
Learning and Validation of Human
Control Strategies

Michael C. Nechyba

CMU-RI-TR-98-06

Submitted in partial fulfillment of the requirements for the
degree of Doctor of Philosophy

May 1998

The Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

 1998 Michael C. Nechyba

This research was funded in part through a National Science Foundation Graduate Research Fellowship, as well
as a Department of Energy Doctoral Research Fellowship.

iii

Abstract

In this thesis, we apply machine learning techniques and statistical analysis towards the learn-

ing and validation of human control strategy (HCS) models. This work has potential impact in

a number of applications ranging from space telerobotics and real-time training to the Intelli-

gent Vehicle Highway System (IVHS) and human-machine interfacing. We specifically focus

on the following two important questions: (1) how to efficiently and effectively model human

control strategies from real-time human control data and (2) how to validate the performance

of the learned HCS models in the feedback control loop. To these ends, we propose two dis-

crete-time modeling frameworks, one for continuous and another for discontinuous human

control strategies. For the continuous case, we propose and develop an efficient neural-network

learning architecture that combines flexible cascade neural networks with extended Kalman fil-

tering. This learning architecture demonstrates convergence to better local minima in many

fewer epochs than alternative, competing neural network learning regimes. For the discontinu-

ous case, we propose and develop a statistical framework that models control actions by indi-

vidual statistical models. A stochastic selection criterion, based on the posterior probabilities

for each model, then selects a particular control action at each time step.

Next, we propose and develop a stochastic similarity measure — based on Hidden Markov

Model (HMM) analysis — that compares dynamic, stochastic control trajectories. We derive

important properties for this similarity measure, and then, by quantifying the similarity

between model-generated control trajectories and corresponding human control data, apply

this measure towards validating the learned models of human control strategy. The degree of

similarity (or dissimilarity) between a model and its training data indicates how appropriate a

specific modeling approach is within a specific context. Throughout, the learning and valida-

tion methods proposed herein are tested on human control data, collected through a dynamic,

graphic driving simulator that we have developed for this purpose. In addition, we analyze

actual driving data collected through the Navlab project at Carnegie Mellon University.

v

Acknowledgments

First, I sincerely thank my advisor Yangsheng Xu for his friendship and intellectual guidance

throughout the years; I cannot imagine a better role model for myself on how to conduct and

coordinate the many duties of a professor. I also thank Yangsheng for giving me the wonderful

and unique opportunity to study in Hong Kong. I thank the other members of my thesis com-

mittee, Dean Pomerleau and Andrew Moore for their valuable and constructive suggestions

throughout. Special thanks to Shumeet Baluja, whose many insightful comments have all been

offered in his recent and short time on my committee.

Thanks to the many, many people who gave of their time to “drive” through my driving simu-

lator. Without their data, it would have been impossible to develop and test the learning meth-

ods and analysis tools developed in this thesis. Special thanks to “Larry,” “Curly,” “Moe,”

“Groucho,” “Harpo,” and “Zeppo,” who are acknowledged anonymously below.

I thank Andrew Moore and Jeff Schneider for the use of their memory-based learning and prin-

cipal component analysis software. I thank Scott Fahlman for his advice in using the cascade

learning architecture, and Michael Kingsley and David C. Lambert for their cascade training

software. I thank Doug Baker for sharing his data and learning results for the cascade learning

architecture. I also thank Parag Batavia and the Navlab group for sharing driving data collected

on Pennsylvania roads.

I thank Ofer Barkai for our friendship and our many discussions on Hidden Markov Models.

Likewise I thank Kan Deng for our frequent and interesting discussions on time series analysis.

I thank Jie Yang, whose work on human modeling inspired some of mine. Thanks also go to

Ava Cruse, Marie Elm, Carolyn Ludwig, and Marce Zaragoza for their excellent support over

the years.

In addition, I thank the following people for their friendship, both personal and professional,

throughout my time at CMU: Marcel Bergerman, Fabio Cozman, Andrew Gove, John Han-

cock, Lalit Katragadda, Chris Lee, John Murphy, Mark Ollis, Henry Schneiderman and Harry

Schum. Special thanks to Geoff and Paula Gordon for housing me during my thesis writing

months in Pittsburgh. Also, thanks to Jingyan Song and Winston Sun for their help and friend-

ship during my time in Hong Kong.

Finally, with great love and respect, I acknowledge the support, love and encouragement of my

family — my parents, my grandmother (“Oma”), Andy, Tom, Christian, and more recently,

Raquel, Stacy and Lyana — without whom I surely would not have reached this stage in my

life. Special thanks to Tom whose decision to pursue a Ph.D. encouraged my decision to do the

same.

vii

Contents

Abstract iii

Acknowledgments v

1 Introduction 1

1.1 Motivation ..1

1.2 Related work ..4

1.2.1 Skill learning through exploration ...5

1.2.2 Skill modeling from human data ..5

1.2.3 Neural network learning ..8

1.2.4 Locally weighted learning ..10

1.3 Overview ..11

2 Experimental design 15

viii Contents

2.1 Motivation ..15

2.2 Simulation environment ...17

2.2.1 Dynamic driving simulator ..17

2.2.2 Road descriptions ...19

2.3 Model class ..21

3 Cascade Neural Networks with Kalman Filtering 25

3.1 Motivation ..26

3.2 Cascade neural networks ..28

3.3 Node-decoupled extended Kalman filtering ..30

3.3.1 Learning architecture ...30

3.3.2 Computational complexity ...33

3.4 Comparison experiments ...36

3.4.1 Problem descriptions ..36

3.4.2 Learning results ..39

3.4.3 Noisy learning results ..43

3.4.4 Discussion ..44

4 HCS Models: Continuous Learning 47

4.1 Cascade with quickprop learning ...48

4.1.1 Experimental data ..48

Contents ix

4.1.2 Model inputs and outputs ...48

4.1.3 Cq training ...49

4.1.4 HCS models ...50

4.2 Cascade with NDEKF learning ..50

4.2.1 Model inputs and outputs ...50

4.2.2 Ck training ..55

4.2.3 HCS models ...56

4.3 Analysis ..56

4.3.1 Model stability ...56

4.3.2 Learning convergence ..64

4.3.3 Discussion ..65

5 HCS Models: Discontinuous Learning 69

5.1 Hybrid continuous/discontinuous control ..70

5.1.1 General statistical framework ..70

5.1.2 Action definitions ...72

5.1.3 Statistical model choice ...73

5.1.4 Prior probabilities ...75

5.1.5 Task-based modifications ..76

5.2 Experimental results ...78

5.2.1 Model training ..78

5.2.2 HCS models ...79

x Contents

5.3 Analysis ..84

5.3.1 Sample curve control ...84

5.3.2 Probability profile ..87

5.3.3 Modeling extension ..90

6 Model validation 93

6.1 Need for model validation ...94

6.2 Stochastic similarity measure ..97

6.2.1 Hidden Markov Models ...98

6.2.2 Similarity measure ...100

6.2.3 Properties ...101

6.2.4 Distance measure ...104

6.2.5 Data preprocessing ...106

6.2.6 Vector quantization ..113

6.2.7 Discretization compensation ..114

6.2.8 HMM training ..119

7 Human-to-human similarity 123

7.1 Comparing human control strategies ...123

7.1.1 Experimental data ..123

7.1.2 Classification experiments ...124

Contents xi

7.1.3 Bayes classification ..126

7.1.4 Spectral classification ..132

7.1.5 Task-based classification ...134

7.1.6 Classification with performance drift ..135

7.2 Comparing Navlab driving data ...137

7.2.1 Experimental data ..137

7.2.2 Classification experiments ...138

7.3 Analysis ..139

7.3.1 One-sided similarity measure ..139

7.3.2 Bayes classifier limitations ..141

7.3.3 Similarity measure variations ..143

8 Human-to-model validation 149

8.1 Human-to-model comparisons ...149

8.2 Classification experiment ...151

8.3 Model inputs revisited ..152

9 Conclusion 155

9.1 Contributions ...155

9.2 Future work ..156

xii Contents

Appendix A Human control data 161

A.1 Larry ...163

A.2 Curly ..165

A.3 Moe ..167

A.4 Groucho ..169

A.5 Harpo ..171

A.6 Zeppo ...173

Appendix B HMM Training 175

B.1 Forward-backward algorithm ...175

B.2 Baum-Welch algorithm (with scaling) ...177

Appendix C Author’s Publications 181

Bibliography 183

1

Chapter 1

Introduction

1.1 Motivation

Over the past two decades, rapid advances in computer performance have not been matched

with similar advances in the development of intelligent robots and systems. Although humans

are quite adept at mastering complex and dynamic skills, we are far less impressive in formal-

izing our behavior into algorithmic, machine-codable strategies. Therefore, it has been difficult

to duplicate the types of intelligent skills and actions, we witness every day as humans, in

robots and other machines. This not only limits the capabilities of individual robots, but also

the extent to which humans and robots can safely interact and cooperate with one another. Nev-

ertheless, human actions are currently our only examples of truly “intelligent” behavior. As

such, there exists a profound need to abstract human skill into computational models, capable

of realistic emulation of dynamic human behavior.

Models of human skill can transfer intelligent control behaviors to robots. This is especially

critical for robots which have to operate in remote or inhospitable environments, which humans

cannot reach. For example, sending humans to operate in space is often expensive, dangerous,

or outright impossible, while sending robots instead is comparatively cheap and involves no

risk to human life. Replacing astronauts with robots is only feasible, however, if the robots are

2 Chapter 1: Introduction

equipped with sufficient autonomous skill and intelligence; we suggest that a robot can acquire

those necessary capabilities through abstracted models of human skill.

In other robotic applications, we would like robots to carry out tasks which humans have tradi-

tionally performed. For example, the Intelligent Vehicle Highway System (IVHS), currently

being developed through massive initiatives in the United States, Europe, and Japan [25, 26],

envisions automating much of the driving on our highways. The required automated vehicles

will need significant intelligence to interact safely with variable road conditions and other traf-

fic. Modeling human intelligence offers one way of building up the necessary skills for this type

of intelligent machine.

With increased intelligence and sophistication in robotic systems, analysis of human-robot

coordination in tightly coupled human-machine systems will become increasingly relevant. In

IVHS, for example, there will be ubiquitous interaction between autonomous vehicles and their

human drivers/passengers. Moreover, the currently limited application domain for robots may

broaden into other aspects of consumer life, where household and service robots will interact

primarily with non-experts. To ensure safe coordination with humans in a shared workspace,

we must incorporate appropriate models of human behavior into the world model of the robots.

We can assess the quality of joint human-machine systems by including computational models

of human behavior in the overall system analysis.

Realistic simulation of human behavior is required not only in human-machine systems, but

also in the burgeoning field of virtual reality. As graphic displays become increasingly life-like,

the dynamic behavior of the virtual world will need to match the increased visual realism. Com-

putational models of human skill can impart the necessary sense of realism to the actions and

behaviors of virtual humans in the virtual world. Consider, for example, a NASCAR video

game. Rather than have preprogrammed behaviors, human driver models, abstracted from dif-

ferent race car drivers, could generate more diverse and human-like driving behaviors in the

simulated competitors.

1.1 Motivation 3

Finally, accurate models of human skill can contribute to improved expert training and human-

computer interfacing (HCI). Consider, for example, the tasks of teleoperating robots in remote

environments or learning to fly a high-performance jet. Training for both of these tasks is dif-

ficult, expensive, and time consuming for a novice [83, 104]. We can accelerate learning for the

novice operator by providing on-line feedback from virtual teachers in the form of skill models,

which capture the control strategies of expert operators. Through the use of human skill mod-

els, operator performance can be monitored during training or actual task execution as infor-

mation is displayed through different sensor modalities and layouts.

Thus, models of human skill find application in far ranging fields, from autonomous robot con-

trol and teleoperation to human-robot coordination and human-robot system simulation. Since

scientific understanding of human intelligence is incomplete at best, however, models of human

skill cannot be derived analytically. Rather, we have to model human skill through observation,

or learning, of experimentally provided human training data. Current learning paradigms are

not sufficiently rich to model the full range of human skill, from low-level muscle control to

high-level reasoning and abstract thought. As such, we restrict our focus tohuman control

strategy, a particular subset of human skill discussed below.

Broadly speaking,human skill can be grouped into two categories: (1)action skills, which are

open-loop, and (2)reaction skills, which are closed-loop, and require sensory feedback to suc-

cessfully execute the skill. Tossing or kicking a ball is an example of action skill. Driving a car,

on the other hand, is a classic example of reaction skill, where the human closes the feedback

control loop.Human control strategy we study in this thesis is a subset of this type of reaction

skill. In terms of complexity, human control strategy lies between low-level feedback control

and high-level reasoning, and encompasses a wide range of useful physical tasks with a reason-

ably well-defined numeric input/output representation. On the one hand, a control strategy is

not only defined by the “gains” or parameters in the controller, but also the structure or

approach of the strategy. Consider the skill of driving a car, for example. Figure 1-1 illustrates

applied force profiles over the same road for two different individuals in a driving simulator.

4 Chapter 1: Introduction

The distinction between the two driving styles is a difference in kind rather than merely a dif-

ference in degree, similar to the structural difference between a linear feedback and a variable

structure controller. Each represents a unique control strategy. On the other hand, the demon-

strated skill in Figure 1-1 requires no high-level reasoning or abstract thought. Modeling such

mental processes, of which humans are capable, requires an as-of-yet unavailable understand-

ing of the human traits of self-awareness and consciousness.

1.2 Related work

The field ofintelligent control [122] has emerged from the field of classical control theory to

deal with applications too complex for classical control approaches. Broadly speaking, intelli-

gent control combines classical control theory withadaptation, learning, oractive exploration.

Methods in intelligent control include fuzzy logic control, neural network control, reinforce-

ment learning, and locally weighted learning for control.

Neural networks are used to map unknown nonlinear functions and have been applied in control

most commonly for dynamic system identification and parameter adaptive control [8, 73, 79].

Locally weighted learning presents an alternative to neural networks, and maps unknown func-

tions through local statistical regression of the experimental data, rather than through a func-

tional representation [9, 10]. In reinforcement learning, an appropriate control strategy is found

0 50 100 150 200 250 300
-8000

-6000

-4000

-2000

0

2000

4000

t (sec)

Figure 1-1: Control forces applied by two different individuals in a driving simulator for
the same road and simulation parameters. The two control strategies are quite different.

0 50 100 150 200 250 300

control strategy #1 control strategy #2

t (sec)

a
p

p
lie

d
 f

o
rc

e
 (

N
)

1.2 Related work 5

through dynamic programming of a discretized state space [14]. Below, we describe previous

work relating to each of these methods.

1.2.1 Skill learning through exploration

Learning skill through exploration has become a popular paradigm for acquiring robotic skills.

In reinforcement learning [14, 76, 115, 120], data is not given as direct input/output data points;

rather data is specified by an input vector and an associated (scalar) reward from the environ-

ment. This reward represents the reinforcement signal, and is akin to “learning with a critic” as

opposed to “learning with a teacher.” The reinforcement learning algorithm is expected to

explore and learn a suitable control strategy over time. References [43] and [10] give some

examples of reinforcement learning control for a robot manipulator and a simulated car in a

hole, respectively. Schneider [102] learns the open-loop skill of throwing through a search of

the parameter space which defines all possible throwing motions. One of the advantages of

learning human control strategy directly from human control data is that we avoid the need for

this type of state space search to find a suitable control strategy.

Lee and Kim [67] have proposed and verified aninductive learning scheme, where control rules

are learned from examples of perception/action data through hypothesis generation and testing.

Their learning paradigm, Expert Assisted Robot Skill Acquisition (EARSA) [68], consists of

two steps: (1) skill acquisition from human expert rules, and (2) skill discovery or refinement

through hypothesis generation and testing.

1.2.2 Skill modeling from human data

Interest in modeling human control goes all the way back to World War II, when engineers and

psychologists attempted to improve the performance of pilots, gunners and bombardiers [48].

Early research in modeling human control is based on thecontrol-theory paradigm[72], which

attempts to model the human-in-the-loop as a simple feedback control system. These modeling

efforts generally focussed on simple tracking tasks, where the human is most often modeled as

a simple time delay in the overall human-machine system [105].

6 Chapter 1: Introduction

More recently, work has been done towards learning more advanced skills directly from

humans. In fuzzy control schemes [63, 64], human experts are asked to specify “if-then” con-

trol rules, with fuzzy linguistic variables (e.g. “hot,” “cold,” etc.), which they believe guide their

control actions. For example, simple human-in-the-loop control models based on fuzzy mod-

eling have been demonstrated for automobile steering [60] and ships helmsmen [116].

Although fuzzy control systems are well suited for simple control tasks with few inputs and

outputs, they do not scale well to the high-dimensional input spaces required in modeling

human control strategy [8].

Robot learning from human experts has also been applied to a deburring robot. Asada and Yang

[6] derive control rules directly from human input/output data, by associating input patterns

with corresponding output actions for the deburring robot. In [125], Yang and Asada combine

linguistic information and numeric input/output data for the overall control of the robot. Expert

linguistic rules are acquired directly from a human expert to partition the control space. For

each region, a corresponding linear control law is derived from the numeric demonstration data

by the human expert. In [5, 70, 106], the same deburring robot is controlled through an asso-

ciative neural network which maps process parameter features to action parameters from

human control data. The proper tool feed rate is determined from the burr characteristics of the

current process.

Lee and Chen [66] use feasible state transition graphs through self-organizing data clusters to

abstract skill from human data. Skills are modeled as optimal sequences of one-step state tran-

sitions that transform the current state into the goal state. The approach is verified on demon-

strated human Cartesian teleoperation skill. Yang,et. al. [126, 127] implement a different state-

based approach to open-loop skill learning and telerobotics using Hidden Markov Models

(HMMs). HMMs are trained to learn both telerobotic trajectories executed by a human operator

and simple human handwriting gestures. Yamato,et. al. [123, 124] also train HMMs to recog-

nize open-loop human actions.

1.2 Related work 7

Friedrich,et. al. [36] and Kaiser [56] review programming by demonstration and skill acquisi-

tion via human demonstration for elementary robot skills. Lee [65] investigates human-to-robot

skill transfer through demonstration of task performance in a virtual environments. Voyles,et.

al. [119] program a robot manipulator through human demonstration and abstraction of gesture

primitives. Delson and West [28] and Ude [118] both learn open-loop robot trajectories from

human demonstration. Skubic and Volz [109] transfer force-based assembly skills to robots

from human demonstrations. Iba [53] models open-loop sensory motor skills in humans. Gin-

grich,et. al. [39] argue that learning human performance models is valuable, but offer results

only for simulated, known dynamic systems.

Several approaches to skill learning in human driving have been implemented. In [34, 35], neu-

ral networks are trained to mimic human behavior for a simulated, circular racetrack. The task

essentially involves avoiding other computer-generated cars; no dynamics are modeled or con-

sidered in the approach. Pomerleau [89, 90] implements real-time road-following with data col-

lected from a human driver. A static feedforward neural network with a single hidden layer,

ALVINN, learns to map coarsely digitized camera images of the road ahead to a desired steer-

ing direction, whose reliability is given through an input-reconstruction reliability estimator.

The system has been demonstrated successfully at speeds up to 70 mi/h. Subsequently, a sta-

tistical algorithm called RALPH [88] has been developed for calculating the road curvature and

lateral offset from the road median. Neuser,et. al. [82] control the steering of an autonomous

vehicle through preprocessed inputs to a single-layer feed-forward neural network. These pre-

processed inputs include the car’s yaw angle with respect to the road, the instantaneous and

time-averaged road curvature, and the instantaneous and time-averaged lateral offset. Driving

data is again collected from a human operator. In [74], the authors provide a control theoretic

model of human driver steering control. Finally, Pentland and Liu [86] apply HMMs towards

inferring a particular driver’s high-level intentions, such as turning and stopping.

Other, higher level skills have also been abstracted from human performance data. Kang [57],

for example, teaches a robot assembly through human demonstration. The system observes a

8 Chapter 1: Introduction

human performing a given task, recognizes the human grasp, and maps it onto an available

manipulator. In other words, a sequence of camera images, observing the human demonstra-

tion, is automatically partitioned into meaningful temporal segments. Kosuge,et. al. [59] also

abstract high-level assembly skill from human demonstration data. The high-level sequence of

motion is decomposed into discrete state transitions, based on contact states during assembly.

In each state, compliant motion control implements the corresponding low level control. Hov-

land,et. al. [50] encode human assembly skill with Hidden Markov Models. In [85], neural net-

works encode simple pick-and-place skill primitives from human demonstrations.

1.2.3 Neural network learning

Interest and research in neural network-based learning for control has exploded in recent years.

References [3, 4, 19, 52, 73, 99] provide good overviews of neural network control over a broad

range of applications. Most often, the role of the neural network in control is restricted to mod-

eling either the nonlinear plant or some nonlinear feedback controller.

In choosing a neural network learning architecture, there are several choices to be made,

including the (1) type, (2) architecture and (3) training algorithm. Broadly speaking there are

two types of neural networks: (1) feedforward and (2) recurrent networks.Feedforward neural

networks have connections in only one direction (from inputs to outputs). As such, they are

static maps, which, in order to modeldynamic systems, require time-delayed histories of the

sensor and previous control variables as input.Recurrent networks, on the other hand, permit

connections between units in all directions, including self connections, thereby allowing the

neural network to implicitly model dynamic characteristics (i.e. discover the state) of the sys-

tem. Compared to static feedforward networks, the learning algorithms for recurrent networks

are significantly more computationally involved, requiring relaxation of sets of differential

equations [47]. Yet, Qin,et. al. [93] show similar error convergence in mapping simple

dynamic systems with feedforward and recurrent networks, respectively. As such, we will

restrict the remainder of this discussion to feedforward models only.

1.2 Related work 9

Research into feedforward neural networks began in earnest with the publication of the back-

propagation algorithm in 1986 [98]. Since then a number of different learning architectures

have been proposed to adjust the structure of the feedforward neural network (i.e. the number

and arrangement of hidden units) as part of learning. These approaches can be divided into (1)

destructive and (2) constructive algorithms. In destructive algorithms, oversized feedforward

models are trained first, and then, after learning has been completed, “unimportant” weights,

based on some relevancy criteria are pruned from the network. See, for example [18, 22, 23,

44, 77, 78, 117]. In constructive algorithms, on the other hand, neural networks are initialized

in some minimal configuration and additional hidden units are added as the learning requires.

Ash [7], Bartlett [13] and Hiroshe [49], for example, have all experimented with adaptive archi-

tectures where hidden units are added one at a time in a single hidden layer as the error measure

fails to reduce appreciably during learning. Fahlman [31, 32] proposes a cascade learning

architecture, where hidden units are added in multiple cascading layers as opposed to a single

hidden layer. Cascade learning has a comparative advantage over the other adaptive learning

architectures in that (1) new hidden nodes are not arranged in a single hidden layer, allowing

more complex mappings, and (2) not all weights are trained simultaneously, resulting in faster

convergence. With respect to constructive algorithms, destructive algorithms compare unfavor-

ably, since initially, a lot of effort is expended training (by definition) too many weights, and

the pruned networks needs to be retrained multiple times, after each individual weight or unit

has been pruned.

Finally we note that there is a selection of training algorithms available for feedforward neural

networks. As we have already noted, the first of these was the backpropagation algorithm,

which implements local gradient descent on the weights during training in order to minimize

the sum-of-squared residuals. Since this training method was first proposed [98], modifications

to standard backpropagation, as well as other training algorithms have been suggested. An

adaptive learning rate [24], as well as an additive momentum term [87] are both somewhat

effective in accelerating convergence of backpropagation in “flat” regions of the error hyper-

surface. Quickprop [31] incorporates local, second-order information in the weight-update

10 Chapter 1: Introduction

algorithm to further speed up learning. Kollias and Anastassious [58] propose applying the

Marquardt-Levenberg least squares optimization method, which utilizes an approximation of

the Hessian matrix. Extended Kalman filtering [92, 108], where the weights in the neural net-

work are viewed as states in a discrete-time finite dimensional system, outperform the previ-

ously mentioned algorithms in terms of learning speed and error convergence [92]. In all cases,

experimental data is usually partitioned into two random sets — one for actual training, and the

other for cross validation [47]; training is generally stopped once the error measure on the

cross-validation set no longer decreases.

1.2.4 Locally weighted learning

Neural networks have received great attention for nonlinear learning and control applications.

Another learning paradigm,locally weighted learning, has emerged more recently and has

shown great success for a number of different control applications, ranging from devil sticking

[100] to robot juggling [101]. Atkeson,et. al. [9] offer an excellent overview of locally

weighted learning, while [10] addresses control-specific issues. Locally weighted regression is

one instance of locally weighted learning and is similar in approach to CMAC [1] and RBF [75]

neural networks in that local (linear) models are fit to nearby data. All the data is explicitly

stored and organized in efficient data structures (such ask-d trees [17] or Bump trees [84], for

example). When the model is queried for the output at a specified input vector, points in the

database near that input vector are used to construct a local linear map.

Locally weighted regression offers several advantages over global learning paradigms (such as

neural networks) [10]. First, locally weighted regression results in smooth predicted surfaces.

Second, it automatically linearizes the system around a query point by providing the local lin-

ear map. Third, adding new data to the locally weighted regression model is cheap, as it merely

requires inserting a new data point in the existing data base. Learning occurs in one-shot, since

all the data is retained for the construction of the local linear models. Fourth, local minima are

not a problem, as no gradient descent is required for learning the model. Finally, interference

(e.g. the catastrophic forgetting problem) between old and new experiences does not occur.

1.3 Overview 11

Despite these appealing features, locally weighted regression also suffers from some shortcom-

ings. First, computational and memory costs increase as the size of the data increases. Second,

efficient data structures become less efficient as the dimensionality of the input space grows.

Finally, locally weighted learning is very sensitive toa priori representational choices.1

1.3 Overview

The research in modeling skill from human data or human demonstration has thus far not

addressed a number of important issues. Much of the previous work models only open-loop

human action skills, static or quasi-static skills, or higher-level abstractions of human skill (e.g.

assembly). In general, the work has not focussed on abstracting models ofdynamic human con-

trol strategies, as defined above. The work that has been done in modeling dynamic human-in-

the-loop control essentially views the human as a low-level feedback transfer function — noth-

ing more than an annoying time delay with particular noise properties.

Therefore, this thesis applies machine learning techniques and statistical analysis towards

abstracting models of human control strategy. It is our contention that such models can be

learned efficiently to emulate complex human control behaviors in the feedback loop.

The thesis is organized as follows. In Chapter 2, we describe a graphic dynamic driving simu-

lator which we have developed as an experimental platform for collecting, modeling and ana-

lyzing human control data. We argue that such a simulation environment is well suited for our

purposes, in large measure because it protects the human subjects from injuring or harming

themselves or others during control execution and data collection. We then define the class of

models — static feedforward models — to which we restrict ourselves in this thesis.

1. We observe that locally weighted learning (includingk-nearest neighbor modeling) suffers all these effects
for the human control data in this thesis. First, the human control data sets are large, with approximately
30,000 data points per set. Second, the input space typically has dimensionality between 35 and 100.
Consequently, short of global models, we have found it difficult to generate stable memory-based models,
that run in anything close to real time (except for the most trivial data sets).

12 Chapter 1: Introduction

Next, in Chapter 3 we propose and develop an efficient continuous learning framework for

modeling human control strategy that combines cascade neural networks and node-decoupled

extended Kalman filtering. We illustrate that the resulting architecture converges to better local

minima in many fewer epochs than alternative feedforward neural network approaches for

some known function approximation and dynamic system identification problems.

In Chapter 4 we then apply cascade learning towards abstracting HCS models from experimen-

tal control strategy data. We compare two training algorithms introduced in the previous chap-

ter — namely, quickprop and NDEKF, and show that cascade/NDEKF converges orders of

magnitude faster than cascade/quickprop for the human control training data. While the cas-

cade models form stable controllers, we observe that they qualitatively fail to match the human

training data with a high degree of fidelity. We observe that the dissimilarity between the human

and model-generated control trajectories is principally caused by switching discontinuities in

one of the model outputs, and that, in fact,any continuous modeling framework would suffer

equally in attempting to model that output without high-frequency noise.

Therefore, in Chapter 5 we propose and develop a stochastic, discontinuous modeling frame-

work for modeling discontinuous human control strategies. This approach models different

control actions as individual statistical models, which, together with the prior probabilities of

each control action, combine to generate a posterior probability for each action, given the cur-

rent model inputs. A control decision is then made stochastically, based on the posterior prob-

abilities. We apply the discontinuous modeling framework towards modeling human control

strategies and observe that the resulting model-generated trajectories appear to be more similar

to the human training data.

In Chapter 6 we then set out to quantify the qualitative observations of model fidelity in Chap-

ters 4 and 5. As a first step in validating the learned models of human control strategy, we pro-

pose and develop a stochastic similarity measure, based on Hidden Markov Model analysis that

is capable of comparing multi-dimensional stochastic control trajectories. The goal of this sim-

1.3 Overview 13

ilarity measure is to compare model-generated control trajectories with their respective human

control trajectories.

Chapter 7 verifies the similarity measure by comparing human control data across different

individuals. By comparison, an alternative statistical technique, the Bayes classifier, and an

alternative Fourier spectral technique achieve significantly worse classification performance.

Finally, in Chapter 8 we apply the similarity measure as avalidation measure for the learned

HCS models in Chapters 4 and 5. We confirm our qualitative analysis of model fidelity and

observe that the discontinuous modeling framework exhibits markedly better similarity with

the human training data than the continuous HCS models.

14 Chapter 1: Introduction

15

Chapter 2

Experimental design

2.1 Motivation

Human control strategy, as we have defined the term, encompasses a large set of human-con-

trolled tasks. It is neither practical nor possible to investigate all of these tasks in a finite amount

of time. In this thesis, we therefore look towards a prototypical control application — the task

of human driving — to collect and model control strategy data from different human subjects.

Within the driving domain, we have a choice betweensimulated driving (i.e. driving through a

simulator) and real driving. For our purposes, the ideal control task should embody several

desirable qualities. First, during the execution of the control task, the human subject must not

be injured or harmed in any way (short of wounded pride). Second, the human subject should

have prior experiences that will help him complete the control task successfully. Third, the con-

trol task should pose a significant challenge to the human controller. Finally, the task should be

complex enough that it allows for variations in strategy across different individuals.

Let us examine real driving in the context of these four criteria (safety, prior experience, control

difficulty and control strategy variations). First, unless we ask individuals to drive very conser-

vatively, it is difficult to guarantee the safety of our human subjects in real driving experiments.

If we do ask them to drive conservatively, however, the control task will not be very challeng-

16 Chapter 2: Experimental design

ing; moreover, variations between individuals will be somewhat muted. Finally, with respect to

prior experience, real driving measures up to the qualities we seek in our control task.

Simulated driving, on the other hand, differs from real driving in a number of important

respects. Most importantly, the human subject poses no threat to himself or others while driving

in the simulator, no matter how recklessly he chooses to drive. Consequently, unlike in real

driving, we can challenge individuals to drive near the edge of their abilities. This produces

driving control strategies that are richer and more complex than their real counterparts. Because

of this increased complexity, the demonstrated control strategies will potentially exhibit greater

variations from one individual to the next. Finally, while human subjects may not be familiar

with respect to a specific driving simulator prior to testing, they can, as experienced drivers,

transition from real driving to simulated driving with relative ease and efficiency.

Table 2-1 summarizes the above discussion.With respect to our goal of comparing and model-

ing human control strategies, simulated driving embodies more of the qualities which we

desire. Thus, we choose simulated driving as our primary control task. We emphasize that in

choosing simulated driving, wedo not suggest that simulation isin general better than reality

for experimentation.1 We only suggest that since the focus of this thesis is the human control

strategiesthemselves,a simulated task can be appropriate if it bears substantial resemblance to

1. There are aspects of a real task that cannot be modeled well in a simulation environment. These include
measurement and sensor noise, variable road conditions, etc.

 Table 2-1: Simulated vs. real driving

Category Simulated driving Real driving

Safety High Low

Prior experience Medium High

Control difficulty High Low

Control strategy variations High Medium

2.2 Simulation environment 17

a comparable real task. We believe that our driving simulation environment, which we describe

in detail in the following section, does meet that criterion.

2.2 Simulation environment

2.2.1 Dynamic driving simulator

Figure 2-1 shows the real-time, dynamic, graphic driving simulator which we have developed

for collecting and analyzing human control strategy data. In the interface, the human operator

has full control over the steering of the car (mouse movement), the brake (left mouse button)

and the accelerator (right mouse button); the middle mouse button corresponds to slowly easing

off whichever pedal is currently being “pushed.” The vehicle dynamics are given in (2-1)

through (2-19) below (modified from [46]):

steering wheelspeedometer compass

map

car

Figure 2-1: Our driving simulator generates a perspective view of the road for the user,
who has independent control over steering, braking, and acceleration (gas).

18 Chapter 2: Experimental design

(2-1)

(2-2)

(2-3)

(2-4)

where describe the Cartesian position and orientation of the car; is the lateral

velocity of the car; is the longitudinal velocity of the car; and is the angular velocity of

the car. Furthermore,

, , (2-5)

, , (2-6)

, (2-7)

, (2-8)

, (2-9)

, (2-10)

, (2-11)

(2-12)

(2-13)

, (2-14)

ω̇ l f φ f δ l f Fξf l rFξr–+() I⁄=

v̇ξ φ f δ Fξf Fξr+ +() m⁄ vηω– vξsgn()cDvξ
2–=

v̇η φ f φr Fξf δ–+() m⁄ vξω vηsgn()cDvη
2–+=

ẋ

ẏ

θ̇

θcos θsin 0

θsin– θcos 0

0 0 1

vξ

vη

ω

=

x y θ, ,{ } vξ

vη ω

Fξk µFzk α̃k δsgn()α̃k
2 3⁄– α̃k

3 27⁄+() 1 φk
2 µFzk()⁄ 2– φk

2 ck
2⁄+= k f r,{ }∈

α̃k ckαk µFzk()⁄= k f r,{ }∈

α f front tire slip angle δ l f ω vξ+() vη⁄–= =

αr rear tire slip angle l r ω vξ–() vη⁄= =

Fzf mglr φ f φr+()h–() l f l r+()⁄=

Fzr mglf φ f φr+()h+() l f l r+()⁄=

ξ body-relative lateral axis= η body-relative longitudinal axis=

cf cr, cornering stiffness of front, rear tires 50000N/rad, 64000 N/rad= =

cD lumped coefficient of drag (air resistance) 0.0005m
1–

= =

µ coefficient of friction 1= =

2.2 Simulation environment 19

, , (2-15)

(2-16)

, , , , . (2-17)

The controls are given by,

(2-18)

(2-19)

where is the user-controlled steering angle, and is the user-controlled longitudinal force

on the front tires. Note that the separate brake and gas commands for the human are, in fact, the

single variable, where the sign indicates whether the brake or the gas is active.

Because of input device constraints, the force (or acceleration) control is limited during each

1/50 second time step, based on its present value. If the gas pedal is currently being applied

(), then the human operator can either increase or decrease the amount of applied force

by a user-specified constant or switch to braking. Similarly, if the brake pedal is currently

being applied () the operator can either increase or decrease the applied force by a second

constant or switch to applying positive force. Thus, the and constants define the

responsiveness of each pedal. If we denote as the current applied force and as

the applied force for the next time step, we can write in concise notation,

, (2-20)

, (2-21)

2.2.2 Road descriptions

In the simulator, we define roads as a sequence of randomly generated segments of the form

 (straight-line segments), and (curves), connected in a manner that ensures con-

F jk frictional forces= j ξ z,{ }∈ k f r,{ }∈

φr longitudinal force on rear tires
0

kbφ f



= =
φ f 0>

φ f 0 kb,< 0.34=

m 1500kg= I 2500kg-m2= l f 1.25m= l r 1.5m= h 0.5m=

0.2rad– δ 0.2rad≤ ≤

8000N– φ≤ φ f= 4000N≤

δ φ

φ

φ

φ 0>

∆φg

φ 0<

∆φb ∆φg ∆φb

φ k() φ k 1+()

φ k 1+() φ k() min φ k() ∆φg+ 4000,() max φ k() ∆φg– 0,() ∆φb–, , ,{ }∈ φ k() 0≥

φ k 1+() φ k() max φ k() ∆φb– 8000–,() min φ k() ∆φb+ 0,() ∆φg, , ,{ }∈ φ k() 0<

l 0,{ } r β,{ }

20 Chapter 2: Experimental design

tinuous first derivatives between segments. Here, is the length of a given straight line seg-

ment, is the radius of curvature of a curved segment, and is its corresponding sweep angle,

defined to be negative for left curves, and positive for right curves.

In order to make the driving task challenging, we place the following constraints on the indi-

vidual segments:

, , and . (2-22)

No segment may be followed by a segment of the same type; a curve is followed by a straight

line segment with probability 0.4, and an opposite curve segment with probability 0.6. A

straight line segment is followed by a left curve or right curve with equal probability. Roads are

defined to be 10m wide (the car is 2m wide), and the visible horizon is set to 100m. For nota-

tional convenience, let denote the car’s lateral offset from the road median.

Figure 2-2(a), (b) and (c) shows roads #1, #2 and #3, respectively, the three 20km roads over

which we collected human driving control data. Figure 2-3(a) shows road #4, the 20km road

which we used as a cross-validation road for each modeling approach. Finally, Figure 2-3(b)

shows road #5, the 20km road which we reserve for testing each of the modeling approaches.2

2. The precise meaning of the termscross-validation road andtest road will be explained for each modeling
approach separately.

l

r β

100m l 200m≤ ≤ 100m r 200m≤ ≤ 20° β 180°≤ ≤

dξ

Figure 2-2: Data collection roads: (a) road #1, (b) road #2, (c) road #3.

(a) (b) (c)

2.3 Model class 21

2.3 Model class

We restrict the class of models we look at in this thesis tostatic (as opposed todynamic) map-

pings between inputs and outputs. Because human control strategy is dynamic, we must map

that dynamic system (i.e. the human control strategy) onto a static map.

In general, we can approximate any dynamic system through the difference equation [79],

(2-23)

where is some (possibly nonlinear) map, is the control vector, is the system

state vector, and is a vector describing the external environment at time stepk. The order

of the dynamic system is given by the constants and , which may be infinite. Thus, a static

model can abstract a dynamic system, provided that time-delayed histories of the state and

command vectors are presented to the model as input, as illustrated in Figure 2-4.

For the case of the driving simulator, the HCS model will require, in general, (1) current and

previous state information , (2) previous control information ,

and a description of the road , visible from the current car position and orientation, where,

,3 (2-24)

is a -length vector of equivalently spaced, body-relative coordinates of the

visible view of the road (median) ahead.

3. This representation is reasonable, since computer vision algorithms such as RALPH [88] can abstract a
very similar representation from real camera images.

Figure 2-3: (a) Cross-validation road #4 and (b) test road #5.

(a) (b)

u k 1+() =

Γ u k() u k 1–() … u k nu– 1+() x k() x k 1–() … x k nx– 1+() z k(), , , , , , , ,[]

Γ ⋅() u k() x k()

z k()

nu nx

x vξ vη ω
T

= u δ φ
T=

z

z r x 1() r x 2() … r x nr() r y 1() r y 2() … r y nr()=

2nr x y,() r x r y,()

22 Chapter 2: Experimental design

system state

human control

environment

u k()

z 1–

z 1–

z 1–

…

z 1–

z 1–

…

u k 1–()

u k nu– 1+()

x k()

x k 1–()

x k nx– 1+()

z k()

u k 1+()

H
C

S
 M

od
el

environment

model controlsystem state

(a)

(b)

Figure 2-4: In modeling human control strategy (HCS), we want to replace the human
controller (a) by a HCS model (b).

Γ

2.3 Model class 23

For notational convenience, we will denote the HCS model’s input space for the driving simu-

lator as,

, , , (2-25)

where at time step ,

. (2-26)

Thus, the total number of inputs is given by,

. (2-27)

We omit from the list in equation (2-26) if . For example, denotes a

model whose input space consists of the previous three steering commands and a view of the

road ahead, discretized to 10 body-relative coordinates. Unless otherwise noted, each time step

 is long. Finally, when , , and , we use the

short-hand notation,

, , (2-28)

(2-29)

to denote the input space in equation (2-25).

vξ
n1 vη

n2 ωn3 δn4 φn5 r x
n6 r y

n7, , , , , ,{ } ni 0≥ i 1 2 … 7, , ,{ }∈

k

χni

χ k ni– 1+() … χ k 1–() χ k()
T

χ vξ vη ω δ φ, , , ,{ }∈

χ 1() … χ ni 1–() χ ni()
T

χ r x r y,{ }∈





=

nin

nin ni
i 1=

7

∑=

χni ni 0= δ3 r x
10 r y

10, ,{ }

k τ 1 50⁄ sec= n1 n2 n3= = n4 n5= n6 n7=

xnx unu znr, ,{ } vξ
nx vη

nx ωnx δnu φnu r x
nr r y

nr, , , , , ,{ }= ns nc nr 0≥, ,

nin 3nx 2nu 2nr+ +=

24 Chapter 2: Experimental design

25

Chapter 3

Cascade Neural Networks with Kalman Filtering

Here, we develop a continuous learning architecture for modeling human control strategies,

based on neural networks. Unfortunately, most neural networks used today rely on rigid, fixed-

architecture networks and/or slow, gradient descent-based training algorithms (e. g. backprop-

agation). In this chapter, we propose a new neural network learning architecture to counter

these problems. Namely, we combine (1) flexible cascade neural networks, which dynamically

adjust the size of the neural network as part of the learning process, and (2) node-decoupled

extended Kalman filtering (NDEKF), a fast converging alternative to backpropagation. As we

shall see later, for reasons of computational complexity, the resulting learning architecture is

limited to applications where the number of correlated outputs are few. Generally, this is not a

significant restriction in modeling human control strategies, since for such models, the number

of outputs — namely, the human controls — are typically few in number.

Thus, in this chapter we first review how learning proceeds in cascade neural networks. We then

show how NDEKF fits seamlessly into the cascade learning framework, and how cascade learn-

ing addresses the poor local minima problem of NDEKF reported in [92]. We analyze the com-

putational complexity of our approach and compare it to fixed-architecture training paradigms.

Finally, we report learning results for real-valued function approximation and dynamic system

identification — results which show substantial improvement in learning speed and error con-

26 Chapter 3: Cascade Neural Networks with Kalman Filtering

vergence over alternative neural network training methods. In Chapter 4, we will then investi-

gate the proposed learning architecture for abstracting HCS models.

3.1 Motivation

In recent years, artificial neural networks have shown great promise in identifying complex

nonlinear mappings from observed data and have found many applications in robotics and other

nonlinear control problems [8, 73, 79]. As such, they have received a great deal of attention in

the learning community. Despite significant progress in the application of neural networks to

many real-world problems, however, the vast majority of neural network research still relies on

fixed-architecture networks trained throughbackpropagation or some other slightly enhanced

gradient descent algorithm. There are two main problems with this prevailing approach. First,

the “appropriate” network architecture varies from application to application; yet, it is difficult

to guess this architecture — the number of hidden units and number of layers —a priori for a

specific application without some trial and error. Even within the same application, functional

complexity requirements can vary widely, as might be the case in modeling human control

strategies from different individuals. Second, backpropagation and other gradient descent tech-

niques tend to converge rather slowly. Since the backpropagation algorithm adjusts one weight

at a time, the current weight change in the network frequently contradicts one or more of the

previous weight adjustments, leading to oscillatory behavior and convergence to poor local

minima [31, 47].

To address the problem of fixed architectures in neural networks, we look towards flexible cas-

cade neural networks [32, 33]. In cascade learning, the network topology is not fixed prior to

learning, but rather adjusts dynamically as a function of learning, as hidden units are added to

an initially minimal network one at a time. This not only frees us from ana priori choice of

network architecture, but also allows new hidden units to assume variable activation functions

[80, 81]. That is, each hidden unit’s activation function no longer need be confined to just a sig-

moidal nonlinearity.A priori assumptions about the underlying functional form of the mapping

we wish to learn are thus minimized.

3.1 Motivation 27

To address the second problem — slow convergence with gradient-descent training algorithms

— we look towardsextended Kalman filtering (EKF)[2], previously confined to the area of

optimal filtering. What makes EKF algorithms attractive is that, unlike backpropagation, they

explicitly account for the pairwise interdependence of the weights in the neural network during

training. By viewing the training of feedforward neural networks as an identification problem

for a nonlinear dynamic system, Singhal and Wu [108] were the first to show how the EKF

algorithm can be used for neural network training. While converging to better local minima in

many fewer epochs than backpropagation, theirglobal extended Kalman filtering (GEKF)

approach, carries a heavy computational toll. GEKF’s computational complexity is ,

where is the number of weights in the neural network. This is prohibitive, even for moder-

ately sized neural networks, where the weights can easily number in the thousands.

To address this problem, Puskorius and Feldkamp [92], proposenode-decoupled extended Kal-

man filtering (NDEKF), which considers only the pairwise interdependence of weights feeding

into the same node, rather than the interdependence of all the weights in the network. While

this approach is computationally tractable through a significant reduction in the computational

complexity, the authors report that NDEKF tends to converge to poor local minima, for network

architectures not carefully selected to have little redundancy (i.e. few excess free parameters).

In this chapter we show that combining cascade neural networks with NDEKF solves the prob-

lem of poor local minima reported in [92], and that the resulting learning architecture substan-

tially outperforms other neural network training paradigms in learning speed and/or error

convergence for learning tasks important in control problems. Below, we first describe how

learning proceeds in cascade neural networks. We then show how NDEKF fits seamlessly into

the cascade learning framework, and how cascade learning addresses the poor local minima

problem of NDEKF. We analyze the computational complexity of our approach and compare

it to fixed-architecture training paradigms. Finally, we report learning results for continuous

function approximation and dynamic system identification. In the following chapter, we then

apply the learning architecture proposed here towards modeling human control strategies.

O nw
2()

nw

28 Chapter 3: Cascade Neural Networks with Kalman Filtering

3.2 Cascade neural networks

In learning human control strategies, we wish to approximate the functional mapping between

sensory inputs and control action outputs which guide an individual’s actions. Function approx-

imation, in general, consists of two parts: (1) the selection of an appropriate functional form,

and (2) the adjustment of free parameters in the functional model to optimize some criterion.

For most neural networks used today, the learning process consists of (2) only, since a specific

functional form is selected prior to learning; that is, the network architecture is usually fixed

before learning begins.

We believe, however, that both (1) and (2) above have a place in the learning process. Thus, for

modeling human control strategy, we look towards the flexible cascade learning architecture

[33], which adjusts the structure of the neural network as part of learning. The cascade learning

architecture combines the following two notions: (1) a cascade architecture, in which hidden

units are automatically added one at a time to an initially minimal network, and (2) the learning

algorithm which creates and installs new hidden units as the learning requires in order to reduce

the RMS error () between the network’s outputs and the training data.

As originally formulated in [33],cascade neural network training proceeds in several steps. Ini-

tially, there are no hidden units in the network, only direct input-output connections. These

weights are trained first, thereby capturing any linear relationship between the inputs and out-

puts. With no further significant decrease in the RMS error between the network outputs and

the training data (), a first hidden unit is added to the network from a pool ofcandidate

units. Using the quickprop algorithm [31] — an improved version of the standard backprop

algorithm — these candidate units are trained independently and in parallel with different ran-

dom initial weights.

Again, after no more appreciable error reduction occurs, the best candidate unit is selected and

installed in the network. Once installed, the hidden-unit input weights are frozen, while the

eRMS

eRMS

3.2 Cascade neural networks 29

weights to the output units are retrained. By freezing the input weights for all previous hidden

units, each training cycle is equivalent to training a three-layer feedforward neural network

with a single hidden unit. This allows for much faster convergence of the weights during train-

ing than in a standard multi-layer feedforward network where many hidden-unit weights are

trained simultaneously. The process is repeated until the algorithm succeeds in reducing

sufficiently for the training set or the number of hidden units reaches a specified maximum

number. Figure 3-1 below illustrates, for example, how a two-input, single-output network

grows as two hidden units are added. Note that a new hidden unit receives as input connections

from the input units as well as all previous hidden units (hence the name “cascade”). A cascade

network with input units (including the bias unit), hidden units, and output units,

has connections where,

(3-1)

Recent theorems by Cybenko [27] and Funahashi [37], which hold that standard layered neural

networks are universal function approximators also hold for the cascade network topology,

since any multi-layer feedforward neural network with hidden units arranged in layers,

fully connected between consecutive layers, is a special case of a cascade network with hid-

den units and some weight connections equal to zero.

eRMS

nin nh no

nw

nw ninno nh nin no+() nh 1–()nh 2⁄+ +=

Figure 3-1: The cascade learning architecture adds hidden units one at a time to an
initially minimal network. All connections in the diagram are feedforward.

Bias unit Input unit 1st hidden unit Output unit2nd hidden unit

k m

k

30 Chapter 3: Cascade Neural Networks with Kalman Filtering

Thus, the cascade architecture relaxesa priori assumptions about the functional form of the

model to be learned by dynamically adjusting the network size. We can relax these assumptions

further by allowing new hidden units to have variable activation functions [80, 81]. In fact,

Cybenko [27] shows that sigmoidal functions are not the only possible activation functions

which allow for universal function approximation. There are other nonlinear functions, such as

sine andcosine for example, which are complete in the space ofn-dimensional continuous

functions. In the pool of candidate units, we can assign a different nonlinear activation function

to each unit, rather than just the standard sigmoidal function. During candidate training, the

algorithm will select for installment whichever candidate unit reduces for the training

data the most. Hence, the unit with the most appropriate activation function at that point during

training is selected. Typical alternatives to the sigmoidal activation function are the Gaussian

function, Bessel functions, and sinusoidal functions of various frequency [80].

3.3 Node-decoupled extended Kalman filtering

While quickprop is an improvement over the standard backpropagation algorithm for adjusting

the weights in the cascade network, it can still require many iterations until satisfactory conver-

gence is reached [31, 108]. Thus, we modify standard cascade learning by replacing the quick-

prop algorithm withnode-decoupled extended Kalman filtering (NDEKF), which has been

shown to have better convergence properties and faster training times than gradient-descent

techniques for fixed-architecture multi-layer feedforward networks [92]. As we demonstrate

later, the combination of cascade learning and NDEKF alleviates critical problems that each

exhibits by itself, and better exploits the main strengths of both algorithms.

3.3.1 Learning architecture

In general extended Kalman filtering (GEKF) [108], an conditional error covariance

matrix , which stores the interdependence of each pair of weights in a given neural net-

work, is explicitly generated. NDEKF reduces this computational and storage complexity by

— as the name suggests — decoupling weights by node, so that we consider only the interde-

pendence of weights feeding into the same unit (or node). This, of course, is a natural formu-

eRMS

nw nw×

P nw

3.3 Node-decoupled extended Kalman filtering 31

lation for cascade learning, since we only train the input-side weights of one hidden unit and

the output units at any one time; we can partition the weights by unit into groups — one

group for the current hidden unit, groups for the output units. In fact, by iteratively training

one hidden unit at a time and then freezing that unit’s weights, we minimize the potentially det-

rimental effect of the node-decoupling.

Denote as the input-side weight vector of length at iteration , for unit

, where corresponds to the current hidden unit being trained, and

 corresponds to theith output unit, and,

(3-2)

The NDEKF weight-update recursion is then given by,

(3-3)

where is the -dimensional error vector for the current training pattern, is the -

dimensional vector of partial derivatives of the network’s output unit signals with respect to the

ith unit’s net input, and,

(3-4)

(3-5)

(3-6)

(3-7)

where is the -dimensional input vector for theith unit, and is the approxi-

mate conditional error covariance matrix for theith unit. We include the parameter in (3-

no 1+

no

ωk
i nw

i k

i 0 1 … no, , ,{ }∈ i 0=

i 1 … no, ,{ }∈

nw
i

nin nh 1–+

nin nh+



=
i 0=

i 1 … no, ,{ }∈

ωk 1+
i ωk

i ψk
i()T Akξk(){ }φk

i+=

ξk no ψk
i no

φk
i Pk

i ζk
i=

Ak I ζk
i()Tφk

i{ } ψk
i ψk

i()T[]
i 0=

no

∑+

1–

=

Pk 1+
i Pk

i ψk
i()T Akψk

i(){ } φk
i φk

i()T[]– ηQI+=

P0
i 1 ηP⁄()I=

ζk
i nw

i Pk
i nw

i nw
i×

ηQ

32 Chapter 3: Cascade Neural Networks with Kalman Filtering

6) to alleviate singularity problems for error covariance matrices [92]. In (3-3) through (3-6),

{}’s, ()’s, and []’s evaluate to scalars, vectors and matrices, respectively.

The vector is easy to compute within the cascade framework. Let be the value of theith

output node, be its corresponding activation function, be its net activation, be

the activation function for the current hidden unit being trained, and be its net activation.

Then,

, (3-8)

, (3-9)

(3-10)

where is the weight connecting the current hidden unit to theith output unit.

Throughout the remainder of the paper, we will use the short-hand notation explained in Table

3-1 for different neural network training methodologies.

ψk
i Oi

ΓO netOi ΓH

netH

Oi∂
netOj∂

---------------- 0= i j≠∀

Oi∂
netOi∂

---------------- Γ'O netOi()= i 1 … no, ,{ }∈

Oi∂
netH∂

-------------- wHi Γ'O netOi() Γ'H netH()⋅ ⋅=

wHi

a. All weights are trained simultaneously.
b. Hidden units are added and trained one at a time.

 Table 3-1: Notation

Symbol Methodology Training algorithm

Fq Fixed architecturea quickprop

Cq Cascade learningb quickprop

Fk Fixed architecture NDEKF

Ck Cascade learning NDEKF

3.3 Node-decoupled extended Kalman filtering 33

3.3.2 Computational complexity

The computational complexity for cascade learning with NDEKF is,

. (3-11)

The computational complexity caused by the matrix inversion in (3-5) restricts this

approach to applications where the number of outputs is relatively few. Below, we compare the

computational complexity of the proposed learning architecture to two other regimes: (1) lay-

ered feedforward neural networks trained with backpropagation (pattern-wise update), and (2)

NDEKF alone (i.e. used on fixed-architecture networks).

First, consider the computational cost (per training pattern) in of training one candidate unit

for a network with input units, hidden units, and output units:

 (symmetric matrix inversion), (3-12)

 multiplications, (3-13)

 additions, (3-14)

 function evaluations, (3-15)

where .

For comparison with backpropagation, we look at the computational cost (per training pattern)

for a two-layered neural network with input units, hidden units in both hidden lay-

ers, and output units:

 multiplications, (3-16)

 additions, and (3-17)

O no
3 nw

i()2

i 0=

no

∑+
 
 
 

O no
3()

Ck

nin i 1–() no

cost A 1–() no no×

2nt
2 no 1+() 4ntno no

3 4no
2 7no 2–+ + + +

nt
2 no 1+() nt 9no 7+() 2no

2 4no 16–+ + +() 2⁄

3no 1+

nt nin i+=

nin nH 2⁄

no

5 4⁄()nH
2 nH 2nin 1+() no 5 2⁄ nH 1+()+ +

nH
2 3 2⁄()nHnin nH 2no 2–()+ +

34 Chapter 3: Cascade Neural Networks with Kalman Filtering

 function evaluations. (3-18)

To arrive at a composite cost for each method, we weigh multiplications and additions by a fac-

tor of 1.0, and function evaluations by a factor of 5.0. In addition, we multiply the composite

cost for the cascade/NDEKF method by , a typical number for the pool of candidate

units and average the cost over all . Let denote the average computa-

tional cost per training pattern for the method, and let denote the computational cost

per training pattern for training the two-layered network with backpropagation. We are inter-

ested in the ratio,

(3-19)

for equivalently sized neural networks. Byequivalently sized, we mean neural networks with

approximately the same final number of weights, such that,

(3-20)

In general, therefore, . Figure 3-2, for example, plots for

, , and . We note that for and

, the ratio is upper bounded by . In other words, if reduces the number of

epochs by a factor of 100 over standard backpropagation, our approach will be more efficient

2 nH no+()

nc 8=

i 1 2 … nh, , ,{ }∈ γCk

Ck γ BP

ρ γCk γ BP⁄=

nw ninno nh nin no+() nh 1–()nh 2⁄+ + nin nH 2⁄() nH
2 4⁄ no nH 2⁄()+ += =

nh nH≠

20 40 60 80 100
0

50

100

150

200

250

nh

ρ

nin 500=

nin 1=

no 1=

Figure 3-2: Ratio of computational costs per training pattern (between backpropagation
and Ck) for various network sizes and one output unit. Higher curves reflect ratios for
larger number of inputs.

σ

nin 1 50 … 450 500, , , ,{ }= 10 nh 100≤ ≤ no 1= nh 20>

nin 400< ρ 100< Ck

3.3 Node-decoupled extended Kalman filtering 35

even for very large input spaces. Moreover, for small input spaces, a mere factor of 5 reduction

in the number of epochs will result in increased computational efficiency.

Second, we consider the difference in computational cost between the proposed approach (Ck)

and using NDEKF alone (Fk). Let denote the cost per epoch of training theith hidden unit;

let denote the total cost of training theCk network (final hidden units and candidate

units per hidden unit); let denote the number of epochs required to train theith hidden unit;

and let denote the total number of epochs. Also, let denote the cost per epoch of train-

ing theFk network; let denote the total cost of training theFk network (total hidden

units); and let denote the total number of epochs for training theFk network. Thus,

(3-21)

(3-22)

Now, we assume that,

, (3-23)

so that (3-21) becomes,

(3-24)

Our experience justifies the approximation in (3-23), which states that all hidden units require

approximately the same number of epochs. Furthermore, neglecting differences in derivative

calculations between methodsCk andFk, we assume that,

(3-25)

γ i
Ck

γ Ck nh nc

εi
Ck

εCk γ ε
Fk

γ Fk nh

εFk

γ Ck εi
Ckγ i

Ck

i 1=

nh

∑ nc
1
nc
----- εi

Ckγ i
Ck()

i 1=

nh

∑= =

γ Fk εFkγ ε
Fk=

εi
Ck ε j

Ck≈ i∀ j,

γ Ck nc
εCk

nh
-------- 1

nc
-----γ i

Ck

i 1=

nh

∑=

γ ε
Fk 1

nc
-----γ i

Ck

i 1=

nh

∑≈

36 Chapter 3: Cascade Neural Networks with Kalman Filtering

We can now get a relationship between and corresponding to equivalent costs between

methodsCk andFk. Setting (3-21) and (3-22) equal to each other and using approximations (3-

23) and (3-25), we get that,

(3-26)

(3-27)

In other words, using the cascade/NDEKF (Ck) algorithm, we can use approximately

as many epochs as for NDEKF alone (Fk) for the same computational cost.

3.4 Comparison experiments

3.4.1 Problem descriptions

In this section, we present learning results for five different problems in continuous function

approximation and dynamic system modeling. For the first problem (A), we want to approxi-

mate the following 3-to-2smooth, continuous-valued mapping,

(3-28)

(3-29)

in the interval . The training set consists of 1000 random points; the cross vali-

dation set consists of an additional 1000 random points; and our test set consists of another

2000 random points.

Our second problem (B) is taken from [33]. We want to approximate the following 1-to-1non-

smooth, continuous-valued mapping (see Figure 3-3),

(3-30)

εCk εFk

εFkγ ε
Fk nc

εCk

nh
--------γ ε

Fk≈

εCk
nh

nc
-----εFk≈

nh nc⁄

f 1 x y z, ,() z πy()sin x+=

f 2 x y z, ,() z2 πxy()cos y2–+=

1– x y z, , 1< <

f x() a min 0.1x2 max 0.5 2xsin xsin,()⋅ x max xsin xcos2,()⋅,[]⋅ b–=

3.4 Comparison experiments 37

for , and . Our training, cross validation, and test sets are iden-

tical to those in [33] and consist of the following: (1) 4000 evenly spaced points are generated

in the interval ; (2) 968 of those points are randomly chosen for the training set; (3)

968 are randomly chosen from the remaining 3032 points for the cross validation set; and (4)

the remaining 2064 points make up the test set.

Our third problem (C) is taken from [79, 92]. We want to model the following dynamic system,

(3-31)

where,

(3-32)

and the input is randomly generated in the interval . We use a 2500-length

sequence for training, another 2500-length sequence for cross validation, and another 5000-

length sequence for testing. The variables , and are initialized to zero.

Finally, our last two problems are taken once again from [33]. Here, we want to predict the cha-

otic Mackey-Glass time series [71], widely studied in the literature and described by,

0 5 10 15 20

-0.4

-0.2

0

0.2

0.4

Figure 3-3: Nonsmooth, continuous function for problem (B).

f
x(

)

x

a 1 34.55386⁄= b 0.027099=

0 x≤ 20<

u k 1+() f u k() u k 1–() u k 2–() x k() x k 1–(), , , ,[]=

f x1 x2 x3 x4 x5, , , ,[]
x1x2x3x5 x3 1–() x4+

1 x3
2 x2

2+ +
---=

x k() 1– x k() 1< <

u 0() u 1–() u 2–()

38 Chapter 3: Cascade Neural Networks with Kalman Filtering

(3-33)

for , , and . While the Mackey-Glass differential equation has infinite

degrees of freedom (due to the time delay), it’s stationary trajectory lies on a low-dimen-

sional attractor, as shown in Figure 3-4. We present,

(3-34)

as the four inputs to the neural network, while the goal of this task is to predict for

. We will refer to as problem (D) and as problem (E). Our training,

cross validation, and test sets are once again identical to those in [33]. The training set consists

of the 500 data points from time to ; the cross validation set consists of the

500 data points from time to ; and the test set consists of the 500 points

from time to .

For problems (A) and (C) above, we train over 25 trials to 15 hidden units for each method

. By fixing the network architecture prior to training forFk, it is not possible to

assign variable activation functions to each hidden unit; the space of all possible permutations

of variable activation functions is too large to explore. Therefore, we try two different networks

for methodFk —one with sigmoidal activation functions, and the other with sinusoidal activa-

tion functions. In [80], we have shown that neural networks with sinusoidal activation functions

ẋ t() a x t τ–()⋅
1 x t τ–()10+
-------------------------------- b x t()⋅–=

a 0.2= b 0.1= τ 17=

τ

0.4 0.6 0.8 1 1.2
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Figure 3-4: Phase plot of the Mackey-Glass time series — (D), (E).

ẋ
t(
)

x t()

x t 18–() x t 12–() x t 6–() x t(), , ,{ }

x t k+()

k 6 84,{ }∈ k 6= k 84=

t 200= t 699=

t 1000= t 1499=

t 5000= t 5499=

Cq Fk Ck, ,{ }

3.4 Comparison experiments 39

perform approximately as well as those with variable activation functions. Both have been

shown to outperform sigmoidal networks for continuous function approximation.

For problems (B), (D), and (E), taken from [33], we follow the same procedure in training with

methods , as Fahlman,et. al., follow in training with methods . In [33],Cq

neural networks are allowed to grow to a maximum of 50 hidden units in 15 separate trials for

each problem. For each trial, the best RMS error over the test set is recorded. Equivalently sized

Fq networks are also trained, for up to 60,000 epochs per trial. The 60,000 figure is chosen to

be approximately three times the maximum number of epochs required for any of theCq train-

ing runs. Again, the best RMS error for the test set is recorded for each trial.

For the learning results in this chapter involving NDEKF, we use the following parameter set-

tings throughout:

, (3-35)

In Ck, we upper-bound the number of epochs to 10 per hidden unit, while forFk, we upper-

bound the total number of epochs to 150. Finally, for the cascade methods , we use

eight candidate units, the same as in [33].

3.4.2 Learning results

Table 3-2 below reports the average RMS error () over the test sets for problems (A)

through (E). We note that in all cases, our cascade/NDEKF (Ck) approach outperforms the

other three methods. Figure 3-5 reports the percentage difference in between our

approach and competing training regimes.

MethodFq (fixed-architecture/quickprop) shows by far the worst performance, yet we use 120

times fewer epochs forCk (approximately 500 for problems (B), (D), and (E)). Using Figure

3-2 as an approximate guide to the computational difference betweenCk andFq, we see that,

for a 50-hidden unit network with relatively few inputs, aCk epoch is no more than 10 times

Fk Ck,{ } Fq Cq,{ }

ηQ 0.0001= ηP 0.01=

Cq Ck,{ }

eRMS

eRMS

40 Chapter 3: Cascade Neural Networks with Kalman Filtering

as computationally expensive as anFq epoch. Hence, not only does our cascade/NDEKF

approach generate better learning results, it is also more efficient than the fixed-architecture/

quickprop approach.

MethodFk also performs worse than ourCk approach, despite allowingFk to compute as much

as twice as long asCk. For problems (A) and (C), for example, the number of epochs required

0

50

100

150

200

250

(A) (B) (C) (D) (E)

%

N
/A

N
/A

7
7

8
%

Figure 3-5: Cascade/NDEKF significantly outperforms the other learning methods for
each problem.

% difference in RMS error between Ck and Fk

% difference in RMS error between Ck and Cq

% difference in RMS error between Ck and Fq

a. Standard deviations are in parentheses. Shaded cells are results taken from [33].
b. For theFk results we report the better of the sinusoidal or sigmoidal networks (in all cases, the sinusoidal

networks did better on average).
c. A fixed-architecture/backprop network failed to converge for this problem, despite many experiments

with different learning parameters [33].
d. This is comparable to the result of 0.03 in [92] for a network with an equal number of parameters.

 Table 3-2: Average RMS Error over test sets a

Ck () Fk ()b Cq () Fq ()

(A) 42.1 (4.2) 127.1 (37.3) 94.5 (6.2) N/A

(B) 7.4 (2.0) 12.4 (3.2) 14.5 (4.0) 65.0 (18.2)c

(C) 15.6 (1.5) 20.7 (4.8)d 29.9 (2.0) N/A

(D) 4.6 (0.6) 10.2 (4.0) 9.4 (2.7) 16.7 (2.2)

(E) 42.0 (5.9) 60.5 (3.1) 72.6 (16.3) 90.3 (8.3)

3–×10
3–×10

3–×10
3–×10

3.4 Comparison experiments 41

to train to 15 hidden units forCk is approximately 140. Since we use eight candidate units, a

roughly equivalent number of epochs in terms of computational cost forFk is (from (3-27)),

(3-36)

Yet, we allowFk to compute as much as twice that amount — 150 epochs.

One reason,Fk shows worse performance is its susceptibility to getting stuck in bad local min-

ima. As the authors of the NDEKF algorithm note, “NDEKF at times requires a small amount

of redundancy in the network in terms of the total number of nodes in order to avoid poor local

minima for certain problems, which [they attribute] to high effective learning rates at the onset

of training [92].” Consider, for example, Figure 3-6. While the minimum for theFk net-

work is below that of theCq network, its maximum is much worse than eitherCk or Cq.

On the other hand,Ck avoids the bad local minima problem by iteratively training only a small

number of weights in the network at once.

Finally, we look at the difference between theCk andCq methods. First, we note thatCq

requires about 15 to 25 times as many epochs as doesCk. Since eachCq epoch is much less

εFk
nc

nh
-----εCk≈ 8

15
------ 140() 75≈=

0

0.05

0.1

0.15

0.2

0.25
e R

M
S

Figure 3-6: Fk can get stuck in bad local minima, as witnessed by the large maximum
RMS errors observed for problem (A) (for 15-hidden-unit networks).

Cq Fk
(sine)

Fk
(sigmoid)

Ck

minimum RMS error over 25 trials

mean RMS error over 25 trials

maximum RMS error over 25 trials

eRMS

eRMS

42 Chapter 3: Cascade Neural Networks with Kalman Filtering

computationally expensive, however,Cq consumes only about 2/3 the time asCk for the prob-

lems studied here. On the other hand,Ck is able to achieve local minima comparable toCq’s

with fewer hidden units, and therefore requires significantly less time thanCq to reach the same

average RMS error. Consider, for example, Figure 3-7. At the onset of training, forCk

andCq training is approximately equal (4% difference). As hidden units are added, however,

we see that diverges for the two training algorithms. Since each hidden unit receives

input from all previous hidden units, the input-side weights of the hidden units become increas-

ingly correlated. Figure 3-8, for example, plots,

(3-37)

(i.e. the ratio of off-diagonal terms to diagonal terms in the error covariance matrixP) for one

trial in problem (C). By explicitly storing the interdependence of these weights in the condi-

tional error covariance matrix, cascade/NDEKF copes better with this increasing correlation

than does the cascade/quickprop algorithm.

0 2 4 6 8 10 12 14
0.01

0.02

0.03

0.04

0.05

0.06

e R
M

S

Figure 3-7: Ck converges to approximately the same avg. RMS error with 6 hidden units
(63 weights) as Cq does with 15 hidden units (216 weights) for problem (C).

hidden units

Cq

Ck

eRMS

eRMS

ρ Pij
i j≠
∑ Pii

i
∑⁄=

3.4 Comparison experiments 43

3.4.3 Noisy learning results

The results of Section 3.4.2 demonstrate thatCk outperforms competing neural network learn-

ing architectures fornoise-free mappings. In this section, we explore theCk algorithm’s perfor-

mance when we introduce noise to the learning task.

We once again look at problems (A) through (E) defined in Section 3.4.1, only now, we add

Gaussian noise with standard deviation to both the inputs and outputs of the training, cross-

validation and test data sets. Since these results no longer compare with those in [33], we follow

the training regime for problems (A) and (C) in the previous section (rather than for problems

(B), (D) and (E)). In other words, we train over 25 trials to 15 hidden units for each method

.

Figure 3-9 plots the percent difference in the average RMS error of the test set over 25 trials

between (1) theCk andFk and (2) theCk andCq learning algorithms as a function of the input/

output Gaussian noise. For all noise levels, theCk algorithm performs significantly better than

theFk algorithm. To a lesser degree and with the exception of problem (B), cascade/NDEKF

also outperforms the cascade/quickprop algorithm as the level of noise is increased. For small

, the difference remains relatively large, while for large (approximately 10% error)

0 2 4 6 8 10 12 14

0.5

1

1.5

2

2.5

Figure 3-8: Ratio of off-diagonal terms to diagonal terms in the covariance matrix as
hidden units are added to the cascade network for one trial in problem (C).

hidden units

ρ

σ

Cq Fk Ck, ,{ }

σ σ 0.05=

44 Chapter 3: Cascade Neural Networks with Kalman Filtering

the difference shrinks substantially. Nevertheless, theCk algorithm still achieves marginally

better results.

3.4.4 Discussion

From the above results, we make several observations. First, for the test problems studied here,

we see a significant improvement in learning times and/or error convergence with cascade/

NDEKF over the other methods. Moreover, we see that incremental cascade learning and node-

0 50 100 150 200

0.05

0.04

0.03

0.02

0.01

0.00

0.05

0.04

0.03

0.02

0.01

0.00

0 50 100 150 200 250

0.05

0.04

0.03

0.02

0.01

0.00

0.05

0.04

0.03

0.02

0.01

0.00

0 20 40 60 80

0.05

0.04

0.03

0.02

0.01

0.00

0.05

0.04

0.03

0.02

0.01

0.00

0 10 20 30 40 50 60 70

0.05

0.04

0.03

0.02

0.01

0.00

0.05

0.04

0.03

0.02

0.01

0.00

0 20 40 60 80

0.05

0.04

0.03

0.02

0.01

0.00

0.05

0.04

0.03

0.02

0.01

0.00

% difference in RMS error between Ck
and Fk over 25 trials
% difference in RMS error between Ck
and Cq over 25 trials

(A) (B)

(C)

(D)

(E)

σ

σ

σ σ

σ

% %

%%

%

Figure 3-9: When noise is added to the learning task, Ck, to a lesser degree,
outperforms Fk and Cq for problems (A), and (C) through (E).

3.4 Comparison experiments 45

decoupled extended Kalman filtering complement each other well by compensating for each

other’s weakness. On the one hand, the idea of training one hidden unit at a time and adding

hidden units in a cascading fashion offers a good alternative to thead hoc selection of a network

architecture. Quickprop and other gradient-descent techniques, however, become less efficient

in optimizing increasingly correlated weights as the number of hidden units rises. This is where

NDEKF can perform much better through the conditional error covariance matrix. On the other

hand, NDEKF can easily become trapped in bad local minima if a network architecture is too

redundant. Cascade learning accommodates this well by training only a small subset of all the

weights at one time.

Second, we note that throughout, we used the identical parameter settings for training cascade

networks with NDEKF (3-35). This stands in sharp contrast to moread hoc methods such as

Cq andFq, for which the various learning parameters were tuned for each particular problem

in order to achieve good results [33]. The weight-update recursion,

(3-38)

can be thought of as an adaptive learning rate, which lessens the need for parameter tuning in

NDEKF. Thus, we need spend little time tuning either learning parameters or network archi-

tectures in this approach.

Finally, while our approach performs well for the problems studied, it is clearly impractical for

applications which have either a large number of inputs or a large number of correlated outputs.

This, for example, tends to exclude vision-based tasks, where the input space and/or output

space are typically greater than 1000. Applications with inputs numbering in the low hundreds,

however, are not excluded.

Thus, in this chapter we have developed a new neural network learning methodology for real-

valued function approximation and dynamic system identification. We have shown that incre-

mental cascade learning and NDEKF complement each other well by compensating the other’s

ωk 1+
i ωk

i ψk
i()T Akξk(){ }φk

i+=

46 Chapter 3: Cascade Neural Networks with Kalman Filtering

weakness, and that the combination forms a flexible, powerful learning architecture, which

records quicker convergence to better local minima than related neural-network training para-

digms. In the next chapter, we reinforce these results as we investigate how cascade learning

— specificallyCq andCk — perform in modeling human driving control strategies.

47

Chapter 4

HCS Models: Continuous Learning

In the previous chapter, we developed a general learning architecture that combines cascade

neural networks with node-decoupled extended Kalman filtering (NDEKF). Here we apply

cascade learning to the problem of modeling human control strategies. We first report results

for cascade/quickprop (Cq) neural networks. We then compare those results to the cascade/

NDEKF (Ck) learning architecture. This comparison exposes the weakness of gradient-descent

techniques in modeling input-output mappings with correlated inputs, such as HCS models

with time-delayed state and control inputs (Figure 2-4). Although the test-set error decreases

in Cq as multiple hidden units are added to the neural networks overthousands of training

epochs — indicating a strong linear as well as nonlinear component in the overall human con-

trol strategy being modeled — these modeling results are quite deceptive. We show that, in fact,

Ck converges to equivalent or lower errors over the same training data inless than one training

epoch of a linear model. Moreover, the linear networks show markedly greater stability over a

wider range of initial and environmental conditions.

Since the acceleration control of the simulated car involves (discontinuous) switching between

positive and negative applied force (i.e. the gas and the brake, respectively), however, these lin-

ear models, while abstracting convergent strategies, qualitatively bear little resemblance to the

original human control strategy. We argue that this is not only a shortcoming of our neural-net-

work function approximators, but that, in fact,any continuous function approximator is

48 Chapter 4: HCS Models: Continuous Learning

doomed to fail in a similar manner when attempting to model control strategies that involve dis-

continuous switching. Chapter 5 follows up this discussion by developing a novel, statistical,

discontinuous framework for successfully modeling discontinuous human control strategies.

4.1 Cascade with quickprop learning

Here, we present modeling results for the cascade/quickprop (Cq) learning architecture. In sub-

sequent sections, we will compare these results to cascade/NDEKF learning (Ck).

4.1.1 Experimental data

Appendix A describes driving control data from six different individuals — (1) Larry, (2)

Curly, (3) Moe, (4) Groucho, (5) Harpo and (6) Zeppo across three different roads, roads #1,

#2 and #3 in Figures 2-2(a), (b) and (c), respectively. For notational convenience, let ,

, , denote the run from person (i) on road #j, sampled at

50Hz.

4.1.2 Model inputs and outputs

We defer to Section 4.2.1 a detailed discussion of the input space choices made for the HCS

models described in this section. This is necessary in part because our input selection procedure

is dependent on the cascade/NDEKF learning results. For now, we simply note what the

choices are for each model. In Table 4-1, , and , as defined in equation (2-28), com-

pletely characterize the input space for the results presented below. As we shall see later (Sec-

tion 4.2.1), model performance remains similar over a wide range of input spaces, especially

once a sufficient number of inputs are given. Here, “sufficient number” means that there are

enough time-delayed values of each state and control variable such that the model is able to

build necessary derivative dependencies between the inputs and outputs. The outputs of each

model are, of course, the next steering angle and acceleration command .

X i j,()

i 1 2 3 4 5 6, , , , ,{ }∈ j 1 2 3, ,{ }∈

nx nu nr

δ k 1+() φ k 1+(),{ }

4.1 Cascade with quickprop learning 49

4.1.3Cq training

For each model , we process the training data as follows. First, we excise from the com-

plete run those segments where the human operator temporarily runs off the road

(). Let denote an interval of time, in seconds, that a human operator veers

off the road. Then, we cut the data corresponding to time interval from the train-

ing data. In other words, we not only remove the actual off-road data from the training set, but

also the second of data leading up to the off-road interval. This ensures that the HCS model

does not learn control behaviors that are potentially destabilizing.

Next, we normalize each input dimension of the HCS model, such that no input in the training

data falls outside the interval . Finally we randomize the input-output training vectors

and select half for training, while reserving the other half for testing. All the runs are

approximately equal to or longer than 10 minutes in length. Thus, at 50Hz, typical training and

testing data sets will consist of approximately 15,000 data points each.

Training proceeds until the RMS error in the test data set no longer decreases. We use eight

candidate units, and allow up to 500 epochs for candidate as well as for output training. Table

4-1 reports the final number of hidden units for the models presented below.

a. See Appendix A for a detailed description of each human control data set.
b. Number of hidden units in finalCq model.

 Table 4-1: Input space for each Cq model

Runa
Input space

b Figure

Larry’s second 3 10 12 Figure 4-1

Moe’s first 3 10 14 Figure 4-2

Groucho’s first 6 10 19 Figure 4-3

Harpo’s second 5 10 9 Figure 4-4

nh
nx nu= nr

X 1 2,()

X 3 1,()

X 4 1,()

X 5 2,()

Γ i j,()

X i j,()

dξ 5m> t t tl+,[]

t 1– t tl+,[]

1– 1,[]

X i j,()

nh

50 Chapter 4: HCS Models: Continuous Learning

4.1.4 HCS models

Figures 4-1, 4-2, 4-3 and 4-4 illustrate some representativeCq learning results for four different

runs: (Larry’s second run), (Moe’s first run), (Groucho’s first run), and

 (Harpo’s second run). Part (a) of each Figure plots the original human control data,

while part (b) of each Figure plots the corresponding model control over the test road (#5 in

Figure 2-3(b)).

Before comparing these results toCk, we make the following two observations. First, the dis-

continuous switching in the acceleration control induces substantial high frequency noise in

theCq model control. This noise is especially evident in Larry’s and Groucho’s models (Fig-

ures 4-1 and 4-3, respectively). Second, Harpo’sCq model does not converge to a stable control

strategy, as it loses complete track of the road after less than 5 seconds.

4.2 Cascade with NDEKF learning

4.2.1 Model inputs and outputs

For the neural networks trained in this chapter, we follow a simple experimental procedure for

selecting the input space of each HCS model. Let model correspond to a HCS model

trained withCk on training data from run (i.e. person (i) on road #j) and with input space,

, , (4-1)

as defined in equation (2-28). Also let,

, (4-2)

denote the maximum lateral offset for model over the 20km validation road (#4) shown

in Figure 2-3(a). Then, we select model for testing over the 20km testing road (#5)

shown in Figure 2-3(b)1 such that,

1. We note that roads #4 and #5 (Figure 2-3) are different from the data collection roads #1, #2 and #3 (Figure
2-2), but share similar statistical attributes.

X 1 2,() X 3 1,() X 4 1,()

X 5 2,()

φ

Γk
i j,()

X i j,()

xk uk z10, ,{ } k 1 2 … 20, , ,{ }∈

max dξ k,
i j,()() k 1 2 … 20, , ,{ }∈

Γk
i j,()

Γl
i j,()

4.2 Cascade with NDEKF learning 51

0 100 200 300 400 500 600
40

50

60

70

80

90

0 100 200 300 400 500 600

-4

-2

0

2

4

0 100 200 300 400 500 600
-0.2

-0.1

0

0.1

0.2

0 100 200 300 400 500 600
-8000

-6000

-4000

-2000

0

2000

4000

0 100 200 300 400 500 600
40

50

60

70

80

90

0 100 200 300 400 500 600

-4

-2

0

2

4

0 100 200 300 400 500 600
-0.2

-0.1

0

0.1

0.2

0 100 200 300 400 500 600
-8000

-6000

-4000

-2000

0

2000

4000

v
(m

i/h
)

δ
(r

ad
)

φ
(N

)
d

ξ
(m

)

v
(m

i/h
)

δ
(r

ad
)

φ
(N

)
d

ξ
(m

)

t (sec)

t (sec)

t (sec)

t (sec)

t (sec)

t (sec)

t (sec)

t (sec)

Figure 4-1: Larry’s (a) training data and (b) corresponding Cq model data.

(a) Larry’s control data (b) Cq model control trajectory

52 Chapter 4: HCS Models: Continuous Learning

0 100 200 300 400 500 600
40

50

60

70

80

90

0 100 200 300 400 500 600

-4

-2

0

2

4

0 100 200 300 400 500 600
-0.2

-0.1

0

0.1

0.2

0 100 200 300 400 500 600
-8000

-6000

-4000

-2000

0

2000

4000

0 100 200 300 400 500 600
40

50

60

70

80

90

0 100 200 300 400 500 600

-4

-2

0

2

4

0 100 200 300 400 500 600
-0.2

-0.1

0

0.1

0.2

0 100 200 300 400 500 600
-8000

-6000

-4000

-2000

0

2000

4000

v
(m

i/h
)

δ
(r

ad
)

φ
(N

)
d

ξ
(m

)

v
(m

i/h
)

δ
(r

ad
)

φ
(N

)
d

ξ
(m

)

t (sec)

t (sec)

t (sec)

t (sec)

t (sec)

t (sec)

t (sec)

t (sec)

Figure 4-2: Moe’s (a) training data and (b) corresponding Cq model data.

(a) Moe’s control data (b) Cq model control trajectory

4.2 Cascade with NDEKF learning 53

0 100 200 300 400 500 600
40

50

60

70

80

90

0 100 200 300 400 500 600

-4

-2

0

2

4

0 100 200 300 400 500 600
-0.2

-0.1

0

0.1

0.2

0 100 200 300 400 500 600
-8000

-6000

-4000

-2000

0

2000

4000

0 100 200 300 400 500 600
40

50

60

70

80

90

0 100 200 300 400 500 600

-4

-2

0

2

4

0 100 200 300 400 500 600
-0.2

-0.1

0

0.1

0.2

0 100 200 300 400 500 600
-8000

-6000

-4000

-2000

0

2000

4000

v
(m

i/h
)

δ
(r

ad
)

φ
(N

)
d

ξ
(m

)

v
(m

i/h
)

δ
(r

ad
)

φ
(N

)
d

ξ
(m

)

t (sec)

t (sec)

t (sec)

t (sec)

t (sec)

t (sec)

t (sec)

t (sec)

Figure 4-3: Groucho’s (a) training data and (b) corresponding Cq model data.

(a) Groucho’s control data (b) Cq model control trajectory

54 Chapter 4: HCS Models: Continuous Learning

0 1 2 3 4
40

50

60

70

80

90

0 1 2 3 4

-4

-2

0

2

4

0 1 2 3 4
-0.2

-0.1

0

0.1

0.2

0 1 2 3 4
-8000

-6000

-4000

-2000

0

2000

4000

0 100 200 300 400 500 600 700
40

50

60

70

80

90

0 100 200 300 400 500 600 700

-4

-2

0

2

4

0 100 200 300 400 500 600 700
-0.2

-0.1

0

0.1

0.2

0 100 200 300 400 500 600 700
-8000

-6000

-4000

-2000

0

2000

4000

v
(m

i/h
)

δ
(r

ad
)

φ
(N

)
d

ξ
(m

)

v
(m

i/h
)

δ
(r

ad
)

φ
(N

)
d

ξ
(m

)

t (sec)

t (sec)

t (sec)

t (sec)

t (sec)

t (sec)

t (sec)

t (sec)

Figure 4-4: Harpo’s (a) training data and (b) corresponding Cq model data (unstable).

(a) Harpo’s control data (b) Cq model control trajectory

4.2 Cascade with NDEKF learning 55

, . (4-3)

In other words, we choose the model with the largest stability margin over the validation road.

Figure 4-5 plots as a function of for the runs listed in Table 4-1. We observe that

for , model performance, as measured by the maximum lateral offset, does not change sig-

nificantly. Thus, when the model is presented with enough time-delayed values of each state

and control variable, the model is able to build what appear to be necessary derivative depen-

dencies between model inputs and outputs .

4.2.2Ck training

For each model , we process the training data as described in Section 4.1.3. Training for

a particularCk neural network proceeds until the RMS error in the test data set no longer

decreases. We use one candidate unit, and allow up to 5 epochs for candidate as well as for out-

put training. After some experimentation, we settled on the following training parameter

choices when training on human control data:

, (4-4)

max dξ l,
i j,()() max dξ k,

i j,()()< k l≠∀

max dξ k,
i j,()() k

k 3≥

δ k 1+() φ k 1+(),{ }

1 3 5 6 10 15 20

4

6

8

10

12

1 3 5 6 10 15 20

Larry
Moe
Groucho
Harpo

Figure 4-5: Maximum lateral offset over validation road #4 as we vary the size of the
input space.

dξ

nx nu=

m
ax

d
ξ

(
)

Γk
i j,()

ηQ 0.0= ηP 0.000001=

56 Chapter 4: HCS Models: Continuous Learning

4.2.3 HCS models

Figures 4-6, 4-7, 4-8 and 4-9 illustrate representativeCk learning results for the same four runs

for which we reportCq results — namely, (Larry’s second run), (Moe’s first

run), (Groucho’s first run), and (Harpo’s second run). Once again part (a) of each

Figure plots the original human control data, while part (b) of each Figure plots the correspond-

ing model control over the test road (#5).

We note that the model control trajectories in Figures 4-6 through 4-9 are forlinear Ckmodels;

that is, models with no hidden units. Despite the discontinuous acceleration command , these

linear models are able to abstract convergent control strategies — even for Harpo’s data — that

keep the simulated car on the test road at approximately the same average speed and lateral dis-

tance from the road median as the corresponding human controllers. At the same time, we

should point out that the linear Cq networks donot form stable controllers.

Because theCk models are linear, they do not exhibit the type of high-frequency noise that we

observed in the nonlinearCq models. Only when we allow theCk models to add nonlinear hid-

den units, will high-frequency noise manifest itself in theCk models. Figure 4-10, for example,

illustrates what happens to Larry’sCk model control when one hidden unit (sigmoidal) is added

to the linear model. Thus, in general, the linearCk models do not benefit from the addition of

nonlinear hidden units. In the next section, we discuss in much greater detail the implications

of this result on the stability of the HCS models, the convergence properties of theCq algo-

rithm, the models’ fidelity to the source training data, and the capacity of continuous function

approximators to model switching control behaviors.

4.3 Analysis

4.3.1 Model stability

In this section, we experimentally assess the stability of ourCk andCq HCS models. While we

have already seen one example of instability (Harpo’sCq model), we would like to determine

X 1 2,() X 3 1,()

X 4 1,() X 5 2,()

φ

4.3 Analysis 57

0 100 200 300 400 500 600
40

50

60

70

80

90

0 100 200 300 400 500 600

-4

-2

0

2

4

0 100 200 300 400 500 600
-0.2

-0.1

0

0.1

0.2

0 100 200 300 400 500 600
-8000

-6000

-4000

-2000

0

2000

4000

0 100 200 300 400 500 600
40

50

60

70

80

90

0 100 200 300 400 500 600

-4

-2

0

2

4

0 100 200 300 400 500 600
-0.2

-0.1

0

0.1

0.2

0 100 200 300 400 500 600
-8000

-6000

-4000

-2000

0

2000

4000

v
(m

i/h
)

δ
(r

ad
)

φ
(N

)
d

ξ
(m

)

v
(m

i/h
)

δ
(r

ad
)

φ
(N

)
d

ξ
(m

)

t (sec)

t (sec)

t (sec)

t (sec)

t (sec)

t (sec)

t (sec)

t (sec)

Figure 4-6: Larry’s (a) training data and (b) corresponding linear model data.

(a) Larry’s control data (b) linear model control trajectory

58 Chapter 4: HCS Models: Continuous Learning

0 100 200 300 400 500 600
40

50

60

70

80

90

0 100 200 300 400 500 600

-4

-2

0

2

4

0 100 200 300 400 500 600
-0.2

-0.1

0

0.1

0.2

0 100 200 300 400 500 600
-8000

-6000

-4000

-2000

0

2000

4000

0 100 200 300 400 500 600
40

50

60

70

80

90

0 100 200 300 400 500 600

-4

-2

0

2

4

0 100 200 300 400 500 600
-0.2

-0.1

0

0.1

0.2

0 100 200 300 400 500 600
-8000

-6000

-4000

-2000

0

2000

4000

v
(m

i/h
)

δ
(r

ad
)

φ
(N

)
d

ξ
(m

)

v
(m

i/h
)

δ
(r

ad
)

φ
(N

)
d

ξ
(m

)

t (sec)

t (sec)

t (sec)

t (sec)

t (sec)

t (sec)

t (sec)

t (sec)

Figure 4-7: Moe’s (a) training data and (b) corresponding linear model data.

(a) Moe’s control data (b) linear model control trajectory

4.3 Analysis 59

0 100 200 300 400 500 600
40

50

60

70

80

90

0 100 200 300 400 500 600

-4

-2

0

2

4

0 100 200 300 400 500 600
-0.2

-0.1

0

0.1

0.2

0 100 200 300 400 500 600
-8000

-6000

-4000

-2000

0

2000

4000

0 100 200 300 400 500 600
40

50

60

70

80

90

0 100 200 300 400 500 600

-4

-2

0

2

4

0 100 200 300 400 500 600
-0.2

-0.1

0

0.1

0.2

0 100 200 300 400 500 600
-8000

-6000

-4000

-2000

0

2000

4000

v
(m

i/h
)

δ
(r

ad
)

φ
(N

)
d

ξ
(m

)

v
(m

i/h
)

δ
(r

ad
)

φ
(N

)
d

ξ
(m

)

t (sec)

t (sec)

t (sec)

t (sec)

t (sec)

t (sec)

t (sec)

t (sec)

Figure 4-8: Groucho’s (a) training data and (b) corresponding linear model data.

(a) Groucho’s control data (b) linear model control trajectory

60 Chapter 4: HCS Models: Continuous Learning

0 100 200 300 400 500 600
40

50

60

70

80

90

0 100 200 300 400 500 600

-4

-2

0

2

4

0 100 200 300 400 500 600
-0.2

-0.1

0

0.1

0.2

0 100 200 300 400 500 600
-8000

-6000

-4000

-2000

0

2000

4000

0 100 200 300 400 500 600 700
40

50

60

70

80

90

0 100 200 300 400 500 600 700

-4

-2

0

2

4

0 100 200 300 400 500 600 700
-0.2

-0.1

0

0.1

0.2

0 100 200 300 400 500 600 700
-8000

-6000

-4000

-2000

0

2000

4000

v
(m

i/h
)

δ
(r

ad
)

φ
(N

)
d

ξ
(m

)

v
(m

i/h
)

δ
(r

ad
)

φ
(N

)
d

ξ
(m

)

t (sec)

t (sec)

t (sec)

t (sec)

t (sec)

t (sec)

t (sec)

t (sec)

Figure 4-9: Harpo’s (a) training data and (b) corresponding linear model data.

(a) Harpo’s control data (b) linear model control trajectory

4.3 Analysis 61

for what range of initial conditions and road curvatures each model is stable (i.e. stays on the

road). To do this for a given HCS model, we record the maximum lateral offset for that model

() as it attempts to negotiate the s-curve shown in Figure 4-11 for different radii and

initial velocities . Figures 4-12, 4-13, 4-14 and 4-15 plot these stability profiles for Larry,

Moe, Groucho and Harpo2, respectively, where and

.

2. From Harpo’s stability profile, it becomes apparent why hisCq model fails on road #5. Road #5 begins with
an s-curve whose radii are 117m and 123m, respectively.

0 100 200 300 400 500 600 700
-6000

-4000

-2000

0

2000

4000

Figure 4-10: Larry’s Ck model control with one hidden unit added. Note that the
additional hidden unit causes significant (not really beneficial) high-frequency noise.

φ
(N

)

t (sec)

max dξ() r

vinit

90m r 250m≤ ≤

20mi/h vinit 100mi/h≤ ≤

Figure 4-11: This s-curve test road is used to generate stability profiles for the human
control strategy models, as and are varied.vinit r

vinit
r

r

62 Chapter 4: HCS Models: Continuous Learning

20 40 60 80 100

100

125

150

175

200

225

250

20 40 60 80 100

100

125

150

175

200

225

250

vinit mi/h() vinit mi/h()

r
m(

)

Figure 4-12: Larry’s stability profiles through the s-curve for (a) the Cq model and (b)
the Ck model (lighter colors are better).

(a) (b)

dξ 5m> dξ 10m>dξ 0m≥ dξ 5m≤

20 40 60 80 100

100

125

150

175

200

225

250

20 40 60 80 100

100

125

150

175

200

225

250

vinit mi/h() vinit mi/h()

r
m(

)

Figure 4-13: Moe’s stability profiles through the s-curve for (a) the Cq model and (b) the
Ck model (lighter colors are better).

(a) (b)

dξ 5m> dξ 10m>dξ 0m≥ dξ 5m≤

4.3 Analysis 63

20 40 60 80 100

100

125

150

175

200

225

250

20 40 60 80 100

100

125

150

175

200

225

250

vinit mi/h() vinit mi/h()

r
m(

)

Figure 4-14: Groucho’s stability profiles through the s-curve for (a) the Cq model and
(b) the Ck model (lighter colors are better).

(a) (b)

dξ 5m> dξ 10m>dξ 0m≥ dξ 5m≤

20 40 60 80 100

100

125

150

175

200

225

250

20 40 60 80 100

100

125

150

175

200

225

250

vinit mi/h() vinit mi/h()

r
m(

)

Figure 4-15: Harpo’s stability profiles through the s-curve for (a) the Cq model and (b)
the Ck model (lighter colors are better).

(a) (b)

dξ 5m> dξ 10m>dξ 0m≥ dξ 5m≤

64 Chapter 4: HCS Models: Continuous Learning

From these Figures, we observe that, in general, theCk models behave in a stable manner for

a greater range of initial and environmental conditions than do theCq models. Moreover, the

control behaviors of theCk models vary more smoothly with changes in and . Thus, the

Cq models, with their many additional hidden units, do not appear to learn anything beneficial

with the increased nonlinearity of the larger models.

4.3.2 Learning convergence

Now, we examine the difference in learning convergence between theCq andCk learning archi-

tectures. As we have noted previously, the linearCk networks converge in less than one epoch

to approximately the same RMS error as theCq networks after thousands of epochs and mul-

tiple hidden units. Consider Figures 4-16 and 4-17, for example. In Figure 4-16, we show how

the RMS error over Groucho’s entire training and test data sets decreases in the first epoch of

theCk algorithm. Even though the entire training set consists of approximately 15,000 input-

output patterns, theCk algorithm converges very close to the final RMS error after only 1/3 of

the training data set is presentedonce. By contrast, Figure 4-17 illustrates the convergence of

theCq algorithm for Groucho’s data. Note that its linear convergence as measured by the RMS

error is substantially worse thanCk’s linear convergence, and thatCq requires about 12 hidden

units and 11,000 epochs before converging to an equivalent test RMS error. This is true despite

repeated attempts to optimize the learning parameters for theCq algorithm.

r vinit

0 1000 2000 3000 4000 5000

-1.25

-1

-0.75

-0.5

-0.25

0

0.25

0.5

training pattern

Figure 4-16: Error convergence per training pattern for Groucho’s linear Ck model.

e R
M

S
lo

g Ck training data
Ck test data

4.3 Analysis 65

It is apparent that theCq algorithm encounters significant convergence problems when pre-

sented with the correlated, time-delayed inputs of our HCS models. This becomes even more

apparent if we increase and beyond the values in Table 4-1. As an example, consider

Harpo’s model. Figure 4-18 plots the stability profile for theCk model, where .

Although the dimensionality of the input space is increased from 45 inputs (,

) to 120 inputs, theCk algorithm preserves the stable control strategy of the original

model. TheCq algorithm on the other hand, does not converge to a stable control strategy for

any values , .

Thus, although the reduction of as hidden units are added to theCq models suggests that

substantialnonlinear modeling is occurring, this is not the case, since virtually all the reduction

in can be captured by alinear Ck model. In fact, any training algorithm that does not

explicitly factor in the interdependence of weights in the neural network model is doomed to a

similar fate, due to the correlated nature of the time-delayed state and control inputs, as well as

the correlation between visible road coordinates.

4.3.3 Discussion

While thus far we have argued that theCk algorithm shows better convergence to stabler HCS

models, we have not yet addressed how closely each of the learned models approximates its

5 10 15 20

-1.35

-1.3

-1.25

-1.2

-1.15

-1.1

Cq training data
Cq test data
Ck one-epoch test data

epochs (in 1000s)

e R
M

S
lo

g

Figure 4-17: Error convergence for Groucho’s Cq model. Vertical lines indicate the
addition of a new hidden unit.

nx nu

nx nu 20= =

nx nu 5= =

nr 10=

r 90m 250m,[]⊂ vinit 20mi/h 100mi/h,[]⊂

eRMS

eRMS

66 Chapter 4: HCS Models: Continuous Learning

corresponding training data. Examining Figures 4-1 through 4-4 and Figures 4-6 through 4-9

we make thequalitative observation that none of the models’ control strategies closely mirror

those of the corresponding human data.3 Neither theCq nor theCk learning algorithm appears

to be able to model the driving control strategies with a high degree of fidelity to the source

training data.

The principal source of this inability appears to be the discontinuous switching of the acceler-

ation control . To better appreciate why this is the case, we would like to visualize how dif-

ferent input vectors in the training data map to different acceleration outputs . As an

example, consider Groucho’s control strategy data and let , as before.

For these input space parameters, the input training vectors are of length 50. Since it is

impossible to visualize a 50-dimensional input space, we decompose each of the input vectors

 in the training set into the principal components (PCs) [91] over Groucho’s entire data

set, such that,

3. We will formalize this qualitative observation in Chapter 8.

20 40 60 80 100

100

125

150

175

200

225

250

vinit mi/h()

r
m(

)

Figure 4-18: Harpo’s stability profiles through the s-curve for the Ck model with
. The Cq model is unstable for all , .nx nu 20= = r vinit

dξ 5m> dξ 10m>

dξ 0m≥ dξ 5m≤

φ

φ k 1+()

nx nu 6= = nr 10=

ζ k()

ζ k()

4.3 Analysis 67

, (4-5)

where is the principal component corresponding to theith largest eigenvalue . Now, for

Groucho’s control data we have that,

, , , (4-6)

so that we coarsely approximate the input vectors as,

. (4-7)

By plotting the PC coefficients in 2D space, we can now visualize the approximate

relative location of the input vectors . Figure 4-19(a) and (b) show the results for

(brake), and (gas), respectively. In each plot, we distinguish points by whether or not

 indicates a discontinuity (i.e. a switch between braking and accelerating) such that,

 and [Figure 4-19(a)] (4-8)

 and [Figure 4-19(b)] (4-9)

Those points that involve a switch are plotted in black, while a representative sample (20%) of

the remaining points are plotted in grey.

ζ k() c1
kγ1 c2

kγ2 …c50
k γ50+ +=

γ i σi

σ2 σ1⁄ 0.44= σi σ1⁄ 0.05≤ i 3 4 … 50, , ,{ }∈

ζ k()

ζ k() c1
kγ1 c2

kγ2+≈

c1
k c2

k,()

ζ k() φ k() 0<

φ k() 0≥

φ k 1+()

-3 -2 -1 0 1 2 3

0

1

2

3

4

-3 -2 -1 0 1 2 3

0

1

2

3

Figure 4-19: Switching actions (black) significantly overlap other actions (grey) when
the current applied force is (a) negative (brake), and (b) positive (gas).

c1
k

c1
k

c2
kc2

k

(a) (b)

φ k() 0< φ k 1+() 0>

φ k() 0> φ k 1+() 0<

68 Chapter 4: HCS Models: Continuous Learning

We immediately observe from Figure 4-19 that — at least in the low-dimensional projection of

the input vectors — the few training vectors that involve a switch overlap the many other vec-

tors that do not. In other words, very similar inputs can lead to radically different outputs

. Consequently, Groucho’s acceleration control strategy may not be easily expressible

in a functional form, let alone a smooth functional form. This poses an impossible learning

challenge not just for cascade neural networks, butany continuous function approximator. In

theory, no continuous function approximator will be capable of modeling the switching of the

acceleration control (Figure 4-20).

In summary, we note that while we limit the volume of results presented to representative

examples, the conclusions we draw with regards to theCq andCk algorithms have been con-

firmed for other human control data sets and over countless and repeated learning trials. Thus,

this chapter has shown that (1) theCk algorithm converges faster and more reliably thanCq in

modeling human control strategies; (2) theCk models exhibit stability over a greater range of

initial and environmental conditions; (3) as long as sufficient data is provided as input, the pre-

cise input representation affects performance only marginally; and (4) the continuousCk and

Cq algorithms abstract control strategies that are qualitatively dissimilar to the original human

control strategies. In Chapter 5, we derive an alternative, discontinuous modeling framework

which attempts to overcome this limitation.

ζ k()

φ k 1+()

Input spaceζ k()
Output space

φ k 1+()

Figure 4-20: Switching causes very similar inputs to be mapped to radically different
outputs.

φ

69

Chapter 5

HCS Models: Discontinuous Learning

In the previous chapter, we investigated the capacity of cascade neural networks to abstract

models of human control strategy, by mapping environmental inputs and time-delayed histories

of state and previous control variables to control action outputs. As we observed, the resulting

models, while abstracting convergent, stable control strategies, do not appear to exhibit a high

degree of fidelity to the source human training data. This is in no small measure due to the

acceleration command . While the steering control tends to vary more continuously with

model inputs, the acceleration control involves discrete switching decisions between the gas

and brake pedals that introduce discontinuities in the input-output mapping. Consequently very

similar input spaces are mapped to radically different outputs.

To adequately model such control behavior, in this chapter we propose a stochastic, discontin-

uous learning algorithm. The proposed algorithm models possible control actions as individual

statistical models. During run-time execution of the algorithm, a control action is then selected

stochastically, as a function of both prior probabilities and posterior evaluation probabilities.

We show that the resulting controller overcomes the shortcomings of continuous modeling

approaches in modeling discontinuous control strategies, and that the resulting model strategies

appear to exhibit a higher degree of fidelity to the human training data.

φ δ

φ

70 Chapter 5: HCS Models: Discontinuous Learning

5.1 Hybrid continuous/discontinuous control

Figure 5-1 provides an overview of the proposed modeling approach. As before, we use aCk

model for the steering control . Now, however, we model the acceleration control in a dis-

continuous, statistical framework. The following sections describe this framework in much

greater detail.

5.1.1 General statistical framework

First, let us derive a general statistical framework for faithfully modeling discontinuous control

strategies. For now, we make the following assumptions. First, assume a control task where at

each time step , there is a choice of one of different control actions , .

Second, assume that we have sets of input vector training examples , ,

where each leads to control action at the next time step. Finally, assume that we can train

statistical models , which maximize,

, . (5-1)

Given an unknown input vector , we would like to choose an appropriate, corresponding

control action . Since model corresponds to action , we define,

. (5-2)

By Bayes Rule,

, (5-3)

where,

, (5-4)

δ φ

k N Ai i 1 … N, ,{ }∈

ζi
j{ } j 1 2 … ni, , ,{ }∈

ζi
j Ai

λi

P λi ζi
j()

j 1=

ni

∏ i 1 … N, ,{ }∈

ζ∗

A∗ λi Ai

P ζ∗ Ai() P ζ∗ λi()≡

P Ai ζ∗()
P ζ∗ Ai()P Ai()

P ζ∗()
-------------------------------------=

P ζ∗() P ζ∗ Ai()P Ai()
i 1=

N

∑≡

5.
1

H
yb

rid
 c

on
tin

uo
us

/d
is

co
nt

in
uo

us
 c

on
tr

ol
71

Continuous cascade
network steering control

Signal-to-
symbol

conversion

Road
description

Stochastic
action choice

Discontinuous
HMM acceleration
control

r x r y,{ }

λ1

λ2

λN

O∗
P O∗ λ1()

P Ai O∗()
P O∗ λ2()

P O∗ λN() δ

φ

vξ vη ω δ φ, , , ,{ }

…

vξ vη ω δ φ, , , ,{ }

r x
r y,

{
}

O∗

O∗
P Ai()

Figure 5-1: Overall hybrid discontinuous/continuous controller. Steering is controlled as before by a cascade model,
while the discontinuous acceleration command is controlled by the HMM-based, stochastic framework (shaded box).

72 Chapter 5: HCS Models: Discontinuous Learning

serves as a normalization factor, represents theprior probability of selecting action

and represents theposterior probability of selecting action given in the input vec-

tor .

We now propose the following stochastic control strategy for . Let,

 with probability , (5-5)

so that, at each time step , the control action is generated stochastically as a function of

the current model inputs () and the prior likelihood of each action.

5.1.2 Action definitions

As we point out in equations (2-20) and (2-21), the acceleration command is limited at each

time step to the following actions. When (the gas is currently active),

: (5-6)

: , (5-7)

: , (5-8)

: , (5-9)

and when (the brake is currently active),

: (5-10)

: , (5-11)

: , (5-12)

: , (5-13)

P Ai() Ai

P Ai ζ∗() Ai

ζ∗

A∗

A∗ Ai= P Ai ζ∗()

k A∗

ζ∗

φ

k φ k() 0≥

A1 φ k 1+() φ k()=

A2 φ k 1+() min φ k() ∆φg+ 4000,()=

A3 φ k 1+() max φ k() ∆φg– 0,()=

A4 φ k 1+() ∆φb–=

φ k() 0<

A5 φ k 1+() φ k()=

A6 φ k 1+() max φ k() ∆φb– 8000–,()=

A7 φ k 1+() min φ k() ∆φb+ 0,()=

A8 φ k 1+() ∆φg=

5.1 Hybrid continuous/discontinuous control 73

Actions and correspond to no action for the next time step; actions and corre-

spond to pressing harder on the currently active pedal; actions and correspond to easing

off the currently active pedal; and actions and correspond to switching between the gas

and brake pedals. The constants and are set by each human operator to the pedal

responsiveness level he or she desires. Table 5-1 below lists those choices for our four test indi-

viduals.

5.1.3 Statistical model choice

In part because of our familiarity with Hidden Markov Models (see Section 6.2.1), and because

of the capacity of HMMs to model arbitrary statistical distributions, we choose discrete-output

HMMs to be the trainable statistical models of Section 5.1.1. Consequently, we must convert

the multi-dimensional, real-valued model input space to discrete symbols.

For a particular data set let,

, (5-14)

denote the normalized model input vector at time step corresponding to control action

, where are defined in equation (2-26). Also, let be

a matrix, whose rows are the vectors. Using the LBG VQ algorithm [69], we generate a

codebook of size that minimizes the quantization distortion defined in equa-

tion (6-67). To complete the signal-to-symbol conversion, the discrete symbols corre-

sponding to the minimum distortion of are given by,

 Table 5-1: Pedal responsiveness choices

Individual (N) (N)

Larry 100 1000

Moe 100 300

Groucho 100 200

Harpo 1000 1000

A1 A5 A2 A6

A3 A7

A4 A8

∆φg ∆φb

∆φg ∆φb

λi

X

ζ k() vξ
nx vη

nx ωnx δnu φnu r x
nr r y

nr

T
=

k

φ k 1+() vξ
nx vη

nx ωnx δnu φnu r x
nr r y

nr, , , , , ,{ } V

ζ k()

QL L D V QL,()

o k()

ζ k()

74 Chapter 5: HCS Models: Discontinuous Learning

, (5-15)

where is defined in equation (6-69). Finally, let us define the observation sequence

 of length to be,

. (5-16)

Now, suppose that we want to provide the Hidden Markov Models with time-delayed val-

ues of the state and control variables as input. There are at least two ways to achieve this. We

can either (1) let , , or (2) let , . In the first case,

we vector quantize the entire input vector into a single observable, and base our action choice

on that single observable. This necessarily forces the HMMs to single-state models, such

that each model is completely described by its corresponding output probability vector .

Alternatively, we can vector quantize shorter input vectors but provide a longer sequence of

observables for HMM training and evaluation.

While in theory both choices start from identical input spaces, the single-observable, single-

state case works better in practice. There are two primary reasons for this. Because the amount

of data we have available for training comes from finite-length data sets, and is therefore nec-

essarily limited in length, we must be careful that we do not overfit the models . Assuming

fully forward-connected, left-to-right models , increasing the number of states from to

 increases the number of free (trainable) parameters by , where is the number

of observables. Thus, having too many states in the HMMs substantially increases the chance

of overfitting, since there may be too many degrees of freedom in the model. Conversely, by

minimizing the number of states, the likelihood of overfitting is minimized.

A second reason that the single-observable, single-state case performs better relates to the vec-

tor quantization process. To understand how, consider that each input vector minimally

includes road inputs . If we let , then for , 80% of the

input dimensions will be road-related, while only 20% will be state related. Thus, the vector

o k() TVQ
v ζ k() QL,()=

TVQ
v ⋅()

O k() nO

O k() o k nO– 1+() o k nO– 2+() … o k(), , ,{ }=

λi m

nx nu m= = nO 1= nx nu 1= = nO m=

λi

Bi

nO 1>

λi

λi ns

ns 1+() ns L+ L

ζ k()

2nr r x
nr r y

nr,{ } nr 10= nx nu 1= =

5.1 Hybrid continuous/discontinuous control 75

quantization will most heavily minimize the distortion of the road inputs, while in comparison

neglecting the potentially crucial state and previous command inputs. With larger values of ,

and , the vector quantization process relies more equally on the state, previous control and

road inputs, and therefore forms more pertinent feature (prototype) vectors for control.

Thus, for a VQ codebook , input vector , , , and ,

, and (5-17)

, (5-18)

where denotes thelth element in the model’s output probability vector . If we inter-

pret the codebook vectors as states , then the discontinuous controller can be viewed as a

learned stochastic policy that maps states to actions , where,

. (5-19)

5.1.4 Prior probabilities

In order to calculate , we need to assign values to the prior probabilities . One

approach is to estimate by the frequency of occurrence of action in a particular con-

trol data set . For ,

, (5-20)

where denotes the number of times action was executed in the data set ; similarly, for

,

(5-21)

nx

nu

QL ζ∗ nx nu m= = nr 10= nO 1=

O∗ l TVQ
v ζ∗ QL,()= =

P Ai ζ∗() P Ai O∗() P O∗ λi()P Ai()∝ b l()iP Ai()= =

b l()i λi Bi

ql Sl

Sl Ai

P Ai Sl() b l()iP Ai() b l()iP Ai()
i 1=

N

∑⁄=

P Ai Sl() P Ai()

P Ai() Ai

X φ k() 0≥

P Ai()
ni nkk 1=

4∑⁄

0



=
i 1 2 3 4, , ,{ }∈
i 5 6 7 8, , ,{ }∈

ni Ai X

φ k() 0<

P Ai()
0

ni nkk 5=
8∑⁄




=
i 1 2 3 4, , ,{ }∈
i 5 6 7 8, , ,{ }∈

76 Chapter 5: HCS Models: Discontinuous Learning

5.1.5 Task-based modifications

While the assignment of priors in equations (5-20) and (5-21) are the best estimates for

from the data , they are sometimes problematic when dealing with marginally stable training

data. Consider, for example, Figure 5-2, where we plot a small part of Groucho’s first run. We

observe that Groucho’s trajectory takes him close to the edge of the road; what keeps him from

driving off the road is the switch from the gas to the brake at time . Now, because the action

selection criterion in equation (5-5) is stochastic, it is possible that the stochastic controller will

only brake at time , even if it correctly models that time is the most likely time for a

control switch. Braking at time , however, may be too late for the car to maintain contact

with the road.

Consequently, we would like to improve the stability margins of the stochastic control model.

The stability of the system (i.e. the simulated car) is directly related to the kinetic energy

being pumped into the system,

, (5-22)

so that the expected value of , , is proportional to,

. (5-23)

P Ai()

X

ts

ts τ+ ts

ts τ+

T

actual switch to
braking ()ts

if model braking happens
too late ().ts τ+

actual human
control trajectory

Figure 5-2: Instability can result if the stochastic controller switches to braking too late.

T φ k()
k
∑∝

T E T[]

E T[] E φ k()[]
k
∑∝

5.1 Hybrid continuous/discontinuous control 77

Hence, for increased stability margins, we want to adjust the stochastic model to generate

, where,

(5-24)

We can realize condition (5-24) by slight increases in the priors for those actions that decrease

 — namely, or . To stay within probabilistic constraints, we offset these

changes by slight decreases in the priors or , respectively, so that the modified priors are

given as either,

 and , or (5-25)

 and , (5-26)

where determines the degree to which we decrease . As we shall observe later,

for some human control data . In that case we choose modification (5-26), so as not

to introduce a control action that was never observed in the human control strategy. When

 is substantial, then we choose modification (5-25).

While instability is a common failure mode of the unmodified stochastic controller, another

very rare failure mode leads to exactly the opposite: the brake is engaged too long by the sto-

chastic controller and the simulated car comes to a screeching halt. This problem is very similar

to the instability problem, in that a switch — in this case from braking to accelerating — occurs

too late. Once the car is stopped, the distortion for the vector-quantized input vector is

large for all VQ codebook vectors . It will be smallest, however, for those codebook vectors

where the previous acceleration commands are less than zero. Hence, once the car is stopped,

the brake remains engaged for a long time. Although the stochastic selection criterion in (5-5)

ensures that eventually the simulated car will once again switch from braking, we would like

to prevent the car from stopping altogether. Unlike the instability problem, this is significantly

easier to monitor, since the velocity directly predicts when a stopping event is about to occur.

Consequently, we modify the statistical controller so that,

φ' k()

E φ' k()[] E φ k()[]<

E φ k()[] A3 A4

A2 A1

P' A3() P A3() εs+= P' A2() P A2() εs–=

P' A4() P A4() εs+= P' A1() P A1() εs–=

εs 0> E φ' k()[]

P A3() 0=

P A3()

ζ k()

ql

φ

v

78 Chapter 5: HCS Models: Discontinuous Learning

, , , (5-27)

where is chosen to reflect the range of velocities in the human control data. Over repeated

trials, condition (5-27) is invoked on average approximately one time per 20km test run.

5.2 Experimental results

5.2.1 Model training

In order to make a fair comparison of the HCS models in this chapter with those of Chapter 4,

we select the same input space parameters , and as those listed in Table 4-1. Further-

more, we let , so that the HMMs are single-state models. As we have already

argued, we get significantly better performance from the more constrained models than we do

if we let and . We vector quantize the training data for each run to lev-

els. Also, for each run we choose the stabilization parameter to ensure stability over the val-

idation road #4 (Figure 2-3(a)), and then test the resulting modified controller over test road #5

(Figure 2-3(b)). Table 5-2 summarizes the stabilization parameter and minimum velocity

choices for each model. Finally, for the steering control , we select the same linearCk as in

Chapter 4.

P A8 v vmin<() 1= P Ai v vmin<() 0= i 1 2 … 7, , ,{ }∈

vmin

nx nu nr

nO ns 1= = λi

nO 1> ns 1> L 512=

εs

δ

 Table 5-2: Hybrid controller design choices

Individual (mi/h) modified

Larry 50 0.010

Moe 45 0.005

Groucho 40 0.005

Harpo 40 0.005

vmin εs P Ai()

P A2() P A3(),{ }

P A1() P A4(),{ }

P A1() P A4(),{ }

P A1() P A4(),{ }

5.2 Experimental results 79

5.2.2 HCS models

Figures 5-3, 5-4, 5-5 and 5-6 illustrate representative hybrid controller results for the same four

runs for which we report cascade network results — namely, (Larry’s second run),

 (Moe’s first run), (Groucho’s first run), and (Harpo’s second run). Once

again part (a) of each Figure plots the original human control data, while part (b) of each Figure

plots the corresponding model control over the test road (#5).1

Comparing these modeling results to theCq andCk results in Figures 4-1 through 4-4 and 4-5

through 4-9, respectively, we ask ourselves, which controller, the continuous cascade network

controllers, or the discontinuous stochastic controllers, perform better? The answer to that

question depends on what precisely is meant by “better.”

If we evaluate the two modeling strategies based on absolute performance criteria, such as

range of stability, the cascade network controllers probably perform better. Whereas the linear

model controllers rarely, if ever, run off the road, the hybrid controllers temporarily run off the

test road more often (for). Simply put, the linear controllers appear more stable than

their hybrid counterparts.

If, on the other hand, we evaluate the two modeling approaches on how closely they approxi-

mate the corresponding operator’s control strategy, then the verdict likely changes. As we have

already noted, theCk models’ control trajectories do not look anything like their human coun-

terparts’ trajectories, due to the continuous models’ inability to faithfully model the discontin-

uous acceleration command . Qualitatively, the hybrid continuous/discontinuous controllers

appear to approximate more closely their respective training data.2

1. Note that for these results, the trajectories that are shown are but one example of the discontinuous
controller’s strategy over road #5, since the control action selection criterion in (5-5) is stochastic.

2. Once again, we will formalize this qualitative observation in Chapter 8.

X 1 2,()

X 3 1,() X 4 1,() X 5 2,()

w 10m=

φ

80 Chapter 5: HCS Models: Discontinuous Learning

0 100 200 300 400 500 600

-4

-2

0

2

4

0 100 200 300 400 500 600
40

50

60

70

80

90

0 100 200 300 400 500 600
-0.2

-0.1

0

0.1

0.2

0 100 200 300 400 500 600
-8000

-6000

-4000

-2000

0

2000

4000

0 100 200 300 400 500 600
40

50

60

70

80

90

0 100 200 300 400 500 600

-4

-2

0

2

4

0 100 200 300 400 500 600
-0.2

-0.1

0

0.1

0.2

0 100 200 300 400 500 600
-8000

-6000

-4000

-2000

0

2000

4000

v
(m

i/h
)

δ
(r

ad
)

φ
(N

)
d

ξ
(m

)

v
(m

i/h
)

δ
(r

ad
)

φ
(N

)
d

ξ
(m

)

t (sec)

t (sec)

t (sec)

t (sec)

t (sec)

t (sec)

t (sec)

t (sec)

Figure 5-3: Larry’s (a) training data and (b) corresponding hybrid controller data.

(a) Larry’s control data (b) hybrid model control trajectory

5.2 Experimental results 81

0 100 200 300 400 500 600
40

50

60

70

80

90

0 100 200 300 400 500 600

-4

-2

0

2

4

0 100 200 300 400 500 600
-0.2

-0.1

0

0.1

0.2

0 100 200 300 400 500 600
-8000

-6000

-4000

-2000

0

2000

4000

0 100 200 300 400 500 600
40

50

60

70

80

90

0 100 200 300 400 500 600

-4

-2

0

2

4

0 100 200 300 400 500 600
-0.2

-0.1

0

0.1

0.2

0 100 200 300 400 500 600
-8000

-6000

-4000

-2000

0

2000

4000

v
(m

i/h
)

δ
(r

ad
)

φ
(N

)
d

ξ
(m

)

v
(m

i/h
)

δ
(r

ad
)

φ
(N

)
d

ξ
(m

)

t (sec)

t (sec)

t (sec)

t (sec)

t (sec)

t (sec)

t (sec)

t (sec)

Figure 5-4: Moe’s (a) training data and (b) corresponding hybrid controller data.

(a) Moe’s control data (b) hybrid model control trajectory

82 Chapter 5: HCS Models: Discontinuous Learning

0 100 200 300 400 500 600
40

50

60

70

80

90

0 100 200 300 400 500 600

-4

-2

0

2

4

0 100 200 300 400 500 600
-0.2

-0.1

0

0.1

0.2

0 100 200 300 400 500 600
-8000

-6000

-4000

-2000

0

2000

4000

0 100 200 300 400 500 600
40

50

60

70

80

90

0 100 200 300 400 500 600

-4

-2

0

2

4

0 100 200 300 400 500 600
-0.2

-0.1

0

0.1

0.2

0 100 200 300 400 500 600
-8000

-6000

-4000

-2000

0

2000

4000

v
(m

i/h
)

δ
(r

ad
)

φ
(N

)
d

ξ
(m

)

v
(m

i/h
)

δ
(r

ad
)

φ
(N

)
d

ξ
(m

)

t (sec)

t (sec)

t (sec)

t (sec)

t (sec)

t (sec)

t (sec)

t (sec)

Figure 5-5: Groucho’s (a) training data and (b) corresponding hybrid controller data.

(a) Groucho’s control data (b) hybrid model control trajectory

5.2 Experimental results 83

0 100 200 300 400 500 600 700
40

50

60

70

80

90

0 100 200 300 400 500 600 700

-4

-2

0

2

4

0 100 200 300 400 500 600 700
-0.2

-0.1

0

0.1

0.2

0 100 200 300 400 500 600 700
-8000

-6000

-4000

-2000

0

2000

4000

0 100 200 300 400 500 600 700
40

50

60

70

80

90

0 100 200 300 400 500 600 700

-4

-2

0

2

4

0 100 200 300 400 500 600 700
-0.2

-0.1

0

0.1

0.2

0 100 200 300 400 500 600 700
-8000

-6000

-4000

-2000

0

2000

4000

v
(m

i/h
)

δ
(r

ad
)

φ
(N

)
d

ξ
(m

)

v
(m

i/h
)

δ
(r

ad
)

φ
(N

)
d

ξ
(m

)

t (sec)

t (sec)

t (sec)

t (sec)

t (sec)

t (sec)

t (sec)

t (sec)

Figure 5-6: Harpo’s (a) training data and (b) corresponding hybrid controller data.

(a) Harpo’s control data (b) hybrid model control trajectory

84 Chapter 5: HCS Models: Discontinuous Learning

5.3 Analysis

5.3.1 Sample curve control

Here, we examine the control behavior of the hybrid models in somewhat greater detail —

through a road sequence composed of (1) a 75m straight-line segment, and (2) a subsequent

150m-radius, curve. Since, this particular road sequence appears in road #1 (Figure 2-

2(c)), we can directly compare the actual human control strategy with the corresponding

hybrid-model control.

Figures 5-7, 5-8, 5-9 and 5-10 plot the driving control for Larry, Moe, Groucho and Harpo and

their respective hybrid models. In each Figure, the vertical lines indicate the start of the turn for

the human (dashed) and the corresponding hybrid-model control data (solid).

120°

0 2 4 6 8 10 12

60

65

70

75

80

85

0 2 4 6 8 10 12

-4

-2

0

2

4

0 2 4 6 8 10 12
-0.2

-0.1

0

0.1

0.2

0 2 4 6 8 10 12
-8000

-6000

-4000

-2000

0

2000

4000

v
(m

i/h
)

δ
(r

ad
)

φ
(N

)
d

ξ
(m

)

t (sec) t (sec)

t (sec) t (sec)

Figure 5-7: Larry’s (dashed) and his hybrid model’s (solid) control through a given turn.

5.3 Analysis 85

0 2 4 6 8 10 12 14

60

65

70

75

80

85

0 2 4 6 8 10 12 14

-4

-2

0

2

4

0 2 4 6 8 10 12 14
-0.2

-0.1

0

0.1

0.2

0 2 4 6 8 10 12 14
-8000

-6000

-4000

-2000

0

2000

4000

v
(m

i/h
)

δ
(r

ad
)

φ
(N

)
d

ξ
(m

)

t (sec) t (sec)

t (sec) t (sec)

Figure 5-8: Moe’s (dashed) and his hybrid model’s (solid) control through a given turn.

0 2 4 6 8 10 12

60

65

70

75

80

85

0 2 4 6 8 10 12

-4

-2

0

2

4

0 2 4 6 8 10 12
-0.2

-0.1

0

0.1

0.2

0 2 4 6 8 10 12
-8000

-6000

-4000

-2000

0

2000

4000

v
(m

i/h
)

δ
(r

ad
)

φ
(N

)
d

ξ
(m

)

t (sec) t (sec)

t (sec) t (sec)

Figure 5-9: Groucho’s (dashed) and hybrid model’s (solid) control through a given turn.

86 Chapter 5: HCS Models: Discontinuous Learning

From these Figures we make a few general observations. First, each hybrid model completes

the curve in almost exactly the same time as its respetive human. The largest difference in com-

pletion times — 2.5% (0.34 sec) — occurs for Harpo; in two of the other cases (Larry and

Groucho), the time difference between the actual and hybrid controls is less than 0.5%.

Second, since the models’ steering is handled through a linear, continuous mapping, the steer-

ing profiles for the models vary more smoothly than their human counterparts. Consequently,

the lateral offset from the road median () also differs between the model and human control

trajectories3.

3. Although lateral offset from the road median is an important criterion for distinguishing between drivers
in real driving, we shall see later that in our type ofsimulateddriving, drivers pay little attention to as
long as they maintain contact with the road. Since drivers are inconsistent in their lateral lane position from
one curve to the next, we cannot expect that a model will very closely track lateral lane position in any
specific instance.

0 2 4 6 8 10 12 14

60

65

70

75

80

85

0 2 4 6 8 10 12 14

-4

-2

0

2

4

0 2 4 6 8 10 12 14
-0.2

-0.1

0

0.1

0.2

0 2 4 6 8 10 12 14
-8000

-6000

-4000

-2000

0

2000

4000

v
(m

i/h
)

δ
(r

ad
)

φ
(N

)
d

ξ
(m

)

t (sec) t (sec)

t (sec) t (sec)

Figure 5-10: Harpo’s (dashed) and his hybrid model’s (solid) control through a given
turn.

δ

dξ

dξ

5.3 Analysis 87

Finally, while the applied force profiles between the humans and corresponding hybrid mod-

els are not identical, they are, in fact, similar. For Larry, the hybrid model’s initial brake head-

ing into the curve occurs approximately 1/2 second after Larry’s initial brake. Thus, the model

is slightly faster when first braking; to compensate for the higher speed, the model brakes

slightly harder, and thereafter tracks Larry’s applied force profile closely.

Groucho’s case is similar to Larry’s. The initial brake for the model occurs approximately 1/4

second after Groucho’s initial brake. In this case, however, the model compensates not by brak-

ing harder, but by braking longer. Thereafter, the main difference between Groucho’s control

and the model is a quick brake maneuver while in the turn to compensate for the model’s some-

what larger acceleration in the turn. Harpo’s model also initially brakes after Harpo (by about

1 second), and consequently is also forced to brake more while in the turn to compensate for

the higher speed going into the turn.

Moe is perhaps the most interesting of the four cases. This time, the model initially brakes

approximately 1/2 second before Moe himself does, albeit with somewhat less force than Moe.

Thereafter, the hybrid model closely emulates Moe’s strategy of rapid switching between the

brake and the accelerator while in the turn.

In summary, we observe that each hybrid controller, while not replicating the human’s control

strategy exactly, does a good job of emulating its respective human’s turn maneuver. The fol-

lowing section examines the underlying reason for this success.

5.3.2 Probability profile

The most important reason behind the success of the hybrid controller is that it is able to suc-

cessfully model the switching behavior between the gas and brake pedals as a probabilistic

event, since theprecise time that a switch occurs is not that important (as we observed in the

previous section). What is more important is that the switch take place in sometime interval

around the time that the human operator would have executed the switch. Consider, for exam-

φ

88 Chapter 5: HCS Models: Discontinuous Learning

ple, Figure 5-11, which plots the posterior probabilities for a small segment of Grou-

cho’s hybrid model control. We see that switches between the gas and brake pedals (actions

and), while never very likely for any individual time step, are modeled as intervals where,

, or . (5-28)

The probability that a switch will occur after time steps given the constant probability is

given by,

(5-29)

Figure 5-12 plots this probability as a function of time (at 50 Hz) for and .

Thus, we see that even for small values of , the likelihood of a switch rises quickly as a func-

tion of time.

Because we trainseparate models for each action , the hybrid modeling approach does

not encounter the same one-to-many mapping problem, illustrated in Figures 4-19 and 4-20,

that the continuous cascade networks encounters. The relatively few occurrences of switching

in each control data set are sufficient training data, since the switching models and see

only that data during training. Including the priors in the action selection criterion (5-5)

then ensures that the model is not overly biased towards switching.

P Ai O()

A4

A8

P A4 O() p 0>= P A8 O() p 0>=

m p

1 1 p–()m–

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Figure 5-12: Probability of a switch after seconds (at 50 Hz) when the probability of a
switch at each time step is .

t
p

t sec()

p 0.1=

p 0.05=

sw
itc

h
 p

ro
b

a
b

ili
ty

p 0.1= p 0.05=

p

λi Ai

λ4 λ8

P Ai()

5.3 Analysis 89

200 210 220 230 240
-8000

-6000

-4000

-2000

0

2000

4000

P A1 O()

P A2 O()

P A4 O()

P A5 O()

P A6 O()

P A8 O()

Figure 5-11: Posterior probs. for Groucho’s model control ().P A3() P A7() 0= =

t sec()

φ
N(

)

switch (gas to brake)

switch (brake to gas)

90 Chapter 5: HCS Models: Discontinuous Learning

5.3.3 Modeling extension

Suppose the acceleration control were not constrained by equations (2-20) and (2-21), and

thus were not as readily expressible through discrete actions. For example, suppose that the

separate gas and brake commands could change by an arbitrary amount for each time step, not

just by and . How would this change the proposed control framework?

Figure 5-13 suggests one possible solution. Initially, we train two separate continuous control-

lers, the first corresponding to , and the second corresponding to . Since these

controllers would not be required to model switches between braking and accelerating, the con-

trol outputs will vary continuously and smoothly with model inputs; hence a continuous func-

tion approximator should be well suited for these two modeling tasks.

Then, we train four statistical models , corresponding to actions , , where

actions and correspond tono switch at the next time step for and ,

respectively, and actions and correspond toa switch at the next time step for

and , respectively. This discontinuous action model would then regulate which of the

continuous models is active at each time step . Although the discontinuous controller’s func-

φ

∆φg ∆φb

φ k() 0≥ φ k() 0<

Figure 5-13: Alternative architecture for discontinuous strategies.

1

2

Discontinuous
model selector

2-to-1
multiplexer

x z,{ }

u{ }

φ k() 0≥

φ k() 0<

λ̃i Ãi i 1 2 3 4, , ,{ }∈

Ã1 Ã2 φ k() 0≥ φ k() 0<

Ã3 Ã4 φ k() 0≥

φ k() 0<

k

5.3 Analysis 91

tion in this scheme is reduced, it does preserve the critical role of the discontinuous controller

in properly modeling the switching behavior, without the introduction of high-frequency noise.

In fact, Figure 5-13 offers a modeling architecture which is applicable whenever discrete events

or actions disrupt the continuous mapping from inputs to outputs.

Of course, the proposed statistical framework does have some limitations in comparison to

functional modeling approaches. Because we vector quantize the input space, the stable region

of operation for the hybrid controller is strictly limited to the input space spanned by the VQ

codes. In fact, we observe from the modeling results that the continuousCk models are more

stable than the hybrid discontinuous/continuous models. A second limitation of the approach

is the inclusion of the prior probabilities in the stochastic selection criterion (5-5). By

including the priors, we are assuming environmental conditions similar to the training environ-

ment. Radically different environmental conditions during testing presumably change the val-

ues of the priors, and therefore make the action selection criterion less appropriate.

In summary, we have developed a discontinuous modeling framework for abstracting discon-

tinuous human control strategies, and have compared the proposed approach to competing con-

tinuous function approximators. Which control approach is preferred ultimately depends on the

specific application for the HCS model. If the model is being developed towards the eventual

control of a real robot or vehicle, then the continuous modeling approach might be preferred as

a good starting point. Continuous models extrapolate control strategies to a greater range of

inputs, show greater inherent stability, and lend themselves more readily to theoretical perfor-

mance analysis. If, on the other hand, the model is being developed in order to simulate differ-

ent human behaviors in a virtual reality simulation or game, then the discontinuous control

approach might be preferred, since fidelity to the human training data and random variations in

behavior would be the desired qualities of the HCS model. Thus, depending on the application,

we believe a need exists for both types of modeling approaches.

P Ai()

92 Chapter 5: HCS Models: Discontinuous Learning

In the next several chapters, we develop a stochastic similarity measure as the first step in a

post-training model-validation procedure. In Chapter 8, we then use this similarity measure to

quantify our previous qualitative observations about the level of similarity (or dissimilarity)

between the original human control data and the model-generated trajectories.

93

Chapter 6

Model validation

In previous chapters, we investigated different machine learning techniques for abstracting

models of human control strategy. Each of these methods learns, to varying degrees, stable

HCS models from the experimental data. As we observed, however, the different modeling

techniques —Cq, Ck and discontinuous learning — generate control trajectories that are qual-

itatively quite different from one another, despite training from identical human control data.

This is true not only because the modeling capacity of each approach differs, but also because

modeling errors can feed back on themselves to generate state and command trajectories that

are uncharacteristic of the source process. Therefore, for feedback control tasks, such as human

driving, we suggest that post-training model validation is not only desirable, but essential to

establish the degree to which the human and model-generated trajectories are similar.

In this chapter, we first demonstrate the need for model validation with some illustrative exam-

ples. We then propose a stochastic similarity measure — based on Hidden Markov Model anal-

ysis — for comparing stochastic, dynamic, multi-dimensional trajectories. This similarity

measure can then be applied towards validating a learned model’s fidelity to its training data by

comparing the model’s dynamic trajectories in the feedback loop to the human’s dynamic tra-

jectories. Finally, we derive and demonstrate some general properties of the similarity measure

for known stochastic systems. In Chapter 7, we will test the similarity measure by comparing

human control strategies across different individuals, and will show that the proposed similarity

94 Chapter 6: Model validation

measure outperforms the more traditional Bayes classifier in correctly grouping driving data

from the same individual. Chapter 8 then applies the similarity measure towards comparing the

HCS models learned in the previous chapters to their respective human control data.

6.1 Need for model validation

The main strength of modeling by learning, is that no explicit physical model is required; this

also represents its biggest weakness, however. On the one hand, we are not restricted by the

limitations of current scientific knowledge, and are able to model human control strategies for

which we have not yet developed adequate biological or psychological understanding. On the

other hand, the lack of scientific justification detracts from the confidence that we can show in

these learned models. This is especially true when the unmodeled process is (1) dynamic and

(2) stochastic in nature, as is the case for human control strategy. For a dynamic process, model

errors can feed back on themselves to produce trajectories which are not characteristic of the

source process or are even potentially unstable. For a stochastic process, a static error criterion

(such as RMS error), based on the difference between the training data and predicted model

outputs is inadequate to gauge the fidelity of a learned model to the source process. Yet, for the

static modeling techniques studied in this thesis, some static error measure usually serves as the

test of convergence. While this measure is very useful during training, it offers no guarantees,

theoretical or otherwise, about the dynamic behavior of the learned model in the feedback con-

trol loop.

To illustrate this problem, we consider two examples. In the first example, suppose that we wish

to learn a dynamic process represented by the simple difference equation,

(6-1)

where , represent the output and input of the system, respectively, at time stepk. For

the input/output training data in Table 6-1, at least three different linear models yield the same

RMS error () over the training set:

u k 1+() 0.75u k() 0.24u k 1–() x k()+ +=

u k() x k()

6.16 10 3–×

6.1 Need for model validation 95

#1: (6-2)

#2: (6-3)

#3: (6-4)

The dynamic trajectories for these models, however, differ markedly. As an example, consider

the time-dependent input,

(6-5)

and initial conditions . Figure 6-1 plots the system as well as the model tra-

jectories for . We see that model #1 diverges to an unstable trajectory; model #3

remains stable, but approximates the system with significantly poorer accuracy; and model #2

matches the system’s response very closely. These responses are predicted by the dominant

pole for each difference equation (Table 6-2). Except for the unstable model (#1), each model’s

dominant pole lies inside the unit circle, thus ensuring stability.

 Table 6-1: Sample input-output training data

Input Output

-0.1 0.1 0.4 0.349

0.1 0.1 0.5 0.599

-0.3 0.2 0.3 0.123

0.3 0.2 0.4 0.673

0.2 0.0 0.5 0.650

0.0 0.2 0.3 0.348

u k 1–() u k() x k() u k 1+()

u k 1+() 0.76u k() 0.25u k 1–() x k()+ +=

u k 1+() 0.76u k() 0.23u k 1–() x k()+ +=

u k 1+() 0.74u k() 0.23u k 1–() x k()+ +=

x k() 0.1 kπ 100⁄()sin=

u 1–() u 0() 0= =

0 k 300≤ ≤

 Table 6-2: Dominant poles for each difference equation

system model #1 model #2 model #3

(0.992, 0) (1.008, 0) (0.992, 0) (0.976, 0)

96 Chapter 6: Model validation

It is apparent from this example that a biased estimator of a marginally stable system may well

result in an unstable model, despite RMS errors which appear to be equivalent to those of better

models. Not only biased models are a problem, however. Static models of the type shown in

Figure 2-4 can achieve deceptively low RMS errors by confusingcausationwith correlation

between the model’s input and output spaces. In our second example, we illustrate this problem

with some human driving data collected from Groucho.

In the driving simulator (Figure 2-1), we ask Groucho to drive over road #1 shown in Figure 2-

2(a). We simplify the problem by fixing the acceleration command at , keeping the

velocity around 40mph, and requiring only control of the steering angle . Now, we train two

linear models and with input representations and , respectively. Note that

model receives no road information as input, and is therefore guaranteed to be unstable.

For , the RMS error over the data set converges to , while for , the RMS error

converges to , an order of magnitude smaller. All that the model has “learned,”

however, is acorrelation between the previous values of and the next value of . In fact, the

full model,

(6-6)

simplifies to (approximately),

50 100 150 200 250 300
-2

0

2

4

6

8

10

#1

#3

k

u
(k

)

Figure 6-1: The three models result in dramatically different (even unstable)
trajectories.

system #2≈

φ 300N=

δ

Γ1 Γ2 r x
10{ } δ3{ }

Γ2

Γ1 9.70 10 3–× Γ2

0.71 10 3–× Γ2

δ δ

δ k 1+() 0.9997δ k() 0.6647δ k 1–() 0.6655δ k 2–()–+=

6.2 Stochastic similarity measure 97

(6-7)

Despite the larger RMS error over the training data, model , on the other hand, converges to

a stable control strategy, as is shown in Figure 6-2. It learned acausal relationship between the

curvature of the road ahead and the steering command .

The two examples above are the extremes. Not all models will be either a good or an unstable

approximation of the human control data. In general, similarity between model-generated tra-

jectories and the human control data will vary continuously for different models, from com-

pletely dissimilar to nearly identical. Furthermore, for stochastic systems (such as humans),

one cannot expect equivalent trajectories for the system and the learned model, given equiva-

lent initial conditions. Therefore, we require a stochastic similarity measure, with sufficient

representational power and flexibility to compare multi-dimensional, stochastic trajectories.

6.2 Stochastic similarity measure

Similarity measures or metrics have been given considerable attention in computer vision [12,

20, 121], image database retrieval [54], and 2D or 3D shape analysis [62, 107]. These methods,

however, generally rely on the special properties of images, and are therefore not appropriate

for analyzing sequential trajectories.

δ k 1+() δ k()=

Γ1

δ k 1+()

0 200 400 600 800 1000

0.5

1

1.5

2

2.5

3

0 200 400 600 800 1000

0.5

1

1.5

2

2.5

3

Figure 6-2: Lateral offset (e.g. distance from road median) over time, for (a) Groucho’s
control strategy, and (b) the first model’s control trajectory.

(a) (b)

d
ξ

m(
)

t (sec) t (sec)

98 Chapter 6: Model validation

Many parametric methods have been developed to analyze and predict time-series data. One of

the more well known, autoregressive-moving average (ARMA) modeling [21], predicts the

current signal based on alinear combination of previous time histories and Gaussian noise

assumptions. Since we have already observed in Chapter 4 that a linear model is insufficient to

qualitatively replicate switching, nonlinear control strategies, ARMA models may form a poor

foundation upon which to develop a similarity measure. Other work has focussed on classifying

temporal patterns using Bayesian statistics [30], wavelet and spectral analysis [114], neural net-

works (both feedforward and recurrent) [47, 112], and Hidden Markov Models (see discussion

below). Much of this work, however, analyzes only short-time trajectories or patterns, and, in

many cases, generates only a binary classification, rather than a continuously valued similarity

measure. Prior work has not addressed the problem of comparing long, multi-dimensional, sto-

chastic trajectories, especially of human control data. Thus, we propose to evaluatestochastic

similarity between two dynamic, multi-dimensional trajectories usingHidden Markov Model

(HMM) analysis.

6.2.1 Hidden Markov Models

Rich in mathematical structure, HMMs are trainable statistical models, with two appealing fea-

tures: (1) noa priori assumptions are made about the statistical distribution of the data to be

analyzed, and (2) a degree of sequential structure can be encoded by the Hidden Markov Mod-

els. As such, they have been applied for a variety of stochastic signal processing. In speech rec-

ognition, where HMMs have found their widest application, human auditory signals are

analyzed as speech patterns [51, 94]. Transient sonar signals are classified with HMMs for

ocean surveillance in [61]. Radons,et. al. [96] analyze 30-electrode neuronal spike activity in

a monkey’s visual cortex with HMMs. Hannaford and Lee [45] classify task structure in tele-

operation based on HMMs. In [123, 124], HMMs are used to characterize sequential images of

human actions. Finally, Yang and Xu apply Hidden Markov Models to open-loop action skill

learning [126] and human gesture recognition [127].

6.2 Stochastic similarity measure 99

A Hidden Markov Model consists of a set ofn states, interconnected through probabilistic tran-

sitions; each of these states has some output probability distribution associated with it.

Although algorithms exist for training HMMs with both discrete and continuous output prob-

ability distributions, and although most applications of HMMs deal with real-valued signals,

discrete HMMs are preferred to continuous or semi-continuous HMMs in practice, due to their

relative computational simplicity (orders of magnitude more efficient) and lesser sensitivity to

initial random parameter settings [95]. In Section 6.2.5 below, we describe how we use discrete

HMMs for analysis of real-valued signals by converting the data to discrete symbols through

pre-processing and vector quantization. Section 6.2.7 follows with methods for minimizing the

detrimental effects of discretization.

A discrete HMM is completely defined by the following triplet [94],

(6-8)

whereA is the probabilistic state transition matrix,B is the output probability

matrix with L discrete output symbols , and is then-length initial state

probability distribution vector for the HMM. Figure 6-3, for example, represents a 5-state

HMM, where each state emits one of 16 discrete symbols.

We define the notion ofequivalent HMMs for two HMMs and such that,

, iff. , (6-9)

λ A B π, ,{ }=

ns ns× L ns×

l 1 2 … L, , ,{ }∈ π

Figure 6-3: A 5-state Hidden Markov Model, with 16 observable symbols in each state.

1 2 3 4 5

λ1 λ2

λ1 λ2∼ P O λ1() P O λ2()= O∀

100 Chapter 6: Model validation

Note that and need not be identical to be equivalent. The following two HMMs are, for

example, equivalent, but not identical:

, (6-10)

Finally, we note that for an observation sequenceO of discrete symbols and an HMM , we

can locally maximize using the well-known Baum-Welch algorithm (see Section

6.2.8) [94, 16]. We can also evaluate using the computationally efficient forward-

backward algorithm.

6.2.2 Similarity measure

Here, we derive a stochastic similarity measure, based on discrete-output HMMs. Assume that

we wish to compare observation sequences from two stochastic processes and . Let

, , , denote the set of observation sequences of

discrete symbols generated by process . Each observation sequence is of length , so that

the total number of symbols in set is given by,

, . (6-11)

Also let , , denote a discrete HMM locally optimized with the

Baum-Welch algorithm to maximize,

, , (6-12)

and let,

(6-13)

λ1 λ2

λ1 1 0.5 0.5
T

1, ,
 
 
 

= λ2
0.5 0.5

0.5 0.5

1 0

0 1
0.5 0.5

T, ,
 
 
 

=

λ

P λ O()

P O λ()

Γ1 Γ2

Oi Oi
k(){ }= k 1 2 … ni, , ,{ }∈ i 1 2,{ }∈ ni

Γi Ti
k()

Oi

Ti Ti
k()

k 1=

ni

∑= i 1 2,{ }∈

λ j Aj Bj π j, ,{ }= j 1 2,{ }∈

P λ j Oj() P λ j Oj
k()()

k 1=

ni

∏= j 1 2,{ }∈

P Oi λ j() P Oi
k() λ j()

k 1=

ni

∏=

6.2 Stochastic similarity measure 101

, (6-14)

denote the probability of the observation sequences given the model , normalized with

respect to the sequence lengths1.

Using the definition in (6-14), Figure 6-4 illustrates our overall approach to evaluating similar-

ity between two observation sequences. Each observation sequence is first used to train a cor-

responding HMM; this allows us to evaluate and . We then cross-evaluate each

observation sequence on the other HMM (i.e. ,) to arrive at and .

Given, these four normalized probability values, we define the following similarity measure

between and :

(6-15)

6.2.3 Properties

In order for the similarity measure to obey certain important properties, we restrict the HMMs

 and to have the same number of states such that,

1. In practice, we calculate as to avoid problems of numerical underflow for long
observation sequences.

Pij P Oi λ j()1 Ti⁄= i j, 1 2,{ }∈

Oi λ j

Ti

Pij 10 Plog Oi λ j() Ti⁄

P11 P22

P O1 λ2() P O2 λ1() P12 P21

O1 O2

σ O1 O2,()
P21P12

P11P22
-----------------=

O1

O2

λ1

λ2

σ O1 O2,()

P11

P21

P12

P22

Figure 6-4: Four normalized probability values make up the similarity measure.

λ1 λ2

102 Chapter 6: Model validation

(6-16)

where , denotes the number of states in model .

Now, let us assume that the are global (rather than just a local) maxima2. We define model

 to be aglobal maximumif and only if,

, , , (6-17)

where is the number of states in model . With this assumption, we have that,

, and (6-18)

.3 (6-19)

The lower bound for in (6-18) is realized for single-state discrete HMMs, and a uniform

distribution of symbols in . From (6-15) to (6-19), we derive the following properties for

:

Property #1: (by definition) (6-20)

Property #2: (6-21)

Property #3: if (a) or (b) (6-22)

Below, we illustrate the behavior of the similarity measure for some simple HMMs. First, for

the class of single-state, discrete HMMs given by,

2. Theoretically, the Baum-Welch algorithm guarantees that is a local maximum only. In practice, this is
not a significant concern, however, since the Baum-Welch algorithm converges to near-optimal solutions
for discrete-output HMMs, when the algorithm is initialized with random model parameters [94, 95]. We
have verified this near-optimal convergence property experimentally in two ways. First, for a given set of
observation sequences , we trained different HMMs from different initial random
parameter settings. We then observed that the probabilities , , were approximately
equivalent. Second, for a given model , wegenerated a set of observation sequences . We then trained
a second Hidden Markov Model (with initial random model parameters) on . Finally, we observed that

 provided that is sufficiently large. Both procedures suggest that the Baum-Welch
algorithm does indeed converge to optimal or near-optimal solutions in practice.

3. Note that without condition (6-16), equation (6-19) does not necessarily hold.

ns 1, ns 2,=

ns j, j 1 2,{ }∈ λ j

Pii

Pii

O n λ1 λ2 … λn, , ,{ }
P O λi() i 1 2 … n, , ,{ }∈

λ Ô
λ̂ Ô

P Ô λ̂() P Ô λ()⁄ 1≈ Ô

λi

P Oi λi() P Oi λ()≥ λ∀ ns ns i,=

ns λ

1 L⁄ Pii≤

0 Pij Pii≤ ≤

Pii

Oi

σ O1 O2,()

σ O1 O2,() σ O2 O1,()=

0 σ O1 O2,() 1≤ ≤

σ O1 O2,() 1= λ1 λ2∼ O1 O2=

6.2 Stochastic similarity measure 103

, (6-23)

the similarity measure reduces to4,

(6-24)

which reaches a maximum when , or simply, , and that maximum is equal

to one. Figure 6-5 shows a contour plot for, , , and

.

4.

λ j Aj Bj π j, ,{ } 1 bj1 bj2 … bjL

T
1, ,

 
 
 

= =

Pij bjk() Tibik()

k 1=

L

∏ 
 
 1 Ti⁄

bjk()bik

k 1=

L

∏= =

σ O1 O2,()
P21P12

P11P22

b1k()b2k

k 1=

L

∏ 
 
 

b2k()b1k

k 1=

L

∏ 
 
 

b1k()b1k

k 1=

L

∏ 
 
 

b2k()b2k

k 1=

L

∏ 
 
 

--

1
2

b1k

b2k
-------- 

 
b2k

2
------- b2k

b1k
-------- 

 
b1k

2

k 1=

L

∏
k 1=

L

∏
b1k

b2k
-------- 

 
b2k b1k–()

2

k 1=

L

∏= = = =

σ O1 O2,()
b1k

b2k
------- 

 
b2k b1k–()

2

k 1=

L

∏=

b1k b2k= B1 B2=

B1 p1 1 p1–
T

= B2 p2 1 p2–
T

=

0 p1 p2, 1< <

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 6-5: Similarity measure for two binomial distributions. Lighter colors indicate
higher similarity.

p1

p2

p1 p2=

104 Chapter 6: Model validation

Second, we give an example of how the proposed similarity measure changes, not as a function

of different symbol distributions, but rather as a function of varying HMM structure. Consider

the following Hidden Markov Model,

, (6-25)

and corresponding observation sequences, , stochastically generated from model .

For all , will have an equivalent aggregate distribution of symbols 0 and 1 —

namely 1/2 and 1/2. As increases, however, will become increasingly structured. For

example,

 (equivalent to unbiased coin toss) (6-26)

(6-27)

Figure 6-6 graphs as a contour plot for , where each obser-

vation sequence of length is generated stochastically from the correspond-

ing HMM 5. Greatest similarity is indicated for , while greatest dissimilarity

occurs for , and .

6.2.4 Distance measure

In some cases, it may be more convenient to represent the similarity between two sets of obser-

vation sequences through adistance measure , rather than a similarity measure.

Given the similarity measure , such a measure is easily derived. Let,

5. This procedure only approximates our similarity measure definition, since is only optimal for
 as .

λ α()

1 α+
2

------------- 1 α–
2

1 α–
2

------------ 1 α+
2

1 0

0 1
0.5 0.5

T, ,

 
 
 
 
 
 
 

= 0 α≤ 1<

O α() λ α()

α 0 1),[∈ O α()

α O α()

λ 0() 1 0.5 0.5
T

1, ,
 
 
 

=

O α()
α 1→
lim … 1 1 1 0 0 0 … 0 0 0 1 1 1 …, , , , , , , , , , , , , ,{ }=

σ O α1() O α2(),[] 0 α1 α2,≤ 1<

O α() T 10 000,=

λ α() α1 α2=

λ α()
O α() T ∞→

α1 1→ α2 0=,() α1 0= α2 1→,()

d O1 O2,()

σ O1 O2,()

6.2 Stochastic similarity measure 105

(6-28)

such that,

, (6-29)

, (6-30)

 if (a) or (b) . (6-31)

The distance measure between two sets of observation sequences defined in (6-28)

is closely related to the dual notion of distancebetween two Hidden Markov Models, as pro-

posed in [55].

Let denote a set of random observation sequences of total lengthgenerated by the HMM

, and let,

0 1 2 1

0

1 2

1

0 1 2 1

0

1 2

1

α1 α2=

Figure 6-6: The similarity measure changes predictably as a function of HMM structure.

α2

α1

d O1 O2,() σ O1 O2,()log–
1
2
--- P11P22()log P21P12()log–[]= =

d O1 O2,() d O2 O1,()=

d O1 O2,() 0≥

d O1 O2,() 0= λ1 λ2∼ O1 O2=

d O1 O2,()

Ôi T̂i

λ̂i

106 Chapter 6: Model validation

(6-32)

Then, [55] defines the following distance measure between two Hidden Markov Models,

and :

(6-33)

Unlike the observation sequences , the sequences are not unique, since they are stochas-

tically generated from . Hence, is uniquely determined only in the limit as

. Likewise for , the HMMs and are not unique, since and

are in general guaranteed to be only local, not global maxima. Hence, is uniquely

determined only when and represent global maxima.

While in general, and are not equivalent, the discussion above suggests

sufficient conditions for which the two notions — distance between HMMs and distance

between observation sequences — do converge to equivalence. Specifically,

 if,

(1) , (6-34)

(2) are global maxima, and (6-35)

(3) . (6-36)

6.2.5 Data preprocessing

Assume that we wish to analyze the similarity of control data sets, each of which is either a

human control data set or a model-generated data set. Denote these data sets as

, , where,

, , (6-37)

P̂ij P Ôi λ̂i()1 T̂i⁄=

λ̂1

λ̂2

d λ̂1 λ̂2,() 1
2
--- P̂11P̂22()log P̂21P̂12()log–[]=

Oi Ôi

λ̂i d λ̂1 λ̂2,()

T̂i ∞→ d O1 O2,() λ1 λ2 P11 P22

d O1 O2,()

P11 P22

d λ̂1 λ̂2,() d O1 O2,()

d O1 O2,() d λ̂1 λ̂2,()=

λ1 λ̂1∼ λ2 λ̂2∼,

P11 P22,

T̂i ∞→

N

Xn x1
n x2

n … xD
n= n 1 2 … N, , ,{ }∈

xd
n x1d

n x2d
n … xtid

n
T

= d 1 2 … D, , ,{ }∈

6.2 Stochastic similarity measure 107

denotes thedth -length column vector for data set . Since we use discrete-output HMMs

in our similarity measure, we need to convert these multi-dimensional, real-valued data sets to

sequences of discrete symbols . We follow two steps in this conversion: (1) data preprocess-

ing and (2) vector quantization, as illustrated in Figure 6-7. The primary purpose of the data

preprocessing (described below) is to extract meaningful feature vectors for the vector quan-

tizer. For our case, the preprocessing proceeds in three steps: (1) normalization, (2) spectral

conversion, and (3) power spectral density (PSD) estimation.

In the normalization step, we want to scale the columns in each data set, so that each dimension

takes on the same range of values, namely . Note that the scale factor for a given dimen-

sion has to be the same across data sets . Let,

(6-38)

define a matrix-to-matrixnormalization transform for a matrix and aD-length scale

vector,

, , . (6-39)

To perform the normalization on our data sets , we choose the vector,

, , (6-40)

such that the normalized data sets ,

, , (6-41)

, , (6-42)

satisfy,

, . (6-43)

tn Xn

On

1– 1,[]

Xn

U Nm X s,() x1 s1⁄() x2 s2⁄() … xD sD⁄()= =

t D× X

s s1 s2 … sD

T
= sd 0> d 1 2 … D, , ,{ }∈

Xn s

sd max
n t,∀

xtd
n= d 1 2 … D, , ,{ }∈

Un

Un Nm Xn s,() u1
n u2

n … uD
n= = n 1 2 … N, , ,{ }∈

ud
n u1d

n u2d
n … utid

n
T

= d 1 2 … D, , ,{ }∈

utd
n 1≤ n d t, ,∀

108 Chapter 6: Model validation

…

2nd dimension of human control data

overlapping windows

normalize

vector
quantization

PSD

Hamming window

PSD PSD

FFT or
FWT

FFT

1 2 m

…

HMM symbol codebook

… 32 54 21 49…, , , , ,

FFT or
FWT

p
e

rso
n

 #
1

p
e

rso
n

 #
2

p
e

rso
n

 #
n

…

…

Figure 6-7: Conversion of multi-dimensional human control data to a sequence of
discrete symbols.

6.2 Stochastic similarity measure 109

After normalization, we perform spectral conversion on the columns of the normalized data

sets . For each column, we segment the data into possibly overlapping window frames, and

apply either the Discrete Fourier Transform (DFT) or the Discrete Walsh Transform (DWT) to

each frame6.

TheDiscrete Fourier Transform maps ak-length real vector to

ak-length complex vector and is defined as,

, where (6-44)

, . (6-45)

Prior to applying the Fourier transform, we filter each frame through a Hamming window in

order to minimize spectral leakage caused by the data windowing [91]. TheHamming trans-

form maps ak-length real vector to ak-length real vector and

is defined as,

, where (6-46)

, (see Figure 6-7) (6-47)

For notational convenience let .

Instead of sinusoidal basis functions, theDiscrete Walsh Transform decomposes a signal based

on the orthonormalWalsh functions[97]. The first eight Walsh-ordered Walsh functions are

shown in Figure 6-8(a). In Figure 6-8(b), we show an example of human control data which can

be characterized better through the Walsh transform, rather than the Fourier transform, due to

6. In practice, we calculate the DFT and DWT through the fast Fourier transform (FFT) and the fast Walsh
transform (FWT), the algorithmic counterparts of the DFT and DWT, respectively. This restricts

 to be of the form , .

Un

O k klog()
k 2m m 1 2 …, ,{ }∈

TF
v ⋅() y y1 y2 … yk

T
=

z

z TF
v y() F0 y() F1 y() … Fk 1– y()

T
= =

F p y() yq 1+ e2πipq k⁄

q 0=

k 1–

∑= p 0 1 … k 1–, , ,{ }∈

TH
v ⋅() y y1 y2 … yk

T
= h

h TH
v y() H1y1 H2y2 … Hkyk

= =

H p 0.54 0.46
2π p 1–()

k 1–
------------------------cos–= p 1 2 … k, , ,{ }∈

THF
v y() TF

v TH
v y()[]=

110 Chapter 6: Model validation

its discontinuous profile. Consider, for example, the power spectral densities (PSDs) for the

square wave in Figure 6-9(a). The Walsh PSD in Figure 6-9(b) is a more concise feature vector

than the corresponding Fourier PSD in Figure 6-9(c).

The Discrete Walsh Transform (DWT) maps a k-length real vector

 to ak-length real vector and is defined as,

, where, (6-48)

, , (6-49)

, and (6-50)

0 1/4 1/2 3/4 1

0

1

2

3

4

5

6

7

0 100 200 300 400 500 600 700
-8000

-6000

-4000

-2000

0

2000

4000

Figure 6-8: (a) The first eight Walsh-ordered Walsh functions, and (b) some sample
human control data.

(a) (b)

h
u

m
a

n
 c

o
n

tr
o

l d
a

ta

0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8 10 12 14
-1

-0.5

0

0.5

1

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Figure 6-9: (a) Sample square wave and it’s corresponding (b) Walsh and (c) Fourier
PSD’s.

(a) (b) (c)

TW
v ⋅()

y y1 y2 … yk

T
= w

TW
v y() W0 y() W1 y() … Wk y()

T
=

Wp x() yq 1+ ω q p,()
q 0=

k 1–

∑= p 0 1 … k 1–, , ,{ }∈

ω q p,() 1–()
b q k 1–,()b p 0,() b q k i–,() b q k i– 1–,()+[]b p i,()

i 1=

k 1–

∑+
 
 
 

=

6.2 Stochastic similarity measure 111

 is theith bit in the binary representation ofp. (6-51)

Now, let us define the power spectral density (PSD) estimates for the Hamming-Fourier

() and Walsh transforms (). For , the

Fourier PSD is given by,

, where, (6-52)

, (6-53)

, , (6-54)

, and (6-55)

(6-56)

For , the Walsh PSD is given by,

, where, (6-57)

, (6-58)

, , (6-59)

. (6-60)

Finally, for notational convenience, define two unity transforms,

, (6-61)

and let,

b p i,()

THF
v ⋅() TW

v ⋅() f THF
v y() f 0 f 1 … f k 1–

T
= =

PHF
v f() PHF0 f() PHF1 f() … PHF k 2⁄() f()=

PHF0 f() 1
Hss
-------- f 0

2=

PHFp f() 1
Hss
-------- f p

2 f k p–
2+()= p 1 2 … k 2⁄ 1–, , ,{ }∈

PHF k 2⁄() f() 1
Hss
-------- f k 2⁄()

2=

Hss k Hk
2

q 1=

k

∑=

w TW
v y() w0 w1 … wk 1–

T
= =

PW
v w() PW0 w() PW1 w() … PW k 2⁄() w()=

PW0 w() w0
2=

PWp w() w2p 1–
2 w2p

2+= p 1 2 … k 2⁄ 1–, , ,{ }∈

PW k 2⁄() w() w k 2⁄()
2=

PG
v y() TG

v y() y= =

112 Chapter 6: Model validation

(6-62)

be thek-length segment, beginning at element , for thet-length vector . Using equation (6-

62), let us define the vector-to-matrix transform ,

, . (6-63)

Furthermore, given a matrix , let us define the matrix-to-matrix transform

,

,

, , (6-64)

The spectral conversion and PSD estimation can now be concisely expressed as,

, (6-65)

where the input matrix has dimensions , and the output matrix has dimensions

,

, . (6-66)

The integer constants , define the length of each window frame as and the win-

dow overlap as . Furthermore, the transformation vector selects which transform to

apply to each dimension of the control data. Generally, we select the Fourier PSD forstate tra-

jectories, and the Walsh PSD forcommand trajectories, since these trajectories tend to be non-

smooth and, in part, discontinuous (see Appendix A).

y τ k,[] yτ yτ 1+ … yτ k 1–+
i

T
=

τ y

T ϕ k1 k2,[],()
vm ⋅()

T ϕ k1 k2,[],()
vm y()

Pϕ
v Tϕ

v y 1 k1,[](){ }

Pϕ
v Tϕ

v y k2 1+ k1,[](){ }

Pϕ
v Tϕ

v y 2k2 1+ k1,[](){ }

:

= ϕ F HF W G, , ,{ }∈

U u1 u2 … ud
=

T ϕ k1 k2,[],()
mm ⋅()

T ϕ k1 k2,[],()
mm U() T ϕ1 k1 k2,[],()

vm u1() T ϕ2 k1 k2,[],()
vm u2() … T ϕD k1 k2,[],()

vm uD()=

ϕ ϕ1 ϕ2 … ϕD
= ϕd F HF W G, , ,{ }∈ d 1 2 … D, , ,{ }∈

Vn T ϕ κ1 κ2,[],()
mm Un()=

Un tn D× Vn

Tn K×

Tn floor
tn κ1–

κ2
---------------- 1+ 

 = K κ1 2⁄ 1+() κ1
ϕd G=
∑+

ϕd F HF W, ,{ }∈
∑=

κ1 κ2≥ 0> κ1

κ2 κ1– ϕ

6.2 Stochastic similarity measure 113

6.2.6 Vector quantization

In the previous section, we define the transformation from the data sets to the feature matri-

ces . Let, , , , denote the set of all feature

vectors, where is thejth row of theith feature matrix. In order to apply discrete-output

HMMs, we now need to convert the feature vectors to discrete symbols, where is the

number of output observables in our HMM models. In other words, we want to replace the

many with prototype vectors , , known as thecodebook,

such that we minimize the total distortion ,

Xn

Vn V vt
n{ }= t 1 2 … Tn, , ,{ }∈ n 1 2 … N, , ,{ }∈

vt
n

V L L

vt
n L QL ql{ }= l 1 2 … L, , ,{ }∈

D V QL,()

Figure 6-10: The LBG VQ algorithm generates VQ codebooks of increasing size.

Initialization:

,

L 1⇒

Q q1{ }⇒

q1 vt
n

n t,
∑ Tn

n
∑⁄=

Centroid splitting:

†Q ql ε+ ql ε–,{ }⇒

l 1 2 … L, , ,{ }∈

L 2L⇒

Classify , into class

 such that

, .

vt
n n∀ t,

Cl

d vt
n ql,() d vt

n qk,()< k l≠

Recompute centroids:

‡ql vt
n

vt
n Cl⊂
∑ nl⁄=

Convergence test:

∆D V Q,()
D V Q,()

------------------------- δVQ<

Termination test:

?L Lmax=

End

yes

no

yes

no

† ‡ is the total number of in class .ε ε … ε
T= nl

#1

#2 #3

#4

114 Chapter 6: Model validation

, where , (6-67)

over all feature vectors. We choose the well known LBG vector quantization (VQ) algorithm

[69] to perform this quantization. Figure 6-10 illustrates the algorithm, which generates code-

books of size , , and can be stopped at an appropriate level of dis-

cretization given the amount of available data and the complexity of the system trajectories. For

our data, we set the split offset and the convergence criterion 7. With

these parameter settings, the centroids usually converge within only a few iterations of

the #3-#4 loop in Figure 6-10. As an example, Figure 6-11 illustrates the LBQ vector quanti-

zation for some random 2D data and , while Figure 6-11 illustrates the

quick convergence of the algorithm after centroid splitting for the same data and .

Given a trained VQ codebook , we convert the feature vectors to a sequence of discrete

symbols ,

, where, (6-68)

(6-69)

This completes the conversion from the multi-dimensional, real-valued data sets to the dis-

crete observation sequences . Combining equations (6-40), (6-65) and

(6-68), we can summarize the signal-to-symbol conversion of the data sets as,

(6-70)

6.2.7 Discretization compensation

We have stated previously that we choose to use discrete-output HMMs in our similarity anal-

ysis because they involvesignificantly less computation in training than either continuous-out-

7. These parameters are selected to achieve low distortion levels, while minimizing the number of iterations
of the VQ algorithm. After the last split of the codebook , we set .

D V QL,() min
l

d vt
n ql,()

n t,
∑= d vt

n ql,() ql vt
n–() ql vt

n–()⋅=

L 2m= m 0 1 2 …, , ,{ }∈

ε 0.0001= δVQ 0.01=

L Lmax= δVQ δVQ 10⁄→

ql{ }

L 1 2 4 8 16 32, , , , ,{ }∈

L 4=

QL Vn

On o1
n o2

n … oTn

n, , ,{ }=

On TVQ
m Vn QL,() TVQ

v v1
n QL,() TVQ

v v2
n QL,() … TVQ

v vTn

n QL,(), , ,{ }= =

ot
n TVQ

v vt
n QL,() index min

l
d vt

n ql,()[]= =

Xn

On o1
n o2

n … oTn

n, , ,{ }=

Xn

On TVQ
m T ϕ κ1 κ2,[],()

mm Nm Xn s,()[] QL,{ } Tall Xn s ϕ κ1 κ2,[] QL, , , ,()= =

6.2 Stochastic similarity measure 115

Figure 6-11: The LBG vector quantization for some random 2D data, as equals 1, 2,
4, 8, 16 and 32.

L

1

2

1

21

2

1

2

Figure 6-12: For a given codebook size , the LBG algorithm converges in only a few
iterations after centroid splitting.

L

116 Chapter 6: Model validation

put or semicontinuous-output HMMs. While computationally efficient, discretization of the

output space, can have some negative consequences when analyzing real-valued data. Consider

the following example.

Assume that we want to determine the similarity between two control data sets, and .

We follow the signal-to-symbol conversion procedure described in the previous two sections,

and convert the data sets to discrete observation sequences and ,

, , . (6-71)

We also train corresponding -state HMMs, and , where

, , , .(6-72)

Now suppose that symbol appears in the observation sequence (say at), but does

not appear in the observation sequence. This will force,

, , (6-73)

during the training of . Consequently, when we try to evaluate using the forward

algorithm (Appendix B.1), we get,

, (6-74)

, , (6-75)

. (6-76)

X1 X2

O1 O2

Ok ot
k{ }= t 1 2 … Tk, , ,{ }∈ k 1 2,{ }∈

n λ1 λ2

Ak

a11
k a12

k … a1n
k

a21
k a22

k … a2n
k

: : : :

an1
k an2

k … ann
k

= Bk

b1
k 1() b2

k 1() … bn
k 1()

b1
k 2() b2

k 2() … bn
k 2()

: : : :

b1
k L() b2

k L() … bn
k L()

= πk

π1
k

π2
k

:

πn
k

= k 1 2,{ }∈

l O1 t τ=

O2

bj
2 l() 0= j 1 2 … n, , ,{ }∈

λ2 P O1 λ2()

ατ j() α̂τ 1– i()aij
2

i 1=

n

∑ bj
2 oτ() α̂τ 1– i()aij

2

i 1=

n

∑ bj
2 l() 0= = = j 1 2 … n, , ,{ }∈

cτ 1 ατ i()
i 1=

n

∑
 
 
 

⁄ ∞→= P O1 λ2() 1 ct
t 1=

T

∏
 
 
 

⁄ 0→= P12 0→

σ O1 O2,()∴ 0=

6.2 Stochastic similarity measure 117

Thus, the presence of a single observable present in one observation sequence but not the

other will force the similarity measure to be 0, even if the two observation sequences are iden-

tical in every other respect. This is not desirable, since the rogue observable might be an event

that is observed only rarely, or might even be the result of a measurement error or unintended

control action on the part of the process that generated control trajectory . Below, we con-

sider two parameterized post-training solutions to this singularity problem within the context

of discrete-output HMMs: (1) flooring and (2) semicontinuous evaluation.

Flooring [94] defines the common practice of replacing nonzero elements in the trained HMMs

by some small value and then renormalizing the rows of and the columns of to sat-

isfy the probabilistic constraints in equations (6-87) and (6-88). If there are zero elements

in a probability vector (i.e. a row of or a column of), this methods redistributes

 of the total probability mass to the zero elements.

Semicontinuous evaluation [51] redefines the forward algorithm. Let denote a dis-

crete observation sequence that has been vector quantized from a sequence of real vectors

, , and a VQ codebook , . For discrete

evaluation on a Hidden Markov Model , is computed using the forward algorithm,

, (6-77)

, , (6-78)

(6-79)

Semicontinuous evaluation proceeds almost identically, except that the terms are

replaced by terms,

l

l

X1

ρ 0> A B

m

A B

ρm() 1 ρm+()⁄

O ot{ }=

V vt{ }= t 1 2 … T, , ,{ }∈ Q ql{ }= l 1 2 … L, , ,{ }∈

λ P O λ()

α1 i() πibi o1()= i 1 2 … n, , ,{ }∈

αt 1+ j() αt i()aij
i 1=

n

∑ bj ot 1+()= t 1 2 … T 1–, , ,{ }∈ j 1 2 … n, , ,{ }∈

P O λ() αT i()
i 1=

n

∑=

bj ot()

b̃ j vt()

118 Chapter 6: Model validation

, (6-80)

, (6-81)

where represents the estimated conditional probability density function that vector

belongs to class , corresponding to the codebook vector , and is a user-defined smooth-

ing parameter. Thus, in semicontinuous evaluation, we view the codebook vectors as the peaks

of Gaussian distributions with uniform variances . The complete forward algorithm (without

scaling) is given by,

, (6-82)

, , (6-83)

, where . (6-84)

As an example, consider a single-state HMM with the discrete-output probability matrix ,

. (6-85)

Also, let the discrete symbols correspond to real-valued numbers ,

, (6-86)

Figure 6-13 illustrates how the discrete probability density function (pdf) encoded by is

modified through flooring and semicontinuous evaluation, for specific values and

, respectively.Flooring of course maintains the discrete structure of the HMM, while

semicontinuous evaluation smoothes between output classes.

b̃ j vt() p vt Cl()bj l()
l 1=

L

∑=

p vt Cl() 1
σ2
------ ql vt–() ql vt–()⋅–exp=

p vt Cl() vt

Cl ql σ

σ2

α1 i() πibi v1()= i 1 2 … n, , ,{ }∈

αt 1+ j() αt i()aij
i 1=

n

∑ b̃ j vt 1+()= t 1 2 … T 1–, , ,{ }∈ j 1 2 … n, , ,{ }∈

P V λ() αT i()
i 1=

n

∑= P V λ()
σ 0→
lim P O λ()=

λ B

B 0.0 0.5 0.3 0.2 0.0
T=

l v

l 1–
5

---------- v
l
5
---<≤ l 1 2 3 4 5, , , ,{ }∈

p v λ() B

ρ 0.01=

σ2 0.01=

6.2 Stochastic similarity measure 119

We note that the smoothing of the output pdf achieved by semicontinuous evaluation is done

so at a significant computational cost, in comparison to discrete evaluation. Assuming output

classes (i.e. symbols) and dimensions for the vectors, the computation of is

, while requires only one table lookup. Consequently, for typical values of

and , the evaluation of will be orders of magnitude slower than the evaluation of

.

For the experiments in the next chapter, the similarity measure achieves roughly equivalent dis-

crimination results with semicontinuous evaluation as with flooring. Therefore, because of the

substantial computational burden of semicontinuous evaluation, unless otherwise noted, we

choose flooring rather than semicontinuous evaluation to avoid the singularity problem, with

. For the HMMs in this thesis, this value of redistributes less than 0.1% of the

probability mass in the state transition matrices , and less than 0.5% probability mass in the

output probability matrices .

6.2.8 HMM training

The last step of the similarity analysis involves training Hidden Markov Models correspond-

ing to each observation sequence . To do this we use the iterative Baum-Welch algorithm (see

Appendix B). Throughout this thesis, we initialize the Baum-Welch algorithm by setting the

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

Figure 6-13: To avoid the singularity problem, the initial discrete pdf () can be
modified either through flooring or semicontinuous evaluation .

ρ 0=
ρ 0.01= σ2 0.01=

p
v

λ
(

)

v

ρ 0.01=

ρ 0=

σ2 0.01=

L

K vt b̃ j vt()

O LK() bj ot() L

K P V λ()

P O λ()

ρ 0.0001= ρ

A

B

λ

O

120 Chapter 6: Model validation

Hidden Markov Model parameters to random, nonzero values, subject to the necessary proba-

bilistic constraints,

, , (6-87)

, , (6-88)

where is the probability of transiting from state to state , and is the probability of

observing symbol in state , and is the number of HMM states that we choose for the mod-

els . Let denote the HMM after iterations of the Baum-Welch algorithm, and let

 denote the current iteration of Baum-Welch. Then, we stop training if,

, , (6-89)

where . This type of stringent convergence test is required, because in prac-

tice, the Baum-Welch algorithm frequently stalls over consecutive iterations. Figure 6-14, for

example, plots for some typical human data. We must be careful that we do

not stop training on these types of plateaus if further improvements can be achieved. Otherwise,

the assumption that the , defined in (6-14), represent near-optimal global maxima would be

violated, along with properties #2 and #3 in equations (6-21) and (6-22), respectively.

aij
j 1=

ns

∑ 1= i 1 2 … ns, , ,{ }∈

bj l()
l 1=

L

∑ 1= j 1 2 … ns, , ,{ }∈

aij i j bj l()

l j ns

λ λ k() λ k

λ m()

P O λ k()() P O λ k 1–()()–

P O λ k()()
-- δHMM< k m m 1– … m 4–, , ,{ }∈

δHMM 0.000001=

1
T
--- P O λ k()()log–

Pii

6.2 Stochastic similarity measure 121

0 10 20 30 40 50 60

0.75

1

1.25

1.5

1.75

2

1 T---
P

O
λ

k(
)

(
)

lo
g

–

k

Figure 6-14: The Baum-Welch algorithm can stall over several iterations, until further
improvements are realized.

122 Chapter 6: Model validation

123

Chapter 7

Human-to-human similarity

In this chapter we test the similarity measure proposed in Chapter 6 by comparing human con-

trol strategies across different individuals. We contrast the human-to-human classification

results with the well-known Bayes classifier and simple spectral processing, and show that the

similarity measure achieves significantly better performance than either of the alternative meth-

ods. These results confirm the similarity measure’s usefulness as a model validation tool.

7.1 Comparing human control strategies

7.1.1 Experimental data

Appendix A describes driving control data from six different individuals — (1) Larry, (2)

Curly, (3) Moe, (4) Groucho, (5) Harpo and (6) Zeppo across three different roads, roads #1,

#2 and #3 in Figures 2-2(a), (b) and (c), respectively. For notational convenience, let ,

, , denote the run from person (i) on road #j, sampled at

50Hz.

Figure 7-1 plots the means and standard deviations for the two dimensions — the velocity

and the acceleration control — with the greatest variance between runs (see Table A-1).

From this diagram, we observe that there is significant overlap in the data for runs from differ-

ent individuals. Appendix A offers a more complete picture of each person’s control data,

X i j,()

i 1 2 3 4 5 6, , , , ,{ }∈ j 1 2 3, ,{ }∈

v

φ

124 Chapter 7: Human-to-human similarity

where the velocity , the lateral offset from the road median , the steering control and the

acceleration control over time are plotted for all 18 runs.

7.1.2 Classification experiments

Here, we investigate how well the similarity measure is able to classify the driving data

belonging to the same individual, while discriminating driving data from different individuals.

Let , where,

, , . (7-1)

Also let,

, , , (7-2)

be the feature vectors corresponding to data set and scale vector ; let be an -

length VQ codebook trained on , ; and let,

v dξ δ

φ

-2000 0 2000 4000 6000
40

50

60

70

80

Larry
Curly

Zeppo

Moe
Groucho
Harpo

Figure 7-1: There is significant overlap between runs from different individuals.

φ N()

v
m

i/h
(

)

X i j,()

sj s1
j s2

j … s5
j=

sd
j max

i t,∀
xtd

i j,()= d 1 2 … D, , ,{ }∈ j 1 2 3, ,{ }∈

Vk
i j,() T ϕ κ1 κ2,[],()

mm Nm X i j,() sk,()[]= i 1 2 … 6, , ,{ }∈ j k 1 2 3, ,{ }∈,

X i j,() sk QL
j L

V j
i j,(){ } i 1 2 … 6, , ,{ }∈

7.1 Comparing human control strategies 125

, ,

. (7-3)

We view the observation sequences aslabeled data, which has already been collected

and processed without any prior information about , . Each represents a

known class for individual . Similarly, we view the observation sequences , as

unlabeled data which needs to be classified as belonging to one individual. This emulates the

common classification scenario, where we have labeled data from which we define our classes

(represented here by the sequences), and unknown or unlabeled data to which we wish

to assign a label (represented here by the sequences ,).

We now use our similarity measure to perform this classification, where we consider

to be classified correctly if and only if,

, (7-4)

In other words, we expect that two runs from the same individual will yield a higher similarity

measure than two runs from two different individual.

The system trajectory for the driving task is defined by the three state trajectories

and the two control trajectories . Hence, we let,

, , . (7-5)

We select the following parameters:

1, 2, , 3, . (7-6)

1. As we have noted before, the Walsh PSD is chosen for the command variables , due their nonsmooth
and discontinuous profile.

2. The transform length represents a length of 0.32 seconds for our recording frequency of 50Hz.
3. The vector quantization level is chosen so that the number of nonzero parameters in the trained Hidden

Markov Models is much larger than the length of each observation sequence.

O i j,()
k O i j k, ,() Tall X i j,() sk ϕ κ1 κ2,[] QL

k, , , ,()= = i 1 2 … 6, , ,{ }∈

j k 1 2 3, ,{ }∈,

O i k,()
k

O i j,()
k j k≠ O i k,()

k

i O i j,()
k j k≠

O i k,()
k

O i j,()
k j k≠

σ O i j,()
k

σ O i k,()
k O i j,()

k,[] σ O l k,()
k O i j,()

k,[]> j k≠ l i≠,()∀

vξ vη ω, ,{ }

δ φ,{ }

X i j,() vξ vη ω δ φ
i j,()

= i 1 2 … 6, , ,{ }∈ j 1 2 3, ,{ }∈

ϕ HF HF HF W W
T= κ1 16= κ2 κ1 2⁄= L 128= ns 8=

δ φ,{ }

κ1 16=
L

λ T i j,()

126 Chapter 7: Human-to-human similarity

Tables 7-1, 7-2, and 7-3 report the similarity results for , , respectively.

Note that the largest similarity value is highlighted in each row, and that the similarity measure

in fact classifies all 36 , , correctly.

Since the similarity measure achieves 100% correct classification, we would like to see the

degree to which we can discriminate between individuals when — rather than include all five

dimensions (and) in the similarity analysis — we give the algorithm only

a single dimension off which to classify the driving data. Figure 7-2 plots the correct-classifi-

cation percentages for each dimension, as well as , the lateral offset from the road median.

The lateral offset — for these data sets — does not discriminate nearly as well as the state

and control variables included in the similarity analysis above. From qualitative observations

of the simulated driving runs, we observed that individuals payed relatively little attention to

their lateral position as long as they maintained contact with the road; it is therefore not unex-

pected that lateral road position would be a poor discriminator between individuals. Conse-

quently, we chose not include this dimension in the similarity analysis.

7.1.3 Bayes classification

A legitimate question of course is whether or not a simpler statistical technique, like the Bayes

optimal classifier [30], can achieve similar positive results. Let class ,

O i k,()
k k 1 2 3, ,{ }∈

O i j,()
k j k≠

vξ vη ω, ,{ } δ φ,{ }

dξ

dξ

60

70

80

90

100

Figure 7-2: Single-dimensional correct classification percentages (36 classifications).

vξ ω φδvη dξ

%

C i k,()

7.1 Comparing human control strategies 127

 Table 7-1: Similarity results for road #1 data

O(1, 1, 1) O(2, 1, 1) O(3, 1, 1) O(4, 1, 1) O(5, 1, 1) O(6, 1, 1)

O(1, 2, 1) 0.800 0.288 0.399 0.325 0.125 0.034

O(1, 3, 1) 0.720 0.234 0.397 0.391 0.152 0.015

O(2, 2, 1) 0.272 0.729 0.131 0.102 0.090 0.326

O(2, 3, 1) 0.277 0.531 0.098 0.082 0.047 0.254

O(3, 2, 1) 0.381 0.220 0.849 0.368 0.288 0.013

O(3, 3, 1) 0.376 0.160 0.754 0.402 0.273 0.009

O(4, 2, 1) 0.253 0.233 0.445 0.863 0.364 0.016

O(4, 3, 1) 0.152 0.149 0.224 0.756 0.368 0.010

O(5, 2, 1) 0.044 0.076 0.207 0.302 0.672 0.006

O(5, 3, 1) 0.040 0.061 0.168 0.346 0.651 0.005

O(6, 2, 1) 0.003 0.036 0.003 0.003 0.004 0.357

O(6, 3, 1) 0.027 0.085 0.008 0.009 0.009 0.580

 Table 7-2: Similarity results for road #2 data

O(1, 2, 2) O(2, 2, 2) O(3, 2, 2) O(4, 2, 2) O(5, 2, 2) O(6, 2, 2)

O(1, 1, 2) 0.812 0.338 0.390 0.257 0.046 0.002

O(1, 3, 2) 0.774 0.192 0.317 0.336 0.076 0.002

O(2, 1, 2) 0.285 0.731 0.223 0.257 0.079 0.034

O(2, 3, 2) 0.289 0.733 0.151 0.113 0.011 0.054

O(3, 1, 2) 0.423 0.152 0.850 0.412 0.182 0.003

O(3, 3, 2) 0.411 0.104 0.784 0.325 0.161 0.002

O(4, 1, 2) 0.338 0.127 0.359 0.817 0.298 0.003

O(4, 3, 2) 0.163 0.065 0.152 0.673 0.253 0.003

O(5, 1, 2) 0.135 0.093 0.307 0.368 0.652 0.007

O(5, 3, 2) 0.044 0.017 0.136 0.282 0.689 0.001

O(6, 1, 2) 0.027 0.321 0.013 0.018 0.006 0.419

O(6, 3, 2) 0.022 0.170 0.011 0.011 0.002 0.540

σ

σ

128 Chapter 7: Human-to-human similarity

, , , (7-7)

correspond to run , where is the mean vector for,

, (7-8)

and is the covariance matrix for . Now, for each vector and each class

, , we can calculate [30],

, , (7-9)

(i.e. the probability that vector belongs to class), where is the prior

probability of class ,

, (7-10)

C i k,() C i k,() µ i k,() Σ i k,(),{ }= = i 1 2 … 6, , ,{ }∈ k 1 2 3, ,{ }∈

X i k,() µ i k,()

U i k,() T ϕ κ1 κ2,[],()
mm Nm X i j,() s,()[]=

Σ i k,() U i k,() ut
i j,()

C l k,() j k≠

P C l k,() ut
i j,()()

p ut
i j,() C l k,()()P C l k,()()

p ut
i j,()()

---= j k≠

ut
i j,() C l k,() P C l k,()()

C l k,()

p ut
i j,()() p ut

i j,() C l k,()()P C l k,()()
k 1=

6

∑=

 Table 7-3: Similarity results for road #3 data

O(1, 3, 3) O(2, 3, 3) O(3, 3, 3) O(4, 3, 3) O(5, 3, 3) O(6, 3, 3)

O(1, 1, 3) 0.671 0.339 0.396 0.169 0.054 0.029

O(1, 2, 3) 0.782 0.298 0.424 0.174 0.049 0.030

O(2, 1, 3) 0.228 0.578 0.174 0.138 0.069 0.091

O(2, 2, 3) 0.175 0.739 0.091 0.068 0.024 0.168

O(3, 1, 3) 0.422 0.108 0.793 0.241 0.170 0.010

O(3, 2, 3) 0.357 0.114 0.768 0.176 0.149 0.011

O(4, 1, 3) 0.392 0.091 0.384 0.696 0.344 0.011

O(4, 2, 3) 0.365 0.113 0.381 0.652 0.309 0.016

O(5, 1, 3) 0.171 0.061 0.311 0.314 0.604 0.013

O(5, 2, 3) 0.091 0.012 0.178 0.290 0.690 0.002

O(6, 1, 3) 0.013 0.320 0.008 0.014 0.011 0.608

O(6, 2, 3) 0.001 0.082 0.001 0.007 0.003 0.631

σ

7.1 Comparing human control strategies 129

is just a normalization factor, and,

. (7-11)

Given equation (7-9), we define the Bayes classification measure,

, , (7-12)

for run . The measure gives the probability of class given , averaged

over all vectors . We consider run classified correctly if and only if,

, . (7-13)

Tables 7-4, 7-5, and 7-6 report Bayes classification results analogous to the similarity measure

results in Tables 7-1, 7-2 and 7-3, respectively, for,

, , (7-14)

assuming equal priors . Note that the Bayes classifier misclassifies 9 out of 36, or

25% of all runs. An alternate Bayes classification criterion, which measures the percentage of

vectors that fall into class performs even worse, misclassifying 13 of 36, or 36%

of all runs. The similarity measure (with 0% error) compares quite favorably to both these

results.

Providing additional inputs to the Bayes classifier in the form of time histories does not

help its performance. Consider, for example, and , which are badly misclassified

as rather than . Let ,

, , (7-15)

p ut
i j,() C l k,()() =

1
2π()D 2⁄ Σ l k,()

1 2⁄-- 1
2
---– ut

i j,() µ l k,()–()TΣ l k,()
1– ut

i j,() µ l k,()–()exp

ζ l k,() X i j,()[] 1
T i j,()
------------ P C l k,() ut

i j,()()
t

∑= j k≠

X i j,() ζ l k,() C l k,() U i j,()

ut
i j,() X i j,()

ζ i k,() U i j,()[] ζ l k,() U i j,()[]> j k≠ l i≠,()∀

ϕ G G G G G
T= κ1 κ2 1= =

P C l k,()()

ut
i j,() C l k,()

κ1 1>

X 3 2,() X 3 3,()

C 1 1,() C 3 1,() ∆ζ

∆ζ

max
l

ζ l k,() U i j,()[]()

ζ i k,() U i j,()[]

 
 
 

log–= l i≠

130 Chapter 7: Human-to-human similarity

 Table 7-4: Bayes classification results for road #1 data

C(1, 1) C(2, 1) C(3, 1) C(4, 1) C(5, 1) C(6, 1)

X(1, 2) 0.297 0.165 0.189 0.122 0.146 0.081

X(1, 3) 0.294 0.142 0.197 0.158 0.158 0.051

X(2, 2) 0.210 0.223 0.119 0.059 0.116 0.273

X(2, 3) 0.217 0.219 0.114 0.069 0.096 0.286

X(3, 2) 0.241 0.165 0.201 0.122 0.212 0.061

X(3, 3) 0.248 0.143 0.211 0.153 0.201 0.043

X(4, 2) 0.167 0.112 0.178 0.327 0.175 0.040

X(4, 3) 0.114 0.072 0.143 0.468 0.180 0.023

X(5, 2) 0.139 0.156 0.149 0.188 0.288 0.079

X(5, 3) 0.119 0.109 0.147 0.292 0.286 0.046

X(6, 2) 0.030 0.194 0.021 0.011 0.059 0.685

X(6, 3) 0.081 0.217 0.056 0.050 0.072 0.524

 Table 7-5: Bayes classification results for road #2 data

C(1, 2) C(2, 2) C(3, 2) C(4, 2) C(5, 2) C(6, 2)

X(1, 1) 0.297 0.244 0.207 0.133 0.111 0.009

X(1, 3) 0.323 0.168 0.207 0.172 0.127 0.003

X(2, 1) 0.194 0.344 0.167 0.082 0.145 0.068

X(2, 3) 0.187 0.356 0.135 0.070 0.068 0.185

X(3, 1) 0.252 0.164 0.237 0.178 0.167 0.003

X(3, 3) 0.270 0.153 0.246 0.170 0.160 0.002

X(4, 1) 0.196 0.096 0.177 0.345 0.184 0.002

X(4, 3) 0.133 0.057 0.125 0.463 0.221 0.001

X(5, 1) 0.177 0.192 0.208 0.141 0.280 0.001

X(5, 3) 0.141 0.097 0.165 0.278 0.319 0.000

X(6, 1) 0.053 0.260 0.051 0.042 0.146 0.448

X(6, 3) 0.045 0.206 0.047 0.052 0.077 0.572

ζ

ζ

7.1 Comparing human control strategies 131

define a discrimination measure, where indicates misclassification, while indi-

cates correct classification. Figure 7-3 plots this measure for , and , as

a function of time history lengths . We see that providing time histories

actually hurts, rather than helps performance.

∆ζ 0< ∆ζ 0>

i 3= j 2 3,{ }∈ k 1=

κ1 κ2=() 1 2 3, ,{ }∈

-0.8

-0.6

-0.4

-0.2

0

0.2

X 3 3,()X 3 2,()

∆ ζ

Figure 7-3: Providing time histories to the Bayes classifier hurts, rather than help
performance.

κ 1
1

=

κ 1
3

=κ 1
1

=

κ 1
2

= κ 1
3

=

κ 1
2

=

 Table 7-6: Bayes classification results for road #3 data

C(1, 3) C(2, 3) C(3, 3) C(4, 3) C(5, 3) C(6, 3)

X(1, 1) 0.248 0.281 0.225 0.084 0.104 0.059

X(1, 2) 0.262 0.269 0.237 0.081 0.104 0.048

X(2, 1) 0.155 0.333 0.181 0.058 0.140 0.133

X(2, 2) 0.134 0.362 0.154 0.037 0.093 0.220

X(3, 1) 0.249 0.152 0.274 0.125 0.171 0.028

X(3, 2) 0.242 0.172 0.290 0.090 0.171 0.034

X(4, 1) 0.231 0.082 0.214 0.267 0.194 0.011

X(4, 2) 0.213 0.094 0.209 0.269 0.199 0.016

X(5, 1) 0.196 0.159 0.243 0.107 0.288 0.007

X(5, 2) 0.178 0.114 0.220 0.142 0.345 0.001

X(6, 1) 0.025 0.231 0.031 0.021 0.121 0.572

X(6, 2) 0.004 0.154 0.005 0.002 0.013 0.823

ζ

132 Chapter 7: Human-to-human similarity

7.1.4 Spectral classification

Another legitimate question is whether or not simple spectral processing on the data sets, such

as the FFT, can achieve classification results as good as the HMM-based similarity measure.

As an example let,

, ,

(7-16)

be a matrix, where the upper submatrix is theith person’s run on road #j, and

the lower submatrix is the zero matrix. Furthermore let,

, (7-17)

where the scale vector is taken over all data sets (similar to (7-1)). Then define

, such that,

, . (7-18)

In other words, is a vector of FFT PSD coefficients for the normalized columns

of . The original data runs are padded with ending zeros, so that each ,

and consequently each is of equal dimension. This allows us to define the following

spectral distance measure,

, (7-19)

and corresponding spectral similarity measure,

. (7-20)

Tables 7-7, 7-8 and 7-9 report spectral classification results — based on — analogous to the

HMM-based similarity results () in Tables 7-1, 7-2 and 7-3, respectively. Note that the spec-

X∗ i j,() x1
∗ x2

∗ x3
∗ x4

∗ x5
∗

i j,() vξ vη ω δ φ

0 0 0 0 0

i j,()

= = i 1 2 … 6, , ,{ }∈

j 1 2 3, ,{ }∈

216 5× t i j,() 5×

216 t i j,()–[] 5×

U∗ i j,() Nm X∗ i j,() s,()=

s X∗ i j,()

v∗ i j,()

v∗ i j,() T ϕ 216 216,[],()
mm Nm X∗ i j,() sk,()[]= ϕ F F F F F

T=

v∗ i j,() 216 5×

X∗ i j,() X i j,() X∗ i j,()

v∗ i j,()

ds v∗ i j,() v∗ p q,(),() v∗ i j,() v∗ p q,()–[] v∗ i j,() v∗ p q,()–[]⋅
216

---=

σs v∗ i j,() v∗ p q,(),() 10 ds v∗ i j,() v∗ p q,(),()–=

σs

σ

7.1 Comparing human control strategies 133

 Table 7-7: Spectral similarity results for road #1 data

0.689 0.673 0.654 0.653 0.584 0.631

0.696 0.653 0.656 0.681 0.593 0.606

0.695 0.691 0.645 0.656 0.576 0.681

0.690 0.693 0.634 0.644 0.561 0.663

0.635 0.639 0.644 0.616 0.581 0.582

0.670 0.638 0.671 0.646 0.602 0.581

0.636 0.630 0.633 0.654 0.586 0.596

0.626 0.593 0.602 0.665 0.574 0.564

0.540 0.549 0.557 0.558 0.566 0.517

0.573 0.560 0.597 0.588 0.590 0.514

0.630 0.616 0.568 0.585 0.494 0.690

0.593 0.589 0.549 0.581 0.490 0.661

 Table 7-8: Spectral similarity results for road #2 data

0.689 0.695 0.635 0.636 0.540 0.630

0.675 0.683 0.639 0.654 0.563 0.604

0.673 0.691 0.639 0.630 0.549 0.616

0.689 0.731 0.620 0.632 0.524 0.681

0.654 0.645 0.644 0.633 0.557 0.568

0.667 0.651 0.657 0.637 0.561 0.564

0.653 0.656 0.616 0.654 0.558 0.585

0.622 0.614 0.597 0.638 0.557 0.554

0.584 0.576 0.581 0.586 0.566 0.494

0.572 0.558 0.586 0.585 0.555 0.486

0.631 0.681 0.582 0.596 0.517 0.690

0.592 0.638 0.537 0.574 0.481 0.697

σs v∗ 1 1,() v∗ 2 1,() v∗ 3 1,() v∗ 4 1,() v∗ 5 1,() v∗ 6 1,()

v∗ 1 2,()

v∗ 1 3,()

v∗ 2 2,()

v∗ 2 3,()

v∗ 3 2,()

v∗ 3 3,()

v∗ 4 2,()

v∗ 4 3,()

v∗ 5 2,()

v∗ 5 3,()

v∗ 6 2,()

v∗ 6 3,()

σs v∗ 1 2,() v∗ 2 2,() v∗ 3 2,() v∗ 4 2,() v∗ 5 2,() v∗ 6 2,()

v∗ 1 1,()

v∗ 1 3,()

v∗ 2 1,()

v∗ 2 3,()

v∗ 3 1,()

v∗ 3 3,()

v∗ 4 1,()

v∗ 4 3,()

v∗ 5 1,()

v∗ 5 3,()

v∗ 6 1,()

v∗ 6 3,()

134 Chapter 7: Human-to-human similarity

tral similarity measure misclassifies 15 out of 36, or 42% of all runs. Since these results are not

competitive with either the Bayes classifier or the HMM-based similarity measure, we do not

consider this method further in this chapter.

7.1.5 Task-based classification

Here we present results for task-based classification. We first divide data sets ,

, into the set of left-hand maneuvers and the set of right-hand maneuvers

, contained in runs . We then split each set , into two sets,

, , , (7-21)

so that half the maneuvers are in sets , , while the remaining maneuvers are in sets

, , respectively.

X i j,()

j 1 2 3, ,{ }∈ α i()

β i() i 1 2 … 6, , ,{ }∈ X i j,() α i() β i()

αk
i() βk

i() k 1 2,{ }∈

α1
i() β1

i()

α2
i() β2

i()

 Table 7-9: Spectral similarity results for road #3 data

0.696 0.690 0.670 0.626 0.573 0.593

0.675 0.689 0.667 0.622 0.572 0.592

0.653 0.693 0.638 0.593 0.560 0.589

0.683 0.731 0.651 0.614 0.558 0.638

0.656 0.634 0.671 0.602 0.597 0.549

0.639 0.620 0.657 0.597 0.586 0.537

0.681 0.644 0.646 0.665 0.588 0.581

0.654 0.632 0.637 0.638 0.585 0.574

0.593 0.561 0.602 0.574 0.590 0.490

0.563 0.524 0.561 0.557 0.555 0.481

0.606 0.663 0.581 0.564 0.514 0.661

0.604 0.681 0.564 0.554 0.486 0.697

σs v∗ 1 3,() v∗ 2 3,() v∗ 3 3,() v∗ 4 3,() v∗ 5 3,() v∗ 6 3,()

v∗ 1 1,()

v∗ 1 2,()

v∗ 2 1,()

v∗ 2 2,()

v∗ 3 2,()

v∗ 3 3,()

v∗ 4 2,()

v∗ 4 3,()

v∗ 5 2,()

v∗ 5 3,()

v∗ 6 2,()

v∗ 6 3,()

7.1 Comparing human control strategies 135

Using the parameters given in (7-6), Tables 7-10 and 7-11 report the similarity results for

 and , . Similarly, Tables 7-12 and 7-13 report analogous results

for the Bayes classifier. We see once again that the similarity measure classifies all 12 sets ,

 correctly, while the Bayes classifier misclassifies 4 out of 12, or 33%.

7.1.6 Classification with performance drift

Finally, we examine classification performance for control data where a single individual

slowly improves over time. For this experiment, we ask Groucho to drive over thesame road

(road #1 in Figure 2-2) on two different days, twice each day. This generates a total of four runs

σ α1
i() α2

j(),[] σ β1
i() β2

j(),[] i∀ j,

α2
i()

β2
i()

 Table 7-10: Left-turn similarity classification

0.751 0.338 0.365 0.364 0.063 0.014

0.265 0.462 0.095 0.064 0.020 0.329

0.358 0.155 0.722 0.209 0.138 0.008

0.103 0.098 0.157 0.611 0.175 0.013

0.016 0.030 0.110 0.293 0.573 0.006

0.013 0.124 0.009 0.016 0.008 0.694

σ α1
1() α2

1() α3
1() α4

1() α5
1() α6

1()

α1
2()

α2
2()

α3
2()

α4
2()

α5
2()

α6
2()

 Table 7-11: Right-turn similarity classification

0.625 0.200 0.353 0.375 0.071 0.025

0.277 0.451 0.085 0.069 0.010 0.387

0.344 0.141 0.710 0.267 0.152 0.012

0.201 0.114 0.269 0.612 0.275 0.015

0.031 0.035 0.120 0.253 0.638 0.003

0.019 0.087 0.007 0.012 0.003 0.737

σ β1
1() β2

1() β3
1() β4

1() β5
1() β6

1()

β1
2()

β2
2()

β3
2()

β4
2()

β5
2()

β6
2()

136 Chapter 7: Human-to-human similarity

(#1, #2, #3 and #4). Because the runs are recorded on the same road, Groucho improves his

control strategy relatively quickly over the four runs, raising his average speed per run from

65.9 mi/h to 71.9mi/h from run #1 to run #4.

Next, we take two additional data sets over the same road from Curly and Moe, respectively.

Figure 7-4 plots the mean and standard deviation for the velocity and acceleration control

for all six runs. Note that Curly’s and Moe’s runs share some similar aggregate statistics with

at least some of Groucho’s runs.

 Table 7-12: Left-turn Bayes classification

0.443 0.127 0.145 0.134 0.105 0.047

0.287 0.196 0.074 0.038 0.053 0.353

0.309 0.135 0.253 0.133 0.138 0.031

0.090 0.073 0.125 0.517 0.182 0.013

0.113 0.108 0.126 0.320 0.311 0.022

0.049 0.187 0.026 0.041 0.051 0.647

ζ α1
1() α2

1() α3
1() α4

1() α5
1() α6

1()

α1
2()

α2
2()

α3
2()

α4
2()

α5
2()

α6
2()

 Table 7-13: Right-turn Bayes classification

0.387 0.107 0.173 0.158 0.123 0.051

0.251 0.178 0.097 0.075 0.079 0.319

0.252 0.118 0.271 0.145 0.170 0.043

0.128 0.069 0.144 0.412 0.230 0.017

0.101 0.115 0.149 0.230 0.391 0.013

0.056 0.202 0.029 0.045 0.075 0.594

ζ β1
1() β2

1() β3
1() β4

1() β5
1() β6

1()

β1
2()

β2
2()

β3
2()

β4
2()

β5
2()

β6
2()

v φ

7.2 Comparing Navlab driving data 137

Now we run six classification experiments. First, we classify Groucho’s first three runs as more

similar to either Groucho’s fourth run or Curly’s run. Second, we classify Groucho’s first three

runs as more similar to either Groucho’s fourth run or Moe’s run. Using the parameters given

in (7-6)4, Table 7-14(a) reports the similarity measure results for these comparisons. Similarly,

Table 7-14(b) reports analogous results for the Bayes classifier. We observe that the similarity

measure misclassifies one out of six (17%), while the Bayes classifier misclassifies five out of

six (83%) experiments, some quite badly.

7.2 Comparing Navlab driving data

7.2.1 Experimental data

Finally, we present classification results for real road-driving data, collected as part of an on-

going research effort geared towards the development of autonomous vehicles at Carnegie Mel-

lon University. Data was collected from seven drivers of both genders, ranging in age from 21

to 50 in Navlab 8, a minivan equipped with RALPH, a vision-based lateral-position estimation

system [15]. Each driver was asked to drive from Carnegie Mellon University, Pittsburgh, PA,

4. Here we only use VQ codes, since we are comparing fewer data sets.L 64=

 Table 7-14: (a) Similarity measure classification results

Curly Groucho #4 Moe Groucho #4

Groucho #1 0.572 0.528 Groucho #1 0.315 0.616

Groucho #2 0.435 0.540 Groucho #2 0.495 0.603

Groucho #3 0.258 0.728 Groucho #3 0.550 0.760

Table 7-14: (b) Bayes classification results

Curly Groucho #4 Moe Groucho #4

Groucho #1 0.609 0.391 Groucho #1 0.569 0.431

Groucho #2 0.589 0.411 Groucho #2 0.663 0.337

Groucho #3 0.416 0.583 Groucho #3 0.567 0.433

σ σ

ζ ζ

138 Chapter 7: Human-to-human similarity

to Grove City, PA, 50 miles north of Pittsburgh and back, while data was being recorded at

16Hz; his/her data was then split into two runs — (going north) and (going

south), . Since the route consists primarily of two and three lane traffic, each

one-way trip took approximately 40 to 45 minutes. Throughout, drivers received no coaching

or instructions other than to drive safely.

7.2.2 Classification experiments

The following state dimensions are available in each data set : (1) , the lateral position

of the vehicle, (2) , the velocity of the vehicle, and (3) the angular velocity of the vehicle.

Using these variables as input,

(7-22)

we select the same similarity parameters as in equation (7-6), except that we let,

, (7-23)

-1000 0 1000 2000 3000 4000 5000

55

60

65

70

75

Curly
Moe
Groucho

Figure 7-4: Groucho’s average speed improves over time; Curly’s and Moe’s runs are
statistically close.

φ N()

v
m

i/h
(

)

X 1()

X 4()

X 3()

X 2()

X i 1,() X i 2,()

i 1 2 … 7, , ,{ }∈

X i j,() dξ

v ω

X i j,()
dξ v ω

i j,()
=

ϕ G G G
T=

7.3 Analysis 139

while, for the Bayes classification, we use (7-23) and . Now we perform two sets

of experiments. In the first set, we classify each of the south-bound runs as similar to

one of the north-bound runs , . Table 7-15 reports these classification

results for the similarity measure , while Table 7-16 reports analogous results for the Bayes

classifier. We observe that the similarity measure classifies all seven runs correctly,

while the Bayes classifier misclassifies 2 out of 7, or 29%.

In the second set of experiments, we first select two runs, and , . We then try

to classify the other runs from driveri and driverp as belonging to either of the classes repre-

sented by and . This allows us to conduct separate comparisons.

The similarity measure correctly classifies all 84 of these comparisons, while the Bayes classi-

fier misclassifies 9 out of 84, or 11%. Thus, for the real driving data in this section, as well as

the simulated driving data in the previous sections, the HMM-based similarity measure again

outperforms the Bayes classifier.

7.3 Analysis

In the discussion below, we first justify the similarity measure definition in greater detail. We

then specifically address why the Bayes classifier fails in some cases, where the similarity mea-

sure succeeds. Finally, we consider the similarity measure’s performance as a function of the

signal-to-symbol preprocessing and the number of HMM states.

7.3.1 One-sided similarity measure

The definition of the similarity measure in equation (6-15) requires that one HMM is trained

for each control trajectory. In practice, this means that whenever we wish to compare an

unknown control trajectory to a bank of known models, we first have to train an HMM on the

unknown control trajectory, thus hurting potential on-line (i.e. real-time) performance. Why

don’t we avoid this problem by defining the following one-sided similarity measure ,

 or ? (7-24)

κ1 κ2 1= =

X i 2,()

X j 1,() i j 1 2 … 7, , ,{ }∈,

σ

X i 2,()

X i j,() X p q,() i p≠

X i j,() X p q,() 7 6 2×× 84=

λ

σ̃

σ̃ λ1 O2,() P21 P11⁄= σ̃ λ2 O1,() P12 P22⁄=

140 Chapter 7: Human-to-human similarity

The short answer is that is does not work as one might expect. Specifically, no longer obeys

properties #1, #2 and #3 in equations (6-20) through (6-22). Consider the following simple

example. Let,

, and (7-25)

 Table 7-15: Similarity results for real driving data

X(1,1) X(2,1) X(3,1) X(4,1) X(5,1) X(6,1) X(7,1)

X(1,2) 0.606 0.522 0.112 0.190 0.068 0.062 0.128

X(2,2) 0.356 0.747 0.405 0.637 0.325 0.299 0.536

X(3,2) 0.167 0.487 0.743 0.385 0.619 0.381 0.281

X(4,2) 0.372 0.689 0.359 0.758 0.342 0.432 0.563

X(5,2) 0.275 0.343 0.364 0.186 0.431 0.279 0.109

X(6,2) 0.155 0.374 0.255 0.612 0.309 0.683 0.553

X(7,2) 0.112 0.409 0.153 0.668 0.158 0.442 0.799

 Table 7-16: Bayes classification results for real driving data

X(1,1) X(2,1) X(3,1) X(4,1) X(5,1) X(6,1) X(7,1)

X(1,2) 0.334 0.218 0.093 0.102 0.083 0.033 0.079

X(2,2) 0.107 0.156 0.139 0.137 0.140 0.087 0.129

X(3,2) 0.097 0.151 0.220 0.098 0.178 0.090 0.084

X(4,2) 0.106 0.146 0.138 0.135 0.133 0.106 0.121

X(5,2) 0.216 0.199 0.118 0.089 0.139 0.093 0.068

X(6,2) 0.043 0.094 0.096 0.152 0.123 0.169 0.162

X(7,2) 0.043 0.106 0.083 0.166 0.110 0.146 0.182

σ

ζ

σ̃

O1 0 0 0 1 1 1 1 1 1 1, , , , , , , , ,{ }=

7.3 Analysis 141

. (7-26)

The corresponding single-state HMMs and are given by,

, (7-27)

Recall that . Thus,

(7-28)

(7-29)

(7-30)

. (7-31)

Consequently,

, and (7-32)

. (7-33)

Not only do we lose the nice properties of the original similarity measure, we also get mixed

classification results for the human driving data. Tables 7-17, 7-18 and 7-19, for example,

report one-sided classification results analogous to the similarity measure results in Tables 7-

1, 7-2 and 7-3, respectively. Note that 4 out of 36 comparisons (11%) are misclassified by the

one-sided similarity measure.

7.3.2 Bayes classifier limitations

Here, we examine why the Bayes classifier performs more poorly than the HMM-based simi-

larity measure. Figure 7-5(a) plots the distribution (over and) for Moe’s data, and the cor-

responding Gaussian approximation of that distribution. Likewise, Figure 7-5(b) and (c) plot

O2 0 1 1 1 1 1 1 1 1 1, , , , , , , , ,{ }=

λ1 λ2

λ1 1
0.3

0.7

1

0
, ,

 
 
 

= λ2 1
0.1

0.9

1

0
, ,

 
 
 

=

Pij 10 P Oi λ j()log Ti⁄=

P21 10 0.79() 0.3()[]log 10⁄ 0.643= =

P11 10 0.33() 0.77()[]log 10⁄ 0.543= =

P12 10 0.97() 0.13()[]log 10⁄ 0.466= =

P22 10 0.1() 0.99()[]log 10⁄ 0.722= =

σ̃ λ1 O2,() 0.643 0.543⁄ 1.185= =

σ̃ λ2 O1,() 0.466 0.722⁄ 0.644= =

v φ

142 Chapter 7: Human-to-human similarity

 Table 7-17: One-sided similarity results for road #1 data

O(1, 2, 1) 0.784 0.343 0.278 0.141 0.057 0.022

O(1, 3, 1) 0.579 0.518 0.265 0.057 0.051 0.160

O(2, 2, 1) 0.345 0.964 0.185 0.125 0.098 0.797

O(2, 3, 1) 0.290 1.100 0.152 0.076 0.061 0.896

O(3, 2, 1) 0.590 0.252 0.909 0.325 0.183 0.029

O(3, 3, 1) 0.569 0.251 0.883 0.120 0.137 0.081

O(4, 2, 1) 0.547 0.304 0.523 0.824 0.373 0.030

O(4, 3, 1) 0.588 0.311 0.590 0.752 0.445 0.123

O(5, 2, 1) 0.166 0.191 0.351 0.347 0.742 0.057

O(5, 3, 1) 0.195 0.150 0.329 0.325 0.700 0.140

O(6, 2, 1) 0.012 0.114 0.004 0.003 0.003 1.563

O(6, 3, 1) 0.006 0.159 0.003 0.002 0.002 0.966

 Table 7-18: One-sided similarity results for road #2 data

O(1, 1, 2) 0.912 0.264 0.268 0.174 0.081 0.068

O(1, 3, 2) 0.704 0.705 0.311 0.066 0.046 0.216

O(2, 1, 2) 0.310 0.551 0.078 0.044 0.044 0.806

O(2, 3, 2) 0.148 1.133 0.062 0.020 0.018 0.988

O(3, 1, 2) 0.674 0.226 0.767 0.207 0.178 0.034

O(3, 3, 2) 0.523 0.327 0.815 0.076 0.082 0.059

O(4, 1, 2) 0.578 0.437 0.542 0.847 0.349 0.088

O(4, 3, 2) 0.569 0.467 0.540 0.657 0.310 0.129

O(5, 1, 2) 0.049 0.064 0.195 0.251 0.603 0.013

O(5, 3, 2) 0.098 0.013 0.180 0.246 0.636 0.008

O(6, 1, 2) 0.001 0.002 0.000 0.000 0.000 0.158

O(6, 3, 2) 0.000 0.014 0.000 0.000 0.000 0.320

σ̃ λ11 λ21 λ31 λ41 λ51 λ61

σ̃ λ12 λ22 λ32 λ42 λ52 λ62

7.3 Analysis 143

similar comparisons for Groucho’s second run and Groucho’s fourth run, respectively. From

these plots, it is clear that the Bayes classifier is doomed to fail, since the human data is distrib-

uted in a decidedly non-Gaussian manner. The similarity measure, on the other hand, succeeds

because the HMMs are trained on the underlying distributions of the data sets, and make noa

priori assumptions about each individual’s distribution.

We also note that despite repeated attempts at improving the Bayes classifier’s performance —

by only classifying on a subset of the vector — we have yet to identify an

example where the Bayes classifier succeeds and the similarity measure fails.

7.3.3 Similarity measure variations

Finally, we consider the similarity measure’s performance as a function of (1) the signal-to-

symbol preprocessing and (2) the number of HMM states. Let us first define a discrimination

measure, with which we can evaluate the similarity mesure’s performance. Let,

 Table 7-19: One-sided similarity results for road #3 data

O(1, 1, 3) 0.877 0.246 0.328 0.208 0.107 0.028

O(1, 2, 3) 0.927 0.266 0.316 0.202 0.075 0.005

O(2, 1, 3) 0.178 0.277 0.031 0.017 0.011 0.582

O(2, 2, 3) 0.125 0.498 0.030 0.018 0.007 0.792

O(3, 1, 3) 0.640 0.250 0.699 0.237 0.231 0.030

O(3, 2, 3) 0.620 0.203 0.785 0.225 0.154 0.005

O(4, 1, 3) 0.586 0.447 0.603 0.839 0.476 0.155

O(4, 2, 3) 0.592 0.373 0.530 0.813 0.419 0.169

O(5, 1, 3) 0.062 0.115 0.260 0.337 0.721 0.057

O(5, 2, 3) 0.058 0.052 0.272 0.330 0.843 0.039

O(6, 1, 3) 0.006 0.011 0.001 0.001 0.001 0.475

O(6, 2, 3) 0.004 0.034 0.001 0.001 0.000 1.454

σ̃ λ13 λ23 λ33 λ43 λ53 λ63

vξ vη ω δ φ
T

144 Chapter 7: Human-to-human similarity

-8000 -4000 0 4000
30

60

90

-8000 -4000 0 4000
30

60

90

-8000 -4000 0 4000
30

60

90

-8000 -4000 0 4000
30

60

90

-8000 -4000 0 4000
30

60

90

-8000 -4000 0 4000
30

60

90

v
m

i/h
(

)

φ N()

φ N()

φ N()

φ N()

φ N()

φ N()

Figure 7-5: Groucho’s second run (b) is badly misclassified by the Bayes classifier as
Moe’s run (a) and not as Groucho’s fourth run (c).

v
m

i/h
(

)
v

m
i/h

(
)

v
m

i/h
(

)
v

m
i/h

(
)

v
m

i/h
(

)

(a
) M

o
e

’s ru
n

(b
) G

ro
u

ch
o

’s 2
n

d
 ru

n
(c) G

ro
u

ch
o

’s 4
th

 ru
n

7.3 Analysis 145

, , (7-34)

, (7-35)

define a discrimination measure corresponding to row of Tables 7-1, 7-2 and 7-3,

where , , . This measure takes the maximum off-diago-

nal element over the self-similar element in each row. Thus, indicates that sequence

 is classified correctly. Next define,

, , , , (7-36)

where simply averages the discrimination measure in equation (7-34) over all rows in

Tables 7-1, 7-2 and 7-3 and takes the logarithm, so that indicates better classification,

while indicates worse classification. We are now in a position to evaluate the similarity

measure’s performance as we vary different design parameters in the similarity analysis.

First, we show how the similarity measure changes whenno spectral preprocessing is per-

formed, such that,

, ,

, where, (7-37)

, , , and, (7-38)

, , . (7-39)

We consider two cases, , and .

δσ
i j k, ,()

maxl l i≠, σ O i j,()
k O l k,()

k,[]()

σ O i j,()
k O i k,()

k,[]
--= j k≠

δσ log,
i j k, ,() δσ

i j k, ,()[]log–=

O i j k, ,()

i 1 2 … 6, , ,{ }∈ j k, 1 2 3, ,{ }∈ j k≠

δσ log, 0>

O i j,()
k

∆σ
1
N
---- δσ

i j k, ,()

i j,
j k≠

∑
k
∑log–= i l 1 2 … 6, , ,{ }∈, j k 1 2 3, ,{ }∈, N 36=

∆σ

∆σ 0>

∆σ 0<

O i j,()
k O i j k, ,() Tall X i j,() sk ϕ κ1 κ2,[] QL

k, , , ,()= = i 1 2 … 6, , ,{ }∈

j k 1 2 3, ,{ }∈,

X i j,() vξ vη ω δ φ
i j,()

= i 1 2 … 6, , ,{ }∈ j 1 2 3, ,{ }∈

ϕ G G G G G
T= L 128= ns 8=

κ1 κ2 1= = κ1 2κ2 16= =

146 Chapter 7: Human-to-human similarity

With eight-state HMMs, and no spectral preprocessing, for ,

 for , while for Tables 7-1, 7-2 and 7-3, . Figure 7-6

plots the worst discrimination example , for , corresponding to each table.

Note that for and , we actually get two misclassifications. Thus, signal

preprocessing prior to vector quantization contributes positively to the discrimination capacity

of the similarity measure.

Second, we examine how the similarity measure changes as a function of the number of HMM

states in our HMM models . Let the signal-preprocessing parameters be given by (7-6), and

repeat the similarity analysis for Tables 7-1, 7-2 and 7-3 as the number of HMM states is

varied from 1 to 10. Figure 7-7 plots the discrimination measure as a function of . We

see that as is increased initially, improves sharply. As becomes larger, however, dis-

crimination begins to level off and eventually declines from to . At that point,

for , and sampling period , common aspects of control strategies

from different individuals begin to dominate the unique features of each strategy.

From these results, we suggest the following three reasons — in order of importance — for the

success of our similarity measure: (1) noa priori distribution of the data is assumed, as HMMs

∆σ 0.276= κ1 κ2 1= =

∆σ 0.016= κ1 2κ2 16= = ∆σ 0.345=

δσ log,
i j k, ,() k 1 2 3, ,{ }∈

-0.2

-0.1

0

0.1

0.2

Figure 7-6: The discrimination performance worsens with no preprocessing.

no spectral processing, ()κ1 2κ2 16= = ∆σ 0.016=

with spectral processing, ()κ1 2κ2 16= = ∆σ 0.345=

no spectral processing, ()κ1 κ2 1= = ∆σ 0.276=

m
in

δ σ
lo

g
,i

j
k

,
,

(
)

k 1= k 3=k 2=

1–≈w
o

rs
t
ca

se

k 1= κ1 2κ2 16= =

λ

ns

∆σ ns

ns ∆σ ns

ns 9= ns 10=

κ1 2κ2 16= = τ 0.02sec=

7.3 Analysis 147

are capable of encoding arbitrary statistical distributions; (2) spectral preprocessing extracts

useful features from the control strategy data; and (3) HMMs in part capture the sequential

structure of the control strategy data.

In summary, this chapter has shown that the proposed similarity measure correctly classifies

control strategy data from the same individual, while discriminating driving control data from

different individuals in human-to-human comparisons, both for simulated as well as real driv-

ing data. It is these results that now justify applying the similarity measure as avalidation mea-

sure in human-to-model comparisons. Chapter 8 will do just that, thereby quantifying the

qualitative observations of HCS model fidelity in Chapters 4 and 5.

2 4 6 8 10
0.29

0.3

0.31

0.32

0.33

0.34

Figure 7-7: Sequential structure adds to the discrimination capacity of the similarity
measure.

∆ σ

ns # HMM states()

148 Chapter 7: Human-to-human similarity

149

Chapter 8

Human-to-model validation

In Chapter 7, we verified the performance of the similarity measure in human-to-human

comparisons. Now, we will apply the proposed similarity measure as a means of validating the

control trajectories of the different HCS models presented in Chapters 4 and 5. In other words

we will quantify our previous qualitative observations about the similarity between the learned

models and their respective human control training data.

8.1 Human-to-model comparisons

We once again select the following parameters for our similarity analysis:

, , , , , (8-1)

so that for a control trajectory , the corresponding observation sequence

 will be given by,

, (8-2)

where the scale vector is chosen and the VQ codebook is trained over all control trajec-

tories in the similarity analysis. Note that the parameters in equation (8-1) are the same as those

that we used through most of Chapter 7.

σ

ϕ HF HF HF W W
T= κ1 16= κ2 κ1 2⁄= L 128= ns 8=

X∗ vξ vη ω δ φ=

O∗

O∗ Tall X∗ s ϕ κ1 κ2,[] QL, , , ,()=

s QL

150 Chapter 8: Human-to-model validation

Table 8-1 and Figure 8-1 report the resulting human-to-model similarity measures , for Larry,

Moe, Groucho and Harpo, and their respectiveCq, Ck and hybrid HCS models. In addition, we

provide similarity results for the hybrid HCS models, where we let the statistical models be

uniform, such that equation (5-19),

, (8-3)

reduces to,

. (8-4)

In other words, the choice of control action at each time step depends strictly on the priors

, when the are uniform.

σ

λi

a. Each individual’s run is compared to the model trajectory over road #5.
b. Models are uniform over the entire input space. Condition (5-27) is enforced.
c. All state and control variables are included for the similarity analysis.
d. Model is unstable over road #5.
e. Only the control variables are included in the similarity analysis.

 Table 8-1: Human-to-model similarity a

Individual Dimensions Cq Ck Just b Hybrid

Larry

c 0.100 0.161 0d 0.450

e 0.128 0.432 0d 0.657

Moe
0.087 0.088 0.046 0.555

0.117 0.146 0.187 0.594

Groucho
0.101 0.096 0.014 0.457

0.319 0.172 0.132 0.561

Harpo
0d 0.003 0.012 0.578

0d 0.003 0.024 0.609

P Ai()

λi

x u,{ }

u{ }

δ φ,{ }

x u,{ }

u{ }

x u,{ }

u{ }

x u,{ }

u{ }

P Ai Sl() b l()iP Ai() b l()iP Ai()
i 1=

N

∑⁄=

P Ai Sl() P Ai()=

P Ai() λi

8.2 Classification experiment 151

From Table 8-1, we make several observations. First, theCq andCk models exhibit roughly the

same similarity to each model’s corresponding human control data. These similarity values are,

however, rather low, especially when compared to the human-to-human similarity results in

Chapter 7. Therefore, neither theCq nor theCk learning algorithm is able to model the driving

control strategies with a high degree of fidelity to the source training data.

In comparison, we note that the hybrid controllers have much more in common with the source

training data than do either theCq andCk models. In fact, the similarity values for the human-

to-model comparisons in Table 8-1 approach those of the self-similar human-to-human com-

parisons in Chapter 7. Finally, we observe that without models , the hybrid control strategies

degenerate, and are no longer representative of the human’s control strategy. This confirms that

the statistical models impart useful information to the hybrid control strategies, and that the

improved fidelity of the hybrid controllers in not simply due to random thrashing about of the

acceleration command .

8.2 Classification experiment

As an additional validation check, we now show that a particular individual’s hybrid model not

only closely matches the control data for that individual, but also exhibits a lesser degree of

similarity with other individual’s control data. Table 8-2 reports the similarity of each individ-

Larry Moe Curly Harpo
0

0.1

0.2

0.3

0.4

0.5

Hybrid model

Ck model

Cq model

Figure 8-1: Human-to-model similarity for different modeling approaches and .x u,{ }

σ

λi

λi

φ

152 Chapter 8: Human-to-model validation

ual’s model with each individual’s control strategy for the hybrid HCS models. We observe that

the highest degree of similarity occurs between a specific individual and his model. In contrast,

we observe from Table 8-3, that theCk models do not necessarily exhibit the highest degree of

similarity (however low) with their respective training data.

8.3 Model inputs revisited

In Section 4.2.1, we described a method for selecting a given model’s input representation (,

) based on the performance of theCk models on the cross validation road #4 (Figure 2-3(b)).

Here we revisit the problem of model input selection, within the context of the similarity mea-

sure .

From Figure 4-5, we made the observation thatCk model performance does not appear to vary

significantly for , as judged by the maximum deviation from the road median. Alter-

natively, we can look at,

 Table 8-2: Hybrid model-to-human matching

Larry Moe Groucho Harpo

Larry’s model 0.450 0.329 0.315 0.069

Moe’s model 0.126 0.555 0.338 0.217

Groucho’s model 0.152 0.377 0.457 0.206

Harpo’s model 0.013 0.134 0.127 0.578

 Table 8-3: Ck model-to-human matching

Larry Moe Groucho Harpo

Larry’s model 0.161 0.166 0.118 0.157

Moe’s model 0.056 0.088 0.063 0.041

Groucho’s model 0.056 0.066 0.096 0.040

Harpo’s model 0.006 0.008 0.012 0.003

σ

σ

nx

nu

σ

nx nu, 3≥

8.3 Model inputs revisited 153

, , (8-5)

where indicates the distance measure defined in equation (6-28), denotes an

observation sequence converted from the control trajectory of model over validation

road #4, and model , as before, corresponds to aCk model trained from run (i.e.

person (i) on road #j), with input space,

, . (8-6)

Figure 8-2, for example, plots as varies from 1 to 19 for Groucho’sCk model.

Once again, we observe that model performance does not vary significantly for .

For theCk models, we could not look at the similarity between the models and their respective

training data as a robust indicator, since the similarity measure evaluates to very low values.

For the hybrid models, however, the similarity measures appear to be more robust. Hence for

these models, we can look directly at the human-to-model similarity,

. (8-7)

Figure 8-3, plots as varies from 1 to 6.1 We observe that for each person the min-

imum is located at . It appears that no matter what modeling approach we take, when the

1. We stop at due to the increased distortion in the VQ codebook for the hybrid models as the
dimensionality of the input space increases.

d Γk
i j,() Γk 1+

i j,(),() d Ok
i j,() Ok 1+

i j,(),()≡ k 1 2 … 19, , ,{ }∈

d ⋅() Ok
i j,()

Γk
i j,()

Γk
i j,() X i j,()

xk uk z10, ,{ } k 1 2 … 20, , ,{ }∈

d Γk Γk 1+,() k

k 3≥

1 2 3 4 5 6 7 8 9 1011121314151617 1819
0

0.02

0.04

0.06

0.08

1 2 3 4 5 6 7 8 9 1011121314151617 1819

Figure 8-2: Model distance for Groucho’s run as the size of the input space is varied.

d
Γ k

Γ k
1

+
,

(
)

k

σ

d X i j,() Γk
i j,(),() d O i j,() Ok

i j,(),()=

d X Γk,() k

k 6=

k 3=

154 Chapter 8: Human-to-model validation

model is presented with enough time-delayed values of each state and control variable, the

model is able to build what appear to be necessary derivative dependencies between model

inputs and outputs .

In summary, we have demonstrated that the hybrid models exhibit greater fidelity to the human

training data than the either of the cascade network-based modeling approaches. Which learn-

ing approach — continuous or hybrid — is preferred may ultimately depend on the specific

application for the HCS model. If the model is being developed towards the eventual control of

a real robot or vehicle, then the continuous modeling approach might be preferred as a good

starting point. Continuous models extrapolate control strategies to a greater range of inputs,

show greater inherent stability, and lend themselves more readily to theoretical performance

analysis. If, on the other hand, the model is being developed in order to simulate different

human behaviors in a virtual reality simulation or game, then the discontinuous control

approach might be preferred, since fidelity to the human training data and random variations in

behavior would be the desired qualities of the HCS model. Thus, depending on the application,

we believe a need exists for both types of modeling approaches.

1 2 3 4 5 6

0.3

0.4

0.5

0.6

Larry
Moe
Groucho
Harpo

Figure 8-3: Human to model similarity over test road #5 as we vary the size of the input
space.

d
X

Γ k,
(

)

k nx nu= =

δ k 1+() φ k 1+(),{ }

155

Chapter 9

Conclusion

9.1 Contributions

In this dissertation, we present a coherent framework for learning and validating discrete-time

models of human control strategy. We summarize the original contributions of this work below.

• We developed a neural-network-based algorithm that combines flexible cascade neural net-

works with extended Kalman filtering. We show that the resulting learning architecture

achieves better convergence in faster time than alternative neural-network paradigms for

modeling both known continuous functions and dynamic systems, as well as for modeling

human control strategies from real-time human data. We also demonstrate the fundamental

problem of modeling discontinuous control strategies with a continuous function approxi-

mator.

• We developed a statistical, discontinuous framework for modeling discontinuous human

control strategies. The approach models control actions as probabilistic events and chooses a

specific control action based on a stochastic selection criterion. We demonstrate that the

resulting learning architecture is much better able to approximate discontinuous control

strategies than continuous function approximators.

156 Chapter 9: Conclusion

• As a model validation tool, we developed a stochastic similarity measured — based on Hid-

den Markov Models — that measures the level of similarity (or dissimilarity) between

multi-dimensional, stochastic trajectories. We demonstrate and derive important properties

of the similarity measure.

• We applied the similarity measure towards classifying human control data across different

individuals. We demonstrate that the similarity measure does a better job of grouping human

control data from the same individual than the more traditional Bayes classifier. We also

analyze classification performance as a function of similarity measure parameters.

• We applied the similarity measure for comparisons between human control strategy models

and their respective human training data. Thus we quantify qualitative results about model

fidelity in different modeling approaches. We also apply the similarity measure for model-

to-model comparisons to show how representational choices of the input space affect model

performance.

• We developed a real-time graphic driving simulator, with dynamic interactions of the simu-

lated car an the environment. This has proven to be a valuable testing tool for the learning

algorithms and statistical methods developed herein. Some other researchers have also used

this simulator in their work [29, 110].

9.2 Future work

While this thesis provides the foundations for modeling and analyzing human control strate-

gies, it is certainly not the first and last word on this topic — it is only an important first step.

There are a number of different directions in which the work in this thesis can be extended and

applied.

Once we have abstracted a HCS model, it is important to assess the skill exhibited by the model

and its corresponding human controller. In this thesis, we evaluate models based on stability

and model fidelity to the human training data. There are, however, other criteria — many of

9.2 Future work 157

them task-dependent — by which we can evaluate performance. Models or control strategies

with different skill qualities may be more or less appropriate for a given situation, depending

on the specific performance requirements of an application. For example, Song,et. al. [110]

have begun to examine the problem of skill evaluation, by proposing two task-specific perfor-

mance criteria for the human driving task, including a (1)tight-turning and (2)obstacle avoid-

ance criterion. These criteria evaluate the performance of a HCS model outside its training

range and quantify a particular model’s suitability for specific control subtasks.

Given a specific performance requirement, it might be necessary to optimize a particular HCS

model with respect to that performance measure. The unoptimized HCS model already gives

an initial stable control strategy; optimization would merely refine the parameters in the model

to improve performance with respect to a specific criterion . Since, in general, we do not have

an explicit representation for in terms of the model parameters , model optimization can

be achieved through one of a number of different stochastic algorithms, including simulta-

neously perturbed stochastic approximation (SPSA) [113], population-based incremental

learning (PBIL) [11] and genetic optimization [40]. Initial experiments with SPSA, for exam-

ple, demonstrate that learned models of human control strategy can be improved with respect

to specific performance criteria [111].

Another area of application for HCS models might be asvirtual expert instructors. A novice,

when faced with learning an appropriate control strategy for a new task, is generally faced with

two alternatives. Either the novice can attempt to learn the new skill through trial and error, with

no on-line feedback to critique performance, or the novice can learn with the help of a human

instructor. The first approach can be frustrating and cumbersome, while in the second approach,

the feedback advice by the instructor is limited to certain sensor modalities and is sporadic in

nature. In addition, individual one-on-one training is expensive and can tax the constrained

resources of a single expert.

J

J ω

158 Chapter 9: Conclusion

To alleviate these problems, it may be possible to replace an actual human expert instructor, so

that an apprentice gets advice through the expert’s HCS model, rather than from the expert

directly. The model-generated advice can be presented continuously to the apprentice, while

exploiting multiple sensor modalities. This has the potential to improve both learning speed and

the quality of learning by the apprentice. In this approach, apprentice training need no longer

be one-to-one. A single expert can efficiently train many apprentices through his/her HCS

model, without increased demands on the expert’s time; conversely, a single apprentice can effi-

ciently benefit from diverse advice of many experts at once (Figure 9-1). Finally, since HCS

models are trained on physically plausible human data, feedback advice from the HCS model

does not require unreasonably high precision or control fidelity from the apprentice. It has been

shown that simulated training (e.g. training on a simulation of the system rather than the real

system) still improves performance once the apprentice transitions to control of the real

dynamic system [41, 103]. Therefore, we would expect that this approach would prove useful,

even if — for safety reasons — we replace the actual system by a simulation of that system

during apprentice training.

Figure 9-1: One expert can teach many apprentices (left) and many experts can
contribute to the learning of a single apprentice (right).

Apprentice

Expert

HCS
model

HCS
model

HCS
model

HCS
model

9.2 Future work 159

In [80], we demonstrate the viability of applying HCS models towards human-to-human skill

transfer for a simple inverted-pendulum system (see Figure 9-2). This example does not, how-

ever, address a number of important issues in human-to-human skill transfer — namely, (1)

model selection for good apprentice learning, (2) multiple model learning, and (3) interface

design of the feedback advice. These are all important directions for future research.

Finally, while our primary motivation for developing the similarity measure in Chapter 6 was

for validation of HCS models, we believe that it may have other useful applications. Most

importantly, it could be used to monitor and detect potentially dangerous control behaviors on

the part of the human operator, as is done, for example, in [29] with auto-regressive models.

Alternatively, it could be used to monitor an apprentice’s control strategy during training to see

whether or not his control strategy begins to approach that of the expert.

Figure 9-2: An augmented learning interface for human-to-human skill transfer.

HCS model advice

x

User command

Verbal advice

Error over time

160 Chapter 9: Conclusion

161

Appendix A:

Human control data

In this appendix, we describe the human control data sets which we use throughout the thesis

for learning and validation experiments. We use the dynamic driving simulator of Section 2.2.1

to collect human control data from six individuals1 — (1) Larry, (2) Curly, (3) Moe, (4) Grou-

cho, (5) Harpo and (6) Zeppo. In order to become accustomed to the simulator’s dynamics, we

first allow each individual to practice “driving” in the simulator for up to fifteen minutes prior

to recording any actual data. We then ask each person to drive over three different, randomly

generated 20km roads — roads #1, #2 and #3 in Figure 2-2 —as fast as possible without veer-

ing off the road. Between runs, we allow a short break for each operator.

Sections A.1 through A.6 plot the instantaneous velocity (mi/h), the lateral offset from the

road median (m), the steering angle (rad) and the acceleration command (N) for each

human control data set. Table A-1 reports corresponding aggregate statistics for each of the 18

runs.

1. All human subjects are males in their mid-20s.

v

dξ δ φ

162 Appendix A:

a. Numbers in parentheses are standard deviations.
b. Means for all runs is 0.000.

 Table A-1: Aggregate statistics for human driving data a

Run (mi/h) (rad/s)b (rad)b (N) off road %

L
a

rr
y

71.8 (8.1) (0.183) (0.064) 1.70 (2.41) 1.31

71.1 (7.2) (0.194) (0.072) 1.81 (2.35) 0.80

73.7 (8.0) (0.200) (0.081) 2.04 (2.35) 2.05

C
u

rl
y

63.1 (12.2) (0.174) (0.057) 1.38 (2.43) 2.94

62.7 (9.5) (0.174) (0.056) 1.31 (1.85) 2.33

64.0 (8.6) (0.178) (0.056) 1.29 (1.37) 2.43

M
o

e

70.8 (8.3) (0.201) (0.073) 1.90 (3.26) 1.75

69.1 (7.7) (0.194) (0.073) 1.85 (3.34) 1.19

71.5 (7.7) (0.200) (0.077) 1.97 (3.14) 0.59

G
ro

u
ch

o 73.1 (9.5) (0.244) (0.092) 2.19 (2.77) 2.04

71.9 (9.0) (0.249) (0.095) 2.24 (2.62) 1.02

74.5 (9.4) (0.285) (0.114) 2.57 (2.65) 2.41

H
a

rp
o

66.8 (12.4) (0.181) (0.084) 1.85 (3.83) 4.02

65.1 (13.2) (0.208) (0.095 1.94 (3.98) 5.27

69.8 (12.3) (0.226) (0.111) 2.29 (3.76) 4.69

Z
e

p
p

o

52.3 (12.2) (0.171) (0.053) 0.89 (1.48) 7.16

51.7 (4.2) (0.158) (0.043) 0.70 (0.25) 1.36

56.1 (5.7) (0.204) (0.058) 1.01 (0.34) 4.50

v ω δ φ 10× 3

X 1 1,()

X 1 2,()

X 1 3,()

X 2 1,()

X 2 2,()

X 2 3,()

X 3 1,()

X 3 2,()

X 3 3,()

X 4 1,()

X 4 2,()

X 4 3,()

X 5 1,()

X 5 2,()

X 5 3,()

X 6 1,()

X 6 2,()

X 6 3,()

 Larry 163

A.1 Larry

0 100 200 300 400 500 600
40

50

60

70

80

90

0 100 200 300 400 500 600

-4

-2

0

2

4

0 100 200 300 400 500 600
-8000

-6000

-4000

-2000

0

2000

4000

0 100 200 300 400 500 600
-0.2

-0.1

0

0.1

0.2

v
(m

i/h
)

δ
(r

ad
)

φ
(N

)

Figure A-1: Larry’s run over road #1 as a function of time (sec).

d
ξ

(m
)

164 Appendix A:

0 100 200 300 400 500 600
40

50

60

70

80

90

0 100 200 300 400 500 600

-4

-2

0

2

4

0 100 200 300 400 500 600
-8000

-6000

-4000

-2000

0

2000

4000

0 100 200 300 400 500 600
-0.2

-0.1

0

0.1

0.2

v
(m

i/h
)

δ
(r

ad
)

φ
(N

)

Figure A-2: Larry’s run over road #2 as a function of time (sec).

d
ξ

(m
)

0 100 200 300 400 500 600
40

50

60

70

80

90

0 100 200 300 400 500 600

-4

-2

0

2

4

0 100 200 300 400 500 600
-8000

-6000

-4000

-2000

0

2000

4000

0 100 200 300 400 500 600
-0.2

-0.1

0

0.1

0.2

v
(m

i/h
)

δ
(r

ad
)

φ
(N

)

Figure A-3: Larry’s run over road #3 as a function of time (sec).

d
ξ

(m
)

 Curly 165

A.2 Curly

0 100 200 300 400 500 600 700
40

50

60

70

80

90

0 100 200 300 400 500 600 700

-4

-2

0

2

4

0 100 200 300 400 500 600 700
-8000

-6000

-4000

-2000

0

2000

4000

0 100 200 300 400 500 600 700
-0.2

-0.1

0

0.1

0.2

v
(m

i/h
)

δ
(r

ad
)

φ
(N

)

Figure A-4: Curly’s run over road #1 as a function of time (sec).

d
ξ

(m
)

166 Appendix A:

0 100 200 300 400 500 600 700
40

50

60

70

80

90

0 100 200 300 400 500 600 700

-4

-2

0

2

4

0 100 200 300 400 500 600 700
-8000

-6000

-4000

-2000

0

2000

4000

0 100 200 300 400 500 600 700
-0.2

-0.1

0

0.1

0.2

v
(m

i/h
)

δ
(r

ad
)

φ
(N

)

Figure A-5: Curly’s run over road #2 as a function of time (sec).

d
ξ

(m
)

0 100 200 300 400 500 600 700
40

50

60

70

80

90

0 100 200 300 400 500 600 700

-4

-2

0

2

4

0 100 200 300 400 500 600 700
-8000

-6000

-4000

-2000

0

2000

4000

0 100 200 300 400 500 600 700
-0.2

-0.1

0

0.1

0.2

v
(m

i/h
)

δ
(r

ad
)

φ
(N

)

Figure A-6: Curly’s run over road #3 as a function of time (sec).

d
ξ

(m
)

 Moe 167

A.3 Moe

0 100 200 300 400 500 600
40

50

60

70

80

90

0 100 200 300 400 500 600

-4

-2

0

2

4

0 100 200 300 400 500 600
-8000

-6000

-4000

-2000

0

2000

4000

0 100 200 300 400 500 600
-0.2

-0.1

0

0.1

0.2

v
(m

i/h
)

δ
(r

ad
)

φ
(N

)

Figure A-7: Moe’s run over road #1 as a function of time (sec).

d
ξ

(m
)

168 Appendix A:

0 100 200 300 400 500 600
40

50

60

70

80

90

0 100 200 300 400 500 600

-4

-2

0

2

4

0 100 200 300 400 500 600
-8000

-6000

-4000

-2000

0

2000

4000

0 100 200 300 400 500 600
-0.2

-0.1

0

0.1

0.2

v
(m

i/h
)

δ
(r

ad
)

φ
(N

)

Figure A-8: Moe’s run over road #2 as a function of time (sec).

d
ξ

(m
)

0 100 200 300 400 500 600
40

50

60

70

80

90

0 100 200 300 400 500 600

-4

-2

0

2

4

0 100 200 300 400 500 600
-8000

-6000

-4000

-2000

0

2000

4000

0 100 200 300 400 500 600
-0.2

-0.1

0

0.1

0.2

v
(m

i/h
)

δ
(r

ad
)

φ
(N

)

Figure A-9: Moe’s run over road #3 as a function of time (sec).

d
ξ

(m
)

 Groucho 169

A.4 Groucho

0 100 200 300 400 500 600
40

50

60

70

80

90

0 100 200 300 400 500 600

-4

-2

0

2

4

0 100 200 300 400 500 600
-8000

-6000

-4000

-2000

0

2000

4000

0 100 200 300 400 500 600
-0.2

-0.1

0

0.1

0.2

v
(m

i/h
)

δ
(r

ad
)

φ
(N

)

Figure A-10: Groucho’s run over road #1 as a function of time (sec).

d
ξ

(m
)

170 Appendix A:

0 100 200 300 400 500 600
40

50

60

70

80

90

0 100 200 300 400 500 600

-4

-2

0

2

4

0 100 200 300 400 500 600
-8000

-6000

-4000

-2000

0

2000

4000

0 100 200 300 400 500 600
-0.2

-0.1

0

0.1

0.2

v
(m

i/h
)

δ
(r

ad
)

φ
(N

)

Figure A-11: Groucho’s run over road #2 as a function of time (sec).

d
ξ

(m
)

0 100 200 300 400 500 600
40

50

60

70

80

90

0 100 200 300 400 500 600

-4

-2

0

2

4

0 100 200 300 400 500 600
-8000

-6000

-4000

-2000

0

2000

4000

0 100 200 300 400 500 600
-0.2

-0.1

0

0.1

0.2

v
(m

i/h
)

δ
(r

ad
)

φ
(N

)

Figure A-12: Groucho’s run over road #3 as a function of time (sec).

d
ξ

(m
)

 Harpo 171

A.5 Harpo

0 100 200 300 400 500 600
40

50

60

70

80

90

0 100 200 300 400 500 600

-4

-2

0

2

4

0 100 200 300 400 500 600
-8000

-6000

-4000

-2000

0

2000

4000

0 100 200 300 400 500 600
-0.2

-0.1

0

0.1

0.2

v
(m

i/h
)

δ
(r

ad
)

φ
(N

)

Figure A-13: Harpo’s run over road #1 as a function of time (sec).

d
ξ

(m
)

172 Appendix A:

0 100 200 300 400 500 600 700
40

50

60

70

80

90

0 100 200 300 400 500 600 700

-4

-2

0

2

4

0 100 200 300 400 500 600 700
-8000

-6000

-4000

-2000

0

2000

4000

0 100 200 300 400 500 600 700
-0.2

-0.1

0

0.1

0.2

v
(m

i/h
)

δ
(r

ad
)

φ
(N

)

Figure A-14: Harpo’s run over road #2 as a function of time (sec).

d
ξ

(m
)

0 100 200 300 400 500 600
40

50

60

70

80

90

0 100 200 300 400 500 600

-4

-2

0

2

4

0 100 200 300 400 500 600
-8000

-6000

-4000

-2000

0

2000

4000

0 100 200 300 400 500 600
-0.2

-0.1

0

0.1

0.2

v
(m

i/h
)

δ
(r

ad
)

φ
(N

)

Figure A-15: Harpo’s run over road #3 as a function of time (sec).

d
ξ

(m
)

 Zeppo 173

A.6 Zeppo

0 200 400 600 800
40

50

60

70

80

90

0 200 400 600 800

-4

-2

0

2

4

0 200 400 600 800
-8000

-6000

-4000

-2000

0

2000

4000

0 200 400 600 800
-0.2

-0.1

0

0.1

0.2

v
(m

i/h
)

δ
(r

ad
)

φ
(N

)

Figure A-16: Zeppo’s run over road #1 as a function of time (sec).

d
ξ

(m
)

174 Appendix A:

0 200 400 600 800
40

50

60

70

80

90

0 200 400 600 800

-4

-2

0

2

4

0 200 400 600 800
-8000

-6000

-4000

-2000

0

2000

4000

0 200 400 600 800
-0.2

-0.1

0

0.1

0.2

v
(m

i/h
)

δ
(r

ad
)

φ
(N

)

Figure A-17: Zeppo’s run over road #2 as a function of time (sec).

d
ξ

(m
)

0 200 400 600 800
40

50

60

70

80

90

0 200 400 600 800

-4

-2

0

2

4

0 200 400 600 800
-8000

-6000

-4000

-2000

0

2000

4000

0 200 400 600 800
-0.2

-0.1

0

0.1

0.2

v
(m

i/h
)

δ
(r

ad
)

φ
(N

)

Figure A-18: Zeppo’s run over road #3 as a function of time (sec).

d
ξ

(m
)

175

Appendix B:

HMM Training

In this appendix, we briefly summarize the forward-backward and Baum-Welch algorithms.

For a complete discussion of these algorithms, please see [94].

B.1 Forward-backward algorithm

The forward-backward algorithm is a computationally efficient algorithm for calculating

, for a discrete-output Hidden Markov Model with states, and a dis-

crete observation sequence , where,

, , . (B-1)

It is also the first step of the Baum-Welch algorithm described in Section B.2. The forward

algorithm is described below:

, (B-2)

, , (B-3)

P O λ() λ A B π, ,{ }= n

O o1 o2 … oT, , ,{ }=

A

a11 a12 … a1n

a21 a22 … a2n

: : : :

an1 an2 … ann

= B

b1 1() b2 1() … bn 1()

b1 2() b2 2() … bn 2()

: : : :

b1 L() b2 L() … bn L()

= π

π1

π2

:

πn

=

α1 i() πibi o1()= i 1 2 … n, , ,{ }∈

αt 1+ j() αt i()aij
i 1=

n

∑ bj ot 1+()= t 1 2 … T 1–, , ,{ }∈ j 1 2 … n, , ,{ }∈

176 Appendix B:

(B-4)

For long observation sequences, the above algorithm is not numerically stable, as it will result

in numerical underflow. By appropriate scaling, the forward algorithm can be modified to elim-

inate this problem:

, (B-5)

, (scaling) (B-6)

, , (B-7)

, , (scaling) (B-8)

, (scaling) (B-9)

(B-10)

Similarly, the backward algorithm (with scaling) is defined as follows:

, (B-11)

, (scaling) (B-12)

, (B-13)

, , (scaling) (B-14)

P O λ() αT i()
i 1=

n

∑=

α1 i() πibi o1()= 1 i n≤ ≤

α̂1 i() c1α1 i()= i 1 2 … n, , ,{ }∈

αt 1+ j() α̂t i()aij
i 1=

n

∑ bj ot 1+()= t 1 2 … T 1–, , ,{ }∈ j 1 2 … n, , ,{ }∈

α̂t 1+ j() ct 1+ αt 1+ j()= t 1 2 … T 1–, , ,{ }∈ j 1 2 … n, , ,{ }∈

ct 1 αt i()
i 1=

n

∑
 
 
 

⁄= t 1 2 … T, , ,{ }∈

P O λ() 1 ct
t 1=

T

∏
 
 
 

⁄=

βT i() 1= 1 i n≤ ≤

β̂T i() cTβT i()= 1 i n≤ ≤

βt i() aij bj ot 1+()β̂t 1+ j()
j 1=

n

∑= t T 1– T 2– … 1, , ,{ }∈ 1 i n≤ ≤

β̂t i() ctβt i()= t T 1– T 2– … 1, , ,{ }∈ 1 i n≤ ≤

 Baum-Welch algorithm (with scaling) 177

Note that the scaling coefficients are chosen to be the same for the forward and backward

algorithms.

B.2 Baum-Welch algorithm (with scaling)

Assume that we have multiple observation sequences , of length , . Further-

more, assume that we have a current estimate of the optimized Hidden Markov Model

 with states and output observables. We would now like to generate a new

estimate which guarantees that,

(B-15)

The Baum-Welch algorithm does just that. The state transition matrix is updated by,

, (B-16)

while the output probability distribution matrix is updated by,

, , (B-17)

Rabiner provides an excellent and practical introduction to the Baum-Welch algorithm [94].

Unfortunately, in [94] the final equations summarizing the Baum-Welch algorithm — namely,

equations (110) and (111), corresponding to equations (B-16) and (B-17) — are incorrect.

ct

O k() Tk 1 k K≤ ≤

λ A B π, ,{ }= n L

λ A B π, ,{ }=

P λ O k()()
k 1=

K

∏ P λ O k()()
k 1=

K

∏≥

A

aij

α̂t
k i()aij bj ot 1+

k()()β̂t 1+
k j()

t 1=

Tk 1–

∑
k 1=

K

∑

α̂t
k i()β̂t

k j()
ct

k

t 1=

Tk 1–

∑
k 1=

K

∑
--= 1 i j, n≤ ≤

B

bj l()

α̂t
k i()β̂t

k j()
ct

k

t 1=

s.t. ot vl=

Tk

∑
k 1=

K

∑

α̂t
k i()β̂t

k j()
ct

k

t 1=

Tk

∑
k 1=

K

∑
--= 1 l L≤ ≤ 1 j n≤ ≤

178 Appendix B:

In equation (110), the upper summation limit for should be , not ; otherwise, the

last symbol for each observation sequence is ignored in the reestimation formula for . Thus,

equation (110) should read,

(B-18)

The problem with equation (111) is two-fold. First note from equation (109),

(B-19)

that for multiple observation sequences, each term in thek-sum is weighted by . The

 factor comes from the definition of the and variables in equations (37) and

(38), respectively. Now, consider equation (111) (in terms of the scaled forward-backward vari-

ables):

(B-20)

Rewriting the above equation in terms of unscaled variables, we get,

t Tk Tk 1–()

B

bj l()

1
Pk
----- αt

k
i()βt

k
j()

t 1=

s.t. ot vl=

Tk 1–

∑
k 1=

K

∑

1
Pk
----- αt

k
i()βt

k
j()

t 1=

Tk 1–

∑
k 1=

K

∑
--=

 
 
 
 
 
 
 
 
 

bj l()

1
Pk
----- αt

k
i()βt

k
j()

t 1=

s.t. ot vl=

Tk

∑
k 1=

K

∑

1
Pk
----- αt

k
i()βt

k
j()

t 1=

Tk

∑
k 1=

K

∑
--=

 
 
 
 
 
 
 
 
 

⇒

aij

1
Pk
----- αt

k
i()aij bj ot 1+

k()()βt 1+
k

j()
t 1=

Tk 1–

∑
k 1=

K

∑

1
Pk
----- αt

k
i()βt

k
j()

t 1=

Tk 1–

∑
k 1=

K

∑
--=

1 Pk⁄

1 Pk⁄ ξt i j,() γ t i()

aij

1
Pk
----- α̂t

k
i()aij bj ot 1+

k()()β̂t 1+
k

j()
t 1=

Tk 1–

∑
k 1=

K

∑

1
Pk
----- α̂t

k
i()β̂t

k
j()

t 1=

Tk 1–

∑
k 1=

K

∑
--=

 Baum-Welch algorithm (with scaling) 179

 (Wrong!) (B-21)

; ; (by definition) (B-22)

(Wrong!) (B-23)

Thus, equation (111) makes two errors: (1) it inadvertently scales each observation sequence

by , and (2) it leaves an extra term in the denominator. Equation (B-16) above corrects

these errors. Using the incorrect equations leads to oscillating behavior of the Baum-Welch

algorithm, which, theoretically, is guaranteed not to happen.

aij

1
Pk
----- Ct

kαt
k

i()aij bj ot 1+
k()()Dt 1+

k βt 1+
k

j()
t 1=

Tk 1–

∑
k 1=

K

∑

1
Pk
----- Ct

kαt
k

i()Dt
kβt

k
j()

t 1=

Tk 1–

∑
k 1=

K

∑
--=

Ct
k
Dt 1+

k
CT

k
= Ct

k
Dt

k
ct

k
CT

k
= CT

k 1
Pk
-----=

aij

CT
k

Pk
------- αt

k
i()aij bj ot 1+

k()()βt 1+
k

j()
t 1=

Tk 1–

∑
k 1=

K

∑

CT
k

Pk
------- ct

kαt
k

i()βt
k

j()
t 1=

Tk 1–

∑
k 1=

K

∑

1
Pk

2
------ αt

k
i()aij bj ot 1+

k()()βt 1+
k

j()
t 1=

Tk 1–

∑
k 1=

K

∑

1
Pk

2
------ ct

kαt
k

i()βt
k

j()
t 1=

Tk 1–

∑
k 1=

K

∑
--= =

1 Pk
2⁄ ct

k

180 Appendix B:

181

Appendix C:

Author’s Publications

The following is a complete list of journal and refereed conference publications derived from

this work (in reverse chronological order):

[1] M. C. Nechyba and Y. Xu, “Stochastic Similarity for Validating Human Control Strategy

Models,” to appear inIEEE Trans. on Robotics and Automation, June, 1998.

[2] M. C. Nechyba and Y. Xu, “On Discontinuous Human Control Strategies,” to appear in

Proc. IEEE Int. Conference on Robotics and Automation, May, 1998.

[3] J. Song, Y. Xu, M. C. Nechyba and Y. Yam, “Two Performance Measures for Evaluating

Human Control Strategy,” to appear inProc. IEEE Int. Conference on Robotics and Auto-

mation, May, 1998.

[4] M. C. Nechyba and Y. Xu, “Learning and Transfer of Human Real-Time Control Strate-

gies,”Journal of Advanced Computational Intelligence, vol. 1, no. 2, pp. 137-54, 1997.

[5] M. C. Nechyba and Y. Xu, “Human Control Strategy: Abstraction, Verification and Rep-

lication,” IEEE Control Systems Magazine, vol. 17, no. 5, pp. 48-61, 1997.

182 Appendix C:

[6] M. C. Nechyba and Y. Xu, “Cascade Neural Networks with Node-Decoupled Extended

Kalman Filtering,”Proc. IEEE Int. Symp. on Computational Intelligence in Robotics and

Automation, vol. 1, pp. 214-9, 1997.

[7] M. C. Nechyba and Y. Xu, “Stochastic Similarity for Validating Human Control Strategy

Models,”Proc. IEEE Int. Conf. on Robotics and Automation, vol. 1, pp. 278-83, 1997.

[8] M. C. Nechyba and Y. Xu, “On the Fidelity of Human Skill Models,”Proc. IEEE Int.

Conference on Robotics and Automation, vol. 3, pp. 2688-93, 1996.

[9] M. C. Nechyba and Y. Xu, “Human Skill Transfer: Neural Networks as Learners and

Teachers,”Proc. IEEE Int. Conference on Intelligent Robots and Systems, vol. 3, pp. 314-

9, 1995.

[10] M. C. Nechyba and Y. Xu, “Neural Network Approach to Control System Identification

with Variable Activation Functions,”Proc. IEEE Int. Symp. on Intelligent Control, vol. 1,

pp. 358-63, 1994.

183

Bibliography

[1] J. Albus, “A New Approach to Manipulator Control: The Cerebellar Model Articulation

Controller (Cmac),”Trans. ASME Journal of Dynamic Systems, Measurement, and

Control, vol. 97, pp. 220-7, 1975.

[2] B. D. O. Anderson and J. B. Moore,Optimal Filtering, Prentice-Hall, Englewood

Cliffs, 1979.

[3] P. J. Antsaklis, guest ed., Special Issue on Neural Networks in Control Systems,IEEE

Control System Magazine, vol. 10, no. 3, pp. 3-87, 1990.

[4] P. J. Antsaklis, guest ed., Special Issue on Neural Networks in Control Systems,IEEE

Control System Magazine, vol. 12, no. 2, pp. 8-57, 1992.

[5] H. Asada and S. Liu, “Transfer of Human Skills to Neural Net Robot Controllers,”Proc.

IEEE Int. Conf. on Robotics and Automation, vol. 3, pp. 2442-2447, 1991.

[6] H. Asada and B. Yang, “Skill Acquisition from Human Experts Through Pattern Pro-

cessing of Teaching Data,”Proc. IEEE Int. Conf. on Robotics and Automation, vol. 3,

pp. 1302-7, 1989.

[7] T. Ash, “Dynamic Node Creation in Backpropagation Networks,”Connection Science,

vol. 1, no. 4, pp. 365-75, 1989.

184 Bibliography

[8] K. J. Åström and T. J. McAvoy, “Intelligent Control: An Overview and Evaluation,”

Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches, D. A. White

and D. A. Sofge, eds., pp. 3-34, Multiscience Press, New York, 1992.

[9] C. G. Atkeson, A. W. Moore and S. Schaal, “Locally Weighted Learning,”Artificial

Intelligence Review, vol. 11, no. 1-5, pp. 11-73, 1997.

[10] C. G. Atkeson, A. W. Moore and S. Schaal, “Locally Weighted Learning for Control,”

Artificial Intelligence Review, vol. 11, no. 1-5, pp. 75-113, 1997.

[11] S. Baluja and R. Caruana, “Removing Genetics from the Standard Genetic Algorithm,”

Proc. of the 12th Int. Conf. on Machine Learning, vol. 1, pp. 38-46, 1995.

[12] R. Basri and D. Weinshall, “Distance Metric Between 3D Models and 2D Images for

Recognition and Classification,”IEEE Trans. Pattern Analysis and Machine Intelli-

gence, vol. 43, no. 4, pp. 465-479, 1996.

[13] E. B. Bartlett, “Dynamic Node Architecture Learning: An Information Theoretic

Approach,”Neural Networks, vol. 7, no. 1, pp. 129-40, 1994.

[14] A. G. Barto, R. S. Sutton and C. J. Watkins, “Learning and Sequential Decision Mak-

ing,” Learning and Computational Neuroscience, ed. M. Gabriel and J. W. Moore, MIT

Press, Cambridge, pp. 539-602, 1990.

[15] P. H. Batavia, “Driver Adaptive Warning Systems,” Technical Report, CMU-RI-TR-98-

07, Carnegie Mellon University, 1998.

[16] L. E. Baum, T. Petrie, G. Soules and N. Weiss, “A Maximization Technique Occurring

in the Statistical Analysis of Probabilistic Functions of Markov Chains,”Ann. Mathe-

matical Statistics, vol. 41, no. 1, pp. 164-71, 1970.

Bibliography 185

[17] J. L. Bentley, “Multidimensional Binary Search Trees Used for Associative Searching,”

Communications of the ACM, vol. 19, no. 9, pp. 509-17, 1975.

[18] N. V. Bhat and T. J. McAvoy, “Determining Model Structure for Neural Models by Net-

work Stripping,” Computers and Chemical Engineering, vol. 16, no. 4, pp. 271-81,

1992.

[19] C. M. Bishop,Neural Networks for Pattern Recognition, Oxford University Press,

1995.

[20] M. Boninsegna and M. Rossi, “Similarity Measures in Computer Vision,”Pattern Rec-

ognition Letters, vol. 15, no. 12, pp. 1255-60, 1994.

[21] P. J. Brockwell and R. A. Davis,Time Series: Theory and Methods, 2nd. ed., Springer-

Verlag, New York, 1991.

[22] P. Burrascano, “A Pruning Technique Maximizing Generalization,”Proc. Int. Joint

Conf. on Neural Networks, vol. 1, pp. 347-50, 1993.

[23] G. Castellano, A. M. Fanelli and M. Pelillo, “An Empirical Comparison of Node Prun-

ing Methods for Layered Feed-forward Neural Networks,”Proc. Int. Joint Conf. on

Neural Networks, vol. 1, pp. 321-6, 1993.

[24] J. P. Cater, “Successfully Using Peak Learning Rates of 10 (and Greater) in Back-Prop-

agation Networks with the Heuristic Learning Algorithm,”IEEE First Int. Conf. on

Neural Networks, vol. 2, pp. 645-51, 1987.

[25] K. Chen and R. D. Ervin, “Worldwide IVHS Activities: A Comparative Overview,”

Proc. CONVERGENCE’92 — Int. Congress on Transportation Electronics, pp. 339-49,

1992.

186 Bibliography

[26] W. C. Collier and R. J. Weiland, “Smart Cars, Smart Highways,”IEEE Spectrum, vol.

31, No. 4, pp. 27-33, 1994.

[27] G. Cybenko, “Approximation by Superposition of a Sigmoidal Function,”Mathematics

of Control, Signals, and Systems, vol. 2, no. 4, pp. 303-14, 1989.

[28] N. Delson and H. West, “Robot Programming by Human Demonstration: Adaptation

and Inconsistency in Constrained Motion,”Proc. IEEE Int. Conf. on Robotics and Auto-

mation, vol. 1, pp. 30-6, 1996.

[29] K. Deng, A. Moore and M. C. Nechyba, “Learning to Recognize Time Series: Combin-

ing ARMA Models with Memory-Based Learning,”Proc. IEEE Int. Symp. on Compu-

tational Intelligence in Robotics and Automation, vol. 1, pp. 246-50, 1997.

[30] R. O. Duda and P. E. Hart,Pattern Classification and Scene Analysis, John Wiley &

Sons, New York, 1973.

[31] S. E. Fahlman, “An Empirical Study of Learning Speed in Back-Propagation Net-

works,” Technical Report, CMU-CS-TR-88-162, Carnegie Mellon University, 1988.

[32] S. E. Fahlman and C. Lebiere, “The Cascade-Correlation Learning Architecture,” Tech-

nical Report, CMU-CS-TR-91-100, Carnegie Mellon University, 1991.

[33] S. E. Fahlman, L. D. Baker and J. A. Boyan, “The Cascade 2 Learning Architecture,”

Technical Report, CMU-CS-TR-96-184, Carnegie Mellon University, 1996.

[34] E. Fix and H. G. Armstrong, “Modeling Human Performance with Neural Networks,”

Proc. Int. Joint Conf. on Neural Networks, vol. 1, pp. 247-52, 1990.

[35] E. Fix and H. G. Armstrong, “Neural Network Based Human Performance Modeling,”

Proc. IEEE National Aerospace and Electronics Conf., vol. 3, pp. 1162-5, 1990.

Bibliography 187

[36] H. Friedrich, M. Kaiser and R. Dillman, “What Can Robots Learn From Humans?”

Annual Reviews in Control, vol. 20, pp. 167-72, 1996.

[37] K. Funahashi, “On the Approximate Realization of Continuous Mappings by Neural

Networks,”Neural Net., vol. 2, no. 3, pp. 183-92, 1989.

[38] S. Geva and J. Sitte, “A Cartpole Experiment Benchmark for Trainable Controllers,”

IEEE Control Systems Magazine, vol. 13, no. 5, pp. 40-51, 1993.

[39] C. G. Gingrich, D. R. Kuespert and T. J. McAvoy, “Modeling Human Operators Using

Neural Networks,”ISA Trans., vol. 31, no. 3, pp. 81-90, 1992.

[40] D. E. Goldberg,Genetic Algorithms in Search, Optimization, and Machine Learning,

Addison-Wesley, New York, 1989.

[41] D. Gopher, M. Weil and T. Bareket, “The Transfer of Skill from a Computer Game

Trainer to Actual Flight,”Proc. Human Factors Society 36th Annual Meeting, vol. 2,

pp. 1285-1290, 1992.

[42] A. Guez and J. Selinsky, “A Trainable Neuromorphic Controller,” Journal of Robotic

Systems, vol. 5, no. 4, pp. 363-88, 1988.

[43] V. Gullapalli, J. A. Franklin and H. Benbrahim, “Acquiring Robot Skills Via Reinforce-

ment Learning,”IEEE Control Systems Magazine, vol. 14, no. 1, pp. 13-24, 1994.

[44] M. Hagiwara, “Removal of Hidden Units and Weights for Back Propagation Net-

works,” Proc. Int. Joint Conf. on Neural Networks, vol. 1, pp. 351-54, 1993.

[45] B. Hannaford and P. Lee, “Hidden Markov Model Analysis of Force/Torque Informa-

tion in Telemanipulation,”Int. Journal Robotics Research, vol. 10, no. 5, pp. 528-39,

1991.

188 Bibliography

[46] H. Hatwal and E. C. Mikulcik, “Some Inverse Solutions to an Automobile Path-Track-

ing Problem with Input Control of Steering and Brakes,”Vehicle System Dynamics, vol.

15, pp. 61-71, 1986.

[47] J. Hertz, A. Krogh and R. G. Palmer,Introduction to the Theory of Neural Computation,

Addison-Wesley Publishing, Redwood City, 1991.

[48] R. A. Hess, “Human-in-the-Loop Control,”The Control Handbook, ed. W. S. Levine,

CRC Press, pp. 1497- 505, 1996.

[49] Y. Hiroshe, K. Yamashita and S. Hijiya, “Backpropagation Algorithm Which Varies the

Number of Hidden Units,”Neural Networks, vol. 4, no. 1, pp. 61-6, 1991.

[50] G. E. Hovland, P. Sikka and B. J. MacCarragher, “Skill Acquisition from Human Dem-

onstration Using a Hidden Markov Model,”Proc. IEEE Int. Conf. on Robotics and

Automation, vol. 3, pp. 2706-11, 1997.

[51] X. D. Huang, Y. Ariki and M. A. Jack,Hidden Markov Models for Speech Recognition,

Edinburgh University Press, Edinburgh, 1990.

[52] K. J. Hunt,et. al., “Neural Networks for Control Systems - A Survey,”Automatica, vol.

28, no. 6, pp. 1083-112, 1992.

[53] W. Iba, “Modeling the Acquisition and Improvement of Motor Skills,”Machine Learn-

ing: Proc. Eighth Int. Workshop on Machine Learning, vol. 1, pp. 60-64, 1991.

[54] R. Jain, S. N. J. Murty,et. al., “Similarity Measures for Image Databases,” inProc.

IEEE Int. Conf. on Fuzzy Systems, vol. 3, pp. 1247-54, 1995.

[55] B. H. Juang and L. R. Rabiner, “A Probabilistic Distance Measure for Hidden Markov

Models,”AT&T Technical Journal, vol. 64, no. 2, pp. 391-408, 1985.

Bibliography 189

[56] M. Kaiser, “Transfer of Elementary Skills via Human-Robot Interaction,”Adaptive

Behavior, vol. 5, no. 3-4, pp. 249-80, 1997.

[57] S. B. Kang, “Automatic Robot Instruction from Human Demonstration,” Ph.D. Thesis,

The Robotics Institute, Carnegie Mellon University, 1994.

[58] S. Kollias and D. Anastassiou, “An Adaptive Least Squares Algorithm for the Efficient

Training of Artificial Neural Networks,”IEEE Trans. on Circuits and Systems, vol. 36,

no. 8, pp. 1092-101, 1989.

[59] K. Kosuge, T. Fukuda and H. Asada, “Acquisition of Human Skills for Robotic Sys-

tems,”Proc. IEEE Int. Symp. on Intelligent Control, pp. 469-74, 1991.

[60] U. Kramer, “On the Application of Fuzzy Sets to the Analysis of the System-Driver-

Vehicle Environment,”Automatica, vol. 21, no. 1, pp. 101-7, 1985.

[61] A. Kundu, G. C. Chen and C. E. Persons, “Transient Sonar Signal Classification Using

Hidden Markov Models and Neural Nets,”IEEE Jour. Oceanic Engineering, vol. 19,

no. 1, pp. 87-99, 1994.

[62] K. Y. Kupeev and H. J. Wolfson, “On Shape Similarity,”Proc. of 12th IAPR Int. Conf.

on Pattern Recognition, vol. 1, pp. 227-31, 1994.

[63] C. C. Lee, “Fuzzy Logic in Control Systems: Fuzzy Logic Controller — Part I,”IEEE

Trans. on Systems, Man and Cybernetics, vol. 20, no. 2, pp. 404-18, 1990.

[64] C. C. Lee, “Fuzzy Logic in Control Systems: Fuzzy Logic Controller — Part II,”IEEE

Trans. on Systems, Man and Cybernetics, vol. 20, no. 2, pp. 419-35, 1990.

[65] C. Lee, “Transferring Human Skills to Robots via Task Demonstrations in Virtual Envi-

ronments,” Ph.D. Thesis Proposal, Carnegie Mellon University, 1997.

190 Bibliography

[66] S. Lee and J. Chen, “Skill Learning from Observations,”Proc. IEEE Int. Conf. on

Robotics and Automation, vol. 4, pp. 3245-250, 1994.

[67] S. Lee and M. H. Kim, “Cognitive Control of Dynamic Systems,”Proc. IEEE Int. Symp.

on Intelligent Control, pp. 455-60, 1987.

[68] S. Lee and M. H. Kim, “Learning Expert Systems for Robot Fine Motion Control,”

Proc. IEEE Int. Symp. on Intelligent Control, pp. 534-44, 1988.

[69] Y. Linde, A. Buzo and R. M. Gray, “An Algorithm for Vector Quantizer Design,”IEEE

Trans. Communication, vol. COM-28, no. 1, pp. 84-95, 1980.

[70] S. Liu and H. Asada, “Transferring Manipulative Skills to Robots: Representation and

Acquisition of Tool Manipulative Skills Using a Process Dynamics Model,”Trans.

ASME Journal of Dynamic Systems, Measurement, and Control, vol. 114, pp. 220-8,

1992.

[71] M. C. Mackey and L. Glass, “Oscillations and Chaos in Physiological Control Sys-

tems,”Science, vol. 197, no. 4300, pp. 287-9, 1977.

[72] D. T. McRuer and E. S. Krendel, “Human Dynamics in Man-Machine Systems,”Auto-

matica, vol. 16, no. 3, pp. 237-53, 1980.

[73] W. T. Miller, R. S. Sutton and P. I. Werbos, eds., “Neural Networks For Control,” MIT

Press, Cambridge, 1990.

[74] A. Modjtahedzadeh and R. A. Hess, “A Model of Driver Steering Control Behavior for

Use in Assessing Vehicle Handling Qualities,”Trans. ASME Journal of Dynamic Sys-

tems, Measurement, and Control, vol. 115, no. 3, pp. 456-64, 1993.

[75] J. Moody and C. Darken, “Fast Learning in Networks of Locally Tuned Processing

Units,” Neural Computation, vol. 1, no. 2, pp. 281-94, 1989.

Bibliography 191

[76] A. W. Moore and C. G. Atkeson, “Prioritized Sweeping: Reinforcement Learning with

Less Data and Less Real Time,”Machine Learning, vol 13, no. 1, pp. 103-30, 1993.

[77] M. C. Mozer and P. Smolensky, “Skeletonization: A Technique for Trimming the Fat

From a Network Via Relevance Assessment,”Advances in Neural Information Process-

ing Systems 1, D. S. Touretzky, ed., Morgan Kaufmann Publishers, pp. 107-15, 1989.

[78] T. M. Nabhan and A. Y. Zomaya, “Toward Generating Neural Network Structures for

Function Approximation,”Neural Networks, vol. 7, no. 1, pp. 89-99, 1994.

[79] K. S. Narendra and K. Parthasarathy, “Identification and Control of Dynamical Systems

Using Neural Networks,”IEEE Trans. on Neural Networks, vol. 1, no. 1, pp. 4-27,

1990.

[80] M. C. Nechyba and Y. Xu, “Learning and Transfer of Human Real-Time Control Strat-

egies,” Journal of Advanced Computational Intelligence, vol. 1, no. 2, pp. 137-54,

1997.

[81] M. C. Nechyba and Y. Xu, “Neural Network Approach to Control System Identification

with Variable Activation Functions,”Proc. IEEE Int. Symp. on Intelligent Control, vol.

1, pp. 358-63, 1994.

[82] S. Neuser, J. Nijhuis,et. al., “Neurocontrol for Lateral Vehicle Guidance,”IEEE Micro,

vol. 13, no. 1, pp. 57-66, 1993.

[83] D. O’Hare and S. Roscoe,Flight Deck Performance: The Human Factor, Iowa State

University Press, Ames, 1990.

[84] S. Omohundro, “Bumptrees for Efficient Function, Constraint, and Classification

Learning,”Advances in Neural Information Processing Systems 3, R. P. Lippmann, J.

E. Moody and D. S. Touretzky, eds, Morgan Kaufmann Publishers, pp. 693-9, 1991.

192 Bibliography

[85] E. H. Park, et. al., “Adaptive Learning of Human Motion by a Telerobot Using a Neural

Network Model as a Teacher,”Computer and Industrial Engineering, vol. 27, pp. 453-

6, 1994.

[86] A. Pentland and A. Liu, “Toward Augmented Control Systems,”Proc. Intelligent Vehi-

cles, vol. 1, pp. 350-5, 1995.

[87] D. Plaut, S. Nowlan and G. Hinton, “Experiment on Learning by Backpropagation,”

Technical Report, CMU-CS-86-126, Carnegie Mellon University, 1986.

[88] D. A. Pomerleau and T. Jochem, “Rapidly Adapting Machine Vision for Automated

Vehicle Steering,”IEEE Expert, vol. 11, no. 2, pp. 19-27, 1996.

[89] D. A. Pomerleau, “Neural Network Perception for Mobile Robot Guidance,” Ph.D.

Thesis, School of Computer Science, Carnegie Mellon University, 1992.

[90] D. A. Pomerleau, “Reliability Estimation for Neural Network Based Autonomous Driv-

ing,” Robotics and Autonomous Systems, vol. 12, no. 3-4, pp. 113-9, 1994.

[91] W. H. Press, et. al.,Numerical Recipes in C: The Art of Scientific Computing, 2nd ed.,

Cambrige University Press, Cambridge, 1992.

[92] G. V. Puskorius and L. A. Feldkamp, “Decoupled Extended Kalman Filter Training of

Feedforward Layered Networks,”Proc. Int. Joint Conf. on Neural Networks, vol. 1, pp.

771-7, 1991.

[93] S. Qin, H. Su and T. J. McAvoy, “Comparison of Four Neural Net Learning Methods

for Dynamic System Identification,”IEEE Trans. on Neural Networks, vol. 3, no. 1, pp.

122-30, 1992.

[94] L. R. Rabiner, “A Tutorial on Hidden Markov Models and Selected Applications in

Speech Recognition,”Proc. IEEE, vol. 77, no. 2, pp. 257-86, 1989.

Bibliography 193

[95] L. R. Rabiner, B. H. Juang, S. E. Levinson and M. M. Sondhi, “Some Properties of Con-

tinuous Hidden Markov Model Representations,”AT&T Technical Journal, vol. 64, no.

6, pp. 1211-1222, 1986.

[96] G. Radons, J. D. Becker, B. Dulfer and J. Kruger, “Analysis, Classification and Coding

of Multielectrode Spike Trains with Hidden Markov Models,”Biological Cybernetics,

vol. 71, no. 4, pp. 359-73, 1994.

[97] K. R. Rao and D. F. Elliott,Fast Transforms: Algorithms, Analyses and Applications,

Academic Press, New York, 1982.

[98] D. E. Rumelhart, J. L. McClelland and the PDP Research Group,Parallel Distributed

Processing: Explorations in the Microstructure of Cognition, Volume 1: Foundations,

MIT Press, Cambridge, 1986.

[99] T. Samad, “Neurocontrol: Concepts and Applications,”Proc. IEEE Int. Conf. on Sys-

tems, Man, and Cybernetics, vol. 1, pp. 369-74, 1992.

[100] S. Schaal and C. G. Atkeson, “Memory-Based Robot Learning,”Proc. IEEE Int. Conf.

on Robotics and Automation, vol. 4, pp. 2928-33, 1994.

[101] S. Schaal and C. G. Atkeson, “Robot Juggling: Implementation of Memory-Based

Learning,”IEEE Control Systems Magazine, vol. 14, no. 1, pp. 57-71, 1994.

[102] J. G. Schneider, “Robot Skill Learning Through Intelligent Experimentation,” Ph.D.

Thesis, School of Computer Science, University of Rochester, 1995.

[103] W. L. Shebilske and J. W. Regian, “Video Games, Training, and Investigating Complex

Skills,” Proc. Human Factors Society 36th Annual Meeting, vol. 2, pp. 1296-1300,

1992.

194 Bibliography

[104] T. B. Sheridan, “Space Teleoperation Through Time Delay: Review and Prognosis,”

IEEE Trans. on Robotics and Automation, vol. 9, no. 5, pp. 592-606, 1993.

[105] T. B. Sheridan,Telerobotics, Automation, and Human Supervisory Control, Cambridge

Press, Cambrdige, 1992.

[106] K. Shimokura and S. Liu, “Programming Deburring Robots Based on Human Demon-

stration with Direct Burr Size Measurement,”Proc. IEEE Int. Conf. on Robotics and

Automation, vol. 1, pp. 572-7, 1994.

[107] H. Y. Shum, M. Hebert and K. Ikeuchi, “On 3D Shape Similarity,” Technical Report,

CMU-CS-95-212, Carnegie Mellon University, 1995.

[108] S. Singhal and L. Wu, “Training Multilayer Perceptrons with the Extended Kalman

Algorithm,” Advances in Neural Information Processing Systems 1, ed. Touretzky, D.

S., Morgan Kaufmann Publishers, pp. 133-40, 1989.

[109] M. Skubic and R. A. Volz, “Learning Force Sensory Patterns and Skills From Human

Demonstration,”Proc. IEEE Int. Conf. on Robotics and Automation, vol. 1, pp. 284-90,

1997.

[110] J. Song, Y. Xu, M. C. Nechyba and Y. Yam, “Two Performance Measures for Evaluating

Human Control Strategy,” to appear inProc. IEEE Int. Conference on Robotics and

Automation, May, 1998.

[111] J. Song, Y. Xu, Y. Yam and M. C. Nechyba, “Optimization of Human Control Strategies

with Simultaneously Perturbed Stochastic Approximation,”submitted to Proc. IEEE

Int. Conference on Intelligent Robots and Systems, October, 1998.

[112] L. G. Sotelino, M. Saerens and H. Bersini, “Classification of Temporal Trajectories by

Continuous-Time Recurrent Nets,”Neural Networks, vol. 7, no. 5, pp. 767-76, 1994.

Bibliography 195

[113] J. C. Spall, “Multivariate Stochastic Approximation Using a Simultaneous Perturbation

Gradient Approximation,”IEEE Trans. on Automation Control, vol. 37, no. 3, pp. 332-

41, 1992.

[114] M. Sun, G. Burk and R. J. Sclabassi, “Measurement of Signal Similarity Using the

Maxima of the Wavelet Transform,”Proc. IEEE Int. Conf. on Acoustics, Speech, and

Signal Processing, vol. 3, pp. 583-586, 1993.

[115] R. S. Sutton, “Learning to Predict by the Methods of Temporal Differences,”Machine

Learning, vol. 3, no. 1, pp. 9-44, 1988.

[116] R. Sutton and D. R. Towill, “Modeling the Helmsan in a Ship Steering System Using

Fuzzy Sets,”Analysis, Design and Evaluation of Man-Machine Systems: Selected

Papers from the Third IFAC Conference, vol. 1, pp. 157-62, 1988.

[117] H. H. Thodberg, “Improving Generalization of Neural Networks Through Pruning,”

Int. Journal of Neural Systems, vol. 1, no. 4, pp. 317-26, 1991.

[118] A. Ude, “Trajectory Generation from Noisy Positions of Object Features for Teaching

Robot Paths,”Robotics and Autonomous Systems, vol. 11, no. 2, pp. 113-27, 1993.

[119] R. M. Voyles, J. D. Morrow and P. K. Khosla, “Towards Gesture-Based Programming:

Shape from Motion Primordial Learning of Sensorimotor Primitives,”Robotics and

Autonomous Systems, vol. 22, no. 3-4, pp. 361-75, 1997.

[120] C. J. Watkins, “Learning from Delayed Rewards,” Ph.D. Thesis, King’s College, Uni-

versity of Cambridge, 1989.

[121] M. Werman and D. Weinshall, “Similarity and Affine Invariant Distances Between 2D

Point Sets,”IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 17, no. 8, pp.

810-14, 1995.

196 Bibliography

[122] D. A. White and D. A. Sofge, eds.,Handbook of Intelligent Control: Neural, Fuzzy, and

Adaptive Approaches, Multiscience Press, New York, 1992.

[123] J. Yamato, S. Kurakake, A. Tomono and K. Ishii, “Human Action Recognition Using

HMM with Category Separated Vector Quantization,”Trans. Institute of Electronics,

Information and Communication Engineers D-II, vol. J77D-II, no. 7, pp. 1311-18,

1994.

[124] J. Yamato, J. Ohya and K. Ishii, “REcognizing Human Action in Time-sequential

Images Using Hidden Markov Models,”Trans. Institute of Electronics, Information,

and Communication Engineers D-II, vol. J76D-II, no. 12, pp. 2556-2563, 1993.

[125] B. Yang and H. Asada, “Hybrid Linguistic/Numeric Control of Deburring Robots

Based on Human Skills,”Proc. IEEE Int. Conf. on Robotics and Automation, vol. 2, pp.

1467-74, 1992.

[126] J. Yang, Y. Xu and C. S. Chen, “Hidden Markov Model Approach to Skill Learning and

its Application to Telerobotics,”IEEE Trans. on Robotics and Automation, vol. 10, no.

5, pp. 621-31, 1994.

[127] J. Yang, Y. Xu and C. S. Chen, “Human Action Learning via Hidden Markov Models,”

IEEE Trans. on Systems, Man, and Cybernetics — Part A: Systems and Humans, vol.

27, no. 1, pp. 34-44, 1997.

