
Progress on Abstract Interpretation Based
Formal Methods and Future Challenges

Patrick Cousot

Département d’informatique, École normale supérieure,
45 rue d’Ulm, 75230 Paris cedex 05, France

Patrick.Cousot@ens.fr http://www.di.ens.fr/˜cousot/

Abstract. In order to contribute to the software reliability problem,
tools have been designed in order to analyze statically the run-time
behavior of programs. Because the correctness problem is undecidable,
some form of approximation is needed. The whole purpose of abstract
interpretation is to formalize this idea of approximation. We illustrate in
formally the application of abstraction to the semantics of programming
languages as well as to program static analysis. The main point is that in
order to reason or compute about a complex system, some information
must be lost, that is the observation of executions must be either partial
or at a high level of abstraction.
In the second part of the paper, we compare program static analysis
with deductive methods, model-checking and type inference. Their foun
dational ideas are shortly reviewed, and the shortcomings of these four
tools are discussed, including when they are combined. Alternatively,
since program debugging is still the main program verification method
used in the software industry, we suggest to combine formal with informal
methods.
Finally, the grand challenge for all formal methods and tools is to solve
the software reliability, trustworthiness or robustness problems. Few chal
lenges more specific to program analysis by abstract interpretation are
shortly discussed.

1 Introductive Motivations

The evolution of hardware by a factor of 106 over the past 25 years has lead
to the explosion of the size of programs in similar proportions. The scope of
application of very large programs (from 1 to 40 millions of lines) is likely to
widen rapidly in the next decade. These big programs will have to be designed
at a reasonable cost and then modified and maintained during their lifetime
(which is often over 20 years). The size and efficiency of the programming and
maintenance teams in charge of their design and follow-up cannot grow up in
similar proportions. At a not so uncommon (and often optimistic) rate of one bug
per thousand lines such huge programs might rapidly become hardly manageable
in particular for safety critical systems (528). Therefore in the next 10 years, the
software reliability problem is likely to become a major concern and challenge to
modern highly computer-dependent societies.

Patrick.Cousot@ens.fr
http://www.di.ens.fr/~cousot/

2

In the past decade a lot of progress has been done both on thinking/method-
ological tools (to enhance the human intellectual ability) to cope with complex
software systems and mecanical tools (using the computer) to help the program
mer to reason on programs.

The mecanical tools for computer aided program verification started empiri
cally by executing or simulating the program in enough representative possible
environments. However debugging of the compiled code or simulation of a model
of the source program hardly scale up and often offer a low coverage of the pro
gram dynamic behavior.

Formal program verification methods attempt to mecanically prove that pro
gram execution is correct in all specified environments. This includes deductive
methods, model checking, program typing and program analysis.

Since program verification is undecidable, computer aided program verifica
tion methods are all partial or incomplete. The undecidability or complexity is
always solved by using some form of approximation. This means that the me
chanical tool will sometimes suffer from practical time and space complexity
limitations, rely on finiteness hypotheses or provide only semi-algorithms, re
quire user interaction or be able to consider restricted forms of specifications or
programs only. The mechanical program verification tools are all quite similar
and essentially differ in their choices regarding the approximations which have
to be done in order to cope with undecidability or complexity. The ambition of
abstract interpretation is to formalize this notion of approximation in a unified
framework (208; 214; 192; 195; 196; 199; 203; 204).

2 Abstract Interpretation

Since program verification deals with properties, that is sets (of objects with
these properties), abstract interpretation can be formulated in an application
independent setting, as a theory for approximating sets and set operations as
considered in set (or category) theory. A more restricted understanding of ab
stract interpretation is to view it as a theory of approximation of the behavior of
dynamic discrete systems (such as the formal semantics of programs or a com
munication protocole specification). Since such behaviors can be characterized
by fixpoints (213; 671) (e.g. corresponding to iteration), an essential part of the
theory provides constructive and effective methods for fixpoint approximation
and checking by abstraction (218).

2.1 Fixpoint Semantics

The semantics of a programming language defines the semantics of any program
written in this language. The semantics of a program provides a formal math
ematical model of all possible behaviors of a computer system executing this
program in interaction with any possible environment. In the following we will
try to explain informally why the semantic of a program can be defined as the
solution of a fixpoint equation. Then, in order to compare semantics, we will

3

show that all semantics of a program can be organized in a hierarchy by ab
straction. By observing computations at different levels of abstraction, one can
approximate fixpoints hence organize the semantics of a program in a lattice
(206; 197).

2.2 Trace Semantics

Our finer grain of observation of program execution, that is the most precise
of the semantics that we will consider, is that of trace semantics , a model also
frequently used in temporal logic (603; 275; 683). An execution of a program for
a given specific interaction with its environment is a sequence of states, observed
at discrete intervals of time, starting from an initial state, then moving from one
state to the next one by executing an atomic program step or transitions and
either ending in a final regular or erroneous state or non terminating, in which
case the trace is infinite (see Fig. 1).

Initial states
Final states of the
 finite tracesIntermediate states

Infinite
traces

0 1 2 3 4 5 6 7 8 9 discrete time

a b c d

e f

g h

i j

k

�

Fig. 1. Examples of Computation Traces

2.3 Least Fixpoint Trace Semantics

The trace semantics can be defined in fixpoint form (206; 198), that is as a
solution of an equation of the form X = F (X) where X ranges over sets of finite
and infinite traces.

More precisely, let Behaviors be the set of execution traces of a program,
possibly starting in any state. We denote by Behaviors+ the subset of finite
traces and by Behaviors∞ the subset of infinite traces.

A finite trace a•−−−. . .−−−z• in Behaviors+ is either reduced to a final state
(in which case there is no possible transition from state a• = z•) or the initial state
a• is not final and the trace consists of a first computation step a•−−−b• after which,
from the intermediate state b• , the execution goes on with the shorter finite trace

4

b•−−−. . .−−−z• ending in the final state z•. The finite traces are therefore all well
defined by induction on their length.

An infinite trace a•−−−. . .−−−. . . in Behaviors∞ starts with a first computa
tion step a•−−−b• after which, from the intermediate state b• , the execution goes
on with an infinite trace b•−−−. . .−−−. . . starting from the intermediate state b•.
These remarks lead to the following fixpoint equation:

Behaviors = {a• | a• is a final state}
∪ {a•−−−b•−−−. . .−−−z• | a•−−−b• is an elementary step &

b•−−−. . .−−−z• ∈ Behaviors+}
∪ {a•−−−b•−−−. . .−−−. . . | a•−−−b• is an elementary step &

b•−−−. . .−−−. . . ∈ Behaviors∞}

In general, the equation has multiple solutions. For example if there is only
state a• , it is not final and the only possible elementary step is a•−−−a• then the
equation is Behaviors = {a•−−−a•−−−. . .−−−. . . | a•−−−. . .−−−. . . ∈ Behaviors}.
One solution is {a•−−−a•−−−a•−−−a•−−−. . .−−−. . .} but another one is the empty set
∅. Therefore, we choose the least solution for the computational partial ordering:

« More finite traces & less infinite traces » .

2.4 Abstractions

A programming language semantics is more or less precise according to the con
sidered observation level of the program executions (403; 16; 350). This intuitive
idea can be formalized by Abstract interpretation (206) and applied to different
languages (60; 311; 61), including for proof methods (194; 493).

The abstract interpretation theory formalizes this notion of approximation/
abstraction in a mathematical setting which is independent of particular ap
plications. In particular, abstractions must be provided for all mathematical
constructions used in programming and specification languages semantic defini
tions (214; 218; 504; 545; 554; 555; 561; 564; 610; 611; 629; 630).

If the approximation is rough enough, the abstraction of a concrete seman
tics can lead to an abstract semantics which is less precise but is effectively
computable by a computer. By effective computation of the abstract semantics,
the computer is able to analyze the behavior of programs and of software before
and without executing them (207). Abstract interpretation algorithmics provide
approximate methods for computing this abstract semantics. The main abstract
interpretation algorithmics provide effective methods for the exact or approxi
mate iterative resolution of fixpoint equations (208).

We will first illustrate formal and effective abstractions for sets. Then we will
show that such abstractions can be lifted to functions and finally to fixpoints.

The abstraction idea and its formalization are equally applicable in other
areas of computer science such as artificial intelligence (334) e.g. for intelligent

5

planning (94; 22), proof checking (331), automated deduction and theorem prov
ing (332; 93; 95; 280; 330; 336; 333; 335; 94; 329), etc.

2.5 Hierarchy of Abstractions

As shown in Fig. 2 (from (206), where Behaviors , denoted τ �∞ for short, is the
lattice infimum), all abstractions of a semantics can be organized in a lattice
(which is part of the lattice of abstract interpretations introduced in (214; 212)).
The approximation partial ordering of this lattice formally corresponds to logic
implication, intuitively to the idea that a semantics is more precise than another.

Hoare
logics

weakest
precondition
semantics

denotational
semantics

relational
semantics

trace
semantics

equivalence
abstraction✲

restriction
infinite

demoniac
deterministic

naturalangelic

τ�!

τ∂

τEM

τD

τ�τS τ♦τ �τ �

τ�

τwp

τ tHτpH

τwlp

τ
�+

τ+ τω

τ �ω

τ gH

τ gwp

τ�?

τ �

τ∞

τ �∞

τ

✟✟✯
�

✘✘✘✘✘✘✘✿ �

�

�

✡
✡✡✣

�

� � �

�

✻

✻ ✻
✏✏✶

�

�

�

�✟✟✟✟✯

✟✟✟✟✯

✟✟✟✟✯

❍❍❍❍

❍❍❍❍

❍❍❍❍

❍❍❍❍

�❍❍❍❍
�

�

�

�

�

��

�

�

�

�

✏✏✏✏✏✏

✏✏✏✏✏✏✶

✏✏✏✏✶

Fig. 2. The Hierarchy of Semantics

Fig. 3 illustrates the derivation of a relational semantics (403; 527) (denoted
τ∞ in Fig. 2) from a trace semantics (denoted τ �∞ in Fig. 2). The abstraction
α from trace to relational semantics consists in replacing the finite traces a•
−−−. . .−−−z• by the pair 〈a, z〉 of the initial and final states. The infinite traces
a•−−−b•−−−. . .−−−. . . are replaced by the pair 〈a, ⊥〉 where the symbol ⊥ denotes
non-termination. Therefore the abstraction is:

α(X) = {〈a, z〉 | a•−−−. . .−−−z• ∈ X}
∪ {〈a, ⊥〉 | a•−−−b•−−−. . .−−−. . . ∈ X} .

The denotational semantics (541; 639; 672) (denoted τ � in Fig. 2) is the isomor
phic representation of a relation by its right-image:

6

a d

e f

g h

i j

k

�

⊥
⊥

a d

e f

g h

i j

α α

0 1 2 3 4 5 6 7 8 9 discrete time

a b c d

e f

g h

i j

k

�

Initial states
Intermediate states Final states of

 finite traces

Infinite
traces

Final states
Initial states

Trace
semantics

Relational
semantics

Natural
semantics

Fig. 3. Abstraction from Trace to Relational and Natural Semantics

α(R) = λ a · {x | 〈a, x〉 ∈ R}.

The abstraction from relational to big-step operational or natural semantics
(denoted τ+ in Fig. 2) (457; 601) simply consists in forgetting everything about
non-termination, so α(R) = {〈a, x〉 ∈ R | x �= ⊥} , as illustrated in Fig. 3.

A non comparable abstraction consists in collecting the set of initial and final
states as well as all transitions 〈x,y〉 appearing along some finite or infinite trace
a•−−−. . .

x•−−−
y
• . . . of the trace semantics. One gets the small-step operational or

transition semantics (601; 463) (denoted τ in Fig. 2 and also called Kripke
structure in modal logic (476)) as illustrated in Fig. 4.

Transitions

Initial states Final states

a b c d

e f

g h

i j

k

�

a

e

g

i

k

�

d

f

h

j

b

Fig. 4. Transition Semantics

A further abstraction consists in collecting all states appearing along some
finite or infinite trace as illustrated in Fig. 5. This is the partial correctness
semantics (194; 304; 402; 558) or the collecting semantics (208) for proving
invariance properties of programs.

All abstractions considered in this paper are “from above” so that the ab
stract semantics describes a superset or logical consequence of the concrete

7

Reachable states

Initial states Final states

a

e

g

i

k

�

d

f

h

j

a b c d

e f

g h

i j

k

�

Fig. 5. Collecting / Partial Correctness Semantics

semantics. Abstractions “from below” are dual and consider a subset of the
concrete semantics. An exemple of approximation “from below” is provided by
debugging techniques which consider a subset of the possible program executions
or by existential checking where one wants to prove the existence of an execu
tion trace fullfilling some given specification. In order to avoid repeating two
times dual concepts, we only consider approximations “from above”, knowing
that approximations “from below” can be easily derived by applying the duality
principle (as found e.g. in lattice theory (53)).

2.6 Effective Abstractions

Numerical Abstractions Assume that a program has two integer variables
X and Y. The trace semantics of the program (Fig. 1) can be abstracted in the
collecting semantics (Fig. 5). A further abstraction consists in forgetting in a
state all but the values x and y of variables X and Y. In this way the trace
semantics is abstracted to a set of points, as illustrated in Fig. 6(a).

We now illustrate informally a number of effective abstractions of an [in]finite
set of points.

Non-relational Abstractions The nonn-relational, attibute independent or
cartesian abstractions (214, example 6.2.0.2) (448) consists in ignoring the pos
sible relationships between the values of the X and Y variables. So a set of pairs
is approximated through projection by a pair of sets. Each such set may still be
infinite and in general not exactly computer representable. Further abstractions
are therefore needed.

The sign abstraction (214) illustrated in Fig. 6(b) consists in replacing inte
gers by their sign thus ignoring their absolute value.

The interval abstraction (207; 208; 192) illustrated in Fig. 6(c) is more pre
cise since it approximates a set of integers by it minimal and maximal values
(including −∞ and +∞ as well as the empty set if necessary).

The congruence abstraction (345; 346; 348) illustrated in Fig. 6(d) is not
comparable.

8

x

y {. . . , 〈5, 7〉, . . . ,
〈13, 21〉, . . .}

(a) [In]finite Set of Points

x

y
{

x ≥ 0
y ≥ 0

(b) Sign Abstraction

x

y
{

x ∈ [3, 27]
y ∈ [4, 32]

(c) Interval Abstraction

x

y
{

x = 5 mod 8
y = 7 mod 9

(d) Simple Congruence Ab
straction

Fig. 6. Non-relational Abstractions

Relational Abstractions Relational abstractions are more precise than non
relational ones (448) in that some of the relationships between values of the
program states are preserved by the abstraction.

For example the polyhedral abstraction (227; 353) illustrated in Fig. 7(b)
approximates a set of integers by its convex hull. Only non-linear relationships
between the values of the program variables are forgotten.

The use of an octogonal abstraction (30) illustrated in Fig. 7(a) is less precise
since only some shapes of polyhedra are retained or equivalently only linear
relations between any two variables are considered with +1 or -1 coefficients (of
the form ±x ± y ≤ c where c is an integer constant).

A non comparable relational abstraction is the linear congruence abstraction
(347) illustrated in Fig. 7(c).

A combination of non-relational dense approximations (like intervals) and
relational sparse approximations (like congruences) is the trapezoidal linear con
gruence abstraction of (509; 508) as illustrated in Fig. 7(d).

Symbolic Abstractions Most structures manipulated by programs are sym
bolic structures such as control structures (call graphs), data structures (search
trees), communication structures (distributed & mobile programs), etc. It is very
difficult to find compact and expressive abstractions of such sets of objects (sets
of languages, sets of automata, sets of trees or graphs, etc.). For example Büchi
automata or automata on trees are very expressive but algorithmically expensive
(673).

9

x

y

3 ≤ x ≤ 7
x + y ≤ 8
4 ≤ y ≤ 5
x − y ≤ 9

(a) Octagonal Abstraction

x

y
{

7x + 3y ≤ 5
2x + 7y ≥ 0

(b) Polyhedral Abstraction

x

y
{

3x + 5y = 8 mod 7
2x − 9y = 3 mod 5

(c) Relational Congruence Abstrac
tion

x

y
{

3x + 7y ∈ [2, 7] mod 8
2x − 5y ∈ [0, 9] mod 4

(d) Trapezoidal Congruence Abstrac
tion

Fig. 7. Relational Abstractions

Fig. 8. Binary Decision Graphs

A compromise between semantic expressivity and algorithmic efficiency was
recently introduced by (515; 514; 512; 513) using Binary Decision Graphs and
Tree Schemata to abstract infinite sets of infinite trees is illustrated in Fig. 8 &
9.

2.7 Information Loss

Any abstraction introduces some loss of information. For example the abstrac
tion of the trace semantics into relational or denotational semantics loses all
information on the computation cost since all intermediate steps in the execu
tion are removed.

All answers given by the abstract semantics are always correct with respect to
the concrete semantics. For example if termination is proved using the relational
semantics then there no execution abstracted to 〈a,⊥〉 so no infinite trace a•−−−b•

10

Fig. 9. Tree Schemata

x

y

(a) yes

x

y

(b) unkown

x

y

(c) yes

Fig. 10. Is 1/(X+1-Y) well-defined?

−−−. . .−−−. . . in the trace semantics whence non termination is impossible when
starting execution in initial state a.

However, because of the information loss, not all questions can be definitely
answered with the abstract semantics. For example the natural semantics cannot
answer questions about termination as can be done with the relational or de
notational semantics. These semantics cannot answer questions about concrete
computation costs

The more concrete semantics can answer more questions. The more abstract
semantics are simpler. Non comparable abstract semantics (such as intervals
and congruences) can neither answer more nor less questions.

To illustrate the loss of information, let us consider the problem of deciding
whether the operation 1/(X+1-Y) appearing in a program is always well defined
at run-time. The answer can certainly be given by the concrete semantics since
it has no point on the line x + 1 − y = 0, as shown in Fig. 10(a).

In practice the concrete abstraction is not computable so it is hardly usable
in a useful effective tool. The dense abstractions that we have considered are
too approximate as illustrated in Fig. 10(b).

However the answer is positive when using the relational congruence abstrac
tion, as shown in Fig. 10(c).

11

Abstract interpretation theory has mainly been concerned with the sound
ness of the abstract semantics/interpreter, relative to which questions can be
answered corectly despite the loss of information, which is essential in practice
and leads to a formal design method.

However completeness , relative to the formalization of the loss of information
in a controlled way so as to answer a given set of questions, has also been studied
(214; 322; 315; 321; 553; 320), including in the context of model checking (205).
In practice complete abstractions, including a most abstract one do exist, but
most often are not computable and even hard to design manually since the
design of a complete abstraction is logically equivalent to a formal correctness
proof (205).

A more limited but certainly feasible objective towards expressive analyses is
by combination of abstract domains (such as the reduced product (214), disjunc
tive completion (214; 297; 298; 563; 316; 318; 319), complementation (185; 184;
299)) and their refinement (317), which can be implemented in static analyser
generators (e.g. (485; 189)).

2.8 Function Abstraction

We now show how the abstraction of complex mathematical objects used in the
semantics of programming or specification languages can be defined by compos
ing abstractions of simpler mathematical structures.

For example knowing abstractions of the parameter and result of a monotonic
function on sets, a function F can be abstracted into an abstract function F �

as illustrated in Fig. 11 (214). Mathematically, F � takes its parameter x in the

F

F

Concrete domain

Abstract domain
�

α F � = α ◦ F ◦ γ

Fig. 11. Function Abstraction

abstract domain. Let γ(x) be the corresponding concrete set (γ is the adjoined,
intuitively the inverse of the abstraction function α). The function F can be
applied to get the concrete result ◦ F ◦ γ(x). The abstraction function α can
then be applied to approximate the result F �(x) = α ◦ F ◦ γ(x).

12

In general neither F nor α and γ is computable even though the abstraction
α may be effective. So we have got a formal specification of the abstract function
F � and an algorithm has to be found for an effective implementation.

2.9 Fixpoint Abstraction

A fixpoint of a function F can often be obtained as the limit of the iterations of
F from a given initial value ⊥. In this case the abstraction of the fixpoint can
often be obtained as the abstract limit of the iteration of the abstraction F � of
F starting from the abstraction α(⊥) of the initial value ⊥. The basic result is
that the concretization of the abstract fixpoint is related to the concrete fixpoint
by the approximation relation expressing the soundness of the abstraction (214).
This is illusrated in Fig. 12.

F

F
�

Concrete domain

Abstract domain

α

F F F F F
FF

F

F
� F

� F
�

F
�

F
F

α α α α Approximation
relation �

⊥

⊥�

lfp F � γ(lfp F �)

Fig. 12. Fixpoint Abstraction

Often states have some finite component (e.g. a program counter) which can
be used to get a fixpoint system of equations by projection along that compo
nent. Then chaotic and asynchronous iteration stategies can be used to solve the
equations iteratively (209). Various efficient iteration strategies have been stud
ied (440; 123; 364; 449; 450; 441; 452; 556; 617; 636; 483; 692), including ones
taking particular properties of abstractions into account (129; 287; 293; 421;
473; 567; 572; 571; 641) and others to speed up the convergence of the iterates
(208; 219; 73; 207; 365; 366).

2.10 Composing Abstractions

Abstractions hence abstract interpreters for program analysis can be designed
compositionally by stepwise abstraction, combination or refinement (214; 312;
296).

13

An example of stepwise abstraction is the functional abstraction of Sec. 2.8.
The abstraction of a function is parameterized by abstractions for the function
parameters and the function result which can be chosen later in the modular
design of the abstract interpreter. An example of abstraction combination is the
reduced product of two abstractions (214; 163; 321) which is the most abstract
abstraction more precises than these two abstractions. An example of refinement
is the power operation (214; 298; 316; 317; 318; 319) which complete an abstract
domain by adding missing disjunctions and the complement (185; 184) adding
missing negations.

It is always possible to refine an abstraction so as to check a given specifi
cation for a given program (205; 322; 315; 320). Nevertheless this approach has
severe practical limitations since, in general, the design of this abstraction is
logically equivalent to the design of an inductive argument for the formal proof
that the given program satisfies the given specification while the soundness proof
of this abstraction logically amounts to checking the inductive verification con
ditions of this formal proof (205). Such proofs can hardly be fully automated
hence human interaction is unavoidable. Moreover the whole process has to be
repeated each time the program or specification is modified.

Instead of considering such strong specifications for a given specific program,
the objective of program analysis is to consider (often predefined) specifications
and all possible programs. The practical problem in program analysis is there
fore to design useful abstractions which are computable for all programs and
expressive enough to yield interesting information for most programs.

3 Program Analysis

Program analysis is the automatic static determination of dynamic run-time
properties of programs.

3.1 Foundational Ideas of Program Analysis

Given a program and a specification, a program analyzer will check if the pro
gram semantics satisfies the specification (Fig. 13(a)). In case of failure,the
analyser will provide hints to understand the origin of errors (e.g. by providing
necessary conditions to be satisfied by counter-examples).

The principle of the analysis is to compute an approximate semantics of
the program in order to check a given specification. Abstract interpretation is
used to derive, from a standard semantics, the approximate and computable
abstract semantics. The derivation can often be done by composing standard
abstractions to fit a particular kind of information which has to be discovered
about program execution. This derivation is itself not (fully) mechanizable but
static analyser generators such as PAG (288; 10), GENA (285)and others (31;
201; 202; 274; 273; 277; 278; 682; 431; 484; 485; 586; 491; 576; 118) can provide
generic abstractions to be composed with problem specific ones.

14

Program analyzer

Program Specification

Diagnosis

(a) Objective

(Approximate) solution

Diagnoser

Diagnosis

Solver

Generator

Program Specification

Program
analyzer

System of fixpoint equations/constraints

(b) Principle

Fig. 13. Program Analysis

In practice, the program analyser contains a generator reading the program
text and producing equations or constraints which solution is a computer repre
sentation of the program abstract semantics. A solver is then used to solve these
abstract equations/constraints. A popular resolution method is to use iteration.
In this case the convergence may have to be accelerated using widening to over
estimate the solution followed by a narrowing to improve it (208; 192; 219). The
approximation of the abstract semantics is then used by a diagnoser to check
the specification. Because of the loss of information, the diagnosis is always of
the form “yes”, “no”, “unknown” or “irrelevant” (e.g. a safety specification for
unreachable code). The general structure of program analysers is illustrated in
Fig. 13(b).

3.2 Shortcomings of Program Analysis

Static program analysis can be used for large programs (220 000 lines of C)
without user interaction. The abstractions are chosen to be of wide scope with
out specialization to a particular program. Abstract algebras can be designed
and implemented into libraries which are resuable for different programming
languages. The objective is to discover invariants that are likely to appear in
many programs so that the abstraction must be widely reusable for the program
analyzer to be of economic interest.

The drawback of this general scope is that the considered abstract speci
fications and properties are often simple, mainly concerning elementary safety
properties. For example non-linear abstractions of sets of points are very difficult
et very few mathematical results are of practical interest and directly applicable

15

to program analysis (40). Checking termination and similar liveness properties
is trivial with finite state systems, at least from a theoretical if not algorithmical
point of view (e.g. finding loops in finite graphs). The same problem for infinite
state systems with potentially infinite data structures (as considered e.g. in par
tial evaluation (446)) requires the discovery of variant functions which is also
very difficult in full generality (15; 27; 78; 77; 221; 328; 459; 501; 544; 616; 657;
592; 693) and even more for fair concurrent systems (514).

Even when considering restricted simple abstract properties, the semantics of
real-life programming languages is very complex (recursion, concurrency, modu
larity, etc.) whence so is the corresponding abstract interpreter. The abstraction
of this semantics hence the design of the analyzer is mostly manual (and beyond
the hability of casual programmers or theorem provers) whence costly. The con
sidered abstractions must have a large scope of application and must be easily
reusable to be of economic interest.

From a user point of view, the results of the analysis have to be presented in
a simple way (for example by pointing at errors only or by providing abstract
counter-examples, or less frequently concrete ones). Experience shows that the
cases of uncertainty represent 5 to 10 % of the possible cases. They must be
handle with other empirical or formal methods (including more refined abstract
interpretations).

3.3 Applications of Program Analysis

Among the numerous applications of program analysis, let us cite Data flow
analysis (226; 214; 503; 620; 631; 632; 624); program optimization (121; 120)
and transformation (69; 67; 518; 562) (including partial evaluation and program
specialization (445; 295; 307; 384; 443; 444; 570; 605; 489) and data dependence
analysis for the parallelisation of sequential languages (229; 361; 454; 458; 525;
615; 666; 678; 679)); set-based analysis (222; 6; 281; 388; 387; 389; 390); Type
inference (200; 210) (including undecidable systems (536; 538) and soft typing
(109; 302; 701)); Verification of reactive (433; 294; 354; 357), real-time (360) and
(linear) hybrid systems (359; 245; 395; 396; 580) including state space reduction
(223; 76); cryptographic protocol analysis(533); Abstract model-checking of infi
nite systems (224; 226; 257); Abstract debugging, testing and verification (193;
72; 74; 176; 174; 175; 173; 172; 225; 303; 577); Cache and pipeline behavior pre
diction (289; 9; 633); Probabilistic analysis (534; 108); Communication topology
analysis for mobile/distributed code (292; 167; 291; 370; 152; 614; 687; 688);
Automatic differentiation of numerical programs (665); Abstract simulation of
temporal specifications (107); Semantic tattooing/watermarking of software; etc.

Program static analysis has been intensively studied for grammars and poly
nomial systems (197; 532), term graph rewriting (339; 340; 130; 131), typesetting
languages (406; 405), procedural languages (70; 211; 71) (for alias analysis (689;
91; 250; 259; 260; 261; 362; 399; 407; 428; 516; 608; 686), pointer analysis (262;
267; 112; 310; 635; 622; 623), parameter boxing/unboxing (341), copy elimination
(634), dependence analysis (507; 606; 679), exception analysis (628), constant
propagation (468), (linear) equality or inequality relationskips analysis (227;

16

461; 272; 353) etc.), parallel procedural languages (230; 338; 127; 128; 132; 133;
168; 233; 660; 472), functional languages (for binding time analysis (685; 19;
90; 92; 243; 308; 391; 393; 422; 481; 456; 569; 587; 621; 654), strictness analysis
(101; 220; 550; 29; 37; 100; 97; 102; 98; 178; 244; 259; 279; 392; 409; 414; 419;
420; 434; 436; 439; 442; 451; 477; 478; 510; 511; 539; 549; 560; 566; 565; 574;
247; 642; 643; 642; 644; 653; 655; 697; 702), inverse image analysis (271; 270;
415; 412; 411; 413), projection analysis (99; 416; 417; 480; 482; 595; 645; 698),
comportment analysis (221; 557; 596; 597), dependency analysis (59), path/trace
analysis (169; 58; 57), closure analysis (588; 20; 21; 228; 531), control flow analy
sis (649; 251; 284; 429; 542; 578; 579; 590; 590; 618; 658; 669; 681), value flow
analysis (62; 410; 543; 650; 703), compile-time garbage collection (418), stacka
bility and escape analysis (55; 32; 368), data structures and abstract data type
analysis (494; 42; 435; 437; 438; 573; 646), heap shape analysis (447; 663; 327;
309), exception analysis (705; 704; 706), polymorphic function analysis (34; 5;
33; 177), kind/sort analysis (351; 122), typing (200; 179; 367; 378; 379; 474; 475;
526; 529; 535; 400; 537; 538; 536; 551; 552), effect systems (455; 668; 568; 423;
424; 674), termination analysis (592), time complexity analysis (612; 268; 627;
696), parallelization (677), etc.), functional parallel languages (234; 231; 232;
408; 499), data parallel languages (119), logic languages including Prolog (217;
248; 84) (for mode (521; 252; 253; 498; 519; 520; 522; 667; 425) and type analysis
(404; 36; 38; 430; 301) and their combination (83), finiteness analysis (52), rela
tional argument size analysis (637; 652), dependency analysis (548; 18; 17; 113;
114; 306), detecting determinate/functional computations (323), mutually exclu
sive rules detection (604), occur check reduction (656), WAM code optimization
(236), copy avoidance (305), groundness analysis (188; 157; 158; 186; 186; 116;
505; 613; 640), sharing analysis (183; 24; 25; 162; 164; 162; 164; 183; 397; 427;
709; 707), freeness analysis (156; 181; 398) and their combinations (165; 80; 81;
82; 349; 182; 187; 286; 246; 492; 547; 664), termination analysis (459; 27; 28;
78; 79; 77; 254; 255; 258; 638; 328; 490; 501; 544; 602; 616; 657; 693; 694; 691;
690), time complexity and cost analysis (249; 2), parallelisation (86; 87), etc.)
including its search rule and the cut (300; 117; 530) and database programming
languages (12; 13; 14; 43; 581; 675), concurrent logic languages (103; 126; 159;
161; 160; 651; 469; 470; 471; 680), functional logic languages (372; 45; 369; 374;
710; 375), constraint logic languages (54; 23; 68; 110; 166; 269; 313; 314; 371;
363; 373; 432; 453; 464; 115; 486; 506; 524), concurrent constraint logic languages
(708; 282), specification languages (326; 324; 325), synchronous languages (357;
46; 356; 437) (such as lustre (111; 358; 355)), concurrent/parallel languages
(216; 35; 233; 1), communicating and distributed languages (215; 523; 125; 283;
460) and more recently object-oriented languages (56; 8; 256; 352; 682; 488; 575;
589; 591; 154; 695).

Abstract interpretation has been used (including interval analysis) for the
static analysis of the embedded ADA software of the Ariane 5 launcher1 (479;
263). The static program analysis aims at the automatic detection of the defi

1 Flight software (60,000 lines of Ada code) and Inertial Measurement Unit (30,000
lines of Ada code).

17

niteness, potentiality, impossibility or inaccessibility of run-time errors such as
scalar and floating-point overflows, array index errors, divisions by zero and re
lated arithmetic exceptions, uninitialized variables, data races on shared data
structures, etc. The analyser was able to automatically discover the Ariane 501
flight error. This was a success for the later 502 and 503 flights and the ARD2

(479; 263) and in the verification of avionic software (609).

3.4 Industrialization of Static Analysis by Abstract Interpretation

The impressive results obtained by the static analysis of real-life embedded
critical software (479; 609) is quite promising for the industrialization of abstract
interpretation.

This is the explicit objective of AbsInt Angewandte Informatik GmbH cre
ated in Germany by R. Wilhelm and C. Ferdinand in 1998 commercializing the
program analyser generator PAG and an application to determine the worst-case
execution time for modern computer architectures with memory caches pipelines,
etc (290).

Polyspace Technologies was created in France by A. Deutsch and D.
Pilaud in 1999 to develop and commercialize ADA and C program analyzers.

Other companies like Connected Components Corporation created in
the U.S.A. by W.L. Harrison in 1993 use abstract interpretation internally e.g.
for compiler design (381).

4 Abstract Formal Methods

No automatic formal method can ultimately find all errors in a software sys
tem and so for their combinations. We will shortly review the automatic formal
methods for computer-aided program verification, briefly discussing their prin
ciples, advantages and shortcomings. Since program analysis has already been
discussed, we now consider typing, model-checking, deductive methods and their
combination.

4.1 Typing

Polymorphic typing and type inference (526; 238) was a definite step in the
design of programming languages and compilers (379; 380). The question for
the next decade seems to be to scale to more expressive properties.

Foundational Ideas of Typing Typing is based on decidable program analy
ses. This approach is always possible by restricting both on specifications (al
lowed types) and on programs, as shown when considering types as abstract
interpretations (200). In theory, type systems have a clean presentation of the
type analysis (inference algorithm (526)) through an equivalent logical formal
2 Atmospheric Reentry Demonstrator: module coming back to earth.

http://www.absint.com
http://www.absint.com
http://www.polyspace.com
http://www.polyspace.com
http://www.concmp.com/index.html
http://www.concmp.com/index.html

18

system (type verification (238). Monomorphic typing (400) was extended to poly
morphism (526), complex data structures, references (376; 377), exceptions and
separate modules (378) in a way that scales up for very large programs. It is
nicely integrated in the compiler and the certification can go down to the gener
ated code (proof-carrying code (559), certified compiler (670; 540)).

Shortcomings of Typing Type systems (e.g. with subtle subtyping) can be
very complex to understand for the casual user. One difficulty is that typing is
compositional but not fully abstract (e.g. the same polymorphic code can type
differently in different utilization contexts). The interaction with the user is often
crude (no hint is given to understand why wrong programs do not type well).
It is hardly possible for the user to provide hints to help the typing process.
The logical specification of the type system is often inexistent in the reference
manual, not equivalent to the type inference algorithm or so inextricable that it
is useless both to the programmer and compiler designer. The programs consid
ered in type theory are both complex (higher-order modules) and too restricted
(mainly functional languages). The most severe restrictions are on the consid
ered properties (arithmetic, out of range, null pointer dereferencing, … errors
are checked at run-time, all liveness properties are ignored). These restrictions
and the difficulty to generalize to more expressive properties mainly follow from
the encoding of types as terms/formulæ and from the one iterate fixpoint ap
proximation.

4.2 Deductive Methods

Foundational Ideas of Deductive Methods Deductive methods use a (man
ually designed abstraction of) the program semantics to obtain minimal verifica
tion conditions to prove program correctness. These verification conditions can
be derived from the program trace semantics by abstract interpretation (206).
Then a theorem prover (585; 584) or a proof assistant (598; 180) is used to check
the verification conditions.

Shortcomings of Deductive Methods Deductive methods use the schema of
Fig. 13(b) but for the fact that the solver is replaced by a verifier or checker thus
avoiding fixpoint computations. So the constraints or equations corresponding to
the verification conditions are not solved. This means that an inductive argument
(e.g. invariant, variant function) has to be provided, generally by the user. Since
the implication involved in the verification condition is itself undecidable, the
proof verification can only be partially automatized, even though the solution to
the equations/constraints is provided. Therefore interaction of the programmer
with the prover is ultimately needed. This (wo)man/prover interaction is hard
if not despairing, in particular because the size of the proof is often exponential
in the program size. Therefore debugging an unsuccessful proof (because of a
program error or a prover weakness) can be as complex as (if not much more
complex than) debugging the program itself.

19

An alternative (487) consists in restricting the form of predicates considered
by the prover, (which is an abstract interpretation (214, Sec. 5)). This can go
up to unsound verification condition simplifications, essentially to make verifier
simpler (e.g. modular arithmetic).

Because theorem provers are driven by unformalized heuristics, and these
heuristics and their interactions are changed over time for improving proof
strategies, theorem provers are often unstable over time (e.g. proof strategies
get changed so that old proofs no longer work). Another weakness which makes
interaction with other formal methods somewhat difficult is the uniform encod
ing of properties as syntactical terms/formulæ (so that e.g. BBDs are hardly
efficiently encodable). It follows that the theorem prover has ultimately to be
extented with program analysers, model checkers, typing, among others (648;
582; 583; 647), often without supporting theory, in particular for mechanizing
and combining abstractions.

4.3 Model Checking

Model checking (134; 607; 47; 136; 140; 546) has been very successful for the
verification of hardware (51; 124; 235; 600), communication protocoles (142; 64;
63; 144; 143; 148), cryptographic protocoles (48), and real-time (106; 75; 105;
386; 385; 394; 155; 699) or probabilistic (684; 383; 26) processes. As far as soft
ware systems are concerned, the question for the next decade is whether model
checking can be extended to the verification of very large real-life programs.

Foundational Ideas of Model Checking First a model of the program (i.e.
manually designed abstraction of the program semantics) must be designed (in
the form of a transition system similar to a small step operational semantics).
Then a specification of the program must be provided by the user in a very
expressive temporal logic (603; 39). A model checker can then check the specifi
cation by exhaustive search/symbolic exploration of the state space.

The spectacular success of model checking followed from the clever design of
data structures (e.g. BDDs (7; 85; 96; 191; 190; 517; 676) or QDDs (65)) and
algorithms (e.g. minimal state graph generation (66), fixpoint computation (497;
44; 48; 151; 145; 146; 237; 276; 659; 496) or SAT (49; 4; 50)) for representing
very large sets of booleans and their transformations.

The approximation is that the model must be finite-state or some form of
abstract interpretation must be used (137; 343; 3; 41; 661; 138; 141; 150; 170;
171; 240; 241; 239; 594; 242; 342; 266; 426; 465; ?; 462; 466; 467; 495; 500; 593)
to reduce the verification problem to finite state, including symmetries (135),
etc. Also clever semantics of concurrent systems have been considered, e.g. to
avoid the combinatorial explosion of interleaving (142; 139; 599; 662).

Another trend in infinite-state model checking consider safety properties only
and polyhedral abstractions, with variants (e.g. Presburger arithmetic (88; 89;
700)). This is a direct application of polyhedral program analysis (227; 353),
including the use of widenings. This allows e.g. for the analysis of reactive (294;

20

337), real-time (354; 104; 147; 149; 264; 265; 382; 394; 401) and hybrid systems
(357; 11; 89; 359; 360; 580).

Shortcomings of Model Checking Although model checking gained a factor
of 100 in 10 years, it is very difficult to scale up because of the state explosion
problem. So, the necessary restriction to available computer resources often re
duces the model checker from formal verification to debugging on part of the
state space. Since the model must ultimately be finite (to allow for exhaustive
search/symbolic exploration), abstraction is mandatory, which is a very difficult
task to do manually and/or is left informal. Moreover, some forms of abstrac
tions (such as interval (208; 192) or polyhedral (227; 353) abstractions) do not
abstract concrete transition systems into abstract transition systems so that
the model checker may not be reusable in the abstract (224; 205). One can use
abstraction for model checking which are complete in that there always exists
a program specific abstraction into a finite model to prove a given specification
correct (see (205) for safety properties) but none will be complete for all pro
grams, even for simple properties as considered in program analysis (219). It
follows that complete abstractions are difficult and not reusable hence not cost
effective.

5 Combining Program Verification Methods

Since no single formal method can ultimately solve the verification problem, a
current trend is to combine formal methods.

For example, one can rely on a user designed abstraction and derive a a
program finite abtract model by abstract interpretation, prove the correctness
of the abstraction by deductive methods and later verify the abstract model by
model-checking (626; 344; 619; 153; 502; 625).

A fundamental limitation (205) is that the abstraction discovery and the ab
stract semantics derivation are respectively logically equivalent hence practically
as difficult as invariant discovery and invariant verification in a formal proof. So
we have the feeling that combination of tools might simplify formal proofs but
still will ultimately not solve the program verification problem.

6 Combining Empirical and Formal Methods

Formal methods have made a lot of progress in the last decade. Nevertheless
there are few automatic light weight tools to apply them in practice. Integration
of such tools is difficult and cannot ultimately solve all verification problems.

It follows that the only mechanical tool for verifying programs, which defaults
and incompleteness are well known, is still debugging. There again progress was
slow, in particular because theory never took debugging seriously. The main
advantage of debugging is that a debugger is a light weight tool which is very
easily understood by all programmers. Because of its well-known incredible cost

21

for weak results, debugging may not scale up in the next decade for very large
software.

An alternative which still remains to be investigated is the combination of
informal methodslike debugging with verification tools. Let us consider for ex
ample abstract testing (225; 72; 74; 176; 174; 175; 173; 172; 193; 303; 577).

The classical debugging methodology consists in running the program on test
data, checking if the execution satisfies informal specifications. This process is
repeated by providing more tests until reaching a satisfactory coverage.

By an easily understandable analogy, the abstract testing methodology (225)
consists in computing the abstract semantics for a finitary or infinitary abstrac
tion chosen by the programmer among a predefined palette (not user defined,
which would be too difficult). The abstract semantics is then checked against
user-provided abstract assertions or the abstraction of a formal specification.
This process is repeated with more refined abstractions until enough assertions
are proved or no predefined abstraction can do.

Observe that one can prove the absence of (some categories of) bugs, not
only their presence. Moreoever abstract evaluation can range from an analogy
with program execution to the application of proof methods (using e.g. forward
as well as backward reasonings providing abstract counter-examples) without
attempting to make a one-shot complete formal proof of the specification.

7 Conclusions on the Past Decade

Full program verification by formal methods (e.g. model checking/deductive
methods), which requires user interaction (for discovering an abstraction or in
ductive argument) is very costly in human resources hence is not likely to scale
up for very large software. Abstraction is mandatory for program verification
but difficult, hardly automatizable and beyond the common capabilities of most
programmers.

Partial program verification by static analysis (with typing being considered
as a particular and successfull case) is cost-effective3 because no user interven
tion is mandatory for performing the analysis and universal abstractions are
reusable hence commercializable.

For large and complex programs, complete verification by formal methods is
not likely to be viable at low cost. Program debugging is still and will probably
remain for some time the prominent industrial program “verification” method.

In this context, abstract interpretation based program static analysis can
be extended to abstract program testing. Abstract interpretation based methods
offer powerful techniques which, in the presence of approximation, can be viable
alternatives or complements both to the exhaustive search of model-checking
and to the partial exploration methods of classical debugging.

3 e.g. less than 0.25$ per program line costing 50 to 80$.

22

8 Grand Challenge for the Next Decade

We believe that in the next decade the software industry will certainly have to
face its responsability imposed by a computer-dependent society. Consequently,
Software reliability

4 will be a grand challenge for computer science and
practice.

The grand challenge for formal methods, in particular abstract interpretation
based formal tools, is both the large scale industrialization and the intensifica
tion of the fundamental research effort.

General-purpose, expressive and cost-effective abstractions have to be devel
opped e.g. to handle floating point numbers, data dependences (e.g. for paral
lelization), liveness properties with fairness (to extend finite-state model-checking
to software), probabilistic properties, etc. Present-day tools will have to be en
hanced to handle higher-order compositional modular analyses and to new pro
gramming paradigms (such as threads, mobile/network programming, etc.), to
automatically combine and refine abstracts, to interact nicely with users and
other formal or informal methods.

The most challenging objective might be to integrate formal analysis by
abstract interpretation in the full software development process.

4 other suggestions were “trustworthiness” (C. Jones) and “robustness” (R. Leino).

References

[1] N. Kobayashi A. Igarashi. Type-based analysis of communication for con
current programming languages. In P. Van Hentenryck, editor, Proc.
4th Int. Symp. SAS ’97 , Paris, FR, 8–10 Sep. 1997, LNCS 1302, pages
187–201. Springer-Verlag, 1997.

[2] F. Benoy A. King, . Shen. Lower-bound time-complexity analysis of logic
programs. In J. Małuszyński, editor, Proc. Int. Symp. ILPS ’1997 , Port
Jefferson, Long Island, NY, US, pages 261–275. MIT Press, 13–16 Oct.
1997.

[3] P.A. Abdulla, A. Annichini, S. Bensalem, A. Bouajjani, P. Habermehl,
and L. Lakhnech. Verification of infinite-state systems by combining
abstraction and reachability analysis. In N. Halbwachs and D. Peled,
editors, Proc. 11th Int. Conf. CAV ’99 , Trento, IT, LNCS 1633, pages
146–159. Springer-Verlag, 6–10 Jul. 1999.

[4] P.A. Abdulla, P. Bjesse, and N. Eén. Symbolic reachability analysis based
on SAT-solvers. In S. Graf and M.I. Schwartzbach, editors, Proc. 6th
Int. Conf. TACAS ’2000 , Berlin, DE, 25 Mar. – 2 Apr. 2000, LNCS
1785, pages 411–425. Springer-Verlag, 2000.

[5] S. Abramsky and T.P. Jensen. A relational approach to strictness analysis
for higher-order polymorphic functions. In 18th POPL , pages 49–54,
Orlando, FL, 1991. ACM Press.

[6] A. Aiken. Introduction to set constraint-based program analysis. Sci. Com
put. Programming, Special Issue on SAS’96 , 35(1):79–111, September
1999.

[7] S.B. Akers. Binary decision diagrams. IEEE Trans. Computers , C-27(6),
1978.

[8] J. Aldrich, C. Chambers, E.M. Sirer, and S. Eggers. Static analyzes for
eliminating unnecessary synchronization from Java programs. In A.
Cortesi and G. Filé, editors, Proc. 6th Int. Symp. SAS ’99 , Venice, IT,
22–24 Sep. 1999, LNCS 1694, pages 18–38. Springer-Verlag, 1999.

[9] M. Alt, Ferdinand C. , F. Martin, and R. Wilhelm. Cache behavior predic
tion by abstract interpretation. In R. Cousot and D.A. Schmidt, editors,
Proc. 3rd Int. Symp. SAS ’96 , Aachen, DE, 24–26 Sep. 1996, LNCS
1145, pages 52–66. Springer-Verlag, 1996.

[10] M. Alt and F. Martin. Generation of efficient interprocedural analyzers
with PAG. In A. Mycroft, editor, Proc. 2nd Int. Symp. SAS ’95 , Glas
gow, UK, 25–27 Sep. 1995, LNCS 983, pages 33–50. Springer-Verlag,
1995.

[11] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid
systems. Theoret. Comput. Sci. B , 138:3–34, Jan. 1995.

24

[12] G. Amato, F. Giannotti, and G. Mainetto. Data sharing analysis for
a database programming language via abstract interpretation. In R.
Agrawal, S. Baker, and D.A. Bell, editors, Proc. 19th Int. Conf.
VLDB ’93 , Dublin, IE, pages 405–415. Morgan Kaufmann Pub. , 24–27
Aug. 1993.

[13] G. Amato, F. Giannotti, and G. Mainetto. Static analysis of transactions:
an experiment of abstract interpretation usage. In A. Heuer and M.H.
Scholl, editors, Proc. 5th Workshop FMLDO ’99 , Aigen, AT, 20–24 Sep.
1993, Informatik-Berichte des IfI 93/9, pages 19–29. Technische Univer
sität Clausthal, DE, 1993.

[14] G. Amato, F. Giannotti, and G. Mainetto. Conservative multigranularity
locking for an object-oriented persistent language via abstract inter
pretation. In S. Bergamaschi, C. Sartori, and P. Tiberio, editors, Atti
del Secondo Convegno Nazionale “Sistemi Evoluti per Basi di Dati”,
SEBD 94 , Rimini, IT, 6–8 June 1994, pages 329–349. Editrice Escula
pio Progetto Leonardo, via U. Terracini, 30, 40131 Bologna, IT, 6–8
June 1994.

[15] P.H. Andersen and Holst C.K. Termination analysis for offline partial eval
uation of a higher order functional language. In R. Cousot and D.A.
Schmidt, editors, Proc. 3rd Int. Symp. SAS ’96 , Aachen, DE, 24–26
Sep. 1996, LNCS 1145, pages 67–82. Springer-Verlag, 1996.

[16] K.R. Apt and G.D. Plotkin. Countable nondeterminism and random as
signment. J. ACM , 33(4):724–767, Oct. 1986.

[17] T. Armstrong, K. Marriott, P. Schachte, and H. Søndergaard. Two classes
of boolean functions for dependency analysis. Sci. Comput. Program
ming, 31(1):3–45, May 1998.

[18] T. Armstrong, K. Marriott, P.r Schachte, and H. Søndergaard. Boolean
functions for dependency analysis: Algebraic properties and efficient rep
resentation. In B. Le Charlier, editor, Proc. 1st Int. Symp. SAS ’94 , Na
mur, BE, 20–22 Sep. 1994, LNCS 864, pages 266–280. Springer-Verlag,
1994.

[19] K. Asai. Binding-time analysis for both static and dynamic expressions. In
A. Cortesi and G. Filé, editors, Proc. 6th Int. Symp. SAS ’99 , Venice,
IT, 22–24 Sep. 1999, LNCS 1694, pages 117–133. Springer-Verlag, 1999.

[20] J.M. Ashley. A practical and flexible analysis for higher-order languages.
In 23rd POPL , pages 184–194, St. Petersburg Beach, FL, 1996. ACM
Press.

[21] A.E. Ayers. Efficient closure analysis with reachability. In M. Billaud, P.
Castéran, M.-M. Corsini, K. Musumbu, and A. Rauzy, editors, Proc.
2nd Int. Work. WSA ’92, Bordeaux, FR. BIGRE , volume 81–82, pages
126–134. IRISA, Rennes, FR, 23–25 Sep. 1992.

[22] C. Bäckström and P. Jonsson. Planning with abstrac
tion hierarchies can be exponentially less efficient.
In Proc. 17th IJCAI ’95 , pages 1599–1604, 1995.
http://www.ida.liu.se//publications/cgi-bin/tr-fetch.pl?r-95-12+ps.

http://www.ida.liu.se//publications/cgi-bin/tr-fetch.pl?r-95-12+ps

25

[23] R. Bagnara, R. Giacobazzi, and G. Levi. Static analysis of CLP programs
over numeric domains. In M. Billaud, P. Castéran, M.-M. Corsini, K.
Musumbu, and A. Rauzy, editors, Proc. 2nd Int. Work. WSA ’92, Bor
deaux, FR. BIGRE, volume 81–82, pages 43–50. IRISA, Rennes, FR,
23–25 Sep. 1992.

[24] R. Bagnara, P.H. Hill, and E. Zaffanella. Set-sharing is redundant for
pair-sharing. In P. Van Hentenryck, editor, Proc. 4th Int. Symp.
SAS ’97 , Paris, FR, 8–10 Sep. 1997, LNCS 1302, pages 53–67.
Springer-Verlag, 1997.

[25] R. Bagnara and P. Schachte. Factorizing equivalent variable pairs in
ROBDD-based implementations of Pos. In A.M. Haeberer, editor, Proc.
7th Int. Conf. AMAST ’98 , Amazonia, BR, 4–8 Jan. 1999, LNCS 1548,
pages 471–485. Springer-Verlag, 1999.

[26] C. Baier, E.M. Clarke, V. Hartonas-Garmhausen, M.Z. Kwiatkowska, and
M. Ryan. Symbolic model checking for probabilistic processes. In P.
Degano, R. Gorrieri, and A. Marchetti-Spaccamela, editors, Proc. 24th
Int. Coll. ICALP ’97 , volume 1256 of Bologna, IT, 7–11 Jul. 1997,
LNCS , pages 430–440. Springer-Verlag, 7–11 Jul. 1997.

[27] J. Bailey, L. Crnogorac, K. Ramamohanarao, and H. Søndergaard. Ab
stract interpretation of active rules and its use in termination analysis.
In F.N. Afrati and P. Kolaitis, editors, Proc. 6th Int. Conf. ICDT ’97 ,
Delphi, GR, LNCS 1186, pages 188–202. Springer-Verlag, 8–10 Jan.
1997.

[28] J. Bailey and A. Poulovassilis. Abstract interpretation for termina
tion analysis in functional active databases. J. Int. Inf. Syst. ,
12(2–3):243–273, 1999.

[29] C.A. Baker-Finch. Relevant logic and strictness analysis. In M. Billaud,
P. Castéran, M.-M. Corsini, K. Musumbu, and A. Rauzy, editors, Proc.
2nd Int. Work. WSA ’92, Bordeaux, FR. BIGRE , volume 81–82, pages
221–228. IRISA, Rennes, FR, 23–25 Sep. 1992.

[30] V. Balasundaram and K. Kennedy. A technique for summarizing data
access and its use in parallelism enhancing transformations. In Proc.
ACM SIGPLAN ’89 Conf. PLDI. ACM SIGPLAN Not. 24(7) , pages
41–53, Portland, OR, US, 21–23 June 1989.

[31] D. Baldan, N. Civran, G. Filé , and F. Pulvirenti. A simple and general
method for integrating abstract interpretation in SICStus. In G. Na
dathur, editor, Proc. Int. Conf. PPDP ’99 , Paris, FR, 29 Sep. – 1 Oct.
1999, LNCS 1702, pages 207–223. Springer-Verlag, 1999.

[32] A. Banerjee and D.A. Schmidt. Stackability in the simply-typed
call-by-value lambda calculus. Sci. Comput. Programming, 31(1):47–73,
May 1998.

[33] G. Baraki. A note on abstract interpretation of polymorphic functions.
In J. Hughes, editor, Proc. 5th FPCA , LNCS 523, pages 367–378.
Springer-Verlag, Aug. 1991.

26

[34] G. Baraki and R.J.M. Hughes. Abstract interpretation of polymorphic
functions. In K. Davis and J. Hughes, editors, Functional Program
ming, Glasgow 1989 , Proc. 1989 Glasgow Workshop, Fraserburgh, UK.
Springer-Verlag and BCS, 31–40 Aug. 1989.

[35] R. Barbuti, N. De Francesco, A. Santone, and G. Vaglini. Abstract inter
pretation of trace semantics for concurrent calculi. Inf. Process. Lett. ,
70(2):69–78, Feb. 1999.

[36] R. Barbuti, R. Giacobazzi, and G. Levi. A bottom-up polymorphic
type inference in logic programming. Sci. Comput. Programming,
19(3):281–313, Dec. 1992.

[37] M. Beemster. Strictness optimization for graph reduction machines (why
it might not be strict). TOPLAS , 16(5):1449–1466, Sep. 1994.

[38] C. Beierle and G. Meyer. Using types as approximations for type check
ing Prolog programs. In A. Middeldorp and T. Sato, editors, 4th
FLOPS ’99 , Tsukuba, JP, 11–13 Nov. 1999, LNCS 1722, pages 251–266.
Springer-Verlag, 1999.

[39] M. Ben-Ari, Z. Manna, and A. Pnueli. The temporal logic of branching
time. Acta Informat. , 20:207–226, 1983.

[40] S. Bensalem, M. Bozga, J.-C. Fernandez, L. Ghirvu, and L. Lakhnech. A
transformational approach for generating non-linear invariants. In J.
Palsberg, editor, Proc. 7th Int. Symp. SAS ’2000 , Santa Barbara, CA,
US, LNCS 1824, pages 58–74. Springer-Verlag, 29 June – 1 Jul. 2000.

[41] S. Bensalem, Y. Lakhnech, and S. Owre. Computing abstractions of infi
nite state systems compositionally and automatically. In A.J. Hu and
M.Y. Vardi, editors, Proc. 10th Int. Conf. CAV ’98 , Vancouver, BC,
CA,LNCS 1427, pages 319–331. Springer-Verlag, 28 June – 2 Jul. 1998.

[42] P.N. Benton. Strictness properties of lazy algebric datatypes. In P. Cousot,
M. Falaschi, G. Filé , and A. Rauzy, editors, Proc. 3rd Int. Work.
WSA ’93 , Padova, IT, LNCS 724, pages 194–205. Springer-Verlag, Sep.
22–24, 1993.

[43] V. Benzaken and X. Schaefer. Ensuring efficiently the integrity of persis
tent object systems via abstract interpretation. In R.C.H. Connor and
S. Nettles, editors, Proc. 7th Workshop POS (1996) , Cape May, NJ,
US, pages 72–87. Morgan Kaufmann Pub. , 13–16 Oct. 1997.

[44] S. Berezin, S.V.A. Campos, and E.M. Clarke. Compositional reason
ing in model checking. In W.P. de Roever, H. Langmaack, and A.
Pnueli, editors, Compositionality: The Significant Difference, Int. Symp.
COMPOS ’97, Revised Lectures, Bad Malente, DE, LNCS 1536, pages
81–102. Springer-Verlag, 8–12 Sep. 1997 1998.

[45] D. Bert, R. Echahed, and K. Adi. Resolution of goals with the func
tional and logic programming language LPG: Impact of abstract
interpretation. In M. Wirsing and M. Nivat, editors, Proc. 5th
Int. Conf. AMAST ’96 , Munchen, DE, LNCS 1101, pages 629–632.
Springer-Verlag, 1–5 Jul. 1996.

27

[46] F. Besson, T. Jensen, and J.-P. Talpin. Polyhedral analysis for synchro
nous languages. In A. Cortesi and G. Filé, editors, Proc. 6th Int.
Symp. SAS ’99 , Venice, IT, 22–24 Sep. 1999, LNCS 1694, pages 51–68.
Springer-Verlag, 1999.

[47] G. Bhat, R. Cleaveland, and O. Grumberg. Efficient on-the-fly model
checking for CTL�. In Proc. 10th LICS ’95 , San Diego, CA, US, pages
388–397. IEEE Comp. Soc. Press, 26–29 June 1995.

[48] A. Biere. µcke - efficient µ-calculus model checking. In O. Grumberg, edi
tor, Proc. 9th Int. Conf. CAV ’97 , Haifa, IL,LNCS 1254, pages 468–471.
Springer-Verlag, 22–25 Jul. 1997.

[49] A. Biere, A. Cimatti, E.M. Clarke, M. Fujita, and Y. Zhu. Symbolic model
checking using SAT procedures instead of BDDs. In Proc. 36th Conf.
DAC ’99 , New Orleans, LA, US, pages 317–320. ACM Press, 21–25
June 1999.

[50] A. Biere, A. Cimatti, E.M. Clarke, and Y. Zhu. Symbolic model check
ing without BDDs. In W.R. Cleaveland, editor, Proc. 5th Int. Conf.
TACAS ’99 , Amsterdam, NL, 22-25 Mar. 1999, LNCS 1579, pages
193–207. Springer-Verlag, 1999.

[51] A. Biere, E.M. Clarke, R. Raimi, and Y. Zhu. Properties of a power PC mi
croprocessor using symbolic model checking without BDDs. In N. Halb
wachs and D. Peled, editors, Proc. 11th Int. Conf. CAV ’99 , Trento,
IT, LNCS 1633, pages 60–71. Springer-Verlag, 6–10 Jul. 1999.

[52] P.A. Bigot, S.K. Debray, and K. Marriott. Understanding finiteness analy
sis using abstract interpretation. In K.R. Apt, editor, Proc. JICSLP ’92 ,
Washington, DC, US, pages 735–749. MIT Press, Nov. 1992.

[53] G. Birkhoff. Lattice Theory , volume 25 of Colloquium publications. AMS,
3rd edition, 1973.

[54] S. Bistarelli, P. Codognet, and F. Rossi. An abstraction framework for soft
constraints and its relationship with constraint propagation. In B.Y.
Choueiry and T. Walsh, editors, Proc. 4th Int. Symp. SARA ’2000 ,
Horseshoe Bay, TX, US, LNAI 1864, pages 71–86. Springer-Verlag,
26–29 Jul. 2000.

[55] B. Blanchet. Escape analysis: Correctness proof, implementation and ex
perimental results. In 25th POPL , pages 25–37, San Diego, CA, US,
19–21 Jan. 1998. ACM Press.

[56] B. Blanchet. Escape analysis for object-oriented languages: Application to
java. In Proc. ACM SIGPLAN Conf. OOPSLA ’99. ACM SIGPLAN
Not. 34(10) , pages 20–34, Denver, CO, US, 1–5 Nov. 1999.

[57] A. Bloss. Path analysis and the optimization of nonstrict functional lan
guages. TOPLAS , 16(3):328–369, 1994.

[58] A. Bloss and P. Hudak. Path semantics. In M. Main, A. Melton, M.
Mislove, and D. Schmidt, editors, Proc. 3rd workshop on Mathematical
Foundations of Programming Languages Semantics, LNCS 298, pages
476–489. Springer-Verlag, Apr. 1986.

28

[59] M. Blume. Dependency analysis for Standard ML. TOPLAS ,
21(4):790–812, Jul. 1999.

[60] C. Bodei, P. Degano, and C. Priami. Constructing specific SOS semantics
for concurrency via abstract interpretation. In G. Levi, editor, Proc.
5th Int. Symp. SAS ’98 , Pisa, IT, 14–16 Sep. 1998, LNCS 1503, pages
168–183. Springer-Verlag, 1998.

[61] C. Bodei and C. Priami. True concurrency via abstract interpretation. In
P. Van Hentenryck, editor, Proc. 4th Int. Symp. SAS ’97 , Paris, FR,
8–10 Sep. 1997, LNCS 1302, pages 202–216. Springer-Verlag, 1997.

[62] R. Bodík and S. Anik. Path-sensitive value-flow analysis. In 25th POPL ,
pages 237–251, San Diego, CA, US, 19–21 Jan. 1998. ACM Press.

[63] B. Boigelot and P. Godefroid. Model checking in practice: An analy
sis of the ACCESS.bus protocol using SPIN. In M.C. Gaudel and J.
Woodcock, editors, Industrial Benefit and Advances in Formal Meth
ods, 3rd Int. Symp. of Formal Methods Europe, FME ’96: Industrial
Benefit of Formal Methods, Oxford, UK, LNCS 1051, pages 465–478.
Springer-Verlag, 18–22 Mar. 1996.

[64] B. Boigelot and P. Godefroid. Symbolic verification of communication pro
tocols with infinite state spaces using QDDs (extended abstract). In R.
Alur and T.A. Henzinger, editors, Proc. 8th Int. Conf. CAV ’96 , New
Brunswick, NJ, US, LNCS 1102, pages 1–12. Springer-Verlag, 31 Jul.
–3 Aug. 1996.

[65] B. Boigelot, P. Godefroid, B. Willems, and P. Wolper. The power of
QDDs (extended abstract). In P. Van Hentenryck, editor, Proc. 4th Int.
Symp. SAS ’97 , Paris, FR, 8–10 Sep. 1997, LNCS 1302, pages 172–186.
Springer-Verlag, 1997.

[66] A. Bouajjani, J.-C. Fernandez, N. Halbwachs, P. Raymond, and C.
Ratel. Minimal state graph generation. Sci. Comput. Programming,
18:247–269, 1992.

[67] D. Boulanger and M. Bruynooghe. Deriving fold/unfold transformations
of logic programs using extended OLDT-based abstract interpretation.
J. Symbolic Comput. , 15(5 & 6):495–521, 1993.

[68] D. Boulanger, M. Bruynooghe, and D. De Schreye. Compiling control re
visited: A new approach based upon abstract interpretation for con
straint logic programs. In M. Ducassé , B. Le Charlier, Y.-J. Lin, and
L.Ü. Yalçinalp, editors, Proc. 5th Workshop LPE 1993 , Vancouver, BC,
CA, pages 39–51. IRISA, Campus de Beaulieu, F-35042 Rennes Cedex,
FR, 29–30 Oct. 1993.

[69] D.Y. Boulanger. Deep logic program transformation using abstract inter
pretation. In A. Voronkov, editor, Proc. 1st & 2nd Russian Conf. on
Logic Programming, Irkutsk, RU, 14–18 Sep. 1990 & St. Petersburg,
RU, 11–16 Sep. 1991 LNCS 592, pages 79–101. Springer-Verlag, 1992.

[70] F. Bourdoncle. Interprocedural abstract interpretation of block structured
languages with nested procedures, aliasing and recursivity. In P. De
ransart and J. Małuszyński, editors, Proc. Int. Work. PLILP ’90 ,

29

Linköping, SE, LNCS 456, pages 307–323. Springer-Verlag, 20–22 Aug.
1990.

[71] F. Bourdoncle. Abstract interpretation by dynamic partitioning. J. Func.
Prog. , 2(4):407–435, 1992.

[72] F. Bourdoncle. Abstract debugging of higher-order imperative languages.
In Proc. ACM SIGPLAN ’93 Conf. PLDI. ACM SIGPLAN Not. 28(6) ,
pages 46–55, Albuquerque, NM, US, 23–25 June 1993. ACM Press.

[73] F. Bourdoncle. Efficient chaotic iteration strategies with widenings. In D.
Bjørner, M. Broy, and I.V. Pottosin, editors, Proc. FMPA , Akadem
gorodok, Novosibirsk, RU, LNCS 735, pages 128–141. Springer-Verlag,
28 June –2 Jul. 1993.

[74] F. Bourdoncle. Assertion-based debugging of imperative programs by ab
stract interpretation. In I. Sommerville and M. Paul, editors, Proc. 4th
ESEC ’93 , Garmisch-Partenkirchen, DE, 13–17 Sep. 1993, LNCS 717,
pages 501–516. Springer-Verlag, 1999.

[75] M. Bozga, C. Daws, O. Maler, A. Olivero, and S. Tripakis. Kronos: A
model-checking tool for real-time systems. In A.J. Hu and M.Y. Vardi,
editors, Proc. 10th Int. Conf. CAV ’98 , Vancouver, BC, CA,LNCS 1427,
pages 546–550. Springer-Verlag, 28 June – 2 Jul. 1998.

[76] M. Bozga, J.C. Fernandez, and L. Ghirvu. State space reduction based
on live variables analysis. In A. Cortesi and G. Filé, editors, Proc. 6th
Int. Symp. SAS ’99 , Venice, IT, 22–24 Sep. 1999, LNCS 1694, pages
164–178. Springer-Verlag, 1999.

[77] J. Brauburger. Automatic termination analysis for partial functions us
ing polynomial orderings. In P. Van Hentenryck, editor, Proc. 4th Int.
Symp. SAS ’97 , Paris, FR, 8–10 Sep. 1997, LNCS 1302, pages 330–344.
Springer-Verlag, 1997.

[78] J. Brauburger and J. Giesl. Termination analysis for partial func
tions. In R. Cousot and D.A. Schmidt, editors, Proc. 3rd Int. Symp.
SAS ’96 , Aachen, DE, 24–26 Sep. 1996, LNCS 1145, pages 113–127.
Springer-Verlag, 1996.

[79] J. Brauburger and J. Giesl. Approximating the domains of functional
and imperative programs. Sci. Comput. Programming, Special Issue on
SAS’96 , 35(1):113–136, September 1999.

[80] M. Bruynooghe and M. Codish. Freeness, sharing, linearity and correctness
— all at once. In P. Cousot, M. Falaschi, G. Filé , and A. Rauzy, editors,
Proc. 3rd Int. Work. WSA ’93 , Padova, IT, LNCS 724, pages 153–164.
Springer-Verlag, 22–24 Sep. 1993.

[81] M. Bruynooghe, M. Codish, and A. Mulkers. Abstract unification for a
composite domain deriving sharing and freeness properties of program
variables. In ICLP ’94 post-Conf. Workshop on the verification and
analysis of logic programs, pages 213–230, Santa Margherita Ligure,
IT, June 1994.

[82] M. Bruynooghe, B. Demoen, D. Boulanger, M. Denecker, and A. Mulk
ers. A freeness and sharing analysis of logic programs based on a

30

pre-interpretation. In R. Cousot and D.A. Schmidt, editors, Proc. 3rd
Int. Symp. SAS ’96 , Aachen, DE, 24–26 Sep. 1996, LNCS 1145, pages
128–142. Springer-Verlag, 1996.

[83] M. Bruynooghe and G. Janssens. An instance of abstract interpretation
integrating type and mode inferencing (extended abstract). In R. Kowal
ski and K. Bowen, editors, Proc. 5th Int. Conf. & Symp. on Logic
Programming, Volume 1 , Seattle, WA, US, pages 669–683. MIT Press,
15–19 Aug. 1988.

[84] M. Bruynooghe, G. Janssens, A. Callebaut, and B. Demoen. Abstract
interpretation: towards the global optimization of Prolog programs. In
Proc. 1987 Int. Symp. on Logic Programming , San Francisco, CA, pages
192–204. IEEE Comp. Soc. Press, 31 Aug. – 4 Sep. 1987.

[85] R.E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Trans. Computers , C-35(8), 1986.

[86] F. Bueno, M.J. García de la Banda, and M.V. Hermenegildo. Effectiveness
of abstract interpretation in automatic parallelization: A case study in
logic programming. TOPLAS , 21(2):189–239, Mar. 1999.

[87] F. Bueno, M.J. García de la Banda, and M.V. Hermenegildo. Effectiveness
of global analysis in strict independence-based automatic paralleliza
tion. In M. Bruynooghe, editor, Proc. Int. Symp. ILPS ’1994 , Ithaca,
NY, US, pages 320–336. MIT Press, 13–17 Nov. 1994.

[88] T. Bultan, R. Gerber, and W. Pugh. Symbolic model checking of infi
nite state systems using presburger arithmetic. In O. Grumberg, editor,
Proc. 9th Int. Conf. CAV ’97 , Haifa, IL,LNCS 1254, pages 400–411.
Springer-Verlag, 22–25 Jul. 1997.

[89] T. Bultan, R. Gerber, and W. Pugh. Model checking concurrent systems
with unbounded variables, symbolic representations, approximations
and experimental results. TOPLAS , 21(4):747–789, Jul. 1999.

[90] M.A. Bulyonkov. Extracting polyvariant binding time analysis from poly
variant specializer. In Proc. PEPM ’93 , Copenhagen, DK, 14–16 June
1993, pages 59–65. ACM Press, 1993.

[91] M.A. Bulyonkov and D.V. Kochetov. Grammar approach to alias analysis.
Programming , 3:36–46, 1996.

[92] M.A. Bulyonkov and V.Ja. Kurlyandchik. Polyvariant binding time analy
sis for high-order programs. In Tools and methgods for program develop
ment, pages 29–41. Institute of Informatics Systems, Novosibirsk, RU,
1995. In russian.

[93] A. Bundy, F. Giunchiglia, R. Sebastiani, and T. Walsh. Cal
culating criticalities. Art. Int. , 88(1–2):39–67, Dec. 1996.
ftp://ftp.mrg.dist.unige.it/pub/mrg-ftp/9607-07.ps.gz.

[94] A. Bundy, F. Giunchiglia, R. Sebastiani, and T. Walsh. Com
puting abstraction hierarchies by numerical simulation. In
Proc. 30th Nat. Conf. AAAI ’96 , pages 523–529, Port
land, OR, US, 4–8 Aug. 1996. AAAI Press / MIT Press.

ftp://ftp.mrg.dist.unige.it/pub/mrg-ftp/9607-07.ps.gz

31

ftp://ftp.mrg.dist.unige.it/pub/mrg-ftp/9604-01.ps.gz,
http://aaai.org/Press/Proceedings/AAAI/1996/aaai96-contents.html.

[95] A. Bundy, F. Giunchiglia, A. Villafiorita, and T. Walsh. Ab
stract proof checking: An example motivated by an incom
pleteness theorem. J. Autom. Reason. , 19(3):319–346, Dec. 1997.
ftp://ftp.mrg.dist.unige.it/pub/mrg-ftp/9302-15.ps.gz.

[96] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Sym
bolic model checking: 1020 states and beyond. Inform. and Comput. ,
98(2):142–170, June 1992.

[97] G. Burn. The abstract interpretation of functional languages. In G. Burn,
S. Gay, and M. Ryan, editors, Theory and Formal Methods 1993 , Work
shops in Comp. 724, pages 3–14. Springer-Verlag, Isle of Thorns Conf.
Center, Chelwood Gate, Sussex, UK, 29–31 Mar. 1993.

[98] G. Burn and D. Le Métayer. Proving the correctness of compiler optimiza
tions based on strictness analysis. In M. Bruynooghe and J. Penjam,
editors, Proc. 5th Int. Symp. PLILP ’93 , Tallinn, EE, 25–27, Aug. 1993,
LNCS 714, pages 346–364. Springer-Verlag, 1993.

[99] G.L. Burn. A relationship between abstract interpretation and projection
analysis (extended abstract). In 17th POPL , pages 151–156, San Fran
cisco, CA, 1990. ACM Press.

[100] G.L. Burn. Lazy Functional Languages: Abstract Interpretation and Com
pilation. Research Monographs in Parallel and Distributed Computing.
Pitman and MIT Press, 1991.

[101] G.L. Burn, C.L. Hankin, and S. Abramsky. Strictness analysis of
higher-order functions. Sci. Comput. Programming, 7:249–278, Nov.
1986.

[102] G.L. Burn, C.L. Hankin, and S. Abramsky. The theory of strictness analy
sis for higher-order functions. In H. Ganzinger and N.D. Jones, editors,
Programs as Data Objects, Proceedings of a Workshop, Copenhagen,
DK, 17–19 Oct. 1985, LNCS 217, pages 42–62. Springer-Verlag, 1986.

[103] M.-M. Corsini C. Codognet, P. Codognet. Abstract interpretation for con
current logic languages. In S.K. Debray and M.V. Hermenegildo, edi
tors, NACLP 1997 , Austin, TX, US, pages 215–232. MIT Press, 29 Oct.
– 1 Nov. 1990.

[104] S.V.A. Campos and E.M. Clarke. Analysis and verification of real-time
systems using quantitative symbolic algorithms. STTT , 2(3):260–269,
1999.

[105] S.V.A. Campos, E.M. Clarke, W. Marrero, and M. Minea. Verus: A
tool for quantitative analysis of finite-state real-time systems. In Proc.
ACM SIGPLAN 1995 Workshop on Languages, Compilers & Tools for
Real-Time Systems, pages 75–83, La Jolla, CA, 21–22 June 1995.

[106] S.V.A. Campos, E.M. Clarke, and M. Minea. The Verus tool: A quanti
tative approach to the formal verification of real-time systems. In O.
Grumberg, editor, Proc. 9th Int. Conf. CAV ’97 , Haifa, IL,LNCS 1254,
pages 452–455. Springer-Verlag, 22–25 Jul. 1997.

ftp://ftp.mrg.dist.unige.it/pub/mrg-ftp/9604-01.ps.gz
http://aaai.org/Press/Proceedings/AAAI/1996/aaai96-contents.html
ftp://ftp.mrg.dist.unige.it/pub/mrg-ftp/9302-15.ps.gz

32

[107] D. Cansell and D. Méry. Abstract animator for temporal specifications: Ap
plication to TLA. In A. Cortesi and G. Filé, editors, Proc. 6th Int. Symp.
SAS ’99 , Venice, IT, 22–24 Sep. 1999, LNCS 1694, pages 284–299.
Springer-Verlag, 1999.

[108] C. Carreras and M.V. Hermenegildo. Grid-based histogram arithmetic for
the probabilistic analysis of functions. In B.Y. Choueiry and T. Walsh,
editors, Proc. 4th Int. Symp. SARA ’2000 , Horseshoe Bay, TX, US,
LNAI 1864, pages 107–123. Springer-Verlag, 26–29 Jul. 2000.

[109] R. Cartwright and M. Felleisen. Program verification through soft typing.
ACM Comput. Surv. , 28:349–351, June 1996.

[110] Y. Caseau. Abstract interpretation of constraints on order-sorted domains.
In K. Ueda V.A. Saraswat, editor, Proc. 1991 Int. Symp. ISLP ’91 , San
Diego, CA, US, pages 435–452. MIT Press, 28 Oct. – 1 Nov. 1997.

[111] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice. Lustre: a declara
tive language for programming synchronous systems. In 14th POPL ,
Munchen, DE, 1987. ACM Press.

[112] H. Casse, L. Feraud, C. Rochange, and P. Sinrat. Using abstract interpre
tation techniques for static pointer analysis. In The Third Workshop on
Interaction Between Compilers and Computer Architectures, San Jose,
CA, October 7, 1998.

[113] J. Chang and A.M. Despain. Semi-intelligent backtracking of Prolog based
on static data dependency analysis. In Proc. 1985 Int. Symp. on Logic
Programming , Boston, MA, pages 10–21. IEEE Comp. Soc. Press, Jul.
1985.

[114] J. Chang, A.M. Despain, and D. DeGroot. AND-parallelism of logic pro
grams based on a static data dependency analysis. In Digest of Papers,
COMPCON 85 , pages 218–225. IEEE Comp. Soc. Press, Feb. 1985.

[115] B. Le Charlier. Abstract interpretation and finite domain symbolic con
straints. In A. Podelski, editor, Constraint Programming: Basics and
Trends, Selected Papers, Châtillon Spring School, Châtillon-sur-Seine,
FR, 16–20 May 1994, LNCS 910, pages 147–170. Springer-Verlag, 1994.

[116] B. Le Charlier and P. Van Hentenryck. Groundness analysis for Prolog: Im
plementation and evaluation of the domain Prop. In Proc. PEPM ’93 ,
Copenhagen, DK, 14–16 June 1993, pages 99–110. ACM Press, 1993.

[117] B. Le Charlier, S. Rossi, and P. van Hentenryck. An abstract interpretation
framework which accurately handles Prolog search-rule and the cut. In
M. Bruynooghe, editor, Proc. Int. Symp. ILPS ’1994 , Ithaca, NY, US,
pages 157–171. MIT Press, 13–17 Nov. 1994.

[118] B. Le Charlier and P. van Hentenryck. On the design of generic abstract
interpretation frameworks. In M. Billaud, P. Castéran, M.-M. Corsini,
K. Musumbu, and A. Rauzy, editors, Proc. 2nd Int. Work. WSA ’92,
Bordeaux, FR. BIGRE , volume 81–82, pages 229–246. IRISA, Rennes,
FR, 23–25 Sep. 1992.

[119] S. Chatterjee, B.E. Blelloch, and A.L. Fisher. Size and access inference
for data-parallel programs. In Proc. ACM SIGPLAN ’91 Conf. PLDI.

33

ACM SIGPLAN Not. 26(6) , pages 130–144, Toronto, Ontario, CA,
26–28 June 1991.

[120] T. Cheatham, H. Gao, and D. Stefanescu. A suite of analysis tools based
on a general purpose abstract interpretor. In P.A. Fritzson, editor,
Proc. 5th Int. Conf. CC ’94 , Edinburg, UK, LNCS 786, pages 188–202.
Springer-Verlag, Apr. 1994.

[121] T. Cheatham and D.C. Stefanescu. A suite of optimizers based on ab
stract interpretation. In Proc. PEPM ’92 , San Francisco, CA, US, pages
75–81. Yale University, Tech. rep. TR YALEU/DCS/RR-90, 19–20 June
1995.

[122] J. Chen and J. Staples. Defining soft sortedness by abstract interpreta
tion. In A.M. Borzyszkowski and S. Sokolowski, editors, Proc. 18th Int.
Symp. MFCS ’93 , Gdansk, PL, 30 Aug. – 3 Sep. 1993, LNCS 711, pages
362–371. Springer-Verlag, 20–22 Aug. 1990.

[123] Li-Ling Chen, W.L. Harrison III, and Kwangkeun Yi. Efficient compu
tation of fixpoints that arise in complex program analysis. Journal of
Programming Languages, 3(1):31–68, 1995.

[124] Y-A. Chen, E.M. Clarke, P.H. Ho, Y. Hoskote, T. Kam, M. Khaira, J.
O’Leary, and X. Zhao. Verification of all circuits in a floating-point unit
using word-level model checking. In M.S. Srivas and A.J. Camilleri,
editors, Proc. 1st Int. Conf. on Formal Methods in Computer-Aided
Design, FMCAD ’96 , number 1166 in LNCS, pages 19–33, Palo Alto,
CA, US, 6–8 Nov. 1996. Springer-Verlag.

[125] S.-C. Cheung and J. Kramer. Tractable flow analysis for anomaly detection
in distributed programs. In I. Sommerville and M. Paul, editors, Proc.
4th ESEC ’93 , Garmisch-Partenkirchen, DE, 13–17 Sep. 1993, LNCS
717, pages 283–300. Springer-Verlag, 1999.

[126] K. Cho and . Ueda. Diagnosing non-well-moded concurrent logic programs.
In M.J. Maher, editor, Proc. JICSLP ’96 , Bonn, DE, pages 215–229.
MIT Press, 2–6 Sep. 1996.

[127] J.-H. Chow and W.L. iii Harrison. Compile-time analysis of parallel pro
grams that share memory. In 19th POPL , pages 130–141, Albuquerque,
NM, 1992. ACM Press.

[128] J.-H. Chow and W.L. iii Harrison. State space reduction in abstract in
terpretation of parallel programs. In Proc. 1994 ICCL , Toulouse, FR,
pages 277–288. IEEE Comp. Soc. Press, 16–19 May 1994.

[129] T.-R. Chuang and B. Goldberg. A syntactic approach to fixed point com
putation on finite domains. LISP Pointers, 5(1):109–118, Jan. – Mar.
1992.

[130] D. Clark and C. Hankin. A lattice of abstract graphs. In M. Bruynooghe
and J. Penjam, editors, Proc. 5th Int. Symp. PLILP ’93 , Tallinn, EE,
25–27, Aug. 1993, LNCS 714, pages 318–331. Springer-Verlag, 1993.

[131] D. Clark, C. Hankin, and S. Hunt. Safety of strictness analysis via term
graph rewriting. In J. Palsberg, editor, Proc. 7th Int. Symp. SAS ’2000 ,

34

Santa Barbara, CA, US, LNCS 1824, pages 95–114. Springer-Verlag, 29
June – 1 Jul. 2000.

[132] E.M. Clarke. Synthesis of resource invariants for concurrent programs. In
6th POPL , pages 211–221. ACM Press, Jan. 1979.

[133] E.M. Clarke. Synthesis of resource invariants for concurrent programs.
TOPLAS , 2(3):338–358, 1980.

[134] E.M. Clarke and E.A. Emerson. Synthesis of synchronization skeletons
for branching time temporal logic. In IBM Workshop on Logics of Pro
grams, Yorktown Heights, NY, US, LNCS 131. Springer-Verlag, May
1981.

[135] E.M. Clarke, E.A. Emerson, S. Jha, and A.P. Sistla. Symmetry reduc
tions in model checking. In A.J. Hu and M.Y. Vardi, editors, Proc. 10th
Int. Conf. CAV ’98 , Vancouver, BC, CA,LNCS 1427, pages 147–158.
Springer-Verlag, 28 June – 2 Jul. 1998.

[136] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of
finite state concurrent systems using temporal logic specifications: A
practical approach. In 10th POPL , pages 117–126. ACM Press, Jan.
1983.

[137] E.M. Clarke, O. Grumberg, and D.E. Long. Model checking and abstrac
tion. In 19th POPL , pages 343–354, Albuquerque, NM, 1992. ACM
Press.

[138] E.M. Clarke, O. Grumberg, and D.E. Long. Verification tools for fi
nite-state concurrent systems. In J.W. de Bakker, W.-P. de Roever,
and G. Rozenberg, editors, Decade of concurrency–Reflections and Per
spectives, LNCS 803. Springer-Verlag, 1994.

[139] E.M. Clarke, O. Grumberg, M. Minea, and D. Peled. State space reduction
using partial order techniques. STTT , 2(3):279–287, 1999.

[140] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT Press,
1999.

[141] E.M. Clarke, S. Jha, Y. Lu, and D. Wang. Abstract BDDs: A technique
for using abstraction in model checking. In L. Pierre and T. Kropf,
editors, Correct Hardware Design and Verification Methods, Proc. 10th
IFIP WG 10.5 Adv. Res. Work. Conf. CHARME ’99 , Bad Herrenalp,
DE, LNCS 1703, pages 172–186. Springer-Verlag, 27–29 Sep. 1999.

[142] E.M. Clarke, S. Jha, and W.R. Marrero. Partial order reductions for se
curity protocol verification. In S. Graf and M.I. Schwartzbach, editors,
Proc. 6th Int. Conf. TACAS ’2000 , Berlin, DE, 25 Mar. – 2 Apr. 2000,
LNCS 1785, pages 503–518. Springer-Verlag, 2000.

[143] R. Cleaveland. The Concurrency Factory: A development environment for
concurrent systems. In R. Alur and T. Henzinger, editors, Proc. 8th
Int. Conf. CAV ’96 , New Brunswick, NJ, LNCS 1102, pages 398–401.
Springer-Verlag, Jul. 1996.

[144] R. Cleaveland. The Concurrency Factory software development environ
ment. In T. Margaria and B. Steffen, editors, Proc. 2nd Int. Conf.

35

TACAS ’96 , number 1055 in LNCS, pages 391–395. Springer-Verlag,
Passau, DE, Mar. 1996.

[145] R. Cleaveland. Efficient local model checking for fragments of the modal
µ-calculus. In T. Margaria and B. Steffen, editors, Proc. 2nd Int. Conf.
TACAS ’96 , number 1055 in LNCS, pages 107–126. Springer-Verlag,
Passau, DE, Mar. 1996.

[146] R. Cleaveland. Efficient model checking via the equational µ-calculus.
In Proc. 11th LICS ’96 , pages 304–312. IEEE Comp. Soc. Press, New
Brunswick, NJ, Jul. 1996.

[147] R. Cleaveland. Formal timing analysis for fault-tolerant active structural
control systems. In Proc. 1st Workshop on Formal Methods in System
Practice , San Diego, CA, Jan. 1996. A SCP journal version subsumes
this paper.

[148] R. Cleaveland. The NCSU concurrency workbench. In R. Alur and T.
Henzinger, editors, Proc. 8th Int. Conf. CAV ’96 , New Brunswick, NJ,
LNCS 1102, pages 394–397. Springer-Verlag, Jul. 1996.

[149] R. Cleaveland. Modeling and verifying active structural control systems.
SCICP , 29(1–2):99–122, Jul. 1997.

[150] R. Cleaveland, P. Iyer, and D. Yankelevitch. Optimality in abstrac
tions of model checking. In A. Mycroft, editor, Proc. 2nd Int. Symp.
SAS ’95 , Glasgow, UK, 25–27 Sep. 1995, LNCS 983, pages 51–63.
Springer-Verlag, 1995.

[151] R. Cleaveland and B. Steffen. A linear-time model-checking algorithm for
the alternation-free modal Mu-calculus. In K.G. Larsen and A. Skou,
editors, Proc. 3rd Int. Work. CAV ’91 , Aalborg, DK, LNCS 575, pages
48–58. Springer-Verlag, 1–4 Jul. 1991, 1992.

[152] W.R. Cleaveland, editor. Finite State Verification for the Asynchronous
π-Calculus , Amsterdam, NL, LNCS 1579. Springer-Verlag, 22–28 Mar.
1999.

[153] W.R. Cleaveland, editor. On Proving Safety Properties by Integrating Sta
tic Analysis, Theorem Proving and Abstraction, Amsterdam, NL, LNCS
1579. Springer-Verlag, 22–28 Mar. 1999.

[154] W.R. Cleaveland, editor. Proving the Soundness of a Java Bytecode
Verifier Specification in Isabelle/HOL , Amsterdam, NL, LNCS 1579.
Springer-Verlag, 22–28 Mar. 1999.

[155] W.R. Cleaveland, editor. Timed Diagnostics for Reachability Properties ,
Amsterdam, NL, LNCS 1579. Springer-Verlag, 22–28 Mar. 1999.

[156] M. Codish, D. Dams, G. Filè , and M. Bruynooghe. Freeness analysis for
logic programs – and correctness? In D.S. Warren, editor, Proc. 10th
ICLP ’93 , Budapest, HU, pages 116–131. MITpress, 21–25 June 1993.

[157] M. Codish, D. Dams, and E. Yardeni. Abstract unification for the analysis
of groundness and aliasing in logic programs. Tech. rep. TR-CS90–10,
Weizmann Institute of Science, Department of applied mathematics and
computer science, Aug. 1990.

36

[158] M. Codish, D. Dams, and E. Yardeni. Derivation and safety of an ab
stract unification algorithm for groundness and aliasing analysis. In K.
Furukawa, editor, Proc. 8th ICLP ’91 , Paris, FR, pages 79–93. MIT
Press, 24–28 June 1991.

[159] M. Codish, M. Falaschi, and K. Marriott. Suspension analysis of concur
rent logic programs. In K. Furukawa, editor, Proc. 8th ICLP ’91 , Paris,
FR, pages 331–345. MIT Press, 24–28 June 1991.

[160] M. Codish, M. Falaschi, and K. Marriott. Suspension analyses for concur
rent logic programs. TOPLAS , 16(3):649–686, May 1994.

[161] M. Codish, M. Falaschi, and K. Marriott. Suspension analysis of concur
rent logic programs. TOPLAS , 16(3):649–686, May 1994.

[162] M. Codish, V. Lagoon, and F. Bueno. An algebraic approach to sharing
analysis of logic programs. In P. Van Hentenryck, editor, Proc. 4th Int.
Symp. SAS ’97 , Paris, FR, 8–10 Sep. 1997, LNCS 1302, pages 68–82.
Springer-Verlag, 1997.

[163] M. Codish, A. Mulkers, M. Bruynooghe, M. Garcìa de la Banda, and
M. Hermenegildo. Improving abstract interpretations by combining do
mains. TOPLAS , 17(1):28–44, Jan. 1995.

[164] M. Codish and H. Søndergaard. The boolean logic of set sharing analysis.
In C. Palamidessi, H. Glaser, and K. Meinke, editors, Proc. 10th Int.
Symp. PLILP ’98 , pages 89–101. Springer-Verlag, Pisa, IT, 16–18 Sep.
1998, LNCS 1490, 1998.

[165] M. Codish, H. Søndergaard, and P.J. Stuckey. Sharing and groundness
dependencies in logic programs. TOPLAS , 21(5):948–976, Sep. 1999.

[166] P. Codognet and G. Filé. Computations, abstractions and constraints (ab
stract). Actes JTASPEFL ’91, Bordeaux, FR. BIGRE, 74:70–71, Oct.
1991.

[167] C. Colby. Analyzing the communication topology of concurrent languages.
In Proc. PEPM ’95 , La Jolla, CA, 21–23 June 1995, pages 202–213.
ACM Press, June 1995.

[168] C. Colby. Determining storage properties of sequential and concurrent pro
grams with assignment and structured data. In A. Mycroft, editor, Proc.
2nd Int. Symp. SAS ’95 , Glasgow, UK, 25–27 Sep. 1995, LNCS 983,
pages 64–81. Springer-Verlag, 1995.

[169] C. Colby and P. Lee. Trace-based program analysis. In 23rd POPL , pages
195–207, St. Petersburg Beach, FL, 1996. ACM Press.

[170] M. Colón and T.E. Uribe. Generating finite-state abstractions of reactive
systems using decision procedures. In A.J. Hu and M.Y. Vardi, editors,
Proc. 10th Int. Conf. CAV ’98 , Vancouver, BC, CA,LNCS 1427, pages
293–304. Springer-Verlag, 28 June – 2 Jul. 1998.

[171] M.A. Colón and T.E. Uribe. Generating finite-state abstractions of reac
tive systems using decision procedures. In A.J. Hu and M.Y. Vardi, ed
itors, Proc. 10th Int. Conf. CAV ’98 , Vancouver, BC, CA, LNCS 1427,
pages 293–304. Springer-Verlag, June /Jul. 1998.

37

[172] M. Comini, R. Gori, G. Levi, and P. Volpe. Abstract interpretation based
verification of logic programs. ENTCS , 30(1), 1999.

[173] M. Comini, G. Levi, M. Chiara Meo, and G. Vitiello. Abstract diagnosis.
J. Logic Programming , 39(1–3):43–93, 1999.

[174] M. Comini, G. Levi, M.C. Meo, and G. Vitiello. Proving properties of
logic programs by abstract diagnosis. In M. Dam, editor, Analysis
and Verification of Multiple-Agent Languages, 5th LOMAPS Work
shop, Stockhlom, SE, 24–26 June 1996, LNCS 1192, pages 22–50.
Springer-Verlag, 1997.

[175] M. Comini, G. Levi, and G. Vitiello. Abstract debugging of logic program.
In L. Fribourg and F. Turini, editors, Proc. Int. Work. LOPSTR ’94
and Int. Symp. META ’94 , Pisa, IT, 20–21 June 1994, LNCS 883, pages
440–450. Springer-Verlag, 1994.

[176] M. Comini, G. Levi, and G. Vitiello. Efficient detection of incompleteness
errors in the abstract debugging of logic programs. In A. Cortesi and
G. Filé, editors, Proc. 2nd Int. Work. AADEBUG ’95 , Saint Malo, FR,
22–24 May 1995, pages 159–174. IRISA-CNRS, Rennes, FR, 1995.

[177] C. Consel. Polyvariant binding-time analysis for applicative languages.
In Proc. PEPM ’93 , Copenhagen, DK, 14–16 June 1993, pages 66–77.
ACM Press, 1993.

[178] C. Consel. Fast strictness analysis via symbolic fixpoint iteration. In B.
Le Charlier, editor, Proc. 1st Int. Symp. SAS ’94 , Namur, BE, 20–22
Sep. 1994, LNCS 864, pages 423–431. Springer-Verlag, 1994.

[179] M. Coppo and A. Ferrari. Type inference, abstract interpretation and
strictness analysis. Theoret. Comput. Sci. , 121:113–143, 1993.

[180] Th. Coquand and G.P. The calculus of constructions. Inform. and Com
put. , 76(2/3):95–120, Feb. /Mar. 1988.

[181] A. Cortesi, D. Dams, G. Filé , and M. Bruynooghe. On the design of
a correct freeness analysis for logic programs. J. Logic Programming,
28(3):181–206, 1996.

[182] A. Cortesi and G. Filé. Abstract interpretation of logic programs: an
abstract domain for groundness, sharing, freeness and compoundness
analysis. In P. Hudak and N.D. Jones, editors, Proc. PEPM ’91 , Yale
U., New Haven, CT, US, 17–19 June 1991, ACM SIGPLAN Not. 26(9),
pages 52–61. ACM Press, Sep. 1991.

[183] A. Cortesi and G. Filé. Sharing is optimal. J. Logic Programming,
38(3):371–386, 1999.

[184] A. Cortesi, G. Filé, R. Giacobazzi, C. Palamidessi, and F. Ranzato. Com
plementation in abstract interpretation. In A. Mycroft, editor, Proc. 2nd

Int. Symp. SAS ’95 , Glasgow, UK, 25–27 Sep. 1995, LNCS 983, pages
100–117. Springer-Verlag, 1995. Full version in (185).

[185] A. Cortesi, G. Filé, R. Giacobazzi, C. Palamidessi, and F. Ranzato. Com
plementation in abstract interpretation. TOPLAS , 19(1):7–47, Jan.
1997.

38

[186] A. Cortesi, G. Filé , and W. Winsborough. Prop revisited: propositional
formulas as abstract domains for groundness analysis. In G. Kahn,
editor, Proc. 6th LICS’91, Amsterdam, NL , pages 322–327. IEEE Comp.
Soc. Press, 15–18 Jul. 1991.

[187] A. Cortesi, G. Filé , and W.H. Winsborough. Comparison of abstract inter
pretations. In W. Kuich, editor, 19th ICALP , Vienna, AT, LNCS 623,
pages 521–532. Springer-Verlag, 13–17 Jul. 1992.

[188] A. Cortesi, G. Filé , and W.H. Winsborough. Optimal groundness analysis
using propositional logic. J. Logic Programming , 27(2):137–167, 1996.

[189] A. Cortesi, B. Le Charlier, and P. van Hentenryck. Combinations of ab
stract domains for logic programming. In 24th POPL , pages 227–239.
ACM Press, 1994.

[190] O. Coudert, C. Berthet, and J.C. Madre. Verification of synchronous
sequential machines based on symbolic execution. In J. Sifakis, edi
tor, Proc. Int. Work. on Automatic Verification Methods for Finite
State Systems, Grenoble, FR, June 1989 , LNCS 407, pages 365–373.
Springer-Verlag, 1990.

[191] O. Coudert, J.C. Madre, and C. Berthet. Verifying temporal properties
of sequential machines without building their state diagrams. In E.M.
Clarke and R.P. Kurshan, editors, CAV ’90 , number 3 in DIMACS
Volume Series, pages 75–84. AMS, June 1990.

[192] P. Cousot. Méthodes itératives de construction et d’approximation de
points fixes d’opérateurs monotones sur un treillis, analyse sémantique
de programmes. Thèse d’État ès sciences mathématiques, Université
scientifique et médicale de Grenoble, Grenoble, FR, 21 Mar. 1978.

[193] P. Cousot. Semantic foundations of program analysis. In S.S. Muchnick
and N.D. Jones, editors, Program Flow Analysis: Theory and Applica
tions, chapter 10, pages 303–342. Prentice-Hall, 1981.

[194] P. Cousot. Methods and logics for proving programs. In J. van Leeuwen,
editor, Formal Models and Semantics, volume B of Handbook of Theo
retical Computer Science, chapter 15, pages 843–993. Elsevier, 1990.

[195] P. Cousot. Abstract interpretation. Symposium on Models of Programming
Languages and Computation, ACM Comput. Surv. , 28(2):324–328,
1996.

[196] P. Cousot. Program analysis: The abstract interpretation perspective.
ACM Comput. Surv. , 28A(4es):165–es, Dec. 1996.

[197] P. Cousot. Constructive design of a hierarchy of semantics of a tran
sition system by abstract interpretation. ENTCS , 6, 1997. URL:
http://www.elsevier.nl/locate/entcs/volume6.html, 25 pages.

[198] P. Cousot. Design of semantics by abstract interpretation, invited address.
In Mathematical Foundations of Programming Semantics, 30th Annual
Conf. (MFPS XIII) , Carnegie Mellon University, Pittsburgh, PA, US,
23–26 Mar. 1997.

[199] P. Cousot. Program analysis: The abstract interpretation perspective.
ACM SIGPLAN Not. , 32:73–76, 1997.

http://www.elsevier.nl/locate/entcs/volume6.html

39

[200] P. Cousot. Types as abstract interpretations, invited paper. In 24th POPL ,
pages 316–331, Paris, FR, Jan. 1997. ACM Press.

[201] P. Cousot. The Marktoberdorf’98 generic abstract interpreter.
http://www.di.ens.fr/˜cousot/Marktoberdorf98.shtml, Nov.
1998.

[202] P. Cousot. The calculational design of a generic abstract interpreter. In
M. Broy and R. Steinbrüggen, editors, Calculational System Design ,
volume 173, pages 421–505. NATO Science Series, Series F: Computer
and Systems Sciences. IOS Press, 1999.

[203] P. Cousot. Directions for research in approximate system analysis. ACM
Comput. Surv. , 31(3es), Sep. 1999.

[204] P. Cousot. Abstract interpretation: Achievements and perspectives. In
Proc. SSGRR 2000 Computer & eBusiness International Conference,
Compact disk paper 224, L’Aquila, Italy, 31 Jul. – 6 Aug. 2000. Scuola
Superiore G. Reiss Romoli.

[205] P. Cousot. Partial completeness of abstract fixpoint checking, invited
paper. In B.Y. Choueiry and T. Walsh, editors, Proc. 4th Int.
Symp. SARA ’2000 , Horseshoe Bay, TX, US, LNAI 1864, pages 1–25.
Springer-Verlag, 26–29 Jul. 2000.

[206] P. Cousot. Constructive design of a hierarchy of semantics of a transition
system by abstract interpretation. Theoret. Comput. Sci. , To appear
(Preliminary version in (197)).

[207] P. Cousot and R. Cousot. Static determination of dynamic properties of
programs. In Proc. 2nd Int. Symp. on Programming , pages 106–130.
Dunod, 1976.

[208] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of
fixpoints. In 4th POPL , pages 238–252, Los Angeles, CA, 1977. ACM
Press.

[209] P. Cousot and R. Cousot. Automatic synthesis of optimal invariant asser
tions: mathematical foundations. In ACM Symposium on Artificial In
telligence & Programming Languages, Rochester, NY, ACM SIGPLAN
Not. 12(8):1–12, 1977.

[210] P. Cousot and R. Cousot. Static determination of dynamic properties of
generalized type unions. In ACM Symposium on Language Design for
Reliable Software, Raleigh, NC, ACM SIGPLAN Not. 12(3):77–94, 1977.

[211] P. Cousot and R. Cousot. Static determination of dynamic properties of
recursive procedures. In E.J. Neuhold, editor, IFIP Conf. on Formal
Description of Programming Concepts, St-Andrews, N.B., CA , pages
237–277. North-Holland, 1977.

[212] P. Cousot and R. Cousot. A constructive characterization of the lattices
of all retractions, pre-closure, quasi-closure and closure operators on a
complete lattice. Portugal. Math. , 38(2):185–198, 1979.

[213] P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point
theorems. Pacific J. Math. , 82(1):43–57, 1979.

http://www.di.ens.fr/~cousot/Marktoberdorf98.shtml

40

[214] P. Cousot and R. Cousot. Systematic design of program analysis frame
works. In 6th POPL , pages 269–282, San Antonio, TX, 1979. ACM
Press.

[215] P. Cousot and R. Cousot. Semantic analysis of communicating sequential
processes. In J.W. de Bakker and J. van Leeuwen, editors, 7th ICALP ,
LNCS 85, pages 119–133. Springer-Verlag, Jul. 1980.

[216] P. Cousot and R. Cousot. Invariance proof methods and analysis tech
niques for parallel programs. In A.W. Biermann, G. Guiho, and Y.
Kodratoff, editors, Automatic Program Construction Techniques, chap
ter 12, pages 243–271. Macmillan, 1984.

[217] P. Cousot and R. Cousot. Abstract interpretation and application to logic
programs. J. Logic Programming , 13(2–3):103–179, 1992. (The editor of
J. Logic Programming has mistakenly published the unreadable galley proof.
For a correct version of this paper, see http://www.di.ens.fr/˜cousot.).

[218] P. Cousot and R. Cousot. Abstract interpretation frameworks. J. Logic
and Comp. , 2(4):511–547, Aug. 1992.

[219] P. Cousot and R. Cousot. Comparing the Galois connection and widen
ing/narrowing approaches to abstract interpretation, invited paper.
In M. Bruynooghe and M. Wirsing, editors, Proc. 4th Int. Symp.
PLILP ’92 , Leuven, BE, 26–28 Aug. 1992, LNCS 631, pages 269–295.
Springer-Verlag, 1992.

[220] P. Cousot and R. Cousot. Galois connection based abstract interpreta
tions for strictness analysis, invited paper. In D. Bjørner, M. Broy, and
I.V. Pottosin, editors, Proc. FMPA , Akademgorodok, Novosibirsk, RU,
LNCS 735, pages 98–127. Springer-Verlag, 28 June – 2 Jul. 1993.

[221] P. Cousot and R. Cousot. Higher-order abstract interpretation (and ap
plication to comportment analysis generalizing strictness, termination,
projection and PER analysis of functional languages), invited paper. In
Proc. 1994 ICCL , pages 95–112, Toulouse, FR, 16–19 May 1994. IEEE
Comp. Soc. Press.

[222] P. Cousot and R. Cousot. Formal language, grammar and
set-constraint-based program analysis by abstract interpretation.
In Proc. 7th FPCA , pages 170–181, La Jolla, CA, 25–28 June 1995.
ACM Press.

[223] P. Cousot and R. Cousot. Parallel combination of abstract interpretation
and model-based automatic analysis of software. In R. Cleaveland and
D. Jackson, editors, Proc. 1st ACM SIGPLAN Workshop on Automatic
Analysis of Software, AAS ’97 , pages 91–98, Paris, FR, Jan. 1997. ACM
Press.

[224] P. Cousot and R. Cousot. Refining model checking by abstract interpreta
tion. Aut . Soft . Eng. , 6:69–95, 1999.

[225] P. Cousot and R. Cousot. Abstract interpretation based program testing.
In Proc. SSGRR 2000 Computer & eBusiness International Conference ,
Compact disk paper 248, L’Aquila, Italy, 31 Jul. – 6 Aug. 2000. Scuola
Superiore G. Reiss Romoli.

http://www.di.ens.fr/~cousot

41

[226] P. Cousot and R. Cousot. Temporal abstract interpretation. In 27th
POPL , pages 12–25, Boston, MA, Jan. 2000. ACM Press.

[227] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints
among variables of a program. In 5th POPL , pages 84–97, Tucson, AZ,
1978. ACM Press.

[228] P. Crégut. Interprétation abstraite pour améliorer la représentation des
environnements dans les langages fonctionnels. Actes JTASPEFL ’91,
Bordeaux, FR. BIGRE , 74:37–43, Oct. 1991.

[229] B. Creusillet and F. Irigoin. Interprocedural array region analyses. In C.-H.
Huang, P. Sadayappan, U. Banerjee, D. Gelernter, A. Nicolau, and D.A.
Padua, editors, Proc. 8th Int. Work. LCPC ’95 , Columbus, OH, US,
10–12 Aug. 1995, LNCS 1033, pages 46–60. Springer-Verlag, 1996.

[230] R. Cridlig. Semantic analysis of shared-memory concurrent languages us
ing abstract model-checking. In Proc. PEPM ’95 , La Jolla, CA, 21–23
June 1995. ACM Press.

[231] R. Cridlig. Semantic analysis of Concurrent ML by
abstract model-checking. ENTCS , 5, 1996. URL:
http://www.elsevier.nl/locate/entcs/volume5.html.

[232] R. Cridlig. Semantic analysis of Concurrent ML by abstract
model-checking. In B. Steffen and T. Margaria, editors, Proc. Int. Work.
on Verification of Infinite State Systems. vol. MIP-9614, Universität
Passau, DE, Aug. 1996. To be published in Electronic Notes on Theo
retical Computer Science, 1997.

[233] R. Cridlig. Implementing a static analyzer of concurrent programs: Prob
lems and perspectives. In M. Dam, editor, Analysis and Verification
of Multiple-Agent Languages, 5th LOMAPS Workshop, Stockhlom, SE,
24–26 June 1996, LNCS 1192, pages 244–259. Springer-Verlag, 1997.

[234] R. Cridlig and É. Goubault. Semantics and analysis of Linda-based lan
guages. In P. Cousot, M. Falaschi, G. Filé , and A. Rauzy, editors,
Proc. 3rd Int. Work. WSA ’93 , Padova, IT, LNCS 724, pages 72–86.
Springer-Verlag, 22–24 Sep. 1993.

[235] D. Cyrluk. Inverting the abstraction mapping: A methodology for hard
ware verification. In M.S. Srivas and A.J. Camilleri, editors, Proc. 1st
Int. Conf. on Formal Methods in Computer-Aided Design, FMCAD ’96 ,
number 1166 in LNCS, pages 172–186, Palo Alto, CA, US, 6–8 Nov.
1996. Springer-Verlag.

[236] G. Filé D. Baldan. Abstract interpretation from improving WAM code. In
P. Van Hentenryck, editor, Proc. 4th Int. Symp. SAS ’97 , Paris, FR,
8–10 Sep. 1997, LNCS 1302, page 364. Springer-Verlag, 1997.

[237] M. Dam. Fixed points of büchi automata. In R.K. Shyamasundar, editor,
Proc. 12th FST & TCS , New Delhi, IN, 18–20 Dec. 1992, LNCS 652,
pages 39–50. Springer-Verlag, 1992.

[238] L. Damas and R. Milner. Principal type-schemes for functional programs.
In 9th POPL , pages 207–212, Albuquerque, NM, Jan. 1982. ACM Press.

http://www.elsevier.nl/locate/entcs/volume5.html

42

[239] D. Dams, R. Gerth, G. Döhmen, R. Herrmann, P. Kelb, and H. Pargmann.
Model checking using adaptive state and data abstraction. In D.L. Dill,
editor, Proc. 6th Int. Conf. CAV ’94 , Stanford, CA, US, LNCS 818,
pages 455–467. Springer-Verlag, 21–23 June 1994.

[240] D. Dams, O. Grumberg, and R. Gerth. Abstract interpretation of re
active systems: Abstractions preserving ∀CTL� , ∃CTL� and CTL�.
In E.R. Olderog, editor, Proc. IFIP WG2.1/WG2.2/WG2.3 Working
Conf. on Programming Concepts, Methods and Calculi (PROCOMET) ,
IFIP Transactions. North-Holland/Elsevier, June 1994.

[241] D. Dams, O. Grumberg, and R. Gerth. Abstract interpretation of reactive
systems. TOPLAS , 19(2):253–291, Mar. 1997.

[242] S. Das, D.L. Dill, and S. Park. Experience with predicate abstraction.
In N. Halbwachs and D. Peled, editors, Proc. 11th Int. Conf. CAV ’99 ,
Trento, IT, LNCS 1633, pages 160–171. Springer-Verlag, 6–10 Jul. 1999.

[243] K. Davis. Higher order binding time analysis. In Proc. PEPM ’93 , Copen
hagen, DK, 14–16 June 1993, pages 80–87. ACM Press, 1993.

[244] K. Davis and P. Wadler. Backwards strictness analysis: Proved and
improved. In K. Davis and J. Hughes, editors, Functional Program
ming, Glasgow 1989 , Proc. 1989 Glasgow Workshop, Fraserburgh, UK.
Springer-Verlag and BCS, 12–30 Aug. 1989.

[245] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool KRONOS. In
R. Alur, T.A. Henzinger, and E.D. Sontag, editors, Hybrid Systems III,
Verification and Control , LNCS 1066, pages 208–219. Springer-Verlag,
1996.

[246] M.J. García de la Banda and M.V. Hermenegildo. A practical applica
tion of sharing and freeness inference. In M. Billaud, P. Castéran,
M.-M. Corsini, K. Musumbu, and A. Rauzy, editors, Proc. 2nd Int.
Work. WSA ’92, Bordeaux, FR. BIGRE, volume 81–82, pages 118–125.
IRISA, Rennes, FR, 23–25 Sep. 1992.

[247] G.R. Renardel de Lavalette. Strictness analysis via abstract interpretation
for recursively defined types. Inform. and Comput. , 99(2):154–177, Aug.
1992.

[248] S.K. Debray. Formal bases for dataflow analysis of logic programs. In G.
Levi, editor, Advances in Logic Programming Theory , Int. Schools for
Computer Scientists, section 3, pages 115–182. Clarendon Press, 1994.

[249] S.K. Debray, P. López-García, M.V. Hermenegildo, and N.-W. Lin. Lower
bound cost estimation for logic programs. In J. Małuszyński, editor,
Proc. Int. Symp. ILPS ’1997 , Port Jefferson, Long Island, NY, US,
pages 291–305. MIT Press, 13–16 Oct. 1997.

[250] S.K. Debray, R. Muth, and M. Weippert. Alias analysis of executable code.
In 25th POPL , pages 12–24, San Diego, CA, US, 19–21 Jan. 1998. ACM
Press.

[251] S.K. Debray and T.A. Proebsting. Interprocedural control flow analy
sis of first-order programs with tail-call optimization. TOPLAS ,
19(4):568–585, Jul. 1997.

43

[252] S.K. Debray and D.S. Warren. Automatic mode inferencing for Prolog
programs. In Proc. 1986 Int. Symp. on Logic Programming , Salt Lake
City, UT, pages 78–88. IEEE Comp. Soc. Press, Sep. 1986.

[253] S.K. Debray and D.S. Warren. Automatic mode inference of logic pro
grams. J. Logic Programming, 5(3):207–229, 1988.

[254] S. Decorte and D. De Schrey. Termination analysis: Some practical prop
erties of the norm and level mapping space. In J. Jaffar, editor,
JICSLP ’98, Workshop on Concurrent and Parallel Implementations,
Manchester, UK, pages 235–249. MIT Press, 15–19 June 1992.

[255] S. Decorte, D. De Schreye, and H. Vandecasteele. Constraint-based ter
mination analysis of logic programs. TOPLAS , 21(6):1137–1195, Nov.
1999.

[256] G. DeFouw, D. Grove, and C. Chambers. Fast interprocedural class analy
sis. In 25th POPL , pages 222–236, San Diego, CA, US, 19–21 Jan. 1998.
ACM Press.

[257] G. Delzanno and A. Podelski. Model checking in CLP. In W.R. Cleaveland,
editor, Proc. 5th Int. Conf. TACAS ’99 , Amsterdam, NL, 22-25 Mar.
1999, LNCS 1579, pages 223–239. Springer-Verlag, 1999.

[258] N. Dershowitz, N. Lindenstrauss, Y. Sagiv, and A. Serebrenik. Auto
matic termination analysis of programs containing arithmetic predi
cates. ENTCS , 30(2), 1999.

[259] A. Deutsch. On determining lifetime and aliasing of dynamically allocated
data in higher-order functional specifications. In 17th POPL , pages
157–168, San Fransisco, CA, Jan. 1990. ACM Press.

[260] A. Deutsch. A storeless model of aliasing and its abstraction using fi
nite representations of right-regular equivalence relations. In Proc. 1992
ICCL , Oakland, CA, pages 2–13. IEEE Comp. Soc. Press, 20–23 Apr.
1992.

[261] A. Deutsch. Interprocedural may-alias analysis for pointers: Beyond
k-limiting. In Proc. ACM SIGPLAN ’94 Conf. PLDI. ACM SIGPLAN
Not. 29(6) , pages 230–241, Orlando, FL, US, 20–24 June 1994. ACM
Press.

[262] A. Deutsch. Semantic models and abstract interpretation techniques for in
ductive data structures and pointers, invited paper. In Proc. PEPM ’95 ,
pages 226–229, La Jolla, CA, 21–23 June 1995. ACM Press.

[263] A. Deutsch, G. Gonthier, and M. Turin. La vérification des programmes
d’ariane. Pour la Science , 243:21–22, Jan. 1998. (in French).

[264] D.L. Dill. Timing assumptions and verification of finite-state concurrent
systems. In J. Sifakis, editor, Automatic Verification Methods for Finite
State Systems , LNCS 407, pages 197–212. Springer-Verlag, 1989.

[265] D.L. Dill and H. Wong-Toi. Verification of real-time systems by successive
over and under approximation. In P. Wolper, editor, Proc. 7th Int. Conf.
CAV ’95 , Liège, BE, LNCS 939, pages 409–422. Springer-Verlag, 3–5
Jul. 1995.

44

[266] J. Dingel and T. Filkorn. Checking for infinite state systems using data
abstraction, assumption-commitment style reasoning and theorem prov
ing. In P. Wolper, editor, Proc. 7th Int. Conf. CAV ’95 , Liège, BE,
LNCS 939, pages 54–69. Springer-Verlag, 3–5 Jul. 1995.

[267] N. Dor, M. Rodeh, and M. Sagiv. Checking cleanness in linked lists. In
J. Palsberg, editor, Proc. 7th Int. Symp. SAS ’2000 , Santa Barbara,
CA, US, LNCS 1824, pages 115–134. Springer-Verlag, 29 June – 1 Jul.
2000.

[268] V. Dornic, P. Jouvelot, and D.K. Gifford. Polymorphic time systems for
estimating program complexity. Actes JTASPEFL ’91, Bordeaux, FR.
BIGRE , 74:9–17, Oct. 1991.

[269] V. Dumortier, G. Janssens, M. Bruynooghe, and M. Codish. Freeness
analysis in the presence of numerical constraints. In D.S. Warren, ed
itor, Proc. 10th ICLP ’93 , Budapest, HU, pages 100–115. MITpress,
21–25 June 1993.

[270] P. Dybjer. Inverse image analysis. In T. Ottmann, editor, 14th ICALP ,
Karlsruhe, DE, LNCS 267, pages 21–30. Springer-Verlag, 13–17 Jul.
1987.

[271] P. Dybjer. Inverse image analysis generalises strictness analysis. Inform.
and Comput. , 90:194–216, 1991.

[272] P.G. Emelianov. Analysis of the equality relations for the program
terms. In R. Cousot and D.A. Schmidt, editors, Proc. 3rd Int. Symp.
SAS ’96 , Aachen, DE, 24–26 Sep. 1996, LNCS 1145, pages 174–188.
Springer-Verlag, 1996.

[273] P.G. Emelianov and D.E. Baburin. Semantic analyzer of Mod
ula-programs. In P. van Hentenryck, editor, Proc. 4th Int. Symp.
SAS ’97 , Paris, FR, 8–10 Sep. 1997, LNCS 1302, pages 361–363.
Springer-Verlag, 1997.

[274] P.G. Emelianov and V.K. Sabelfeld. Analyzer of semantic properties of
Modula-programms. In Software intellectualization and quality , pages
100–107. Institute of Informatics Systems, Novosibirsk, RU, 1994. In
russian.

[275] E.A. Emerson and J.Y. Halpern. “Sometimes” and “Not Never” revisited:
On branching time versus linear time. TOPLAS , 33:151–178, 1986.

[276] E.A. Emerson, C.S. Jutla, and A.P. Sistla. On model-checking for frag
ments of µ-calculus. In C. Courcoubetis, editor, Proc. 5th Int. Conf.
CAV ’93 , Elounda, GR, LNCS 697, pages 385–396. Springer-Verlag, 28
June –1 Jul. 1993.

[277] V. Englebert, B. Le Charlier, D. Roland, and P. Van Hentenryck. Generic
abstract interpretation algorithms for Prolog: Two optimizations tech
niques and their experimental evaluation. Tech. rep. CS-91-67, Depart
ment of Computer Science, Brown University, Providence, RI, Oct. 1991.

[278] V. Englebert, B. Le Charlier, D. Roland, and P. Van Hentenryck.
Generic abstract interpretation algorithms for Prolog: Two optimiza

45

tion techniques and their experimental evaluation. Soft.–Pract. & Exp. ,
23(4):419–459, 1993.

[279] C. Ernoult and A. Mycroft. Uniform ideals and strictness analysis. In
J. Leach Albert, B. Monien, and M. Rodríguez Artalejo, editors, 18th
ICALP , LNCS 510, pages 47–59. Springer-Verlag, Jul. 1991.

[280] R. Evertsz. The generation of ‘critical problems’ by abstract interpreta
tions of student models. In N.S. Sridharan, editor, Proc. 11th IJCAI ’89 ,
pages 483–488, Detroit, MI, US, Aug. 1989. Morgan Kaufmann Pub.
ftp://ftp.mrg.dist.unige.it/pub/mrg-ftp/8902-03.ps.gz.

[281] M. Fähndrich and A. Aiken. Program analysis using mixed term and set
constraints. In P. Van Hentenryck, editor, Proc. 4th Int. Symp. SAS ’97 ,
Paris, FR, 8–10 Sep. 1997, LNCS 1302, pages 114–126. Springer-Verlag,
1997.

[282] M. Falaschi, P. Hicks, and W.H. Winsboroug. Demand transformation
analysis for concurrent constraint programs. In M.J. Maher, editor,
Proc. JICSLP ’96 , Bonn, DE, pages 333–347.MIT Press, 2–6 Sep. 1996.

[283] A. Fantechi, S. Gnesi, and D. Latella. Diego: Towards automatic temporal
logic verification of value passing process algebra using abstract inter
pretation. In U. Montanari and V. Sassone, editors, Proc. 7th Int. Conf.
CONCUR ’96 , number 1119 in LNCS, pages 563–578. Springer-Verlag,
Pisa, IT, 26–29 Aug. 1996.

[284] K.-P. Faxén. Optimizing lazy functional programs using flow inference. In
A. Mycroft, editor, Proc. 2nd Int. Symp. SAS ’95 , Glasgow, UK, 25–27
Sep. 1995, LNCS 983, pages 136–153. Springer-Verlag, 1995.

[285] C. Fecht. GENA – a tool for generating Prolog analyzers from specifica
tions. In A. Mycroft, editor, Proc. 2nd Int. Symp. SAS ’95 , Glasgow,
UK, 25–27 Sep. 1995, LNCS 983, pages 418–419. Springer-Verlag, 1995.

[286] C. Fecht. An efficient and precise sharing domain for logic programs. In H.
Kuchen and D.S. Swierstra, editors, Proc. 8th Int. Symp. PLILP ’96 ,
pages 469–470. Springer-Verlag, Aachen, DE, 24–27 Sep. 1996, LNCS
1140, 1996.

[287] C. Fecht and H. Seidl. A faster solver for general systems of equations.
Sci. Comput. Programming, Special Issue on SAS’96 , 35(1):137–161,
September 1999.

[288] C. Ferdinand. Generating Program Analyzers. Verfasser – Pirrot Verlag,
Saarbrücken, DE, 1999.

[289] C. Ferdinand, F. Martin, R. Wilhelm, and M. Alt. Cache behavior
prediction by abstract interpretation. Sci. Comput. Programming,
35(1):163–189, 1999.

[290] C. Ferdinand, F. Martin, R. Wilhelm, and M. Alt. Cache behavior pre
diction by abstract interpretation. Sci. Comput. Programming, Special
Issue on SAS’96 , 35(1):163–189, September 1999.

[291] J. Feret. Occurrence counting analysis for the π-calculus. In P. Cousot, É.
Goubault, J. Gunawardena, M. Herlihy, M. Raussen, and V. Sassone,

ftp://ftp.mrg.dist.unige.it/pub/mrg-ftp/8902-03.ps.gz

46

editors, Preliminary Proc. Workshop GETCO ’00 , pages 99–116, State
College, US, 21 Aug. 2000. BRICS Notes Series NS-00-3.

[292] J. Feret. Confidentiality analysis of mobile systems. In J. Palsberg, editor,
Proc. 7th Int. Symp. SAS ’2000 , Santa Barbara, CA, US, LNCS 1824,
pages 135–154. SPRINGER, 29 June – 1 Jul. 2000.

[293] A. Ferguson and J. Hughes. Fast abstract interpretation using sequential
algorithms. In P. Cousot, M. Falaschi, G. Filé , and A. Rauzy, editors,
Proc. 3rd Int. Work. WSA ’93 , Padova, IT, LNCS 724, pages 45–59.
Springer-Verlag, 22–24 Sep. 1993.

[294] J.-C. Fernandez. Abstract interpretation and verification of reactive sys
tems. In P. Cousot, P. Falaschi, G. Filé , and A. Rauzy, editors,
Proc. 3rd Int. Work. WSA ’93 , Padova, IT, LNCS 724, pages 60–71.
Springer-Verlag, 22–24 Sep. 1993.

[295] J. Field, J. Heering, and T.B. Dinesh. Equations as a uniform framework
for partial evaluation and abstract interpretation, 1. Electronic Sympo
sium on Partial Evaluation Principles, Foundations and Frameworks,
ACM Comput. Surv. , 30(3es), Sep. 1998.

[296] G. Filè, R. Giacobazzi, and F. Ranzato. A unifying view on abstract do
main design. ACM Computing Surveys, 28(2):333–336, 1996.

[297] G. Filé and . Ranzato. The powerset operator on abstract interpretations.
Theoret. Comput. Sci. , 222(1-2):77–111, Jul. 1999.

[298] G. Filé and F. Ranzato. Improving abstract interpretations by system
atic lifting to the powerset. In M. Bruynooghe, editor, Proc. Int. Symp.
ILPS ’1994 , Ithaca, NY, US, pages 655–669. MIT Press, 13–17 Nov.
1994.

[299] G. Filé and F. Ranzato. Complementation of abstract domains made easy.
In M.J. Maher, editor, Proc. JICSLP ’96 , Bonn, DE, pages 348–362.
MIT Press, 2–6 Sep. 1996.

[300] G. Filé and S. Rossi. Static analysis of Prolog with cut. In A. Voronkov,
editor, Proc. 4th Int. Conf. LPAR ’93 , pages 134–145, St. Petersburg,
RU, LNCS 698, 13–20 Jul. 1993. Springer-Verlag.

[301] G. Filé and P. Sottero. Abstract interpretation for type checking.
In J. Małuszyński and M. Wirsing, editors, Proc. 3rd Int. Symp.
PLILP ’91 , pages 311–322, Passau, DE, LNCS 528, 26–28 Aug. 1991.
Springer-Verlag.

[302] C. Flanagan and M. Felleisen. Componential set-based analysis.
TOPLAS , 21(2):370–416, Feb. 1999.

[303] C. Flanagan, M. Flatt S. Krishnamurthi, S. Weirich, and M. Felleisen.
Static debugging: Browsing the web of program invariants. In Proc.
ACM SIGPLAN ’96 Conf. PLDI. ACM SIGPLAN Not. 31(5) , pages
23–32, Philadelphia, PA, US, 21–24, May 1996.

[304] R.W. Floyd. Assigning meaning to programs. In J.T. Schwartz, editor,
Proc. Symposium in Applied Mathematics, volume 19, pages 19–32.
AMS, 1967.

47

[305] I.T. Foster and W.H. Winsborough. Copy avoidance through compile-time
analysis and local reuse. In K. Ueda V.A. Saraswat, editor, Proc. 1991
Int. Symp. ISLP ’91 , San Diego, CA, US, pages 455–469. MIT Press,
28 Oct. – 1 Nov. 1997.

[306] M. Gabbrielli and R. Giacobazzi. Goal independency and call patterns
in the analysis of logic programs. In Proc. 9th ACM Symp. on App.
Comp. , Phoenix, AZ, Mar. 1994. ACM Press.

[307] J. Gallagher, M. Codish, and E. Shapiro. Specialization of Prolog and FCP
programs by abstract interpretation.New Gen. Comp. , 6:159–186, 1988.

[308] M. Gengler and M. Rytz. A polyvariant binding time analysis handling
partially known values. In M. Billaud, P. Castéran, M.-M. Corsini, K.
Musumbu, and A. Rauzy, editors, Proc. 2nd Int. Work. WSA ’92, Bor
deaux, FR. BIGRE, volume 81–82, pages 322–330. IRISA, Rennes, FR,
23–25 Sep. 1992.

[309] R. Ghiya and L. Hendren. Is it a tree, a dag, or a cyclic graph? a shape
analysis for heap-directed pointers in C. In 23rd POPL , pages 1–15, St.
Petersburg Beach, FL, 1996. ACM Press.

[310] R. Ghiya and L.J. Hendren. Putting pointer analysis to work. In 25th
POPL , pages 121–133, San Diego, CA, US, 19–21 Jan. 1998. ACM
Press.

[311] R. Giacobazzi. “optimal” collecting semantics for analysis in a hierarchy
of logic program semantics. In C. Puech and R. Reischuk, editors, Proc.
Annual Symp. STACS ’96 , LNCS 1046, pages 503–514. Springer-Verlag,
1996.

[312] R. Giacobazzi. A tutorial on domain theory in abstract interpretation.
In G. Levi, editor, Proc. 5th Int. Symp. SAS ’98 , Pisa, IT, 14–16 Sep.
1998, LNCS 1503, pages 349–350. Springer-Verlag, 1998.

[313] R. Giacobazzi, S. Debray, and G. Levi. Joining abstract and concrete com
putations in constraint logic programmimg. In M. Nivat, C. Rattray, T.
Rus, and G. Scollo, editors, Proc. 3rd Int. Conf. AMAST ’93 , London,
GB, Workshops in Comp. , pages 109–126. Springer-Verlag, 1993.

[314] R. Giacobazzi, S.K. Debray, and G. Levi. Generalized semantics and ab
stract interpretation for constraint logic programs. J. Logic Program
ming, pages 191–247, 1995.

[315] R. Giacobazzi and F. Ranzato. Completeness in abstract interpretation:
A domain perspective. In M. Johnson, editor, Proc. 6th Int. Conf.
AMAST ’97, Sydney, AU , volume 1349 of LNCS , pages 231–245.
Springer-Verlag, 13–18 Dec. 1997.

[316] R. Giacobazzi and F. Ranzato. Compositional optimization of disJune
ctive abstract interpretations. In H. Riis Nielson, editor, Proc. 6th
ESOP ’96 , Linköping, SE, LNCS 1058, pages 141–155. Springer-Verlag,
22–26 Apr. 1996.

[317] R. Giacobazzi and F. Ranzato. Refining and compressing abstract do
mains. In P. Degano, R. Gorrieri, and A. Marchetti-Spaccamela, ed

48

itors, Proc. 24th Int. Coll. ICALP ’97 , volume 1256 of LNCS , pages
771–781. Springer-Verlag, 1997.

[318] R. Giacobazzi and F. Ranzato. Optimal domains for disJune ctive abstract
interpretation. Sci. Comput. Programming , 32(1–3):177–210, 1998.

[319] R. Giacobazzi and F. Ranzato. The reduced relative power operation on
abstract domains. Theoret. Comput. Sci. , 216:159–211, 1999.

[320] R. Giacobazzi, F. Ranzato, and F. Scozzari. Building complete abstract
interpretations in a linear logic-based setting. In G. Levi, editor, Proc.
5th Int. Symp. SAS ’98 , Pisa, IT, 14–16 Sep. 1998, LNCS 1503, pages
215–229. Springer-Verlag, 1998.

[321] R. Giacobazzi, F. Ranzato, and F. Scozzari. Complete abstract interpreta
tions made constructive. In L. Brim, J. Gruska, and J. Zlatuska, editors,
Proc. 23rd Int. Symp. on Mathematical Foundations of Computer Sci
ence, MFCS’98 , volume 1450 of LNCS , pages 366–377. Springer-Verlag,
1998.

[322] R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract intrepreta
tions complete. J. ACM , 2000. To appear.

[323] R. Giacobazzi and L. Ricci. Detecting determinate computations by bot
tom-up abstract interpretation. In B. Krieg-Brückner, editor, Proc. 4th
ESOP ’92 , Rennes, FR, LNCS 582, pages 167–181. Springer-Verlag,
26–28 Feb. 1992.

[324] F. Giannotti and D. Latella. Using abstract interpretation for gate splitting
in LOTOS specifications. In M. Billaud, P. Castéran, M.-M. Corsini,
K. Musumbu, and A. Rauzy, editors, Proc. 2nd Int. Work. WSA ’92,
Bordeaux, FR. BIGRE , volume 81–82, pages 194–204. IRISA, Rennes,
FR, 23–25 Sep. 1992.

[325] F. Giannotti and D. Latella. Gate splitting in LOTOS specifications using
abstract interpretation. In M.-C. Gaudel and J.-P. Jouannaud, editors,
Proc. Int. J. Conf. TAPSOFT ’93 , Orsay, FR, Volume 2 CAAP/FASE),
LNCS 668, pages 437–452. Springer-Verlag, 13–17 Apr. 1993.

[326] F. Giannotti and D. Latella. Gate splitting in LOTOS specifications using
abstract interpretation. Sci. Comput. Programming , 23((2-3)):127–149,
1994.

[327] J.-L. Giavitto, J.-P. Sansonnet, and O. Michel. Inférer rapidement la
géométrie des collections. In M. Billaud, P. Castéran, M.-M. Corsini,
K. Musumbu, and A. Rauzy, editors, Proc. 2nd Int. Work. WSA ’92,
Bordeaux, FR. BIGRE, volume 81–82, pages 185–193. IRISA, Rennes,
FR, 23–25 Sep. 1992.

[328] J. Giesl. Termination analysis for functional programs using term order
ings. In A. Mycroft, editor, Proc. 2nd Int. Symp. SAS ’95 , Glasgow,
UK, 25–27 Sep. 1995, LNCS 983, pages 154–171. Springer-Verlag, 1995.

[329] F. Giunchiglia. Using Abstrips abstractions –
where do we stand? Art. Int. Rev. , Jan. 1997.
ftp://ftp.mrg.dist.unige.it/pub/mrg-ftp/9607-10.ps.gz,
Submitted for publication.

ftp://ftp.mrg.dist.unige.it/pub/mrg-ftp/9607-10.ps.gz

49

[330] F. Giunchiglia, R. Sebastiani, A. Villafiorita, and T. Walsh. A general
purpose reasoner for abstraction. In G. McCalla, editor, Advances in
Artificial Intelligence, Proc. 11th Biennial Conference of the Canadian
Society for Computational Studies of Intelligence, AI ’96 , Toronto,
CA, LNCS 1081, pages 323–335. Springer-Verlag, 21–24 May 1996.
ftp://ftp.mrg.dist.unige.it/pub/mrg-ftp/9301-08.ps.gz.

[331] F. Giunchiglia and A. Villafiorita. ABSFOL: a proof checker with
abstraction. In M.A. McRobbie and J.K. Slaney, editors, Proc.
30th Int. Conf. CADE ’96 , volume 1104 of New Brunswick, NJ,
US, LNAI , pages 136–140. Springer-Verlag, Jul. 30–Aug. 3 1996.
ftp://ftp.mrg.dist.unige.it/pub/mrg-ftp/9602-11.ps.gz.

[332] F. Giunchiglia and T. Walsh. Abstract theorem proving. In
N.S. Sridharan, editor, Proc. 11th IJCAI ’89 , pages 372–377,
Detroit, MI, US, Aug. 1989. Morgan Kaufmann Pub.
ftp://ftp.mrg.dist.unige.it/pub/mrg-ftp/8902-03.ps.gz.

[333] F. Giunchiglia and T. Walsh. Using abstraction. In L.
Steels and B. Smith, editors, Proc. 8th Conf. AISB ’91 ,
pages 225–234, Leeds, GB, 1991. Springer-Verlag.
ftp://ftp.mrg.dist.unige.it/pub/mrg-ftp/9010-08.ps.gz.

[334] F. Giunchiglia and T. Walsh. A theory of ab
straction. Art. Int. , 56(2–3):323–390, Oct. 1992.
ftp://ftp.mrg.dist.unige.it/pub/mrg-ftp/9001-14.ps.gz.

[335] F. Giunchiglia and T. Walsh. Tree subsumption: Reason
ing with outlines. In B. Neumann, editor, Proc. 10th
ECAI ’92 , pages 77–81, Vienna, AT, Aug. 1992. Wiley & S.
ftp://ftp.mrg.dist.unige.it/pub/mrg-ftp/9205-01.ps.gz.

[336] F. Giunchiglia and T. Walsh. The inevitability of inconsistent
abstract spaces. J. Autom. Reason. , 11(1):23–41, Aug. 1993.
ftp://ftp.mrg.dist.unige.it/pub/mrg-ftp/9006-16.ps.gz.

[337] PA. Godefroid. VeriSoft: A tool for the automatic analysis of concurrent
reactive software. In O. Grumberg, editor, Proc. 9th Int. Conf. CAV ’97 ,
Haifa, IL,LNCS 1254, pages 476–479. Springer-Verlag, 22–25 Jul. 1997.

[338] É. Goubault. Schedulers as abstract interpretations of higher-dimensional
automata. In Proc. PEPM ’95 , La Jolla, CA, pages 134–145. ACM
Press, 21–23 June 1995.

[339] É. Goubault and C. Hankin. A lattice for the abstract interpretation of
term graph rewriting systems. In R. Sleep, R. Plasmeijer, and M. van
Eekelen, editors, Term Graph Rewriting: Theory and Practice, chap
ter 10, pages 131–140. Wiley & S. , 1993.

[340] É. Goubault, C. Hankin, M. van Eekelen, and E. Nocker. Abstract re
duction: towards a theory via abstract interpretation. In R. Sleep, R.
Plasmeijer, and M. van Eekelen, editors, Term Graph Rewriting: Theory
and Practice, chapter 9, pages 117–129. Wiley & S. , 1993.

ftp://ftp.mrg.dist.unige.it/pub/mrg-ftp/9301-08.ps.gz
ftp://ftp.mrg.dist.unige.it/pub/mrg-ftp/9602-11.ps.gz
ftp://ftp.mrg.dist.unige.it/pub/mrg-ftp/8902-03.ps.gz
ftp://ftp.mrg.dist.unige.it/pub/mrg-ftp/9010-08.ps.gz
ftp://ftp.mrg.dist.unige.it/pub/mrg-ftp/9001-14.ps.gz
ftp://ftp.mrg.dist.unige.it/pub/mrg-ftp/9205-01.ps.gz
ftp://ftp.mrg.dist.unige.it/pub/mrg-ftp/9006-16.ps.gz

50

[341] J. Goubault. Generalized boxings, congruences and partial inlining. In B.
Le Charlier, editor, Proc. 1st Int. Symp. SAS ’94 , Namur, BE, 20–22
Sep. 1994, LNCS 864, pages 147–161. Springer-Verlag, 1994.

[342] S. Graf. Verification of a distributed cache memory by using abstractions.
In D.L. Dill, editor, Proc. 6th Int. Conf. CAV ’94 , Stanford, CA, US,
LNCS 818, pages 207–219. Springer-Verlag, 21–23 June 1994.

[343] S. Graf and C. Loiseaux. A tool for symbolic program verification and
abstraction. In C. Courcoubetis, editor, Proc. 5th Int. Conf. CAV ’93 ,
Elounda, GR, LNCS 697, pages 71–84. Springer-Verlag, 28 June –1 Jul.
1993.

[344] S. Graf and H. Saïdi. Construction of abstract state graphs with PVS.
In O. Grumberg, editor, Proc. 9th Int. Conf. CAV ’97 , Haifa, IL,LNCS
1254, pages 72–83. Springer-Verlag, 22–25 Jul. 1997.

[345] P. Granger. Static analysis of arithmetical congruences. Int. J. Comput.
Math. , 30:165–190, 1989.

[346] P. Granger. Analyses sémantiques de congruence. Thèse de l’ école poly-
technique en informatique, LIX, École polytechnique, Palaiseau, FR, 12
Jul. 1991.

[347] P. Granger. Static analysis of linear congruence equalities among variables
of a program. In S. Abramsky and T.S.E. Maibaum, editors, Proc. Int.
J. Conf. TAPSOFT ’91, Volume 1 (CAAP ’91) , Brighton, GB, LNCS
493, pages 169–192. Springer-Verlag, 1991.

[348] P. Granger. Static analyses of congruence properties on rational numbers.
In P. van Hentenryck, editor, Proc. 4th Int. Symp. SAS ’97 , Paris, FR,
8–10 Sep. 1997, LNCS 1302, pages 278–292. Springer-Verlag, 1997.

[349] D. Cabeza Gras and M.V. Hermenegildo. Extracting non-strict indepen
dent and-parallelism using sharing and freeness information. In B.
Le Charlier, editor, Proc. 1st Int. Symp. SAS ’94 , Namur, BE, 20–22
Sep. 1994, LNCS 864, pages 297–313. Springer-Verlag, 1994.

[350] I. Greif and A.R. Meyer. Specifying the semantics of while programs:
A tutorial and critique of a paper by hoare and lauer. TOPLAS ,
3(4):484–507, Oct. 1981.

[351] C.A. Gunter, E.L. Gunter, and D.B. MacQueen. Computing ML
equality kinds using abstract interpretation. Inform. and Comput. ,
107(2):303–323, Dec. 1993.

[352] M. Hagiya and A. Tozawa. On a new method for dataflow analysis of
Java Virtual Machine subroutines. In G. Levi, editor, Proc. 5th Int.
Symp. SAS ’98 , Pisa, IT, 14–16 Sep. 1998, LNCS 1503, pages 17–32.
Springer-Verlag, 1998.

[353] N. Halbwachs. Détermination automatique de relations linéaires vérifiées
par les variables d’un programme. Thèse de 3ème cycle d’informatique,
Université scientifique et médicale de Grenoble, Grenoble, FR, 12 Mar.
1979.

51

[354] N. Halbwachs. Delays analysis in synchronous programs. In C. Cour
coubatis, editor, Proc. 5th Int. Conf. CAV ’93 , Elounda, GR, LNCS
697, pages 333–346. Springer-Verlag, 28 June –1 Jul. 1993.

[355] N. Halbwachs. Synchronous programming of reactive systems. Kluwer
Acad. Pub. , 1993.

[356] N. Halbwachs. About synchronous programming and abstract interpreta
tion. In B. Le Charlier, editor, Proc. 1st Int. Symp. SAS ’94 , Namur,
BE, 20–22 Sep. 1994, LNCS 864, pages 179–192. Springer-Verlag, 1994.

[357] N. Halbwachs. About synchronous programming and abstract interpreta
tion. Sci. Comput. Programming, 31(1):75–89, May 1998.

[358] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchro
nous dataflow programming language Lustre. Proc. of the IEEE ,
79(9):1305–1320, Sep. 1991.

[359] N. Halbwachs, J.-É. Proy, and P. Raymond. Verification of linear hybrid
systems by means of convex approximations. In B. Le Charlier, editor,
Proc. 1st Int. Symp. SAS ’94 , Namur, BE, 20–22 Sep. 1994, LNCS 864,
pages 223–237. Springer-Verlag, 1994.

[360] N. Halbwachs, Y.E. Proy, and P. Roumanoff. Verification of real-time sys
tems using linear relation analysis. Formal Methods in System Design,
11(2):157–185, Aug. 1997.

[361] M.W. Hall, B.R. Murphy, S.P. Amarasinghe, S.-W. Liao, and M.S. Lam.
Interprocedural analysis for parallelization. In C.-H. Huang, P. Sa
dayappan, U. Banerjee, D. Gelernter, A. Nicolau, and D.A. Padua,
editors, Proc. 8th Int. Work. LCPC ’95 , Columbus, OH, US, 10–12
Aug. 1995, LNCS 1033, pages 61–80. Springer-Verlag, 1996.

[362] G.W. Hamilton. Sharing analysis of lazy first-order functional programs.
In M. Billaud, P. Castéran, M.-M. Corsini, K. Musumbu, and A. Rauzy,
editors, Proc. 2nd Int. Work. WSA ’92, Bordeaux, FR. BIGRE , volume
81–82, pages 68–78. IRISA, Rennes, FR, 23–25 Sep. 1992.

[363] M. Handjieva. Stan: A static analyzer for CLP(�) based on abstract inter
pretation. In R. Cousot and D.A. Schmidt, editors, Proc. 3rd Int. Symp.
SAS ’96 , Aachen, DE, 24–26 Sep. 1996, LNCS 1145, pages 383–384.
Springer-Verlag, 1996.

[364] C. Hankin and S. Hunt. Fixed points and frontiers: A new perspective.
JFP , 1(1):91–120, 1991.

[365] C. Hankin and S. Hunt. Approximate fixed points in abstract interpreta
tion. In B. Krieg-Brückner, editor, Proc. 4th ESOP ’92 , Rennes, FR,
LNCS 582, pages 219–232. Springer-Verlag, 26–28 Feb. 1992.

[366] C. Hankin and S. Hunt. Approximate fixed points in abstract interpre
tation. Sci. Comput. Programming, 22(3):283–306, 1994. Erratum: Sci.
Comput. Programming 23(1): 103 (1994).

[367] C. Hankin and D. Le Métayer. A type-based framework for program analy
sis. In B. Le Charlier, editor, Proc. 1st Int. Symp. SAS ’94 , Namur, BE,
20–22 Sep. 1994, LNCS 864, pages 380–394. Springer-Verlag, 1994.

52

[368] J. Hannan. A type-based analysis for stack allocation in functional lan
guages. In A. Mycroft, editor, Proc. 2nd Int. Symp. SAS ’95 , Glasgow,
UK, 25–27 Sep. 1995, LNCS 983, pages 172–188. Springer-Verlag, 1995.

[369] J. Hannan. Program analysis in Lambda-Prolog. In C. Palamidessi, H.
Glaser, and K. Meinke, editors, Proc. 10th Int. Symp. PLILP ’98 , pages
353–354. Springer-Verlag, Pisa, IT, 16–18 Sep. 1998, LNCS 1490, 1998.

[370] R.R. Hansen, J.G. Jensen, F. Nielson, and H. Riis Nielson. Abstract inter
pretation of mobile ambients. In A. Cortesi and G. Filé, editors, Proc.
6th Int. Symp. SAS ’99 , Venice, IT, 22–24 Sep. 1999, LNCS 1694, pages
134–138. Springer-Verlag, 1999.

[371] M. Hanus. Analysis of nonlinear constraints in CLP(R). In D.S. Warren,
editor, Proc. 10th ICLP ’93 , Budapest, HU, pages 83–99. MITpress,
21–25 June 1993.

[372] M. Hanus. Towards the global optimization of functional logic programs.
In P.A. Fritzson, editor, Proc. 5th Int. Conf. CC ’94 , Edinburg, UK,
LNCS 786, pages 68–82. Springer-Verlag, Apr. 1994.

[373] M. Hanus. Compile-time analysis of nonlinear constraints in CLP(R). New
Gen. Comp. , 13(2):155–186, 1995.

[374] M. Hanus and S. Lucas. A semantics for program analysis in narrow
ing-based functional logic languages. In A. Middeldorp and T. Sato,
editors, 4th FLOPS ’99 , Tsukuba, JP, 11–13 Nov. 1999, LNCS 1722,
pages 353–368. Springer-Verlag, 1999.

[375] M. Hanus and F. Zartmann. Mode analysis of functional logic programs.
In B. Le Charlier, editor, Proc. 1st Int. Symp. SAS ’94 , Namur, BE,
20–22 Sep. 1994, LNCS 864, pages 26–42. Springer-Verlag, 1994.

[376] R. Harper. A simplified account of polymorphic references. Inf. Process.
Lett. , 54(4):201–206, 1994.

[377] R. Harper. A note on “a simplified account of polymorphic references”.
Inf. Process. Lett. , 57(1):15–16, 1996.

[378] R. Harper, R. Milner, and M. Tofte. A type discipline for program modules.
In H. Ehrig, R. Kowalski, G. Levi, and U. Montanari, editors, Proc. Int.
J. Conf. TAPSOFT ’87, Volume 2 (AFISD/CFLP) , Pisa, IT, LNCS
250, pages 308–319. Springer-Verlag, 23–27 Mar. 1987.

[379] R. Harper and J.C. Mitchell. On the type structure of Standard ML.
TOPLAS , 15(2):211–252, 1993.

[380] R. Harper and J.C. Mitchell. ML and beyond. ACM SIGPLAN Not. ,
32(1):8085, 1997.

[381] W.L. Harrison. Can abstract interpretation become a main stream com
piler technology? (abstract). In P. Van Hentenryck, editor, Proc. 4th
Int. Symp. SAS ’97 , Paris, FR, 8–10 Sep. 1997, LNCS 1302, page 395.
Springer-Verlag, 1997.

[382] V. Hartonas-Garmhausen, A. Campos, S.V.A. Cimatti, E.M. Clarke, and
F. Giunchiglia. Verification of a safety-critical railway interlocking sys
tem with real-time constraints. In Proc. FTCS ’28 , Munchen, DE, pages
458–463. IEEE Comp. Soc. Press, 23–25 June 1998.

53

[383] V. Hartonas-Garmhausen, S.V.A. Campos, and E.M. Clarke. ProbVerus:
Probabilistic symbolic model checking. In J.-P. Katoen, editor, For
mal Methods for Real-Time and Probabilistic Systems, 5th Int. Symp.
AMAST Workshop, ARTS ’99 , Bamberg, DE, 26–28 May 1999, LNCS
1601, pages 96–110. Springer-Verlag, 1993.

[384] J. Hatcliff, M.B. Dwyer, and S. Laubach. Staging static analyses us
ing abstraction-based program specialization. In C. Palamidessi, H.
Glaser, and K. Meinke, editors, Proc. 10th Int. Symp. PLILP ’98 , pages
134–151. Springer-Verlag, Pisa, IT, 16–18 Sep. 1998, LNCS 1490, 1998.

[385] K. Havelund, K.G. Larsen, and A. Skou. Formal verification of an au
dio/video power controller using the real-time model checker UPPAAL.
In ARTS’99 , 1999.

[386] K. Havelund, A. Skou, K.G. Larsen, and K. Lund. Formal modeling and
analysis of an audio/video protocol: An industrial case study using
UPPAAL. In RTSS’97 , 1997.

[387] N. Heintze. Practical aspects of set based analysis. In K.R. Apt, editor,
Proc. JICSLP ’92 , Washington, DC, US, pages 765–779. MIT Press,
Nov. 1992.

[388] N. Heintze. Set Based Program Analysis. PhD thesis, Carnegie Mellon
University, Pittsburgh, PA, US, Oct. 1992.

[389] N. Heintze. Set-based analysis of ML programs. In Proc. ACM Conf. Lisp
& Func. Prog. , Orlando, FL, US, pages 306–317. ACM Press, 27–29
June 1994.

[390] N. Heintze. Control-flow analysis and type systems. In A. Mycroft, editor,
Proc. 2nd Int. Symp. SAS ’95 , Glasgow, UK, 25–27 Sep. 1995, LNCS
983, pages 189–206. Springer-Verlag, 1995.

[391] F. Henglein. Efficient type inference for higher-order binding-time analy
sis. In J. Hughes, editor, Proc. 5th FPCA , LNCS 523, pages 448–472.
Springer-Verlag, Aug. 1991.

[392] F. Henglein. Iterative fixed point computation for type-based strictness
analysis. In B. Le Charlier, editor, Proc. 1st Int. Symp. SAS ’94 , Na
mur, BE, 20–22 Sep. 1994, LNCS 864, pages 395–407. Springer-Verlag,
1994.

[393] F. Henglein and D. Sands. A semantic model of binding times for safe
partial evaluation. In M.V. Hermenegildo and S.D. Swierstra, editors,
Proc. 7th Int. Symp. PLILP ’95 , Utrecht, NL, 20–22, Sep. 1995, LNCS
982, pages 299–320. Springer-Verlag, 1995.

[394] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic
model-checking for real-time systems. In Proc. 5th LICS ’92. IEEE
Comp. Soc. Press, June 1992.

[395] T.A. Henzinger and P.-H. Ho. Algorithmic analysis of nonlinear hybrid
systems. In P. Wolper, editor, Proc. 7th Int. Conf. CAV ’95 , Liège,
BE,LNCS 939, pages 225–238. Springer-Verlag, 3–5 Jul. 1995.

[396] T.A. Henzinger and R. Majumdar. Symbolic model checking for rectan
gular hybrid systems. In S. Graf and M.I. Schwartzbach, editors, Proc.

54

6th Int. Conf. TACAS ’2000 , Berlin, DE, 25 Mar. – 2 Apr. 2000, LNCS
1785, pages 142–156. Springer-Verlag, 2000.

[397] P.M. Hill, R. Bagnara, and E. Zaffanella. The correctness of set-sharing.
In G. Levi, editor, Proc. 5th Int. Symp. SAS ’98 , Pisa, IT, 14–16 Sep.
1998, LNCS 1503, pages 99–114. Springer-Verlag, 1998.

[398] P.M. Hill and F. Spoto. Freeness analysis through refinement. In A. Cortesi
and G. Filé, editors, Proc. 6th Int. Symp. SAS ’99 , Venice, IT, 22–24
Sep. 1999, LNCS 1694, pages 85–100. Springer-Verlag, 1999.

[399] M. Hind and A. Pioli. Assessing the effects of flow-sensitivity on pointer
alias analyses. In G. Levi, editor, Proc. 5th Int. Symp. SAS ’98 , Pisa,
IT, 14–16 Sep. 1998, LNCS 1503, pages 57–81. Springer-Verlag, 1998.

[400] R. Hindley. The principal type-scheme of an object in combinatory logic.
Trans. Amer. Math. Soc. , 146:29–60, 1969.

[401] P.-H. Ho and H. Wong-Toi. Automated analysis of an audio control proto
col. In P. Wolper, editor, Proc. 7th Int. Conf. CAV ’95 , Liège, BE,LNCS
939, pages 381–394. Springer-Verlag, 3–5 Jul. 1995.

[402] C.A.R. Hoare. An axiomatic basis for computer programming. Comm.
ACM , 12(10):576–580, Oct. 1969.

[403] C.A.R. Hoare and P.E. Lauer. Consistent and complementary formal
theories of the semantics of programming languages. Acta Informat. ,
3(2):135–153, 1974.

[404] K. Horiuchi and T. Kanamori. Polymorphic type inference in Prolog by
abstract interpretation. In K. Furukawa, H. Tanaka, and T. Fujisaki,
editors, Proc. 6th Conf. on Logic Programming ’87 , Tokyo, JP, LNCS
315, pages 195–214. Springer-Verlag, June 1987.

[405] N.R. Horspool and J. Vitek. Static analysis of PostScript code. In Proc.
1992 ICCL , Oakland, CA, pages 14–23. IEEE Comp. Soc. Press, 20–23
Apr. 1992.

[406] N.R. Horspool and J. Vitek. Static analysis of PostScript code. Comput.
Lang. , 19(2):65–78, 1993.

[407] S. Horwitz. Precise flow-insensitive may-alias analysis is NP-hard.
TOPLAS , 19(1):1–6, Jan. 1997.

[408] F. Huch. Verification of Erlang programs using abstract interpretation
and model checking. In Proc. 4th ACM SIGPLANInt. Conf. ICFP ’99,
ACM SIGPLAN Not. 34(9) , pages 261–272, Paris, FR, 27–29 Sep. 1999.
ACM Press.

[409] P. Hudak and J. Young. Higher-order strictness analysis in untyped
lambda calculus. In 12th POPL , pages 97–109. ACM Press, Jan. 1986.

[410] P. Hudak and J. Young. Collecting interpretations of expressions.
TOPLAS , 13(2):269–290, Apr. 1991.

[411] J. Hughes and J. Launchbury. Relational reversal of abstract interpreta
tions. J. Logic and Comp. , 2(4):465–509, Aug. 1992.

[412] J. Hughes and J. Launchbury. Reversing abstract interpretations. In B.
Krieg-Brückner, editor, Proc. 4th ESOP ’92 , Rennes, FR, LNCS 582,
pages 269–286. Springer-Verlag, 26–28 Feb. 1992.

55

[413] J. Hughes and J. Launchbury. Reversing abstract interpretations. Sci.
Comput. Programming, 22(3):307–326, June 1994.

[414] R.J.M. Hughes. Strictness detection in non-flat domains. In H. Ganzinger
and N.D. Jones, editors, Programs as Data Objects, Proceedings of
a Workshop, Copenhagen, DK, 17–19 Oct. 1985, LNCS 217, pages
112–135. Springer-Verlag, 1986.

[415] R.J.M. Hughes. Backwards analysis of functional programs. In D. Bjørner,
A.P. Ershov, and N.D. Jones, editors, Partial Evaluation and Mixed
Computation , Proceedings IFIP TC2 Workshop, Gl Avernæs, Ebberup,
DK, 18–24 Oct. 1987, pages 187–208. Elsevier, 1988.

[416] R.J.M. Hughes. Projections for polymorphic strictness analysis. In D.H.
Pitt, D.E. Rydeheard, P. Dybjer, A.M. Pitts, and A. Poigné , editors,
Category Theory and Computer Science, LNCS 389, pages 82–100.
Springer-Verlag, 1989.

[417] R.J.M. Hughes and J. Launchbury. Projections for polymorphic first-order
strictness analysis. MSCS , 2:301–326, 1993.

[418] S. Hughes. Compile-time garbage collection for higher-order functional lan
guages. J. Logic and Comp. , 2(4):483–464, Aug. 1992.

[419] S. Hunt. PERs generalize projections for strictness analysis. Tech. rep.
DOC 14/90, Department of Computing, Imperial College, London, GB,
Aug. 1990.

[420] S. Hunt. PERs generalize projections for strictness analysis. In S.L. Pey
ton Jones, G. Hutton, and C. Kehler Holst, editors, Functional Program
ming, Glasgow 1990 , Proc. 1990 Glasgow Workshop on Functional Pro
gramming, Ullapool, UK. Springer-Verlag and BCS, 13–15 Aug. 1990.

[421] S. Hunt. Frontiers and open sets in abstract interpretation. In Proc. 3rd
FPCA , volume 523 of LNCS , pages 1–13. ACM Press, Imperial College,
London, UK, 11-13 Sep. 1989.

[422] S. Hunt and D. Sands. Binding time analysis: A new PERspective. In P.
Hudak and N.D. Jones, editors, Proc. PEPM ’91 , Yale U., New Haven,
CT, US, 17–19 June 1991, ACM SIGPLAN Not. 26(9), pages 154–165.
ACM Press, Sep. 1991.

[423] P. Jouvelot J.-P. Talpin. Polymorphic type, region and effect inference.
Actes JTASPEFL ’91, Bordeaux, FR. BIGRE , 74:26–32, Oct. 1991.

[424] P. Jouvelot J.-P. Talpin. Polymorphic type, region and effect inference. J.
Func. Prog. , 2(3):245–271, Jul. 1992.

[425] I-P. Lin J. Tan. Recursive modes for precise analysis of logic programs.
In J. Małuszyński, editor, Proc. Int. Symp. ILPS ’1997 , Port Jefferson,
Long Island, NY, US, pages 277–290. MIT Press, 13–16 Oct. 1997.

[426] D. Jackson. Abstract model checking of infinite specifications. In M.
Naftalin, T. Denvir, and M. Bertran, editors, 2nd Int. Symp. of For
mal Methods Europe FME ’94: Industrial Benefit of Formal Methods,
Barcelona, ES, LNCS 873, pages 519–531. Springer-Verlag, Oct. 1994.

[427] D. Jacobs and A. Langen. Accurate and efficient approximation of variable
aliasing in logic programs. In E.L. Lusk and R.A. Overbeek, editors,

56

NACLP 1989, Volume 1 , Cleaveland, OH, US, pages 154–165. MIT
Press, 16–20 Oct. 1989.

[428] S. Jagannathan, P. Thiemann, S. Weeks, and A.K. Wright. Single and
loving it: Must-alias analysis for higher-order languages. In 25th POPL ,
pages 329–341, San Diego, CA, US, 19–21 Jan. 1998. ACM Press.

[429] S. Jagannathan, S. Weeks, and A.K. Wright. Type-directed flow analysis
for typed intermediate languages. In P. Van Hentenryck, editor, Proc.
4th Int. Symp. SAS ’97 , Paris, FR, 8–10 Sep. 1997, LNCS 1302, pages
232–249. Springer-Verlag, 1997.

[430] G. Janssens and M. Bruynooghe. Deriving descriptions of possible val
ues of program variables by means of abstract interpretation. J. Logic
Programming, 13(1,2,3&4):205–258, 1992. published version of (?).

[431] G. Janssens, M. Bruynooghe, and V. Dumortier. A blueprint for an ab
stract machine for abstract interpretation of (constraint) logic pro
grams. In J.W. Lloyd, editor, Proc. Int. Symp. ILPS ’1995 , Portland,
OR, US, pages 336–350. MIT Press, 4–7 Dec. 1995.

[432] G. Janssens and W. Simoens. On the implementation of abstract inter
pretation systems for (constraint) logic programming. In P.A. Fritzson,
editor, Proc. 5th Int. Conf. CC ’94 , Edinburg, UK, LNCS 786, pages
172–187. Springer-Verlag, Apr. 1994.

[433] B. Jeannet, N. Halbwachs, and P. Raymond. Dynamic partitioning in
analyses of numerical properties. In A. Cortesi and G. Filé, editors,
Proc. 6th Int. Symp. SAS ’99 , Venice, IT, 22–24 Sep. 1999, LNCS
1694, pages 18–38. Springer-Verlag, 1999.

[434] T.P. Jensen. Strictness analysis in logical form. In J. Hughes, editor, Proc.
5th FPCA , LNCS 523, pages 352–366. Springer-Verlag, Aug. 1991.

[435] T.P. Jensen. Axiomatising uniform properties of recursive data structures.
In M. Billaud, P. Castéran, M.-M. Corsini, K. Musumbu, and A. Rauzy,
editors, Proc. 2nd Int. Work. WSA ’92, Bordeaux, FR. BIGRE , volume
81–82, pages 144–151. IRISA, Rennes, FR, 23–25 Sep. 1992.

[436] T.P. Jensen. Disjunctive strictness analysis. In Proc. 7th LICS , pages
174–185. IEEE Comp. Soc. Press, 1992.

[437] T.P. Jensen. Clock analysis of synchronous dataflow programs. In Proc.
PEPM ’95 , La Jolla, CA, pages 156–167. ACM Press, 21–23 June 1995.

[438] T.P. Jensen. Disjunctive program analysis for algebraic data types.
TOPLAS , 19(5):751–803, Sep. 1997.

[439] T.P. Jensen. Inference of polymorphic and conditional strictness proper
ties. In 25th POPL , pages 209–221, San Diego, CA, US, 19–21 Jan.
1998. ACM Press.

[440] C. Consel J.M. Ashley. Fixpoint computation for polyvariant static analy
ses of higher-order applicative programs. TOPLAS , 16(5):1331–1448,
Sep. 1994.

[441] N. Jø rgensen. Chaotic fixpoint iteration guided by dynamic dependency.
In P. Cousot, M. Falaschi, G. Filé , and A. Rauzy, editors, Proc. 3rd Int.

57

Work. WSA ’93 , Padova, IT, LNCS 724, pages 27–44. Springer-Verlag,
22–24 Sep. 1993.

[442] T. Johnsson. Detecting when call-by-value can be used instead of
call-by-need. Res. rep. LPM MEMO 14, Laboratory for Programming
Methodology, Department of Computer Science, Chalmers University
of Technology, S-412 96 Göteborg, SE, Oct. 1981.

[443] N.D. Jones. Abstract interpretation and partial evaluation in functional
and logic programming. In M. Bruynooghe, editor, Proc. Int. Symp.
ILPS ’1994 , pages 17–22. MIT Press, 13–17 Nov. 1994.

[444] N.D. Jones. An introduction to partial evaluation. ACM Comput. Surv. ,
28(3):480–504, Sep. 1996.

[445] N.D. Jones. Combining abstract interpretation and partial evaluation
(brief overview). In P. Van Hentenryck, editor, Proc. 4th Int. Symp.
SAS ’97 , Paris, FR, 8–10 Sep. 1997, LNCS 1302, pages 396–405.
Springer-Verlag, 1997.

[446] N.D. Jones, Gomard C.K. , Sestoft P. , L.O. (Andersen, and T.) Mogensen.
Partial Evaluation and Automatic Program Generation. Int. Series in
Computer Science. Prentice-Hall, June 1993.

[447] N.D. Jones and S.S. Muchnich. Flow analysis and optimization of
LISP-like structures. In 6th POPL , pages 244–256, San Antonio, TX,
1979. ACM Press.

[448] N.D. Jones and S.S. Muchnick. Complexity of flow analysis, inductive as
sertion synthesis and a language due to Dijkstra. In S.S. Muchnick and
N.D. Jones, editors, Program Flow Analysis: Theory and Applications,
chapter 12, pages 380–393. Prentice-Hall, 1981.

[449] N.D. Jones and A. Mycroft. Data flow analysis of applicative programs
using minimal function graphs: abridged version. In 30th POPL , pages
296–306, St. Petersburg Beach, FL, 1986. ACM Press.

[450] N.D. Jones and M. Rosendahl. Higher-order minimal function graphs. J.
Func. and Logic Prog. , 1997(2), 1997.

[451] S.B. Jones and D. Le Métayer. A new method for strictness analysis on
non-flat domains. In K. Davis and J. Hughes, editors, Functional Pro
gramming, Glasgow 1989 , Proc. 1989 Glasgow Workshop, Fraserburgh,
UK. Springer-Verlag and BCS, 1–11 Aug. 1989.

[452] N. Jørgensen. Finding fixpoints in finite function spaces using needed
ness analysis and chaotic iteration. In B. Le Charlier, editor, Proc. 1st
Int. Symp. SAS ’94 , Namur, BE, 20–22 Sep. 1994, LNCS 864, pages
329–345. Springer-Verlag, 1994.

[453] N. Jørgensen, K. Marriott, and S. Michaylov. Some global compile-time
optimizations for CLP(R). In K. Ueda V.A. Saraswat, editor, Proc. 1991
Int. Symp. ISLP ’91 , San Diego, CA, US, pages 420–434. MIT Press,
28 Oct. – 1 Nov. 1997.

[454] P. Jouvelot. Semantic parallelization: a practical exercise in abstract inter
pretation. In 14th POPL , pages 39–48, Munich, DE, 21–23 Jan. 1987.
ACM Press.

58

[455] P. Jouvelot and D.K. Gifford. Algebraic reconstruction of types and effects.
In 18th POPL , pages 303–310, Orlando, FL, 1991. ACM Press.

[456] M.H. Sørensen K. Nielsen. Call-by-name CPS-translation as a bind
ing-time improvement. In A. Mycroft, editor, Proc. 2nd Int. Symp.
SAS ’95 , Glasgow, UK, 25–27 Sep. 1995, LNCS 983, pages 296–313.
Springer-Verlag, 1995.

[457] G. Kahn. Natural semantics. In K. Fuchi and M. Nivat, editors, Program
ming of Future Generation Computers, pages 237–258. Elsevier, 1988.

[458] S. Kalogeropulos. Identifying the available parallelism using static analy
sis. In J. Volkert, editor, Proc. 2nd Int. ACPC Conf. on Parallel Com
putation, pages 151–165, Gmunden, AT, Oct. 1993, LNCS 734, 1993.
Springer-Verlag.

[459] T. Kanamori, K. Horiuchi, and T. Kawamura. Detecting termination of
logic programs based on abstract hybrid interpretation. Tech. rep. 398,
ICOT, Tokyo, JP, 1987.

[460] M.T. Kandemir, P. Banerjee, A.N. Choudhary, J. Ramanujam, and
N. Shenoy. A global communication optimization technique based on
data-flow analysis and linear algebra. TOPLAS , 21(6):1251–1297, Nov.
1999.

[461] M. Karr. Affine relationships among variables of a program. Acta Infor
mat. , 6:133–151, 1976.

[462] P. Kelb. Model checking and abstraction: A framework approximating
both truth and failure information. Tech. rep. , University of Oldenburg,
1994.

[463] R.M. Keller. Formal verification of parallel programs. Comm. ACM ,
19(7):371–384, Jul. 1977.

[464] A.D. Kelly, A.D. Macdonald, K. Marriott, P.J. Stuckey, and R.H.C. Yap.
Effectiveness of optimizing compilation for CLP(R). In M.J. Maher,
editor, Proc. JICSLP ’96 , Bonn, DE, pages 37–51. MIT Press, 2–6 Sep.
1996.

[465] Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar. Symbolic
model checking with rich assertional languages. In O. Grumberg, editor,
Proc. 9th Int. Conf. CAV ’97 , Haifa, IL,LNCS 1254, pages 424–435.
Springer-Verlag, 22–25 Jul. 1997.

[466] Y. Kesten and A. Pnueli. Modularization and abstraction: The keys to
formal verification. In L. Brim, J. Gruska, and J. Zlatuska, editors,
23rd Int. Symp. MFCS ’98 , LNCS 1450, pages 54–71. Springer-Verlag,
1998.

[467] Y. Kesten and A. Pnueli. Control and data abstraction: The cornerstones
of practical formal verification. STTT , 2(4):328–342, 2000.

[468] G. Kildall. A unified approach to global program optimization. In 1st
POPL , pages 194–206, Boston, MA, Oct. 1973. ACMpress.

[469] A. King and P. Sober. Schedule analysis of concurrent logic programs.
Tech. rep. CSTR 90-22, Department of Electronics and Computer Sci
ence, University of Southampton, Southampton, UK, 1990.

59

[470] A. King and P. Sober. Producer and consumer analysis of concurrent logic
programs. Tech. rep. CSTR 91-8, Department of Electronics and Com
puter Science, University of Southampton, Southampton, GB, 1991.

[471] A. King and . Soper. Schedule analysis of concurrent logic programs.
In K.R. Apt, editor, Proc. JICSLP ’92 , Washington, DC, US, pages
478–492. MIT Press, Nov. 1992.

[472] N. Kobayashi, M. Nakade, and A. Yonezawa. Static analysis of commu
nication for asynchronous concurrent programming languages. In A.
Mycroft, editor, Proc. 2nd Int. Symp. SAS ’95 , Glasgow, UK, 25–27
Sep. 1995, LNCS 983, pages 225–242. Springer-Verlag, 1995.

[473] J. Köller and M. Mohnen. A new class of functions for abstract inter
pretation. In A. Cortesi and G. Filé, editors, Proc. 6th Int. Symp.
SAS ’99 , Venice, IT, 22–24 Sep. 1999, LNCS 1694, pages 248–263.
Springer-Verlag, 1999.

[474] D. Kozen, J. Palsberg, and M.I. Schwartzbach. Efficient inference of partial
types. J. Comput. System Sci. , 49(2):306–324, 1994.

[475] D. Kozen, J. Palsberg, and M.I. Schwartzbach. Efficient recursive subtyp
ing. MSCS , 5(1):113–125, 1995.

[476] S. Kripke. A semantical analysis of modal logic I: normal modal proposi
tional calculi. Z. Math. Logik Grundlagen Math. , 9:67–96, 1963.

[477] T.M. Kuo and P. Mishra. On strictness and its analysis. In 14th POPL ,
pages 144–155, Munchen, DE, 1987. ACM Press.

[478] T.M. Kuo and P. Mishra. Strictness analysis: A new perspective based on
type inference. In Proc. 3rd FPCA , pages 260–272. ACM Press, Sep.
1989.

[479] P. Lacan, J.N. Monfort, L.V.Q. Ribal, A. Deutsch, and G. Gonthier. The
software reliability verification process: The Ariane 5 example. In Pro
ceedings DASIA 98 – DAta Systems In Aerospace , Athens, GR. ESA
Publications, SP-422, 25–28 May 1998.

[480] J. Launchbury. Projections for specialization. In D. Bjørner, A.P. Ershov,
and N.D. Jones, editors, Partial Evaluation and Mixed Computation ,
Proceedings IFIP TC2 Workshop, Gl Avernæs, Ebberup, 18–24 Oct.
1987, DK, pages 299–315. Elsevier, 1988.

[481] J. Launchbury. Dependent sums express separation of binding times.
In K. Davis and J. Hughes, editors, Functional Programming,
Glasgow 1989 , Proc. 1989 Glasgow Workshop, Fraserburgh, UK.
Springer-Verlag and BCS, 238–253 Aug. 1989.

[482] J. Launchbury. Projection Factorizations in Partial Evaluation, volume 1
of Distinguished Dissertations in Computer Science. Cambridge U.
Press, 1991.

[483] B. Le Charlier, O. Degimbe, L. Michel, and P. Van Hentenryck. Optimiza
tion techniques for general purpose fixpoint algorithms — practical effi
ciency for abstract interpretation of Prolog. In P. Cousot, M. Falaschi,
G. Filé , and A. Rauzy, editors, Proc. 3rd Int. Work. WSA ’93 , Padova,
IT, LNCS 724, pages 15–26. Springer-Verlag, 22–24 Sep. 1993.

60

[484] B. Le Charlier, K. Musumbu, and P. Van Hentenryck. A generic abstract
interpretation algorithm and its complexity analysis. In K. Furukawa,
editor, Proc. ICLP ’91 , Paris, FR, pages 64–78. MIT Press, 24–28 June
1991.

[485] B. Le Charlier and P. Van Hentenryck. Experimental evaluation of a
generic abstract interpretation algorithm for Prolog. In Proc. 1992
ICCL , Oakland, CA, pages 137–146. IEEE Comp. Soc. Press, 20–23
Apr. 1992.

[486] C. Lecoutre, S. Merchez, F. Boussemart, and É. Gr^goire. A CSP ab
straction framework. In B.Y. Choueiry and T. Walsh, editors, Proc. 4th
Int. Symp. SARA ’2000 , Horseshoe Bay, TX, US, LNAI 1864, pages
164–184. Springer-Verlag, 26–29 Jul. 2000.

[487] K.R.M. Leino and G. Nelson. An extended static checker for Modula-3. In
K. Koskimies, editor, Proc. 7th Int. Conf. CC ’98 , Lisbon, PT, LNCS
1383, pages 302–305. Springer-Verlag, 28 Mar. – 4 Apr. 1998.

[488] X. Leroy and F. Rouaix. Security properties of typed applets. In 25th
POPL , pages 391–403, San Diego, CA, US, 19–21 Jan. 1998. ACM
Press.

[489] M. Leuschel. Program specialisation and abstract interpretation recon
ciled. In J. Jaffar, editor, JICSLP ’98, Workshop on Concurrent and
Parallel Implementations, Manchester, UK, pages 220–234. MIT Press,
15–19 June 1992.

[490] M. Leuschel. On the power of homeomorphic embedding for online ter
mination. In G. Levi, editor, Proc. 5th Int. Symp. SAS ’98 , Pisa, IT,
14–16 Sep. 1998, LNCS 1503, pages 200–214. Springer-Verlag, 1998.

[491] T. Lev-Ami and M. Sagiv. TVLA: A system for implementing static analy
ses. In J. Palsberg, editor, Proc. 7th Int. Symp. SAS ’2000 , Santa Bar
bara, CA, US, LNCS 1824, pages 280–301. Springer-Verlag, 29 June –
1 Jul. 2000.

[492] G. Levi and F. Spoto. Non pair-sharing and freeness analysis through
linear refinement. In Proc. PEPM ’00, ACM SIGPLAN Not. 34(11) ,
Boston, MA, US, 22–23 Jan. 2000, pages 202–213. ACM Press, Nov.
1999.

[493] G. Levi and P. Volpe. Derivation of proof methods by abstract interpreta
tion. In C. Palamidessi, H. Glaser, and K. Meinke, editors, Proc. 10th
Int. Symp. PLILP ’98 , pages 102–117. Springer-Verlag, Pisa, IT, 16–18
Sep. 1998, LNCS 1490, 1998.

[494] Y.A. Liu and S.D. Stroller. Eliminating dead code on recursive data. In A.
Cortesi and G. Filé, editors, Proc. 6th Int. Symp. SAS ’99 , Venice, IT,
22–24 Sep. 1999, LNCS 1694, pages 179–193. Springer-Verlag, 1999.

[495] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Prop
erty preserving abstractions for the verification of concurrent systems.
Formal Methods in System Design, 6(1), 1995.

[496] D.E. Long, A. Browne, E.M. Clarke, S. Jha, and W.R. Marrero. An im
proved algorithm for the evaluation of fixpoint expressions. In D.L. Dill,

61

editor, Proc. 6th Int. Conf. CAV ’94 , Stanford, CA, US, LNCS 818,
pages 338–350. Springer-Verlag, 21–23 June 1994.

[497] D.E. Long, A. Browne, E.M. Clarke, S. Jha, and W.R. Marrero. An im
proved algorithm for the evaluation of fixpoint expressions. Theoret.
Comput. Sci. , 178(1-2):237–255, 1997.

[498] L. Lu. A mode analysis of logic programs by abstract interpretation. In
D. Bjørner, M. Broy, and I.V. Pottosin, editors, Proc. Perspectives of
System Informatics, 2nd Intl. Andrei Ershov Memorial Conf. , Akadem
gorodok, Novosibirsk, RU, LNCS 1181, pages 362–373. Springer-Verlag,
25–28 June 1996.

[499] I. Mackie. Static analysis of interaction nets for distributed implemen
tations. In P. Van Hentenryck, editor, Proc. 4th Int. Symp. SAS ’97 ,
Paris, FR, 8–10 Sep. 1997, LNCS 1302, pages 217–231. Springer-Verlag,
1997.

[500] Z. Manna, A. Browne, H. Sipma, and T.E. Uribe. Visual abstractions for
temporal verification. In A.M. Haeberer, editor, Proc. 7th Int. Conf.
AMAST ’98 , Amazonia, BR, 4–8 Jan. 1999, LNCS 1548, pages 28–41.
Springer-Verlag, 1999.

[501] E. Marchiori and F. Teusink. Proving termination of logic programs with
delay declarations. In J.W. Lloyd, editor, Proc. Int. Symp. ILPS ’1995 ,
Portland, OR, US, pages 447–461. MIT Press, 4–7 Dec. 1995.

[502] T. Margaria and B. Steffen, editors. A Tool for Proving Invariance Prop
erties of Concurrent Systems Automatically, Passau, DE, LNCS 1055.
Springer-Verlag, 27–29 Mar. 1996.

[503] T.J. Marlowe and B.G. Ryder. Properties of data flow frameworks: A
unified model. Acta Informat. , 28:121–163, 1990.

[504] K. Marriott. Frameworks for abstract interpretation. Acta Informat. ,
30:103–129, 1993.

[505] K. Marriott and H. Søndergaard. On propagation-based analysis of logic
programs. In S. Michaylov and W. Winsborough, editors, Proc. Int.
Symp. ILPS ’1993 Workshop on Global Compilation, Vancouver, CA ,
pages 47–65, 1993.

[506] K. Marriott and P.J. Stuckey. Approximating interaction between linear
arithmetic constraints. In M. Bruynooghe, editor, Proc. Int. Symp.
ILPS ’1994 , Ithaca, NY, US, pages 571–585. MIT Press, 13–17 Nov.
1994.

[507] F. Masdupuy. Using abstract interpretation to detect array data depen
dencies. In Proc. Int. Symp. on Supercomputing, pages 19–27, Fukuoka,
JP, Nov. 1991. Kyushu U. Press.

[508] F. Masdupuy. Array operations abstraction using semantic analysis of
trapezoid congruences. In Proc. ACM Int. Conf. on Supercomputing,
ICS ’92 , pages 226–235, Washington D.C. , Jul. 1992.

[509] F. Masdupuy. Semantic analysis of interval congruences. In D. Bjørner, M.
Broy, and I.V. Pottosin, editors, Proc. FMPA , Akademgorodok, Novosi

62

birsk, RU, LNCS 735, pages 142–155. Springer-Verlag, 28 June – 2 Jul.
1993.

[510] L. Mauborgne. Abstract interpretation using TDGs. In B. Le Charlier,
editor, Proc. 1st Int. Symp. SAS ’94 , Namur, BE, 20–22 Sep. 1994,
LNCS 864, pages 363–379. Springer-Verlag, 1994.

[511] L. Mauborgne. Abstract interpretation using typed decision graphs. Sci.
Comput. Programming , 31(1):91–112, May 1998.

[512] L. Mauborgne. Binary decision graphs. In A. Cortesi and G. Filé, editors,
Proc. 6th Int. Symp. SAS ’99 , Venice, IT, 22–24 Sep. 1999, LNCS 1694,
pages 101–116. Springer-Verlag, 1999.

[513] L. Mauborgne. Representation of Sets of Trees for Abstract Interpretation.
Phd thesis in computer science, École polytechnique, Palaiseau, FR, 25
Nov. 1999.

[514] L. Mauborgne. Tree schemata and fair termination. In J. Palsberg, editor,
Proc. 7th Int. Symp. SAS ’2000 , Santa Barbara, CA, US, LNCS 1824,
pages 302–321. Springer-Verlag, 29 June – 1 Jul. 2000.

[515] L. Mauborgne. Improving the representation of infinite trees to deal with
sets of trees. In G. Smolka, editor, Programming Languages and Sys
tems, Proc. 9th ESOP ’2000 , Berlin, DE, LNCS 1782, pages 275–289.
Springer-Verlag, Mar. – Apr. 2000.

[516] H.G. Mayer and M. Wolfe. Interprocedural alias analysis: Implementa
tion and empirical results. Soft.–Pract. & Exp. , 23(11):1201–1233, Nov.
1993.

[517] K.L. McMillan. Symbolic Model Checking: An Approach to the State Ex
plosion Problem. Kluwer Acad. Pub. , 1993.

[518] T.S. McNerney. Verifying the correctness of compiler transformations on
basic blocks using abstract interpretation. In P. Hudak and N.D. Jones,
editors, Proc. PEPM ’91 , Yale U., New Haven, CT, US, 17–19 June
1991, ACM SIGPLAN Not. 26(9), pages 106–115. ACM Press, Sep.
1991.

[519] C.S. Mellish. The automatic generation of mode Dec. laration for Pro
log programs. DAI research paper 163, Department of Artificial Intelli
gence, University of Edinburgh, Edinburg, UK, 1981.

[520] C.S. Mellish. Some global optimizations for a Prolog program. J. Logic
Programming , 2(1):43–66, 1985.

[521] C.S. Mellish. Abstract interpretation of Prolog programs. In E. Shapiro,
editor, 3rd ICLP ’86 , London, GB, LNCS 225, pages 463–474.
Springer-Verlag, 14–18 Jul. 1986.

[522] C.S. Mellish. Abstract interpretation of Prolog programs. In S. Abramsky
and C. Hankin, editors, Abstract Interpretation of Dec. larative Lan
guages, pages 181–198. Ellis Horwood, 1987.

[523] N. Mercouroff. An algorithm for analyzing communicating processes. In
S. Brookes, M. Main, A. Melton, M. Mislove, and D. Schmidt, editors,
Proc. 7th Int. Conf. on Mathematical Foundations of Programming Se

63

mantics, Pittsburgh, PA, pages 312–325. Springer-Verlag, 25–28 Mar.
1991.

[524] S. Michaylov and B. Pippin. Optimizing compilation of linear arithmetic
in a class of constraint logic programs. In M. Bruynooghe, editor, Proc.
Int. Symp. ILPS ’1994 , Ithaca, NY, US, pages 586–600. MIT Press,
13–17 Nov. 1994.

[525] S.P. Midkiff. Dependence analysis in parallel loops with i ± k subscripts.
In C.-H. Huang, P. Sadayappan, U. Banerjee, D. Gelernter, A. Nicolau,
and D.A. Padua, editors, Proc. 8th Int. Work. LCPC ’95 , Columbus,
OH, US, 10–12 Aug. 1995, LNCS 1033, pages 331–345. Springer-Verlag,
1996.

[526] R. Milner. A theory of polymorphism in programming. J. Comput. System
Sci. , 17(3):348–375, Dec. 1978.

[527] R. Milner and M. Tofte. Co-induction in relational semantics. Theoret.
Comput. Sci. , 87:209–220, 1991.

[528] M. Minasi. The Software Conspiracy: What You Don’t Know About the
Software Industry and How It’s Taking Control of Your Life. Mc
Graw-Hill, 1999.

[529] J.C. Mitchell. Type systems for programming languages. In J. van
Leeuwen, editor, Formal Models and Semantics, volume B of Handbook
of Theoretical Computer Science, chapter 8, pages 365–458. Elsevier,
1990.

[530] T.Æ . Mogensen. A semantics-based determinacy analysis for prolog with
cut. In D. Bjørner, M. Broy, and I.V. Pottosin, editors, Proc. Per
spectives of System Informatics, 2nd Intl. Andrei Ershov Memorial
Conf. , Akademgorodok, Novosibirsk, RU, LNCS 1181, pages 374–385.
Springer-Verlag, 25–28 June 1996.

[531] M. Mohnen. Efficient closure utilisation by higher-order inheritance analy
sis. In A. Mycroft, editor, Proc. 2nd Int. Symp. SAS ’95 , Glasgow, UK,
25–27 Sep. 1995, LNCS 983, pages 261–278. Springer-Verlag, 1995.

[532] U. Möncke and R. Wilhelm. Grammar flow analysis. In H. Alblas and
B. Melichar, editors, PROC Attribute Grammars, Applications and
Systems, Int. Summer School SAGA , Prague, CZ, LNCS 545, pages
151–186. Springer-Verlag, 1991.

[533] D. Monniaux. Abstracting cryptographic protocols with tree automata. In
A. Cortesi and G. Filé, editors, Proc. 6th Int. Symp. SAS ’99 , Venice,
IT, 22–24 Sep. 1999, LNCS 1694, pages 149–163. Springer-Verlag, 1999.

[534] D. Monniaux. Abstract interpretation of probabilistic semantics. In J. Pals
berg, editor, Proc. 7th Int. Symp. SAS ’2000 , Santa Barbara, CA, US,
LNCS 1824, pages 322–339. Springer-Verlag, 29 June – 1 Jul. 2000.

[535] B. Monsuez. Polymorphic typing by abstract interpretation. In R. Shya
masundar, editor, Proc. 12th FST & TCS , pages 127–138, New Delhi,
IN, 18–20 Dec. 1992, LNCS 652, 1992. Springer-Verlag.

[536] B. Monsuez. Polymorphic types and widening operators. In P. Cousot, M.
Falaschi, G. Filé , and A. Rauzy, editors, Proc. 3rd Int. Work. WSA ’93 ,

64

Padova, IT, LNCS 724, pages 267–281. Springer-Verlag, 22–24 Sep.
1993.

[537] B. Monsuez. Polymorphic typing for call-by-name semantics. In D.
Bjørner, M. Broy, and I.V. Pottosin, editors, Proc. FMPA , Akadem
gorodok, Novosibirsk, RU, LNCS 735, pages 156–169. Springer-Verlag,
28 June – 2 Jul. 1993.

[538] B. Monsuez. System F and abstract interpretation. In A. Mycroft, editor,
Proc. 2nd Int. Symp. SAS ’95 , Glasgow, UK, 25–27 Sep. 1995, LNCS
983, pages 279–295. Springer-Verlag, 1995.

[539] B. Monsuez. Using abstract interpretation to define a strictness type infer
ence system. In Proc. PEPM ’95 , La Jolla, CA, pages 122–133. ACM
Press, 21–23 June 1995.

[540] G. Morrisett, D. Tarditi, P. Cheng, C. Stone, R. Harper, and P. Lee. The
TIL/ML compiler: Performance and safety through types. In Workshop
on Compiler Support for Systems Software, WCSSS ’96 , Feb. 1996.

[541] P.D. Mosses. Denotational semantics. In J. van Leeuwen, editor, Formal
Models and Semantics , volume B of Handbook of Theoretical Computer
Science , chapter 11, pages 575–631. Elsevier, 1990.

[542] C. Mossin. Exact flow analysis. In P. Van Hentenryck, editor, Proc. 4th Int.
Symp. SAS ’97 , Paris, FR, 8–10 Sep. 1997, LNCS 1302, pages 250–264.
Springer-Verlag, 1997.

[543] C. Mossin. Higher-order value flow graphs. In H. Glaser, P.H. Hartel, and
H. Kuchen, editors, Proc. 9th Int. Symp. PLILP ’97 , pages 159–173.
Springer-Verlag, Southampton, UK, 3–5 Sep. 1997, LNCS 1292, 1997.

[544] M. Müller, T. Glaß , and K. Stroetmann. Automated modular termina
tion proofs for real Prolog programs. In R. Cousot and D.A. Schmidt,
editors, Proc. 3rd Int. Symp. SAS ’96 , Aachen, DE, 24–26 Sep. 1996,
LNCS 1145, pages 220–237. Springer-Verlag, 1996.

[545] R. Muller and Y. Zhou. Abstract interpretation in weak powerdomains.
LISP Pointers , 5(1):119–126, Jan. – Mar. 1992.

[546] M. Müller-Olm, D.A. Schmidt, and B. Steffen. Model checking: a tutorial
introduction. In A. Cortesi and G. Filé, editors, Proc. 6th Int. Symp.
SAS ’99 , Venice, IT, 22–24 Sep. 1999, LNCS 1694, pages 330–354.
Springer-Verlag, 1999.

[547] K. Muthukumar and M. Hermenegildo. Combined determination of shar
ing and freeness of program variables through abstract interpretation.
In K. Furukawa, editor, Proc. 8th ICLP ’91 , Paris, FR, pages 49–63.
MIT Press, 24–28 June 1991.

[548] K. Muthukumar and M. Hermenegildo. Compile-time derivation of vari
able dependency using abstract interpretation. J. Logic Programming,
13(2–3):315–347, Jul. 1992.

[549] A. Mycroft. The theory and practice of transforming call-by-need into
call-by-value. In B. Robinet, editor, Proc. 4th Int. Symp. on Pro
gramming, Paris, FR, 22–24 Apr. 1980, LNCS 83, pages 270–281.
Springer-Verlag, 1980.

65

[550] A. Mycroft. Abstract Interpretation and Optimising Transformations for
Applicative Programs. Ph.D. Dissertation, CST-15-81, Department of
Computer Science, University of Edinburgh, Edinburg, UK, Dec. 1981.

[551] A. Mycroft. Polymorphic type schemes and recursive definitions. In M.
Paul and B. Robinet, editors, Proc. 6th Int. Symp. on Programming ,
Toulouse, FR, Apr. 1984, LNCS 167, pages 217–228. Springer-Verlag,
1984.

[552] A. Mycroft. Incremental polymorphic type checking with update. In A.
Nerode and M. Taitslin, editors, Proc. LFCS – Tver’92 , LNCS 620.
Springer-Verlag, 1992.

[553] A. Mycroft. Completeness and predicate-based abstract interpretation.
In Proc. PEPM ’93 , Copenhagen, DK, 14–16 June 1993, pages 80–87.
ACM Press, 1993.

[554] A. Mycroft and N.D. Jones. A relational framework for abstract inter
pretation. In N.D. Jones and H. Ganzinger, editors, Programs as Data
Objects, Proceedings of a Workshop, Copenhagen, DK, 17-19 Oct. 1985,
LNCS 215, pages 156–171. Springer-Verlag, 1986.

[555] A. Mycroft and F. Nielson. Strong abstract interpretation using power
domains (extended abstract). In J. Diaz, editor, 10th ICALP, Barcelona,
ES , LNCS 154, pages 536–547. Springer-Verlag, 18–22 Jul. 1983.

[556] A. Mycroft and M. Rosendahl. Minimal function graphs are not instru
mented. In M. Billaud, P. Castéran, M.-M. Corsini, K. Musumbu, and
A. Rauzy, editors, Proc. 2nd Int. Work. WSA ’92, Bordeaux, FR. BI
GRE, volume 81–82, pages 60–67. IRISA, Rennes, FR, 23–25 Sep. 1992.

[557] A. Mycroft and K.L. Solberg. Uniform PERs and comportment analysis.
In M.V. Hermenegildo and S.D. Swierstra, editors, Proc. 7th Int. Symp.
PLILP ’95 , Utrecht, NL, 20–22, Sep. 1995, LNCS 982, pages 169–187.
Springer-Verlag, 1995.

[558] P. Naur. Proofs of algorithms by general snapshots. BIT , 6:310–316, 1966.
[559] G.C. Necula. Proof-carrying code. In 24th POPL , pages 106–119, Paris,

FR, Jan. 1997. ACM Press.
[560] M. Neuberger and P. Mishra. A precise relationship between the deduc

tive power of forward and backward strictness analysis. LISP Pointers,
5(1):127–138, Jan. – Mar. 1992.

[561] F. Nielson. A denotational framework for data flow analysis. Acta Infor
mat. , 18:265–287, 1982.

[562] F. Nielson. Program transformation in a denotational setting. TOPLAS ,
7(3):359–379, 1985.

[563] F Nielson. Tensor product generalize the relational data flow analysis
method. In Proc. 4th Hungarian Computer Science Conference, pages
211–225, 1985.

[564] F. Nielson. Abstract interpretation of denotational definions (a survey).
In B. Monien and G. Vidal-Naquet, editors, Proc. 3rd Annual Symp.
STACS ’86 , Orsay, FR, LNCS 210, pages 1–20. Springer-Verlag, 16–18
Jan. 1986.

66

[565] F. Nielson. Strictness analysis and denotational abstract interpretation.
In 14th POPL , pages 120–131, Munchen, DE, 1987. ACM Press.

[566] F. Nielson. Strictness analysis and denotational abstract interpretation.
Inform. and Comput. , 76(1):29–92, 1988.

[567] F. Nielson and H. Riis Nielson. Finiteness conditions for fixed point itera
tion. LISP Pointers, 5(1):96–108, Jan. – Mar. 1992.

[568] F. Nielson and H. Riis Nielson. Type and effect systems. In E.-R. Olderog
and B. Steffen, editors, Correct System Design, Recent Insight and Ad
vances, (to Hans Langmaack on the occasion of his retirement from his
professorship at the University of Kiel) , pages 114–136. Springer-Verlag,
1999.

[569] H.R. Nielson and F. Nielson. Automatic binding time analysis for a typed
λ-calculus. Sci. Comput. Programming , 10:139–176, 1988.

[570] H.R. Nielson and F. Nielson. Using transformmations in the implementa
tion of higher-order functions. J. Func. Prog. , 1(4):459–494, 1991.

[571] H.R. Nielson and F. Nielson. Bounded fixed-point iteration. J. Logic and
Comp. , 2(4):437–464, Aug. 1992.

[572] H.R. Nielson and F. Nielson. Bounded fixed point iteration (extended ab
stract). In 19th POPL , pages 71–82, Albuquerque, NM, 1992. ACM
Press.

[573] H.R. Nielson and F. Nielson. The tensor product in Wadler’s analysis of
lists. In B. Krieg-Brückner, editor, Proc. 4th ESOP ’92 , Rennes, FR,
LNCS 582, pages 351–370. Springer-Verlag, 26–28 Feb. 1992.

[574] H.R. Nielson and F. Nielson. Finiteness conditions for strictness analy
sis. In P. Cousot, M. Falaschi, G. Filé , and A. Rauzy, editors, Proc.
3rd Int. Work. WSA ’93 , Padova, IT, LNCS 724, pages 194–205.
Springer-Verlag, 22–24 Sep. 1993.

[575] T. Nipkow and D. von Oheimb. Javalight is type-safe – definitely. In 25th
POPL , pages 161–170, San Diego, CA, US, 19–21 Jan. 1998. ACM
Press.

[576] M. Nordin, T. Lindgren, and H. Millroth. IGOR: A tool for developing
Prolog dataflow analyzers. In A. Mycroft, editor, Proc. 2nd Int. Symp.
SAS ’95 , Glasgow, UK, 25–27 Sep. 1995, LNCS 983, pages 420–421.
Springer-Verlag, 1995.

[577] M. Ogawa. Automatic verification based on abstract interpretation. In A.
Middeldorp and T. Sato, editors, 4th FLOPS ’99 , Tsukuba, JP, 11–13
Nov. 1999, LNCS 1722, pages 131–146. Springer-Verlag, 1999.

[578] P.M. O’Keefe and J. Palsberg. A type system equivalent to flow analysis.
In 22nd POPL , pages 367–378, San Francisco, CA, 1995. ACM Press.

[579] P.M. O’Keefe and J. Palsberg. A type system equivalent to flow analysis.
TOPLAS , 17(4):576–599, 1995.

[580] A. Olivero, J. Sifakis, and S. Yovine. Using abstractions for the verifica
tion of linear hybrid systems. In D.L. Dill, editor, Proc. 6th Int. Conf.
CAV ’94 , Stanford, CA, US, LNCS 818, pages 81–94. Springer-Verlag,
21–23 June 1994.

67

[581] M.-A. Oros and P.Y. Gloess. Inheritance in Datalog. In M. Ducassé ,
B. Le Charlier, Y.-J. Lin, and L.Ü. Yalçinalp, editors, Proc. 5th Work
shop LPE 1993 , Vancouver, BC, CA, pages 52–58. IRISA, Campus de
Beaulieu, F-35042 Rennes Cedex, FR, 29–30 Oct. 1993.

[582] S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M.K. Srivas. PVS: Com
bining specification, proof checking, and model checking. In R. Alur and
T.A. Henzinger, editors, Proc. 8th Int. Conf. CAV ’96 , New Brunswick,
NJ, US, LNCS 1102, pages 411–414. Springer-Verlag, 31 Jul. –3 Aug.
1996.

[583] S. Owre, J. Rushby, and N. Shankar. Integration in PVS: Tables, types,
and model checking. In Ed Brinksma, editor, Tools and Algorithms for
the Construction and Analysis of Systems, 3rd Int. Work. , TACAS ’97 ,
number 1217 in LNCS, pages 366–383, Enschede, NL, 2–4 Apr. 1997.
Springer-Verlag.

[584] S. Owre, J.M. Rushby, and N. Shankar. PVS: A prototype verification
system. In D. Kapur, editor, Proc. 11th Int. Conf. CADE ’92 , Saratoga
Springs, NY, US, LNCS 607, pages 748–752. Springer-Verlag, 15–18
June 1992.

[585] S. Owre, N. Shankar, and D.W.J. Stringer-Calvert. PVS: An experience
report. In D. Hutter, W. Stephan, P. Traverso, and M. Ullmann, ed
itors, PROC Applied Formal Methods - FM-Trends’98, International
Workshop on Current Trends in Applied Formal Method , Boppard, DE,
LNCS 1641, pages 338–345. Springer-Verlag, 7–9 Oct. 1999.

[586] É. Villemonte de la Clergerie P. Lefèbvre. How to build quickly an effi
cient implementation of the domain Prop with DyALog. In M. Ducassé ,
B. Le Charlier, Y.-J. Lin, and L.Ü. Yalçinalp, editors, Proc. 5th Work
shop LPE 1993 , Vancouver, BC, CA, pages 33–38. IRISA, Campus de
Beaulieu, F-35042 Rennes Cedex, FR, 29–30 Oct. 1993.

[587] J. Palsberg. Correctness of binding-time analysis. J. Func. Prog. ,
3(3):347–363, 1993.

[588] J. Palsberg. Closure analysis in constraint form. TOPLAS , 17(1):47–62,
Jan. 1995.

[589] J. Palsberg. Efficient inference of object types. Inform. and Comput. ,
123(2):198–209, Jan. 1995.

[590] J. Palsberg and C. Pavlopoulou. From polyvariant flow information to
intersection and union types. In 25th POPL , pages 197–208, San Diego,
CA, US, 19–21 Jan. 1998. ACM Press.

[591] J. Palsberg and M.I. Schwartzbach. Static typing for object-oriented pro
gramming. Sci. Comput. Programming, 23(1):19–53, 1994.

[592] S.E. Panitz and M. Schmidt-Schauß. TEA: Automatically proving termi
nation of programs in a non-strict higher-order functional language. In
P. Van Hentenryck, editor, Proc. 4th Int. Symp. SAS ’97 , Paris, FR,
8–10 Sep. 1997, LNCS 1302, pages 345–360. Springer-Verlag, 1997.

[593] A. Pardo and G.D. Hachtel. Automatic abstraction techniques for proposi
tional µ-calculus model checking. In O. Grumberg, editor, Proc. 9th Int.

68

Conf. CAV ’97 , Haifa, IL,LNCS 1254, pages 12–23. Springer-Verlag,
22–25 Jul. 1997.

[594] S. Park, S. Das, and D.L. Dill. Automatic checking of aggregation abstrac
tions through state enumeration. In IFIP TC6/WG6.1 Joint Int. Conf.
on Formal Description Techniques for Distributed Systems and Commu
nication Protocols, and Protocol Specification, Testing, and Verification,
pages 207–222, Nov. 1997.

[595] R. Paterson. Compiling laziness using projections. In R. Cousot and D.A.
Schmidt, editors, Proc. 3rd Int. Symp. SAS ’96 , Aachen, DE, 24–26
Sep. 1996, LNCS 1145, pages 255–269. Springer-Verlag, 1996.

[596] R. Paterson. Transforming lazy functions using comportment properties.
In H. Glaser, P. Hartel, and H. Kuchen, editors, Programming Language
Implementation and Logics of Programs , volume 1292 of LNCS , pages
111–125. Springer-Verlag, September 1997.

[597] R. Paterson. Transforming lazy functions using comportment properties.
In H. Glaser, P.H. Hartel, and H. Kuchen, editors, Proc. 9th Int. Symp.
PLILP ’97 , pages 111–125, Southampton, UK, 3–5 Sep. 1997, LNCS
1292, 1997. Springer-Verlag.

[598] C. Paulin-Mohring and B. Werner. Synthesis of ML programs in the system
Coq. J. Symbolic Logic , 15(5/6):607–640, 1993.

[599] D. Peled. Ten years of partial order reduction. In A.J. Hu and M.Y. Vardi,
editors, Proc. 10th Int. Conf. CAV ’98 , Vancouver, BC, CA,LNCS 1427,
pages 17–28. Springer-Verlag, 28 June – 2 Jul. 1998.

[600] C. Pixley and V. Singhal. Model checking: A hardware design perspective.
STTT , 2(3):288–306, 1999.

[601] G.D. Plotkin. A structural approach to operational semantics. Technical
Report DAIMI FN-19, Aarhus University, DK, Sep. 1981.

[602] L. PlüŸmer. Automatic termination proofs for prolog programs operating
on nonground terms. In K. Ueda V.A. Saraswat, editor, Proc. 1991 Int.
Symp. ISLP ’91 , San Diego, CA, US, pages 503–517. MIT Press, 28
Oct. – 1 Nov. 1997.

[603] A. Pnueli. The temporal logic of programs. In Proc. 18th FOCS , pages
46–57, Providence, RI, Nov. 1977.

[604] K. Post. Mutually exclusive rules in logic programming. In M. Bruynooghe,
editor, Proc. Int. Symp. ILPS ’1994 , Ithaca, NY, US, pages 472–486.
MIT Press, 13–17 Nov. 1994.

[605] G. Puebla, M.V. Hermenegildo, and J.P. Gallagher. An integration of
partial evaluation in a generic abstract interpretation framework. In
O. Danvy, editor, Proc. PEPM ’99 , San Antonio, TX, US, 17–19 June
1999, Tech. rep. BRICS-NS-99-1, pages 75–84. University of Århus, DK,
1999.

[606] W. Pugh and D. Wonnacott. Static analysis of upper and lower bounds
on dependences and parallelism. TOPLAS , 16(4):1248–1278, Jul. 1994.

69

[607] J.-P. Queille and J. Sifakis. Verification of concurrent systems in Ce

sar. In Proc. Int. Symp. on Programming, LNCS 137, pages 337–351.
Springer-Verlag, 1982.

[608] G. Ramalingam. The undecidability of aliasing. TOPLAS ,
16(5):1467–1471, Sep. 1994.

[609] F. Randimbivololona, J. Souyris, and A. Deutsch. Improving avionics soft
ware verification cost-effectiveness Abstract interpretation based tech
nology contribution. In Proceedings DASIA 2000 – DAta Systems In
Aerospace , Montreal, CA. ESA Publications, 22–26 May 2000.

[610] U.S. Reddy and S.N. Kamin. On the power of abstract interpretation. In
Proc. 1992 ICCL , Oakland, CA, pages 24–33. IEEE Comp. Soc. Press,
20–23 Apr. 1992.

[611] U.S. Reddy and S.N. Kamin. On the power of abstract interpretation.
Comput. Lang. , 19(2):79–89, 1993.

[612] B. Reistad and D.K. Gifford. Static dependent costs for estimating execu
tion time. In Proc. ACM Conf. Lisp & Func. Prog. , Orlando, FL, US,
pages 65–78. ACM Press, 27–29 June 1994.

[613] O. Ridoux, P. Boizumault, and F. Malésieux. Typed static analysis: Ap
plication to groundness analysis of PROLOG and lambda-PROLOG.
In A. Middeldorp and T. Sato, editors, 4th FLOPS ’99 , Tsukuba, JP,
11–13 Nov. 1999, LNCS 1722, pages 267–28. Springer-Verlag, 1999.

[614] H. Riis Nielson and F. Nielson. Shape analysis for mobile ambients. In
27th POPL , pages 142–154, Boston, MA, Jan. 2000. ACM Press.

[615] M.C. Rinard and P.C. Diniz. Commutativity analysis: A new analysis tech
nique for parallelizing compilers. TOPLAS , 19(6):942–991, Nov. 1997.

[616] E. Rohwedder and F. Pfenning. Mode and termination checking for
higher-order logic programs. In H. Riis Nielson, editor, Proc. 6th
ESOP ’96 , Linköping, SE, LNCS 1058, pages 298–310. Springer-Verlag,
22–26 Apr. 1996.

[617] M. Rosendahl. Higher order chaotic iteration sequences. In M. Bruynooghe
and J. Penjam, editors, Proc. 5th Int. Symp. PLILP ’93 , Tallinn, EE,
25–27, Aug. 1993, LNCS 714, pages 332–345. Springer-Verlag, 1993.

[618] E. Ruf and D. Weise. Improving the accuracy of higher-order specialization
using control flow analysis. In Proc. PEPM ’92 , San Francisco, CA,
US, pages 67–74. Yale University, Tech. rep. TR YALEU/DCS/RR-90,
19–20 June 1995.

[619] J. Rushby. Automated deduction and formal methods. In R. Alur and
T.A. Henzinger, editors, Proc. 8th Int. Conf. CAV ’96 , number 1102
in LNCS, pages 169–183, New Brunswick, NJ, Jul. /Aug. 1996.
Springer-Verlag.

[620] B.G. Ryder. Practical compile-time analysis. In P. Van Hentenryck, editor,
Proc. 4th Int. Symp. SAS ’97 , Paris, FR, 8–10 Sep. 1997, LNCS 1302,
pages 406–412. Springer-Verlag, 1997.

70

[621] B. Rytz and M. Gengler. A polyvariant binding time analysis. In Proc.
PEPM ’92 , San Francisco, CA, US, pages 21–28. Yale University, Tech.
rep. TR YALEU/DCS/RR-90, 19–20 June 1995.

[622] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in
languages with destructive updating. In 23rd POPL , pages 16–31, St.
Petersburg Beach, FL, Jan. 1996. ACM Press.

[623] M. Sagiv, T. Reps, and R. Wilhelm. Shape analysis. In Proc. Int. Conf.
CC ’00 , 2000. To appear.

[624] S. Sagiv, N. Francez, M. Rodeh, . Sagiv, and R. Wilhelm. A logic-based
approach to data flow analysis problems. In P. Deransart and J.
Małuszyński, editors, Proc. 2nd Int. Work. PLILP ’90 , pages 277–292,
Linköping, SE, LNCS 456, 20–22 Aug. 1990. Springer-Verlag.

[625] H. Saïdi and N. Shankar. Abstract and model check while you prove.
In N. Halbwachs and D. Peled, editors, Proc. 11th Int. Conf. CAV ’99 ,
Trento, IT, LNCS 1633, pages 443–454. Springer-Verlag, 6–10 Jul. 1999.

[626] S. Saïdi. Model checking guided abstraction and analysis. In J. Palsberg,
editor, Proc. 7th Int. Symp. SAS ’2000 , Santa Barbara, CA, US, LNCS
1824, pages 377–396. Springer-Verlag, 29 June – 1 Jul. 2000.

[627] D. Sands. Complexity analysis for a lazy higher-order language. In
K. Davis and J. Hughes, editors, Functional Programming, Glasgow
1989 , Proc. 1989 Glasgow Workshop, Fraserburgh, UK, pages 56–79.
Springer-Verlag and BCS, Aug. 1989.

[628] C.F. Schaefer and G.N. Bundy. Static analysis of exception handling in
Ada. Soft.–Pract. & Exp. , 23(10):1157–1174, Oct. 1993.

[629] D.A. Schmidt. Natural-semantics-based abstract interpretation (prelimi
nary version). In A. Mycroft, editor, Proc. 2nd Int. Symp. SAS ’95 ,
Glasgow, UK, 25–27 Sep. 1995, LNCS 983, pages 1–18. Springer-Verlag,
1995.

[630] D.A. Schmidt. Abstract interpretation of small-step semantics. In M.
Dam, editor, Analysis and Verification of Multiple-Agent Languages,
5th LOMAPS Workshop, Stockhlom, SE, 24–26 June 1996, LNCS 1192,
pages 76–99. Springer-Verlag, 1997.

[631] D.A. Schmidt. Data-flow analysis is model checking of abstract interpre
tations. In 25th POPL , pages 38–48, San Diego, CA, 19–21Jan. 1998.
ACM Press.

[632] D.A. Schmidt and B. Steffen. Program analysis as model checking of ab
stract interpretations. In G. Levi, editor, Proc. 5th Int. Symp. SAS ’98 ,
Pisa, IT, 14–16 Sep. 1998, LNCS 1503, pages 351–380. Springer-Verlag,
1998.

[633] J. Schneider and C. Ferdinand. Pipeline behavior prediction for super
scalar processors by abstract interpretation. In Proc. LCTES ’99, ACM
SIGPLAN Not. 34(79) , pages 35–44, Atlanta, GE, US, 5 May 1999, Jul.
1999. ACM Press.

[634] P. Schnorf, M. Ganapathi, and J.L. Hennessy. Compile-time copy elimina
tion. Soft.–Pract. & Exp. , 23(11):1175–1200, Nov. 1993.

71

[635] B. Scholz, J. Blieberger, and T. Fahringer. Symbolic pointer analysis for
detecting memory leaks. In Proc. PEPM ’00, ACM SIGPLAN Not.
34(11) , Boston, MA, US, 22–23 Jan. 2000, pages 104–113. ACM Press,
Nov. 1999.

[636] E. Schön. On the computation of fixpoints in static program analysis with
an application to analysis of AKL. Res. rep. R95:06, Swedish Institute
of Computer Science, SICS, 1995.

[637] D. De Schreye and K. Verschaetse. Deriving linear size relations for logic
programs by abstract interpretation. New Gen. Comp. , 13(2):117–154,
1995.

[638] D. De Schreye, K. Verschaetse, and M. Bruynooghe. A framework for
analyzing the termination of definite logic programs with respect to
call patterns. In ICOT Staff, editor, Proc. Int. Conf. on 5th Generation
Computer Systems 92 , Tokyo, JP, 1-5 June 1992, pages 481–488. IOS
Press, 1992.

[639] D. Scott. Lambda calculus: Some models, some philosophy. In J. Barwise,
H.J. Keisler, and K. Kunen, editors, The Kleene Symposium , pages
223–265. North-Holland, 1980.

[640] F. Scozzari. Logical optimality of groundness analysis. In P. Van Henten
ryck, editor, Proc. 4th Int. Symp. SAS ’97 , Paris, FR, 8–10 Sep. 1997,
LNCS 1302, pages 83–97. Springer-Verlag, 1997.

[641] H. Seidel. Least solutions of equations over N . In S. Abiteboul and
E. Shamir, editors, Proc. ICALP ’96 , LNCS 820, pages 400–411.
Springer-Verlag, 1995.

[642] R.C. Sekar, P. Mishra, and I.V. Ramakrishnan. On the power and limi
tation of strictness analysis based on abstract interpretation. In 18th
POPL , pages 37–48, Orlando, FL, 1991. ACM Press.

[643] R.C. Sekar, Shaunak Pawagi, and I.V. Ramakrishnan. Small domains spell
fast strictness analysis. In 17th POPL , pages 169–183, San Francisco,
CA, 1990. ACM Press.

[644] R.C. Sekar and I.V. Ramakrishnan. Fast strictness analysis based on de
mand propagation. TOPLAS , 17(6):896–937, Nov. 1995.

[645] J. Seward. Beyond prototype implementations: Polymorphic projection
analysis for Glasgow Haskell. In A. Mycroft, editor, Proc. 2nd Int. Symp.
SAS ’95 , Glasgow, UK, 25–27 Sep. 1995, LNCS 983, pages 382–399.
Springer-Verlag, 1995.

[646] A. Shamir and W.W. Wadge. Data types as objects. In A. Salomaa
and M. Steinby, editors, 4th ICALP, Turku , LNCS 52, pages 465–479.
Springer-Verlag, Jul. 1977.

[647] N. Shankar. PVS: Combining specification, proof checking, and model
checking. In M.S. Srivas and A.J. Camilleri, editors, Proc. 1st Int. Conf.
on Formal Methods in Computer-Aided Design, FMCAD ’96 , number
1166 in LNCS, pages 257–264, Palo Alto, CA, US, 6–8 Nov. 1996.
Springer-Verlag.

[648] N. Shankar. Unifying verification paradigms. In FTRTFT’96 , 1996.

72

[649] O. Shivers. The semantics of scheme control-flow analysis. In P. Hudak
and N.D. Jones, editors, Proc. PEPM ’91 , Yale U., New Haven, CT,
US, 17–19 June 1991, ACM SIGPLAN Not. 26(9), pages 190–198. ACM
Press, Sep. 1991.

[650] O. Shivers. Useless-variable elimination. Actes JTASPEFL ’91, Bordeaux,
FR. BIGRE , 74:197–201, Oct. 1991.

[651] P.A. Bigot S.K. Debray, D. Gudeman. Detection and optimization of sus
pension-free logic programs. In M. Bruynooghe, editor, Proc. Int. Symp.
ILPS ’1994 , Ithaca, NY, US, pages 487–501. MIT Press, 13–17 Nov.
1994.

[652] K. Sohn. Constraints among argument sizes in logic programs. In Proc.
30th PODS ’94 , pages 68–76, Minneapolis, MN, 1994. ACM Press.

[653] K. Lackner Solberg. Strictness and totality analysis. In B. Le Charlier,
editor, Proc. 1st Int. Symp. SAS ’94 , Namur, BE, 20–22 Sep. 1994,
LNCS 864, pages 395–407. Springer-Verlag, 1994.

[654] K. Lackner Solberg, H. Riis Nielson, and F. Nielson. Inference systems
for binding time analysis. In M. Billaud, P. Castéran, M.-M. Corsini,
K. Musumbu, and A. Rauzy, editors, Proc. 2nd Int. Work. WSA ’92,
Bordeaux, FR. BIGRE , volume 81–82, pages 247–254. IRISA, Rennes,
FR, 23–25 Sep. 1992.

[655] K.L. Solberg Gasser, H. Riis Nielson, and F. Nielson. Strictness and total
ity analysis. Sci. Comput. Programming, 31(1):113–145, May 1998.

[656] H. Søndergaard. An application of abstract interpretation of logic pro
grams: Occur check reduction. In B. Robinet and R. Wilhelm, editors,
Proc. ESOP ’86 , Saarbrücken, DE, 17-19 Mar. 1986, LNCS 213, pages
327–338. Springer-Verlag, 1986.

[657] C. Speirs, Z. Somogyi, and H. Søndergaard. Termination analysis for Mer
cury. In P. Van Hentenryck, editor, Proc. 4th Int. Symp. SAS ’97 , Paris,
FR, 8–10 Sep. 1997, LNCS 1302, pages 160–171. Springer-Verlag, 1997.

[658] D. Stefanescu and Y. Zhou. An equational framework for the flow analysis
of higher order functional programs. In Proc. ACM Conf. Lisp & Func.
Prog. , Orlando, FL, US, pages 318–327. ACM Press, 27–29 June 1994.

[659] B. Steffen, editor. Evaluation of Alternating Fixed Points: Fully Local and
Efficient , Lisbon, PT, LNCS 1384. Springer-Verlag, 28 Mar. – 4 Apr.
1998.

[660] B. Steffen, editor. A Proof of Burns N-Process Mutual Exclusion Algorithm
Using Abstraction , Lisbon, PT, LNCS 1384. Springer-Verlag, 28 Mar.
– 4 Apr. 1998.

[661] B. Steffen, editor. Set-Based Analysis of Reactive Infinite-State Systems ,
Lisbon, PT, LNCS 1384. Springer-Verlag, 28 Mar. – 4 Apr. 1998.

[662] B. Steffen, editor. Ten Years of Partial Order Reduction , Lisbon, PT,
LNCS 1384. Springer-Verlag, 28 Mar. – 4 Apr. 1998.

[663] J. Stransky. A lattice for abstract interpretation of dynamic (lisp-like)
structures. Inform. and Comput. , 101(1):70–102, Nov. 1992.

73

[664] R. Sundararajan and J.S. Conery. An abstract interpretation scheme for
groundedness, freeness, and sharing analysis of logic programs. In R.
Shyamasundar, editor, Proc. 12th FST & TCS , New Delhi, IN, 18–20
Dec. 1992, LNCS 652, pages 203–216. Springer-Verlag, 1992.

[665] M. Tadjouddine, F. Eyssette, and C. Faure. Sparse jacobian computation
in automatic differentiation by static program analysis. In G. Levi, ed
itor, Proc. 5th Int. Symp. SAS ’98 , Pisa, IT, 14–16 Sep. 1998, LNCS
1503, pages 311–326. Springer-Verlag, 1998.

[666] Y. Takayama. Extraction of concurrent processes from higher dimensional
automata. In H. Kirchner, editor, Proc. 21st CAAP ’96 , Linköping, SE,
LNCS 1059, pages 72–86. Springer-Verlag, 22–26 Apr. 1996.

[667] J. Tan and I-P. Lin. Type synthesis for logic programs. In M.J. Maher,
editor, Proc. JICSLP ’96 , Bonn, DE, pages 200–214. MIT Press, 2–6
Sep. 1996.

[668] Y.M. Tang and P. Jouvelot. Control-flow effects for escape analysis. In
M. Billaud, P. Castéran, M.-M. Corsini, K. Musumbu, and A. Rauzy,
editors, Proc. 2nd Int. Work. WSA ’92, Bordeaux, FR. BIGRE , volume
81–82, pages 313–321. IRISA, Rennes, FR, 23–25 Sep. 1992.

[669] Y.M. Tang and P. Jouvelot. Separate abstract interpretation for
control-flow analysis. In M. Hagiya and J.C. Mitchell, editors,
Proc. Int. Conf. TACS ’95, LNCS 789 , Sendai, JP, pages 224–243.
Springer-Verlag, 19–22 Apr. 1994.

[670] D. Tarditi, J.G. Morrisett, P. Cheng, R. Harper, and P. Lee. TIL: A
type-directed optimizing compiler for ML. In Proc. ACM SIGPLAN ’96
Conf. PLDI. ACM SIGPLAN Not. 31(5) , pages 181–192, Philadephia,
PA, US, 21–24 May 1996.

[671] A. Tarski. A lattice theoretical fixpoint theorem and its applications. Pa
cific J. Math. , 5:285–310, 1955.

[672] R.D. Tennent. Denotational semantics. In S. Abramsky, D.M. Gabbay, and
T.S.E. Maibaum, editors, Semantic Structures , volume 3 of Handbook of
Logic in Computer Science , chapter 2, pages 169–332. Clarendon Press,
1994.

[673] W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, For
mal Models and Semantics, volume B of Handbook of Theoretical Com
puter Science, chapter 4, pages 133–191. Elsevier, 1990.

[674] M. Tofte. Region inference for higher-order functional languages. In A.
Mycroft, editor, Proc. 2nd Int. Symp. SAS ’95 , Glasgow, UK, 25–27
Sep. 1995, LNCS 983, pages 19–20. Springer-Verlag, 1995.

[675] D. Toman. Constraint databases and program analysis using abstract in
terpretation. In V. Gaede, A. Brodsky, O. Günther, D. Srivastava, V.
Vianu, and M. Wallace, editors, Proc. 2nd Int. Work. CDBS ’97 , Del
phi, GR, 11–12 Jan. 1997, LNCS 1191, pages 303–311. Springer-Verlag,
1997.

[676] H. Touati, H. Savoj, B. Lin, R.H. Brayton, and S. Sangiovanni-Vincentelli.
Implicit state enumeration of finite state machines using BDDs. In

74

A. Sangiovanni-Vincentelli and S. Goto, editors, Proc. Int. Conf.
ICCAD ’90 , pages 130–133, Santa Clara, CA, Nov. 1990. IEEE Comp.
Soc. Press.

[677] K.R. Traub, D.E. Culler, and K.E. Schauser. Global analysis for par
titioning non-strict programs into sequential threads. LISP Pointers,
5(1):324–334, Jan. – Mar. 1992.

[678] R. Triolet, P. Feautrier, and F. Irigoin. Automatic parallelization of for
tran programs in the presence of procedure calls. In B. Robinet and R.
Wilhelm, editors, Proc. ESOP ’86 , Saarbrücken, DE, 17-19 Mar. 1986,
LNCS 213, pages 210–222. Springer-Verlag, 1986.

[679] S. Tzolovski. Data dependence as abstract interpretations. In P. Van Hen
tenryck, editor, Proc. 4th Int. Symp. SAS ’97 , Paris, FR, 8–10 Sep.
1997, LNCS 1302, page 366. Springer-Verlag, 1997.

[680] K. Ueda. Linearity analysis of concurrent logic programs. ENTCS , 30(2),
1999.

[681] J.S. Uhl and R.N. Horspool. Flow grammars — a flow analysis method
ology. In P.A. Fritzson, editor, Proc. 5th Int. Conf. CC ’94 , Edinburg,
UK, LNCS 786, pages 203–217. Springer-Verlag, Apr. 1994.

[682] R. Vallée-Rai, H. Hendren, P. Lam, É Gagnon, and P. Co. Soot - a Javatm

optimization framework. In CASCON ’99 , Sep. 1999.
[683] R.J. van Glabbeek. The linear time – branching time spectrum (extended

abstract). In J.C.M. Baeten and J.W. Klop, editors, Proc. CONCUR’90,
Theories of Concurrency: Unification and Extension, Amsterdam, Aug.
1990 , volume 458 of LNCS , pages 278–297. Springer-Verlag, 1990.

[684] M.Y. Vardi. Probabilistic linear-time model checking: An overview of the
automata-theoretic approach. In J.-P. Katoen, editor, Formal Methods
for Real-Time and Probabilistic Systems, 5th Int. Symp. AMAST Work
shop, ARTS ’99 , Bamberg, DE, 26–28 May 1999, LNCS 1601, pages
265–276. Springer-Verlag, 1993.

[685] F. Védrine. Binding-time analysis and strictness analysis by abstract in
terpretation. In A. Mycroft, editor, Proc. 2nd Int. Symp. SAS ’95 , Glas
gow, UK, 25–27 Sep. 1995, LNCS 983, pages 400–417. Springer-Verlag,
1995.

[686] A. Venet. Abstract cofibred domains: Application to the alias analysis of
untyped programs. In R. Cousot and D.A. Schmidt, editors, Proc. 3rd
Int. Symp. SAS ’96 , Aachen, DE, 24–26 Sep. 1996, LNCS 1145, pages
368–382. Springer-Verlag, 1996.

[687] A. Venet. Abstract interpretation of the π-calculus. In M. Dam, editor,
Analysis and Verification of Multiple-Agent Languages, 5th LOMAPS
Workshop , Stockhlom, SE, 24–26 June 1996, LNCS 1192, pages 51–75.
Springer-Verlag, 1997.

[688] A. Venet. Automatic determination of communication topologies in mobile
systems. In G. Levi, editor, Proc. 5th Int. Symp. SAS ’98 , Pisa, IT,
14–16 Sep. 1998, LNCS 1503, pages 152–167. Springer-Verlag, 1998.

75

[689] A. Venet. Automatic analysis of pointer aliasing for untyped programs.
Sci. Comput. Programming, Special Issue on SAS’96 , 35(1):223–248,
September 1999.

[690] S. Verbaeten, K.F. Sagonas, and D. De Schreye. Modular termination
proofs for prolog with tabling. In Proc. Int. Conf. PPDP ’99 , Paris, FR,
29 Sep. – 1 Oct. 1999, LNCS 1702, pages 342–359. Springer-Verlag,
1999.

[691] S. Verbaeten and D. De Schreye. Termination analysis of tabled logic pro
grams using mode and type information. In A. Middeldorp and T. Sato,
editors, 4th FLOPS ’99 , Tsukuba, JP, 11–13 Nov. 1999, LNCS 1722,
pages 163–178. Springer-Verlag, 1999.

[692] B. Vergauwen, J. Wauman, and J. Lewi. Efficient fixpoint computation.
In B. Le Charlier, editor, Proc. 1st Int. Symp. SAS ’94 , Namur, BE,
20–22 Sep. 1994, LNCS 864, pages 314–328. Springer-Verlag, 1994.

[693] K. Verschaetse and D. De Schreye. Deriving termination proofs for logic
programs, using abstract procedures. In K. Furukawa, editor, Proc. 8th
Int. Conf. on Logic Programming , Paris, FR, pages 301–315.MIT Press,
24–28 June 1991.

[694] K. Verschaetse, S. Decorte, and D. De Schreye. Automatic termination
analysis. In K.-K. Lau and T.P. Clement, editors, Proc. 5th Int. Work.
LOPSTR ’92 , Manchester, UK, 2–3 Jul. 1992, Workshops in Comp. ,
pages 168–183. Springer-Verlag, 1993.

[695] J. Vitek, R.N. Horspool, and J.S. Uhl. Compile-time analysis of ob
ject-oriented programs. In U. Kastens and P. Pfahler, editors, Proc.
4th Int. Conf. CC ’98 , Paderborn, DE, LNCS 641, pages 236–250.
Springer-Verlag, 5-7 Oct. 1998.

[696] P. Wadler. Strictness analysis aids time analysis. In 15th POPL , pages
119–132, San Diego, CA, Jan. 1988. ACM Press.

[697] P.L. Wadler. Strictness analysis on non-flat domains (by abstract inter
pretation over finite domains). In S. Abramsky and C. Hankin, editors,
Abstract Interpretation of Declarative Languages, Computers and their
Applications, chapter 12, pages 266–275. Ellis Horwood, 1987.

[698] P.L. Wadler and R.J.M. Hughes. Projections for strictness analysis.
In G. Kahn, editor, Proc. 2nd FPCA , LNCS 274, pages 385–407.
Springer-Verlag, Portland, OR, Sep. 1987.

[699] F. Wang. Efficient data structure for fully symbolic verification of real-time
software systems. In S. Graf and M.I. Schwartzbach, editors, Proc. 6th
Int. Conf. TACAS ’2000 , Berlin, DE, 25 Mar. – 2 Apr. 2000, LNCS
1785, pages 157–171. Springer-Verlag, 2000.

[700] P. Wolper and B. Boigelot. An automata-theoretic approach to presburger
arithmetic constraints. In A. Mycroft, editor, Proc. 2nd Int. Symp.
SAS ’95 , Glasgow, UK, 25–27 Sep. 1995, LNCS 983, pages 21–32.
Springer-Verlag, 1995.

[701] A.K. Wright and R. Cartwright. A practical soft type system for Scheme.
In ACM Conf. Lisp & Func. Prog. , pages 250–262, 1994.

76

[702] D.A. Wright. A new technique for strictness analysis. In S. Abramsky
and T.S.E. Maibaum, editors, Proc. Int. J. Conf. TAPSOFT ’91 ,
Brighton, UK, Volume 2 (ADC/CCPSD), LNCS 494, pages 236–258.
Springer-Verlag, 1991.

[703] D.A. Wright and C.A. Baker-Finch. Usage analysis with natural reduc
tion types. In P. Cousot, M. Falaschi, G. Filé , and A. Rauzy, editors,
Proc. 3rd Int. Work. WSA ’93 , Padova, IT, LNCS 724, pages 254–266.
Springer-Verlag, 22–24 Sep. 1993.

[704] Kwangkeun Yi. Compile-time detection of uncaught exception in Stan
dard ML programs. In B. Le Charlier, editor, Proc. 1st Int. Symp.
SAS ’94 , Namur, BE, 20–22 Sep. 1994, LNCS 864, pages 238–254.
Springer-Verlag, 1994.

[705] Kwangkeun Yi. An abstract interpretation for estimating uncaught
exceptions in standard ML programs. Sci. Comput. Programming,
31(1):147–173, May 1998.

[706] Kwangkeun Yi and Sukyoung Ryu. Towards a cost-effective estimation of
uncaught exceptions in SML programs. In P. Van Hentenryck, editor,
Proc. 4th Int. Symp. SAS ’97 , Paris, FR, 8–10 Sep. 1997, LNCS 1302,
pages 98–113. Springer-Verlag, 1997.

[707] E. Zaffanella, R. Bagnara, and P.M. Hill. Widening sharing. In G. Na
dathur, editor, Proc. Int. Conf. PPDP ’99 , Paris, FR, 29 Sep. – 1 Oct.
1999, LNCS 1702, pages 414–431. Springer-Verlag, 1999.

[708] E. Zaffanella, R. Giacobazzi, and G. Levi. Abstracting synchronization
in concurrent constraint programming. In M.V. Hermenegildo and J.
Penjam, editors, Proc. 6th Int. Symp. PLILP ’94 , Madrid, ES, 14–16
Sep. 1994, LNCS 844, pages 57–72. Springer-Verlag, 1994.

[709] E. Zaffanella, P.M. Hill, and R. Bagnara. Decompositing non-redundant
sharing by complementation. In A. Cortesi and G. Filé, editors, Proc.
6th Int. Symp. SAS ’99 , Venice, IT, 22–24 Sep. 1999, LNCS 1694, pages
69–84. Springer-Verlag, 1999.

[710] F. Zartmann. Denotational abstract interpretation of functional logic pro
grams. In P. Van Hentenryck, editor, Proc. 4th Int. Symp. SAS ’97 ,
Paris, FR, 8–10 Sep. 1997, LNCS 1302, pages 141–159. Springer-Verlag,
1997.

	Progress on Abstract Interpretation Based Formal Methods and Future Challenges

