When the user gives the commandto start
displayingthe article, the client startsreadingdatafrom
the connectionsand displaying them. The data streams
are constantly monitored ke datareaderswhich have
a Media SynchronizatiorController (MSC); this MSC
knows the presentation schedule and notifies the
schedulerwhen synchronizationerrors (with regardsto
the schedule) are detected. The schedulerrissnhedules
the readingor the display of certain streams,using the
Stream Synchronization Protocol [7].

It is clear from the figure that control ovite system
is centralizedat the client: the client determinesthe

presentation schedule which fits the scenario, as well as aschedulesppensthe connectionsand requeststhe data.

delivery schedulefor the serverswhich is basically the
presentationscenarioadjustedfor network conditions.

This type of architecture requires the client applicatmn
be quite intelligent. Sinceit is desirablethat the client

application be kept simple, so that it will easily run on a scheduleris notified of any errors and re-scheduleshe

wide variety of platforms, this should be avoided.
Anotherdrawbackis that thereis no proper high-level
(i.e. streamandobjectlayer) schedulingin this model,
only correctionmeasures.Serverswith some kind of
high-level scheduling capability would help reduce
synchronizatiorerrors,thus lightening the workload of
the client. As it stands,the client does all of the
synchronizationwork, exceptfor media layer delivery
scheduling.

3.2 Thedistributed scheduler

Researcltonductedat the MCRLab suggeststhat a
distributed scheduling scheme provides better
synchronizationprevention and recovery performance
than a centralizedsystem.A distributedarchitecturevas
proposedn [3]; its impacton schedulingwas discussed
in [8]. In this architecture, the servers become
responsibldor openingthe data connectionsobtaining
information on network conditionsand schedulingthe
delivery of their own data.The schedulingat the server
level is performedby Temporal SchedulerControllers
(TSCs). The presentation scenario is sent bydHiabase
server to theclient andto the TSCs. The TSCs usethe
scenarioto open the appropriate connectionsto the
client; in doing so, they obtain the end-to-endnetwork
delay on each connection.The TSCs then exchange
information about the different objects in the
presentation and network conditions to derive a
presentationscheduleand a delivery schedule. The
delivery schedule, i.e. the optimi@ines for transmitting
data to the client, is derived from the presentation
scheduleby subtractingthe total delay that eachobject
encountergrom the times in the presentationschedule.
The total delay foeachobjectis the sum of the end-to-
end network delay on its connection,the buffer delay
upon receptionby the client, andthe decodingtime for
the object [6] [7]. The presentationscheduleis also
derivedat the client from the scenarioand the TFG for
the presentation.

The connection-endpointgre controlled by Media
Synchronization Controllers (MSCs), which ensure
intra-stream synchronization. The server MSCs
(SMSCs) are directly responsible for opening the
connectionsrequestedby the TSCs and for ensuring
media layer scheduling for each stream. The ché8Cs
(CMSCs) are in chargeof monitoring synchronization
errors upon reception of the streamsthg client. Errors
are detectecby comparingthe actual arrival time of an
object or an LDU with its projected arrival time baged
the schedule provided by the client scheduler. The

restof the presentatioraccordingly.For example,if an
objectarriveslate, the scheduledelaysthe presentation
of objectswhich are to be presenteckither in parallel
with, or after, the lat@bject. This co-operatiorbetween
the schedulerand the CMSCs implements the SSP
correction protocol alluded to in section 2.3.2 and
explained in more detail in [7].

The overall architecture of this system is illustraited
figure 2, with a particular emphasis control messages
between the components .

i LEGEND

M
COMPONENTS:
DBS: Database Server
AVS: Audio/Video Server
TEXT: Text Server
TSC: Temporal Scheduler Controller
SMSC: Server Media Synchronization Controlle
NW: Transport Network
CLIENT: Client Application
GUI: Graphical User Interface

0B T8¢
;
oM Avs F
\ LLSC
M
SCH: Scheduler Process
CMSC: Client Media Synchronization Controller

B MPB: Media PlayBack Process

(Audio, Video, Text)
M

Y
scr [L5¢]

Ml

COMMUNICATIONS:

oM Control Messages

DS Data Streams

M Meta-Information (Scenario & Schedulir
SYNCHRONIZATION FUNCTIONALITIES:
High-Level Scheduling (Streams, Objec
Low-Level Scheduling (Inside Streams)

CLIENT Correction (SSP Protocol)

Figure 2: System architecture with a
distributed scheduler

Clearly, the servers have a more complicated
structure in this model, sincethey have an extra
schedulermodule, effectively giving them a two-tiered
architecture.Communicationsbetweenthe components
are also more complicated, as all the servers must
exchangenformation. But while the serversmust now
perform more taskghe client doesnot haveto derivea
delivery scheduleany more, and the systemhas stream
and object layer scheduling capabilities, whazch absent
from the centralizedschedulerarchitecture seenin the
previoussection. This should improve performanceby
reducing synchronization errors, therefore making
recovery operationsmore efficient, and by simplifying
the client application.

4. Re-engineering the Current Model

4.1 Assessing the centralized model

After deciding what the requirementsof the new
architectureareto be, i.e. a distributed schedulershared
between theclient andthe servers the centralizedmodel

has to be assessedo see how similar it is to the
distributed model.

A quick visualcomparisorof figures1 and2 reveals
that the low-level (i.e. intra-stream)schedulingthat is
required in the distributed model is provided by the
CMFS serversin the centralizedmodel. In otherwords,
the SMSCs offigure 2 areequivalentto the CMFSs of
figure 1. The client appeate haveall it needssinceit
has the samecomponentsin both figures. The main
difference isthat the serversin the distributedmodel are
more complicatedthey include TSC modulesfor high-
level (inter-object and inter-stream)scheduling,absent
from the centralized model, which control the
SMSC/CMFS units, responsible for low-level
scheduling as well as network functionalities. So
moving from the centralizedto the distributed model
requireschangingthe conceptof a serverfrom just the

CMFS to a server with high-level scheduling capabilities

which utilizes thefunctionalitiesof the CMFS for low-
level synchronizationAll that the centralizedmodel is
missing is some way of coordinating the CMFS
functionalities from a location other than the client
application.

4.2 The new distributed model

Figure 3 illustratesthe proposedarchitecturefor the
implementation of the distributed scheduler. What
changes from the centralized modelthat TSC modules
from the theoretical distributed model which
communicatewith the CMFSs are addedto the servers.
TheseTSCs act as proxies betweenthe client and the
servers; the client doesrébmmunicatedirectly with the
CMFSs anymore.To allow the TSCs to coordinate
network connections and data streams through the
CMFS, somechangesvere madeto the CMFS by its
authors [9], as follows:

- the CMFS API now allows separate processeseto
up and control the server and the client end-pahidata
connectionsthis allows the TSC to managethe server

end-point, while the client application manages the client

end-point

- streamsdo not haveto be readiedfor transmission
closeto the desiredtransmissiontime; rather, they can
now be readiedin advance,allowing for more flexible
inter-stream scheduling.

Both these changes allative TSC to carry out inter-
stream delivery scheduling ftihe CMFS serversinstead
of the client.

However, the original theoretical model has been
somewhat simplifiedor easeof implementation.n the
original model, the serverswere to communicatewith

LEGEND

COMPONENTS:
DBS: Database Server
dio/Video Server

AVS: i ol
TEXT: Text Server

TSC: Temporal Scheduler Controller
SMSC: Server Media Synchronization Controlle
CMFS: Continuous Media File Server
NwW: Transport Network
CLIENT: Client Application
GUL: Graphical User Interface
SCH: Scheduler Process
CMSC: Client Media Synchronization Controller
MPB: Media PlayBack Process
(Audio, Video, Text)

COMMUNICATIONS:

cM Control Messages

DS Data Streams

M Meta-Information (Scenario & Schedulir

oM Control & Meta-Infornation Messages

SYNCHRONIZATION FUNCTIONALITIES:

High-Level Scheduling (Streams, Objec

Low-Level Scheduling (Inside Streams)
Correction (SSP Protocol)

CLIENT

Figure 3: System architecture with
proposed distributed scheduler

each other to derive the delivery schedulefrom the
presentationschedule.lndeed, some early attempts at
implementationevenproposedchaving the serversderive
the TSC and presentation schedules, independehthye
client. This would have introduced unnecessary
redundancyas well as the problem of coordinatingthe

servers. The approach that was finally chosen requires the

serversto receive the presentationschedulefrom the
client and derive the delivery scheduleonly for the
objects that are stored on them. This simplifies the
designof the TSCs, and thereforeof the servers.The
client combinesrequeststo prepare, start or stop a
presentation and meta-information (scheduling and
synchronizationdata) in its messagesto the TSC
processesitting on the serverentities. This allows the
servers to share in the scheduling of multimedia ohata
simple and effective way without requiring a major
reworking ofthe different componentghat makeup the
News-on-Demand project prototype.

5. Implementation

The TSC module and an API to the module hbsen
implemented. The implementation was done usirggC
programminglanguageand a real-time threadspackage
called RT Threads [10], which also requires C.

The codefor the TSC moduleis quite simple. Its
pseudo-code can be summed up as follows:

-the TSC makesitself known to the CMFS and
initializes its data structures
-The TSC waits for a message from the client:
-TSCOPEN message:
-check if the request can be handled

-if so, assign an identifier to the requestand
remember the scenario sdnt the client with the
message,and open the necessaryconnections
betweenthe CMFS and the client using the
CMFS API
-report the status of the requestto the client
(refused, successful or failed)
-TSCPLAY message:
-checkif the requestis for an article which has
already been opened
-if so, extract the presentation parameters ftben
message; using the start times for esithamand
the overall scenario, whidogetherconstitutethe
presentation schedule, derive the deliveriiedule;
requestthat the CMFS start sending the data
streams according to the delivery schedule
-report the status of the request to the client
-TSCSTOP message:
-checkif the requestis for an article which is
playing
-if so, stop all of the active streamsusing the
CMFS API
-report the status of the request to the client
-TSCCLOSE message:
-checkif the requestis for an article which has
been opened

-if so, close all the streams using the CMFS API

-report the status of the request to the client
-The TSC goes back to waiting for a new message

The CMFS consistsof two types of processesthe
cmfsadmandthe cmfsnode.The cmfsnodemanageshe
individual data connections, while the cmfsadm
coordinateshe cmfsnodesand directs client requeststo
the appropriatecmfsnodeprocess.There can be many
cmfsnodes associated to a cmfsadm process, BMRES
only containsone cmfsadm.The CMFS API has been
designedn sucha way that the client is only aware of
the cmfsadnprocessithe CMFS returnsthe location of
the relevant cmfsnodesto the CMFS API, but this
information is not forwardedto the client application.
To keepthe distributedschedulerarchitectureconsistent
with this, the TSC makesitself known to the CMFS;
the client carthus querythe cmfsadmto find out where
to find the TSC.

All communicationdetweenthe client andthe TSC

eachstream(starttimes, playbackspeed,start and stop
positions) and an article identifier are associatedto

TSCPLAY messages an article identifier is sent with

the TSCSTOPand TSCCLOSE messagesThis article

identifier allows the TSC to keeptrack of the clients
which are sendingrequeststo it, as a client presents
only one article at a time to the user.

The internal data structuresof the TSC are the
Documentstructure,which combinesthe scenarioand
the delivery scheduleandwhich is a simplified version
of a similar structureusedby the client, anda structure
for the presentatiorparametersof eachstream,as well

as a table for keeping track of the articles being scheduled

by the TSC. The algorithm usedto derive the delivery
schedule is the one given in section 3.2.

The TSC API allows the client application to
communicatewith the TSC. The API formatsthe data
given to it bythe client for the TSC andsendsit using
the messages described earliepmticular,it must take
the client’s Scenariodata structure and send only the
information needed by the TS@hich is information at
the specification,object and streamlayers (see section
2.1). The TSC returns the result of thecessingf the

Not implemented

LEGEND

COMPONENTS:
DBS: Database Server
AVS: Audio/Video Server
TEXT: Text Server
TSC: Temporal Scheduler Controller
SMSC: Server Media Synchronization Controlle
CMFS: Continuous Media File Server
NW: Transport Network
CLIENT: Client Application
GUI: Graphical User Interface
SCH: Scheduler Process
CMSC: Client Media Synchronization Controller
MPB: Media PlayBack Process
(Audio, Video, Text)

M

COMMUNICATIONS:

o™ Control Messages

DS Data Streams

I Meta-Information (Scenario & Schedulir

o™i Control & Meta-Infornation Messages

SYNCHRONIZATION FUNCTIONALITIES:

High-Level Scheduling (Streams, Objec

Low-Level Scheduling (Inside Streams)
Correction (SSP Protocol)

CLIENT

Figure 4: Implemented system with a
distributed scheduler

messagedo the client using specially formatted reply
messages. These contain a status code, ahe Taseof
the processingof a TSCOPEN message,the return
messagealso contains an article identifier and the

are done using specially designed message data structureSigcation ofthe TSC. The API then transmitsthe status

thesestructuresinclude a messagdype and parameters
which are appropriate for the message tyfgee message
typesfor communicationdrom the client to the server
are the ones given in the pseudo-codeabove. Their
associated parameters ardafows: the scenariois sent
with TSCOPEN messagespresentatiorparameterdor

code to the client application.

The CMFS is alsalesignedso that a client canonly
useone CMFS serverat a time; thus the systemonly
has one time-dependent media server. Alseonly text
usedin the presentatiorare text captionssynchronized

with the audio, and were thus stored on the CMFS.
Figure 4 illustratesthe systemthat was implemented.
The distributed schedulerhas been integratedinto the
overall News-On-Demandsystem. Fine-tuning of the
scheduling algorithmas well as performancesvaluation
and comparisonwith the centralizedmodel, can now
proceed.

6. Conclusion

A theoreticalanalysisof the CITR News-on-Demand
prototype using a centralizedsynchronizationscheduler
hasrevealeda numberof shortcomings.We have seen
how these shortcomings can be corrected with a
distributedscheduleras well ashow this schedulercan
be integratedinto the News-On-Demangbrojectwithout
requiring a major re-working of the project. Further
research into the performance of ganedulemwill reveal
if it actually offers a practical advantageover the
centralized model. However, informal observationthef
performance of thelistributedscheduleiseemto indicate
that the processingload of the client is noticeably
reduced with this architecture [11].

This is only a preliminary implementation.Further
work on the schedulershouldlook into fast-forwardand
rewind functionalities. Researchinto adapting the
scheduleito a multi-serverenvironmentis also needed,
particularly finding an efficient strategyfor coordinating
many TSCs in the task of schedulinga presentation
whose components are located on many different servers.

Acknowledgments

This researchwas supportedin part by the Canadian
Institute for TelecommunicatiorResearc{CITR), under
the Networks of Centresof Excellenceprogram of the
Governmenbf Canadaandin partby a Natural Science
and Engineering Research Cour(®ISERC) postgraduate
scholarship

Thanksalso go to the CMFS team, especiallyDr.
Gerald Neufeld, Dr. Norm HutchinsoBwight Makaroff
and Roland Mechler, from the Distributed Systems
Group at the Departmentof ComputerScienceat the
University of British Columbia for helping us understand
their code and for their usefabmmentsand suggestions
aboutthe designof the distributedscheduleraswell as
for making the first author’s stay at their research
facilities a pleasant and productive one.

References

[1]

(2]

(3]

[4]

5]

[6]

[7]

(8]

[9]

[10]

[11]

Steinmetz,R. and Nahrstedt,K. (1995). Multimedia:
Computing, Communications and Applications,
Chapter 15: Synchronization. Prentice Hall P T R.
Georganas,N.D. (1996). Synchronizationlssuesin
Multimedia Presentational and Conversational
Applications. In Proceedingsof the 1996 Pacific
Workshop on Distributed Multimedia Systems
(DMS'96), Hong Kong, June 1996 (Invited paper).
Lamont, L., Li, L. and Georganas,N.D. (1994).
Centralized and Distributed Architectures for
Multimedia Presentational Applications. In

Broadband Islands ‘94, Connecting with the End-User,

Proceedingsof the 3rd International Conferenceon
Broadbandlslands, Hamburg, Germany, 7-9 June,
1994, pp. 59-70. Elsevier ScienceB.V., Amsterdam,
The Netherlands.

Burkow, T. M. (1994). Operating SystemSupportfor
Distributed Multimedia Applications; A Survey of
Current Research.Technical Report (PegasusPaper
94-8). Faculty of Computer Science, University of
Twente.

Li, L., Karmouch,A. and Georganas,N.D. (1994).
Multimedia Teleorchestrawith IndependentSources:
Part 1 - Temporal Modeling of Collaborative
Multimedia Scenariodn ACM Journal of Multimedia
Systems, vol. 1, no. 4, February 1994.

Li, L., Karmouch,A. and Georganas,N.D. (1994).
Multimedia Teleorchestrawith IndependentSources:
Part 2 - Synchronization Algorithmin ACM Journal

of Multimedia Systems, vol. 1, no. 4, February 1994.

Lamont, L., Li, L., Brimont,R. and GeorganasN.D.
(1996). Synchronizationof Multimedia Data for a
Multimedia News-on-Demandipplication In IEEE
JSAC , Vol. 14, No.1, Jan. 1996, pp.264-278.

Li, L. (1994). The Design and Implementationof a
Real-time Multimedia Synchronization Control
Systemover High-speedCommunicationsNetworks.
M.A.Sc. Thesis. Department of Electrical and
Computer Engineering, Faculty of Engineering,
University of Ottawa.

Makaroff, D., Hutchinson, Nand Neufeld, G. (1996).
The UBC Distributed ContinuousMedia File System.
Interface Document, Department of CompuBmience,
University of Brithish Columbia.

Finkelstein, D., Hutchinson, N.C., Makaroff, D.J.,
Mechler, R. and Neufeld, G.W. (1995). Real Time
ThreadsInterface Technical Report, Department of
Computer Science, University of British Columbia.
Jarmasz, J. (1997Notes on Performanc&esting and
Comparison of the centralized and Distributed
Schedulersfor the CITR News-on-DemandSystem.
MCRLab technical report. Multimedia
Communications Research LaboratoBgpartmentof
Electrical and Computer Engineering, Faculty of
Engineering, University of Ottawa.

