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Abstract
 Distributed multimedia applications need an effective
synchronization strategy to deal with the temporal
disturbances introduced into the data streams by the
transport and operating systems. An essential part of this
strategy is scheduling - i.e. determining optimal times for
the retrieval of data from the data servers. The CITR
News-On-Demand project  prototype currently uses a
centralized synchronization system which lacks effective
high-level scheduling. This paper looks at how to add this
functionality without seriously disturbing the components
already in place. The proposed solution is a distributed
synchronization scheduler, designed and implemented in a
way which makes use of the current prototype’s
components.

1. Introduction

Multimedia technology - still one of the primary areas
of research in the computing world - is the ability to
integrate the traditional media formats, i.e. text, graphics,
sound and moving images, into a single document. The
media which were first used in computer applications -
text and graphics - are relatively simple in that they have
no implicit time semantics or constraints; only their
spatial semantics (e.g., where a paragraph should be
placed on a screen, or how big the font should be) are
relevant to the user. Audio and video, however, are so-
called time-continuous or time-dependent media: they
only make sense if they are played back in the right order
and at the right speed. Displaying and integrating these
media types, therefore, requires some kind of temporal
coordination. This means that a multimedia application
cannot be designed without taking the temporal
relationships between its components into account.
Multimedia synchronization usually refers to these
temporal relationships among the different media [1].

Synchronization errors - disturbances in the temporal
semantics of data, such as a varying frame rate for video -

are due to all the mechanisms wich get the data from the
storage medium to the display devices at the user’s end of
the application. Briefly, these mechanisms are: the
retrieval of data from the storage medium, the transport
service between the storage medium and the displaying
application, the displaying application itself, and the
underlying operating systems and protocols which run
the other mechanisms. Synchronization methods can be
either preventive or corrective. Preventive mechanisms
are designed to minimize synchronization errors as data
move through the system to the user. These include
scheduling, which is the process of organizing and
coordinating the retrieval of data from the storage
medium, and efficient transport mechanisms and
operating systems, which allow for the precise control of
timing constraints. Corrective methods involve adjusting
the presentation of the data once they are received by the
displaying application so that the appearance of
synchrony is maintained. Synchronization strategies in
multimedia applications use these methods in varying
degrees.

An example of such an application is the News-on-
Demand system being developed as part of the research in
the Broadband Services major project of the Canadian
Institute for Telecommunications Research (CITR). This
project is made up of many sub-projects being carried out
by different research teams. The sub-projects include a
file system for time-dependent media (the Continuous
Media File Server, or CMFS), a Quality-of-Service
negotiation and monitoring system, database technology
and synchronization of data.

The synchronization research is being done by a team
from the Multimedia Communications Research
Laboratory (MCRLab), of the University of Ottawa’s
Electrical and Computer Engineering department. The
MCRLab’s synchronization strategy looks at both the
preventive and corrective aspects of synchronization.
Prevention is mainly at the scheduling level. Due to
technical considerations, the current overall project
prototype uses a centralized design for the scheduler [2].



This means that only one module, located at the client,
organizes and coordinates the retrieval of the data form
the storage medium - in this case, the CMFS and the
text database. However, there is research [3] which
suggests that a distributed scheduler, where the servers
participate in the scheduling of the multimedia data,
would be more efficient, particularly for the client. The
MCRLab has therefore committed itself to re-designing
the scheduler in the current prototype to make it
distributed.

This paper will therefore study the issues involved in
changing from a centralized to a distributed scheduler and
the implementation of such a scheduler. The rest of the
paper is organized as follows. Section two studies
synchronization issues. Section three presents and
compares different scheduler architectures. Section four
discusses what needs to be changed in the current
prototype to move to a distributed scheduler. Section five
discusses the actual implementation of the scheduler.
Section six points to further research and concludes the
paper.

2. Synchronization Concepts

2.1 Media granularity and semantics

There can be many different types of temporal
relations between the components of multimedia data. A
good way to classify them is to look at the different
semantic levels of multimedia data. A reference model for
organizing these levels has been given in [1]. Briefly
stated, this model recognizes three levels of organization
inside multimedia documents, and one level “above” the
document, which allows the author of the document to
specify temporal relations. The levels inside a document
are:

- the media layer, which looks at the semantics inside
a single stream of time-dependent data. The stream is
viewed as a succession of Logical Data Units, or
LDUs, which denote the lowest level of data
granularity seen by the application. This could be
frames, groups of frames, data blocks, etc.
Synchronization at this level is referred to as intra-
stream synchronization.

- the stream layer, which looks at the relations
between whole streams, and groups of streams. LDUs
are hidden at this level, streams are seen as a whole.
Synchronization at this level is known as inter-
stream synchronization.

- the object layer, which integrates streams and time-
independent data such as text and still images. The
difference between the two types of objects are hidden
here. Synchronization at this level is called inter-
object synchronization.
These levels allow us to organize and study the types

of temporal constrains between multimedia data, and the
synchronization errors that occur during the playback of a
multimedia document.

2.2 System components and how they affect
synchronization.

As it was said before, there are many links in the
chain which moves data from its storage site to the user.
Each of these links performs a certain task and affects the
data in a different way. They all tend to introduce
synchronization errors, unless care is taken to avoid this.
Servers store data and put that data into the network; the
network transports the data to the client; the client reads
the data from the network and presents it to the user;
operating systems and protocols allow these systems to
run and do their work.

Obviously, given the special temporal constraints of
multimedia data, as well as their resource requirements
(high bandwidth and high resolution for good video), the
systems described above have to be designed or chosen
with care. In particular, the servers must be able to store
large amounts of data in such a way that retrieval is
quick and efficient; networks must provide high
bandwidth and low transmission rate variations;
operating systems and applications must be able to
provide real-time data processing (retrieval, re-
synchronization, display) [4].

Synchronization methods usually aim at making the
best of the properties and functionalities of the
“infrastructure” an application is using, not to change
them; the synchronization research at the MCRLab thus
concentrates mainly on server- and client- side
application-level strategies.

2.3 Synchronization strategies

2.3.1 Prevention. Preventing synchronization errors
involves minimizing these errors. This requires
eliminating any inefficiencies and latencies in the
mechanisms which move data from the storage medium to
the user. These mainly involve disk-reading scheduling
policies, network transport protocols and operating
systems which allow for real-time computing and for
temporal semantics of data to be taken into account.



Looking at the data semantics introduced earlier, it can be
said that “infrastructure” systems take care of intra-stream
synchronization, while applications usually use this
“infrastructure” to ensure inter-stream and inter-object
synchronization, although some operating systems might
provide facilities for inter-stream synchronization [1] and
some applications might delve into intra-stream
synchronization. At any rate, the prevention methods
developed at the MCRLab concentrate on providing inter-
object scheduling using lower-level mechanisms and a
temporal notation called Time Flow Graphs (TFG) [5]. A
scheduler uses the specifications for a presentation
described with this notation to create a schedule for the
delivery of the objects to the client by the servers
(delivery schedule) and the presentation of these objects to
the user by the client application (presentation schedule)
[6]. This scheduler can be centralized - entirely located at
the client - or distributed - the delivery scheduling
functionalities are shared among the servers and the client.
So far research into the distributed scheduler has been
mainly theoretical; later sections of this paper will discuss
the actual implementation of such a scheduler.

2.3.2 Correction. If errors can’t be prevented - and
this being the real world, they can’t - they must be
rectified. This is to be done by the client application
receiving the data. The method used by the MCRLab is
the Stream Synchronization Protocol (SSP)[2]: units
which control and monitor the client-end of the data
connections compare the real arrival times of data with
the ones predicted by the presentation schedule and notify
the scheduler of any discrepancies. These discrepancies
are then compensated for by the scheduler, which delays
the display of data that are “ahead” of other data, allowing
the late data to “catch up.” Since this is done entirely at
the client side, the architecture of the scheduler does not
affect the SSP, and the SSP does not affect the servers.

3. Scheduler Models

3.1 The centralized scheduler

As has been previously stated, in this model all of the
object-level scheduling is performed at the client by a
process called a scheduler. When a user requests an
article, the scheduler receives from the database server the
scenario for the article. The scheduler then computes a
presentation schedule which fits the scenario, as well as a
delivery schedule for the servers, which is basically the
presentation scenario adjusted for network conditions.

The client decides when it wants to present data and when
it wants to request the data from the servers. The servers
take care of low-level (i.e. intra-stream) scheduling only.
The client then takes care of high-level and low-level
synchronization with the SSP. Figure 1 shows a diagram
of the current system prototype that has been
implemented using a centralized scheduler [7].

The user interacts with the application through a
Graphical User Interface (GUI). The user first chooses an
article from the list of available articles that is presented
to him/her by the GUI. This request is then sent to the
Database Server. The Database Server returns the article
scenario to the scheduler, which takes care of all
scheduling tasks (starting data readers, computing
schedules, and so on) in the client application. The
scheduler uses the scenario to compute an acceptable
presentation schedule. Following this schedule, the client

opens connections between itself and the servers and
requests the different media that needs to present the
article. There is no explicit delivery schedule in this
model. When the user gives the command to start
displaying the article, the client starts reading data from
the connections and displaying them. The data streams
are constantly monitored by the data readers, which have
a Media Synchronization Controller (MSC); this MSC
knows the presentation schedule and notifies the
scheduler when synchronization errors (with regards to
the schedule) are detected. The scheduler then re-schedules
the reading or the display of certain streams, using the
Stream Synchronization Protocol [7].

It is clear from the figure that control over the system
is centralized at the client: the client determines the
schedules, opens the connections and requests the data.
This type of architecture requires the client application to
be quite intelligent. Since it is desirable that the client
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application be kept simple, so that it will easily run on a
wide variety of platforms, this should be avoided.
Another drawback is that there is no proper high-level
(i.e. stream and object layer) scheduling in this model,
only correction measures. Servers with some kind of
high-level scheduling capability would help reduce
synchronization errors, thus lightening the workload of
the client. As it stands, the client does all of the
synchronization work, except for media layer delivery
scheduling.

3.2 The distributed scheduler

Research conducted at the MCRLab suggests that a
distributed scheduling scheme provides better
synchronization prevention and recovery performance
than a centralized system. A distributed architecture was
proposed in [3]; its impact on scheduling was discussed
in [8]. In this architecture,  the servers become
responsible for opening the data connections, obtaining
information on network conditions and scheduling the
delivery of their own data. The scheduling at the server
level is performed by Temporal Scheduler Controllers
(TSCs). The presentation scenario is sent by the database
server to the client and to the TSCs. The TSCs use the
scenario to open the appropriate connections to the
client; in doing so, they obtain the end-to-end network
delay on each connection. The TSCs then exchange
information about the different objects in the
presentation and network conditions to derive a
presentation schedule and a delivery schedule.  The
delivery schedule, i.e. the optimal times for transmitting
data to the client, is derived from the presentation
schedule by subtracting the total delay that each object
encounters from the times in the presentation schedule.
The total delay for each object is the sum of the end-to-
end network delay on its connection, the buffer delay
upon reception by the client, and the decoding time for
the object [6] [7]. The presentation schedule is also
derived at the client from the scenario and the TFG for
the presentation.

 The connection-endpoints are controlled by Media
Synchronization Controllers (MSCs), which ensure
intra-stream synchronization.  The server MSCs
(SMSCs) are directly responsible for opening the
connections requested by the TSCs and for ensuring
media layer scheduling for each stream. The client MSCs
(CMSCs) are in charge of monitoring synchronization
errors upon reception of the streams by the client. Errors
are detected by comparing the actual arrival time of an
object or an LDU with its projected arrival time based on
the schedule provided by the client scheduler. The

scheduler is notified of any errors and re-schedules the
rest of the presentation accordingly. For example, if an
object arrives late, the scheduler delays the presentation
of objects which are to be presented either in parallel
with, or after, the late object. This co-operation between
the scheduler and the CMSCs implements the SSP
correction protocol alluded to in section 2.3.2 and
explained in more detail in [7].

The overall architecture of this system is illustrated in
figure 2, with a particular emphasis on control messages
between the components .

Clearly, the servers have a  more complicated
structure in this model, since they have an extra
scheduler module, effectively giving them a two-tiered
architecture. Communications between the components
are also more complicated, as all the servers must
exchange information. But while the servers must now
perform more tasks, the client does not have to derive a
delivery schedule any more, and the system has stream
and object layer scheduling capabilities, which are absent
from the centralized scheduler architecture  seen in the
previous section. This should improve performance by
reducing synchronization errors, therefore making
recovery operations more efficient, and by simplifying
the client application.

4. Re-engineering the Current Model

4.1 Assessing the centralized model

After deciding what the requirements of the new
architecture are to be, i.e. a distributed scheduler shared
between the client and the servers, the centralized model
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has to be assessed to see how similar it is to the
distributed model.

A quick visual comparison of figures 1 and 2 reveals
that the low-level (i.e. intra-stream) scheduling that is
required in the distributed model is provided by the
CMFS servers in the centralized model. In other words,
the SMSCs of figure 2 are equivalent to the CMFSs of
figure 1. The client appears to have all it needs, since it
has the same components in both figures. The main
difference is that the servers in the distributed model are
more complicated: they include TSC modules for high-
level (inter-object and inter-stream) scheduling, absent
from the centralized model, which control the
SMSC/CMFS units, responsible for low-level
scheduling as well as network functionalities. So
moving from the centralized to the distributed model
requires changing the concept of a server from just the
CMFS to a server with high-level scheduling capabilities
which utilizes the functionalities of the CMFS for low-
level synchronization. All that the centralized model is
missing is some way of coordinating the CMFS
functionalities from a location other than the client
application.

4.2 The new distributed model

Figure 3 illustrates the proposed architecture for the
implementation of the distributed scheduler. What
changes from the centralized model is that TSC modules
from the theoretical distributed model which
communicate with the CMFSs are added to the servers.
These TSCs act as proxies between the client and the
servers; the client doesn’t communicate directly with the
CMFSs anymore. To allow the TSCs to coordinate
network connections and data streams through the
CMFS, some changes were made to the CMFS by its
authors [9], as follows:

- the CMFS API now allows separate processes to set
up and control the server and the client end-points of data
connections; this allows the TSC to manage the server
end-point, while the client application manages the client
end-point

- streams do not have to be readied for transmission
close to the desired transmission time; rather, they can
now be readied in advance, allowing for more flexible
inter-stream scheduling.

Both these changes allow the TSC to carry out inter-
stream delivery scheduling for the CMFS servers instead
of the client.

However, the original theoretical model has been
somewhat simplified for ease of implementation. In the
original model, the servers were to communicate with

each other to derive the delivery schedule from the
presentation schedule. Indeed, some early attempts at
implementation even proposed having the servers derive
the TSC and presentation schedules, independently of the
client. This would have introduced unnecessary
redundancy as well as the problem of coordinating the
servers. The approach that was finally chosen requires the
servers to receive the presentation schedule from the
client and derive the delivery schedule only for the
objects that are stored on them. This simplifies the
design of the TSCs, and therefore of the servers. The
client combines requests to prepare, start or stop a
presentation and meta-information (scheduling and
synchronization data) in its messages to the TSC
processes sitting on the server entities. This allows the
servers to share in the scheduling of multimedia data in a
simple and effective way without requiring a major
reworking of the different components that make up the
News-on-Demand project prototype.

5. Implementation

The TSC module and an API to the module have been
implemented. The implementation was done using the C
programming language and a real-time threads package
called RT Threads [10], which also requires C.

The code for the TSC module is quite simple. Its
pseudo-code can be  summed up as follows:

-the TSC makes itself known to the CMFS and
initializes its data structures
-The TSC waits for a message from the client:

-TSCOPEN message:
-check if the request can be handled
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-if so, assign an identifier to the request and
remember the scenario sent by the client with the
message, and open the necessary connections
between the CMFS and the client using the
CMFS API
-report the status of the request to the client
(refused, successful or failed)

-TSCPLAY message:
-check if the request is for an article which has
already been opened
-if so, extract the presentation parameters from the
message; using the start times for each stream and
the overall scenario, which together constitute the
presentation schedule, derive the delivery schedule;
request that the CMFS start sending the data
streams according to the delivery schedule
-report the status of the request to the client

-TSCSTOP message:
-check if the request is for an article which is
playing
-if so, stop all of the active streams using the
CMFS API
-report the status of the request to the client

-TSCCLOSE message:
-check if the request is for an article which has
been opened
-if so, close all the streams using the CMFS API
-report the status of the request to the client

-The TSC goes back to waiting for a new message

The CMFS consists of two types of processes: the
cmfsadm and the cmfsnode. The cmfsnode manages the
individual data connections, while the cmfsadm
coordinates the cmfsnodes and directs client requests to
the appropriate cmfsnode process. There can be many
cmfsnodes associated to a cmfsadm process, but a CMFS
only contains one cmfsadm. The CMFS API has been
designed in such a way that the client is only aware of
the cmfsadm process; the CMFS returns the location of
the relevant cmfsnodes to the CMFS API, but this
information is not forwarded to the client application.
To keep the distributed scheduler architecture consistent
with this, the TSC makes itself known to the CMFS;
the client can thus query the cmfsadm to find out where
to find the TSC.

All communications between the client and the TSC
are done using specially designed message data structures;
these structures include a message type and parameters
which are appropriate for the message type. The message
types for communications from the client to the server
are the ones given in the pseudo-code above. Their
associated parameters are as follows: the scenario is sent
with TSCOPEN messages; presentation parameters for

each stream (start times, playback speed, start and stop
positions) and an article identifier are associated to
TSCPLAY messages ; an article identifier is sent with
the TSCSTOP and TSCCLOSE messages. This article
identifier allows the TSC to keep track of the clients
which are sending requests to it, as a client  presents
only one article at a time to the user.

The internal data structures of the TSC are the
Document structure, which combines the scenario and
the delivery schedule, and which is a simplified version
of a similar structure used by the client, and a structure
for the presentation parameters  of each stream, as well
as a table for keeping track of the articles being scheduled
by the TSC. The algorithm used to derive the delivery
schedule is the one given in section 3.2.

The TSC API allows the client application to
communicate with the TSC. The API formats the data
given to it by the client for the TSC and sends it using
the messages described earlier. In particular, it must take
the client’s Scenario data structure and send only the
information needed by the TSC, which is information at
the specification, object and stream layers (see section
2.1). The TSC returns the result of the processing of the

messages to the client using specially formatted reply
messages. These contain a status code, and in the case of
the processing of a TSCOPEN message, the return
message also contains an article identifier and the
location of the TSC. The API then transmits the status
code to the client  application.

The CMFS is also designed so that a client can only
use one CMFS server at a time; thus the system only
has one time-dependent media server. Also, the only text
used in the presentation are text captions synchronized
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with the audio, and were thus stored on the CMFS.
Figure 4 illustrates the system that was implemented.
The distributed scheduler has been integrated into the
overall News-On-Demand system. Fine-tuning of the
scheduling algorithm, as well as performance evaluation
and comparison with the centralized model, can now
proceed.

6. Conclusion

A theoretical analysis of the CITR News-on-Demand
prototype using a centralized synchronization scheduler
has revealed a number of shortcomings. We have seen
how these shortcomings can be corrected with a
distributed scheduler, as well as how this scheduler can
be integrated into the News-On-Demand project without
requiring a major re-working of the project. Further
research into the performance of the scheduler will reveal
if it actually offers a practical advantage over the
centralized model. However, informal observations of the
performance of the distributed scheduler seem to indicate
that the processing load of the client is noticeably
reduced with this architecture [11].

This is only a preliminary implementation. Further
work on the scheduler should look into fast-forward and
rewind functionalities. Research into adapting the
scheduler to a multi-server environment is also needed,
particularly finding an efficient strategy for coordinating
many TSCs in the task of scheduling a presentation
whose components are located on many different servers.
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