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Chapter 1

Introduction

The Analytic Hierarchy Process (AHP) is a multi-criteria decision making method

developed by Thomas Saaty [8]. AHP allows decision makers to model a complex

problem in a hierarchical structure, showing the relationships of the goal, objectives

(criteria), and alternatives. AHP is made up of several components such as hier-

archical structuring of complexity, pairwise comparisons, judgments, an eigenvector

method for deriving weights, and consistency considerations.

In the case of making a decision individually, the best alternative can be easily

determined in accordance with the preference of the decision-maker. When the

decision is to be decided by a group of people, it is very common that conflicting

preferences complicate the evaluation processes leading to an erroneous conclusion.

Therefore, it is necessary to aggregate the individual preferences objectively in order

to optimize the decision outcomes. To objectify the decision, group decision making

is frequently employed.

Many decision problems cannot be structured hierarchically. Not only does the

importance of the criteria determine the importance of the alternatives, as in a

hierarchy, the importance of the alternatives themselves determine the importance of

the criteria. The Analytic Network Process (ANP) provides a solution for problems

which can be modelled using a diagram called a network.
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Chapter 2

Theoretical foundation - Principles

and axioms

AHP is based on three basic principles:

• decomposition,

• comparative judgments, and

• hierarchic composition or synthesis of priorities.

The decomposition principle is applied to structure a complex problem into a hier-

archy of clusters. The principle of comparative judgments is applied to construct

pairwise comparisons of all combinations of elements in a cluster with respect to the

parent of the cluster. These pairwise comparisons are used to derive local priorities

of the elements in a cluster with respect to their parent. The principle of hierarchic

composition or synthesis is applied to multiply the local priorities of elements in

a cluster by the global priority of the parent element, producing global priorities

throughout the hierarchy and then adding the global priorities for the lowest level

elements (the alternatives).

All theories are based on axioms. The simpler and fewer the axioms, the more

general and applicable is the theory. Originally AHP was based on three relatively

simple axioms [10]. The first axiom, the reciprocal axiom, requires that, if PC(A,B)
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is a paired comparison of elements A and B with respect to their parent, element C,

representing how many times more the element A possesses a property than does

element B, then PC(B, A) =
1

PC(A,B)
.

The second, or homogeneity axiom, states that the elements being compared

should not differ by too much, else there will tend to be larger errors in judgment.

When constructing a hierarchy of objectives, one should attempt to arrange elements

in a cluster so that they do not differ by more than an order of magnitude.

The third, synthesis axiom states that judgments about the priorities of the

elements in a hierarchy do not depend on lower level elements. This axiom is required

for the principle of hierarchic composition to apply and apparently means that the

importance of higher level objectives should not depend on the priorities or weights

of any lower level factors.

A fourth expectation axiom, introduced later by Saaty, says that individuals who

have reasons for their beliefs should make sure that their ideas are adequately repre-

sented for the outcome to match these expectations. This axiom means that output

priorities should not be radically different to any prior knowledge or expectation

that a decision maker has.
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Chapter 3

The Analytical Process

3.1 Hierarchical Decomposition of the Decision

The first step in using AHP is to develop a hierarchy by breaking the problem

down into its components. The three major levels of the hierarchy are the goal,

objectives, and alternatives.

Goal The goal is a statement of the overall priority.

Objectives These are the factors needing consideration.

Alternatives We consider the alternatives that are available to reach the goal.

Figure 3.1 shows such a hierarchical structure of factors. The hierarchical struc-

ture of the basic AHP allows dependencies among elements to be only between the

levels of the hierarchy, and the only possible direction of impact is toward the top of

the hierarchy. The elements of a given level are assumed to be mutually independent.

AHP is illustrated with a simple problem. A firm wishes to buy one new piece

of equipment of a certain type and has four aspects in mind which will govern

its purchasing choice: expense, operability, reliability, and adaptability for other

uses, or flexibility. Competing manufacturers of that equipment have offered three

options, X, Y and Z. In this example:
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Figure 3.1: An Example of a Hierarchy

• Obj 1 = expense

• Obj 2 = operability

• Obj 3 = reliability

• Obj 4 = flexibility

• A1 = buying the equipment X

• A2 = buying the equipment Y

• A3 = buying the equipment Z
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3.2 Pairwise Comparisons

After arranging the problem in a hierarchical fashion, the next step is to establish

priorities. Two types of pairwise comparisons are made in the AHP. The first is

between pairs of objectives and is used to show our priorities. The second type of

pairwise comparison is between pairs of alternatives and is used to determine their

relative merits.

3.2.1 Importance of Objectives

Pairwise comparisons of the factors are made in terms of importance. When

comparing a pair of objectives, a ratio of relative importance of the factors can be

established. This ratio need not be based on some standard scale such as feet or

meters but merely represents the relationship of the two factors being compared.

In AHP we use the verbal scale to enter judgements. This is essentially an ordinal

scale. When a decision maker judges A to be strongly more important than B we

know that A is more important than B, but we do not know the interval between A

and B or the ratio of A to B.
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Intensity of im-

portance

Definition Explanation

1 Equal impor-

tance

Two factors contribute

equally to the objective.

3 Somewhat more

important

Experience and judgement

slightly favour one overthe

other.

5 Much more im-

portant

Experience and judgement

strongly favour one overthe

other.

7 Very much more

important

Experience and judgement

very strongly favour one

over the other. Its im-

portance is demonstrated in

practice.

9 Absolutely more

important

The evidence favouring one

over the other is of the high-

est possible validity.

2,4,6,8 Intermediate

values

When compromise is

needed.
According to the reciprocal axiom, if attribute A is absolutely more important

than attribute B and is rated at 9, then B must be absolutely less important than

A and is valued at
1

9
.
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What is the relative importance to the management of the firm in our exam-

ple of the cost of equipment as opposed to its ease of operation? They are asked

to choose whether cost is very much more important, rather more important, as

important, and so on down to very much less important, than operability. These

pairwise comparisons are carried out for all factors to be considered, and the matrix

of judgements is completed. We first provide an initial matrix for the firms pairwise

comparisons in which the principal diagonal contains entries of 1, as each factor is

as important as itself.

Expence Operability Reliability Flexibility

Expence 1

Operability 1

Reliability 1

Flexibility 1

Let us suppose that the firm decides that operability is slightly more important

than cost. In the matrix that is rated as 3 in the cell Operability, Expence and
1

3
in Expence, Operability. They also decide that cost is far more important than

reliability, giving 5 in Expence, Reliability and
1

5
in Reliability, Expence. The firm

similarly judges that operability is much more important than flexibility (rating =

5), and the same judgement is made as to the relative importance of flexibility to

reliability. This forms the completed matrix.

Expence Operability Reliability Flexibility

Expence 1 1
3

5 1

Operability 3 1 5 1

Reliability 1
5

1
5

1 1
5

Flexibility 1 1 5 1

3.2.2 Preference of Alternatives with respect to Objectives

We usually evaluate the preference for the alternatives with respect to the ob-

jectives before evaluating the importance of the objectives. This approach is recom-
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mended so that we get a better understanding of the alternatives just in case our

judgments about the importance of the objectives are dependent on the alternatives.

In our example the firms engineers have looked at the options and decided that

• X is cheap and easy to operate but is not very reliable and could not easily be

adapted to other uses.

• Y is somewhat more expensive, is reasonably easy to operate, is very reliable

but not very adaptable.

• Z is very expensive, not easy to operate, is a little less reliable than Y but is

claimed by the manufacturer to have a wide range of alternative uses.

So we now turn to the three potential machines, X, Y and Z. We now need four sets

of pairwise comparisons but this time in terms of how well X, Y and Z perform in

terms of the four criteria.

Expence X Y Z

X 1 5 9

Y 1
5

1 3

Z 1
9

1
3

1

Operability X Y Z

X 1 1 5

Y 1 1 3

Z 1
5

1
3

1

Reliability X Y Z

X 1 1
3

1
9

Y 3 1 1
3

Z 9 3 1
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Flexibility X Y Z

X 1 1
9

1
5

Y 9 1 2

Z 5 1
2

1

In general we have square and reciprocal matrixes. These are the pairwise com-

parison matrixes.

A =




a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann




,

where aij =
1

aji

∀i, j.

3.3 Pairwise Matrix Evaluation

Suppose we already know the relative weights of criteria: w1, w2, . . . , wn. We can

assume that
n∑

i=1

wi = 1. We can express them in a pairwise comparison matrix as

follows:

W =




w11 w12 w13 . . . w1n

w21 w22 w23 . . . w2n

...
...

...
...

...

wn1 wn2 wn3 . . . wnn




=

=




1
w1

w2

w1

w3

. . .
w1

wnw2

w1

1
w2

w3

. . .
w2

wn
...

...
. . .

...
...

wn

w1

wn

w2

wn

w3

. . . 1




Note that ∀i, j, k:

wij =
1

wji
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and

wij =
wi

wj

=
wi

wk

wk

wj

= wikwkj.

Such a matrix is called a consistent matrix.

3.3.1 Eigenvector Method

The method below was suggested by Saaty [8]. If we wanted to recover or find

the vector of weights, (w1, w2, w3, ..., wn) given these ratios, we can take the matrix

product of the matrix W with the vector w to obtain:




1
w1

w2

w1

w3

. . .
w1

wnw2

w1

1
w2

w3

. . .
w2

wn
...

...
. . .

...
...

wn

w1

wn

w2

wn

w3

. . . 1







w1

w2

...

wn




=




nw1

nw2

...

nwn




Ww = nw

If we knew the consisten W matrix, but not w , we could solve the above for

w. This is an eigenvalue problem: Ww = λw. Each row in matrix W is a constant

multiple of the first row. For such a matrix, the rank of the matrix is one, and all the

eigenvalues of W are zero, except one. Since the sum of the eigenvalues of a positive

matrix is equal to the trace of the matrix (the sum of the diagonal elements), the

non zero eigenvalue has a value of n, the size of the matrix. Since Ww = nw , w is

the eigenvector of W corresponding to the maximum eigenvalue n.

For matrices involving human judgement, the condition wij = wikwkj does not

hold as human judgements are inconsistent to a greater or lesser degree. Now we

estimate wij by aij. A = [aij] would be the matrix of the pairwise comparisons.

In the matrix A the strong consistency property most likely does not hold. Small

perturbations in the entries imply similar perturbations in the eigenvalues, thus the

eigenvalue problem for the inconsistent case is:

Aw = λmaxw,
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where λmax will be close to n (actually greater than or equal to n) and the other

eigenvalues will be close to zero. The estimates of the weights for the activities can

be found by normalizing the eigenvector corresponding to the largest eigenvalue in

the above matrix equation.

There are other methods than the eigenvector method for estimating weights (wi)

from the matrix of pairwise comparisons (A = [aij]). Here are the presentations of

the least squares and logaritmic least squares methods.

3.3.2 Least Squares Method

min
n∑

i=1

n∑
j=1

(aij − wi

wj

)2

n∑
i=1

wi = 1

wi > 0 for i = 1, . . . , n

3.3.3 Logaritmic Least Squares Method

min
∑
i<j

n∑
j=1

[ln aij − ln(
wi

wj

)]2

n∏
i=1

wi = 1

wi > 0 for i = 1, . . . , n

Putting xi = ln(wi) and yij = ln(aij) we have

∑
i<j

n∑
j=1

[yij − xj + xi]
2

Minimizing this we obtain [2]:

nxi −
n∑

j=1

xj =
n∑

j=1

yij, i = 1, . . . , n,

15



which under the side condition
n∑

j=1

xj = 0

gives

xi =
1

n

n∑
j=1

yij, i = 1, . . . , n.

So the weights can be expresses in the form

wi = (
n∏

j=1

aij)
1
n .

The normalized geometric means of the rows are very close to the eigenvector

corresponding to the largest eigenvalue of the matrix. In our example we would like

to compute the eigenvector of the following matrix (see on page 11):



1
1

3
5 1

3 1 5 1
1

5

1

5
1

1

5
1 1 5 1




The geometric means are computed as:

m1 =
4

√
1× 1

3
× 5× 1 =

4

√
5

3
= 1.136

m2 = 4
√

3× 1× 5× 1 =
4
√

15 = 1.968

m3 =
4

√
1

5
× 1

5
× 1× 1

5
=

4

√
1

125
= 0.299

m4 = 4
√

1× 1× 5× 1 =
4
√

5 = 1.495

With the help of the sum of theese values (m1 +m2 +m3 +m4 = 4, 898) we compute

the normalized geometric mean, the estimate of the eigenvector:

p =




p1

p2

p3

p4




=




0.232

0.402

0.061

0.305



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These four numbers correspond to the relative values of Expence, Operability, Reli-

ability and Flexibility. The 0.402 means that the firm values operability most of all;

0,305 shows that they like the idea of flexibility; the remaining two numbers show

that they not desperately worried about cost and are not interested in reliability.

We now turn to the other four matrices (on page 12). We compute the eigenvectors

with the same method. The results are shown below:

Expence Operability Reliability Flexibility

X 0.751 0.480 0.077 0.066

Y 0.178 0.406 0.231 0.615

Z 0.071 0.114 0.692 0.319

This matrix summarises the Performance of the three machines in terms of what

the firm wants. Reading down each column, it somewhat states the obvious: X

is far better than Y and Z in terms of cost; it is a little better than Y in terms

of operability, however, X is of limited value in terms of reliability and flexibility.

These are not, however, absolutes; they relate only to the set of criteria chosen by

this hypothetical firm.

3.4 Additive Weighted Aggregation of Priorities

Suppose that we have all the weights of criteria and all the performances respect

to each criterion. Let v1, v2, . . . , vl denote the weights of criteria and pij (i = 1, . . . , k,

j = 1, . . . , l) the performance of ith alternative on jth criterion. Now the global

priority of the ith alternative can be obtained as the weighted sum of performances:

wi =
l∑

j=1

vjpij

In our example we determined the relative weight of factors, and we also have

the relative priorities of the alternatives with respect to objectives (see on page 17).

We now need to choose between the alternatives, we combine the performance of

the machines with the preference of the firm:

17



Expence Operability Reliability Flexibility global

0.232 0.402 0.061 0.305 priorities

X 0.751 0.480 0.077 0.066 0.392

Y 0.178 0.406 0.231 0.615 0.406

Z 0.071 0.114 0.692 0.319 0.204

This mean that X, which scores 0.392, seems to come out slightly worse in terms of

its ability to meet the firms needs than does Y at 0.406. Z is well behind at 0.204

and would do rather badly at satisfying the firm’s requirements in this illustrative

case.

3.5 Evaluation of Rating Inconsistency

The final stage is to calculate a Consistency Ratio (CR) to measure how con-

sistent the judgements have been relative to large samples of purely random judge-

ments. If the CR is much in excess of 0.1 the judgements are untrustworthy because

they are too close for comfort to randomness and the exercise is valueless or must

be repeated.

The closer λmax is to n, the more consistent the judgments. Thus, the difference,

λmax − n, can be used as a measure of inconsistency (this difference will be zero

for perfect consistency). Instead of using this difference directly, Saaty defined a

Consistency Index (CI) as:
λmax − n

n− 1

since it represents the average of the remaining eigenvalues. In order to derive a

meaningful interpretation of either the difference or the consistency index, Saaty

simulated random pairwise comparisons for different size matrices, calculating the

consistency indices, and arriving at an average consistency index for random judg-

ments for each size matrix. In the table below the upper row is the order of the

random matrix, and the lower is the corresponding index of consistency for random

judgements.
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1 2 3 4 5 6 7

0.00 0.00 0.58 0.9 1.12 1.24 1.32

8 9 10 11 12 13 14

1.41 1.45 1.49 1.51 1.48 1.56 1.57

He then defined the consistency ratio as the ratio of the consistency index for a

particular set of judgments, to the average consistency index for random comparisons

for a matrix of the same size.

CR =
CI

mean random CI

Since a set of perfectly consistent judgments produces a consistency index of 0, the

consistency ratio will also be zero. A consistency ratio of 1 indicates consistency

akin to that, which would be achieved if judgments were not made intelligently, but

rather at random. This ratio is called the inconsistency ratio since the larger the

value, the more inconsistent the judgments.

In our example the consistency ratio of the matrix, which shows the importance

of objectives, is 0.55, well below the critical limit, so the firm is consistent in its

choises. The ratios of the other 4 matrices are: 0.072, 0.026, 0, 0. This means, that

the firm would buy the equipment Y.
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Chapter 4

Group Decision Making

4.1 Aggregating Individual Judgements and Pri-

orities

The Analytic Hierarchy Process is often used in group settings where group

members either engage in discussion to achieve a consensus or express their own

preferences. When synthesizing the judgments given by n judges we have to condider

the followings:

Pareto principle (Unanimity condition) The Pareto principle essentially says

that given two alternatives A and B, if each member of a group of individuals

prefers A to B, then the group must prefer A to B.

f(x, x, . . . , x) = x,

where f(x1, x2, . . . , xn) is the function for synthesizing the judgments.

Homogeneity condition If all individuals judge a ratio t times as large as another

ratio, then the synthesized judgment should also be t times as large.

f(tx1, tx2, . . . , txn) = tf(x1, x2, . . . , xn),

where t > 0.

20



Reciprocity requirement The synthesized value of the reciprocal of the individ-

ual judgments should be the reciprocal of the synthesized value of the original

judgments.

f(
1

x1

,
1

x2

, . . . ,
1

xn

) =
1

f(x1, x2, . . . , xn)

Theorem 1. The general synthesizing functions satisfying the unanimity and ho-

mogeneity conditions are

the geometric mean: f(x1, x2, . . . , xn) =
√

x1x2 . . . xn and

the arithmetic mean: f(x1, x2, . . . , xn) =
x1 + x2 + · · ·+ xn

n
.

If moreover the reciprocal property is assumed even for a single n-tuple

(x1, x2, . . . , xn) of judgements of n individuals, where not all xk are equal, then only

the geometric mean satisfies all the above conditions.

Individual judgments can be aggregated in different ways. Two methods are

the aggregation of individual judgments and the aggregation of individual priorities.

The choice of method depends on whether the group is assumed to act together as

a unit or as separate individuals.

4.1.1 Aggregation of Individual Judgements

When individuals are willing to, or must relinquish their own preferences (values,

objectives) for the good of the organization, they act in concert and pool their

judgments in such a way that the group becomes a new individual and behaves like

one. Individual identities are lost with every stage of aggregation and a synthesis

of the hierarchy produces the group’s priorities. Because we are not concerned with

individual priorities, and because each individual may not even make judgments for

every cluster of the hierarchy, there is no synthesis for each individual, individual

priorities are irrelevant or non-existent. Thus, the Pareto principle is irrelevant.

Furthermore, since the group becomes a new individual and behaves like one, the

reciprocity requirement for the judgments must be satisfied and the geometric mean

rather than an arithmetic mean must be used.
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4.1.2 Aggregation of Individual Priorities

When individuals are each acting in his or her own right, with different value

systems, we are concerned about each individual’s resulting alternative priorities.

An aggregation of each individual’s resulting priorities can be computed using either

a geometric or arithmetic mean. Neither method will violate the Pareto principle:

If ai ≥ bi, i = 1, 2, . . . , n then
n∑

i=1

ai

n
≥

n∑
i=1

bi

n

for an arithmetic mean, and

n

√√√√
n∏

i=1

ai ≥ n

√√√√
n∏

i=1

bi

for a geometric mean provided ai ≥ 0 and bi ≥ 0, i = 1, 2, . . . , n. While either

an arithmetic or geometric mean can be used for aggregating individual priorities,

the geometric mean is more consistent with the meaning of priorities in AHP. In

particular, preferences in AHP represent ratios of how many times more important

(preferable) one factor is than another. Synthesized alternative priorities in AHP

are ratio scale measures and have meaning such that the ratio of two alternatives’

priorities represents how many times more preferable one alternative is than the

other.

4.1.3 Weighted arithmetic and geometric means

When calculating the geometric average of the judgments or either the arithmetic

or geometric average of priorities we often assume that the individuals are of equal

importance. If, however, group members are not equally important, we can form a

weighted geometric mean or weighted arithmetic mean.

Theorem 2. The general weighted synthesizing functions satisfying the unanimity

and homogeneity conditions are

the weighted geometric mean: f(x1, x2, . . . , xn) = xw1
1 xw2

2 . . . xwn
n and

the weighted arithmetic mean: f(x1, x2, . . . , xn) = w1x1 + w2x2 + · · ·+ wnxn, where
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w1 + w2 + · · ·+ wn = 1, wi > 0 (i = 1, 2, . . . , n).

If f also has the reciprocal property and for a single set of entries

(x1, x2, . . . , xn) of judgements of n individuals, where not all xk are equal, then only

the weighted geometric mean applies.

Weighted geometric mean of judgments:

Jg(k, l) =
n∏

i=1

Ji(k, l)wi ,

where: Jg(k, l) refers to the group judgement of the relative importance of factors k

and l, Ji(k, l) refers to individual i’s judgment of the relative importance of factors

k and l, wi is the weight of individual i;
∑n

i=1 wi = 1; and n the number of decision-

makers.

Weighted Geometric Mean Complex Judgement Matrix

The weighted geometric mean method is the most common group preference

aggregation method in AHP literature.

Definition 1. Let A = (aij) and B = (bij) be n × n judgement matrices, the

Hardmard product of A and B can be denoted by C = A◦B = cij, where cij = aijbij,

for each i, j.

Definition 2. Let A = (aij) be an n×n judgement matrix, we denote by Aλ = (aλ
ij)

where λ ∈ R.

Definition 3. Let A1, A2, . . . , An be judgement matrices for the same decision prob-

lem, then the weighted geometric mean complex judgement matrix is A, where

A = Aλ1
1 ◦ Aλ2

2 ◦ · · · ◦ Aλn
n ,

n∑
i=1

λi = 1 λk > 0 (k = 1, 2, . . . , n).

Weighted (Un-normalized) geometric mean of priorities:

Pg(Aj) =
n∏

i=1

Pi(Aj)
wi ,
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where Pg(Aj) refers to the group priority of alternative j, Pi(Aj) to individual i’s

priority of alternative j, wi is the weight of individual i,
∑n

i=1 wi = 1, and n the

number of decision-makers.

Weighted arithmetic mean of priorities:

Pg(Aj) =
n∑

i=1

wiPi(Aj),

where Pg(Aj) refers to the group priority of alternative j, Pi(Aj) to individual i’s

priority of alternative j, wi is the weight of individual i,
∑n

i=1 wi = 1, and n the

number of decision-makers.

4.2 Computing Weights

The question arises as to how to compute the wi’s. Saaty [9] suggests forming a

hierarchy of factors such as expertise, experience, previous performance, persuasive

abilities, effort on the problem, etc. to determine the priorities of the decision-

makers. But who is to provide judgments for this hierarchy? If it cannot be agreed

that one person (a supra decision-maker) will provide the judgments, it is possible

to ask the same decision-makers who provided judgments for the original hierarchy

to provide judgments for this hierarchy as well. If so, we have a meta-problem of

how to weight their individual judgments or priorities in the aggregation process

to determine the weights for the decision-makers to apply to the aggregation of

the original hierarchy. One possibility is to assume equal weights. Ramanathan

and Ganesh [7] provide another method, which they call the eigenvector method

of weight derivation. They reason that, if w = (w1, w2, . . . , wn) is the true (but

unknown) weight priority vector for the individual’s weights, and if the individual

weight priority vectors derived from the judgments from each of the individuals are

arranged in a matrix: M = (m1,m2, . . . , mn), then we can aggregate to find the

priorities of the n individuals, x, where x = Mw. Then Ramanathan and Ganesh

reason that x = w, resulting in the eigenvector equation: w = Mw. We observe that

this method is attractive but reasonable only if the weights for obtaining priorities

of the decision-makers are assumed to be the same as the weights to be used to

24



aggregate the decision-makers’ judgments/priorities for obtaining the alternative

priorities in the original hierarchy. In general, this need not be the case.

4.3 The Consistency of the Weighted Geometric

Mean Complex Judgement Matrix

Theorem 3. If judgement matrices A1, A2, . . . , An given by experts or decision-

makers are of perfect consistency, then the weighted geometric mean complex judge-

ment matrix A is of perfect consistency.

Proof.

A = Aλ1
1 ◦ Aλ2

2 ◦ · · · ◦ Aλn
n ⇒ aij = (a

(1)
ij )λ1(a

(2)
ij )λ2 . . . (a

(n)
ij )λn

Since A1, A2, . . . , An are of perfect consistency:

(a
(s)
ij )λs = (a

(s)
ik )λs(a

(s)
kj )λs ∀i, j s = 1, . . . , n.

aij = (a
(1)
ij )λ1(a

(2)
ij )λ2 . . . (a

(n)
ij )λn =

= (a
(1)
ik )λ1(a

(1)
kj )λ1(a

(2)
ik )λ2(a

(2)
kj )λ2 . . . (a

(n)
ik )λn(a

(n)
kj )λn =

= (a
(1)
ik )λ1(a

(2)
ik )λ2 . . . (a

(n)
ik )λn(a

(1)
kj )λ1(a

(2)
kj )λ2 . . . (a

(n)
kj )λn =

= aikakj

Thus A is of pervect consistency.

If the judgement matrices are not of perfect consistency, then the above con-

clusion does not hold. In this section we prove that A is of acceptable consistency

(CR ≤ 0.1) under the condition that each Ak (k = 1, 2, . . . , n) is of acceptable

consistency.

We assume that the components of the real vector of weights (w = (w1, w2, . . . , wn))

are perturbed to give the elements of judgement matrix A, namely, aij =
wi

wj

εij ∀i, j,

where εij > 0 and εji =
1

εij

. The consistency index related to the perturbation matrix

E = (εij) is CI =
λmax − n

n− 1
, where λmax is the largest eigenvalue of A. Aw = λmaxw,
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i.e.,

λmaxwi =
n∑

j=1

aijwj i, j = 1, . . . , n.

Since aii = 1 and aji =
1

aij

, hence

nλmax − n =
n∑

i=1

n∑

j=1,j 6=i

aij
wj

wi

=
∑

1≤i<j≤n

(aij
wj

wi

+ aji
wi

wj

).

According to aij =
wi

wj

εij, we have

nλmax − n =
∑

1≤i<j≤n

(εij + εji)

λmax − 1 =
1

n

∑
1≤i<j≤n

(εij + εji),

thus

CI =
λmax − n

n− 1
= −1 +

λmax − 1

n− 1
=

= −1 +
1

n(n− 1)

∑
1≤i<j≤n

(εij + εji) =
1

n(n− 1)

∑
1≤i<j≤n

(εij + εji − 2).

The judgement matrix A can be donated by A = W ◦ E, where W is a perfectly

consistent matrix and E is a perturbation matrix.

Definition 4. A is of acceptable consistency, if

CI =
1

n(n− 1)

∑
1≤i<j≤n

(εij + εji − 2) ≤ α,

where α is the dead line of acceptable consistent judgement.

In general, α is equal to one-tenth of the mean consistency index of randomly gen-

erated matrices, which is given in table on page 19. Since CR =
CI

mean random CI
we say judgement matrix A is of acceptable consistency, if CR ≤ 0.1. By definitions

on page 23 we have the following properties:

Property 1. A ◦B = B ◦ A

26



Property 2. (A ◦B)λ = Aλ ◦Bλ, λ ∈ R

Property 3. A ◦B ◦ C = (A ◦B) ◦ C = A ◦ (B ◦ C)

Lemma 1. Let xi > 0, λi > 0 i = 1, . . . , n and
∑n

i=1 λi = 1, then

n∏
i=1

xλi
i ≤

n∑
i=1

λixi

with equality if and only if x1 = x2 = · · · = xn.

Proof. This inequality follows the strict convexity of the function exp(x) and by

induction on n:

exp

{
n∑

i=1

λi log xi

}
≤

n∑
i=1

λi exp(log xi),

with equality if and only if x1 = x2 = · · · = xn.

Theorem 4. Let judgement matrices A1, A2, . . . , An be of acceptable consistency,

λk ∈ (0, 1),
∑n

k=1 λk = 1, then the the weighted geometric mean complex judgement

matrix A = Aλ1
1 ◦ Aλ2

2 ◦ · · · ◦ Aλn
n is of acceptable consistency.

Proof. Since a judgement matrix can be regarded as the matrix obtained by per-

turbing a consistent matrix, we express the matrices Ak k = 1, . . . , n as A1 =

W ◦ E1, A2 = W ◦ E2, . . . , An = W ◦ En, where W is a perfectly consistent matrix,

Ek = (ε
(k)
ij ) is the perturbation matrix corresponding to Ak. According to the above

properties, we can obtain

A = Aλ1
1 ◦ Aλ2

2 ◦ · · · ◦ Aλn
n = (A ◦ E1)

λ1 ◦ (A ◦ E2)
λ2 ◦ · · · ◦ (A ◦ En)λn =

= Aλ1 ◦ Eλ1
1 ◦ Aλ2 ◦ Eλ2

2 ◦ · · · ◦ Aλn ◦ Eλn
n =

= Aλ1 ◦ Aλ2 ◦ · · · ◦ Aλn ◦ Eλ1
1 ◦ Eλ2

2 · · · ◦ Eλn
n =

= A ◦ (Eλ1
1 ◦ Eλ2

2 · · · ◦ Eλn
n ).

By definition we have

1

n(n− 1)

∑
1≤i<j≤n

(ε
(k)
ij + ε

(k)
ji − 2) ≤ α k = 1, . . . , n.
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Multiplying this by λk ∈ (0, 1), then

1

n(n− 1)

∑
1≤i<j≤n

(λkε
(k)
ij + λkε

(k)
ji − 2) ≤ αλk k = 1, . . . , n.

Noting that
∑n

k=1 λk = 1, it follows that

1

n(n− 1)

∑
1≤i<j≤n

(
n∑

i=1

λkε
(k)
ij +

n∑
i=1

λkε
(k)
ji − 2

)
≤ α. (4.1)

From Lemma 1. we have

1

n(n− 1)

∑
1≤i<j≤n

[
n∏

k=1

(
ε
(k)
ij

)λk

+
n∏

k=1

(
ε
(k)
ji

)λk − 2

]
≤

≤ 1

n(n− 1)

∑
1≤i<j≤n

[
n∑

k=1

λkε
(k)
ij +

n∑

k=1

λkε
(k)
ji − 2

]
.

(4.2)

According to Eqs. 4.1 and 4.2, it can be obtained that

1

n(n− 1)

∑
1≤i<j≤n

[
n∏

k=1

(
ε
(k)
ij

)λk

+
n∏

k=1

(
ε
(k)
ji

)λk − 2

]
≤ α.

By definition it means that A = Aλ1
1 ◦Aλ2

2 ◦ · · · ◦Aλn
n is of acceptable consistency.

4.4 The Logarithmic Least Squares and the Gen-

eralized Pseudoinverse in Estimating Ratios

Suppose that a matrix R = (rijk) is available where rijk is an estimate for the

relative significance of the ith and jth factors, provided by a kth decision-maker

(k = 1, . . . , dij ≤ m ∀i, j). Moreover let us assume that R is a reciprocal matrix,

i.e. rjik > 0 and rijk =
1

rjik

. Our purpose is to obtain unique positive estimates

w1, w2, . . . , wn using the logarithmic least squares approach

∑
i<j

dij∑

k=1

[
ln rijk − ln

(
wi

wj

)]2

.
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In other words, it is necessary to estimate the following judgment matrix:

R =




r11,1 r12,1 . . . r1n,1

...
...

. . .
...

r1n,d1n r1n,d1n . . . r1n,d1n

r21,1 r22,1 . . . r2n,1

...
...

. . .
...

r2n,d2n r2n,d2n . . . r2n,d2n

...
...

...
...

rn1,1 rn2,1 . . . rnn,1

...
...

. . .
...

rnn,dnn rnn,dnn . . . rnn,dnn




by a matrix of ratios:

W =




1
w1

w2

w1

w3

. . .
w1

wnw2

w1

1
w2

w3

. . .
w2

wn
...

...
. . .

...
...

wn

w1

wn

w2

wn

w3

. . . 1




.

The matrix R is defined in the informal way from the mathematical point of view, i.e.

it is an n-dimensional square matrix with each entry consisting of expert opinions

which number depends on the number of opinions concerning a given pair of factors.

In particular cases, R may have empty entries, when an expert refuses to provide

his opinion concerning a pair or pairs of factors.

Putting xi = ln(wi) and yijk = ln(rijk) we consider

∑
i<j

dij∑

k=1

[yijk − xj + xi]
2.

Minimizing this we obtain:

xi

n∑

j 6=ij=1

dij −
n∑

j 6=ij=1

dijxj =
n∑

j 6=ij=1

n∑

k=1

yijk, i = 1, . . . , n, (4.3)
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where
dij > 0 ∀i, j,

n∑

j 6=ij=1

dij > 0 ∀i.

The set of equations 4.3 may be written in a matrix form:

Ax = b,

where A is a real symmetric matrix with rows and columns summing up to zero and

b is a real vector with entries summing up to zero as well. The rank of the matrix

A is less than n. The matrix A has the following structure:

A =




∑n
j 6=ij=1 d1j −d12 . . . −d1n

−d21

∑n
j 6=ij=1 d2j . . . −d2n

...
...

. . .
...

−dn1 −dn2 . . .
∑n

j 6=ij=1 dnj




4.4.1 The Logarithmic Least Squares Approach

In case every decision maker has provided his opinion for each pair of factors

(dij = D∀i, j) eqs. 4.3 may be rewritten as

xi

n∑

j 6=ij=1

D −
n∑

j 6=ij=1

Dxj =

nDxi −D

n∑

j 6=ij=1

xj =
n∑

j 6=ij=1

n∑

k=1

yijk i = 1, . . . , n,

which together with the condition
∑n

j=1 xj = 0 gives

xi =
1

nD

n∑

j 6=ij=1

n∑

k=1

yijk.

Thus

wi =

(
n∏

j=1

D∏

k=1

rijk

) 1
nD

i = 1, . . . , n.
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Since
∑n

j=1 xj = 0,
∏n

i=1 wi = 1. This gives the geometric normalization property

for the solution of the problem. When we have the same number of judgments

per pair of factors, the geometric mean method may be used and the solution is

geometrically normalized.

4.4.2 The Generalized Approach

In order to solve Ax = b we try a more general approach, using the general-

ized pseudoinverse method. Kwiesielewicz [6] showed that for every real symmetric

matrix the spectral decomposition (SD) may be used to define the generalized pseu-

doinverse matrix (Theorem 7). Moreover when rows and columns of a real symmetric

matrix sum up to zero then rows and columns of its pseudoinverse sum up to zero

as well (Theorem8).

The Generalized Pseudoinverse Matrix

Since A is a real symmetric matrix, it can be diagonalized by an orthogonal

matrix:

Q−1AQ = Λ.

The columns of Q contain complete set of orthonormal eigenvectors and Λ is a

diagonal matrix with eigenvalues of A. Q is an orthogonal real matrix, Q−1 = QT ,

the above equation may be written

A = QΛQT .

Definition 5. Let the matrix A+ be

A+ = QΛ+QT ,

where Λ+ is a diagonal matrix with

λ+
i =





1/λi

0

ifλi 6= 0,

ifλi = 0.

This definition gives a a spectral decomposition (SD) of A+.
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Theorem 5. For every real m x n matrix A there exists a unique solution X to the

following system of matrix equations:

1. AXA = A,

2. XAX = X,

3. (AX)T = AX,

4. (XA)T = XA.

Definition 6. The generalized pseudoinverse of A, denoted as A+, is the unique

matrix X determined by axioms 1.-4.

Theorem 6. The matrix A+ defined by Definition 5 is the generalized pseudoinverse

in the sense of Definition 6.

The following theorem follows from the above:

Theorem 7. For every real symmetric matrix A there exists a unique pseudoinverse

matrix defined by A+ = QΛ+QT .

Generalized inverse for a matrix with columns and rows summing up to

zero

Theorem 8. The generalized pseudoinverse of every real symmetric matrix with

rows summing up to zero, has rows and columns summing up to zero too.

Problem Solution

Theorem 9. A necessary and sufficient condition for the equation

Ax = b

to have a solution is

AA+b = b,

in which case the general solution is

x = A+b + (I − A+A)y,

where y is an arbitrary vector.
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The minimum norm solution is

x = A+b.

Since rows and columns of the pseudoinverse sum up to zero, if the minimum norm

solution exists, it satisfies the following condition:

n∑
i=1

xi =
n∑

i=1

n∑
j=1

a+
ijbj =

n∑
j=1

bj

n∑
i=1

a+
ij = 0.

So after coming back to exponentials, we get
∏n

i=1 wi = 1. Recall that wi = exi (i =

1, . . . , n). Now we are ready to state the main conclusion:

Theorem 10. The minimum norm solution x = A+b of the equations set Ax = b if

exists gives for the w’s the geometric normalization condition wi = exi i = 1, . . . , n.

So the solution of our problem is geometrically normalized and consistent with

the one decision-maker case.
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Chapter 5

The Analytic Network Process

5.1 Network

Many decisions cannot be structured hierarchically because they involve the

interaction and dependence of higher-level elements on lower-level elements. Not

only does the importance of the criteria determine the importance of the alternatives

as in a hierarchy, but also the importance of the alternatives themselves determines

the importance of the criteria.

Consider the following example. Suppose you are the mayor of a medium size

city. The city council has just approved funding for a bridge that will connect the

eastern and southern districts saving the residents 30 minutes in commuting time.

You announce that the winning proposal will be chosen using a formal evaluation

methodology in which the proposals will be evaluated on the basis of strength and

aesthetics. In order to be fair, you will, before receiving any bids, specify which of

the two objectives will be more important. It seems obvious that strength is much

more important than aesthetics and you publicly announce that strength will be

the most important objective in choosing the winning proposal. Subsequently, two

alternative designs are proposed for the new bridge. Bridge A is extremely save (as

safe as any bridge yet built in the State) and beautiful. Bridge B is twice as strong

as bridge A, but is ugly. Your hands are tied you have announced that the most

important objective is strength and you must choose the ugly bridge. The bridge is
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Figure 5.1: Network

built and many town residents are reminded of your decision at least twice a day.

You lose the next election and will be wary of formal evaluation methodologies for

the rest of your life.

The feedback structure does not have the linear top-to-bottom form of a hierarchy

but looks more like a network, with cycles connecting its clusters of elements, which

we can no longer call levels, and with loops that connect cluster to itself. A decision

problem involving feedback arises often in practice. The Analytic Network Process

provides a solution for problems that can be modelled using a diagram called a

network, as presented in Figure 5.1.

A network has clusters of elements, with the elements in one cluster being con-

nected to elements in another cluster (outer dependence) or the same cluster (inner

dependence). A network is concerned with all the influences that can affect an out-

come. It is a model of continual change because everything affects everything else
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and what we do now can change the importance of the criteria that control the

evolution of the outcome.

5.2 Supermatrix

The first phase of the ANP is to compare the criteria in whole system to form the

supermatrix. Assume that we have a system of N clusters or components whereby

the elements in each component interact or have an impact on or are influenced by

some or all of the elements of that component or of another component with respect

to a property governing the interactions of the entire system. Assume that the hth

component, denoted by Ch (h = 1, . . . , N), has nh elements, which we denote by

eh1, eh2, . . . , ehnh
. The impact of a given set of elements in a component on another

element in the system is represented by a ratio scale priority vector derived from

paired comparisons in the usual way. Each priority vector is derived and introduced

in the appropriate position as a column vector in a supermatrix of impacts (with

respect to one control criterion). W block matrix consists of the collection of the

priority weight vectors (w) of the influence of the elements in the ith cluster with

respect to the jth cluster. If the ith cluster has no influence to the jth cluster then

Wij = 0. The matrix obtained in this step is called the supermatrix. The general

form of a supermatrix is shown below.
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C1 C2 . . . CN

e11e12 . . . e1n1 e21e22 . . . e2n2 . . . eN1eN2 . . . eNnN

e11

e12

C1
... W11 W12 . . . W1N

e1n1

e21

e22

C2
... W21 W22 . . . W2N

e2n2

...
...

...
...

eN1

eN2

CN
... WN1 WN2 . . . WNN

eNnN

The supermatrix, which is composed of ratio scale priority vectors derived from

pairwise comparison matrices and the zero vectors, must be stochastic (each column

sums to one) to obtain meaningful limiting results. In general the supermatrix is

rarely stochastic because, in each column, it consists of several eigenvectors which

each sums to one, and hence the entire column of the matrix may sum to an integer

greater than one. The natural thing to do, which we all do in practice, is to determine

the influence of the clusters on each cluster with respect to the control criterion. This

yields an eigenvector of influence of all the clusters on each cluster. The eigenvector

obtained from cluster level comparison with respect to the control criterion is applied

as the cluster weights. This results in a matrix which each of its columns sums to

unity. If any block in the supermatrix contains a column that every element is zero,

that column of the supermatrix must be normalized after weighting by the cluster’s

weights to ensure the column sum to be unity. The concept is similar to Markov

Chain that the sum of the probabilities of all states equal to one. This matrix is

called the stochastic matrix or weighted supermatrix.

Next, we raise the weighted supermatrix to limiting powers such as limk→∞ W k
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to get the global priority vectors or called weights. If the supermatrix has the effect

of cyclicity, there may be two or more N limiting supermatrices. In this case, the

Cesaro sum is calculated to get the priority. The Cesaro sum is formulated as

lim
k→∞

(
1

N

) N∑

k=1

W k

to calculate the average effect of the limiting supermatrix (i.e. the average priority

weights).

In order to show the concrete procedures of the ANP, a simple example of system

development is demonstrated to derive the priority of each criterion. As we know, the

key to develop a successful system depending on the match of human and technology

factors. Assume the human factor can be measured by the criteria of business culture

(C), end-user demand (E) and management (M). On the other hand the technology

factor can be measured by the criteria of employee ability (A), process (P) and

resource (R). In addition, human and technology factors are affected each other as

like as the structure shown in Figure 5.2.

'

&

$

%

Human

Culture

End-User

Management

'

&

$

%

Technology

Ability

Process

Resource

6

?

Figure 5.2: Structure

The first step of the ANP is to compare the importance between each criterion.
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For example, the first matrix on Table 5.1 is to ask the question ”For the criterion

of employee ability, how much the importance does one of the human criteria than

another”. The other matrices can easily be formed with the same procedures. The

next step is to calculate the influence (i.e. calculate the principal eigenvector) of the

elements (criterion) in each component (matrix).

Now, we can form the supermatrix. Since the human factor can affect the tech-

nology factor, and vise versa, the supermatrix is formed as follows:

C E M A P R

C 0 0 0 0.634 0.250 0.400

E 0 0 0 0.192 0.250 0.200

M 0 0 0 0.174 0.500 0.400

A 0.637 0.582 0.136 0 0 0

P 0.105 0.109 0.654 0 0 0

R 0.258 0.309 0.210 0 0 0

Then, the weighted supermatrix is obtained by ensuring all columns sum to unity

exactly. It is the same as the supermatrix. Last, by calculating the limiting power

of the weighted supermatrix, the limiting supermatrix is obtained as follows:

C E M A P R

C 0 0 0 0.464 0.464 0.464

E 0 0 0 0.210 0.210 0.210

M 0 0 0 0.324 0.324 0.324

A 0.463 0.463 0.463 0 0 0

P 0.284 0.284 0.284 0 0 0

R 0.253 0.253 0.253 0 0 0

when k is even and
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C E M A P R

C 0.464 0.464 0.464 0 0 0

E 0.210 0.210 0.210 0 0 0

M 0.324 0.324 0.324 0 0 0

A 0 0 0 0.463 0.463 0.463

P 0 0 0 0.284 0.284 0.284

R 0 0 0 0.253 0.253 0.253

when k is odd.

As we see, the supermatrix has the effect of cyclicity, and the Cesaro sum (i.e.

add the two matrices and dividing by two) is used here to obtain the final priorities

as follows:

C E M A P R

C 0.233 0.233 0.233 0.233 0.233 0.233

E 0.105 0.105 0.105 0.105 0.105 0.105

M 0.162 0.162 0.162 0.162 0.162 0.162

A 0.231 0.231 0.231 0.231 0.231 0.231

P 0.142 0.142 0.142 0.142 0.142 0.142

R 0.127 0.127 0.127 0.127 0.127 0.127

In this example, the criterion of culture has the highest priority (0.233) in system

development and the criterion of end-user has the least priority (0.105).
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Ability Culture End-user Management Eigenvector Normalization

Culture 1 3 4 0.634 0.634

End-user 1/3 1 1 0.192 0.192

Management 1/4 1 1 0.174 0.174

Process

Culture 1 1 1/2 0.250 0.250

End-user 1 1 1/2 0.250 0.250

Management 2 2 1 0.500 0.500

Recourse

Culture 1 2 1 0.400 0.400

End-user 1/2 1 1/2 0.200 0.200

Management 1 2 1 0.400 0.400

Culture Ability Process Resource

Ability 1 5 3 0.637 0.637

Process 1/5 1 1/3 0.105 0.105

Resource 1/3 3 1 0.258 0.258

End-user

Ability 1 5 2 0.582 0.582

Process 1/5 1 1/3 0.109 0.109

Resource 1/2 3 1 0.309 0.309

Management

Ability 1 1/1 1/3 0.136 0.136

Process 5 1 3 0.654 0.654

Resource 3 1/3 1 0.210 0.210

Table 5.1: Pairwise Comparisons

41



Bibliography

[1] Geoff Coyle: Practical Strategy: Structured tools and techniques [2004] Finan-

cial Times Press

[2] Crawford, G., and Williams, C, [1985] A note on the analysis of subjective

judgment matrices, Journal of Mathematical Psychology 29: 387-405.

[3] Ernest H. Forman & Mary Ann Selly [2001] Decision by Objectives World

Scientific

[4] Ernest Forman, Kirti Peniwati [1998] Aggregating individual judgments and

priorities with the Analytic Hierarchy Process European Journal of Operational

Research 108: 165-169

[5] Jih-Jeng Huang, Gwo-Hshiung Tzeng, Chorng-Shyong Ong, [2004] Multidimen-

sional data in multidimensional scaling using the analytic network process, Pat-

tern Recognition Letters 26 (2005) 755-767

[6] Kwiesielewicz, M., [1996] The logarithmic least squares and the generalized

pseudoinverse in estimating ratios, European Journal of Operational Research

93: 611-619

[7] Ramanathan, R., Ganesh, L.S., [1994] Group Preference Aggregation Methods

Employed in AHP: An Evaluation and Intrinsic Process for Deriving Members’

Weightages, European Journal of Operational Research 79: 249-265.

[8] Saaty, Thomas L. [1980] The Analytic Hierarchy Process, McGraw-Hill, New

York

42



[9] Saaty, Thomas L. [1984] Fundamentals of Decision Making and Priority Theory

with The Analytic Hierarchy Process, RWS Publications

[10] Saaty, Thomas L. [1986] Axiomatic foundations of the AHP, Management Sci-

ence 32: 841-855.

[11] Saaty, Thomas L. [1999] The seven pillars of the Analytic Hierarchy Process

[12] Saaty, T. L. [1999] Fundamentals of the Analytic Network Process, Proceedings

of ISAHP 1999, Kobe

[13] Z. Xu [2000] On consistency of the weighted geometric mean complex judgement

matrix in AHP, European Journal of Operational Research 126: 683-687

43


