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Automated Segmentation of the Melanocytes in Skin
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Abstract—In the diagnosis of skin melanoma by analyzing
histopathological images, the detection of the melanocytes in the
epidermis area is an important step. However, the detection of
melanocytes in the epidermis area is difficult because other ker-
atinocytes that are very similar to the melanocytes are also present.
This paper proposes a novel computer-aided technique for segmen-
tation of the melanocytes in the skin histopathological images. In
order to reduce the local intensity variant, a mean-shift algorithm
is applied for the initial segmentation of the image. A local re-
gion recursive segmentation algorithm is then proposed to filter
out the candidate nuclei regions based on the domain prior knowl-
edge. To distinguish the melanocytes from other keratinocytes in
the epidermis area, a novel descriptor, named local double ellipse
descriptor (LDED), is proposed to measure the local features of the
candidate regions. The LDED uses two parameters: region elliptic-
ity and local pattern characteristics to distinguish the melanocytes
from the candidate nuclei regions. Experimental results on 28 dif-
ferent histopathological images of skin tissue with different zoom-
ing factors show that the proposed technique provides a superior
performance.

Index Terms—Histopathological image analysis, image segmen-
tation, local descriptor, object detection, pattern recognition.

I. INTRODUCTION

SKIN cancer is the most frequent and malignant type of can-
cer [1], and melanoma is the most aggressive type among

skin cancers. It has been stated that approximately 70 000 people
are diagnosed with melanoma skin cancer, and about 9 000 peo-
ple die from it in the U.S. every year [2]. The early detection of
malignant melanoma is crucial to lower the mortality from this
cancer. Approaches to melanoma diagnosis have dynamically
evolved during the last 25 years [3]. Although there are many
new emerging techniques, e.g., confocal microscopy [4], which
can provide initial diagnosis, pathological examination remains
the gold standard for the diagnosis as the histopathology slides
provide a cellular level view of the disease [5].
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Traditionally, the histopathology slides are examined under a
microscope by pathologists. The diagnosis is then based on the
personal experience of pathologists. However, this judgement is
subjective and often leads to intra-observer and inter-observer
variability [6]. To address this problem, automated computa-
tional tool which can provide reliable and reproducible objective
results for quantitative analysis are desirable.

In melanoma diagnosis, the segmentation and detection of the
melanocytes in the epidermis area is an important step before
the diagnosis is made. If the melanocytes can be found correctly,
architectural and cellular features (e.g., size, distribution, loca-
tion) can be used to grade or determine the malignancy of the
skin tissue.

The digitized histopathological images we used in this study
are stained with haematoxylin and eosin (H&E). Three examples
of the skin epidermis image are shown in Fig. 1. The cell nuclei
are observed as dark blue, whereas the intracellular material
and cytoplasm are observed as bright pink. It is also noted that
there exist color variations in interimages and intraimages due
to nonuniform absorption of the stain, and different handling
procedure or other factors, e.g., stains fading. In addition, the
high similarity between the melanocytes and other cytological
components make it difficult to perform consistent quantitative
analysis.

Several works have been conducted on the segmentation or
detection of various biological components in a histopathologi-
cal image using image-processing techniques such as threshold-
ing [7]–[9] and watershed [10]. Gurcan et al. [7] proposed a hys-
teresis threshold-based technique for the nuclei segmentation in
neuroblastoma image. The technique first employs morpholog-
ical operations to reduce the background signal. The hysteresis
thresholding was then used to perform the segmentation. Petushi
et al. [8] proposed to use adaptive threshold-based technique for
the nuclei segmentation in the breast cancer image. With the as-
sumption that the nuclei are bright objects in a relatively uniform
dark background, Chen et al. [11] proposed the use of global
threshold and watershed technique to segment the cancer cell
nuclei in time-lapse microscopy. These threshold-based tech-
niques typically fail when considerable intensity variations are
present in the images. Nattkemper et al. [12] proposed a fluo-
rescent lymphocytes detection technique using trained artificial
neural networks. By incorporating the color, texture, and shape
information present in an image, Naik et al. [13] proposed to seg-
ment the nuclei using the Bayesian classifier. Sertel et al. [14]
computed the probability map of karyorrhexis cells based on
the estimated likelihood function, and the cell nuclei are then
segmented using thresholding. Although these techniques have
been reported to provide good performance, the performance is
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Fig. 1. Melanocytes of epidermis area in different skin tissues. Interimage and intraimage variations are observed in terms of the color. These images are obtained
from the digitized skin slides. The yellow seed points indicate the location of melanocytes, whereas other nuclei are keratinocytes.

sensitive to the training samples. The histopathological images
used in our paper contain interimage and intraimage intensity
variations due to the the staining imperfection. Also, because of
the natural biological features of the skin epidermis, the fore-
ground and the background objects have similar intensity val-
ues. Therefore, many of the aforementioned techniques seem
unsuitable for our scenario.

In the melanocytes segmentation, the main difficulty is how
to differentiate the melanocytes and other keratinocytes in the
skin epidermis area. These two kinds of cells have similar in-
tensity and nuclei size. A similar problem has been addressed
by Basavanhally et al. [15] in breast cancer diagnosis, where
the lymphocyte nuclei are differentiated from the cancer cell
nuclei in H&E stained histopathological images. In their work,
the two kinds of cells (cancer cell and lymphocytes) are dif-
ferential based on the domain knowledge such as the nuclei
size, intensity of the nuclei, and spatial proximity. However, in
skin histopathological images, the size of melanocytes are very
similar to that of other keratinocytes. Due to the interimage and
intraimage variations, the intensity value of the melanocytes and
other keratinocytes are very close to each other. Therefore, the
domain knowledge used in breast cancer detection [15] will not
work well in the case of melanocytes detection.

There is another closely related work in the literature, where
all the keratinocytes nuclei are segmented in the skin epidermis
area [16]. In this work, a threshold is calculated based on the
assumption that cell nuclei covers approximately the darkest
20% of the pixel in the image. The pixels whose values are less
than the threshold are labeled as nuclei regions. Morphological
operations are then used to refine the segmented result. How-
ever, this global threshold based technique only works under
the assumption that there is no intensity variations in the im-
age, and usually generates under-segmentation results (many of
the nuclei are grouped together). Also, there is no attempt to
differentiate the melanocytes and other keratinocytes.

Template-matching (TM) technique is a popular technique
in computer vision for pattern detection. Naik et al. [13] have
used four binary elliptical templates with different major and
minor axes to detect the nuclei in breast-cancer histopathological
images. It is observed in Fig. 1 that the melanocytes typically
have low-intensity values, while its spatial surrounding space
has brighter intensity values. It may be possible to detect the
melanocytes using TM technique with templates that have round
darker heart encompassed by a brighter ring. However, several

difficulties need to be addressed. First, the size of the template is
hard to decide due to the size variations of the melanocytes even
under the same magnification level. In the case of skin cancer,
the melanocytes are larger than that in the case of normal skin or
nevus skin. Second, the intensity level of the template is hard to
determine. Therefore, it is difficult to decide a “good” template
to match the melanocyte patterns.

In order to address the earlier mentioned problems, we pro-
pose a novel technique to segment and detect the melanocytes
in the skin epidermis area in this paper. Unlike the exist-
ing techniques which usually assume relatively uniform back-
ground, the proposed technique considers the interimage and
intraimage variations due to the staining imperfection. Also, the
proposed technique can provide good detection performance
on histopathological images, where the background is com-
plex and has similar appearance with the foreground (i.e., the
melanocytes). Furthermore, the proposed technique models the
natural biological features, i.e., the shape and the distribution
of intensity, as the parameters which make the technique ro-
bust. To our best knowledge, this is the first automated tech-
nique for joint segmentation and detection of the melanocytes
in histopathological image of skin tissue. This technique op-
erates on reliable quantitative measures and provides objective
and reproducible information complementary to that of a pathol-
ogist. Such quantitative analysis of melanocytes is important for
clinical applications as well as for research purpose.

The organization of this paper is as follows. The proposed
technique is described in Section II, followed by the perfor-
mance evaluations in Section III. The conclusions are presented
in Section IV.

II. THE PROPOSED TECHNIQUE

In this section, we present the proposed technique which
is primarily based on the local feature space analysis. The
schematic of the proposed technique is shown in Fig. 2 which
consists of three main steps. In the first step, we segment the
candidate nuclei regions in the epidermis area using the mean-
shift segmentation [17]. The mean-shift segmentation clusters
the pixels into local regions based on the color similarity and
spatial closeness. In the second step, a local region recursive seg-
mentation (LRRS) algorithm is proposed to detect the candidate
nuclei regions from the mean-shift segmented image. In the last
step, a novel descriptor, named local double ellipse descriptor
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Fig. 2. The schematic of the proposed technique.

(LDED), is proposed to perform the quantitative analysis. This
descriptor builds two ellipsoid models based on the segmented
candidate regions. The LDED then measures the local feature
information using two well-defined parameters which incorpo-
rate the biological pattern of the melanocytes. The location of
the melanocytes can then be identified by the LDED. The steps
in the proposed technique are now presented in details in the
following.

A. Initial Segmentation

Due to the staining imperfection and variations, the appear-
ance of individual cytological components is not homogeneous,
and have complex texture surface. In order to reduce such varia-
tions, initial segmentation is required to decompose the original
image into homogeneous biological components. Several exist-
ing robust low-level segmentation methods, such as level set [18]
and mean shift [17] can be used for this purpose.

In this paper, the mean-shift segmentation [17] is applied to
perform the initial segmentation because of its ability to pre-
serve the local boundaries. The mean-shift segmentation first
estimates the key features of interest or modes (i.e., stationary
points of the density of image intensity) of the underlying den-
sity function of the image intensity. It then clusters the pixels
into different regions based on the corresponding modes.

Given an image, let n be the total number of pixels in
the image. Let the pixel feature vector set in d-dimensional
Euclidean space Rd for all the pixels in the image be denoted
by X = x1 ,x2 , . . . ,xn . For each feature vector xi ∈ X , there
is a corresponding mode yi . In the beginning, the mode yi is
initialized with the feature vector value xi , i.e., y0

i = xi . The
yu

i is then recursively updated, based on the neighborhood char-
acteristics, using the following equation:

yu+1
i = yu

i + mG (yu
i ), 1 ≤ i ≤ n (1)

where yu+1
i is the updated version of yu

i . The vector mG (yi)
is called the mean-shift vector and defined as follows:

mG (yi) =

∑n
j=1 xj g(‖yi −xj

h ‖2)
∑n

j=1 g(‖yi −xj

h ‖2)
− yi (2)

where g(·) is the 1-D profile of multidimensional kernel G(·),
and h is the kernel bandwidth. In this paper, we chose g(x) =
exp(− 1

2 x)|x ≥ 0. The mean-shift vector calculates the differ-
ence between the weighted mean and the center of the kernel and
it can be shown [17] that it always points toward the direction
of maximum increase in the underlying density function. At the

end, each pixel xi can find a corresponding mode yi which will
be used for the segmentation.

In this paper, a 5-D feature space is used. The features used
are two spatial coordinates of the 2-D image and three color
channels {R,G,B}. The corresponding multivariate kernel is
defined as the product of two radially symmetric kernels as
follows:

Khs ,hc
(xi) =

C

h2
sh

3
c

k

(∥
∥
∥
∥

xs
i

hs

∥
∥
∥
∥

)

k

(∥
∥
∥
∥

xc
i

hc

∥
∥
∥
∥

)

(3)

where k(·) is the profile of the kernel, xs is the spatial compo-
nent, xc is the color component, C is the normalization constant,
and hsandhc are the kernel bandwidths controlling the size of
the kernels for spatial and color component, respectively. Note
that the higher value of the kernel bandwidths hs and hc corre-
spond to more neighboring data points that are used to estimate
the density.

The mean-shift segmentation is then computed as follows
[17].

1) Run the mean-shift iteration in (1) and store the mode yi

for each 5-D point xi in the feature space.
2) Form clusters {Cp}p=1...P by grouping the modes y if

the distances between the spatial domains and the dis-
tances between the color domains are less than hs and hc ,
respectively.

3) Fuse the spatial regions which have less than Q pixels with
their nearest regions in spatial domain.

Note that there is a tradeoff between the parameters hs , hc ,
and Q. The higher values of parameters hs , hc , and Q corre-
spond to a coarser segmentation, and vice versa. In this paper,
we have used the parameter value hs = 6, which means, for
each pixel, its spatial neighbors within a circle of radius six
pixels are used to estimate the density. We have used the pa-
rameter value hc = 6, which means, for each pixel in the 3-D
{R, G, B} color space (where each channel has 256 gray lev-
els), its neighbors within a sphere with radius of six voxels are
used to estimate the density. We have used the parameter value
Q = 30 (a region with area less than 30 pixels will be merged
with one of its neighbors). Note that since the size of natural nu-
clei typically falls within a certain size range, this parameter set
can provide good performance for the histopathological images
captured under 30× magnification. For other magnification, we
can adjust the parameters by multiplying the zooming factors
accordingly.

Fig. 3 shows an example of the original image and the seg-
mented image obtained using the mean-shift segmentation. It is
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Fig. 3. An example of the mean shift segmentation. (a) Original image. (b)Segmented image by mean-shift segmentation [17]. (c) Boundaries of all the segmented
regions.

clear that the local-intensity variation is reduced, while the local
object boundary is well preserved.

B. Local Regions Recursive Segmentation

After applying the mean-shift segmentation, the pixels which
have intensity similarity and geometric closeness are clustered
together. The mean-shift-segmented image consists of many
segmented regions which are denoted as {Rp}p=1...Z , where Z
is the total number of regions. Fig. 3(c) shows the segmented
regions {Rp}p=1...Z , where the boundary for each region is
highlighted by a yellow contour. In this paper, the object of
interest is the nuclei regions in the epidermis area. Our next
step is to segment the candidate nuclei regions based on the
mean-shift-segmented regions {Rp}p=1...Z . In this section, we
present a split-and-merge-based algorithm, named local region
recursive segmentation (LRRS) to segment the nuclei regions. In
the proposed LRRS algorithm, two domain-specific knowledge
are incorporated: 1) the intensity of the nuclei is lower than
that in the cytoplasm; 2) the size of a candidate nuclei region is
within a predefined range. The LRRS algorithm has two steps
that are detailed in the following.

Step 1: We calculate the mean intensity {qp}p=1...Z for each
region in {Rp}p=1...Z . We then calculate a global threshold Tg

using Otsu’s method [19] for the mean intensity set {qp}p=1...Z ,
followed by truncation of the region whose mean intensity is
greater than Tg . After the truncation, most of the regions repre-
senting the cytoplasms are removed. Fig. 4(a) shows an image
obtained by applying step 1.

Step 2: The remaining adjacent regions are merged to form the
new regions set {R′

p}p=1...Z ′ . Note that in these merged regions,
there are undersegmented regions, i.e., the regions which contain
several nuclei or other noisy components, due to the intensity
variation in the epidermis. Based on the domain knowledge
that the nuclei region should be within an area range, a size
prior criterion Tarea is defined. Tarea is the upper bound of the
candidate nuclei region. For each merged region R′

p , we estimate
the number of intensity values v and the area A(R′

p). The local
region R′

p which satisfies the following conditions

A(R′
p) > Tarea and V > 2 (4)

will be further split into subregions using the mean value of
current region R′

p . For the regions which do not satisfy the
earlier mentioned conditions, we assign these regions to the

candidate nuclei regions set {Np}p=1...K . We repeat this split-
and-merge strategy until there is no region satisfying the condi-
tion shown in (4). An example of the undersegmented regions
is illustrated in Fig. 4(c), where the A(R′

p) > Tarea , and we
observe four different values: q1 , q2 , q3 , and q4 . The split re-
sult corresponding to Fig. 4(c) is illustrated in Fig. 4(d). Note
that the regions containing values q1 and q4 are removed since
q4 , q1 > mean(q1 , q2 , q3 , q4). The final version of the nuclei re-
gion set {Np}p=1...K is shown in Fig. 4(b). The overall LRRS
algorithm is shown in Algorithm 1.

C. Local Double Ellipse Descriptor Analysis

In this section, a novel descriptor, LDED, which is based
on a double ellipsoidal model, is proposed. The LDED utilizes
the candidate regions {Np}p=1...K and its surrounding local
features to discriminate the melanocytes and other cytological
components. The details of the LDED analysis are presented in
the following subsections.

1) Construction of the Elliptical Model: At first, an ellipse
is fitted based on the boundary points of a candidate region
Np using the direct least-squares fitting algorithm [20] (see the
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Fig. 4. The output of the local region recursive segmentation. (a) Image ob-
tained by applying step 1 on Fig. 3(b). (b) Image obtained by applying step 2 on
(a). (c) and (d) are magnified image of a local region in (a) and (b), respectively.
qp is the mean intensity of region p.

Appendix). Fig. 5(a) shows the ellipses obtained by fitting the
boundary points of the image shown in Fig 4(b). It is observed
in Fig. 5(a) that most of the nuclei are fitted well with ellipses.
However, there are a few regions (for example, the regions
labeled as A, B, and C in the figure) that have irregular shapes
and cannot be fitted well by an ellipse. These regions need to be
eliminated for efficient nuclei detection.

2) Construction of the Double Ellipse Descriptor: Note that
using the aforementioned elliptical model, we can measure the
shape of the nuclei region. However, in order to capture the
local information of the nuclei region, we need to build another
elliptical model that have larger capturing range. Let EIN denote
the earlier mentioned elliptical model, and henceforth referred
to as the inner elliptical model. We now build another elliptical
model EOT , named outer/enlarged elliptical model, such that it
has the same centroid position with that of EIN , but has larger
minor and major axes. The outer elliptical model is proposed
to capture the surrounding local information of the current can-
didate nuclei region. Typically, the enlarged major and minor
axes have a factor of 1.4 (the enlargement factor decides the
local range of the measurement). Fig. 5(c) shows the formation
of outer elliptical model around the inner elliptical model for
each nucleus region Np . Denote the points set inside the inner
elliptical model as QIN , the points set inside the outer elliptical
model as QOT , and the points set between the inner and outer el-
liptical model as QIO , i.e., QIO = QOT − QIN . The QIN , QIO ,
and QOT constitute the LDED as shown in Fig. 5(b). The QIN
is shown in Fig. 5(b) as the white area, QIO is the shadow area
between EIN and EOT , and QOT is the area consisting of QIN
and QIO . The QIO can measure the surrounding area of the
candidate nuclei. Based on the defined LDED, we now discuss
two measurements in the following.

3) Detection of the Nuclei Using Ellipticity Parameter: As
shown in Fig. 5(a), a few false positives, i.e., the regions which

are not true nuclei, are expected to be present in the candidate
regions {Np}p=1...K . Based on the assumption that a nuclei
typically has an elliptical shape, we can filter out the false posi-
tives by using the ellipticity of a region with the inner elliptical
model. It is possible to detect the false positives by thresholding
‖Dâ‖2 obtained using (27) (see the Appendix). However, in
this paper, we propose to use another measure, which is visually
more intuitive to detect the false positives. Denote S as the set
of pixels in a candidate region Np . A parameter which measures
the ellipticity eE is defined as follows:

eE ≡ 1 − |S ⊕ QIN |
|QIN |

=
|S ∩ QIN |
|QIN |

(5)

where ⊕ is the exclusive OR operation, and | · | is the cardinality
of a point set. Note that a region with a high-ellipticity parameter
eE will have a closer match to an the elliptical shape, and is
likely to be a nucleus. On the other hand, a region with a low-
ellipticity parameter eE indicates that this region contains noisy
connecting component (either concave or convex component),
and is not likely to be a true nucleus region.

Three examples with different ellipticity parameters eE are
shown in the first two columns of Fig. 6. In Fig. 6(b), (f), and (j),
the candidate regions are represented by white pixels. The ellipse
represents the inner elliptical model EIN . The eE value indicates
the corresponding ellipticity parameters. Note that the candidate
regions shown in Fig. 6(b) and (f) are true nuclei regions with
high values of eE (eE = 0.90 and eE = 0.94, respectively). In
contrast, the candidate region shown in Fig. 6(j) is a false nuclei
region with a low value of eE (eE = 0.65). In other words,
using this parameter, we can eliminate the false nuclei regions.
A segmented region Np corresponds to a nucleus if the following
condition is satisfied:

e
Np

E ≥ τE (6)

where e
Np

E is the ellipticity parameter for region Np calculated
using (5), and τE is a preselected threshold. Let us assume that
the aforementioned test is satisfied by K ′ regions, i.e., there
are K ′ nuclei in the image. Let these regions be denoted by
{N ′

p}p=1...K ′ .
4) Detection of the Melanocytes: After the nuclei detection,

the task is now to distinguish the melanocytes from other ker-
atinocytes. Note that in the epidermis skin image, a normal
melanocyte is typically a small cell with a dark nuclei, lying
singly in the basal of epidermis. In digitized image, it appears
to lie in a clear space and retracted from other cells, due to the
shrinkage of cytoplasm [21]. As for the atypical melanocytes,
the nuclei becomes larger and has irregular contour, but the pat-
tern is the same. This pattern can be easily observed in Fig. 7(a)
and (b). Note that we focus on the red channel of the RGB color
image for LDED analysis in this paper. It is observed that the nu-
clei of the melanocytes prefer to have low intensity value, while
its spatial surrounding space presents higher intensity value. It is
shown in the histogram that there are two distinct modes present.
The centers of these two modes lie around intensity value 110
and 175. On the other hand, in the case of other keratinocytes
[shown in Fig. 7(c) and (d)], it is difficult to find the two distinct
modes and the histogram usually is unimodal.
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Fig. 5. Elliptical modeling for each nucleus. (a) Original single elliptical model on Fig. 4(b). (b) Illustration of the LDED. (c) Double elliptical model on Fig. 4(b).

Fig. 6. Illustrations of two parameters eE and eD for three different candidate nuclei regions. (a), (e), and (i) Three candidate nuclei regions with their
corresponding LDED overlapped. (b), (f), and (j) Ellipticity parameters provided by the inner elliptical model EIN . (c), (g), and (k) Pdf of the intensity values set
obtained by the outer elliptical model EOT . We used the red channel intensity from the color RGB image in this paper. (d), (h), and (l) Correspondence GMM
estimated from (c), (g), and (k), respectively. The Gaussian model is represented by the solid black line and the center of each Gaussian model is indicated by the
dashed line. The parameter eD for these three cases are 73, 8, and 4, respectively. Note that the first row shows a case of melanocyte, the second row shows a case
of other keratinocytes, the third row shows a case of noisy component which is not a nucleus.
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Fig. 7. Manually cropped melanocytes and other keratinocytes as well as the corresponding histograms. (a) and (b)Two typical melanocytes. (c) and (d) Two
other keratinocytes. Note that the images are obtained from the red channel of the color image. The horizonal axis is the gray value, whereas the vertical axis is
the counting number of corresponding intensity value in red channel.

Based on the histogram patterns shown in Fig. 7, we pro-
pose a novel method to distinguish the melanocytes and other
keratinocytes. The basic idea is that we first model the underly-
ing probability density function pdf as a two univariate Gaus-
sian mixture model (GMM). The distance of the two Gaussian
modes is then used to distinguish the melanocytes and other
keratinocytes.

Denote the pixel intensity set inside the outer elliptical model
EOT for the candidate nuclei region Np as INp . Let the means
and covariances of this two Gaussian mixture model be denoted
as μi and σ2

i (i = 1, 2), respectively. Denote I as an observed
sample, which is a pixel intensity value observed from the in-
tensity set INp . The pdf of the intensity value is expressed as
follows:

p(I|θ) =
2∑

i=1

P (ωi)p(I|ωi, θi) (7)

where θ represents the set of four unknown parameters
(μ1 , μ2 , σ

2
1 , σ2

2 ). The two modes, denoted by classes ω1 and
ω2 , indicate the Gaussian distribution corresponding to the cur-
rent observed sample I . P (ωi) is the prior probability for the
two Gaussian modes in the GMM, and p(I|ωi, θi) is the class
conditional probability which follows the Gaussian distribution

as follows:

p(I|ωi, θi) =
1√

2πσ2
exp

(

− (I − μi)2

2σ2

)

. (8)

In order to estimate the parameters set θ, we evaluate the log
likelihood of the observed intensity values in the intensity set
INp as follows:

L(θ) = log
n∏

j=1

p(Ij |θ) =
n∑

j=1

log

[
2∑

i=1

P (ωi)p(Ij |ωi, θi)

]

(9)
where n is the total number of intensity values in the intensity
set INp and Ij is the jth intensity value. Note that finding the
maximum likelihood with respect to the parameters θ using
(9) is difficult as we cannot find a closed-form solution for it.
The parametric expectation maximization (EM) algorithm is
used to estimate the parameter. In EM algorithm, a modified
log likelihood function L̃(θ) is calculated by introducing the
a posterioriP (ωi |Ij , θi) as follows:

L̃(θ) =
n∑

j=1

2∑

i=1

P (ωi |Ij , θi)logP (ωi)p(Ij |ωi, θi). (10)

The objective now is to find the parameter set θ that will
maximize L̃(θ). In EM algorithm, this is done iteratively where
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each iteration consists of two steps: expectation (E) step and
maximization (M) step. In the E-step, a posteriori probability is
estimated using the Bayes rule with a given parameter set θ as
follows:

P (ωi |Ij , θi) =
P (wi)p(Ij |ωi, θi)

∑2
k=1 P (wk )p(Ij |ωk , θk )

. (11)

In the M-step, the parameters that maximize the log likelihood
function in (10) are estimated as follows:

μi =

∑n
j=1 P (ωi |Ij , θi)Ij

∑n
j=1 P (ωi |Ij , θi)

(12)

σ2
i =

∑n
j=1 P (ωi |Ij , θi)(Ij − μi)2

∑n
j=1 P (ωi |Ij , θi)

(13)

P (ωi) =
1
n

n∑

j=1

P (ωi |Ij , θi). (14)

The EM algorithm recursively repeats the expectation and the
maximization steps until L̃(θ) converges [22]. The estimated
GMM represents the underlying pdf of the intensity values re-
trieved by the outer elliptical model. Based on the estimated
GMM, the following parameter is proposed to distinguish the
melanocytes and other keratinocytes:

eD = |μ1 − μ2 |. (15)

Note that the parameter eD computes the mean difference of the
estimated GMM. Intuitively, if the underlying distribution of the
INp is a distinct bimodal distribution, the parameter eD has a
large value. On the other hand, if the underlying distribution of
the INp is a unimodal distribution, the parameter eD has a small
value. Basically, this parameter measures the local intensity fea-
tures of the nuclei regions and will serve as an important factor
in identifying the melanocytes from other candidate regions.
Three examples of computing the parameter eD are shown in
the Fig. 6. Three candidate nuclei regions with the overlapped
LDEDs are shown in Fig. 6(a), (e), and (i). The corresponding
pdfs of the intensity sets obtained by the outer elliptical model
EOT are shown in Fig. 6(c), (g), and (k), respectively. The corre-
sponding GMM estimated using the EM algorithm are shown in
Fig. 6(d), (h), and (l), respectively. It is observed that for the true
melanocyte (shown in the first row), the two estimated Gaussian
modes are distinctly apart from each other, and result in a high
value of eD (eD = 73). For the nonmelanocytes regions (shown
in the second and third rows of Fig. 6), the modes in the GMM
overlap, and we obtain a low value of eD (eD = 8 and eD = 4
as shown in Fig. 6(h) and (l), respectively).

Using the parameter eD measured by the LDED, we can
now detect the melanocytes from the candidate nuclei re-
gions {N ′

p}p=1...K ′ . A segmented region N ′
p corresponds to

a melanocyte if the following condition is satisfied:

e
N ′

p

D ≥ τD (16)

where e
N ′

p

D is the parameter of region N ′
p calculated using (15),

and τD is the threshold for eD .

Note that the ellipticity parameter eE serves as an indicator
of the nuclei region, while the second parameter eD serves as
an indicator for the melanocytes. From experiments, it has been
found that τE ≈ 0.8 and τD ≈ 34 provides good performance.
The algorithm for the LDED analysis is shown in Algorithm 2.
An illustration of the LDED analysis is shown in Fig. 8. The
original image is shown in Fig. 8(a), whereas the formation of
the LDED is shown in Fig. 8(b). Fig. 8(c) illustrates the LDED
superimposed on the original image, and the two parameters
are measured. The final melanocytes detection result is shown
in Fig. 8(d). It is observed that the technique could find all the
melanocytes in the image.

III. PERFORMANCE EVALUATION

We have evaluated the proposed technique on 30 different skin
histopathology images of epidermis. These images are captured
from different skin tissue samples corresponding to normal skin,
nevus, and melanoma. These images are captured on Carl Zeiss
MIRAX MIDI Scanning system [23].

For the performance evaluation, the melanocytes manually
identified are treated as the ground truths. We define NGT as
the total number of ground truths, NDO as the total number
of detected objects, NTP as the number of true positives (i.e.,
correctly detected objects), NFP as the number of false positives
(i.e., falsely detected objects). The positive prediction rate (PPR)
and the sensitivity (SEN) are defined as follows:

PPR =
NTP

NDO
× 100% (17)

SEN =
NTP

NGT
× 100%. (18)

A. Quantitative Evaluation

In this section, we present the quantitative evaluation of the
proposed technique. In order to calculate the parameter τE and
τD for the proposed technique, two of the images are selected.
In these two images, 50 melanocytes are manually labeled, and
the value of eE and eD for each melanocyte is calculated. We
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Fig. 8. Illustration of the LDED analysis. (a) Original image. (b) All the LDEDs. (c) LDEDs overlap onto the original image to perform the analysis. (d) Detection
of the melanocytes using the analysis on two parameters eE and eD . The detected melanocytes are label as red ellipses.

TABLE I
PERFORMANCE OF THE PROPOSED TECHNIQUE ON THE 28 TEST IMAGES

Image Property 20× Magnification 30× Magnification 40× Magnification
Index μ σ PPR (%) SEN (%) PPR (%) SEN (%) PPR (%) SEN (%)

1 135.54 31.95 72.09 83.78 75.57 85.68 80.00 86.49
2 170.04 24.24 62.78 84.47 64.94 86.24 68.14 94.07
3 116.16 41.92 73.91 80.95 71.43 95.24 83.33 95.24
4 118.43 30.34 76.32 87.81 77.19 88.28 78.81 91.18
5 130.27 22.72 77.81 84.32 80.39 83.43 84.67 89.54
6 142.51 28.36 75.00 78.57 67.83 78.57 75.56 71.43
7 179.91 25.78 78.71 70.59 84.62 64.71 83.33 88.24
8 146.57 35.35 65.79 89.29 66.67 85.71 75.86 88.57
9 141.65 32.31 72.55 82.22 73.79 82.22 80.95 82.22

10 141.06 34.08 63.55 90.67 58.93 88.00 68.89 84.64
11 173.44 38.35 73.86 73.63 78.03 70.69 82.73 76.67
12 161.42 29.77 63.89 78.83 66.57 79.71 75.00 73.18
13 106.64 30.01 71.33 82.78 76.04 89.93 78.75 84.62
14 116.89 25.97 79.96 81.96 78.77 87.62 76.19 96.00
15 103.04 28.97 76.84 92.17 77.02 93.98 80.00 100.00
16 134.65 32.01 76.87 87.62 79.14 87.62 85.73 96.67
17 126.97 29.12 73.83 84.45 77.79 85.39 75.57 85.11
18 138.00 31.14 70.95 79.10 75.99 77.32 76.12 68.92
19 133.43 34.44 77.94 86.57 82.14 86.57 83.33 90.91
20 132.26 26.44 71.78 92.39 74.44 91.06 80.00 94.12
21 146.38 26.21 73.77 75.70 73.21 74.23 79.68 77.78
22 153.45 22.03 67.08 80.04 72.64 80.48 77.27 81.25
23 167.64 25.12 71.87 74.20 70.58 77.78 72.41 65.63
24 124.13 28.86 80.77 89.42 78.88 92.25 81.58 96.88
25 137.64 25.23 80.92 90.05 82.50 90.95 85.00 87.93
26 125.89 27.34 71.82 87.56 75.75 87.56 80.77 87.50
27 104.82 33.39 83.72 67.92 72.41 79.25 81.36 90.57
28 101.83 33.49 83.68 84.34 79.52 87.95 84.04 92.77

Average 136.10 29.82 73.91 82.91 74.74 84.23 79.11 86.36

then performed the trail-and-error test, the parameter τE and
τD which achieved the best PPR and SEN are selected as the
parameter τE and τD for the proposed technique (specifically,
τE = 0.8 and τD = 34). These two parameters are then used
for the performance evaluation on the remaining 28 test images
with changes on zoom factor. The evaluation result is shown in
Table I. In Table I, the image index is shown in the first col-
umn. In the second and third columns, the image properties

(i.e., the mean intensity μ and the standard variance σ) of red
channel image are presented. The remaining columns show the
performance of the proposed technique, in terms of PPR and
SEN, on different magnification level (20×, 30×, and 40×).
The average performance is shown in the last row of Table I. It
is observed that the proposed technique provides a robust per-
formance on these 28 test images with different intensity and
zooming levels.
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Fig. 9. Ten templates with size 20 × 20 used in the TM techniques. Note the variation of the center heart radii and the ring thickness. The templates are magnified
for demonstration purpose.

B. Comparison With TM Technique

Since this is the first technique to solve the melanocytes seg-
mentation problem, there is no other equivalent technique in the
literature that can be compared with the proposed technique.
Therefore, we compare the proposed technique with a possi-
ble alternative technique, known as TM. Note that the TM is
a widely used technique for pattern detection in medical imag-
ing [13], [24]. A set of 30 templates is designed to capture
the “MPattern” and selected 10 templates are shown in Fig. 9.
The templates are designed according to 30 manually selected
melanocytes. Note that we designed 30 templates with differ-
ent sizes in terms of the template size (15 × 15, 20 × 20, and
25 × 25 pixels), center heart radii (8, 9, 10, 11, and 12 pixels),
and the ring thickness (2 and 3 pixels), in order to create the
variations. The intensity for the heart of the template and the ring
of the template are assigned according to the mean value of the
corresponding regions in the 30 samples of manually selected
melanocytes [two examples are shown in Fig. 7(a) and (b)]. In
the TM implementation, each template is first applied on the
image by using the normalized cross correlation (NCC) [25].
Denote the NCC output of the ith template as Oi , and the 2-D
coordinate in the image as (u, v). The candidate pixel Ji(u, v)
obtained from the ith template is as follows:

Ji(u, v) =
{

Ji(u, v) if Oi(u, v) ≥ τTM
0 otherwise

(19)

where TTM is a threshold for each output. The τTM is set to 0.85
since it provides the best performance. The accumulated map
Oacc for all 30 templates are calculated as follows:

Oacc =
30∑

i=1

∑

(u,v )∈Ω

Ji(u, v) (20)

where Ω represents the image domain. The final result is a binary
image which is determined using a threshold of 2 on Oacc .

The comparison of the proposed technique and the TM tech-
nique is performed on the images with 30× magnification. We
denote the first step of the proposed technique as ML which
consists of the mean-shift segmentation as the initial segmenta-
tion and the proposed LRRS algorithm. We denote the overall
proposed technique as ML+LDED, where the LDED analysis
is performed based on the output of the ML. The performance
of the ML and ML+LDED is shown in Table II.

TABLE II
PERFORMANCE OF THE PROPOSED TECHNIQUE (ML AND ML+LDED) AND TM

TECHNIQUE ON THE TEST IMAGES (WITH 30× MAGNIFICATION)

Technique PPR (%) SEN (%)
ML 43.22 97.24

ML+LDED 74.74 84.23
TM 21.53 65.83

It is shown in Table II that by using the ML, almost all
the ground truth melanocytes are segmented with the SEN
at 97.24%. However, using ML alone cannot differentiate the
melanocytes and other keratinocytes, which leads to a low PPR
of 43.22%. In other words, a large number of nonmelanocyte
regions are included. After performing the LDED analysis, most
of the false positives are filtered out which results in a higher
PPR (about 74.74%), while still providing satisfactory SEN
(84.23%). As for the TM technique, the low PPR (21.53%)
indicates that the TM technique does not have the ability to
distinguish the melanocytes and other keratinocytes. Also, the
TM technique provides a low SEN (65.83%) because it cannot
capture the variations of the melanocytes in the epidermis.

For the visual comparison, three close-up examples cropped
from the test images are shown in Fig. 10. These images are
captured from different skin tissues, and parameters τE = 0.8
and τD = 34 were used for the detection. Note that Fig. 10(a),
(f), and (k) show three original color histopathological images.
Fig. 10(b), (g), and (l) show the corresponding ground truth.
The melanocytes are indicated by stars. The last three columns
show the results obtained using the ML, ML+LDED, and TM
technique, respectively. The detected regions are presented as
the thick contours. It is observed that the results provided by the
ML technique [shown in Fig. 10(c), (h), and (m)] include almost
all the melanocytes and other keratinocytes. In comparison, the
ML+LDED is able to filter out nonmelanocytes regions [shown
in Fig. 10(d), (i), and (n)] very effectively, and the false detection
rate is very low. In Fig. 10(i), there are two false positives
(indicated by hollow arrows). That is because the candidate
nuclei regions are very close to typical melanocytes where its
surrounding cytoplasms are retracted. As for the TM technique,
a large number of patterns have been detected as melanocytes
since there are many cytological components similar to that
of the melanocyte patterns [shown in Fig. 10(e), (j), and (o)].
In Fig. 10(j), the TM technique misses most of the ground
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Fig. 10. Three examples for qualitative evaluation. (a), (f), and (k) Three original color histopathological images. (b), (g), and (l) The ground truths indicated by
stars. (c), (h), and (m) Result provided by ML. (d), (i), and (n) Result provided by ML+LDED. (e), (j), and (o) The result provided by TM. Note that detected
regions are presented as the thick contours.

truths because it is very difficult to model a good template set
that can capture the size and shape variations of the natural
melanocytes. Overall, the proposed technique is able to provide
a good performance in the test images set.

All experiments were carried out on a 2.4-GHz Intel Core II
Duo CPU with 3-GB RAM using MATLAB 7.04. On average,
the proposed technique takes 6 s to segment the melanocytes
from a 512 × 512 pixels RGB color image. On the other hand,
the TM technique takes 3 s to detect the melanocytes in the
image.

IV. CONCLUSIONS

This paper presents a simple but effective computer-aided
technique for segmentation of the melanocytes in the skin
histopathological image. The candidate nuclei regions are first
extracted through the mean shift, and the proposed local region
recursive segmentation algorithm. The local double ellipse de-
scriptor then incorporates the biological feature of melanocytes
and provides robust parameters to identify the melanocytes.
The evaluation using 30 histopathological images with differ-

ent zooming factors shows that the proposed technique is able
to segment the melanocytes with over 80% sensitivity rate and
over 70% positive prediction rate. In future, we have planned to
analyze the cytological and architectural features of the detected
melanocytes in order to grade and diagnose the skin tissues.

APPENDIX

In Section III(c), the elliptical model was introduced. In this
appendix, the direct least-square fitting algorithm is explained
for fitting an ellipse with a nucleus.

Let (u, v) be a 2-D point of an ellipse, and the ellipse is
modeled using the following implicit second-order polynomial:

E(u, v) = au2 + buv + cv2 + du + ev + f = 0 (21)

with an ellipse-specific constraint b2 − 4ac < 0, where
a, b, c, d, e, and f denote the ellipse coefficients. Equation (21)
can be rewritten in the vector form as follows:

E(u, v) = au = 0 (22)

where a = [a, b, c, d, e, f ]T and u = [u2 , uv, v2 , u, v, 1].
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Assuming that b2 − 4ac = −r, the inequality constraint b2 −
4ac < 0 can be converted into an equality constraint 4ac − b2 =
r [20], where r is an arbitrary positive number. Without any loss
of generality, let r = 1. The equality constraint can then be
represented in matrix form as follows:

aT Ca = 1 (23)

where

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 2 0 0 0
0 −1 0 0 0 0
2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (24)

Assume a set of B boundary points corresponding to a candi-
date region. In the ideal case, all the boundary points will be on
an ellipse defined by a, and will satisfy the following equation:

‖Da‖2 = 0 (25)

where the design matrix D is defined as follows:

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

u2
1 u1v1 v2

1 u1 v1 1
...

...
...

...
...

...
u2

i uivi v2
i ui vi 1

...
...

...
...

...
...

u2
B uB vB v2

B uB vB 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(26)

where (ui, vi) denote the 2-D coordinate of the ith boundary
point for the region. In general, the boundary points will not
form a perfect ellipse and (25) will not be satisfied. The op-
timal coefficients vector â corresponding to the best matched
ellipse can be estimated by solving the following least-squares
minimization:

â = arg min
a

‖Da‖2 subject toaT Ca = 1. (27)

Equation (27) can be solved via a Lagrange multiplier method
[20].
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