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Abstract. Impairments in reaching and grasping have beefrdeelmented in
patients with post-stroke hemiparesis. Patientg lagficits in spatial and temporal
coordination and may use excessive trunk displanente assist arm transport
during performance of upper limb tasks. Studiethefapeutic effectiveness have
shown that repetitive task-specific practice magriove motor function outcomes.
Movement retraining may be optimized when done irtual reality (VR)
environments. Environments created with VR techgwloan incorporate elements
essential to maximize motor learning, such as itageetand varied task practice,
performance feedback and motivation. Haptic teabgokan also be incorporated
into VR environments to enhance the user’s senggesence and to make motor
tasks more ecologically relevant to the participdst a first step in the validation
of the use of VR environments for rehabilitationjsi necessary to demonstrate
that movements made in virtual environments areilainto those made in
equivalent physical environments. This has beeifie@rin a series of studies
comparing pointing and reaching/grasping movemémtphysical and virtual
environments. Because of the attributes of VR, bitation of the upper limb
using VR environments may lead to better rehakiita outcomes than
conventional approaches.
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Introduction

The motor recovery of the upper limb in patientfofsing congenital or acquired brain
injury remains a persistent problem in neurologiediabilitation. More than 80% of
the approximately 566,000 stroke survivors in thtéd States experience hemiparesis
resulting in impairment of one upper extremity (UE)mediately after stroke and in
55-75% of survivors, impairments persist beyond ahete stage of stroke. Important
from a rehabilitation perspective is that functibhianitations of the upper limb
contribute to disability and are associated wittmidished health-related quality of life
[1, 3]

Despite a growing number of studies, there is stilpaucity of good quality
evidence for the effectiveness of upper limb moétrabilitation techniques for patients
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with stroke-related hemiparesis [4]. Current reli@ion practice is based on
movement repetition of targeted tasks in the dihisetting. Not all motor
improvements gained in clinical settings howeverehbeen shown to carry over into
real world situations when patients are dischatyade after therapy [5]. For example,
even patients with well-recovered upper limb funetas judged by clinical tests may
not make full use of their arm in everyday actesti[6]. One possible reason for the
tendency to under use the affected arm may beaitle df recovery of higher order
motor control functions resulting in an inabilityp tperform rapid, accurate and
coordinated movement and the perception of arm mews as being clumsy and slow
[7]. This suggests that greater attention shouldpb& to retraining upper limb
coordination or the ability of the arm and handnteract with the environment rapidly
and efficiently in order to improve the real worklevance of practice in the clinical
setting. Indeed, an important component of dex®raovement, if such a term can be
applied to whole arm movement, is coordination leevdifferent body segments - an
element that has been largely neglected in retaioih approaches to movement
recovery.

1. Deficitsin the coordination of reaching and grasping movementsin patients
with stroke

The arm motor deficit in stroke is complex and tendescribed at all levels of the
International Classification of Functioning (ICF, ol Health Organization,
http://www.who.int/classifications/icf/en/ At the Body Structure and Function
(impairment) level, stroke-related hemiparesishiaracterized by sensorimotor deficits
such as spasticity [8] and pathological synergieghie limbs contralateral to the
hemispheric lesion [9]. The ability to activate aindctivate appropriate muscles [9,
15] is also compromised as well as the abilitiecdmpensate elbow and shoulder
torques [12, 16] and to coordinate movements betwadiacent joints [17, 18].
Impairments may be related to altered mechaniagpenties of motor units [19, 20],
abnormal agonist motor unit activation [21, 22] adeficits in segmental reflex
organization, including the ability to approprigtalegulate stretch-reflex threshold
excitability [23, 27]. Previous studies have shothat patients have deficits in both
spatial and temporal aspects of interjoint coortiimaduring 3D reaching to stationary
targets, placed within [18, 28, 30] and beyond thach [31]. They also have
coordination deficits when synchronizing hand ai@ion with hand opening and
closing during reach-to-grasp movements to statiotagets (Figure 1) [32, 33].




Arm-Hand Coordination
Healthy

1000 200
800 160
600 120

400 | 80

2004 77 40

0 ——
1000 Stroke

200
800

Hand Aperture (mm)

160

Wrist Velocity (mm/s)

800
120

400
80

200 =, " 0

¢}

0 560 1000 “‘1‘50 ) >20‘00
Time (ms)

Figure 1. Arm and hand coordination during a reach-to-greesgk in one healthy subjedbg) and one

individual with stroke-related hemiparesi®{ton). The mean peak hand aperture (thin solid lineseglly

occurs after the mean peak hand velocity (thickddales) as seen in both examples but the movemsent

slower and hand opening is delayed in the indivigduth hemiparesis. Dotted lines indicateone standard

deviation of the mean traces.

For more complex movements, individuals with hemgéss may have several
deficits when attempting to produce coordinated,dromk and hand movements. For
example, during trunk-assisted reaching (reachmgphijects placed beyond arm’s
length), patients may have deficits in the timinfgtlee initiation of arm and trunk
movement characterized by delays and increasecbitity [34, 35]. In addition,
Esparza et al. [35] found differences in the radetrunk displacement between
patients with left and right brain lesions and dueated bilateral deficits in the control
of movements involving complex arm-trunk co-ordiaat

We are only beginning to understainow complex movements are controlled and
the role of perception-action coupling in the Healind damaged nervous system. The
healthy nervous system is able to integrate meltifdgrees of freedom of the body and
produce invariant hand trajectories when makingimy movements with or without
trunk displacement (Figure 2). In trunk-assistealchéng, Rossi et al. [36] compared
the hand trajectories when healthy subjects reatthedarget placed beyond the reach
on a horizontal surface. In some trials, the trwals free to move and thus contributed
to the endpoint trajectory. In some other trialsvbeer, the trunk movement was
unexpectedly arrested before the movement begapy Bhowed that the initial
contribution of the trunk movement to the hand lispment was neutralized by
appropriate compensatory rotations at the show@ddrelbow. Trunk movement began
to contribute to hand displacement only after thakpvelocity of the hand movement
was reached. Results such as these highlight thgaet temporal and spatial
coordination used by the healthy nervous systemprémluce smooth and effective
movement.
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Figure 2. Top. For beyond-the-reach experiments, subjectsnsatcut-out section of a plexiglass table.
Goggles obstructed vision of the hand and tardet #ie go signal. Hand starting position was led¢&0 cm

in front of the sternum. A metal plate attachedhi® back of the trunk, and an electromagnet atththé¢he
wall were used to arrest the trunk movement in 3¥%andomly selected trials. Middle and lower panel
Mean hand and trunk trajectories for one healltéff) (and one stroke subjeaight) in trunk-blocked (solid
lines) and trunk-free (open lines) movements. Tiieke subject had a moderate motor impairment as
indicated by the Fugl-Meyer (FM) Arm Score of 50t @i 66. Despite differences in the trunk motion
between conditions, hand trajectories for blockedk trials initially coincided with those for fréeunk
movements. Hand trajectories for trunk-blockedigridiverged earlier in participants with strokeigading
that they could not fully compensate for the trambvement by adjusting their arm movement.

After stroke, control of movement in specific joirdnges is limited and trunk
movement makes a larger and earlier contributiomdad transport for reaches to
objects placed both within and beyond the arm'gtlerj26, 29]. The neurologically
damaged system also has deficits in the abilityneke appropriate compensatory
adjustments of the arm joints to maintain the @ekihand trajectory during trunk-
assisted reaching. This was tested using the samagligm described above for the
study by Rossi et al. [36]. We compared hand ttejézs and elbow-shoulder interjoint
coordination during “beyond-the-reach” pointing mawents in  healthy and
hemiparetic subjects when the trunk was free toemovwhen it was unexpectedly



arrested [31]. In approximately half the particifsawith hemiparesis, hand trajectory
divergence occurred earlier (Figure 2, right pgnelsile the divergence of interjoint
coordination patterns occurred later than the obntgroup suggesting that
compensatory adjustments of the shoulder and eljpints were not sufficient to
neutralize the influence of the trunk on the harajettory. Arm movements only
partially compensated the trunk displacement areddbmpensation was delayed. This
suggests a deficit in intersegmental temporal doattbn that may be partly
responsible for the loss of arm coordination evewell-recovered patients.

Individuals with hemiparesis also have spatial sardporal coordination deficits
between movements of adjacent arm joints suchesltiow and shoulder [12, 16, 17,
18, 37], between the transport phase of reachidgagrrture formation in grasping [38,
40] and in precision grip force control [39, 41prFexample, using a mathematical
analysis of kinematic variability during whole amaching movements, Reisman and
Scholz [42] found that individuals with mild-to-mexte hemiparesis had deficits in
specific patterns of joint coupling, and that thegd only partial ability to rapidly
compensate movement errors. This suggestion hatbpety been proposed for single
joint arm movements by Dancause et al. [43] whothir related the error
compensation deficits to impairments in executivectioning in patients with chronic
stroke.

The reduced capacity to produce and coordinatenthhements of the arm, hand
and trunk into coherent action [see 44, 45] may l@aclumsy and slow movement
making it less likely that individuals would useethupper limb in daily life activities.
Rehabilitation efforts are aimed at reducing tHea$ of impairments through repeated
practice of targeted movements, tasks or activitiesontrolled clinical environments
[46].

2. Environmentsfor upper limb rehabilitation interventions

The environment in which movement is practiced rbaycrucial to maximize motor

recovery. Recently, Kleim and Jones [47] summarigethe of the outcomes of the
[lIStep meeting held in Salt Lake City in 2005, apdtlined 10 principles of

experience-dependent plasticity related to recoveoyn stroke. Of these, several
principles directly or indirectly relate to the é@mnment in which movement is
practiced. These include the importance of spétificepetition, intensity and salience
of practice. All of these factors can be creativedgnipulated using virtual reality
technology to make the most of the practice envirent and to add the novelty of
gaming to make activities more challenging. Virtuadlity (VR) is a multisensorial

experience in which a person is immersed and damaict with a computer-generated
environment [48]. VR offers the user a practiceiemment that can be ecologically
valid and has the potential to enhance patient yemmt and compliance [49],

important factors in successful rehabilitation [50].

2.1. Advantages of virtual environments

In virtual reality environments (VE), real-worldtisations can be mimicked while

precisely and systematically manipulating environtakconstraints (tasks, obstacles).
Indeed, task difficulty can be manipulated withadainger to the user. Consequently,
VESs have been used in a number of movement anaysgiges [53, 61]. One advantage



of using VEs is that sensory parameters can betedl@and scaled to the abilities of the
user. In so doing, responses to a larger numbsituadtions in a shorter amount of time
than is possible in real-world laboratory experita¢rset-ups can be measured. For
example, in a VE, several object locations andntaions can be reliably and rapidly
reproduced and object properties can be manipulatd obstacles can be introduced
by quickly changing properties and orientation lté bbject or the environment). VEs
are especially suited to the study of how individuateract with objects or situations
that unexpectedly change. Thus, questions aboutédigxand coordination that are not
easily accessible in a real-world environment camtore easily addressed. This is of
particular importance in the study of arm functiomaovery in post-stroke patients.

Many stroke survivors lack the ability to reliabljge the arm and hand during
interactions with objects within changing enviromtge e.g. catching a ball or picking
up an object while walking. These types of experitakset-ups are difficult to recreate
in the laboratory. Finally, another advantage ahgd/R is the possibility of studying
movement production in situations that, in the neatld, may compromise the safety
of the individual. For example, in obstacle avoigatasks, the ability to anticipate and
reach around a static obstacle such as the tadhdee lean be evaluated as well as the
ability to move in a constrained environment withdanger of incurring injury due to
impact of the hand with an object.

2.2. The question of haptics

When the arm and hand interact with objects in ghgsical world, in addition to
proprioceptive feedback related to limb movemeng individual perceives sensory
information about collision of the hand with thejetis being manipulated. This
sensory information combined with task successyiges feedback to the individual
about the adequacy and effectiveness of his or rhewement in the virtual
environment. However, haptic information is not igasncorporated into VR
environments created for motor control studieseatrabilitation studies of upper limb
reaching and object manipulation. The use of releveptic interfaces is important
because it enhances the user’'s sense of presetiie WEs [62]. Many existing VEs
do not include haptics or include haptic informatlonited to sensations felt through a
joystick or mouse [63, 64]. These do not provide tiervous system with the most
salient movement-related sensory information. Giteés reality, the essential question
is whether movements made in VR environments #a haptic sensory cues usually
available in physical environments, can be considlemlid. In other words, are they
spatially and temporally kinematically similar tajuivalent movements made in
physical environments? In order to address thisstipig several studies have been
done to compare the kinematics of movements madéferent types of VEs to those
made in physical environments [65, 69]. The follogvisection of this chapter will
summarize the results of these validation studies.

3. Are movements made in virtual and physical environments kinematically
similar?

Viau et al. [69] compared movement kinematics mayl&8 healthy adults and 7 stroke
survivors with mild left hemiparesis who performadaridentical tasks in both a
physical and in a virtual environment. In both tskeated subjects grasped a real or



virtual 7 cm diameter ball, reached forward by lagrthe trunk and then placed the
ball within a 2 cm x 2 cm yellow square on a realwvrtual target. The initial
conditions for the task and the tasks themselverse vearefully matched so that
movement extent and direction were as similar a&sipte. Thus, in both environments,
the initial position of the arm was about 0° flaxjo30° abduction and 0° external
rotation (shoulder), 80° flexion and 0° supinati@bow) with the wrist and hand in
the neutral position. The fingers were slightlyxéd. The initial position of the ball
was 13 cm in front of the right shoulder, 7 cm aband 3 cm to the left of the
subject’'s hand. The target was placed 31 cm intfobrihe shoulder, 12.5 cm above
and 14 cm to the right of the initial position dfetball. The VR environment was
displayed in 2 dimensions (2D) on a computer scpdaced 75 cm in front of subject’s
midline. The ball and hand were displayed on theest inside a cube. The task was to
place the ball in the upper right far corner of thwde. The virtual representation of the
subject’'s hand was obtained using a 22 sensor fidptc glove (Cyberglove,
Immersion Corp.) and an electromagnetic sensortri@dgsPolhemus Corp.) that was
used to orient the glove in the 2D environment. aD&bm these devices were
synchronized in real time. To enable the subjec¢tael” the virtual ball, a prehension
force feedback device (Cybergrasp, Immersion Cospg fitted to the dorsal surface
of the hand. The Cybergrasp delivered prehensiooefdeedback in the form of
extension forces to the distal phalanxes of thenthand each finger. Forces applied to
the fingers were calibrated for each subject whééshe was wearing the Cyberglove
and all subjects perceived that they were holdirgplaerical object in their hand. To
better compare the performance of participant icheaf the two environments, the
glove and grasp devices were worn on the handtim danditions (Figure 3).
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Figure 3. Top: Experimental set up for reaching, graspind placing experiment in 2D virtual (VE) and
physical (PE) environments. Elbow-shoulder interjaioordination in the reaching (middle) and tramsp
(bottom) phase of the task was similar betweenrenwients in healthy and stroke subjects.



Kinematics of functional arm movements involvingacking, grasping and
releasing made in physical and virtual environmemse analyzed in two phases: 1)
reaching and grasping the ball and 2) ball trartspod release. Temporal and spatial
parameters of reaching and grasping were deternforedach phase. Using this 2D
VR environment, individuals in both groups wereeatd reach, grasp, transport, place
and release the virtual and physical ball usinglammovement strategies. In healthy
subjects, reaching and grasping movements in botinanments were similar in terms
of spatial and temporal characteristics of the emtdpand joint movements. Healthy
subjects however, used less wrist extension ane bow extension to place the ball
on the virtual vertical surface.

As has been well-documented [17, 37], reaching ma&ves made by individuals
with hemiparesis are different from those made &githy control subjects. Compared
to healthy subjects, participants with hemiparesmde slower movements in both
environments and during transport and placing ef biall, trajectories were more
curved and interjoint coordination was altered. [itesthese differences, however,
participants with hemiparesis also tended to use Verist extension during the whole
movement and they used more elbow extension atrileof the placing phase for the
movement made in VR.

The finding that both groups of subjects used Vasst extension and more elbow
extension in the virtual compared to the physicalimnment suggested that the
movements made in VR might have been influencedifigrences in perception of the
target location and the absence of haptic feedbdmn the target was touched by the
ball. We addressed these questions in a second istwehich we compared the spatial
and temporal characteristics of reaching to tardmtated in different parts of the
workspace in a 3D environment [65, 66]. If the penb of target localization was
related to the quality of depth perception, thervements made in a 3D environment
should be more like those made in a physical enuient than those made in the 2D
environment of the computer screen.

We created a 3D VE consisting of two rows of thiggets arranged so that they
were in different parts of the arm workspace (Fégd). The virtual environment,
created on CAREN software (Motek, Inc) was viewsdagh a head-mounted display
(HMD, Kaiser XL50, resolution 1024 x 768, frequen6@Hz) and arm and hand
movements were recorded with an Optotrak Motiont@&pSystem (Northern Digital).
In lieu of haptic feedback, when a target was ‘tmd by the virtual hand, auditory or
visual feedback was provided.
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The VE was designed to exactly reproduce a physcaironment that also
consisted of 2 rows of targets. Thus, the VE wasdesigned to take advantage of the
attributes of virtual environments for movementagting. Rather, it was designed to
be an exact replica of the physical environmenbrider to be able to compare the
movement kinematics made to similarly placed targ&he location of the targets




required the subject to use different combinatia@isarm joint movements for
successful pointing. The center-to-center distdyeteveen adjacent targets was 26 cm
in both environments and targets were displayedsadndardized distance equal to the
participant’s arm length.

Fifteen adults (4 women, 11 men; aged 59 + 15.4syasith chronic poststroke
hemiparesis participated in this study. They haddenate upper limb impairment
according to Chedoke-McMaster Arm Scores which ednffom 3 to 6 out of 7. A
comparison group of 12 healthy subjects (6 womeme®, aged 53.3 + 17.1 years)
also participated in the study.

The task was to point as quickly and as accuratelpossible to each of the 6 targets
(12 trials per target) in a random sequence in eafhthe two environments.
Movements were analyzed in terms of performancecrmé measures (endpoint
precision, trajectory and peak velocity) and arrd &amnk movement patterns (elbow
and shoulder ranges of motion, elbow/shoulder doatin, trunk displacement and
rotation). There were very few differences in moeam kinematics between
environments for healthy subjects. Overall, theerevno differences in elbow and
shoulder ranges of motion or interjoint coordinatifior movements made in both
environments by either group (Figure 5). Healthgjsats however, made movements
faster, pointed to contralateral targets more ately and made straighter endpoint
paths in the PE compared to the VE. The particippavith stroke made less accurate
and more curved movements in VE and also usedtiesk displacement. Thus, the
results of this study suggested that pointing mammshin virtual environments were
sufficiently similar to those made in physical aoviments so that 3D VEs could be
considered as valid training environments for uppalo movements.
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Figure 5. Results of comparison of pointing movements madevo environments described in Figure 4.
Healthy (A) but not stroke (B) subjects made mowet®enore slowly in the virtual environment (VE)
compared to the physical environment (PE). Thenewe differences in joint ranges used in eitheithg

or stroke subjects in the two environments (C,D).



The appearance of more curved trajectories andiskeof less trunk movement
were also features of grasping movements madeinual environment while subjects
wore a haptic device on the hand (Cybergrasp, ImimerCorp.). In a study of 12
adults with chronic stroke-related hemiparesis @g#e10 yrs), reaching and grasping
kinematics to three different objects in a VE anBE were compared [68]. The 3D
virtual environment was displayed via a HMD asha previous study and the task was
to reach forward, pick-up and transport a virtuaygical object from one surface to
another (Figure 6). Three objects were used thpatimed different grasp types — a can
(diameter 65.6 mm) that required a spherical grasggrewdriver (diameter 31.6 mm)
requiring a power grasp and a pen (diameter 7.5, meguiring a precision finger-
thumb grasp. In the VE, the virtual representatiérthe subject's hand was obtained
using a glove (Cyberglove, Immersion Corp.) andticafeedback (prehension force
feedback) was provided via an exoskeleton deviaeeul over the glove (Cybergrasp,
Immersion Corp.).

As for the comparison of reaching movements, coatgarmovement strategies
were used to reach, grasp and transport the vidgndl physical objects in the two
environments. Similar to what was found for poigtmovements, reaching in VR took
approximately 35% longer compared to PE. This waes ¢specially for the cylindrical
and precision grasps. Thus, reaching and graspmgments that were accomplished
in around 1.5 seconds in PE, took up to 2.2 secamdbe VE. The increase in
movement time was reflected in all the temporalaldes compared between the two
environments such as the peak velocity, the timagetak velocity, the time to maximal
grip aperture and the deceleration time as the hapdoached the object. In addition to
the temporal differences, movement endpoint trajges were also more curved in VE.
Overall, participants used more elbow extension strmllder horizontal adduction in
VE compared to PE and there were slight differericeghe amount of supination and
pronation used for reaching the different obje€isspite these differences, subjects
were able to similarly scale hand aperture to dbgeze and the hand was similarly
oriented in the VE compared to the PE.

Figure 6. Representation of virtual environment for comparis reaching and grasping kinematics in
physical and virtual environments. Inset (uppehtlighows the scene as viewed by the subject v
head-mounted display. Bottom: Sequence of moveméhs) for picking up and moving the can,
screwdriver and pen.



4. Conclusion

Results of these validation studies are encouraffinghe incorporation of VEs into
rehabilitation programs aimed at improving uppenbifunction. They suggest that
movements made in virtual environments can be katially similar to those made in
physical environments. This is the first step ia thalidation of VEs for rehabilitation
applications. A question remains as to how simil@avements made in VEs have to be
to movements made in the physical world in orderréal functional gains to occur.
Research on the effectiveness of task-specifiqitrgi versus conventional or non-
specific training suggests that rehabilitation ontes are better when practice is task-
oriented and repetitive [4, 46, 70]. Better outceraee also expected when the learner
is motivated to improve and when the movementstiget are judged to be salient to
the learner [47]. These variables can be optiminedovel environments offered by
virtual reality technology to maximize rehabilitati outcomes.

VR is one of the most innovative, potentially effee technologies that during the
past decade has begun to be used as an assessmemtea@ment tool in the
rehabilitation of adults and children [49, 50, 32, 72]. Some progress has been made
in the demonstration of the transfer of abilitiesl askills acquired within VE to real
world performance [50, 69, 73, 75]. Training intual reality environments has the
potential to lead to better rehabilitation outconthsn conventional approaches
because of the attributes of VR. Future researdtilisneeded to firmly establish that
motor gains made in VEs are transferable to andimprove functioning and arm use
in the physical world.
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