
THE INTEGRATED DEDUCTIVE APPROACH

TO NATURAL LANGUAGE INTERFACES

eingereicht von:

MMag. Werner Winiwarter

DISSERTATION

zur Erlangung des akademischen Grades

Doctorum rerum socialium oeconomicarumque

(Doktor der Sozial- und Wirtschaftswissenschaften)

Sozial- und Wirtschaftswissenschaftliche Fakultät der Universität Wien

Betreuung:

o.Univ.-Prof. Dipl.-Ing. Dr. A Min Tjoa

o.Univ.-Prof. Dr. Günther Vinek

Wien, im Juni 1994

THE INTEGRATED DEDUCTIVE APPROACH

TO NATURAL LANGUAGE INTERFACES

by

MMag. Werner Winiwarter

Submitted for the Degree of Doctor of Economic Sciences

Institute of Applied Computer Science and Information Systems

Department of Information Engineering

School of Social and Economic Sciences, University of Vienna, Austria

June 1994 - Vienna, Austria

Abstract

Abstract

The framework of our research originates from two different sources: natural
language processing and deductive database technology. Deductive databases
possess superior functionality in comparison to relational systems relevant to the
efficient solution of many problems arising in practical applications, yet there still
exists no broad acquaintance and acceptance. As main obstacle we identified the
absence of any user-friendly interface. Natural language interfaces have been
proposed as optimal candidate for complex database applications because they
make it possible to communicate with the database system without the need to
learn any formal query or manipulation language. However, in spite of the vast
number of ambitious attempts to build natural language front-ends, the achieved
results as concerns user acceptance were rather disappointing. In our opinion there
are two main reasons for this: missing customisation, resulting in unexpected
restrictions, and missing integration, responsible for insufficient performance and
wrong interpretation. We deal with these shortcomings by combining the strengths
of both research fields. In our Integrated Deductive Approach (IDA) the interface
constitutes an integral part of the database system itself by making use of the
declarative power of deductive databases, that is, the dictionary of the interface is
also designed as component of the database system as well as the complete natural
language analysis is performed by the logic programming language provided by
deductive databases. This complete integration of linguistic analysis guarantees
the consistent mapping from the semantic representation of the user query to the
appropriate semantic application model avoiding any discontinuities of
homogeneity. For each step of natural language analysis we introduce new
concepts and show their efficient implementation in IDA. Morphological and
lexical analysis are performed by adapting the lexical approach, also covering
prefixes, derivations, and compound words. The dictionary has a hierarchical
structure making it possible to insert all features at the appropriate level of
abstraction. Furthermore, the expressive two-level formalism is applied to the
processing of three special morphological phenomena: ablaut, elision, and binding
sounds. As concerns syntactic analysis, we propose an extension to Categorial
Unification Grammar in order to analyse free word order languages efficiently.
This grammatical framework is in optimal conformity with the powerful dictionary
as well as the evaluation strategy of deductive databases. The bottom-up parsing
also makes it possible to analyse incomplete and ungrammatical sentences in an
easy and natural way. For semantic analysis we introduce the unknown value list
(UVL) analysis, a technique that operates directly on the evaluation of database
values and deep forms of functional words, that is, syntactic analysis is only applied
if necessary for disambiguation. Finally, also solutions for discourse resolution and
spelling error correction are presented. We prove the feasibility of the IDA
approach by use of a case study, the design and implementation of a production
planning and control system. The central point of our proposed seven step model
to the development of efficient database applications with natural language
interfaces is the empirical collection of test data in order to obtain realistic input
sentences, therefore guaranteeing optimal customisation for practical use.

The Integrated Deductive Approach to Natural Language Interfaces

Zusammenfassung

Zusammenfassung

Der theoretische Rahmen dieser Arbeit hat seinen Ursprung in zwei Bereichen:
Verarbeitung natürlicher Sprache und deduktive Datenbanktechnologie. Obwohl
deduktive Datenbanken im Vergleich zu relationalen Systemen über eine erweiterte
Funktionalität verfügen, welche für die effiziente Bewältigung zahlreicher in
Praxisanwendungen auftretender Probleme von Relevanz ist, war das bisherige
allgemeine Interesse sowie die Benutzerakzeptanz gering. Da hierbei das haupt-
sächliche Hindernis die fehlende benutzerfreundliche Schnittstelle darstellt, wurde
als optimaler Kandidat eine natürlichsprachliche Schnittstelle vorgeschlagen.
Trotz der großen Anzahl an ambitionierten Versuchen, natürlichsprachliche Ober-
flächen zu entwickeln, waren die erzielten Resultate in Hinblick auf die Benut-
zerakzeptanz enttäuschend, wofür zwei Hauptfaktoren verantwortlich gemacht
werden können: fehlende Anpassung, resultierend in unerwarteten Restriktionen,
sowie fehlende Integration, welche unbefriedigendes Systemverhalten und un-
korrekte Interpretationen verursacht. In dieser Arbeit werden diese Unzulänglich-
keiten durch die Kombination der Stärken beider Forschungsbereiche beseitigt. Im
Integrierten Deduktiven Ansatz (IDA) stellt die Schnittstelle einen Teil des Daten-
banksystems selbst dar, sodaß das Lexikon als Komponente des Datenbanksystems
entworfen sowie die vollständige natürlichsprachliche Analyse mittels der logischen
Programmiersprache der deduktiven Datenbank realisiert wird. Diese vollständige
Integration der linguistischen Analyse garantiert die konsistente Abbildung der
semantischen Repräsentation der Benutzerabfrage auf das entsprechende seman-
tische Anwendungsmodell. Für jeden Analyseschritt werden neue Konzepte einge-
führt und deren effiziente Implementierung in IDA gezeigt. Morphologische und
lexikalische Analyse werden unter Adaptierung des lexikalischen Ansatzes durch-
geführt, wobei auch Präfixe, Derivative und Komposita berücksichtigt werden. Das
Lexikon besitzt eine hierarchische Struktur, welche es ermöglicht, alle Informa-
tionen auf der geeigneten Abstraktionsebene einzutragen. Darüberhinaus wird der
mächtige Two-level-Formalismus auf die Verarbeitung dreier spezifischer morpho-
logischer Phänomene angewendet: Ablaut, Elision und Bindelaute. In bezug auf die
syntaktische Analyse wird eine Erweiterung zur Kategorialen Unifikations-
grammatik vorgeschlagen, um Sprachen mit freier Wortstellung effizient analy-
sieren zu können. Diese Grammatiktheorie ist in optimaler Übereinstimmung
sowohl mit dem mächtigen Lexikon als auch mit der Evaluierungsstrategie deduk-
tiver Datenbanken. Die Bottom-up-Strategie ermöglicht es auch, unvollständige
und ungrammatikalische Sätze auf einfache und natürliche Art und Weise zu
analysieren. Für die semantische Analyse wird die Analyse unbekannter Werte
eingeführt, eine Methode, die direkt auf der Evaluierung der Datenbankwerte und
Tiefenformen der Funktionswörter aufsetzt, sodaß die syntaktische Analyse nur
eingesetzt wird, falls sie für die Disambiguierung notwendig ist. Schließlich werden
auch Lösungen für Discourse Resolution und Eingabefehlerkorrektur präsentiert.
Der vorgestellte Ansatz wird auf eine Fallstudie angewendet, die Implementierung
eines Produktionsplanungs- und -steuerungssystems. Die zentrale Komponente des
Sieben-Schritt-Modells für die Entwicklung effizienter Datenbankanwendungen
mit natürlichsprachlichen Schnittstellen ist die empirische Ermittlung von Test-
daten, welche die optimale Anpassung an den praktischen Einsatz gewährleistet.

The Integrated Deductive Approach to Natural Language Interfaces

Table of Contents

The Integrated Deductive Approach to Natural Language Interfaces

Werner WINIWARTER

Institute of Applied Computer Science and Information Systems
Department of Information Engineering
University of Vienna, Austria

1. Motivation ... 1

2. Introduction to Natural Language Processing .. 3
2.1 Basic Concepts... 3
2.2 Natural Language Interfaces... 5
2.3 Other Applications .. 6

3. Deductive Databases .. 8
3.1 Introduction .. 8
3.2 Datalog... 9
3.3 LDL .. 10

3.3.1 Data Types.. 10
3.3.2 Built-in Predicates ... 11
3.3.3 Negation.. 13
3.3.4 Grouping ... 13
3.3.5 Updates... 13
3.3.6 Imperative Predicates ... 14

3.4 SALAD ... 15
3.5 Summary.. 18

4. Morphological and Lexical Analysis ... 19
4.1 Introduction .. 19
4.2 Basic Concepts... 20
4.3 Morpho-Syntax ... 22

4.3.1 Particles .. 22
4.3.2 Nouns.. 22
4.3.3 Adjectives ... 23

4.4 Two-Level Rules... 25
4.4.1 Ablaut.. 25
4.4.2 Elision ... 26
4.4.3 Binding Sounds ... 27

4.5 Implementation... 27
4.5.1 Database Schema... 27
4.5.2 Facts ... 29
4.5.3 Logical Rules... 30
4.5.4 Query Forms ... 33

4.6 Summary.. 34

5. Syntactic Analysis .. 35
5.1 Introduction .. 35
5.2 Grammar Formalisms... 36

5.2.1 Phrase Structure Grammar ... 36
5.2.2 Transition Nets .. 39
5.2.3 Logic Grammar ... 42
5.2.4 Lexical Functional Grammar ... 45
5.2.5 Categorial Grammar.. 47
5.2.6 Summary .. 50

The Integrated Deductive Approach to Natural Language Interfaces i

Table of Contents

5.3 Extended Categorial Unification Grammar.. 50
5.4 Implementation... 53
5.5 Summary.. 57

6. Semantic and Pragmatic Analysis ... 58
6.1 Introduction .. 58
6.2 Semantic Analysis .. 58
6.3 Pragmatic Analysis... 65
6.4 Spelling Error Correction .. 68
6.5 Summary.. 74

7. Case Study: PPC Database for Precision Tools ... 75
7.1 Introduction .. 75
7.2 Requirements Analysis ... 77

7.2.1 Static View .. 77
7.2.2 Dynamic View ... 78

7.3 Database Definition .. 79
7.3.1 Static View .. 79
7.3.2 Dynamic View ... 81

7.4 Specification and Implementation of the Functionality .. 83
7.4.1 Manipulations to the PPC .. 83
7.4.2 Queries to the PPC ... 85
7.4.3 Implementation ... 87

7.5 Semantic Application Model ... 91
7.5.1 Manipulations to the PPC .. 91
7.5.2 Queries to the PPC ... 93

7.6 Empirical Collection of Test Data.. 95
7.7 Implementation of Natural Language Interface ... 97
7.8 Evaluation .. 100
7.9 Summary.. 102

8. Résumé ... 103

References .. 104

List of Figures ... 122

List of Tables .. 123

The Integrated Deductive Approach to Natural Language Interfaces ii

1. Motivation
Deductive database technology emerged during the past decade, it combines the strengths of
both logic programming and relational database algebra. The extended functionality led the
way to solutions to practical problems which could not be handled efficiently before. In spite
of the superiority in comparison with relational database systems, there still exists no broad
acquaintance and acceptance with regard to practical applications [Lockemann92]. Since we
identified the user interface as the main obstacle for a specific user to become familiar with a
new database paradigm, our objective was to supplement deductive databases with a user-
friendly front-end.

Starting from the first days of research on natural language processing, the use of
unrestricted language has been regarded as optimal choice to the communication of casual
users with sophisticated database applications. The great advantage of natural language is
based on the fact that the user is not forced to learn any formal query or manipulation
language (see Figure 1). Furthermore, it possesses more expressive power and flexibility than
other user-friendly interfaces, e.g. graphical front-ends or menu-based systems.

Intensive work was done during the last decades and a huge number of prototypes were
developed but somehow they suffered the same fate as deductive databases: they are still far
away from widespread practical use [Copestake90]. The reason for this are the many
limitations that still exist and which are caused by two main factors: missing integration and
missing customisation. We deal with both problems by introducing on the one hand a new
type of architecture, the Integrated Deductive Approach (IDA), on the other hand a seven step
model to the development of a fully customised database application with natural language
interface.

IDA brings together the two 'fellow sufferers' natural language interfaces and deductive
databases in that the interface constitutes an integral part of the database system itself. This
signifies that the complete natural language analysis is performed by the powerful logic
language supplied by deductive databases which guarantees for the first time a homogenous
mapping of the semantic representation of user input to the underlying database application
[Winiwarter93a].

SELECTUPDATE INSERT
DELETEJOIN Give me the salary

of MAIER !

Figure 1: Natural language interface

1. Motivation 1

The proposed seven step model to the development of database applications with natural
language interfaces has as central step the empirical collection of test data by use of
questionnaires. Only this procedure guarantees the complete coverage of all relevant linguistic
phenomena which is essential for full customisation and achievement of wide user acceptance
in later practical use.

As introduction to this thesis we start in Chapter 2. Introduction to Natural Language
Processing with some basic definitions and concepts before we give a short survey of the
current state of research on natural language processing. Special emphasis is given to existent
work on natural language interfaces, other mentioned recent approaches refer to application
areas like information retrieval, information filtering or machine translation. The second part
of the introduction is supplied by Chapter 3. Deductive Databases in which first some
fundamentals and indications about existent work are stated. For our research we use as
implementation platform the prototype system SALAD which was developed at MCC on the
basis of the deductive database language LDL, an extension of the computational paradigm
Datalog. Therefore, we give an insight into the syntax and functionality as far as necessary for
the understanding of this thesis.

The central part of this work introduces new concepts and methods for each step of natural
analysis within IDA (for the reference language German) and illustrates how these concepts
can be implemented efficiently in LDL. In Chapter 4. Morphological and Lexical Analysis the
initial two steps of natural language analysis are dealt with because they are carried out at the
same time in IDA by adapting the lexical approach which stores only canonical forms and
assigns all features to the dictionary entries. We develop the required formal framework
consisting of morpho-syntax and two-level rules which is able to handle prefixes, derived
words, and compound words as well as the special morphological phenomena ablaut, elision,
and binding sounds. In Chapter 5. Syntactic Analysis we discuss existent grammar formalisms
as basis for selecting Categorial Unification Grammar (CUG) as framework for the syntactic
analysis in IDA. Since CUG as such is not well-suited for the analysis of free word order
languages, we introduce some important extensions which make it possible to analyse also
incomplete and ungrammatical sentences in a natural and efficient way. In Chapter 6.
Semantic and Pragmatic Analysis we present a semantic analysis technique based on unknown
value list (UVL) analysis that makes optimal use of the information supplied by the semantic
application model of the underlying database application and uses syntactic analysis only for
disambiguation of several interpretations. Finally, we propose an efficient discourse resolution
method and a new similarity measure for correcting misspelled database values.

The final part of this thesis aims at proving the feasibility of the previously introduced new
concepts. In Chapter 7. Case Study: PPC Database for Precision Tools we report on a case
study: the design and implementation of a production planning and control system (PPC) with
German natural language interface for an enterprise which manufactures precision tools. By
applying the proposed seven step model we illustrate the individual steps of the design and
development process in full detail. Based on the extensive test data, the concluding evaluation
examines the correct functionality and performance, in particular the achieved response times.

1. Motivation 2

2.1 Basic Concepts

2. Introduction to Natural Language Processing

2.1 Basic Concepts

Natural language processing encompasses all computer-based approaches to the handling of
unrestricted written or spoken language [Lunin84], the latter also referred to as speech
processing. This definition is much more general than that of natural language understanding.
Whereas the latter is always concerned with the underlying meaning, natural language
processing also deals with simple methods applied in word processors, indexing procedures or
keyword-matching retrieval techniques.

With regard to the direction of computation, natural language processing can be divided in
two general processes:

• natural language analysis: the natural language input is mapped to some internal
representation

• natural language generation: the internal representation is transformed to natural
language output

The complex challenge of natural language analysis is usually divided in sub-tasks by applying
the general process model displayed in Figure 2.

Natural language input

Morphological analysis

Syntactic analysis

Semantic analysis

Lexical analysis

Pragmatic analysis

Internal representation

Figure 2: Process model of natural language analysis

2. Introduction to Natural Language Processing 3

2.1 Basic Concepts

The individual steps of the process model perform the following computations, they need not
be looked upon as strictly sequential but are often realised in an interleaved manner
[Doszkocs86]:

Ä morphological analysis: by means of lemmatisation each word is transformed to its
canonical form, the removed endings supply syntactic information like number, person
or gender

Ä lexical analysis: the canonical forms are looked up in the dictionary retrieving the
associated syntactic and semantic information

Ä syntactic analysis: by use of a parser the syntactic structure of a sentence is generated
according to the defined grammar

Ä semantic analysis: based on the sentence structure a semantic representation is
determined which covers the intended meaning

Ä pragmatic analysis: the scope of examination is extended from the analysis of a single
input sentence to the interpretation of the whole recent context of discourse by making
also use of some kind of world knowledge

If one considers also spoken language, new problems arise like word recognition and
segmentation (for recent work on this research field see [White90, Dowding93, Rowles93,
Nagao93b]). On the other hand, supplementary prosodic information is available like pitch and
pause information [Cruttenden86, Beler93, Raskutti93a]. A second class of recent approaches
deals with the additional complexity of recognising hand-written sentences [Keenan91,
Hull92, Srihari93].

Whereas the main difficulty of natural language analysis is to disambiguate several possible
interpretations of a specific input sentence, for the generation procedure the opposite is true,
that is, one must choose one of the many possible surface representations, e.g. according to
user modelling [Sparck-Jones91]. For good surveys of the research on generation see
[McDonald87, Reiter93], recent approaches include applications to response creation in
interfaces [Kalita86, Chu93, Raskutti93b], explanation systems [Moore91, Paris91,
Zukerman93, Suthers93, McKeown93] or automatic documentation [Kittredge86, Hovy91,
Mittal93].

Natural language processing has been dominated for over three decades by the knowledge-
based approach. Only recently, an 'empirical renaissance' takes place for domain-independent
applications which is mainly caused by the following three reasons (see [Church93]):

Ä huge data collections like machine-readable dictionaries or text corpora are now
available

Ä advances in computer technology have resulted in a significant cost reduction of
powerful hardware architectures

Ä a greater emphasis on deliverables and evaluation exists for which the corpora supply a
uniform test-bed

The many recently proposed techniques are mostly statistical methods [Briscoe93, Brown93,
Smadja93, Weischedel93, Magerman94] but also neural networks are regarded as promising
tool for the use in natural language analysis [Jain91, Daelemans92, Jacquemin93, Merkl94b].

2. Introduction to Natural Language Processing 4

2.2 Natural Language Interfaces

2.2 Natural Language Interfaces

Generally speaking, natural language interfaces enable the easy data access without using any
formal commands but by simply defining the request in plain English or any other natural
language. There exist three different interface types (for general surveys see [Bates87,
Capindale90, Copestake90]):

Ä interfaces to knowledge bases
Ä interfaces to information retrieval systems
Ä interfaces to databases

Interfaces to knowledge bases have been usually implemented as integrated logical or
functional programming systems. They often were not realised as interfaces to existent
applications but on the contrary formed the central issue of the system, such realisations are
referred to as natural language (understanding) systems or question-answering systems.
Prominent examples are SHRDLU [Winograd72], Chat-80 [Warren82], VIE-LANG
[Zsolnai87], MURPHY [Selfridge86] or WISBER [Fliegner88]. The main drawback of these
systems are the missing features of database management systems like transaction support,
schema-based integrity or efficient secondary storage.

The second category of interfaces accesses unstructured information stored in information
retrieval systems (see [Salton83]). In contrast to database interfaces the complex part of these
interfaces is not the analysis of the input sentence but that of matching the text documents
with the query in order to produce a satisfactory query result. Because of the huge size of
information retrieval systems in practical use, natural language analysis is often combined with
simpler techniques like Boolean search in order to reduce the number of documents to be
analysed. Examples for successful implementations are Iota [Chiaramella87], I3R [Croft87],
Adrenal [Lewis89] or Amics [Caraceni93].

Most existent natural language database interfaces deal with the access to relational database
systems: the early systems RENDEZVOUS [Codd74] and PLANES [Waltz77, Waltz78] as
well as more recent systems like TEAM [Grosz82, Grosz83], SESAME [Ali86] or System X
[McFetridge88]. Also for German language some promising prototypes have been developed,
e.g. PLIDIS [Berry-Rogghe78], HAM-ANS [Höppner83] or Datenbank-DIALOG [Trost90].

The crucial weak point from what all these systems suffer is the mapping from the final
semantic representation of the input sentence to the actual database query which incorporates
a discontinuity of homogeneity as concerns the different semantic models (e.g. mapping of
relations or attributes, see [Schröder88] for a detailed discussion).

The second great difficulty that database interfaces differently from other natural language
applications must cope with is the processing of database values as part of the user query. As
especially systems that claim to be domain-independent do not access the knowledge
contained in the database for use in natural language analysis, the usual approach is to assume
that undefined words represent database values (see [McFetridge90]). Therefore, if one
considers the possibility of misspelled values, they are not able to distinguish between new
database values for insertion or update and misspelled existent data.

The very first database interface LUNAR [Woods72] as well as the first commercially
available natural language interface INTELLECT [Harris84] tried to overcome this situation
by retrieving the concerned values from the database. However, due to the huge search spaces

2. Introduction to Natural Language Processing 5

2.3 Other Applications

and the limitations of relational database technology, this method severely affects the
efficiency of the application.

A different approach to the resolution of unknown values is to restrict the complexity of input
resulting in some kind of pseudo-natural language, examples of such systems are LADDER
[Sacerdoti77, Hendrix78], TQA [Damerau81], ENLI [Kambayashi86, El-Sharkawi90] or
HAVANE [Bosc86]. Some implementations even delimit the use of natural language to a
menu-based system, e.g. NL-MENU [Tennant83, Thompson83] (see also [Rich87]). This
decrease of complexity guarantees an efficient analysis but also leads to a significant reduction
of habitability which questions the main reason for using natural language instead of formal
query languages [Ogden87].

Although deductive databases combine the advantages of the first and third type of interfaces,
that is, the integrated architecture and the database management facilities, therefore
incorporating the power to solve all those shortcomings, there is no existent work that makes
full use of this power. The only known prototype of a natural language interface to a
deductive database was designed by Gal/Minker who focused their research on the generation
of natural language answers to user queries [Gal85]. However, also this prototype uses only a
loosely coupled interface resulting again in the above mentioned inaccuracies for the treatment
of unknown words.

2.3 Other Applications

Beginning from the first days of natural language processing, text or document analysis has
represented one of the central research fields. The main differences to the design of natural
language interfaces are the large vocabulary, the complete and correct nature of sentences, the
enriched complexity of applied sentence structures and the larger scope of context meaning.

An important application area is information retrieval where the semantic representations of
documents are used for the match with user queries and the presentation of the query result.
The process of the creation of these representations is also often referred to as knowledge
acquisition. For examples of approaches that apply linguistic analysis for that purpose see
[Dillon83, Smeaton86, Katz88, Antonacci89, Schwarz90].

The great shortcoming of all these systems is their high development cost which makes them
not feasible for large-scale applications. This is especially true for the field of legal information
retrieval systems (see [Schweighofer93a]). Therefore, again neural networks [Belew87,
Bench-Capon93, Merkl94a] as well as statistical techniques [Wong87, Salton88,
Schweighofer93b, Schweighofer94] have been proposed as efficient empirical solutions.
Another challenging application area is multimedia data, there exists some recent work that
faces its specific needs, in particular the semantic representation of graphical, video or audio
data [Baudin93, Arens93, Han93].

Closely related to the applications in information retrieval are information filtering systems
which have as main task the distribution and delivery of information in order to assist the user
in finding relevant information [Höfferer94d]. Early work was concerned with summarising
and classifying messages for very specific domain ranges, e.g. ATRANS [Lytinen84] or TESS
[Young85] for the analysis of banking messages. More recent work deals with emails,
NetNews articles, newswire stories or multimedia documents (see [Höfferer94a]).

2. Introduction to Natural Language Processing 6

2.3 Other Applications

Sundheim [Sundheim92] established with the message understanding conference an
international forum for the objective evaluation of information filtering systems with regard to
the parameters speed, precision, and recall [Chinchor92]. Two examples of successfully
evaluated prototypes are SCISOR and FASTUS.

The system SCISOR was designed by Jacobs/Rau [Jacobs90] for the analysis of financial news
taken from the on-line financial service of Dow Jones. SCISOR employs a combined bottom-
up and top-down natural language analysis by means of a knowledge base for conceptual
representation. To improve the performance irrelevant messages are discarded at an early
stage of analysis by a powerful filter topic analyser. The prototype achieved within the MUC-
II evaluation both 90 % of precision and recall while analysing 6 messages per minute.

FASTUS was implemented at SRI International [Hobbs92]. Instead of parsing the text by use
of a context-free grammar it applies a non-deterministic finite-state language model which
decomposes a sentence into noun groups, verb groups, and particles. The extraction of
relevant phrases is activated by means of trigger words and the individual retrieved
information parts are finally merged to obtain a unified representation for the whole text. In
spite of its simple architecture FASTUS achieved within the MUC-4 evaluation a precision of
55 % and a recall of 44 %, the number of analysed words per minute was 2375, that is,
approximately also six stories are analysed per minute.

Whereas all evaluated systems still possess only static behaviour, already first prototypes of
adaptive systems were proposed [Höfferer94b] which take into consideration the user
behaviour by use of a monitor component [Höfferer94c].

Another interesting application of natural language processing is the use of natural language as
input for the design of databases. The user specifies the requirements in natural language
sentences which are mapped to corresponding concepts in a conceptual data model. As
important feature, the user is kept aware of actual integrity conflicts and is asked for
correction, examples of recent implementations are ISTDA [Bracchi83], MODELLER
[Tauzovich89] or DMG [Tjoa93].

Finally, we want to conclude this short survey by perhaps the most classical use of natural
language processing which was right from the beginning always connected with high
expectations but could seldom satisfy them: machine translation. The first part of processing
is in analogy to that of interfaces, that is, to compute the meaning of the input sentence. Based
on this internal representation, the output sentence is generated in the target language (for a
good introduction see [Schwanke91]). Without the use of an internal representation, for each
pair of languages a separate translation module would be required. Only the use of a language-
independent semantic representation scheme makes it possible to apply an efficient star-shaped
architecture. Prominent commercial systems for German are LOGOS [Wheeler86], SUZY
[Luckhardt82], SYSTRAN [Wagner85] or METAL [Gebruers88].

The recent 'rebirth' of empirical natural language processing also strongly stimulated the
research on machine translation. Among the many current approaches applying statistical
methods are [Katz89, Brown90, Dorr90, Kitano93, Sumita93, Phillips93, Frederking93]. The
most famous and ambitious recent research activity is carried out by ATR in Japan which deals
with the automatic translation of telephone calls (see [Black93, Matsumoto93]).

7

3.1 Introduction

3. Deductive Databases

3.1 Introduction

The theory of deductive databases has been the topic of intensive research within the last years
(for good reviews see [Gallaire84, Ullman89, Ullman90]). It has its origins in logic
programming and relational database algebra. By combining the advantages of both research
fields, deductive databases provide the following important extensions with regard to
functionality [Naqvi89]:

C there exists the possibility of formulating recursive queries, that is, transitive
relationships can be considered

C the nonmonotonic operation of negation is supported
C not only atomic object types but also complex object types like sets, trees or lists can

be used for data modelling
C updates are performed by means of declarative specifications
C imperative predicates are available which enable the use of conventional control

structures, the declarative semantics is preserved

In spite of this superiority which is not only of scientific interest but on the contrary possesses
significant relevance for solving many problems in practice, there still exists no broad
acquaintance and acceptance for deductive databases [Lockemann92].

As concerns the first attempts to build prototypes of deductive databases, two main
approaches were followed:

Ä The coupling of Prolog and relational database systems, e.g. [Kunifji84, Li84,
Bocca86, Chang86, Cuppens86, Jarke86, Ceri87b, Ioannidis87, Lefebre89]. These
prototypes were motivated by the immediate availability of Prolog and relational
database technology but suffer from a number of drawbacks so that they cannot
support the required level of functionality, performance, and ease of use [Zaniolo90a].

Ä The strong integration of the expressive power of logic programming and the
performance and robustness of relational database systems by implementing the
minimal fixpoint semantics of rule sets and the underlying relational data. For a general
view of the architectural aspects of these systems see [Zaniolo90b], for examples of
implementations we refer to Section 3.2 Datalog.

The most influential theoretical framework for the second category of approaches is the
computational paradigm Datalog which we will describe in Section 3.2 Datalog in more
detail. Datalog has formed the basis for several extensions and successful implementations.
One of the most prominent is LDL (Logical Data Language) which was designed and
implemented at MCC as portable prototype system for UNIX called SALAD (System for
Advanced Logical Applications on Data) [Naqvi89, Chimenti90].

Since we used SALAD as implementation platform for our research, we present in Section 3.3
LDL the basic concepts and constructs of LDL which are necessary for the comprehension of
the various examples we will provide throughout this work. Finally, Section 3.4 SALAD gives
some additional details about the architecture of SALAD and the applied compilation
techniques.

3. Deductive Databases 8

3.2 Datalog

3.2 Datalog

Datalog represents a rule-based computational paradigm which was specifically designed for
the purpose of interacting with large relational database systems (for a complete survey see
[Ceri89, Ceri90]) and which is based on a subset of general Logic Programming [Lloyd87].

A Datalog program is defined as a finite set of Horn clauses consisting of literals Li:

Lo ← L1, ..., Ln. (3.1)

The left-hand side of a clause is called head, its right-hand side body. If the body is left empty,
the clause represents a fact, otherwise it models a rule. A literal is written as predicate with a
predicate symbol pi and a number of terms ti:

Li = pi(t1, ..., tk) (3.2)

The terms ti can be either variables or constants. In order to distinguish the two types,
variables are capitalised whereas constants and predicate symbols have to start with lower-
case letter.

A literal or clause without variables is called ground. Any Datalog program must satisfy two
safety conditions in order to guarantee that the set of all facts which can be derived is finite:

G each fact is ground
G each variable occurring in the head of a rule must also occur in its body

Example 3.1:

angular_part(backe, aluminium, 2, 3, 5). fact for attributes of angular part with constants:
name, raw material, length, width, height

stock(backe, 5). fact for stock of parts with constants: name, quantity

lagernd(eckteil, Name, Quantity) ← rule which derives names and quantities for stock of
angular_part(Name, Material, L, W, H), angular parts
stock(Name, Quantity). n

In accordance to the intention of Datalog and in contrast to general Logic Programming the
facts and rules are not stored within a single logic program but are separated in two different
sets:

Ø Extensional Database (EDB): the set of facts which is stored in the relational database
Ø Intensional Database (IDB): the set of rules and facts constituting the Datalog program

Analogously, the set of predicates is partitioned:

Ø EDB-predicates: the set of predicates which occur in the EDB
Ø IDB-predicates: the set of predicates which occur in the IDB but not in the EDB

Therefore, each EDB-predicate can be mapped to a corresponding relation in the relational
database and each fact in EDB can be inserted as tuple. Similarly, the IDB-predicates can be
regarded as views. Finally, goals perform the function of queries, they consist of a single literal
preceded by a question mark, e.g. for Example 3.1: ?lagernd(eckteil, Name, Quantity).

3. Deductive Databases 9

3.3 LDL

A lot of work was done concerning the efficient evaluation of Datalog goals. The proposed
algorithms can be roughly divided in two groups (for a detailed taxonomy see [Ceri90]):

Ä evaluation methods in which optimisation is performed during the evaluation itself, e.g.
Gauss-Seidel method [Chang81, Bancilhon85], Semi-naive evaluation [Bancilhon86a,
Ceri86], Henschen-Naqvi method [Henschen84] or query-subquery algorithm
[Vieille86]

Ä rewriting methods which transform the program to a more efficient equivalent program
before evaluation, e.g. magic sets [Bancilhon86b, Beeri87b], Counting [Bancilhon86b,
Beeri87], magic counting [Sacca87a], static filtering [Kifer86] or Variable Reduction
and Constant Reduction [Ceri87a]

By extending the very restricted Datalog syntax and by applying the above evaluation and
rewriting methods some successful research prototypes have been implemented, e.g. SALAD
(Section 3.4 SALAD), NAIL! [Morris86, Morris87], KIWI [Sacca87b] or ALGRES [Ceri88].
Also first attempts of combining Datalog with concepts from object-oriented databases exist
[Beeri88, Czejdo88, Cacace89, Lee90, McCabe92, Ishikawa93] resulting in various deductive
object-oriented database system prototypes like COMPLEX [Greco90], LLO [Lou91], LOL
[Bertino92, Bertino93], OSAM*.KBMS [Su93] or CLOG [Hui93, Hui94].

3.3 LDL

LDL (Logical Data Language) was designed at MCC as purely declarative logic-based
language. It provides many powerful extensions of pure Datalog which we will present in brief
in the following (a complete presentation gives [Naqvi89], see also [Zaniolo85, Tsur86,
Chimenti87, Beeri87b, Zaniolo90c]).

3.3.1 Data Types

The arguments (constants) used in base predicates (EDB-predicates) can possess three
different simple data types: string, integer, and real. String constants which start with a
capital letter have to be enclosed in single quotation marks in order to make them
distinguishable from variables. The definition of the individual data types is performed within
the schema.

Example 3.2:

For the two facts in Example 3.1 the schema definition has the following form, the
labelling of the arguments is optional:

ppc({ angular_part(Name: string, Material: string, Length: integer,
Width: integer, Height: integer),

stock(Name: string, Quantity: integer)}). n
In addition to these three simple data types, arguments can also have nested structures
resulting in complex data types.

Example 3.3:

The schema in Example 3.2 is slightly changed in that the three dimensions are united:

ppc({ angular_part(Name: string, Material: string, Dim: (integer, integer, integer)),
stock(Name: string, Quantity: integer)}). n

3. Deductive Databases 10

3.3 LDL

Finally, there exist two special built-in complex data types: lists and sets [Shmueli88].

Example 3.4:

The first of the two following definitions defines operation sequences as list of actions,
the second gives the set of machine types which an operator can handle:

ppc({ operation_sequence(Name: string, Actions: [string]),
operator(Name: string, Qualification: {string})}). n

3.3.2 Built-in Predicates

Built-in predicates are either written like other predicates or as special predicate symbols in
infix notation. They are used like EDB-predicates (i.e. only in the body of rules) though they
are not stored explicitly but evaluated during execution time. The following groups of built-in
predicates can be distinguished:

Ä comparison predicates:

Ø L = R
Ø L ~= R L ≠ R
Ø L > R
Ø L < R
Ø L >= R L ≥ R
Ø L <= R L ≤ R

Ä arithmetic predicates:

Ø L + R
Ø L - R
Ø L * R
Ø L / R
Ø L mod R

Ä list predicates:

Ø [X Y] X ... head Y ... tail

Ä set predicates:

Ø member(E, S) E ∈ S
Ø subset(S1, S) S1 ⊆ S
Ø union(S1, S2, S) S = S1 ∪ S2
Ø difference(S1, S2, S) S = S1 - S2
Ø intersection(S1, S2, S) S = S1 ∩ S2
Ø cardinality(S, N) N =  S

The equality predicate can also be used as unification operation if free variables are involved
[Lassez88, Siekmann90]. As special case single assignment occurs if one side is a variable and
the other is a constant term [Naqvi89].

3. Deductive Databases 11

3.3 LDL

There exists a special predicate for providing DON´T CARE non-determinism. As declarative
equivalent of the CUT-operator in PROLOG, the choice-predicate in the rule

a(X, Y) ← b(X, Y), choice((X), (Y)) (3.3)

creates a maximal subset of the predicate b(X,Y) under the preservation of the functional
dependency X→Y [Krishnamurthy88a].

Example 3.5:

The following rule selects for each supplier one of the parts which he supplies:

liefer(Name, Part) ← supplier(Name, Part), choice((Name), (Part))

If only one supplier shall be retrieved randomly, then the rule has to be modified:

liefer2(Name) ← supplier(Name, Part), choice((), (Name))

In order to add to the one selected supplier one of his parts, the rule looks like this:

liefer3(Name, Part) ← supplier(Name, Part), choice((), (Name, Part)) n
Finally, a predicate for aggregation operations on sets is provided, its internal representation
has the following form [Naqvi89]:

aggregate(Op, S, V) ←
if(empty(Op, V) then true

else if(S = {X} then single(Op, X, V)
else partition_once(S1, S2, S)),

aggregate(Op, S1, V1),
aggregate(Op, S2, V2),
multi(Op, V1, V2, V)). (3.4)

The predicate partition_once partitions the given set in two arbitrary disjoint subsets.
Therefore, the aggregation operation examines recursively the empty, the singleton, and the
general case.

Example 3.6:

The following aggregation operator menlist transforms a set to a corresponding list, the
sequence of the list members is arbitrary. It uses the predicate append which joins two
lists together.

empty(menlist, []).
single(menlist, X, [X]).
multi(menlist, X1, X2, X) ← append(X1, X2, X).

append([X Y], Z, W) ← append(Y, Z, W1), W = [X W1].
append([], X, X). n

3. Deductive Databases 12

3.3 LDL

3.3.3 Negation

Only predicates in rule bodies with covered variables can be negated (by use of the ~-symbol),
that is, they get their value range from the evaluation of other positive predicates. The only
exception are existential variables which only appear once in a rule (also singleton variables,
normally written as anonymous variables by an underscore). A further restriction to the use of
negation is that it cannot be applied in a recursive definition. By moving the negation out of
the scope of the recursion one results in a stratified program [Chandra85, Przymusinski87,
Naqvi87].

Example 3.7:

The following program decides if the number of list elements is even, it is non-stratified
because of the use of negation in the recursive definition:

even([_ Rest]) ← ~even(Rest).
even([]).

To transform this program in a stratified version, the additional predicate odd is applied:

even(L) ← ~odd(L).
odd([_]).
odd([_ [_ Rest]]) ← odd(Rest). n

3.3.4 Grouping

The grouping operator (<...>) collects several solutions of the evaluation of a variable into a
unique set and can only be used in the head of rules [Beeri89]. In the same way as with
negation one has to pay attention to stratification, that is, not to use the grouping operator in a
recursive definition [Shmueli87].

Example 3.8:

The following rule computes the number of existent angular parts:

anzahl(Quantity) ← counts number of angular parts
anzahl2(Set), set of angular parts
cardinality(Set, Quantity). cardinality of set equals number of angular parts

anzahl2(<Name>) ← grouping operator produces set of part names
angular_part(Name, _, _, _, _). n

3.3.5 Updates

The use of updates enriches the semantics of the logic program from first-order logic to
dynamic logic [Ramakrishnan88] in the sense that the order of update specifications may affect
the result of evaluation. All changes to the EDB-predicates are reduced to two opposite
operations, the deletion (-) and insertion (+) of facts.

3. Deductive Databases 13

3.3 LDL

Example 3.9:

The following simple rule changes the stock for the base predicate stock from Example
3.2. If there does not exist a stock for the part in question, then no deletion is performed
and the stock is added as new fact.

aendmen(Name, Quantity) ←
-stock(Name, _),
+stock(Name, Quantity). n

By supporting the notion of database transactions [Sacca88a, Naqvi88] no failures are allowed
after an update operation because this would signify that the update has to be revoked.
Furthermore, this restriction makes it possible to detect the violation of integrity constraints
(e.g. type mismatch) immediately. Only assignments, updates, and imperative predicates (see
below) are infallible predicates, that is, they can be used after updates. Again, in order to
guarantee stratification, updates cannot be used in recursive rules.

3.3.6 Imperative Predicates

The extension of LDL by update operations gives rise to the need for two imperative
predicates [Naqvi88]. The first one of them is the if-predicate:

h ← if (p then q else w) (3.5)

which is semantically equivalent with the two rules:

h ← p, q.
h ← ~p, w. (3.6)

The common abbreviation:

h ← if (p then q) (3.7)

with the semantics:

h ← if(p then q else true) (3.8)

is also valid in LDL.

Besides the increase of legibility and evaluation efficiency, the if-predicate provides the
essential possibility to make predicates infallible.

Example 3.10:

The following predicate updates a stock and applies a second predicate for delivery
control which can fail. The left-hand side shows a wrong version in which the predicate
is used as such after the update operations, the version on the right-hand side removes
this error by the application of the if-predicate.

aktmen(Name, Quantity) ← aktmen(Name, Quantity) ←
-stock(Name, _), -stock(Name, _),
+stock(Name, Quantity), +stock(Name, Quantity),
delivery_control(Name). if(delivery_control(Name) then true). n

3. Deductive Databases 14

3.4 SALAD

The second imperative predicate is the iterative forever-predicate which is also infallible. Since
updates cannot be used in recursive rules, the forever-predicate is used for such situations
where an iterative definition of updates is needed.

The forever-predicate in a rule:

h ← g, forever(p), q. (3.9)

is evaluated as:

H ← g, p1, p2, ..., pn, q. (3.10)

where the pi are successive iterative applications of the p predicate. pn is determined either by
the fact that pn+1 fails or that pn = pn-1, that is, no further changes due to updates have
occurred [Naqvi89]. Variable values can be imported into the forever-predicate but the only
way of exporting evaluation results out of the forever-predicate is via updates.

Example 3.11:

The following rule shows the scheduling of the individual machining operations
contained in a production list. As prerequisite the machining operations have been
numbered before. Since the scheduling predicate itself hides a complicated planning and
optimisation process resulting in many updates, e.g. for the assignment of workers and
machines, the forever-predicate has to be applied in order to guarantee that each
scheduling step is performed on the basis of the result of the prior planning decisions.
For that purpose, a simple base predicate is used as loop counter, the evaluation exits
the loop if the counter value exceeds the number of the last entry.

produktion(Plist) ← scheduling of production list
+seqnr(1), initialising loop counter
forever(for each machining operation in production list do

seqnr(I), loop counter
lmember((I, Operation), Plist), retrieving actual machining operation
plan(Operation), scheduling for individual machining operation
J = I + 1, incrementing loop counter
-seqnr(_), deleting old loop counter
+seqnr(J)), storing new loop counter

-seqnr(_). deleting loop counter n

3.4 SALAD

The first LDL implementation used FAD, a language based on relational algebra supported by
a massively parallel database machine [Danforth85, Boral88]. After its successful completion
in 1987 at MCC, the next step was the design and implementation of an open architecture
prototype system called SALAD (System for Advanced Logical Applications on Data) which
was finished in 1988. SALAD operates within the UNIX environment and generates target
code in C. It preserves the purely declarative semantics of LDL, e.g. in contrast to Prolog the
order of rules is insignificant. Additionally, SALAD possesses the usual features of database
management systems, i.e. support for transactions, recovery, schema-based integrity, and
efficient management of secondary storage [Chimenti90].

3. Deductive Databases 15

3.4 SALAD

The deductive database system consists of four main components which are strictly separated
in four different file types (see Figure 3):

0 a schema for base predicates: *.sch
0 a set of facts representing the data (EDB-predicates): *.fac
0 a set of rules for deriving new predicates (IDB-predicates): *.rul
0 a set of query forms for generating access plans to stored data: *.qf

RULES

SCHEMA FACTS

QUERY
FORMS

Figure 3: Components of SALAD

The query forms are generic goals in that they specify which arguments represent input
parameters (covered variables, indicated by a preceding $-sign) and which are expected as
output (free variables). These bindings are essential for the efficient compilation of the rule set
[Zaniolo88]. The important difference to logic programming systems like Prolog is that in
SALAD the facts are treated differently from the rules, they are described by the schema at
compilation time. Therefore, any update can be performed freely without the need for
recompiling or reinterpreting the program [Chimenti90]. Figure 4 shows a simple example for
the file configuration in SALAD by use of the predicates from Example 3.1. The query form
gives the user a list of all available stocks for a specific category of parts.

Two other important features of SALAD are modules and externals [Chimenti89b]. Modules
allow for modular decomposition resulting in reduced target size code and possibly shorter
execution time. The predicates used inside of a module are local, global predicates are
defined via import and export specifications of query forms. Externals provide the essential
possibility to write external predicates and functions in C (or FORTRAN) by the support of a
powerful external interface library. For example, this library includes functions for the
manipulation of lists and sets or for the access to base and global predicates [Chimenti89a].

3. Deductive Databases 16

3.4 SALAD

ppc({angular_part(Name: string, Material: string, Length:integer,
 Width: integer, Height: integer),
 stock(Name: string, Quantity: integer)}).

STOCK.SCH

angular_part(backe, aluminium, 2, 3, 5).
stock(backe, 5).

STOCK.FAC

lagernd(eckteil, Name, Quantity) <-
angular_part(Name, Material, L, W, H),

 stock(Name, Quantity).

STOCK.RUL

qform lagernd($Category, Name, Quantity).
STOCK.QF

Figure 4: Example of SALAD files

Finally, the following extensions have been added [Chimenti89c]:

C composition of new data types
C declaration of indices and key constraints
C input/output primitives
C formatted output primitives
C input/output on files

The compilation of query forms is performed in several steps. First, the rules are rewritten by
inserting the covered variables, a process called constant migration. Then, if this migration
reaches base predicates, a corresponding selection is applied against the facts (selection
pushing) [Krishnamurthy88b]. Recursive rules are compiled by use of semi-naive fixpoint
[Sacca88a], magic set method [Sacca87c], and generalized counting method [Sacca88b].

With regard to the execution mode of the SALAD compiler, four different strategies are
applied which are all in conformity with the bottom-up semantics of LDL [Chimenti90]. As
illustrative example let

p(X, Z) ← a(X, Y), b(Y, Z). (3.11)

be a rule which is queried. Then, in terms of relational algebra, this query is answered by first
computing the tuples resulting from the evaluation of the predicates a and b before the
resulting tuples are joined over the common variable Y and projected on X and Z.

3. Deductive Databases 17

3.5 Summary

Ä pipelined execution: only those tuples in b are computed which join with tuples in a in
a pipelined way (one at a time), if a tuple in b joins with several tuples in a, it is every
time computed anew

Ä lazy pipelined execution: the tuples for b are stored in a temporary relation in order to
avoid recomputations of the same tuple

Ä lazy materialized execution: differs from lazy pipelined execution in that for a given
value of Y all joining tuples in b are computed and stored in a temporary relation
before proceeding

Ä materialized execution: computes all tuples in b and stores them in a temporary
relation before proceeding

The main difference between pipelined and materialized execution is that the former is
favourable for backtracking whereas the latter is preferred for the use in recursion. The lazy
variants only add computational overhead in order to improve the performance of the compiler
[Chimenti89d].

The feasibility of the SALAD prototype has been tested by applying it to some problems of
practical relevance. These problems reach from typical business applications like processing of
bills of materials, inventory control or job shop scheduling [Tsur90a] to more advanced
applications like data dredging (i.e. testing and formulating of hypotheses based on empirical
data) [Tsur90b] or scientific databases [Tsur90c].

For the complex field of enterprise modelling, extensions to the Entity-Relationship model
[Chen76] have been proposed and implemented as prototypes for CASE tools. The POS
(Process-Object-State) modelling technique [Ackley90a, Ackley90b] considers integrity
constraints, dynamic aspects, and aggregation and maps the specification to a deductive
database application which automatically checks for inconsistencies and the violation of
constraints.

Finally, there exists an application to the design of MLS (multi level secure) database systems
(for more information about the MLS relational data model see [Jajodia91, Smith92]). The
Deductive Filter Approach defines a security constraints language (SCL) for specifying
application dependent constraints as LDL predicates [Pernul93a] as well as corresponding
graphical extensions to the Entity-Relationship model [Pernul93b]. The specified constraints
are checked in order to detect conflicting situations. Therefore, the resulting CASE tool
guarantees a consistent conceptual representation of security semantics.

3.5 Summary

We shortly presented in this Section deductive database technology which is based on logic
programming and relational database algebra. One of the most prominent deductive database
languages is LDL which is a powerful extension of pure Datalog and was implemented in the
prototype system SALAD at MCC.

The expressive power of logic programming, the support of complex object types, the
possibility of using external C-predicates, the declarative semantics, and the neat separation of
facts and rules, all these features made SALAD an ideal choice as implementation platform for
the development of natural language interfaces in IDA architectures.

3. Deductive Databases 18

4.1 Introduction

4. Morphological and Lexical Analysis

4.1 Introduction

In comparison with the vast amount of publications about the other components of natural
language analysis, there exists only limited work concerning morphological issues. The main
reason for this can be seen in the simplicity of English with regard to this respect whereas the
treatment of morphological phenomena possesses a much higher significance for highly
inflexional languages like German.

Simple approaches to morphological analysis deal only with the removal of endings and
suffixes by means of a general pre-defined suffix-tree and do not take into account the proper
analysis of prefixes and compound words [Thurmair82, Dorffner85]. Of course the number of
words accepted by these general suffix-trees is much too voluminous (containing more invalid
derivations than legal ones) so that the number of produced canonical forms must be reduced
afterwards by use of additional information, like supposed word categories or ending classes
added to the stem in the dictionary [Finkler88].

One further disadvantage besides this missing precision concerns the inherent syntactic and
semantic information comprised in the removed endings. Although assignments of
corresponding features are imaginable, the resulting semantic representation lacks flexibility to
a high degree, e.g. there exists no possibility to deal with cases where a derived word gets a
new specific meaning different from the word sense which the combination of the stem and the
suffix in question would suggest.

To overcome these shortcomings the so-called lexical approach can be applied which assigns
all morphological features directly to the corresponding canonical forms in the dictionary
[Whitelock88]. Among the authors who contribute to that approach only few make full use of
the available expressive power. With regard to retrieval efficiency, additional dictionary entries
are often included for derivations by use of prefixes. However, this destroys the compact
structure of the dictionary [Aoe90].

An important extension for achieving an efficient and natural representation of the syntactic
and semantic features associated with morphological phenomena is the removal of the flatness
of dictionaries by supplying them with a hierarchical structure. The individual features can
then be assigned in a flexible manner to the appropriate level of abstraction [Smedt84]. By use
of inheritance mechanisms the affixes are on the one hand supplied with general syntactic and
semantic categories which on the other hand can be overwritten by information directly
attached to the specific word derivations in order to express divergent connotations.

Two-level morphology has represented the most influential formalism within the last decade. It
was developed by Koskenniemi for the Finnish language [Koskenniemi83]. This formalism
introduces an additional surface level in order to deal with special morphological phenomena
(e.g. vowel-gradation) in an elegant and compact style. It has been extended (e.g.
[Karttunen87, Bear88]) and adapted to several other languages like Tamil [Sarkar93], French
[Genikomsidis88] or German [Emele88].

4. Morphological and Lexical Analysis 19

4.2 Basic Concepts

4.2 Basic Concepts

In accordance with our intention of integrating the complete natural language analysis into the
deductive database system by making full use of the declarative power of LDL, we adapted
the lexical approach by storing only canonical forms in the dictionary and assigning to them
all the morphological features, including also prefixes and compound words.

 VERB(
mess, stem of to measure

...
11, conjugation class

2, past participle class

{ ab}, prefix ab yielding to survey

{ (er,{ [durch]}), suffix er in combination with prefix durch yielding the noun diameter

 (ung,{ [] })} suffix ung yielding the noun measurement

).

Figure 5: Example of morphological features

Figure 5 shows a simple example of the assignment of morphological features to a verb. In
addition to information about the conjugation of the verb, a set of possible prefixes can be
declared which constitutes derived verbs. Finally, a set of suffixes together with sets of
required prefix sequences can be defined for deriving nouns or adjectives. The dictionary entry
shown in Figure 5 therefore covers all together 47 different surface forms (see Figure 6)
including also irregular verb forms, compound verbs, and declensions of the derived nouns and
of the adjectival use of both participles (by making use of auxiliary dictionary entries, see
Figure 7).

 messen, messe, miß, mißt, meßt, maß, maßest, maßen, maßet, messend, messender, messendem,
 messenden, messende, messendes, gemessen, gemessener, gemessenem, gemessenen, gemessene,
 gemessenes, abmessen, messe ab, miß ab, mißt ab, meßt ab, maß ab, maßest ab, maßen ab,
 maßet ab, abmessend, abmessender, abmessendem, abmessenden, abmessende, abmessendes,
 abgemessen, abgemessener, abgemessenem, abgemessenen, abgemessene, abgemessenes,
 durchmesser, durchmessern, durchmessers, messung, messungen

Figure 6: Example of coverage of surface forms

An input sentence is first separated into a list of single words by means of an external C-
predicate. In the next step each individual word is compared with the dictionary entries
whether the latter form proper sub-strings of it. Only if such an agreement is detected, the
remaining parts of the input word are checked against the affixes recorded in the dictionary.

4. Morphological and Lexical Analysis 20

4.2 Basic Concepts

By use of the set data type of LDL it is also possible to represent ambiguities at the level of
inflexions and affixes as well as at the word level in a consistent way.

VERBFORM(
 maß, irregular verbform
 mess, verb stem
 13, conjugation class
 0 no past participle formed

 from that verbform
).

VERBPRAEF(
 ab separable verbprefix

).

SUBSTSUFFIX(
 ung, suffix for deriving noun
 fem, gender
 3 declination class
).

Figure 7: Example of auxiliary dictionary entries

Of course this sub-string test method is only feasible with regard to performance criteria for
relatively small dictionaries. Therefore, it is very well suited for the use in database interfaces.
For applications where such a narrow and well-defined universe of discourse does not exist
(e.g. machine translation) other retrieval methods must be used, reducing again the
transparency and conciseness of the dictionary [Aoe90].

As a consequence of the above mentioned advantages of a hierarchically structured
dictionary, we supplied the flexible insertion of syntactic and semantic features at the
appropriate level in the hierarchy and employed inheritance mechanisms for the analysis
process. All properties are inherited from the ancestors unless more specific properties defined
at a lower level overwrite more general attributes. Therefore, an efficient and natural
representation is obtained, also taking into account divergent specific meanings of derived
words.

Finally, to capture three morphological phenomena of particular relevance to the German
language, namely ablaut, elision, and binding sounds, the two-level formalism is employed.
The different rules are not generally valid but are restricted to the appropriate word classes,
that is, they build an integral part of the hierarchically structured dictionary, again by deriving
full benefit of the applied inheritance mechanisms [Emele88].

4. Morphological and Lexical Analysis 21

4.3 Morpho-Syntax

4.3 Morpho-Syntax

After the above general preliminary remarks we will now develop the underlying formal
framework of our morphological analysis (see also [Winiwarter93b]). Of course our aim was
not to obtain a complete representation of each morphological phenomenon which might ever
occur in German but a reasonable and easily extendible set of rules which covers all cases
relevant for the application in natural language interface design. The general decomposition
format for lemmatising an input word is stated as follows, required parts are underlined:

CATEGORY = PREFIXPART CATEGORY-STEM SUFFIXPART (4.1)

4.3.1 Particles

They represent the linguistic units that are most easily analysed because they do not possess
neither prefixes nor suffixes:

PARTICLE = φ PARTICLE-STEM φ (4.2)

Because of their irregular declensions we treated also articles, pronouns, and numerals as
particles, that is, we stored the individual inflections as additional dictionary entries.

4.3.2 Nouns

German nouns are declinable with regard to case and number. Not only simple prefixes but
also complex prefix lists can be put in front of the noun stem. The contents of the prefix lists is
not restricted to prefixes in the usual sense but can also include other parts of speech for
modelling compound words. Only complete prefix lists are accepted as input because there
exist numerous cases where sub-lists constitute no legal word forms:

NOUN = [PREFIX] N-STEM ENDING (4.3)

Example 4.1:

Subteilhierarchien = [sub,teil] hierarchie n (sub-part hierarchies) n
In addition to these regular situations nouns can also be derived from verbs, adjectives or
other nouns by adding substantival suffixes to them:

NOUN = [PREFIX] V-STEM | A-STEM | N-STEM SUFFIX ENDING (4.4)

Example 4.2:

Mitarbeiter = [mit] arbeit er φ (to work -> employee)

Tätigkeiten = [] tätig keit en (active -> actions)

Tagung = [] tag ung φ (day -> meeting) n

4. Morphological and Lexical Analysis 22

4.3 Morpho-Syntax

4.3.3 Adjectives

Adjectives can be declined with respect to five dimensions: gender, case, number, comparison,
and substantival or pronominal use. They can only be preceded by simple prefixes:

ADJ = PREFIX A-STEM ENDING (4.5)

Example 4.3:

indirektesten = in direkt esten (most indirect) n
In analogy to nouns also adjectives can be derived from verbs, substantives or other adjectives,
these derived adjectives again can be formed by means of complex prefix lists:

ADJ = [PREFIX] V-STEM | N-STEM | A-STEM SUFFIX ENDING (4.6)

Example 4.4:

voraussichtliches = [vor, aus] sicht lich es (view -> presumable)

unlösbaren = [un] lös bar en (to solve -> unsolvable)

langsam = [] lang sam φ (long -> slow) n

4.4.4 Verbs

Verbs are conjugated according to mood, number, person, and tense. They can only be
accompanied by simple prefixes:

VERB = PREFIX V-STEM ENDING (4.7)

Most of the prefixes are separable from the word stem, they can occupy distant positions in an
input sentence, a phenomenon which is dealt with by means of auxiliary dictionary entries for
these prefixes.

Example 4.5:

durchführen = durch führ en (to accomplish)

Er führte die Lieferung termingerecht durch.

(He accomplished the delivery in time.) n
The numerous irregular verb forms are modelled by storing them as different dictionary entries
and by partitioning the corresponding conjugations. Derived verbs from nouns or adjectives
were not mapped as morphological rules but are also realised by use of own entries because of
their inherent irregularity. The way we felt about it, this was not a severe drawback. It is often
only a matter of design whether a verb is regarded as derived from a noun or vice versa if one
does not want to get lost in profound etymological details which have no relevant impact on
the practical use. The final derivation structure is shown in Figure 8.

4. Morphological and Lexical Analysis 23

4.3 Morpho-Syntax

VERB

NOUN ADJECTIVE

Figure 8: Derivation structure of complex word categories

An area of rich and tricky morphological phenomena constitutes the building of past
participles including also adjectival uses. The following patterns cover all possible situations.
The first one represents the normal case where the past participle is formed by use of the
prefix ge- (PAP-PREFIX), the second one covers conditions where this prefix has to be
replaced by another present prefix (REPL-PREFIX, prefixes capable of such substitutions are
for example ver-, ent-, er-). Finally, in the third case the situation is figured that a verb takes
no prefix at all (e.g. verbs derived from nouns by the suffix -ieren):

VERB = PREFIX PP-PREFIX V-STEM PAP-ENDING A-ENDING (4.8)

VERB = REPL-PREFIX V-STEM PAP-ENDING A-ENDING (4.9)

VERB = PREFIX V-STEM PAP-ENDING A-ENDING (4.10)

Example 4.6:

abgearbeitete = ab ge arbeit et e (to work -> worked off)

verkauft = ver kauf t φ (to buy -> sold)

aktualisierten = φ aktualisier t en (to update -> updated) n

Finally, the formation of the present participle is comparatively simple and is determined by
one single uniform pattern which again includes adjectival use:

VERB = PREFIX V-STEM PRP-ENDING A-ENDING (4.11)

Example 4.7:

laufenden = φ lauf end en (to run -> current) n

4. Morphological and Lexical Analysis 24

4.4 Two-Level Rules

4.4 Two-Level Rules

We applied the two-level formalism introduced by Koskenniemi [Koskenniemi83] to the
correct treatment of three special German morphological phenomena, i.e. ablaut, elision, and
binding sounds. Instead of adopting the realisation of the two-level rules by means of finite
state techniques, we used them only as expressive framework for the precise specification of
the morphological features which was translated into a corresponding set of deductive
database rules [Winiwarter93b].

Although we could also have dealt with the morphological phenomena in question without the
two-level formalism, we gained a significant increase of transparency and conciseness by
means of its application. The most convincing evidence of this assertion was the reduction of
required additional columns by the use of archiphonemes in the dictionary.

4.4.1 Ablaut

The ablaut is a special morphological feature of the German language concerning the
transformation of the vowels a, o, u to ä, ö, ü in the stems of nouns, adjectives, and verbs in
the course of deriving the following inflections:

Ø plurals of nouns
Ø comparatives and superlatives of adjectives
Ø second and third person singular of verbs

The presence or absence of the ablaut in the above cases is not subject of general systematic
regularities (with very few exceptions, e.g. substantives which build the plural on -er always
form the ablaut), so that it is marked lexically in the dictionary.

Example 4.8:

Wolf-Wölfe (wolf-wolves) vs. Stoff-Stoffe (material-materials)

klug-klüger (intelligent-more intelligent) vs. krumm-krummer (curved-more curved)

tragen-du trägst (to carry-you carry) vs. fragen-du fragst (to ask-you ask) n
By making use of the two-level formalism, the condition for the ablaut (for the vowel a) can

be formalised as follows [Karttunen87]:

A:ä ⇔ _=* +: %: (4.12)

The symbols used in this formula have to be interpreted as:

A archiphoneme which marks the existence as well as the position of the
 vowel for the ablaut at the lexical level (default assignment of surface
 representation: a)

: characterises corresponding pair of lexical and surface representation
ä transformed surface character if condition is satisfied
⇔ condition for obligatory transformation (if condition is true, the transformation

 must be performed)
_ position of archiphoneme in the dictionary entry

4. Morphological and Lexical Analysis 25

4.4 Two-Level Rules

= arbitrary character
* 0 or any number of repetitions
+: morpheme boundary
%: test for syntactic feature (e.g. plural of noun)

The rule can therefore be verbalised in the following way: the archiphoneme A is transformed
into ä at the surface level if it is followed by a sequence of arbitrary characters and the
morpheme boundary, in addition to that the test for the specified syntactic feature must be
satisfied. In all other cases it becomes the default value a. So the above mentioned examples
can now be easily distinguished (e.g. klUg vs. krumm) in the dictionary. The syntactic test
which has to be applied is selected correctly in accordance with the actual word category
[Emele88].

In addition to the three above mentioned cases of the presence of the ablaut there also exists
the possibility that a vowel-gradation may occur in the course of the process of word
derivation, e.g. Tag->täglich (day->daily). This modification is not subject to any regularities
either but depends only on the specific combination. As it comprises only a backward
reference to the position to be altered, it could not be resolved by the use of an archiphoneme,
but we added an appropriate characteristic in the dictionary instead.

4.4.2 Elision

Elision is the omission of the unstressed e-sound. It can be distinguished on the one hand
between obligatory and optional omissions, on the other hand between elisions concerning the
stem or the ending. While elisions occurring in inflexional endings can easily be handled in the
dictionary by corresponding morphological features, the former case results in the need for a
concise representation by means of a two-level rule, avoiding redundant lexical entries.

In contrast to the processing of the ablaut, there exist three generally valid rules for the
presence of elision. Therefore, they can be taken into account by the logical rules of the
deductive database.

Ü If the stem of an adjective ends in -el and an ending starting with -e is appended, then -el
has to be reduced to -l:

e: 0 ⇔ _ l +: e (4.13)

Example 4.9:

variabel en -> variablen (variable) n
Ü If the stem of a verb ends in -el and an ending starting with e is appended, then -el can be

reduced to -l (optional reduction is expressed in the formula by ⇒ instead of ⇔):

e: 0 ⇒ _l +: e (4.14)

Example 4.10:

handel e -> handele, handle (to act) n

4. Morphological and Lexical Analysis 26

4.5 Implementation

Ü If the stem of an adjective or a verb ends in -er and an ending starting with e is appended,
then -er can be reduced to -r:

e: 0 ⇒ _ r +: e (4.15)

Example 4.11:

änder e -> ändre, ändere (to change)
finster e -> finstre, finstere (dark) n

In addition to these universal rules there is also the possibility that word derivations might lead
to elisions (required or optional) if the stem ends in -el or -er and the suffix starts with a
vowel, e.g. handeln->Handlung (to act->action). This case is modelled in analogy with the
ablaut occurring in derivations.

4.4.3 Binding Sounds

One final morphological characteristic of the German language is the insertion of so-called
binding sounds (s, e or n) which tie together the individual parts of a word in the formation of
derived or compound words. Again, like in the case of the ablaut, there exist no universal rules
whether a specific compound is formed with or without a binding sound, so the problem is
once more solved directly by the use of archiphonemes in the dictionary (stated here for the
binding sound s):

S: s ⇔ _ +: = =* +: (4.16)

The archiphoneme S is represented as s at the surface level if it is directly followed by the
morpheme boundary and a sequence of arbitrary characters (at least one), constituting the
appended morpheme.

Example 4.12:

[ein, kaufS] preis -> Einkaufspreis (cost price) n
4.5 Implementation

4.5.1 Database Schema

In the following we give some representative examples of applied base predicates for the
categories stated by our morpho-syntax. Only syntactic properties are considered, semantic
features will be treated in Chapter 6. Semantic and Pragmatic Analysis.

@ Particles:

konjunktion(category: conjunction
Stamm: string, stem
Hierarchie: string, hierarchy: co-ordination, sub-ordination
Bindungsart: string). binding category: copulative, disjunctive etc.

4. Morphological and Lexical Analysis 27

4.5 Implementation

@ Nouns:

substantiv(category: noun
Stamm: string, stem
Geschlecht: string, gender
Deklinationsklasse: integer, declination class
Praefixe: {[string]}, prefix sequences
Suffixe: {(string, integer, suffixes for derivations, ablaut type, elision type,

integer, {[string]})}). lists of required prefix sequences

deklination(
Deklinationsklasse: integer, declination class
Endungen: {(string, {(string, string)})}). endings, sets of syntactic features: (case, number)

substsuffix(suffix for deriving nouns
Stamm: string, stem
Geschlecht: string, gender
Deklinationsklasse: integer). declination class

@ Adjectives:

adjektiv(category: adjective
Stamm: string, stem
Deklinationsklasse: integer, declination class
Praefixe: {string}, prefixes
Suffixe: {(string, integer, suffixes for derivations, ablaut type, elision type,

integer, {[string]})}). lists of required prefix sequences

adjdekl(
Deklinationsklasse: integer, declination class
Endungen: {(string, endings, sets of syntactic features:
{(string, string, string, string, string)})}). (comparison, substantival or pronominal use,

 number, gender, case)

adjsuffix(suffix for deriving adjectives
Stamm: string, stem
Deklinationsklasse: integer). declination class

@ Verbs:

verb(category: verb
Stamm: string, stem
Subjekttyp: string, impersonal or personal verb
Objekttyp: string, transitive or intransitive verb
Reflexivitaet: string, reflexive or irreflexive verb
Verwendungsart: string, full verb, auxiliary verb, modal verb
Konjugationsklasse: integer, conjugation class
Partizipklasse: integer, past participle class
Praefixe: {(string, string, string)}, prefixes, new transitivity, new reflexivity
Suffixe: {(string, integer, suffixes for derivations, ablaut type, elision type,

integer, {[string]})}). lists of required prefix sequences

4. Morphological and Lexical Analysis 28

4.5 Implementation

konjugation(
Konjugationsklasse: string, conjugation class
Endungen: {(string, endings, sets of syntactic features:

{(string, integer, string, string)})}). (mood, person, number, tense)

4.5.2 Facts

The individual dictionary entries are inserted into the facts file, in other words they constitute
the real data or population of the database (tuples). Please notice the elimination of
capitalisation and the internal representation of the special characters ä, ö, ü, ß by their
international transcriptions ae, oe, ue, ss. Another interesting detail is the use of the
archiphonemes defined in the previous chapter and the coding of ablauts (1 ... present, 0 ...
absent) and elisions (2 ... required, 1... optional, 0 ... absent) for derivations as the following
sample entries illustrate:

@ Particles:

konjunktion(category: conjunction
und, stem [=and]
koordinierend, co-ordination
kopulativ). copulative

@ Nouns:

substantiv(
preis, stem [=price]
masculinum, gender
6, declination class
{[ein,kaufS]}, prefix sequence yielding Einkaufspreis [=cost price]
{(lich,0,0,{[]})}). suffix yielding adjective preislich [=estimable]

(neither ablaut nor elision present)

deklination(
6, declination class
{(´´, {(nominativ, singular), sets of endings, syntactic features: (case, number)
 (dativ, singular),
 (akkusativ, singular)}),
...}).

substsuffix(
e, stem
femininum, gender
1). declination class

substsuffix(
ung, stem
femininum, gender
3). declination class

4. Morphological and Lexical Analysis 29

4.5 Implementation

@ Adjectives:

adjektiv(
lAng, stem [=long]
1, declination class
{}, prefixes
{(e, 1, 0, {[]}), suffix yielding Länge [= length]
 (lich, 1, 0, {[]})}). suffix yielding länglich [=longish]

adjdekl(
1, declination class
{(es, {(positiv, pronominal, sets of endings, syntactic features:
 nominativ, singular, neutrum)}), (comparison, substantival or pronominal use,
...}). number, gender, case)

adjsuffix(
lich, stem
1). declination class

@ Verbs:

verb(
zoeger, stem [=to hesitate]
persoenlich, personal verb
intransitiv, intransitive verb
irreflexiv, irreflexive verb
hauptzeitwort, full verb
1, conjugation class
1, past participle class (prefix ge, ending t)
{(ver, transitiv, reflexiv)}, prefix yielding verzögern [=to delay]

(transitive, reflexive)
{(ung, 0, 0, {[ver]})}). suffix yielding noun Verzögerung [=delay]

(neither ablaut nor elision present)

konjugation(
1, conjugation class
{(st, {(indikativ, 1, singular, praesens)}), endings, sets of syntactic features:
...}). (mood, person, number, tense)

4.5.3 Logical Rules

Since the morphological data is already specified in such a complex, yet also clear and
compact way, the rule file of the deductive database is accordingly simple and straightforward.
By use of derived predicates new conclusions are inferred from the base predicates
representing the dictionary, resulting in a complete morphological analysis of the input
sentence.

4. Morphological and Lexical Analysis 30

4.5 Implementation

On the top-level the following predicate which handles the I/O-functions is defined:

ma <- top-level of morphological analysis
input(Satz), external C-predicate for requesting sentences

from user, separating the individual words and
transforming them into a list of atoms

suche(Satz, Ergebnis), proper morphological analysis
output(Ergebnis). formatted output of analysis results

The next step comprises the analysis of each individual word. In order to reduce the
processing time some special character patterns as well as abbreviations are tested by the
following predicate (also including external C-predicates for string-processing) before the
dictionary is accessed:

speztest(Wort, Wort2, Typ) (4.17)

Wort analysed word
Wort2 expansion of abbreviations, otherwise it equals Wort
Typ type of special pattern

These patterns include the following important types:

Ø punctuation marks
Ø numbers
Ø date, time, and currency formats
Ø physical units

Only if none of these special patterns is detected, the analysis is continued by examining the
dictionary, the resulting argument Typ of the pre-test predicate is then marked as unknown.
The complete rule for recursively analysing the words of the input list takes the following
format:

suche([Wort|Rest], [Ergebnis|Rest2]) <-
speztest(Wort, Wort2, Typ), pre-test for special patterns and abbreviations
if(Typ~=unknown if word type is not unknown
then then

 Ergebnis={(Wort2, Typ, result equals word (possibly expanded), type,
([], [], [], []))} empty morphological structure

else else
 if(stammtest(Wort2, Ergebnis2) if word can be analysed correctly
 then then

Ergebnis=Ergebnis2 result equals result of word analysis
 else else

Ergebnis={(Wort2, unknown, word is marked as unknown
([], [], [], []))})),

suche(Rest, Rest2). analysis of next word

suche([],[]). exit rule of recursion

4. Morphological and Lexical Analysis 31

4.5 Implementation

To include the correct representation of ambiguous analysis results as a set of possible
interpretations, the various outcomes at the word level are comprised as elements of a single
set by means of the grouping operator (<...>):

stammtest(Wort, <Ergebnis>) <- grouping of results at word level into single set
wort(Wort, Ergebnis).

The predicate wort realises the dictionary level of the analysing process and consists of
different rules for each word category, e.g. for the simple category of conjugations:

wort(Eintrag, (Eintrag, konjunktion, classifying word as conjunction
([], [], [], []))) <- yielding as result: stem, word category,

morphological structure
konjunktion(Eintrag,_,_). searching for conjunctions in dictionary

As one complex illustrative example we choose the derivation of nouns, the other
implemented rules can be inferred from this example in an easy and straightforward way:

wort(Wort, (Eintrag3, ableitSubst, classifying word as derived noun
(Praefix2, Suffixstamm, Endung, []))) <- yielding as result: stem, word category,

morphological structure
verb(Eintrag,_,_,_,_,_,_,_, Suffixe), searching for verbs in dictionary
ablaut(Eintrag, Eintrag2, Ablauttyp), possible modifications are generated as additional

solutions (external C-predicate)
elision(Eintrag2,Eintrag3,Elisionstyp), as above
affixe(Wort, Eintrag3, Praefix, Suffix), sub-string test for verb stem (external C-predicate)

if satisfied it yields the separated prefix and
suffix part

suffixtest(Suffix, Suffixe, Ablauttyp, checking suffix with suffixes in dictionary resulting
Elisionstyp, Suffixstamm, in suffix stem and ending

 Endung, Praefixe),
praefixtest(Praefix, Praefixe, Praefix2). checking prefix with possible prefix sequences

suffixtest(Suffix, Suffixe, Ablauttyp, suffix test
Elisionstyp, Suffixstamm,
Endung, Praefixe) <-

member((Suffixstamm, Ablauttyp, checking each possible suffix in set (verifying also
Elisionstyp, Praefixe), Suffixe), accordance with regard to ablaut and elision)

affixe(Suffix, Suffixstamm,´´, Endung), separating ending from suffix stem
substsuffix(Suffixstamm,_, Endungen), retrieving possible endings
member((Endung,_), Endungen). checking ending with set of valid endings

praefixtest(Praefix, Praefixe, Praefix2) <- prefix test rule for case where prefixes are present
Praefix~=´´, rule only applies if prefixes are present
member(Praefixliste, Praefixe), retrieving possible prefix sequences
listtest(Praefix, Praefixliste, Praefix2). recursive checking of prefix with valid

prefix sequences

praefixtest(´´, Praefixe, []) <- prefix test rule for case where no prefix is present
member([], Praefixe).

4. Morphological and Lexical Analysis 32

4.5 Implementation

listtest(Praefix, [Praefix2|Rest], recursive checking of prefix with valid
[Praefix3 Rest2]) <- prefix sequences
Rest~=[], rule only applies if more than one prefix present
binding(Praefix2, Praefix3), external C-predicate for transforming binding sound,

otherwise Praefix3 equals Praefix2
affixe(Praefix, Praefix3, ´´, Praefrest), separating first prefix and checking it against

list entry
listtest(Praefrest, Rest, Rest2). analysis of the next prefix in the list

listtest(Praefix, [Praefix2], [Praefix]) <- exit rule for single prefix
binding(Praefix2, Praefix). external C-predicate for transforming binding sound,

otherwise Praefix equals Praefix2

4.5.4 Query Forms

Since the I/O-functions are handled by external C-predicates and special I/O-predicates of
LDL, there is no need for defining any complicated query forms by declaring covered and free
variables. The only thing that has to be done in the query forms file is to specify the main
predicate ma by means of the statement: qform ma. After the processing of all definitions
neatly separated into the four file types, the program is simply started by typing ?ma leading
to the invitation to the user to enter an input sentence.

The complicated resulting morphological structure contained in the variable Ergebnis is of
course only of use for internal purposes, that is, it constitutes the basis for the subsequent
steps of analysis. By means of the predicate output we therefore produced an informative
formatted test output including the precise lemmatisation, the individual morphemes as well as
all interesting syntactic information.

Example 4.13:

As a short illustrative example we give the analysis result for the following sentence
(analysis of numbers is only mentioned once):

Bestellungen 3 und 4 verzögern sich 5 Tage
[=Deliveries 3 and 4 are delayed by 5 days]
(literally: Deliveries 3 and 4 delay themselves 5 days)

Bestellungen deliveries
Stamm: stell stem
Wortart: abgeleitetes Substantiv category: derived noun
Präfixliste: [be] prefix sequence
Suffix: ung suffix
Geschlecht: femininum gender
Endung: en ending
Deklination: {(nominativ, plural), set of syntactic features: (case, number)

(genitiv, plural), (dativ, plural),
(akkusativ, plural)}

3 3
Stamm: 3 stem
Wortart: Ganzzahl category: integer

4. Morphological and Lexical Analysis 33

4.6 Summary

und and
Stamm: und stem
Wortart: Konjunktion category: conjunction
koordinierend co-ordination
kopulativ copulative

verzögern to delay
Stamm: zoeger stem
Wortart: Verb category: verb
persoenlich personal verb
transitiv transitive verb
reflexiv reflexive verb
Hauptzeitwort full verb
Präfix: ver prefix
Endung: n ending
Konjugation: set of syntactic features: (mood, person,

{(indikativ, 1, plural, praesens), number, tense)
 (infinitiv, 0, ´´, ´´),

 (indikativ, 3, plural, praesens),
 (imperativ, 3, plural, ´´)}

sich himself, herself, itself, themselves
Stamm: sich stem
Wortart: Reflexivpronomen category: reflexive pronoun
Deklination: {(3, singular, dativ), set of syntactic features: (person, number, case)
 (3, plural, dativ),

(3, singular, akkusativ),
(3, plural, akkusativ)}

Tage days
Stamm: tag stem
Wortart: Substantiv category: noun
Präfix: [] prefix sequence
Geschlecht: masculinum gender
Endung: e ending
Deklination: {(nominativ, plural), set of syntactic features: (case, number)

(genitiv, plural), (akkusativ, plural)} n

4.6 Summary

This Section dealt with morphological and lexical analysis, the first two steps of natural
language analysis which cannot be regarded as separated within IDA interfaces. This is due to
the selected lexical approach of storing only canonical forms as dictionary entries and
attaching to them all morphological features, also considering complex cases of prefixes,
derivations, and compound words.

After developing the required formal framework consisting of the morpho-syntax and two-
level rules, the theoretical concepts were mapped to an efficient LDL implementation. By
applying a hierarchical architecture, we achieved a compact dictionary as excellent basis for
further syntactic and semantic analysis.

4. Morphological and Lexical Analysis 34

5.1 Introduction

5. Syntactic Analysis

5.1 Introduction

The aim of syntactic analysis within natural language interfaces should not be the coverage of
the complete language, especially not of all those exotic phenomena possessing only linguistic
evidence but no practical relevance. Whilst the generality is therefore on the one hand
restricted in comparison with other applications of natural language processing, it has to
provide on the other hand important extensions indispensable for effective information
retrieval [Bates87]:

G tolerance as concerns ungrammatical sentences
G correct interpretation of incomplete sentences
G processing of unknown words

The formal specification of the valid constructs of a language is defined by a grammar
whereas the parser represents the tool to analyse a sentence, it verifies the compatibility of a
sentence with the grammar. With regard to their expressive power the grammars can be
classified in context-free grammars, augmented grammars, and unification grammars
[Allen87].

Context-free grammars have their origin in the analysis of formal languages and were adapted
to the processing of natural language [Nijholt88]. Therefore, many special problems of natural
language could not be treated efficiently. This weakness led to the augmentation of syntactic
features and local registers to the grammar symbols [Charniak86]. These augmented
grammars were now able to keep track of the sentence structure and to check for the
agreement of syntactic properties, e.g. case, number or person.

In order to obtain a more compact and natural representation the conditions and assignments
used within augmented grammars were replaced by the operation of unification derived from
logic programming. Two structures are unified in that all registers which exist only in one of
the two structures are copied. If a register exists in both structures, the intersection is
computed. The resulting unification grammars detect missing agreements already at an early
point of analysis, leading the way to efficient parser implementations [Gazdar89].

A problem of special importance for languages with free word order like German is the
constituent transfer, i.e. situations in that some phrases are moved from its expected positions
in the sentence [Winograd83]. Examples are inversions in questions or dependent clauses, the
separation of constituent parts by embedded phrases, and the topicalisation of constituents.
Many techniques to deal with this phenomenon have been proposed but most of them lack of
declarative expressiveness.

Section 5.2 Grammar Formalisms gives a view over some of the most influential grammar
formalisms for natural language processing also providing examples of handling constituent
transfer. For a good survey see also [Allen87].

Based on this survey we select Categorial Unification Grammar as theoretical framework for
syntactic analysis and introduce in Section 5.3 Extended Categorial Unification Grammar six
important new extensions in order to gain expressive power for the processing of free word
order languages. Finally, we show in Section 5.4 Implementation how a parser for our
proposed grammar can be implemented efficiently in IDA.

5. Syntactic Analysis 35

5.2 Grammar Formalisms

5.2 Grammar Formalisms

5.2.1 Phrase Structure Grammar

A context-free phrase structure grammar [Chomsky56] consists of a set of derivation rules:

Symbol ← Symbol1 Symbol2 ... (5.1)

The symbols represent the constituents of the sentence. It can be distinguished between non-
terminals which can be transformed by the application of rules and terminals which
correspond to the word categories stored in the dictionary.

Example 5.1:

The following simple grammar accepts sentences which consist of a noun phrase and a
verb phrase, the latter is formed out of a verb with an optional noun phrase and an
optional prepositional phrase.

1. S ← NP VP
2. NP ← ART NOUN
3. NP ← NAME
4. PP ← PREP NP
5. VP ← VERB
6. VP ← VERB NP
7. VP ← VERB NP PP
8. VP ← VERB PP n

With regard to the applicability of parsing algorithms, two basic techniques exist: top-down
parsing and bottom-up parsing [Aho72].

Example 5.2:

The two basic parsing techniques are demonstrated by use of the analysis of the example
sentence Hugo aß das Eis (=Hugo ate the ice-cream) and the grammar from Example
5.1, the numbers indicate the application of the corresponding rules, no numbering
represents a simple replacement by means of the dictionary.

Top-down parsing Bottom-up parsing

 S → Hugo aß das Eis
1. → NP VP → NAME aß das Eis
3. → NAME VP → NAME VERB das Eis

→ Hugo VP → NAME VERB ART Eis
6. → Hugo VERB NP → NAME VERB ART NOUN

→ Hugo aß NP 3. → NP VERB ART NOUN
2. → Hugo aß ART NOUN 2. → NP VERB NP

→ Hugo aß das NOUN 6. → NP VP
→ Hugo aß das Eis 1. → S n

5. Syntactic Analysis 36

5.2 Grammar Formalisms

These two parsing methods possess as they are striking disadvantages:

D If a top-down parser rejects a grammar rule, all derivations for non-terminals are deleted.
Therefore, if the same symbol appears later within another rule, the derivation must be
calculated once again as for example the symbol NP in:

VP ← VERB NP
VP ← VERB NP PP

D A bottom-up parser generates many superfluous non-terminals which can never take this
position in the sentence, e.g. in the following sentence the non-terminal VP is derived
before the parser realise that the subject is missing:

Aß das Eis mit dem Löffel (Ate the ice-cream with the spoon)

Therefore, most practical applications use mixed-mode parsers. Classical examples of efficient
parsing algorithms are chart-based parsers [Kay73] and Earley´s parser [Earley70], for a
good survey of recent approaches see [Tomita91].

In order to be able to check syntactic agreements and to record the sentence structure,
features are added to the dictionary entries and local registers are attached to the non-
terminals. If additionally unification operations are introduced, one results in phrase structure
unification grammars [Shieber86].

Example 5.3:

For the four dictionary entries in Example 5.2 the feature for the number singular is
added as set, e.g.:

Hugo (NAME NUM {SING})

Each non-terminal is supported by a local register in order to test the agreement of
number and to construct the syntactic structure:

(NP ART (PP PREP (VP VERB (S SUBJ
HEAD NP) OBJ PRED
NAME POBJ NUM)
NUM) NUM)

Finally, the grammar in Example 5.1 is augmented by unification operations:

1. S ← NP VP NUM=NUMNP=NUMVP, SUBJ=NP, PRED=VP
2. NP ← ART NOUN NUM=NUMART=NUMNOUN, HEAD=NOUN,

ART=ART
3. NP ← NAME NUM=NUMNAME, NAME=NAME
4. PP ← PREP NP PREP=PREP, OBJ=NP
5. VP ← VERB NUM=NUMVERB, VERB=VERB
6. VP ← VERB NP NUM=NUMVERB, VERB=VERB, OBJ=NP
7. VP ← VERB NP PP NUM=NUMVERB, VERB=VERB, OBJ=NP,

POBJ=PP
8. VP ← VERB PP NUM=NUMVERB, VERB=VERB, POBJ=PP

5. Syntactic Analysis 37

5.2 Grammar Formalisms

If the example sentence

Hugo aß das Eis mit dem Löffel (Hugo ate the ice-cream with the spoon)

is analysed, this results in the following sentence structure:

(S SUBJ (NP NAME Hugo
NUM {SING})

PRED (VP VERB aß
OBJ (NP ART das

HEAD Eis
NUM {SING})

POBJ (PP PREP mit
OBJ (NP ART dem

HEAD Löffel
NUM {SING}))

NUM {SING})
NUM {SING}) n

The constituent transfer is dealt with a so-called hold list. Every time an unexpected
constituent is found, it is stored in the hold list by use of the HOLD-operation so that it can be
retrieved later again by a corresponding VIR-operation [Allen87]. A sentence is only analysed
successfully if the final hold list is empty.

Example 5.4:

The grammar in Example 5.1 is extended by the possibility to analyse sentences where
the prepositional object is topicalised, e.g.:

Mit dem Löffel aß Hugo das Eis (With the spoon ate Hugo the ice-cream)

 1. S ← HOLD(PP) HOLD(V) S'
 2. S ← S'
 3. S' ← NP VP
 4. NP ← ART NOUN
 5. NP ← NAME
 6. PP ← PREP NP
 7. VP ← V
 8. VP ← V NP
 9. VP ← V NP PP
10. VP ← V PP
11. V ← VERB
12. V ← VIR(VERB)
13. PP ← VIR(PP) n

An important derivative of phrase structure grammars is the generalized phrase structure
grammar (GPSG) introduced by Gazdar [Gazdar82]. GPSG provides on the one hand very
powerful notions in order to formalise even the trickiest syntactic problems of natural
language. On the other hand, this complexity has as consequence that only simplified versions
can be parsed efficiently (e.g. [Evans87, Fisher 89]).

5. Syntactic Analysis 38

5.2 Grammar Formalisms

Within GPSG the context-free grammar rules are split up in ID (Immediate Dominance) and
LP (Linear Precedence) rules in that the ID rules contain only the information about the
nature of the constituents whereas the LP rules define the sequence conditions.

Example 5.5:

The context-free rule from Example 5.1.

S ← NP VP

is represented in GPSG as follows:

ID: S ← NP, VP
LP: NP < VP n

Instead of local registers the features are directly attached to the non-terminals resulting in
complex symbols called categories, e.g. NP[SING]. For the correct processing of features
two techniques are provided:

Ä a set of conventions or constraints that control the automatic propagation of features
Ä a set of propositions that are required to hold (so-called feature co-occurrence

restrictions)

In GPSG constituent transfer can be dealt with by use of slashed categories indicating
categories where a constituent is missing, e.g. S/NP. Other advanced techniques include meta
rules and variable categories [Gazdar85]. For example, the following rule generates for each
active verb phrase the corresponding passive one by removing the noun phrase and replacing it
by an optional prepositional phrase, the variable category X stands for any sequence of
constituents:

VP ← VERB[TR], NP, X ⇒ VP[PAS] ← VERB, X, (PP[by]) (5.2)

5.2.2 Transition Nets

In context-free recursive transition nets [Woods70] the grammar rules are mapped to directed
graphs, each sub-graph representing a non-terminal. The analysis of a sentence corresponds to
the traversal of the graph, it is successful if the traversal ends in a valid final state.

The following arc labels exist:

Ø CAT is satisfied if the actual word belongs to the required category
Ø PUSH calls sub-graph, satisfied if traversal successful
Ø JUMP is always satisfied
Ø POP returns after successful traversal to prior sub-graph

Example 5.6:

Figure 9 shows the corresponding grammar to Example 5.1. The example sentence from
Example 5.2 is parsed in that for each non-terminal the sentence position, the calling
states, and the selected arc is indicated. The arcs are numbered downward. If more then
one arc can be applied, the top arc is selected, the other arcs are stored for backtracking.

5. Syntactic Analysis 39

5.2 Grammar Formalisms

S: S S1 S2
PUSH NP PUSH VP POP

NP: NP NP1 NP2
CAT ART CAT NOUN POP

PP: PP PP1 PP2
CAT PREP PUSH NP POP

VP: VP VP1 VP2
CAT VERB

PUSH NP PUSH PP

CAT NAME

VP3
POP

JUMP JUMP

 Figure 9: Example of recursive transition network

1Hugo2aß3das4Eis5

Actual state Arc Backtracking states

 1. (S, 1, NIL) S/1 NIL
 2. (NP, 1, (S1)) NP/2 NIL
 3. (NP2, 2, (S1)) NP2/1 NIL
 4. (S1, 2, NIL)) S1/1 NIL
 5. (VP, 2, (S2)) VP/1 NIL
 6. (VP1, 3, (S2)) VP1/1 NIL
 7. (VP2, 3, (S2)) VP2/1 (NP, 3, (VP2, S2))
 8. (VP3, 3, (S2)) VP3/1 (NP, 3, (VP2, S2)), (PP, 3, (VP3, S2))
 9. (S2, 3, NIL) S2/1 (NP, 3, (VP2, S2)), (PP, 3, (VP3, S2))
10. (NP, 3, (VP2, S2)) NP/1 (PP, 3, (VP3, S2))
11. (NP1, 4, (VP2, S2)) NP1/1 (PP, 3, (VP3, S2))
12. (NP2, 5, (VP2, S2)) NP2/1 (PP, 3, (VP3, S2))
13. (VP2, 5, (S2)) VP2/1 (PP, 3, (VP3, S2))
14. (VP3, 5, (S2)) VP3/1 (PP, 3, (VP3, S2)), (PP, 5, (VP3, S2))
15. (S2, 5, NIL) S2/1 (PP, 3, (VP3, S2)), (PP, 5, (VP3, S2)) n

Similar to phrase structure grammars, in Augmented Transition Networks (ATN) the directed
graphs are augmented by features, local registers, conditions, and assignments [Woods73,
Kaplan73, Bates78]. The asterisk symbol is used in this context to indicate the features of the
word for CAT arcs and the local register of the sub structure for PUSH arcs. Unification
operations do not exist, they are approximated by use of instantiation rules [Winograd83]
which make it possible to pass arguments to PUSH arcs so that agreement conditions can
already be tested in the called sub-graph.

5. Syntactic Analysis 40

5.2 Grammar Formalisms

Example 5.7:

The following annotations extend the network in Figure 5 resulting in the same grammar
as in Example 5.3. Additionally, the instantiation rule NUM ← NUM for state S1/1 is
included to check the agreement of the number of subject and predicate.

Arc Conditions Assignments

S/1 SUBJ ← *, NUM ← NUM*
S1/1 PRED ← *, NUM ← NUM*
NP/1 NUM ← NUM*, ART ← *
NP1/1 NUM∩NUM* NUM ← NUM∩NUM*, HEAD ← *
NP/2 NUM ← NUM*, NAME ← *
PP/1 PREP ← *
PP1/1 OBJ ← *
VP/1 NUM∩NUM* NUM ← NUM∩NUM*, VERB ← *
VP1/2 OBJ ← *
VP2/2 POBJ ← * n

Constituent transfer is again handled by use of a hold list. The HOLD operation is added to
the assignment part whereas the VIR operation is modelled as arc label [Nijholt88].

Example 5.8:

Figure 10 shows an ATN which, together with the following assignments, is able to
analyse the same sentences as in Example 5.4.

S: S S1 S2
PUSH PP PUSH V PUSH NP

NP: NP NP1 NP2
CAT ART CAT NOUN POP

PP: PP PP1 PP2
CAT PREP PUSH NP POP

VP: VP VP1 VP2
PUSH V PUSH NP PUSH PP

CAT NAME

VP3
POP

VIR VP

S3 S4
PUSH VP POP

JUMP

JUMP

VIR V

V: V V1
CAT VERB POP

JUMP

Figure 10: Example of ATN dealing with constituent transfer

5. Syntactic Analysis 41

5.2 Grammar Formalisms

Arc Assignments

S/1 HOLD*
S1/1 HOLD*
S2/1 SUBJ ← *
S3/1 PRED ← *
NP/1 ART ← *
NP1/1 HEAD ← *
NP/2 NAME ← *
PP/1 PREP ← *
PP1/1 OBJ ← *
VP/1 VERB ← *
VP/2 VERB ← *
VP1/2 OBJ ← *
VP2/2 POBJ ← *
VP2/3 POBJ ← * n

5.2.3 Logic Grammar

In logic grammars the context-free rules are written as horn clauses which are proven in a
top-down manner [Colmerauer78, Pereira80]. A complete proof corresponds to the successful
analysis of a sentence. As additional arguments to the non-terminals the starting and ending
position in the sentence are taken.

Example 5.9:

The following logic grammar is equivalent to the phrase structure grammar in Example
5.1, it is written in LDL notation.

s(P1, P3) ← np(P1, P2), vp(P2, P3).
np(P1, P3) ← art(P1, P2), noun(P2, P3).
np(P1, P2) ← name(P1, P2).
pp(P1, P3) ← prep(P1, P2), np(P2, P3).
vp(P1, P2) ← verb(P1, P2).
vp(P1, P3) ← verb(P1, P2), np(P2, P3).
vp(P1, P4) ← verb(P1, P2), np(P2, P3), pp(P3, P4).
vp(P1, P3) ← verb(P1, P2), pp(P2, P3).

For each terminal a horn clause has to be appended which consists of the predicate word
(reading the word from the sentence) and a test for the word category in question.

verb(P1, P2) ← word(Word, P1, P2), isverb(Word).
art(P1, P2) ← word(Word, P1, P2), isart(Word).
noun(P1, P2) ← word(Word, P1, P2), isnoun(Word).
name(P1, P2) ← word(Word, P1, P2), isname(Word).
prep(P1, P2) ← word(Word, P1, P2), isprep(Word).

5. Syntactic Analysis 42

5.2 Grammar Formalisms

The individual words of the analysed sentence are then mapped to the predicate word:

1Hugo2aß3das4Eis5

word('Hugo', 1, 2).
word(aß, 2, 3).
word(das, 3, 4).
word('Eis', 4, 5).

Finally, the categories of the words have to appended as predicates:

isname('Hugo').
isverb(aß).
isart(das).
isnoun('Eis').

Now the sentence can be parsed by keeping track of backtracking states:

Actual state Backtracking states

 1. s(1, 5)
 2. np(1, P2), vp(P2, 5)
 3. art(1, P3), noun(P3, P2), vp(P2, 5) name(1, P2), vp(P2, 5)
 4. name(1, P2), vp(P2, 5)
 5. vp(2, 5)
 6. verb(2, 5) verb(2, P2), np(P2, 5)

verb(2, P2), np(P2, P3), pp(P3, 5)
verb(2, P2), pp(P2, 5)

 7. verb(2, P2), np(P2, 5) verb(2, P2), np(P2, P3), pp(P3, 5)
verb(2, P2), pp(P2, 5)

 8. np(3, 5) verb(2, P2), np(P2, P3), pp(P3, 5)
verb(2, P2), pp(P2, 5)

 9. art(3, P2), noun(P2, 5) name(3, 5)
verb(2, P2), np(P2, P3), pp(P3, 5)
verb(2, P2), pp(P2, 5)

10. noun(4, 5) name(3, 5)
verb(2, P2), np(P2, P3), pp(P3, 5)
verb(2, P2), pp(P2, 5)

11. () name(3, 5)
verb(2, P2), np(P2, P3), pp(P3, 5)
verb(2, P2), pp(P2, 5) n

By augmenting additional arguments, agreement conditions can be checked and the sentence
structure can be recorded. Of course, unification is realised very easily because if two
arguments use the same symbol, the two are unified automatically [Shieber84].

Example 5.10:

The following grammar is again equivalent to the one in Example 5.3. The feature of the
number is stored in the argument Num.

5. Syntactic Analysis 43

5.2 Grammar Formalisms

s(P1, Num, s(Subj, Pred), P3) ←
np(P1, Num, Subj, P2),
vp(P2, Num, Pred, P3).

np(P1, Num, np(Art, Head), P3) ←
art(P1, Num, Art, P2),
noun(P2, Num, Head, P3).

np(P1, Num, np(Name), P2) ←
name(P1, Num, Name, P2).

pp(P1, pp(Prep, Obj), P3) ←
prep(P1, Prep, P2),
np(P2, Num, Obj, P3).

vp(P1, Num, vp(Verb), P2) ←
verb(P1, Num, Verb, P2).

vp(P1, Num, vp(Verb, Obj), P3) ←
verb(P1, Num, Verb, P2),
np(P2, Num1, Obj, P3).

vp(P1, Num, vp(Verb, Obj, Pobj), P4) ←
verb(P1, Num, Verb, P2),
np(P2, Num1, Obj, P3),
pp(P3, Pobj, P4).

vp(P1, Num, vp(Verb, Pobj), P3) ←
verb(P1, Num, Verb, P2),
pp(P2, Num1, Pobj, P3). n

The problem of constituent transfer is again resolved by applying a hold list mechanism
[Pereira81] as shown in Example 5.11.

Example 5.11:

This grammar corresponds to that in Example 5.4. The first rule performs the HOLD
operation whereas the last two rules are responsible for the VIR operation.

s(P1, P4, Hi, Ho) ← pp(P1, P2), verb(P2, P3),
s2(P3, P4, hold(verb, hold(pp, Hi)), Ho).

s(P1, P2, Hi, Ho) ← s2(P1, P2, Hi, Ho).
pp(P1, P2) ← prep(P1, P2), np(P2, P3).
s2(P1, P3, Hi, Ho) ← np(P1, P2), vp(P2, P3, Hi, Ho).
np(P1, P3) ← art(P1, P2), noun(P2, P3).
np(P1, P2) ← name(P1, P2).
vp(P1, P2, Hi, Ho) ← verb(P1, P2, Hi, Ho).
vp(P1, P3, Hi, Ho) ← verb(P1, P2, Hi, Ho), np(P2, P3).
vp(P1, P4, Hi, Ho) ← verb(P1, P2, Hi, H2), np(P2, P3), pp(P3, P4, H2, Ho).
vp(P1, P3, Hi, Ho) ← verb(P1, P2, Hi, H2), pp(P2, P3, H2, Ho).
verb(P1, P2, H, H) ← word(Word, P1, P2), isverb(Word).
pp(P1, P3, H, H) ← prep(P1, P2), np(P2, P3).
verb(P1, P1, hold(verb, H), H).
pp(P1, P1, hold(pp, H), H). n

5. Syntactic Analysis 44

5.2 Grammar Formalisms

5.2.4 Lexical Functional Grammar

Lexical functional grammar (LFG) was introduced by Kaplan and Bresnan [Kaplan82] (see
also [Berwick84]). It is a unification-based grammar in which the context-free phrase structure
grammars are augmented by functional annotations representing the unification operations.
By help of the phrase structure rules a constituent structure (c-structure) is constructed. To
this c-structure equations are added which are derived from the functional annotations. The
minimal solution of this system of equations (called functional description) forms the
functional structure (f-structure). The words contained in the dictionary are directly extended
by functional annotations to indicate which features they have to assign to the local registers.

Example 5.12:

The following LFG is analogous to the grammar in Example 5.3. The local registers are
indicated by ↑ for the calling structure and ↓ for the sub-structure, e.g. (↑SUBJ)=↓ in
the first rule means that SUBJ of S is unified with the complete noun phrase.

S → NP VP
(↑SUBJ)=↓ ↑=↓
(↑NUM)=(↓NUM)

NP → ART NOUN
NP → NAME
PP → PREP NP

(↑OBJ)=↓
VP → VERB
VP → VERB NP

(↑OBJ)=↓
VP → VERB PP

(↑POBJ)=↓
VP → VERB NP PP

(↑OBJ)=↓ (↑POBJ)=↓

In order to parse the example sentence from Example 5.2 the following words have to
be appended to the dictionary:

Hugo NAME (↑NAME) = 'Hugo', (↑NUM) = {SING}
aß VERB (↑VERB) = 'aß', (↑NUM) = {SING}
das ART (↑ART) = 'das', (↑NUM) = {SING}
aß NOUN (↑HEAD) = 'Eis', (↑NUM) = {SING}

The parsing of the sentence results in this functional description and c-structure:

S → NP VP
(x1 SUBJ) = x2, (x1 NUM) = (x2 NUM), x1 = x3

NP → NAME
(x2 NAME) = 'Hugo', (x2 NUM) = {SING}

VP → VERB NP
(x3 VERB) = 'aß', (x3 NUM) = {SING}, (x3 OBJ) = x4

NP → ART NOUN
(x4 ART) = 'das', (x4 HEAD) = 'Eis', (x4 NUM) = {SING}

5. Syntactic Analysis 45

5.2 Grammar Formalisms

The final solution of this system of equations gives the f-structure of the sentence:

{ }
x x

SUBJ x

NUM SING

VERB

OBJ x

1 3

2

4

= =

=
=

=
=



















' 'aß

{ }x
NAME

NUM SING
2 =

=
=







Hugo' '

{ }
x

ART

HEAD

NUM SING

4 =
=
=

=

















das

Eis

' '

' ' n

In LFG the constituent transfer is resolved by use of additional functional annotations (see
[Winograd83]). The HOLD-operator is written as ⇓ , the VIR-operator as ⇑ .

Example 5.13:

The following grammar analyses the sentence from Example 5.4. The annotation
↓=⇓ PP indicates that a prepositional phrase is stored on the hold list whereas the last
rule tries to replace a missing prepositional phrase from the hold list.

S → PP V S'
↓=⇓ PP ↓=⇓ V ↑=↓

S → S'
↑=↓

S' → NP VP
(↑SUBJ)=↓ ↑=↓

NP → ART NOUN
NP → NAME
PP → PREP NP

(↑OBJ)=↓
VP → V

↑=↓
VP → V NP

↑=↓ (↑OBJ)=↓
VP → V PP

↑=↓ (↑POBJ)=↓
VP → V NP PP

↑=↓ (↑OBJ)=↓ (↑POBJ)=↓
V → VERB
V → 0

↑=⇑ V
PP → 0

↑=⇑ PP

5. Syntactic Analysis 46

5.2 Grammar Formalisms

With regard to the functional description one has to consider that the HOLD-operation
assigns free variables (x4 and x5) to the stored variables (x1 and x2). These free
variables are used during the VIR-operation so that the binding to the constituent PP
and V is guaranteed. The following functional description and f-structure is produced:

S → PP V S'
x1=x4, x2=x5, x3=x6

PP → PREP NP
(x1 PREP) = 'mit', (x1 OBJ) = x7

NP → ART NOUN
(x7 ART) = 'dem', (x7 HEAD) = 'Löffel'

V → VERB
(x2 VERB) = 'aß'

S'→ NP VP
(x6 SUBJ) = x8, x6 = x9

NP → NAME
(x8 NAME) = 'Hugo'

VP → V NP PP
x9 = x5, (x9 OBJ) = x10, (x9 POBJ) = x4

NP → ART NOUN
(x10 ART) = 'das', (x10 HEAD) = 'Eis'

x x x x x

SUBJ x

VERB

OBJ x

POBJ x

3 6 9 5 2

8

10

4

= = = = =

=
=

=
=



















 aß

' '

[]x NAME8 = = Hugo ' '

x
ART

HEAD
10=

=
=







das

Eis

' '

' '

x x
PREP

OBJ x
1 4

7
= =

=
=







mit

' '

x
ART

HEAD
7 =

=
=







dem

Löffel

' '

' '

n
5.2.5 Categorial Grammar

Categorial Grammar (CG) is an unconventional grammar theory which assigns all grammar
rules to the dictionary entries, making any additional explicit grammar superfluous. There exist
two kinds of categories: basic categories (e.g. S, N) and complex categories (e.g. NP/N,
S\NP). The original theory [Bar-Hillel64] consists of only two combinatory rules for the
formation of complex categories (A, B representing grammatical categories):

Ä Forward functional application: A/B B → A (5.3)
Ä Backward functional application: B A\B → A (5.4)

5. Syntactic Analysis 47

5.2 Grammar Formalisms

Example 5.14:

The sentence Hugo aß mit dem Löffel (=Hugo ate with the spoon) is parsed by use of
the following grammar:

Hugo aß mit dem Löffel
NP (S\NP)/PP PP/NP NP/N N

NP

PP

S\NP
__

S n
The above two combinatory rules were extended by Steedman [Steedman85, Steedman87] by
four rules for functional composition and type raising resulting in Combinatory Categorial
Grammar (CCG) (see also [Dowty87, Weir88]):

Ä Forward functional composition: A/B B/C → A/C (5.5)
Ä Backward functional composition: B\C A\B → A\C (5.6)
Ä Type raising: B → A/(A\B) (5.7)

B → A\(A/B) (5.8)

As an additional extension variable categories have been proposed [Zeevat88, Hoffman93].
This powerful generative capacity has been applied to cover some important non-canonical
natural language constructions like wh-extraction or nonconstituent conjunction (e.g. see
[Seiffert88, Carpenter91]). The other side of the coin is that parsing of CCG as such has been
turned out to be inefficient leading to spurious ambiguity [Wittenburg86]. Therefore, a lot of
work was done to improve the performance of CCG parsers, e.g. compiling the grammar in a
predictive form [Wittenburg87, Wittenburg91], normal-form based parsing [König89,
Shieber94] or lazy chart parsing techniques [Pareschi87]. Vijay-Shanker and Weir have
proposed the only polynomial parsing scheme so far by using stacking machinery [Vijay-
Shanker90, Vijay-Shanker94].

By adding features, local registers, and unification operators, CCG was extended to
Categorial Unification Grammar (CUG) introduced by Uszkoreit [Uszkoreit86a]. Besides of
syntax analysis, morphology [Hoeksema84, Whitelock88], natural language generation
[Novak89], and speech processing [Steedman91] have been proposed as application fields of
categorial grammars. Also some work was done on the treatment of modifiers, specifiers, and
quantifiers [Bouma88, Maier88].

Example 5.15:

This grammar is in analogy to Example 5.3. In addition to the number, the cases are
checked for agreement. The used symbols have the following semantics:

S ... syntactic features, V ... value after functional application
D ... direction of functional application, A ... argument of functional application
M ... morphological features, Z ... number, F ... case, EZ ... singular, MZ ... plural

5. Syntactic Analysis 48

5.2 Grammar Formalisms

Hugo aß mit dem Löffel
NP (S\NP)/PP PP/NP NP/N N

1. NP/N N → NP

[]

[]
{ }
{ }

{ }
{ }

{ }
{ }

S

V S NP

D right

A S N

M
Z EZ

F

S N

M
Z EZ MZ

F

S NP

M
Z EZ

F

:

: :

:

: :

:
:

:

:

:
: ,

: ,2, ,

:

:
:

:

































































































3

1 3 4

3

2. PP/NP NP → PP

[]

[]
{ }[]

{ }
{ }

{ }[]

S

V S PP

D right

A S NP
M F

S NP

M
Z EZ

F

S PP

M F

:

: :

:

: :
: :

:

:
:

:

:

: :





































































3
3

3

3. (S\NP)/PP PP → S\NP

[]

[]
{ }[]

{ }[]

{ }[]

[]

[]

S

V S X

D right

A S PP
M Z EZ

S PP

M F

S X

M Z EZ

X

V S S

D left

A S NP

:

: :

:

: :
: :

:

: :

:

: :

: :

:

: :























































=
















3

4. NP S\NP → S

[]

[]
{ }[]

{ }[]

{ }[]

S

V S S

D left

A S NP
M Z EZ

S NP

M Z EZ

S S

M Z EZ

:

: :

:

: :
: :

:

: :

:

: :























































n

5. Syntactic Analysis 49

5.3 Extended Categorial Unification Grammar

In order to solve the problem of constituent transfer without using type raising and functional
composition, the technique of gap-threading has been proposed [Wesche88, Millies89] as
illustrated in Example 5.16.

Example 5.16:

By use of gap-threading the example sentence Mit dem Löffel aß Hugo (=With the
spoon ate Hugo) is analysed as follows:

Mit dem Löffel aß Hugo
PP/NP NP/N N (S\NP)/PP NP

NP

PP

⇓ GAP-insertion
S\NP [gap: PP]

⇓ GAP-insertion
S [gap: PP] [gap: NP]

⇓ GAP-elimination

S [gap: NP]
⇓ GAP-elimination

__
S n

5.2.6 Summary

We gave a survey about some of the most prominent grammar formalisms: Phrase Structure
Grammar, Transitions Nets, Logic Grammar, Lexical Functional Grammar, and Categorial
Grammar. For each grammar its recent developments are discussed and the formalisation of
sentences as well as basic parsing techniques are clarified by use of numerous examples.
Special attention was given to the various techniques of dealing with constituent transfer, a
linguistic phenomenon that possesses special importance for the analysis of free word order
languages.

5.3 Extended Categorial Unification Grammar

As formal framework for the syntactic analysis within IDA we have selected CUG because of
two main reasons [Winiwarter93c]:

Ä the availability of a powerful hierarchical dictionary which makes it possible to assign
the grammar rules to the appropriate level of abstraction

Ä the bottom-up parsing strategy which is in conformity with LDL semantics and makes
it possible to analyse incomplete or ill-formed sentences in a natural way

Since CUG as such is not applicable to languages with free word order like German and the
solutions proposed and presented above all lack of declarative expressiveness we chose an
alternative approach of extending CUG by a formalism adapted from the ID/LP rules of GPSG
which have been proven adequate for this purpose [Hauenschild88, Meknavin93].

5. Syntactic Analysis 50

5.3 Extended Categorial Unification Grammar

We changed the original notation for the two combinatory rules of functional application in
order to be able to present the proposed extensions in a consistent way:

Ä C: A ← /B (5.9)

If category C is directly followed by B, then it can be transformed to A (forward
functional application)

Ä C: A ← \B (5.10)

If category C is directly preceded by B, then it can be transformed to A (backward
functional application)

We extended the Categorial Unification Grammar by the following concepts (see also
[Winiwarter94]). Each extension is clarified by use of an example rule, its verbalisation and the
application of the rule to an example phrase.

Example 5.17:

PREP: PP ← /NP

A prepositional phrase consists of a preposition directly followed by a noun phrase.

[PREP: auf, NP: die Maschine] → [PP: auf die Maschine] (to the machine) n
¶ Syntactic feature restrictions can be added in brackets to the categories. (5.11)

This filter function increases significantly the selectivity of the parser during unification.

Example 5.18:

NP[-unb]: NP ← /NP[+unb]

An unknown phrase (by default assigned to basic category NP) can be joined with a
known noun phrase to form a combined one.

[NP: die Maschine, NP: 7] → [NP: die Maschine 7] (the machine 7) n

¶ New symbols '>' for indirect precedence and '<' for indirect succession. (5.12)

This covers cases of long distance dependencies where several phrases can be shifted between
the two concerned categories.

Example 5.19:

TRVERB[+sep, -inf, -part]: TRVERB ← <VPREF

Separable verb prefixes can take positions far behind the verb stem if the verb form is
neither infinitive nor participle.

[TRVERB: führe, NOUN: Auftrag, VPREF: durch] →
[TRVERB: führe durch, NOUN: Auftrag] (execute order) n

5. Syntactic Analysis 51

5.3 Extended Categorial Unification Grammar

¶ More than one category can be used at the right side of a rule. (5.13)

This removes the severe restriction that in a single derivation step only adjacent categories can
be applied to the derivation of a new category. The several categories are applied from left to
right.

Example 5.20:

NOUN: NP ← \ADJ \ART

A noun is transformed to a noun phrase if it is directly preceded by an adjective and an
article.

[ART: der, ADJ: neue, NOUN: Gehalt] → [NP: der neue Gehalt]
(the new salary) n

¶ Introduction of the asterisk symbol indicating as usual zero or more repetitions.

(5.14)

This extension is introduced in order to capture recursive constructs of phrases.

Example 5.21:

NOUN: NP ← \ADJ* \ART

A noun phrase consists of an article, several optional adjectives, and a noun.

[ART: der, ADJ: neue, ADJ: monatliche, NOUN: Gehalt] →
[NP: der neue monatliche Gehalt] (the new monthly salary) n

¶ Enclosing of optional categories in parenthesis. (5.15)

Optional categories reduce the number of required grammar rules and increase at the same
time the clearness of representation.

Example 5.22:

NOUN: NP ← \ADJ* (\ART)

A noun, directly preceded by several optional adjectives and an optional article,
generates a noun phrase.

[ADJ: neuer, NOUN: Gehalt] → [NP: neuer Gehalt] (new salary) n

¶ No function symbol in front of a category to indicate free word order. (5.16)

In this situation it is only necessary that the category is present in the phrase but no further
conditions on its position are made.

5. Syntactic Analysis 52

5.4 Implementation

Example 5.23:

TRVERB[+imp]: IC ← NP[+akk] PP*

A transitive verb with mood imperative accompanied by a noun phrase with case
accusative and several optional prepositional phrases creates an imperative clause, the
sequence of the three components is arbitrary.

[TRVERB: storniere, PP: für den Kunden Maier, NP: den letzten Auftrag] →
[IC: storniere den letzten Auftrag für den Kunden Maier]

(cancel the last order for the client Maier) n
5.4 Implementation

The grammar rules are inserted as arguments to the dictionary at the appropriate level of
abstraction. This grammatical argument possesses the following format:

{(NewCat, Restrict, RightSide, Priority)} (5.17)

NewCat derived category
Restrict syntactic restrictions
RightSide right side of grammar rule
Priority priority value, determines the application order of the rules

The right side of the grammar rule is mapped to a list of categories:

[(Cat, Restrict, Sequence, Occurrence)] (5.18)

Cat category
Restrict syntactic restrictions
Sequence sequence condition
Occurrence occurrence condition

The possible values for Occurrence are: erforderlich (required), optional, and '*'. For
Sequence the following symbols are valid: ' ', '/', '\', '>', and '<'.

Example 5.24:

The rule

TRVERB[+imp]: IC ← NP[+akk] PP*

is mapped to the following LDL argument for transitive verbs:

{(ic, {('+', imp)}, [(np, {('+', akk)}, ' ', erforderlich), (pp, { }, ' ', '*')], 1)}

In the same way, the rule

NOUN: NP ← \ADJ \ART

is mapped to this argument for nouns:

{(np, { }, [(adj, { }, '\', '*'), (art, { }, '\', optional)], 5)} n

5. Syntactic Analysis 53

5.4 Implementation

The parsing of an input sentence is performed in the following way. First, based on the result
of lexical analysis a basic category is assigned to each word resulting in an appropriate list
representation. Then, the grammar rules are applied to this list by use of a bottom-up strategy.
The syntactic features of the combined structures are unified at each step leading to a
significant reduction of derivations. Figure 11 shows an informal example of the unification
process.

Stamm: auf
 [stem: on, to]
Wortart: Präposition
 [category: preposition]
Fälle: {dat, akk}
 [case]

Stamm: die
 [stem: the]
Wortart: Artikel
 [category: article]
Deklination: {(fem, pl, akk),
 (fem, pl, nom), (fem, sing, akk),
 (fem, sing, nom), (masc, pl, akk),
 (masc, pl, nom), (neut, pl, akk),
 (neut, pl, nom)}
 [syntactic features:
 (gender, number, case)]

Stamm: Maschine
 [stem: machine]
Wortart: Substantiv
 [category: noun]
Geschlecht: fem
 [gender]
Deklination: {(nom, sing),
 (gen, sing), (dat, sing),
 (akk, sing)}
 [syntactic features:
 (case, number)]

Text: die Maschine [text: the machine]
Kategorie: Objekt [category: object]
Geschlecht: fem [gender]
Deklination: {(sing, akk), (sing, nom)}

[syntactic features: (number, case)]

Text: auf die Maschine [text: to the machine]
Kategorie: Präpositionalobjekt [category: prepositional object]
Geschlecht: fem [gender]
Zahl: sing [number]
Fall: akk [case]

Figure 11: Example of unification of syntactic features

As already mentioned the decision which rule is applied next is not arbitrary but is determined
by the priority values stored in the dictionary. The deliberate choice of these values is of
crucial importance to the efficiency of the parser in that the additional effort for backtracking
and trying other interpretations is minimised. Figure 12 and Figure 13 show two example
segments of the LDL code. The first one represents the top level of syntactic analysis, it
recursively produces all applicable rules and selects the one with the highest priority value for
derivation until no more rules can be applied. The second example code checks the
applicability of the right side of a single grammar rule to a specific category. Recursively, each
constituent of the right side is checked against the list members. If the test holds true for the
right side, the concerned list members are replaced by the new derived syntactic category.

5. Syntactic Analysis 54

5.4 Implementation

 analys(Liste1, Liste3) ← recursive rule for the syntactic analysis of an input
sentence (Liste1 ... input list, Liste3 ... output list)

regel(Liste1, Regeln), generation of all applicable rules
Regeln ~= { }, rule set not empty
aggregate(maxpri, Regeln, Bestregel), determination of rule with the highest priority
Bestregel = (Liste2, _), new list after application of grammar rule
analys(Liste2, Liste3). next step of recursion

 analys(Liste, Liste) ← exit rule
regel(Liste, { }). triggers if no more rules can be applied

 regel(Liste, Regeln) ← produces all applicable rules to input list Liste
regel2(1, Liste, Liste, Regeln). initial call of recursive generation rule

 regel2(I, [X|Rest], Liste, Regeln) ← I ... list position, X ... processed category,
Rest ... rest of list

genregel(I, X, Liste, Regeln2), generates set of all applicable rules for category X
I2 = I + 1, incrementing list position
regel2(I2, Rest, Liste, Regeln3), next step of recursion
union(Regeln2, Regeln3, Regeln). resulting rule sets are merged

 regel2(_, [], _, { }). exit rule

Figure 12: LDL code segment of syntactic analysis

 analys(Pos1, Regelliste, Liste1, Liste3) <- recursive analysis of a single grammar rule
Pos1 ... position of considered list entry
Liste1... input list, Liste3 ... output list
Regelliste ... right side of grammar rule

Regelliste = [Eintrag|Rest],
analys2(Pos1, Eintrag, Liste1, Liste2), analysis of first entry of right side
analys(Pos1, Rest, Liste2, Liste3). analysis of rest of right side

 analys(_, [], Liste, Liste). exit rule

 analys2(Pos1, (Kat, Restr, Seq, Occ), Liste1, Liste3) <- analysis of single entry of right side
Kat ... syntactic category to be searched
Restr ... syntactic restrictions
Seq ... sequence condition
Occ ... occurrence condition

lmember(Kat, Restr, Pos2, Liste1), membership test yielding position in list
if(Seq = ´<´ checking of sequence conditions
then Pos1 < Pos2),
...
entferne(Kat, Liste1, Liste2), removal of entry from input list
if(Occ = ´*´ if occurrence is repetitive then
then analys2(Pos1, (Kat, Restr, Seq, Occ), recursive application of rule

Liste2, Liste3)
else Liste3 = Liste2).

 analys2(_, (Kat, Restr, _, optional), Liste, Liste) <- analysis rule for optional occurrence
~lmember(Kat, Restr, _, Liste). if concerned category is absent

 analys2(_, (Kat, Restr, _, ´*´), Liste, Liste) <- exit rule for repetitive occurrence
~lmember(Kat, Restr, _, Liste).

Figure 13: Test of the applicability of the right side of a grammar rule

5. Syntactic Analysis 55

5.4 Implementation

Finally, Figure 14 shows a simplified example (leaving out of consideration the unified
features) of the syntactic analysis of an input sentence.

 Example sentence:

Füge den neuen Mitarbeiter Max Huber mit Anfangsgehalt 20000 hinzu !

(Insert the new worker Max Huber with initial salary 20000 !)

 Basic categories:

[TRVERB, ART, ADJ, NOUN, NP, PREP, NOUN, NP, VPREF]

[Füge, den, neuen, Mitarbeiter, Max Huber, mit, Anfangsgehalt, 20000, hinzu]

 Analysis:

 1) TRVERB[+sep, -inf, -part]: TRVERB ← <VPREF

[TRVERB, ART, ADJ, NOUN, NP, PREP, NOUN, NP]

[Füge hinzu, den, neuen, Mitarbeiter, Max Huber, mit, Anfangsgehalt, 20000]

 2) NOUN: NP ← \ADJ* (\ART)

[TRVERB, NP, NP, PREP, NOUN, NP]

[Füge hinzu, den neuen Mitarbeiter, Max Huber, mit, Anfangsgehalt, 20000]

 3) NOUN: NP ← \ADJ* (\ART)

[TRVERB, NP, NP, PREP, NP, NP]

[Füge hinzu, den neuen Mitarbeiter, Max Huber, mit, Anfangsgehalt, 20000]

 4) NP[-unb]: NP ← /NP[+unb]

[TRVERB, NP, PREP, NP, NP]

[Füge hinzu, den neuen Mitarbeiter Max Huber, mit, Anfangsgehalt, 20000]

 5) NP[-unb]: NP ← /NP[+unb]

[TRVERB, NP, PREP, NP]

[Füge hinzu, den neuen Mitarbeiter Max Huber, mit, Anfangsgehalt 20000]

 6) PREP: PP ← /NP

[TRVERB, NP, PP]

[Füge hinzu, den neuen Mitarbeiter Max Huber, mit Anfangsgehalt 20000]

 7) TRVERB[+imp]: IC ← NP[+akk] PP*

[IC]

[Füge hinzu den neuen Mitarbeiter Max Huber mit Anfangsgehalt 20000]

Figure 14: Example of syntactic analysis

Of course, the main task of syntactic analysis within a natural language interface is not to
derive the syntactic correctness of an input sentence but to construct its syntactic structure in
parallel. For the sentence shown in Figure 14 this structure looks as displayed in Figure 15

5. Syntactic Analysis 56

5.5 Summary

(not showing morphological and syntactic features in detail). The symbol c stands for a
derived category whereas s signifies basic categories.

 [(ic, c, [
(trverb, c, [

(trverb, s, fuege),
(vpref, s, hinzu)

]),
(np, c, [

(np, c, [
(noun, s, mitarbeiter)
(adj, s, neuen)
(art, s, den)
]),

(np, s, 'Hubert Maier')
]),
(pp, c, [

(prep, s, mit),
(np, c, [

(np, c, [
 (noun, s, anfangsgehalt)
]),
(np, s, 20000)

])
])

])]

Figure 15: Example of syntactic structure

5.5 Summary

In order to provide a sound theoretical framework for syntactic analysis within IDA we first
presented some of the influential grammar formalisms to natural language interface design. On
the basis of this survey we selected Categorial Unification Grammar as optimal basis because
of two reasons. First, its requirement of assigning all grammar rules to the lexical entries which
fits very well with our powerful hierarchical dictionary. Second, because its bottom-up parsing
strategy is in conformity with LDL semantics and satisfies perfectly our claim to analyse also
incomplete and ungrammatical sentences in an easy and natural way.

We extended CUG by six new importent concepts in order to deal with the free word order of
German language in a clear and concise way. Finally, the resulting compact grammatical
representation scheme was applied to the implementation of an efficient parser within our IDA
architecture.

5. Syntactic Analysis 57

6.1 Introduction

6. Semantic and Pragmatic Analysis

6.1 Introduction

Semantic analysis aims at abstracting from any linguistic phenomena at the surface level of
natural language sentences in order to obtain a pure representation of the underlying meaning.
The correct mapping from the surface structure to this semantic deep structure is the main
obstacle to the development of successful natural language applications.

The common predecessor for most current approaches of semantic representation was case
grammar introduced by Fillmore [Fillmore68, Fillmore77]. It defines semantic relationships on
the basis of a small set of semantic roles, the so-called cases, which the parts of a sentence can
perform. In Section 6.2 Semantic Analysis we give a short view of existent semantic
representation techniques and strategies for the co-operation with syntactic analysis before
presenting the approach chosen for our IDA architecture.

Since semantic analysis alone is in many cases insufficient for the correct interpretation of
natural language sentences, world and context knowledge is incorporated in pragmatic
analysis to eliminate semantic ambiguities. Finally, spelling error correction can only be
performed within the framework of semantic analysis in order to be able to distinguish for
example misspelled database values from new ones for insertion or update operations.

6.2 Semantic Analysis

The numerous representation schemes that have been proposed to model semantics have their
origin from knowledge representation and can be divided in three main streams (for good
surveys see [Schwind85, Luger89]):

Ä Logical schemes [Woods78, Schubert82, Hobbs87, Bollinger89] define semantics
by use of logic facts and rules. Extensions to the basic deductive inference strategy
are circumscription [McCarthy80], default logic [Reiter80, Yuan93], autoepistemic
logic[Moore85] or abductive reasoning [Hobbs88, Brewka93, Hsu93, Rayner93].

Ä Graphical schemes were first introduced in the form of semantic networks
[Quillian68, Woods75] where objects are represented by nodes and relationships by
links. The main drawback of semantic nets was the missing standardisation as
concerns the labelling of links. Therefore, conceptual dependency [Schank74] tried
to overcome this deficiency by defining a uniform notation (for an example see
Figure 16). More recent approaches are conceptual graphs by [Sowa84], sentence
formalism [Binot84] or propositional semantic networks [Castelfranchi84, Ali93].

Ä Structured schemes are based on the notion of frames introduced by [Minsky75]
that defines types of objects which store the information in so-called slots.
Relationships are modelled by use of pointers to other frames, additional features
include the specification of initial and unspecified values, conditions on creation,
and declarative as well as procedural attachments. Figure 17 shows a simple
example of these different types of slots. For recent extensions we refer to
[Hirst82, Binot86, Wu93].

6. Semantic and Pragmatic Analysis 58

6.2 Semantic Analysis

 Egon PTRANS

 Gustav size(<average)

car O

 Maria

Egon

 ATRANS
R

flowers

can

 PTRANS
D

book

temperature<x

temperature=x

coffee

Egon gab Maria das Buch.
(=Egon gave Mary the book)

Der Kaffee ist ausgekühlt.
(=The coffee has become cool)

p

 Egon PROPEL
p

 Egon
p

Hubert
p

O

water
O

Hubert goß die Blumen.
(=Egon watered the flowers)

Gustav ist klein.
(=Gustav is small)

Egon lief.
(=Egon ran)

Egon schob den Wagen.
(=Egon pushed the car)

Figure 16: Example of conceptual dependency

Student

unspecif ied identif ier Register number empty

relation to frame Super type Person (Slots Name, Age etc.)

unspecif ied attribute Number of terms empty

relation to frame Studies Study (Slots Name etc.)

init ial value Student type full

Condition Education School-leaving examination

procedural attachment Average compute sum of all marks and
divi de it by their number

declarative attachment Result if average < 1,5 and number of mark
fair <= 1, then excellent

Figure 17: Example of frame

6. Semantic and Pragmatic Analysis 59

6.2 Semantic Analysis

With regard to the interaction of semantic and syntactic analysis it has turned out to be
advantageous not to follow the strictly sequential process model but to overlap the two steps
of analysis. This is justified by the reduction of problem space for the parser by eliminating
meaningless or contradictory interpretations already at an early point of processing
[Cappelli84]. Depending on the degree of interaction, the following different types of
approaches exist, for each one several references of prominent implementations are given:

Ä Semantic grammars incorporate semantics directly in grammar rules, they were
used by early natural language systems like SOPHIE [Brown75], PLANES
[Waltz77] or LIFER [Hendrix78].

Ä Rule-by-rule interpretation performs semantic analysis of each intermediate result
and makes decision about acceptance or rejection [Thompson75, Robinson82,
Pereira80, Kay85, Reyle88].

Ä Preference based interpretation also analyses the result of each syntactic analysis
step but gives only a rating about its semantic plausibility [Wilks75, Weischedel83,
Fass83, Jensen87].

Ä Interleaved parsers restrict semantic interpretation to main constituents
[Winograd72, Bobrow80, Woods80, Ritchie80, McCord85].

Ä Semantically driven parsing use syntactic analysis exclusively if necessary for
disambiguation within semantic processing [Birnbaum81, Schank75, Riesbeck78,
Lytinen86, Helbig86].

After carefully considering the above design choices, we judged the last approach of
semantically driven analysis as most favourable solution for the development of database
systems with well-defined semantic application models within the IDA architecture. This
decision is strongly motivated by laying more stress upon the information extraction paradigm
rather than upon text understanding. This dichotomy was introduced by Appelt [Appelt93] for
the field of information filtering, he uses the following distinguishing criteria:

 Ä information extraction:

Ø mapping to a well-defined target representation
Ø subtle nuances of meaning are of no importance, e.g. mood of user
Ø input can include redundant information

Ä text understanding:

Ø the meaning of extensive texts have to be grasped based on the complete
context

Ø the complexity of the target representation corresponds to that of natural
language

Ø all nuances of meaning have to be detected

Whereas the information extraction approach is well established for information filtering
systems (see [Lewis92, Chinchor93], much work on natural language interfaces still contribute
to the text understanding paradigm. Therefore, they suffer from serious overhead of analysis
(for a critique of such systems see [Schwartz82]). Only few work exists that derive benefit
from the underlying database model for semantic analysis, e.g. see [Wallace84, Hui88,
Schröder88].

6. Semantic and Pragmatic Analysis 60

6.2 Semantic Analysis

The main reason for this can be seen in the fact that so far for interfaces to relational databases
no adequate semantic model existed or caused by loosely-coupled architectures no access was
possible. Only the complete integration of the linguistic analysis within the database
architecture makes it possible to merge the two representation schemes in a natural and
consistent way. Therefore, the computation effort is minimised by providing at the same time a
maximum of quality of analysis.

As pre-requisite of semantic analysis we assigned semantic features to the dictionary entries at
the appropriate level of abstraction by making use of inheritance. For similar approaches which
also use hierarchically structured dictionaries for the efficient processing of semantic features
see [Flickinger85, Shieber86, Uszkoreit86b]. Figure 18 displays an example of the attachment
of semantic features, also illustrating how divergent specific meanings of derived words can
overwrite more general combined ones.

SUBSTSUFFIX(
 ung,

 ...
 action
).

SUBSTSUFFIX(
 er,
 ...
 subject
).

VERBPREFIX(
 durch,

 ...
 across
).
VERB(
 mess,

 measure,

 {(er,{([durch], diameter)}),
 (ung, {([], ' ')})}
).

resulting in messung = measurement
 [measure, action]

resulting in messer = measurer
 [measure, subject]

resulting in durchmessen = measure in all directions
 [measure, across]

resulting in durchmesser = diameter

overwrites the general semantic interpretation
 [diameter]

SEM. FEATURES

 [measure, subject, across]
 ...

Figure 18: Example of semantic features

The morphological analysis computes for each word its deep form as is illustrated in Figure 19
by the LDL code for the generation of the deep form of derived substantives. It can be
distinguished between four different types of general deep forms which again can be
overwritten by specific deep forms:

6. Semantic and Pragmatic Analysis 61

6.2 Semantic Analysis

particles: [Sem] (6.1)

adjectives and verbs: [Sem, SemPr] (6.2)

substantives: [Sem, SemPrSeq] (6.3)
derived words: [Sem [SemSuf SemPrSeq]] (6.4)

Therefore, the output of the morphological component takes the form of an deep form list
(DFL) which gives for the individual input words a set of possible interpretations, each entry
indicating the word stem, the word category, and the semantic deep form:

[{(Wortstamm, Kategorie, Tiefenform)}] (6.5)

Example 6.1:

For the following example sentence the corresponding DFL is computed:

Die neue Mindestbestellmenge von St 50 H ist 25 Stück
(=The new minimal order quantity of St 50 H is 25 pieces)

DFL:

[{(die, artikel, [die]), (die, relativpronomen, [die])}, {(neu, adjektiv, [neu])},
 {(menge, substantiv, [menge, stell, be, mindest])}, {(von, praeposition, [von])},
 {('St', unknown, string)}, {('50', unknown, integer)}, {('H', unknown, string)},
 {(sein, verb, [sein])}, {('25', unknown, integer)}, {(stueck, substantiv, [stueck])}] n

 wort(Wort, (Eintr, ableitSubst, SemG)) <- classifies word as derived substantive
resulting in: stem, word category, deep form

verb(Eintr,Sem,_, ... ,_, Suffixe), retrieval of verbs
affixe(Wort, Eintr, Pr, Suffix), sub-string test of verb stems (external C-predicate)

if satisfied, it returns the separated affixes
suffixtest(Suffix, Suffixe, checks suffix with suffixes in dictionary yielding

Praefixe, SemSuf), set of valid prefixes and general semantic feature
praefixtest(Pr, Praefixe, SemPrSeq, checks prefix with valid prefix sequences

SpezSem), yielding specific or general semantic feature
if(SpezSem ~= ' ' if specific semantic feature exists,
then SemG = [SpezSem] then it is assigned to deep form
else SemG = else deep form is constructed from the semantic

[Sem | [SemSuf | SemPrSeq]] features of verb, suffix, and prefixes
).

Figure 19: Example of LDL code for generation of deep form

An important difference of natural language interfaces in comparison to other fields of
application for natural language processing techniques is the fact that unknown values possess
a particular significance for the meaning of the sentence. Also in this context, only the IDA
architecture makes it possible to distinguish between existent database values and new
database values for insertion or update. If one considers also the misspelling of database
values, the situation becomes even more complex (see Section 6.4 Spelling Error Correction).

6. Semantic and Pragmatic Analysis 62

6.2 Semantic Analysis

Furthermore, existent database values can serve as identifiers to entities and entity types within
the database application. Again, valuable information can be obtained which reduces the
number of possible interpretation and increases the efficiency of the natural language analysis.

Therefore, we propose a preliminary step for semantic analysis, the so-called unknown value
list analysis (UVL-analysis). Its task is to transform the DFL produced by the morphological
component to the following list presentations (see Figure 20 for an example of the
transformation performed on the sentence in Example 6.1):

: unknown structure list (USL): contains all unknown values as sub-lists, that is,
compound values are split up to several list entries

: unknown value list (UVL): compound values are joined together, strings which
represent numbers are converted

: unknown type list (UTL): compound and string values are looked up in the dictionary,
if they represent identifiers of existent entities, the corresponding entity type is
indicated, otherwise the value unknown is inserted

USL
Die neue Mindestbestellmenge von St 50 H ist 25 Stück

UVL

UTL

[[('St', [string]), ('50', [integer]), ('H', [string])], [('25', [integer])]]

[('St 50 H', [string, integer, string]), (25, [integer])]

[raw_material, unknown]

Figure 20: Example of UVL-analysis

Figure 21 displays part of the LDL code, it performs the first step of UVL-analysis, that is, the
transformation of DFL to USL. The UVL-analysis forms a sound basis for efficient semantic
analysis which maps the meaning of the user input to appropriate sentence deep structures
(SDS). These deep structures correspond exactly to the semantic categories of the underlying

6. Semantic and Pragmatic Analysis 63

6.2 Semantic Analysis

database application, therefore they guarantee the correct and efficient semantic analysis of
input sentences (see Section 7.7 Implementation of Natural Language Interface for an
implementation example and Section 7.8 Evaluation for evaluation data).

 genusl(L, Ergebnis) ← generates USL out of DFL
suchbeg(L, L2), searches for begin of unknown value
if(L2 ~= [] if unknown value exists
then then

zusfg(L2, Rest, Eintrag), create sub-list for unknown value
genusl(Rest, Eintrag2), recursive call
Ergebnis = [Eintrag Eintrag2] inserts unknown value into USL

else else
Ergebnis = []. empty list is returned

 genusl([], []). exit rule of recursion

 suchbeg([Eintrag Rest], L) ← searches for next unknown value
aggregate(auswahl, Eintrag, Eintrag2), retrieves entry from set of interpretations
Eintrag2=(_, Kat, _), retrieves category of actual entry
if(Kat=unknown if category equals unknown
then then

L=[Eintrag Rest] list of remaining entries is returned
else else

suchbeg(Rest, Rest2), recursive call
L=Rest2).

 suchbeg([], []). exit rule of recursion

 zusfg([Eintrag Rest], Rest2, analysis of unknown value
[(Wort, Typ) Rest3]) ←

aggregate(auswahl, Eintrag, Eintrag2), retrieves entry from set of interpretations
Eintrag2=(Wort, Kat, Typ), retrieves word stem, category, and type
if(ntrkat(Kat) if no separating category
then then

zusfueg(Rest, Rest2, Rest3) joining parts of composed unknown value
else else

Rest2=Rest, remaining categories are returned
Rest3=[]). single unknown value is returned

 zusfueg([Eintrag Rest], Rest2, Ergebnis) ← parts of unknown value are composed
aggregate(auswahl, Eintrag, Eintrag2), retrieves entry from set of interpretations
Eintrag2=(Wort, Kat, Typ), retrieves word stem, category, and type
if(fs(Kat, Typ, Rest) if criteria for continuation are satisfied
then then

zusfueg(Rest, Rest2, Rest3), recursive call
Ergebnis=[(Wort, Typ) Rest3] result is computed

else else
Rest2=[Eintrag Rest], unknown value is added to remaining entries
Ergebnis=[]). empty list is returned to start composition

 zusfueg([], [], []). exit rule of recursion

Figure 21: LDL code for generation of USL

6. Semantic and Pragmatic Analysis 64

6.3 Pragmatic Analysis

6.3 Pragmatic Analysis

Generally speaking, pragmatic analysis aims at improving the quality of semantic analysis by
making use of knowledge beyond the scope of the analysed sentence. This can involve on the
one hand some kind of meta-knowledge or world knowledge, on the other hand knowledge
about the embedding context (for a good general survey see [Allen87]).

For world knowledge the delimitation to semantic analysis is rather fluid, also the applied
techniques again originate from the area of knowledge representation (see Section 6.2
Semantic Analysis). A common definition is that pragmatics goes beyond the domain
knowledge of the application model and includes some kind of 'common sense', e.g. subtle
nuances of meaning expressed by stylistic choice [Makuta-Giluk93].

Context knowledge takes in natural language interfaces the particular form of dialogue or
discourse between the user and the computer. This is also the main reason why semantic
analysis alone will in many cases fail to produce a correct interpretation of a user command
since the user assumes that the system 'remembers' the topic of the preceding queries.
Therefore, efficient natural language interfaces should include the capability of discourse
resolution, that is, to supplement the missing information by keeping track of the prevailing
conversation in order to prevent the user of the boring task of repeating again and again the
same pieces of information (for good surveys see [Hirst81, Frederking88a]). The most
influential theoretical framework represents the Discourse Resolution Theory (DRT) which
was introduced by Kamp in 1981 [Kamp81, Kamp88], for recent extensions see
[Frederking88b, Bras90]. There also exists the promising approach to extend CUG by DRT
constructs [Zeevat88].

Erhöhe es um 1000.
 [Raise it by 1000]

V4 := es [i t]
V5 := 1000

person(V4) := 3 [person]
geschlecht(V4) := neut [gender]
zahl(V4) := sing [number]

V4 <=> V3

erhöhen(V 3, V5) [raise(V3, V5)]

Gib mir das Gehalt von Maier.
[Give me the salary of Maier]

V1 := mir [me]
V2 := Maier
V3 := das Gehalt(V2) [the salary(V2)]

person(V3) := 3 [person]
geschlecht(V3) := neut [gender]
zahl(V3) := sing [number]

geben(V1, V3) [give(V1, V3)]

Figure 22: Example of de-referencing anaphora

6. Semantic and Pragmatic Analysis 65

6.3 Pragmatic Analysis

The two main linguistic phenomena which discourse resolution has to deal with are ellipses
and anaphora. Whereas ellipses are incomplete sentences without any obvious hint about the
omitted data, anaphora represent references to so-called antecedents which can be de-
referenced more easily [Webber83], see Figure 22 for an example using DRT notation.
Besides simple history list techniques, there exist also more sophisticated approaches which
apply non-monotonic logic [Dunin-Keplicz84], coherence relations [Kehler93] or abductive
reasoning [Nagao93a].

A lot of mainly theoretical work was done about the use of world knowledge for discourse
resolution. The applied methods have their origin in the analysis of stories, they model actions,
that is, characteristic sequences of situations. Prominent representation techniques are scripts
[Schank77] and plans [Wilensky83, Allen80]. Figure 23 illustrates the modelling of an action
by means of an easy example script for an ice-cream parlour.

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAAScript: ICE-CREAM PARLOUR

Objects: tables

menu

I = ice-cream

money

Roles: C = customer

W = waitress

K = cook

O = owner

Entry conditions:

C has appetite for ice-cream

C has money

Results:

W has more tips

C's appetite is appeased

C is satisfied (optional)

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAAScript: ICE-CREAM PARLOUR

Scene 1: Enter

C PTRANS C in ice-cream parlour

C ATTEND eyes on tables

C MBUILD where free place

C PTRANS C to table

C MOVE C in seating position

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

Script: ICE-CREAM PARLOUR

Scene 2: Order

(menu on table)
C PTRANS menu to C

(C asks for menu)
C MTRANS sign to W
W PTRANS W to C
C MTRANS 'need menu' to W
W PTRANS W to menu

W PTRANS W to table
W ATRANS menu to C

C ATTEND eyes on menu
C MBUILD decision on I
C MTRANS sign to W
W PTRANS W to table
C MTRANS 'want I' to W

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

Script: ICE-CREAM PARLOUR

Scene 3: Eat

K ATRANS I to W
W ATRANS I to C
C INGEST I
(optional: back to scene 2 to order once again)

Scene 4: Leave ice-cream parlour

C MTRANS 'pay' to W
W PTRANS W to table
W ATRANS bill to C
C ATRANS money to W
W ATRANS change to C
C ATRANS tip to W
C PTRANS C out of ice-cream parlour

O has more money

C has less money

Figure 23: Example of script

Plans, which possess a richer flexibility in comparison to scripts, have proven to be adequate
for modelling speech acts (see [Cohen79, Allen80, Perrault80], recent extensions were
contributed by [Cohen85, Litman87, Grosz86, Carberry89, Haller93]). Finally, also the
distinction of the user's belief from general knowledge has been the subject of intensive
research which has its origin in automated reasoning (for basic theoretical work on belief

6. Semantic and Pragmatic Analysis 66

6.3 Pragmatic Analysis

modelling see [Hintikka69, Kripke63, Moore73, Cohen78], more recent developments can be
found in [Levesque84, Steel84, Fritsch85, Ramsay87, Ghose93].

For the pragmatic analysis in our IDA architecture we concentrated our research on the
resolution of ellipses and anaphora. For that purpose we used a uniform semantic resolution
method (USRM) which abstracts from the syntactic surface structure. For each successful
analysed input sentence, the entity as well as the corresponding entity type is extracted from
the semantic deep structure and inserted to the deductive database as LDL base predicate.
This actual focus of the user session is then applied to the resolution of ellipses and de-
referencing of anaphora.

This technique turned out to be very efficient and, in spite of its simplicity, capable of
analysing all of the occurring discourse resolution problems correctly (see Section 7.8
Evaluation). The main reason for this is on the one hand the sequential nature of database
sessions. On the other hand, the pre-requisite in order to achieve this satisfactory performance
is the quality of semantic analysis with regard to the homogenous mapping to the semantic
model of the underlying application.

Example 6.2:

Figure 24 displays an example where in the first situation data about the product
Schraubstock (=vice) is requested whereas in the second case 7 pieces are ordered by
customer Anton Huber without indicating the name of the product. Therefore, the last
entity Schraubstock with the correct entity type Produkt is substituted properly. n

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA

AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AA

AAAA
AAAA

AAAA
AAAA

AAAAAAAAAAAAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA

Daten über
Schraubstock ?

Entity: Schraubstock
Entity type: Produkt

wovon ?

von Schraubstock
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAAAAAA

AAAAAAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

Anton Huber
bestellt 7 Stk. Entity: Schraubstock

Entity type: Produkt

Figure 24: Example of uniform semantic resolution method

6. Semantic and Pragmatic Analysis 67

6.4 Spelling Error Correction

6.4 Spelling Error Correction

The existence of misspelled words is one of the main obstacles to the correct analysis of real-
word input sentences. This is especially true for the field of natural language interfaces
because of the additional difficulty of distinguishing misspelled words from new database
values for insertion or update (see [McFetridge90]). Therefore, spelling error correction can
only be applied in connection with semantic analysis (see Section 6.2 Semantic Analysis).

With regard to the type of the misspelled word three different situations can occur:

L misspelled function words
L misspelled existent database values
L misspelled new database values

Whereas for the third case of course no possibility of error detection exists, the other two
types can be eliminated in principle. However, as functional terms are only stored as canonical
forms, the correction algorithm involves complex computations, thus significantly reducing the
efficiency of analysis. So far only simple methods for suffix-tree approaches dealing with very
restricted error types (e.g. single omission, insertion, substitution or interchange at adjacent
positions [Dorffner85]) have been proposed. Another approach is the matching of the word in
question with so-called n-grams which represent valid character sequences of length n in order
to calculate the type and position of the error, e.g. [Mundt88].

Since the second category, the misspelling of existent database values, is much more likely to
appear in database interfaces and can cause severe consequences, we concentrated our
research on this error type. The higher frequency rate is also motivated by the fact that
misspelled database values do not have as only reason user mistakes but are also caused by the
intentional use of inflections.

The basic idea to correct faulty user input is the comparison with existent database values in
order to decide if similar entries exist. Therefore, the central issue of spelling error correction
is to find an appropriate measure which represents the similarity between two words. The only
similarity measure so far that considers the special characteristics of database values was
introduced by Bickel [Bickel87]. It possesses the following specific properties:

Ø computation is based on the number of equal letters
Ø the order of the letters is arbitrary
Ø each character is only counted once

However, the proposed method possesses the following severe drawbacks:

D the erroneous doubling of characters is not detected
D insensitivity as concerns additional wrong characters, this is a substantial weak

point especially for technical applications, e.g. similar parts with long initial
common sub-strings

D only alphabetic characters are considered which is again not practicable for
technical data

D no standardised interval for the similarity value

6. Semantic and Pragmatic Analysis 68

6.4 Spelling Error Correction

Therefore, we introduced four important adaptations and improvements:

C each common occurrence of a character is rated positively
C each divergent occurrence of a character is rated negatively
C numbers and special characters are included
C the similarity value is standardised on the interval [-1; +1], i.e. it equals +1 in the

case of identity and -1 if the opposite is true

In order to compute the similarity value, we developed the following formula which satisfies
all of the specified properties:

() ()[]
SIM

z z z z

z z

i i i i
i

k

i i
i

k

i

k=
⋅ −

+

=

==

∑

∑∑

3 1 2 1 2
1

1 2
11

min , max ,

(6.6)

In this formula zi1(zi2) signifies the number of occurrences for the character i in the first
(second) word. The numerator shows the similarity or difference between the two terms
whereas the standardisation of the resulting value is taken care of by the denominator. In
Example 6.3 and Example 6.4 we illustrate the semantics of this formula by means of a pair of
very similar and a pair of very divergent words.

Example 6.3:

The German word Plandrehen (=to face) is compared with the erroneous word
Plandehen (omission of one character).

Plandrehen:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Σ
1 0 0 1 2 0 0 1 0 0 0 1 0 2 0 1 0 1 0 0 0 0 0 0 0 0 10

Plandehen:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Σ
1 0 0 1 2 0 0 1 0 0 0 1 0 2 0 1 0 0 0 0 0 0 0 0 0 0 9

Differences:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Σ
2 0 0 2 4 0 0 2 0 0 0 2 0 4 0 2 0-1 0 0 0 0 0 0 0 0 17

Similarity:

 SIM =
+

= =17
10 9

17
19

0 89, n

6. Semantic and Pragmatic Analysis 69

6.4 Spelling Error Correction

Example 6.4:

The German word Augenlagerteil (=lug-bearing part) is compared with the different
word Schraubstock (=vice).

Augenlagerteil:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Σ
2 0 0 0 3 0 2 0 1 0 0 2 0 1 0 0 0 1 0 1 1 0 0 0 0 0 14

Schraubstock:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Σ
1 1 2 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 2 1 1 0 0 0 0 0 12

Differences:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Σ
1-1-2 0-3 0-2-1-1 0-1-2 0-1-1 0 0 2-2 2 2 0 0 0 0 0-10

Similarity:

 SIM = −
+

= − = −10
14 12

10
26

0 38, n
In the following we will prove that the similarity value is really mapped to the interval [+1; -1].
For the case of identical words zi1=zi2=zi holds true for all characters i. Therefore, (6.6)
becomes to:

() ()[]
SIM

z z z z

z z

z

z

i i i i
i

k

i i
i

k

i

k

i
i

k

i
i

k=
⋅ −

+
=

⋅

⋅
==

==

=

=

∑

∑∑

∑

∑

3 2

2
11

11

1

1

min , max ,
(6.7)

In the opposite extreme case that the two terms have no characters in common at all, for each
character i either zi1 or zi2 equals 0. For the first case, the argument of the sum in the
dominator of (6.6) is reduced to:

()z z z zi i i i1 2 2 20 0 0= ⋅ − = −: min(,) max , 3 (6.8)

By analogy it equals -zi1 for the second case so that the sum in the dominator can be split up in

two partial sums leading to the required result:

() ()
SIM

z z

z z

i
i

k

i
i

k

i i
i

k

i

k=
− + −

+
= −= =

==

∑ ∑

∑∑

1
1

2
1

1 2
11

1 (6.9)

6. Semantic and Pragmatic Analysis 70

6.4 Spelling Error Correction

word length

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10

Figure 25: Similarity value for insertion of one character

Figure 25 and Figure 26 show the behaviour of the similarity value with regard to different
error types. The insertion of one divergent character is shown in Figure 25 as function of the
word length. Of course, for the removal of a character the characteristics is the same. As the
interchange of characters does not effect the similarity value at all, only the substitution of a
character has to be considered as additional error type. Figure 26 shows that the gradient
angle is smaller compared with the case of wrong insertions.

word length

-100

-80

-60

-40

-20

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9 10

Figure 26: Similarity value for substitution of one character

6. Semantic and Pragmatic Analysis 71

6.4 Spelling Error Correction

number of characters

-100

-80

-60

-40

-20

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9 10

Figure 27: Similarity value for deletion of several characters

As second type of behavioural analysis we used a fixed word length of 10 for the first word
and varied the number of errors as concerns the second word. Figure 27 and Figure 28
compare the effects of several deletions or substitutions. Whereas in the first case the resulting
graph is convex, for the latter situation a linear relation is displayed.

number of characters

-100

-80

-60

-40

-20

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9 10

Figure 28: Similarity value for substitution of several characters

6. Semantic and Pragmatic Analysis 72

6.4 Spelling Error Correction

Due to the complete integration of the natural language interface and the application database,
the LDL rule for realising spelling error correction is relatively simple and straightforward. If
semantic analysis finds no solution for a sentence containing unknown words by interpreting
them as new database values (see Section 6.2 Semantic Analysis), the unknown strings are
substituted by the most similar database values before semantic analysis is applied again.

suchobj2([(W1, Wt) | R1], [Ot1 | Rt1], recursive rule which corrects UVL and UTL
[(W2, Wt) | R2], [Ot2 | Rt2]) <-

if(Ot1 = unknown if entity type is unknown,
v(Wt), entity identifier is string,
suchbegr(W1, B, K) and there exists similar entity,

then W2 = B, then entity
Ot2 = K and entity type is substituted

else W2 = W1, else they remain unchanged
Ot2 = Ot1),

suchobj2(R1, Rt1, R2, Rt2). recursive call of rule
suchobj2([], [], [], []). exit rule of recursion

suchbegr(Suchwert, Begriff, Kat) <- retrieval of similar entity and entity type
suchbegD(Suchwert, M), retrieval of set of most similar entities
cardinality(M, 1), test for unique maximum
member((Begriff, Kat), M). retrieves entity and entity type from set

suchbegD(Suchwert, <(Begriff, Kat)>) <- most similar entities are grouped
suchbegC(Suchwert, Begriff, Kat).

suchbegC(Suchwert, Begriff, Kat) <- computes most similar entities
suchbegA(Suchwert, M), set of similar entities
suchbegB(Suchwert, M2), set of corresponding similarity values
aggregate(max, M2, Maxwert), computes maximum of similarities
member((Begriff, Kat, Maxwert), M). retrieves entities with maximum similarity

suchbegB(Suchwert, <(Begriff, Kat, Wert)>) <- grouping of similar entities
suchbeg(Suchwert, Begriff, Kat, Wert).

suchbegA(Suchwert, <Wert>) <- grouping of similarity values
suchbeg(Suchwert, _, _, Wert).

suchbeg(Suchwert, Begriff, Kat, Sim) <- retrieves similar entities
schwellwert(Limit), threshold value
objkat(Begriff, Kat), retrieves entities
compare(Suchwert, Begriff, Sim), C-predicate for computing similarity value
Sim > Limit. similar if similarity value > threshold

Figure 29: LDL rule for spelling error correction

6. Semantic and Pragmatic Analysis 73

6.5 Summary

In order to retrieve a candidate for substitution, first the set of similar terms is computed by
use of the similarity value (calculated by an external C-predicate) and a pre-defined threshold.
Out of this set, the entity with the maximum similarity is selected for substitution.

Figure 29 displays the rule for the recursive search for similar entities which corrects the
entries in UVL and UTL, that is, it substitutes the entity in UVL and enters the corresponding
entity type in UTL. As can be seen, throughout the rules also the unlikely situation that there
is no unique maximum (because there are two very similar entities with exactly the same
similarity) is considered, in this case no substitution is performed.

The threshold value represents a crucial parameter because it determines the cardinality of the
set of similar terms. If on the one hand it is selected too high, the number of corrected failures
is reduced. On the other hand, a value chosen too small can result in erroneous replacements.
For these reasons the threshold value is realised by a base predicate in the deductive database
which can be updated freely in order to adjust the spelling error correction to the specific
needs of the actual application.

6.5 Summary

We discussed in this Section the critical touchstone for each natural language interface, the
ability of correctly interpreting the intended meaning of user input. Semantic analysis deals
with this problem by mapping the surface structure of an input sentence to an appropriate deep
structure. We provided a short survey of representation techniques and explained how the
dictionary is supplemented by semantic features in IDA. With regard to the interaction with
syntactic analysis different architectural solutions were considered carefully before introducing
the UVL-approach for database applications with well-defined semantic models, a technique
that is based on the evaluation of database values and deep forms of functional words.
Therefore, no complete grammatical sentence structures are computed but syntactic
information is only used if necessary for disambiguation.

Since manipulation or retrieval of data is seldom performed by use of a single command but
rather takes the form of a dialogue between user and computer, a great deal of research was
done in pragmatic analysis aiming at extending the scope of analysis to the complete user
session. For that purpose, many sophisticated theories and models have been proposed in
literature, most of them also incorporating world knowledge beyond the scope of the
application domain. We concentrated our research on pragmatic analysis in IDA to discourse
resolution by introducing a simple but efficient uniform semantic resolution method (USRM)
which abstracts from specific manifestations at the surface level (ellipsis, anaphora) by using
the entity and entity type of the preceding analysis to keep track of the actual focus.

Finally, we dealt with spelling error correction, one of the most important features as concerns
user acceptance by preventing the user of the tedious task of retyping erroneous input. In this
context, IDA performs an optimal basis for the correction of misspelled database values
because of the complete integration of the application data within the natural language
interface. This makes it possible to verify efficiently the erroneous input word with the existent
entries in order to retrieve a candidate for substitution. For the crucial point of estimating the
likeliness between two terms we introduced a new formula for the calculation of similarity
values and analysed its properties thoroughly.

6. Semantic and Pragmatic Analysis 74

7.1 Introduction

7. Case Study: PPC Database for Precision Tools

7.1 Introduction

As field of application for our case study we have chosen a production planning and control
system (PPC) as nucleus for a later extension to a full CIM system ([Scheer84, Scheer87], for
a more recent survey also dealing with security aspects see [Vieweg94]). The main
components of a CIM system and their mapping to appropriate database support is shown in
Figure 30. As the complexity of CIM applications requires advanced database functionality
[Kappel94], they represent a challenging area for the use of deductive database technology.

 Sales, Marketing
 & Accounting

Business CAD CAM PPC

 Stores & Distribution

 Engineering Design Manufacturing Design

 Test & Inspection Manufacturing

 Production Planning

Figure 30: Database support in CIM

The PPC performs the mean-term scheduling of products and involved resources in the
manufacturing processes shown in Figure 31, that is, material, machines, and labour (see
[Baetge84]). The resulting master production schedule forms the basis for the co-ordination of
related business services such as engineering, manufacturing, and finance.

For the complex task of planning the optimal sequence of machining operations and of
assigning operators and machines to the individual machining operations, techniques from
operations research are needed [Isermann79, Küpper84]. Finally, due to unforeseen
circumstances (machine stoppages, operator drop outs, delivery delays) the control
component of the PPC bears vital importance for the immediate reaction to such sudden
changes in the availability of resources.

7. Case Study: PPC Database for Precision Tools 75

7.1 Introduction

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

15

LABOUR
MA

TE
RIA

L

MACHINES

Figure 31: Types of resources

The modelled enterprise makes precision tools using as basic strategies job order production
and serial manufacture. Especially in this branch of industry there exists the strong need of
modelling complex objects (e.g. the assembly of a part) and transitive relations such as
operation sequences or sub-part hierarchies. As the efficient realisation of these demands
exceeds the power of relational database technology, the application presents an excellent
choice for deriving full advantage of the extended functionality of deductive database systems.
Furthermore, the sophisticated functionality justifies the effective use of a natural language
interface.

For the design and implementation of the PPC system, we apply the following seven step
model. As initial step we define in Section 7.2 Requirements Analysis the requirements to the
PPC system in full detail. By the use of the Extended Entity Relationship (EER) model
[Navathe83, Elmasri85] we then transform in Section 7.3 Database Definition the verbal
description to a corresponding conceptual model which serves as sound basis for the
transformation to appropriate LDL base predicates.

The next step in Section 7.3 Specification and Implementation of the Functionality covers the
functionality of the PPC system. In order to obtain a well-defined reference model for the
development of the natural language front-end, we specify exactly 50 manipulations and 50
queries to the PPC which are implemented by LDL rules. Finally, the semantics of the
functional part is formally represented as deep structures in Section 7.5 Semantic Application
Model.

As starting point for the implementation of the natural language interface, questionnaires are
used in Section 7.6 Empirical Collection of Test Data to get 1000 realistic example sentences
(10 for each command). On the basis of this data, the interface is implemented in Section 7.7
Implementation of Natural Language Interface and finally the whole application is evaluated
in Section 7.8 Evaluation, i.e. the correct mapping of the 1000 surface structures to the 100
deep structures as well as examples of spelling error correction and de-referencing of anaphora
are tested extensively.

7. Case Study: PPC Database for Precision Tools 76

7.2 Requirements Analysis

7.2 Requirements Analysis

The first step of the design process was to collect and express thoughtfully the requirements to
the PPC. Because of the complexity of the application, we divided the problem in two separate
views. The static view considers only the master data, i.e. static entities and stable
relationships that are not likely to change during a medium-term perspective whereas the
dynamic view models the transaction data, that is, transitory entities and short-term relations.
Throughout the verbal description we used italics to identify entity and relationship names.

7.2.1 Static View

The objects which are machined during production are called parts and are divided in
assembled parts and basic parts. An assembled part is composed of several parts (sub-parts),
these sub-parts can again be assembled from other sub-parts and so on. Therefore, each
assembled part possesses a sub-part hierarchy which determines its structure.

The basic parts are obtained from suppliers. There exist four categories of basic parts:

Ä Standard parts are ordered as prefabricated parts in standardised sizes and qualities.
They are charged by piece, attributes are the name and the standard.

Ä Cast parts are manufactured by use of special moulds so that they are again charged by
piece. Attributes are the name and the original material.

Ä Round parts are cylindrical basic parts which are not ordered by the name but by the
raw material and the specification of the crude size, the charging is performed by
volume.

Ä Angular parts are square prismatic basic parts, they are ordered the same way as round
parts.

Therefore, as concerns supplies one can distinguish between orders for standard parts, cast
parts, and raw materials which are all subsumed by the generic term material. For the correct
processing of orders of materials the following information is of importance: the purchase
price, the minimal quantity, and the time of delivery. Finally, the attributes of the suppliers are
name and address.

In order to be able to perform a machining operation on a part, a machine and an operator is
required. A machine is identified by its machine number (automatically created) and machine
type, an operator by its name, social security number, address, salary, and the qualification
which machine types he can handle. During production scheduling the machines and operators
are assigned to machines, these assignments are stored in scheduling lists.

If a machine or an operator has to be removed from the production, there must be the
possibility to consider this situation early in production scheduling. This guarantees that no
more machining operations are assigned to the machine or operator. The status of the machine
or worker is then no longer ready for operation but suspended.

The machining operation is the smallest unit in the production, its main characteristic is the
kind of action which is determined by the required machine type as well as cost and time data.
With regard to the latter it is distinguished between the fixed and the variable portion. Finally,
an operation sequence can be assigned to each part which defines the order of execution of
the individual actions for this part.

7. Case Study: PPC Database for Precision Tools 77

7.2 Requirements Analysis

A product is the result of a production process in response to a product order by a customer,
i.e. the products constitute a subset of the assembled parts. Important characteristics of the
products are the name, minimal output, profit margin, cancellation fee, and the net selling-
price. To calculate the gross selling-price, the actual VAT rate is needed. Finally, for the
customers again the name and address is stored as information.

A vital component for each PPC is the conception of time. The temporal dimension of all
future events is modelled as interval (difference of time when event occurs minus presence).
The delivery time of basic parts and completion time of products are calculated by days
whereas the start and completion time of machining operations are given by hours and days, a
day counting as 8 hours. Therefore, the actual time of the day in hours has to be stored for the
exact calculation of the arrival time of a delivery or the completion time of a product, the time
of the day for these two events is supposed to be 0 (daybreak).

7.2.2 Dynamic View

Orders for basic parts (the order number is generated automatically by the system) are made in
relation to specific product orders within the framework of production scheduling. Due to the
existence of minimal quantities for deliveries, excess basic parts can occur for which a stock of
basic parts is established. The stock can be divided in two different types: projected stocks
(not yet delivered) and actual stocks (delivery already arrived). If a basic part is needed for a
production order, the stock is checked first. Only if the stock is not sufficient, the missing
quantity is ordered.

By analogy, for excess products a stock of products is kept. The stock of products also
consists of projected stocks (production not yet finished) and actual stocks (production
already finished). If a customer makes a product order (automatically generated product order
number), it is first attempted to satisfy the request from stock of products. Only if the stock is
insufficient, a production order is generated for the total quantity. As there exists also the
possibility that a customer cancels a product order, the status of a product order can be: from
stock, production or cancelled. The restriction of a minimal output can again result in excess
products which are put in stock of products.

As first step of the production scheduling the inventories of the required basic and assembled
parts are determined yielding the production list of the order which gives the information
about the sequence of all necessary machining operations. After preparing the basic parts,
either from stock of basic parts or by delivery, for each machining operation of the production
list the earliest start time is derived from the availability of the required parts (part itself or
sub-parts).

In the next step, all scheduling lists of machines and operators are looked up for valid
intervals, that is, later than the earliest start time and longer than the duration of the machining
operation. From all possible combinations of machine and operator assignments, the one is
selected which guarantees the earliest completion time of the machining operation. Therefore,
the availability time after the final machining operation represents the total production time of
the product.

With regard to the control of disturbances machine stoppages, operator drop outs, and
delivery delays are considered. In such a situation, first all directly or indirectly involved
machining operations are detected and inserted in a change list. Then, all entries in the change

7. Case Study: PPC Database for Precision Tools 78

7.3 Database Definition

list are scheduled anew. If a machine stoppage or operator drop out occurs during the
execution of a machining operation, also this operation is added to the change list with a new
duration (remaining processing time plus fixed time of action).

The net selling-prices are calculated on the basis of the total cost of production times the
profit margin. The price calculation is not performed for each individual production order.
That means that products are sold by list prices which are updated periodically to adjust them
to the actual product prices.

In analogy to the production scheduling the cost calculation first determines the inventories of
the necessary basic and assembled parts as well as the production list. The inventory is the
basis of the material costs whereas the tooling costs can be computed from the production list
(fixed costs are related to the minimal output). Finally, the sum of material costs and tooling
costs yields the total cost of production.

7.3 Database Definition

7.3.1 Static View

The EER-diagram in Figure 32 shows the conceptual model of the static view of the PPC. The
mapping to the according logical model (i.e. the LDL base predicates) is performed in analogy
to the transformation rules of the logical relational design methodology (LRDB) [Teorey86].

material

raw
material

cast
part

standard
part

angular
part

round
part

basic part

part

product

ass. part

customer

supplier

sub-part
hierarchy

time of
the day

VAT
rate

operation
sequence

order of
execution

actionoperator machine

machine
type

qualification

Figure 32: EER model of static PPC view

7. Case Study: PPC Database for Precision Tools 79

7.3 Database Definition

Figure 33 shows the final result of the design process. Please take notice of the following
remarks while interpreting the base predicates:

F the aggregations part, basic part, and material are not materialised but are
represented by use of derived predicates

F the relationship sub-part hierarchy is assigned to the entity assembled part as list
of sub-parts, for each list member the name and the required quantity is indicated

F for the entities supplier, operator, customer an internal, automatically generated
number is used as identifying property

F the complex structure of the scheduling list is explained in Section 7.3.2 Dynamic
View

F the qualification of an operator is modelled as set of machine types, the latter are
again not materialised but are represented as derived predicates

F the ternary relation operation sequence is transformed to an entity with the
machined part and the list of actions as attributes

1 assembled_part(Name: string, Subparts: [(integer, string)]

1 standard_part(Name: string, Standard: string, Purchase_price: real,
Supplier: integer, Minimal_quantity: integer, Time_of_delivery: integer)

1 cast_part(Name: string, Original_material: string, Purchase_price: real,
Supplier: integer, Minimal_quantity: integer, Time_of_delivery: integer)

1 round_part(Name: string, Raw_material: string, Diameter: integer,
Length: integer)

1 angular_part(Name: string, Raw_material: string, Length: integer,
Width: integer, Height: integer)

1 raw_material(Name: string, Purchase_price: real,
Supplier: integer, Minimal_quantity: integer, Time_of_delivery: integer)

1 supplier(Number: integer, Name: string, Address: string)

1 machine(Machine_number: integer, Name: string, Status: integer,
Scheduling_list: [(integer, integer, integer, string, string, (integer, integer),
(integer, integer))])

1 operator(Number: integer, Name: string, SSN: string, Address: string,
Salary: real, Qualification: {string}, Status: integer, Scheduling_list:
[(integer, integer, integer, string, string, (integer, integer),
 (integer, integer))])

1 action(Name: integer, Machine_type: string, Fixed_time: real,
Variable_time: real, Fixed_cost: real, Variable_cost: real)

1 operation_sequence(Part: string, Actions: [string])

1 product(Name: string, Minimal_output: integer, Profit_margin: real,
Cancellation_fee: real, Net_selling_price: real)

1 customer(Number: integer, Name: string, Address: string)

1 vat_rate(VAT_rate: real)

1 time_of_the_day(Time_of_the_day: integer)

Figure 33: LDL base predicates of static PPC view

7. Case Study: PPC Database for Precision Tools 80

7.3 Database Definition

7.3.2 Dynamic View

The conceptual model of the dynamic view of the PPC in Figure 34 shows only these entities
of the static part that are relevant to short-time relationships, all others as well as the
aggregation aspect are left out of consideration.

stock of
products machineactionproduct

basic par t operatorcustomerorder

stock of
basic par ts partmachining

operation
product
order

from stock
of products

from stock of
basic parts

Figure 34: EER model of dynamic PPC view

The following clarification to the EER model will be helpful:

F since each product order first empties the stock of basic parts before it makes a
new order, only one stock exists for each basic part (1:1 relationship between
stock of basic parts and basic part)

F for the same reason the stock of a basic part has always been ordered by only one
specific order (1:1 relationship between stock of basic parts and order)

F the relationship from stock of basic parts indicates which product orders have
removed items from a projected stock, this is especially important for the correct
treatment of delivery delays

F for one product more than one stock of products can exist because it is possible
that several production orders with different production times produce excess
products simultaneously (as shown by the 1:1 relationship between product order
and stock of products)

F therefore, the connectivity of the removal of products is n:m (relationship from
stock of products)

7. Case Study: PPC Database for Precision Tools 81

7.3 Database Definition

Again, this EER model forms the basis for the mapping to corresponding LDL base predicates
shown in Figure 35 and the following annotations:

F the status of the stock of basic parts is actual if the delivery time is 0, otherwise it
is projected

F as to the restriction of minimal output, the output of product order can be different
from the ordered quantity, the difference represents the excess products

F the relationship from stock of products is mapped to corresponding lists in the
entities stock of products and product order (for each entry the product order, the
quantity, and the production time is given), additionally an attribute for the removal
from the actual stock is appended to product

F removed items from stock of basic parts are identified by the order number by
which they have been ordered

F the machining operation is the basic unit of production scheduling, it is not
represented as separate entity but stored in the production list of the product order
and in the scheduling lists of machines and operators by providing the following
information for each list entry:

production list: scheduling list:

ð sequence number of production ð product order
ð level of sub-part hierarchy ð level of sub-part hierarchy
ð number in operation sequence of partð number in operation sequence of part
ð machined part ð machined part
ð required quantity of machined part ð performed action
ð performed action ð day and hour of start time
ð list of sub-parts ð day and hour of completion time

1 stock_of_basic_parts(Name: string, Order: integer, Delivery_time: integer,
Quantity: integer, Purchase_price: real)

1 order(Order_number: integer, Product_order: integer, Basic_part: string,
Delivery_time: integer, Quantity: integer, Purchase_price: real)

1 product_order(Product_order_number: integer, Status: integer,
Product: string, Production_time: integer, Quantity: integer,
From_actual_stock: integer, From_proj_stocks: [(integer, integer, integer)],
Output: integer, Net_selling_price: real, Customer: integer,
Production_list: [(integer, integer, integer, string, integer, string, [string])])

1 stock_of_products(Name: string, Actual_quantity: integer,
Projected_stocks: [(integer, integer, integer)])

1 from_stock_of_basic_parts(Order: integer, Product_order: integer)

Figure 35: LDL base predicates of dynamic PPC view

7. Case Study: PPC Database for Precision Tools 82

7.4 Specification and Implementation of the Functionality

7.4 Specification and Implementation of the Functionality

Based on the specified requirements and the developed database definition we defined 50
manipulations (M1-M50) and 50 queries (Q1-Q50) to the PPC which cover the complete
functionality of the modelled PPC system. The 100 commands were implemented by use of
LDL rules as query forms to the deductive database and mapped to an appropriate semantic
application model.

7.4.1 Manipulations to the PPC

The insertion of the following entities for the static view of the PPC is provided if the stated
conditions are satisfied, otherwise the user gets a corresponding error message as response.
The identifying entity numbers are generated automatically in increasing order.

Insertion of:

¶ supplier (M1)
¶ raw material (M2)
Ø supplier must exist

¶ standard part (M3)
Ø supplier must exist

¶ cast part (M4)
Ø supplier must exist

¶ round part (M5)
Ø raw material must exist

¶ angular part (M6)
Ø raw material must exist

¶ assembled part (M7)
Ø sub-parts must exist

¶ product (M8)
Ø corresponding assembled part must exist
Ø net selling-price is calculated as total cost of production times profit margin

¶ customer (M9)
¶ machine (M10)
¶ operator (M11)
¶ action (M12)
Ø required machine type must exist
Ø operator must exist who can handle the machine type

¶ operation sequence (M13)
Ø part must exist
Ø actions must exist

Similarly, under the restriction that the given conditions hold true, the following entities can be
removed from the PPC. Please regard that operation sequences are deleted together with the
corresponding parts. To delete a product only means that the assembled part in question is not
sold anymore, the assembled part itself has to be deleted separately.

7. Case Study: PPC Database for Precision Tools 83

7.4 Specification and Implementation of the Functionality

Deletion of:
¶ supplier (M14)
Ø supplier must not deliver any basic part

¶ basic part (M15)
Ø it must not exist a stock
Ø the basic part must not be included in assembled parts
Ø if a operation sequence exists, it is also deleted

¶ raw material (M16)
Ø raw material must not be contained in basic parts

¶ assembled part (M17)
Ø assembled part must not be included in other parts
Ø assembled part must not be a product
Ø if a operation sequence exists, it is also deleted

¶ product (M18)
Ø it must not exist a stock
Ø it must not exist any current product orders

¶ machine (M19)
Ø it must not exist any assignments to machining operations
Ø there must be other machines of the same machine type if the machine type is

required for any action
¶ operator (M20)
Ø it must not exist any assignments to machining operations
Ø there must be other operators who can handle the same machine types if the

machine types are required for any action
¶ customer (M21)
Ø it must not exist any current product orders

¶ action (M22)
Ø action must not be included in any operation sequence

With regard to the modification of master data, the following update operations on attributes
of static entities are considered:

¶ materials:
Ø purchase price (M23)
Ø minimal quantity (M24)
Ø delivery time (M25)
Ø supplier (must exist) (M26)

¶ suppliers:
Ø address (M27)

¶ products:
Ø minimal output (M28)
Ø profit margin (M29)
Ø cancellation fee (M30)

¶ value added tax rate (M31)
¶ operators:
Ø address (M32)
Ø salary (M33)
Ø insertion of machine type which the operator can handle (M34)

7. Case Study: PPC Database for Precision Tools 84

7.4 Specification and Implementation of the Functionality

¶ customers:
Ø address (M35)

¶ actions:
Ø fixed time and cost portion (M36)
Ø variable time and cost portion (M37)

Finally, some information from the static view and all entities of the dynamic view of the PPC
must not be manipulated directly but can only be affected exclusively by the following
important transactions:

¶ shift of the presence by a given interval to the future, for each event that occurs in
this period a corresponding message has to be produced (M38)

¶ liquidation of the actual stocks of basic parts and products (M39, M40)
¶ calculation of selling-prices based on actual total cost of production (M41)
¶ scheduling of new product orders (M42)
¶ processing of machine stoppages and operator drop outs (M43, M44)
¶ processing of delivery delays (M45)
¶ release of machines and operators that are sooner available than expected

(M46, M47)
¶ suspension of machines and operators (M48, M49)
¶ cancellation of product orders, output is transferred to the stock of products (M50)

7.4.2 Queries to the PPC

The first set of indicated queries retrieves master or transaction data. For each query it is
possible to ask for the attributes of a specific entity as well as for a list of all existent ones.

´ sub-parts for assembled part (Q1)
´ master data of standard part (Q2)
´ master data of cast part (Q3)
´ master data of round part (Q4)
´ master data of angular part (Q5)
´ master data of raw material (Q6)
´ master data of supplier (Q7)
´ stock of basic part (Q8)
´ order data (Q9)
´ product order data (Q10)
´ machine data (Q11)
´ assignment data of operator (Q12)
´ master data of operator (Q13)
´ master data of action (Q14)
´ operation sequence of part (Q15)
´ master data of product (Q16)
´ stock of product (Q17)
´ master data of customer (Q18)
´ master data of basic part (Q19)

7. Case Study: PPC Database for Precision Tools 85

7.4 Specification and Implementation of the Functionality

As second query type the user can state criteria for selecting a subset of entities. These
selection attributes make it possible to query the modelled relationships (see Figure 32 and
Figure 34 in Section 7.3 Database Definition). Again, a list of all entities can be retrieved
using the criteria to group the entries:

´ master data of standard parts by supplier (Q20)
´ master data of cast parts by supplier (Q21)
´ master data of round parts by raw material (Q22)
´ master data of angular parts by raw material (Q23)
´ master data of raw materials by supplier (Q24)
´ order data by product order (Q25)
´ order data by basic part (Q26)
´ product order data by product (Q27)
´ product order data by customer (Q28)
´ machine data by machine type (Q29)
´ assignment data of operators by machine type (Q30)
´ master data of actions by machine type (Q31)
´ master data of basic parts by supplier (Q32)

More complex symmetric transitive relations which can be indirectly derived from the
relationships of the conceptual model are covered by the following set of queries. There also
exists again the choice between selection and grouping of the query result.

´ assignment of production orders to orders and vice versa (Q33)
´ assignment of products to customers and vice versa (Q34)
´ assignment of actions to operators and vice versa (Q35)
´ assignment of assembled parts or products to suppliers and vice versa (Q36)
´ assignment of machine types to assembled parts or products and vice versa (Q37)

Finally, the last set of queries provides some special grouping operations, hierarchical
structure information, and other special data of which the derivation requires sophisticated
computation:

´ stock of basic parts or products grouped by stock type (actual or projected)
(Q38, Q39)

´ product orders grouped by status (from stock, production or cancelled) (Q40)
´ machine data and assignment data of operators grouped by status (ready for

operation or suspended) (Q41, Q42)
´ production time of product (Q43)
´ all events which will occur in a given time interval (Q44)
´ sub-part hierarchy of assembled part (Q45)
´ inventory of assembled part (Q46)
´ production list of part (Q47)
´ difference between list price and actual product price (Q48)
´ cost distribution of part (Q49)
´ assembled parts or products in which a part is directly or indirectly included (Q50)

7. Case Study: PPC Database for Precision Tools 86

7.4 Specification and Implementation of the Functionality

7.4.3 Implementation

In order to obtain a well-defined interface to the natural language front-end we specified 100
prototypes of query forms. The input to the requested demand as well as the resulting output
are modelled by use of parameters, i.e. covered and free variables. In general all manipulations
have the uniform parameter Error which returns an error code for dealing with invalid input, it
equals 0 if the execution was successful. All queries are answered not as several solutions to
the query form but all entries are grouped to form a unique set that is returned in the variable
Result as uniform result of the query.

In the following we will give for each group of manipulations and queries a representative
example of the corresponding prototype and its implementation by the use of LDL rules.

: insertion of an action (M12):

m12($Name, $Machine_type, $Fixed_time, $Fixed_cost, $Var_time, $Var_cost, Error)

m12(Name, Machine_type, Fixed_time, Fixed_cost,
Var_time, Var_cost, Error) ←

if(action(Name, _, _, _, _, _) if action already exists, then Error=1
then Error=1
else if(~machine(_, Machine_type, 0, _) if no machine with Status=0 (ready for operation)

then Error=2 for action exists, then Error=2
else if(~can_handle(Machine_type) if no operator can handle action, then Error=3

then Error=3
else Error=0,

 +action(Name, Machine_type, Fixed_time, otherwise action is inserted
Var_time, Fixed_cost, Var_cost)))).

can_handle(Machine_type) ← checks if any operator can handle machine type
operator(_, _, _, _, _, Qualification, 0, _), retrieves all operators which are ready for operation
member(Machine_type, Qualification). test if machine type is included in any qualification

: deletion of an assembled part (M17):

m17($Name, Error)

m17(Name, Error) ←
if(~assembled_part(Name, _) if assembled part does not exist, then Error=1
then Error=1
else if(product(Name, _, _, _, _) if assembled part is product, then Error=2

then Error=2
else if(assembled_part(_, List), retrieves all assembled parts

lmember((_, Name), List) if assembled part is included in other part,
then Error=3 then Error=3

 else Error=0,
-assembled_part(Name, _), otherwise assembled part is deleted
-operation_sequence(Name, _)))). and corresponding operation sequence is deleted

: update of address for customers (M35):

m35($Name, $Address, Error)

m35(Name, Address, Error) ←
if(~customer(Number, Name, _) if customer does not exist, then Error=1
then Error=1
else Error=0,

-customer(Number, _, _) else customer is deleted
+customer(Number, Name, Address)). and again inserted with new value for address

7. Case Study: PPC Database for Precision Tools 87

7.4 Specification and Implementation of the Functionality

: cancellation of product orders (M50):

m50($Prod_order, Error)

m50(Prod_order, Error) ←
if(~product_order(Prod_order, _, _, _, _,_, _, _, _, _, _) if product order does not exist, then Error=1
then Error=1
else if(product_order(Prod_order, 3, _, _, _,_, _, _, _, _, _) if product order already cancelled, then Error=2

then Error=2
else Error=0,

cancel(Prod_order))). else product order is cancelled

cancel(P) ← cancellation of product order
product_order(P, Status, Part, Time, Quant, FromAct, retrieves product order

FromProj, Output, Price, Customer, ProdList),
if(Status=1 if product order is from stock then
then if(stock_of_products(Part, ActQuant, ProjStock) if stock of products exists, then

then ActQuant2 = ActQuant + FromAct, actual stock is returned
retstock(FromProj, ProjStock, ProjSt2), projected stocks are returned
-stock_of_products(Part, _, _), old stock is deleted
+stock_of_products(Part, ActQuant2, ProjSt2) new stock is inserted

else +stock_of_products(Part, ActQuant, ProjStock)), else new stock is created
-product_order(P, _, _, _, _,_, _, _, _, _, _) product order is deleted

else if(stock_of_products(Part, ActQuant, ProjStock) else production order, if stock exists, then
then addstock(ProjStock, (P, Quant, Time), ProjSt2), production is added to projected stocks

-stock_of_products(Part, _, _), old stock is deleted
+stock_of_products(Part, ActQuant, ProjSt2) new stock is inserted

else +stock_of_products(Part, 0, [(P, Quant, Time)])), else new stock is created
-product_order(P, _, _, _, _,_, _, _, _, _, _), old product order is deleted
+product_order(P, 3, Part, Time, Quant, FromAct, product order marked as cancelled is inserted

FromProj, Output, Price, Customer, ProdList)).

retstock([Entry Rest], Stock, Stock2) ← old stocks and returned stocks are merged
retstock(Rest, Stock, Stock3), recursive call of rule
addstock(Stock3, Entry, Stock2). appends one returned stock to old stock list

retstock([], Stock, Stock) . exit rule of recursion

addstock(Stock, (P, Quant, Time), Stock2) ← adds stock to stock list
if(lmember((P, Quant2, Time), Stock) if entry with same order and time exists,
then remstock(Stock, (P, Quant2, Time), Stock3), then it is deleted from the list

Quant3=Quant+Quant2, returned quantity is added to old one
insstock(Stock3, (P, Quant3, Time), Stock2) and new entry is inserted

else insstock(Stock, (P, Quant, Time), Stock2)). else stock is inserted as new entry

remstock(Stock, Entry, Stock2) ← removes entry from stock list
Stock=[(P, Quant, Time) Rest], retrieves first entry from list
Entry=(P2, _, _), retrieves product order from new entry
if(P=P2 if product orders are equal
then Stock2=Rest entry is deleted
else remstock(Rest, Entry, Rest2), recursive call of rule

Stock2=[(P, Quant, Time) Rest2]). first entry is inserted again
remstock([], _, []). exit rule of recursion

insstock(Stock, Entry, Stock2) ← inserts entry into stock list
Stock=[(P, Quant, Time) Rest], retrieves first entry from list
Entry=(_, _, Time2), retrieves time of new entry
if(Time2 <= Time if new time is earlier or equal
then Stock2=[Entry Rest] new stock is inserted
else insstock(Rest, Entry, Rest2), recursive call of rule

Stock2=[(P, Quant, Time) Rest2]). first entry is inserted again
insstock([], Entry, [Entry]). exit rule of recursion

7. Case Study: PPC Database for Precision Tools 88

7.4 Specification and Implementation of the Functionality

: order data (Q9):

q9($Order_number, Result)

q9(Order_number, Result) ←
if(Order_number=all if no selection for specific order number
then qu_order_all(Result) then all orders are retrieved
else qu_order_single(Order_number, Result)). else single order is retrieved

qu_order_single(O, (P, Part, Time, Quant, Price)) ← retrieval of single order
order(O, P, Part, Time, Quant, Price).

qu_order_all(<(O, P, Part, Time, Quant, Price)>) ← retrieval of set of all orders
order(O, P, Part, Time, Quant, Price).

: master data of standard parts by supplier (Q20):

q20($Supplier, Result)

q20(Supplier, Result) ←
if(Supplier=all if no selection for specific supplier
then qu_supplier_all(Result) then all standard parts are retrieved
else qu_supplier_single(Supplier, Result)). else standard parts for single supplier are retrieved

qu_supplier_all(<(Supplier, Entry)>) ← retrieval of all standard parts grouped by supplier
supplier(_, Supplier, _), retrieving all suppliers
qu_supplier_single(Supplier, Entry). retrieving all standard parts for single supplier

qu_supplier_single(Supplier, retrieving set of standard parts for single supplier
(<Name, Standard, Price, Min_Quant, Time)>) ←

if(standard_part(N2, S2, P2, Supplier, M2, T2), if standard parts exist
then Name=N2, then they are included as set members

Standard=S2,
Price=P2,
Min_Quant=M2,
Time=T2

else Name=none, else a dummy member is created
Standard=none,
Price=0.0,
Min_Quant=0,
Time=0).

: assignment of actions to operators and vice versa (Q35):

q35($Criterion, $Direction, Result)

q35(Criterion, Direction, Result) ←
if(Direction=1 if assignment of actions to operators
then if(Criterion=all then, if no selection for specific operator

then qu_actop_all(Result) then all actions are retrieved
else qu_actop_single(Criterion, Result)) else actions for single operator are retrieved

else if(Criterion=all else assigning operators to actions, if no selection
then qu_opact_all(Result) then all operators are retrieved
else qu_opact_single(Criterion, Result))). else operators for single action are retrieved

qu_actop_all(<(Operator, Entry)>) ← retrieval of all actions grouped by operator
operator(_, Operator, _, _, _, _, _, _), retrieving all operators
qu_actop_single(Operator, Entry). retrieving all actions for single operator

qu_actop_single(Operator, (<Action>) ← retrieving set of actions for single operator
operator(_, Operator, _, _, _, Qualification, _, _), retrieving qualification of operator
if(member(Machine_type, Qualification), retrieving machine types in qualification

action(Action2, Machine_type, _, _, _, _) if actions with corresponding machine type exist
then Action=Action2 then they are included as set members
else Action=none). else a dummy member is created

(qu_opact_all and qu_opact_single are analogous to qu_actop_all and qu_actop_single)

7. Case Study: PPC Database for Precision Tools 89

7.4 Specification and Implementation of the Functionality

: inventory of assembled parts (Q46):

q46($Assembled_part, Result)

q46(Assembled_part, Result) ←
assembled_part(Assembled_part, _), checks for existence of assembled part
hierarchy(Assembled_part, Hierarchy), sub-part hierarchy is computed
inv(Hierarchy, List_of_AssParts, 1), computes inventory of assembled parts
inv2(Hierarchy, List_of_BasicParts), computes inventory of basic parts
Result={(List_of_AssParts, List_of_BasicParts)}.

hierarchy(Part, List2) ← recursive computation of sub-part hierarchy
assembled_part(Part, List), if assembled part then
take_apart(List, List2). computes hierarchy for entries in sub-part list

hierarchy(Part, []) ← exit rule of recursion
basic_part(Part, _, _, _, _).

take_apart([(Quant, Part) Rest], computes hierarchy of entries in sub-part list
[(Quant, Part, List) Rest2]) ←

hierarchy(Part, List), for each sub-part compute sub-part hierarchy
take_apart(Rest, Rest2). recursive call of rule

take_apart([], []). exit rule of recursion

inv([Entry Rest], List, I) ← computes inventory of assembled parts
Rest ~= [], checks that list has more than one entry
inv([Entry], List1, I), recursive call for list entry
inv(Rest, List2, I), recursive call for rest of list
merge(List1, List2, List). merging of both partial results

inv([(Quant, Part, List)], List2, I) ← rule for single entry
List ~= [], checks that list is not empty
J = I + 1, increases level of hierarchy (=search depth)
inv(List, List3, J), recursive call of rule
factor(Quant, List3, List4), multiply list members by required quantity
assembled_part(Part, List5), retrieving sub-part list of entry
compress(List5, List6), removing quantity information from sub-part list
List1 = [(Quant, Part, I, List6)], inventory entry: quantity, part, level, sub-part names
merge(List1, List4, List2). merging of new entry with other result

inv([(_, _, [])], [], _). exit rule for basic parts
inv([], [], _). exit rule for empty list

factor(Quant, [(Quant1, Part, Level, Subparts) Rest], multiplies sub-part list by required quantity
[(Quant2, Part, Level, Subparts) Rest2]) ←

Quant2=Quant1*Quant,
factor(Quant, Rest, Rest2). recursive call of rule

factor(_, [], []). exit rule of recursion

merge([(Quant, Part, Level, Subparts) Rest], List, List2) ← merging of two inventories
insert(Quant, Part, Level, Subparts, List, List3), inserts first entry of first list in second list
merge(Rest, List3, List2). recursive call

merge(List, [], List). exit rule of recursion
merge([], List, List). exit rule of recursion
insert(Quant1, Part1, Level1, Subparts1, inserts inventory entry in second inventory

[(Quant2, Part2, Level2, Subparts2) Rest],
[(Quant, Part2, Level, Subparts2) Rest2]) ←

if(Part1=Part2 if first entry of list belongs to the same part
then Quant=Quant1+Quant2, then add up quantities

Rest2=Rest ,
max(Level1, Level2, Level) takes level at which part is needed first

else insert(Quant1, Part1, Level1, Subpart1, Rest, Rest2), else recursive call of rule
Quant=Quant2,
Level=Level2).

insert(Quant, Part, Level, Subparts, [], if no entry for part exists, a new entry is created
[(Quant, Part, Level, Subparts)]).

(inv2 is analogous to inv)

7. Case Study: PPC Database for Precision Tools 90

7.5 Semantic Application Model

7.5 Semantic Application Model

The final step of the development of the functional part was to specify semantic categories
for all manipulations and queries to the PPC (see Figure 33 and Figure 35 for the
corresponding LDL base predicates). The resulting semantic application model of the PPC
provided a well-defined interface to the natural language front-end.

In the following we define for each semantic category its deep structure and specify the valid
combinations of value domains of the applied arguments. In addition to the three basic data
types, the types address and name with the appropriate syntactic restrictions are used. For
arguments of which the value domain is derived from the existent PPC data, the corresponding
type information is written in italics. Finally, the use of underline means that the concerned
words do not represent data types but have to be regarded literally.

7.5.1 Manipulations to the PPC

Insertion of new entities:

Ä [insert, Entity_type, Entity, [Values]] (7.1)

No.
M1
M2
M3
M4
M5
M6
M7
M8
M9
M10
M11
M12
M13

Entity_type
supplier
raw_material
standard_part
cast_part
round_part
angular_part
assembled_part
product
customer
machine
operator
action
op_sequence

Entity
name
string
string
string
string
string
string
string
name
none
name
string
part

[Values]
[address]
[real, supplier, integer, integer]
[string, real, supplier, integer, integer]
[string, real, supplier, integer, integer]
[raw_material, integer, integer]
[raw_material, integer, integer, integer]
[(integer,part)], [(integer,part), (integer,part)],
[integer, real, real]
[address]
[string]
[string, address, real, {string}]
[machine_type, real, real, real, real]
[action], [action, action], ...

Table 1: Value domains of semantic category insert

Deletion of an entity:

Ä [delete, Entity_type, Entity] (7.2)

No.
M14
M15
M16
M17
M18
M19
M20
M21
M22
M39
M40

Entity_type
supplier
basic_part
raw_material
assembled_part
product
machine
operator
customer
action
stock_of_basic_parts
stock_of_products

Entity
supplier
basic_part
raw_material
assembled_part
product
integer
operator
customer
action
basic_part
product

Table 2: Value domains of semantic category delete

7. Case Study: PPC Database for Precision Tools 91

7.5 Semantic Application Model

Update of an attribute:

Ä [update, Entity_type, Attribute, Entity, Value] (7.3)

No.
M23
M24
M25
M26
M27
M28
M29
M30
M31
M32
M33
M34
M35
M36
M37

Entity_type
material
material
material
material
supplier
product
product
product
vat_rate
operator
operator
operator
customer
action
action

Entity
material
material
material
material
supplier
product
product
product
none
operator
operator
operator
customer
action
action

Attribute
price
quantity
time
supplier
address
quantity
profit_margin
cancellation_fee
vat_rate
address
salary
machine_type
address
fixed
variable

Value
real
integer
integer
supplier
address
integer
real
real
real
address
real
string
address
(real, real)
(real, real)

Table 3: Value domains of semantic category update

Shift of time:

Ä [timeshift, Days, Hours] (7.4)

No.
M38

Days
integer

Hours
integer

Table 4: Value domains of semantic category timeshift

Machine stoppages and operator drop outs:

Ä [failure, Entity_type, Entity, Days, Hours] (7.5)

No.
M43
M44

Entity_type
machine
operator

Entity
integer
operator

Days
integer
integer

Hours
integer
integer

Table 5: Value domains of semantic category failure

Release of machines and operators:

Ä [release, Entity_type, Entity] (7.6)

 No.
M46
M47

Entity_type
machine
operator

Entity
integer
operator

Table 6: Value domains of semantic category release

Calculation of new selling prices:

Ä [calcprice] (7.7)

M41

7. Case Study: PPC Database for Precision Tools 92

7.5 Semantic Application Model

Suspension of machines and operators:

Ä [suspend, Entity_type, Entity] (7.8)

 No.
M48
M49

Entity_type
machine
operator

Entity
integer
operator

Table 7: Value domains of semantic category suspend

Scheduling of product order:

Ä [scheduling, Product, Quantity, Customer] (7.9)

No.
M42

Product
product

Quantity
integer

Customer
customer

Table 8: Value domains of semantic category scheduling

Delivery delays:

Ä [delay, Order, Days] (7.10)

No.
M45

Order
integer

Days
integer

Table 9: Value domains of semantic category delay

Cancellation of product order:

Ä [cancel, Product_order] (7.11)

No.
M50

Product_order
integer

Table 10: Value domains of semantic category cancel

7.5.2 Queries to the PPC

All queries are mapped to one homogenous semantic category:

Ä [query, Entity_type, Attribute, Entity, Sel_entity_type, Sel_entity] (7.12)

Table 11 shows the values for all queries. If a list of all entities shall be retrieved, Entity is set
to all. The argument Sel_entity refers to the entity which is used as selection criterion. If no
selection is required, then Sel_entity_type=Sel_entity=none, for the grouping of the query
result the value all has to be assigned to Sel_entity (none or all are only entered in the table
if no other choice exists).

According to the semantics of assignments (Q33-Q37), the selection criterion is always
required. Finally, the values status and type_of_stock of Sel_entity_type can only be
applied as grouping operators.

7. Case Study: PPC Database for Precision Tools 93

7.5 Semantic Application Model

No.

Q1
Q45
Q46
Q36
Q37
Q2, Q21
Q3, Q22
Q4, Q23
Q5, Q24
Q6, Q25
Q7
Q8, Q38
Q19, Q32
Q9, Q25
Q26
Q33
Q10, Q27
Q28
Q40
Q33
Q11, Q41
Q29
Q12, Q42
Q30
Q13
Q35
Q14, Q31
Q35
Q15
Q47
Q50
Q49
Q16
Q17, Q39
Q43
Q48
Q34
Q36
Q37
Q44
Q37
Q37

Entity_type

ass_part
ass_part
ass_part
ass_part
ass_part
standart_part
cast_part
round_part
angular_part
raw_material
supplier
basic part
basic part
order
order
order
prod_order
prod_order
prod_order
prod_order
machine
machine
operator
operator
operator
operator
action
action
part
part
part
part
product
product
product
product
product
product
product
time_interval
mach_type
mach_type

Entity

assembled_part
assembled_part
assembled_part
assembled_part
assembled_part
standard_part
cast_part
round_part
angular_part
raw_material
supplier
basic part
basic part
integer
integer
integer
integer
integer
integer
integer
integer
integer
operator
operator
operator
operator
action
action
part
part
part
part
product
product
product
product
product
product
product
integer
machine_type
machine_type

Attribute

subparts
sphierarchy
inventory
assignment
assignment
masterdata
masterdata
masterdata
masterdata
masterdata
masterdata
stock
masterdata
orderdata
orderdata
assignment
prorderdata
prorderdata
prorderdata
assignment
machdata
machdata
assigndata
assigndata
masterdata
assignment
masterdata
assignment
opsequence
prodlist
included
costdistr
masterdata
stock
prodtime
pricediff
assignment
assignment
assignment
events
assignment
assignment

Sel_entity_type

none
none
none
supplier
machine_type
supplier
supplier
raw_material
raw_material
supplier
none
type_of_stock
supplier
product_order
basic_part
product_order
product
customer
status
order
status
machine_type
status
machine_type
none
action
machine_type
operator
none
none
direct, indirect
quantity
none
status
quantity
none
customer
supplier
machine_type
hours
product
assembledpart

Sel_entity

none
none
none
supplier
machine_type
supplier
supplier
raw_material
raw_material
supplier
none
all
supplier
integer
basic_part
integer
product
customer
all
integer
all
machine_type
all
machine_type
none
action
machine_type
operator
none
none
asspart, product
integer
none
all
integer
none
customer
supplier
machine_type
integer
product
assembled_part

Table 11: Value domains of semantic category query

7. Case Study: PPC Database for Precision Tools 94

7.6 Empirical Collection of Test Data

7.6 Empirical Collection of Test Data

The final part of the design and implementation of our PPC database system was the
development of the natural language interface. As in our opinion an inadequate interface
represents the main obstacle for the broad user acceptance of any database application, the
careful elaboration of this task embodies particular significance. This is especially true for both
the field of deductive databases [Lockemann92] and natural language interfaces [Bates87].

For this reason we did not invent any artificial queries or manipulations but applied
questionnaires to obtain realistic input sentences. Based on this empirical data we implemented
in Section 7.7 Implementation of the Natural Language Interface the interface by integrating
the developed concepts and tools and adapting them to the specific requirements of the
application. Finally, we optimised the prototype system with regard to efficiency and
transparency and evaluated its feasibility in Section 7.8 Evaluation by extensive test cycles.

For the creation of an appropriate test data collection we designed two different types of
questionnaires. Questionnaire A was addressed to persons with a good knowledge of
relational database algebra. We transformed the 50 manipulations and 50 queries to equivalent
pseudo-code constructs of a relational database query language (SQL) for which the
interviewed person should find a corresponding natural language input sentence. Figure 36
shows as example the entry for M35 (update of address for customers, kunde=customer,
anschrift=address, the input sentence would read in English: Mr. Anton Huber has moved to
1220 Wien, Lieblgasse 53.)

CREATE TABLE KUNDE
(NAME,
 ANSCHRIFT)

M35:
UPDATE KUNDE
SET ANSCHRIFT=
 "1220 Wien, Lieblgasse 53"
WHERE NAME=
 "Anton Huber"

Herr Anton Huber ist nach 1220 Wien,Herr Anton Huber ist nach 1220 Wien,

Lieblgasse 53 verzogen. Lieblgasse 53 verzogen.

Figure 36: Example of questionnaire A

7. Case Study: PPC Database for Precision Tools 95

7.6 Empirical Collection of Test Data

The particular advantage of using a formal language was that the person could not adjust his
answers to given natural language phrases. Therefore, the capability of free word association
was not restricted in any way.

Since we regarded the restriction of asking only persons with sound background in computer
science as severe limitation in order to achieve practice-oriented query patterns, we also
included other people in our sample. As for persons without the knowledge of SQL this kind
of questionnaire was not applicable, we designed a second type, questionnaire B, which
confronted the user with the command prototypes (see Section 7.4.3 Implementation) and an
explanation of the applied arguments. Then we stated an example command by use of the
internal query form and asked for a corresponding natural language expression. Again, in
Figure 37 the pattern for M35 can be seen (the English translation of the user input: New
address of Mr. Anton Huber is 1220 Wien, Lieblgasse 53.)

Änderu ng d er An sch rift e ines Kun den:
 Prototyp:

 aend35($Name, $Anschrift, Error)

 Input-Parameter:
 - Name: Kundenname

 - Anschrift: neue Anschrift

 Änderung:
 aend35("Anton Huber", "1220 Wien,
 Lieblgasse 53", Error)

 Neue Adresse von Herrn Anton Huber ist Neue Adresse von Herrn Anton Huber ist

 1220 Wien, Lieblgasse 53. 1220 Wien, Lieblgasse 53.

Figure 37: Example of questionnaire B

For each type of questionnaire we performed five interviews so that we resulted in a test
collection of 1000 natural language sentences (see the appendix for two original examples).
Besides the broad coverage of linguistic phenomena this large quantity of data was especially
necessary to verify the selectivity of semantic analysis, that is, the correct mapping of each 10
different surface structures for the same command to one specific semantic deep structure.

7. Case Study: PPC Database for Precision Tools 96

7.7 Implementation of Natural Language Interface

7.7 Implementation of Natural Language Interface

The first step of implementation was to construct the dictionary as explained in Section 4.5
Implementation. Table 12 shows the final number of entries for each category. The small total
amount of 431 entries which were necessary to cover all 1000 input sentences illustrates once
more the compact storage structure resulting from the application of the IDA architecture.

Word category
adjective
adjectival suffix
adverb
article
pronoun
conjunction
numeral
preposition
substantive
substantival suffix
verb
verb prefix
verb form

Quantity
32
6
28
12
33
7
14
27
78
9
119
8
58

Table 12: Number of dictionary entries for PPC

Whereas for the morphological analysis only minor adaptations to the already developed tools
were necessary, of course for the implementation of the semantic analysis component more
work had to be done in order to establish a homogenous transition to the semantic application
model of the PPC. With regard to syntactic analysis we applied the UVL-analysis method (see
Section 6.2 Semantic Analysis), that is, we did not produce complete grammatical structures
of input sentences but based the semantic analysis directly on the deep form list produced by
morphological analysis using syntactic knowledge only if necessary for disambiguation. This
choice was made possible due to the careful design process of the PPC which resulted in a
well-defined semantic application model, therefore making the semantic analysis a rather
straight-forward and natural task.

Figure 38 shows part of the LDL code that performs the semantic analysis of the queries
declared in Section 7.4.2 Queries to the PPC. First, the semantic category query is selected
according to the entries in the deep form list (DFL), the unknown value list (UVL), and the
unknown type list (UTL). Then the correct mapping of the entity types and entities for the
query and the optional selection or grouping criterion is determined. This is performed on the
one hand by analysing the deep forms included in the DFL, on the other hand by applying
mapping patterns according to the entries in Table 11 which are modelled by use of the LDL
base predicate qusemtype. This makes it possible to adapt the semantic analysis to new query
types in a flexible way by simply updating the LDL database without any change to the rule
base. The schema of qusemtype is defined as follows:

qusemtype(Sem: {string}, Etype: string, Attr: string, SelEtype: string) (7.13)

7. Case Study: PPC Database for Precision Tools 97

7.7 Implementation of Natural Language Interface

Sem refers to the deep forms included in DFL, e.g.:

Q2: ({standard_part}, standard_part, masterdata, none)
Q21: ({standard_part, supplier}, standard_part, masterdata, supplier)

 semanalyse(DFL, UVL, UTL, Result) ← semantic analysis based on UVL analysis
search_cat(DFL, UVL, UTL, Cat, Etype, Entity), determines semantic category
semant(Cat, DFL, UVL, UTL, Etype, Entity, Result). semantic analysis for semantic category

 search_cat(DFL, [(Entity, [string _])], [Etype], query, queries where a specific entity is given
Etype, Entity) ← aside from machines, orders, and product orders

Etype~=unknown, entity must be valid entity type
~sem_cat(DFL, _). no other semantic category applies

 search_cat(DFL, [(Entity, [integer])], _, query, queries for specific machines, orders,
integer, Entity) ← and product orders

~sem_cat(DFL, _). no other semantic category applies
 search_cat(DFL, _, [], query, unknown, unknown) ← queries for list of all entities

~sem_cat(DFL, calcprice). semantic category calcprice does not apply

 semant(query, DFL, _, _, Etype, Entity, Result) ← semantic analysis of queries
if(Entity~=unknown if query for specific entity or selection criterion
then qusemsel(DFL, Etype, Entity, Result) then appropriate semantic analysis
else qusemall(DFL, Result)). else query for list of all entities

 qusemsel(DFL, Etype, Entity, Result) ← query for specific entity aside from machines, ...
qusem2(DFL, Sem), retrieving deep forms from DFL
union(Sem, {Etype}, Sem2), joining deep forms with entity type
qusemsel2(Sem2, Entity, Result). generating deep structure of query

 qusemsel(DFL, integer, Entity, Result) ← query for specific entity for machines, ...
qusem2(DFL, Sem), retrieving deep forms from DFL
qusemsel2(Sem, Entity, Result). generating deep structure of query

 qusemsel2(Sem, Entity, Result) ← generating deep structure of query
qusemtype(Sem, Etype, Attr, SelEtype), retrieving mapping pattern
if(SelEtype=none if no selection
then Entity2=Entity, then specific entity is retrieved

SelEntity=none
else Entity2=all, else entity is used as selection criterion

SelEntity=Entity),
Result=[query, Etype, Attr, Entity2, SelEtype, SelEntity]. resulting deep structure

 qusemall(DFL, Result) ← queries for list of all entities
qusem(DFL, Sem), retrieving deep forms from DFL
qusemtype(Sem, Etype, Attr, SelEtype), retrieving mapping pattern
if(SelEtype=none decides if grouping is applied
then SelEntity=none
else SelEntity=all),
Result=[query, Etype, Attr, all, SelEtype, SelEntity]. resulting deep structure

 qusem2(DFL, Sem) ← retrieving deep forms from DFL
if(qusem(DFL, Sem2) if deep forms are included in DFL
then Sem=Sem2 then they are returned
else Sem={ }). else empty set is returned

 qusem(DFL, <Sem>) ← grouping of individual solutions
qusemant(DFL, Sem). retrieving deep forms from DFL

Figure 38: LDL code of semantic analysis for PPC

7. Case Study: PPC Database for Precision Tools 98

7.7 Implementation of Natural Language Interface

If semantic analysis does not result in a unique interpretation, the following reasons are
probable:

L the input sentence is in contradiction with the semantic application model
L the input sentence contains spelling errors
L relevant information is missing

Whereas there is no possibility to correct the first situation, the two other faults can be
possibly corrected by applying spelling error correction and pragmatic analysis. With regard to
spelling error correction, we applied the algorithm presented in Section 6.4 Spelling Error
Correction for the correction of misspelled database values (as threshold value we have
chosen +0,5). For pragmatic analysis (see Section 6.3. Pragmatic Analysis) we applied the
proposed uniform semantic resolution method (USRM) of using the entity type and the entity
of the precedent command as antecedent for discourse resolution.

Spelling error correction and pragmatic analysis are only applied if the prior semantic analysis
does not produce a unique deep structure. Thus, we resulted in a modified process model
shown in Figure 39 different from the standard model in Figure 2.

User query

Morphological and lexical analysis

Semantic and syntactic analysis

UVL analysis

Pragmatic analysis

Spelling error correction

PPCError message

unique
interpretation

Figure 39: Process model of natural language analysis in IDA

For incorrect sentences which still cannot be analysed correctly an appropriate error message
is created. Three different types of erroneous output of analysis might occur:

L no solution
L a solution with unknown arguments
L several solutions

7. Case Study: PPC Database for Precision Tools 99

7.8 Evaluation

7.8 Evaluation

The main task of the final evaluation step was to verify the faultless mapping of the 1000 input
sentences to the 100 commands of the PPC database system. After extensive testing cycles all
natural language input was correctly analysed. As second step, the correct functionality of the
spelling error correction and pragmatic analysis modules was checked and proven flawless. In
the following we give some examples of the evaluation study also including cases of
misspelled input and missing information.

Example 7.1:

7 (=delete handle) M17

Morphological and lexical analysis (see Figure 19) results in:

DFL: [{(loesch, verb, [loesch])}, {('Kurbel', unknown, [string])}]

UVL analysis (see Figure 21) results in:

USL: [[('Kurbel', [string])]]
UVL: [('Kurbel', [string])]
UTL: [assembled_part]

Semantic analysis (see Figure 38) results in:

SDS: {[delete, assembled_part, 'Kurbel']}

Since semantic analysis produces a unique interpretation, no syntactic analysis, spelling
error correction or pragmatic analysis is needed and the final response of the system is:

: Bauteil noch in Bauteilen enthalten, darf nicht gelöscht werden
 (=part is still included in other parts, must not be deleted) n

Example 7.2:

7
(=new action: to polish parameters are lathe, fixed time: 10,0 fixed cost 45,

 variable time portion: 2,4 variable cost 15,2) M12

USL: [[('Polieren', [string])], [('Drehbank', [string])], [('10,0', [real])],
 [('45', [integer])],[('2,4', [real])], [('15,2', [real])]]
UVL: [('Polieren', [string]), ('Drehbank', [string]), (10.0, [real]), (45, [integer]),

 (2.4, [real]), (15.2, [real])]
UTL: [unknown, machine_type, unknown, unknown, unknown, unknown]

SDS: {[insert, action, 'Polieren', ['Drehbank', 10.0, 45.0, 2.4, 15.2]]}

: Änderung erfolgreich durchgeführt.
 (=update successfully performed) n

7. Case Study: PPC Database for Precision Tools 100

7.8 Evaluation

Example 7.3:

7
(=update variable time portion to 2.7 and cost to 15.9.) M37

USL: [[('2.7', [real])], [('15.9', [real])]]
UVL: [(2.7, [real]), (15.9, [real])]
UTL: [unknown, unknown]

Since it is not stated which entity has to be updated, no unique semantic analysis can be
obtained. In context with Example 7.2 and by applying pragmatic analysis (see Figure
24) the following de-referencing can be performed:

Entity_type: action
Entity: Polieren

SDS: {[update, action, fixed, 'Polieren', (2.7, 15.9)]}

: Änderung erfolgreich durchgeführt.
 (=update successfully performed) n

Example 7.4:

7
(=show the master data for standard parts of Egon Müler) Q20

UVL: [[('Egon', [string]), ('Mueler', [string])]]
USL: [('Egon Mueler', [string, string])]
UTL: [unknown]

Because of the typing error in the surname of the supplier, the entity in question cannot
be retrieved from the PPC system. Therefore, the module for the spelling error
correction (see Figure 29) is applied in order to find the correct spelling:

USL: [('Egon Mueller', [string, string])]
UTL: [supplier]

SDS: {[query, masterdata, standard_part, all, supplier, 'Egon Mueller']}

: Lieferant Normteil Norm Kosten Minmenge Lieferzeit
 Egon Müller Kegelstift 3x30 DIN 1 2.70 50 7

Zylinderschraube M 8x15 ÖNORM M5119 5.6 1.50 100 7
n

7. Case Study: PPC Database for Precision Tools 101

7.9 Summary

Besides the faultless operation, the basic requirement for the feasibility of the practical use of
any database application is its performance. The main measure that has to be tested in this
context is of course the response time. We performed careful tests and measuring, the results
are shown in Table 13, the mean response time for each command category is given in seconds
and hundredths of seconds. Furthermore, the results are divided in the response time of the
interface, the database system, and the total response time.

Commands
M1-M13
M14-M22
M23-M37
M38-M50
Q1-Q19
Q20-Q32
Q33-Q37
Q38-Q50

Interface
5:29
2:14
4:19
2:56
3:01
3:33
3:89
3:47

Database
5:19
5:04
5:44

10:91
0:09
0:12
0:10
6:93

Total
10:48
7:18
9:63

13:47
3:10
3:45
3:99

10:40

Table 13: Response times of PPC

The overall mean response time for all queries was 7:71 (3:48 for interface and 4:23 for the
database system (as hardware configuration we used a SUN SPARC 10 station). These
satisfactory performance results also only slightly increase if one includes spelling error
correction and pragmatic analysis. Table 14 compares the results (total response times) for the
third group of commands.

Response Time
Difference

Default
4:19

Spelling errors
5:89
1:70

Pragmatic analysis
5:33
1:14

Table 14: Response times of additional features

7.9 Summary

In this final Section we have applied the methods and tools of the Integrated Deductive
Approach to a practice-oriented case study, the development of a PPC for a precision tool
factory. For this purpose we proposed the following seven step model:

� requirements analysis
� database definition
� specification and implementation of the functionality
� semantic application model
� empirical collection of test data
� implementation of natural language interface
� evaluation

The careful elaboration of each of these steps forms the solid basis for a successful database
application. As concerns the natural language part, we identified step 5 to possess particular
significance because it guarantees the complete coverage of all occurring linguistic phenomena
and therefore wide user acceptance for later use in practice.

7. Case Study: PPC Database for Precision Tools 102

 8. Résumé

8. Résumé
We have identified in our research the following main characteristics of natural language
database interfaces in contrast to other fields of natural language processing: specific
application domains with well-defined semantics, rather small delimited vocabularies,
mappings to simple target representations, short input sentences without complex linguistic
phenomena but including misspellings, ungrammatical or incomplete statements.

The main reason why many previous attempts to build successful natural language interfaces
failed can be seen in the fact that those characteristics were neglected. The use of sophisticated
techniques that maybe worked very well for other applications are simply oversized for
database interfaces, therefore obstructing the way to efficient solutions. In this context also the
popular term 'domain-independent' must be regarded with critical reservation. Many authors
claim to build domain-independent interfaces by ignoring the available application-specific
data. As we have pointed out, only a domain-dependent interface can operate efficiently by
making full use of the information which can be derived from the underlying database system.
This is not necessarily in contradiction with portability because also such systems can be
designed and implemented in view of later easy portation to other application areas. Even if
some previous work came to the same conclusions, the limitations of relational database
technology represented an obstacle too high to overcome. Only with the emergence of
deductive database technology there exists for the first time a computational framework that
combines the required operational power with a purely declarative semantics leading the way
to clear and concise realisations of natural language interfaces.

We see the main contribution of this thesis in the introduction of a new kind of architecture,
the Integrated Deductive Approach to efficient natural language interfaces which regards the
interface in contrast to other existent work not as loosely coupled filter but as integral part of
the database system itself. By the use of the powerful logic language provided by deductive
databases we guarantee a homogenous mapping of the input to the corresponding database
commands over all steps of analysis. Although all concepts and tools in this work have been
developed for German, they incorporate the capacity to be applied also to other languages,
especially to inflexional and free word order languages. We have proven the feasibility of our
approach by an extensive case study for which we proposed a seven step methodology, its
central point is the empirical collection of test data in order to guarantee complete
customisation for later practical use. Further research in this topic will include portability
studies to other applications and languages as well as investigations on the adaptive behaviour
of natural language interfaces, e.g. the consideration of new functional words or changes to
the application model. We believe that the ideas proposed in this thesis represent a challenging
application of deductive databases as well as contribute an important step forward to the
development of efficient natural language interfaces with widespread user acceptance.

Acknowledgement

The author is grateful to J. Eder for the many helpful hints on deductive database technology
and to the 10 interviewees to carry out the tedious task of data collection. Without their
enthusiasm the implementation of the presented case study would have been impossible.
Special thanks are due to my supervisors A M. Tjoa and G. Vinek for their valuable advice
during the completion of this thesis.

The Integrated Deductive Approach to Natural Language Interfaces 103

References

References
[Ackley90a] D. Ackley et.al.; Systems Analysis for Deductive Database Environments: an Enhanced

Role for Aggregate Entities; Proc. 9th Int. Conf. Entity-Relationship Approach; 1990

[Ackley90b] D. Ackley et.al.; Process-Object-State Modelling, a Proprietary, Multi-Dimensional
Modeling Method; Ackley Associates, Fremont; 1990

[Aho72] A.V. Aho, J.D. Ullman; The Theory of Parsing, Translation and Compiling; Prentice
Hall, Englewood Cliffs; 1972

[Ali86] Y. Ali, R. Aubin, B. Hall; A Domain-Independent Natural Language Database Interface;
Proc. Canadian Conf. Artificial Intelligence; 1986

[Ali93] S.S. Ali; A Propositional Semantic Network with Structured Variables for Natural
Language Processing; Proc. 6th Australian Joint Conf. Artificial Intelligence; 1993

[Allen80] J.F. Allen, C.R. Perrault; Analyzing Intentions in Utterances; Artificial Intelligence; Vol.
15, No. 3; 1980

[Allen87] J.F. Allen; Natural Language Understanding; Benjamin/Cummings, Menlo Park; 1987

[Antonacci89] F. Antonacci et.al.; A System for Text Analysis and Lexical Knowledge Acquisition; Data
& Knowledge Eng.; Vol. 4; 1989

[Aoe90] J. Aoe; A Method for Building Knowledge Bases with Morphological Semantics; SIGIR
Forum; Vol. 24, No. 1-2; 1990

[Appelt93] D.E. Appelt et.al.; FASTUS: A Finite-state Processor for Information Extraction from
Real-world Text; Proc. Int. Joint Conf. Artificial Intelligence; 1993

[Arens93] Y. Arens, E. Hovy, S. van Mulken; Structure and Rules in Automated Multimedia
Presentation Planning; Proc. Int. Joint Conf. Artificial Intelligence; 1993

[Baetge84] J. Baetge et.al.; Vahlens Kompendium der Betriebswirtschaftslehre (in German); Vahlen,
München; 1984

[Bancilhon85] F. Bancilhon; Naive Evaluation of Recursively Defined Relations; M.L. Brodie, J.
Mylopoulos (eds.); Springer, New York; 1985

[Bancilhon86a] F. Bancilhon et.al.; Magic Sets and Other Strange Ways to Implement Logic Programs;
Proc. ACM SIGMOD-SIGACT Symp. Principles Database Systems; 1986

[Bancilhon86b] F. Bancilhon, R. Ramakrishnan; An Amateur's Introduction to Recursive Query
Processing; Proc. ACM-SIGMOD Conf.; 1986

[Bar-Hillel64] Y. Bar-Hillel; On Categorial and Phrase Structure Grammars; in: Y. Bar-Hillel (ed.);
Language and Information; Addison-Wesley, Reading; 1964

[Bates78] M. Bates; The Theory and Practice of Augmented Transition Networks; in: L. Bloc (ed.);
Natural Language Communication with Computers; Springer, Berlin; 1978

[Bates87] M. Bates; Natural-Language Interfaces; in: S.C. Shapiro, D. Eckroth (eds.);
Encyclopaedia of Artificial Intelligence; Wiley, New York; 1987

[Baudin93] C. Baudin, J.G. Underwood, V. Baya; Using Device Models to Facilitate the Retrieval of
Multimedia Design Information; Proc. Int. Joint Conf. Artificial Intelligence; 1993

[Bear88] J. Bear; Generation and Recognition of Inflectional Morphology; Proc. Österreichische
Artificial-Intelligence-Tagung; 1988

[Beeri87a] C. Beeri, R. Ramakrishnan; On the Power of Magic; Proc. ACM SIGMOD-SIGACT
Symp. Principles Database Systems; 1987

[Beeri87b] C. Beeri et.al.; Sets and Negation in a Logical Database Language (LDL); Proc. ACM
SIGMOD-SIGACT Symp. Principles Database Systems; 1987

The Integrated Deductive Approach to Natural Language Interfaces 104

References

[Beeri88] C. Beeri; Data Models and Languages for Databases; Proc. 2nd Int. Conf. Database
Theory; 1988

[Beeri89] C. Beeri et.al.; Set Constructors in a Logic Database Language; J. Logic Programming;
1989

[Beler93] M. de Beler, X. Huang, C. Rowles; Meaning in Spoken English; Proc. Workshop Natural
Language Processing, 6th Australian Joint Conf. Artificial Intelligence; 1993

[Belew87] R.K. Belew; A Connectionist Approach to Conceptual Information Retrieval; Proc. Int.
Conf. Artificial Intelligence & Law; 1987

[Bench-Capon93] T. Bench-Capon; Neural Network and Open Texture; Proc. Int. Conf. Artificial
Intelligence & Law; 1993

[Berry-Rogghe78] G.L. Berry-Rogghe, H. Wulz; An Overview of PLIDIS: A Problem Solving Information
System with German as a Query Language; in: L. Bolc (ed.); Natural Language
Communication with Computers; Springer, Berlin; 1978

[Bertino92] E. Bertino, B. Catania, G. Guerrini; Towards a Logical-Object Oriented Programming
Language for Databases; Proc. Int. Conf. Extending Database Technology; 1992

[Bertino93] E. Bertino, B. Catania, G. Guerrini; An Overview of LOL: a Deductive Language for
Object Bases; Proc. Int. Symp. Next Generation Database Systems and Their
Applications; 1993

[Berwick84] R.C. Berwick, R.C. Weinberg; The Grammatical Basis of Linguistic Performance:
Language Use and Acquisition; MIT Press, Cambridge, MA.; 1984

[Bickel87] M.A. Bickel; Automatic Correction to Misspelled Names: a Fourth- Generation Language
Approach; CACM; Vol. 30, No. 3; 1987

[Binot84] J.-L. Binot; A Set-Oriented Semantic Network Formalism for the Representation of
Sentence Meaning; Proc. European Conf. Artificial Intelligence; 1984

[Binot86] J.-L. Binot, D. Ribbens; Dual Frames: A New Tool for Semantic Parsing; Proc. Conf. of
the American Association for Artificial Intelligence; 1986

[Birnbaum81] L. Birnbaum, M. Selfridge; Conceptual Analysis of Natural Language; in: R. Schank, C.
Riesbeck (eds.); Inside Computer Understanding; Lawrence Erlbaum, Hillsdale; 1981

[Black93] A. Black; Using Situation Theory in a Computational Language for Natural Language
Processing; Proc. Fourth Int. Workshop Natural Language Understanding and Logic
Programming; 1993

[Bobrow80] R.J. Bobrow, B.L. Webber; Knowledge Representation for Syntactic/Semantic Processing;
Proc. Conf. of the American Association for Artificial Intelligence; 1980

[Bocca86] J. Bocca; On the Evaluation Strategy of Educe; Proc. ACM-SIGMOD Conf. Management
of Data; 1986

[Bollinger89] T. Bollinger, U. Hedtstück, C.-R. Rollinger; Reasoning for Text Understanding -
Knowledge Processing in the 1st LILOG-Prototype; Proc. German Workshop Artificial
Intelligence; 1989

[Boral88] H. Boral; Parallelism in Bubba; Proc. Int. Symp. Databases Parallel Distributed Systems;
1988

[Bosc86] P. Bosc, M. Courant, S. Robin; CALIN: A User Interface Based on a Simple Natural
Language; Proc. ACM Conf. in Information Retrieval; 1986

[Bouma88] G. Bouma; Modifiers and Specifiers in Categorial Unification Grammar; Computational
Linguistics; Vol. 26; 1988

The Integrated Deductive Approach to Natural Language Interfaces 105

References

[Bracchi83] G. Bracchi, S. Ceri, G. Pelagatti; A Set of Integrated Tools for the Conceptual Design of
Database Schemas and Transactions; in: S. Ceri (ed.); Methodology and Tools for Data
Base Design; North-Holland, Amsterdam; 1983

[Bras90] M. Bras; Representing Discursive Temporal Knowledge: A Computational Application of
DRT; in: S. Rhamani, R. Chandrasekar, K.S.R. Anjaneyulu (eds.); Knowledge Based
Computer Systems; Springer, Berlin; 1990

[Brewka93] G. Brewka, K. Konolige; An Abductive Framework for General Logic Programs and
Other Nonmonotonic Systems; Proc. 13th Int. Joint Conf. Artificial Intelligence; 1993

[Briscoe93] T. Briscoe, J. Carroll; Generalized Probabilistic LR Parsing of Natural Language
(Corpora) with Unification-Based Grammars; Computational Linguistics; Vol. 19, No. 1;
1993

[Brown75] J.S. Brown, R.R. Burton; Multiple Representations of Knowledge for Tutorial Reasoning;
in: D.G. Bobrow, A. Collins (eds.); Representation and Understanding; Academic Press,
New York; 1975

[Brown90] P.F. Brown et.al.; A Statistical Approach to Machine Translation; Computational
Linguistics; Vol. 16, No. 2; 1990

[Brown93] P.F. Brown et.al.; The Mathematics of Statistical Machine Translation: Parameter
Estimation; Computational Linguistics; Vol. 19, No. 2; 1993

[Cacace89] F. Cacace et.al.; Integrating Object-Oriented Data Modelling with a Rule-Based
Programming Paradigm; Proc. ACM Int. Conf. Management of Data; 1989

[Carberry89] S. Carberry; A Pragmatics-Based Approach to Ellipsis Resolution; Computational
Linguistics; Vol. 15, No. 2; 1989

[Capindale90] R.A. Capindale, R.G. Crawford; Using a Natural Language Interface with Casual Users;
Int. J. Man-Machine Studies; Vol. 32; 1990

[Cappelli84] A. Cappelli et.al.; A Framework for Integrating Syntax and Semantics; in: B.G. Bara, G.
Guida (eds.); Computational Models of Natural Language Processing; North-Holland,
Amsterdam; 1984

[Caraceni93] R. Caraceni et.al.; Integrating Data and Text Retrieval in a Natural Language System;
Proc. 13th Int. Conf. Artificial Intelligence, Expert Systems and Natural Language; 1993

[Carpenter91] B. Carpenter; The Generative Power of Categorial Grammars and Head-Driven Phrase
Structure Grammars with Lexical Rules; Computational Linguistics; Vol. 17, No. 3; 1991

[Castelfranchi84] C. Castelfranchi, D. Parisi, O. Stock; Knowledge Presentation and Natural Language:
Extending the Expressive Power of Proposition Nodes; in: B.G. Bara, G. Guida (eds.);
Computational Models of Natural Language Processing; North-Holland, Amsterdam;
1984

[Ceri86] S. Ceri, G. Gottlob, L. Lavazza; Translation and Optimization of Logic Queries: the
Algebraic Approach; Proc. 12th Int. Conf. Very Large Data Bases; 1986

[Ceri87a] S. Ceri, L. Tanca; Optimization of Systems of Algebraic Equations for Evaluating
Datalog Queries; Proc. 13th Int. Conf. Very Large Data Bases; 1987

[Ceri87b] S. Ceri, G. Gottlob, G. Wiederhold; Interfacing Relational Databases and Prolog
Efficiently; in: L. Kerschberg (ed.); Expert Database Systems; Benjamin/Cummings,
Menlo Park; 1987

[Ceri88] S. Ceri et.al.; The ALGRES Project; Proc. Int. Conf. Extending Database Technology;
1988

The Integrated Deductive Approach to Natural Language Interfaces 106

References

[Ceri89] S. Ceri, G. Gottlob, L. Tanca; What You Always Wanted to Know About Datalog (And
Never Dared to Ask); IEEE Trans. on Knowledge and Data Engineering; Vol. 1, No. 1;
1989

[Ceri90] S. Ceri, G. Gottlob, L. Tanca; Logic Programming and Databases; Springer, Berlin; 1990

[Chandra85] A. Chandra, D. Harel; Horn Clause Queries and Generalizations; J. Logic Programming;
Vol. 1; 1985

[Chang81] C.L. Chang; On the Evaluation of Queries Containing Derived Relations in Relational
Databases; in: H. Gallaire, J. Minker, J.M. Nicolas (eds.); Advances in Database Theory,
Vol. 1; Plenum, New York; 1981

[Chang86] C.L. Chang, A. Walker; PROSQL: A Prolog Programming Interface with SQL/DS; in: L.
Kerschberg (ed.); Expert Database Systems; Benjamin/Cummings, Menlo Park; 1986

[Charniak86] E. Charniak, D. McDermott; Introduction to Artificial Intelligence; Addison-Wesley,
Reading; 1986

[Chen76] P. Chen; The Entity-Relationship Model: Towards a Unified View of Data; ACM Trans.
on Database Systems; Vol. 1, No. 1; 1976

[Chiaramella87] Y. Chiaramella, B. Defude; A Prototype of an Intelligent System for Information
Retrieval: IOTA; Information Processing & Management; Vol. 23, No. 4; 1987

[Chimenti87] D. Chimenti et.al.; An Overview of the LDL System; IEEE Data Engineering, Special
Issue on Database and Logic; Vol. 10, No. 4; 1987

[Chimenti89a] D. Chimenti, R. Gamboa, R. Krishnamurthy; Towards An Open Architecture in LDL;
Proc. 15th Conf. Very Large Data Bases; 1989

[Chimenti89b] D. Chimenti, R. Gamboa, R. Krishnamurthy; Using Modules and Externals in LDL;
Tech. Rep., ACA-ST-268-89, MCC; 1989

[Chimenti89c] D. Chimenti, R. Gamboa; The SALAD Cookbook: A User's Guide; Tech. Rep., ACA-ST-
064-89, MCC; 1989

[Chimenti89d] D. Chimenti, R. Gamboa, R. Krishnamurthy; Abstract Machine for LDL; Tech. Rep.,
ACA-ST-268-89, MCC; 1989

[Chimenti90] D. Chimenti et.al.; The LDL System Prototype; IEEE Trans. on Knowledge and Data
Eng.; Vol. 2, No. 1; 1990

[Chinchor92] N. Chinchor; MUC-4 Evaluation Metrics; Proc. Fourth Message Understanding Conf.;
1992

[Chinchor93] N. Chinchor, L. Hirschman, D.D. Lewis; Evaluating Message Understanding Systems:
An Analysis of the Third Message Understanding Conference (MUC-3); Computational
Linguistics; Vol. 19, No. 3; 1993

[Chomsky56] N. Chomsky; Three Models for the Description of Language; IRE Trans. PGIT; Vol. 2;
1956

[Chu93] J. Chu; Responding to User Queries in a Collaborative Environment; Proc. 31st Annual
Meeting of the Association for Computational Linguistics; 1993

[Church93] K.W. Church, R.L. Mercer; Introduction to the Special Issue on Computational
Linguistics Using Large Corpora; Computational Linguistics; Vol. 19, No. 1; 1993

[Codd74] E.F. Codd; Seven Steps to RENDEZVOUS with the Casual User; IBM Research Rep.,
J1333; San Jose Research Laboratory; 1974

[Cohen78] P.R. Cohen; On Knowing what to Say: Planning Speech Acts; Tech. Rep., TR 188; Univ.
Toronto; 1978

The Integrated Deductive Approach to Natural Language Interfaces 107

References

[Cohen79] P.R. Cohen, C.R. Perrault; Elements of a Plan-Based Theory of Speech-Acts; Cognitive
Science; Vol. 3; 1979

[Cohen85] P.R. Cohen, H.J. Levesque; Speech Acts and Rationality; Proc. 23rd Annual Meeting of
the Association for Computational Linguistics; 1985

[Colmerauer78] A. Colmerauer; Metamorphosis Grammars; in: L. Bloc (ed.); Natural Language
Communication with Computers; Springer, Berlin; 1978

[Copestake90] A. Copestake, K.S. Sparck-Jones; Natural Language Interfaces to Databases; Knowledge
Engineering Review; Vol. 5, No. 5; 1990

[Croft87] W.B. Croft, R.H. Thompson; I3R: A New Approach to the Design of Document Retrieval
Systems; JASIS; Vol. 38, No. 6; 1987

[Cruttenden86] A. Cruttenden; Intonation; Cambridge Univ. Press, Cambridge; 1986

[Cuppens86] F. Cuppens, R. Demolombe; A PROLOG-Relational DBMS Interface Using Delayed
Evaluation; Proc. Workshop Integration of Logic Programming and Databases; 1986

[Czejdo88] B. Czejdo, C.F. Eick, M. Taylor; Integrating Sets, Rules, and Data in an Object-Oriented
Environment; IEEE Expert; 1988

[Daelemans92] W. Daelemans, A. van den Bosch; A Neural Network for Hyphenation; Proc. Int. Conf.
Artificial Neural Networks; 1992

[Damerau81] F. Damerau; Operating Statistics for the Transformational Question Answering System;
AJCL; Vol. 7, No. 1; 1981

[Danforth85] S. Danforth, S. Khoshafian, P. Valduriez; FAD - A Database Programming Language,
Rev. 2; Tech. Rep., ACA-DB-151-85, MCC; 1988

[Dillon83] M. Dillon, L.K. McDonald; Fully Automatic Book Indexing; J. Documentation; Vol. 39,
No. 3; 1983

[Dorffner85] G. Dorffner, H. Trost; Morphologische Analyse und intelligente Fehlerkorrektur in VIE-
LANG (in German); Proc. Österreichische Artificial-Intelligence-Tagung; 1985

[Dorr90] B.J. Dorr; Machine Translation: A Principle-Based Approach; in: P.H. Winston, S.A.
Shellard (eds.); Artificial Intelligence at MIT. Expanding Frontiers; MIT Press,
Cambridge, MA.; 1990

[Doszkocs86] T.E. Doszkocs; Natural Language Processing in Information Retrieval; JASIS; Vol. 37,
No. 4; 1986

[Dowding93] J. Dowding et.al.; Gemini: a Natural Language System for Spoken-Language
Understanding; Proc. 31st Meeting of the Association for Computational Linguistics;
1993

[Dowty87] D. Dowty; Type Raising, Functional Composition, and Non-Constituent Conjunction; in:
R. Oehrle, E. Bach, D. Wheeler (eds.); Categorial Grammar and Natural Language
Structures; Reidel, Dordrecht; 1987

[Dunin-Keplicz84] B. Dunin-Keplicz; Default Reasoning in Anaphora Resolution; Proc. European Conf.
Artificial Intelligence; 1984

[Earley70] J. Earley; An Efficient Context-Free Parsing Algorithm; CACM; Vol. 13, No. 2; 1970

[Elmasri85] R. Elmasri, A. Hevner, J. Weeldreyer; The Category Concept: An Extension to the Entity-
Relationship Model; Data Knowledge Eng.; Vol. 1, No. 1; 1985

[El-Sharkawi90] M. El-Sharkawi, Y. Kambayashi; The Architecture and Implementation of ENLI:
Example-Based Natural Language-Assisted Interface; Proc. Int. Conf. Databases, Parallel
Architectures and Their Applications; 1990

The Integrated Deductive Approach to Natural Language Interfaces 108

References

[Emele88] M. Emele; Überlegungen zu einer Two-level Morphologie (in German); Proc.
Österreichische Artificial-Intelligence-Tagung; 1988

[Evans87] R. Evans; Direct Interpretation of the GPSG Formalism; in: J. Hallam, C. Mellish (eds.);
Advances in Artificial Intelligence; Wiley, Chinchester; 1987

[Fass83] D. Fass, Y. Wilks; Preference Semantics, Ill-Formedness, and Metaphor; Computational
Linguistics; Vol. 9, No. 3-4; 1983

[Fillmore68] C.J. Fillmore; The Case for Case; in: E. Bach, R. Harms (eds.); Universals in Linguistic
Theory; Holt, Rinehart, and Winston, New York; 1968

[Fillmore77] C.J. Fillmore; The Case for Case Reopened; in: P. Cole, J. Sadock (eds.); Syntax and
Semantics: Grammatical Relations; Academic Press, New York; 1977

[Finkler88] W. Finkler, G. Neumann; MORPHIX: A Fast Realization of a Classification-Based
Approach to Morphology; Proc. Österreichische Artificial-Intelligence-Tagung; Springer,
Berlin; 1988

[Fisher89] A.J. Fisher; Practical Parsing of Generalized Phrase Structure Grammars; in:
Computational Linguistics; Vol. 15, No. 3; 1989

[Flickinger85] D. Flickinger, C. Pollard, T. Wasow; Structure-sharing in Lexical Representation; Proc.
Annual Meeting of the Association for Computational Linguistics; 1985

[Fliegner88] M. Fliegner; HOKUSKOPUS - Verwendung räumlichen Wissens bei der Analyse von
Quantorenskopus und Distributivität (in German); Proc. German Workshop Artificial
Intelligence; 1988

[Frederking88a] R.E. Frederking; Integrated Natural Language Dialogue; Kluwer, Boston; 1988

[Frederking88b] R.E. Frederking, M. Gehrke; Resolving Anaphoric References in a DRT-based Dialogue
System; Proc. 4. Österreichische Artificial-Intelligence-Tagung; 1988

[Frederking93] R.E. Frederking et.al.; The Integration of MT and MAT; Proc. First Conf. of the Pacific
Association for Computational Linguistics; 1993

[Fritsch85] A.M. Fritsch; Using Model Theory to Specify AI Programs; Proc. Int. Joint Conf.
Artificial Intelligence; 1985

[Gal85] A. Gal, J. Minker; A Natural Language Database Interface that Provides Cooperative
Answers; in: C.R. Weisbin (ed.); Artificial Intelligence Applications; IEEE Press,
Washington; 1985

[Gallaire84] H. Gallaire, J. Minker, J.M. Nicolas; Logic and Databases: a Deductive Approach;
Computing Surveys; Vol. 16, No. 2; 1984

[Gazdar82] G. Gazdar; Phrase Structure Grammar; in: P. Jacobson, G.K. Pullum (eds.); The Nature
of Syntactic Representation; Reidel, Dordrecht; 1982

[Gazdar85] G. Gazdar et.al.; Generalized Phrase Structure Grammar; Blackwell, Oxford; 1985

[Gazdar89] G. Gazdar, C. Mellish; Natural Language Processing in POP-11; Addison-Wesley,
Wokingham; 1989

[Gebruers88] R. Gebruers; Valency and MT. Recent Developments in the METAL System; 26th
Annual Meeting of the Association for Computation Linguistics; 1988

[Genikomsidis88] D. Genikomsidis; Eine französische Two-Level-Morphologie (in German); Stuttgart
University Press, Stuttgart; 1988

[Ghose93] A.K. Ghose et.al.; Iterated Belief Change: A Preliminary Report; Proc. 6th Australian
Joint Conf. Artificial Intelligence; 1993

[Greco90] S. Greco, N. Leone, P. Rullo; COMPLEX: An Object-Oriented Logic Programming
System; IEEE Trans. on Knowledge and Data Eng.; Vol. 4, No. 4; 1990

The Integrated Deductive Approach to Natural Language Interfaces 109

References

[Grosz82] B.J. Grosz; Transportable Natural-Language Interface. Problems and Techniques; Proc.
20th Annual Meeting of the Association for Computational Linguistics; 1982

[Grosz83] B.J. Grosz; Team: A Transportable Natural-Language Interface System; Proc. Conf.
Applied Natural Language Processing; 1983

[Grosz86] B.J. Grosz, C. Sidner; Attention, Intention, and the Structure of Discourse; Computational
Linguistics; Vol. 12, No. 3; 1986

[Haller93] S.M. Haller; An Interactive Model for Plan Explanation; Proc. 6th Australian Joint Conf.
Artificial Intelligence; 1993

[Han93] Y. Han, I. Zukerman; Towards a Planning Mechanism for Multimedia Presentation; Proc.
Workshop Natural Language Processing, 6th Australian Joint Conf. Artificial
Intelligence; 1993

[Harris84] L.R. Harris; Natural Front Ends; in: P.H. Winston, K.A. Prendergast (eds.); The AI
Business; MIT Press, Cambridge, MA.; 1984

[Hauenschild88] C. Hauenschild; GPSG and German Word Order; in: U. Reyle, C. Rohrer (eds.); Natural
Language Parsing and Linguistic Theories; Reidel, Dordrecht; 1988

[Helbig86] H. Helbig; Syntactic-Semantic Analysis of Natural Language by a New Word-Class
Controlled Functional Analysis (WCFA); Computers and AI; Vol. 5, No. 1; 1986

[Hendrix78] G.G. Hendrix et.al.; Developing a Natural Language Interface to Complex Data; ACM
Trans. on Database Systems; Vol. 3, No. 2; 1978

[Henschen84] L.J. Henschen, S.A. Naqvi; On Compiling Queries in Recursive First Order Databases; J.
ACM; Vol. 31, No. 1; 1984

[Hintikka69] J. Hintikka; Semantics for Propositional Attitudes; in: J.W. Davis, D.J. Hockney, K.W.
Wilson (eds.); Philosophical Logic; Reidel, Dordrecht; 1969

[Hirst81] G. Hirst; Anaphora in Natural Language Understanding; Springer, Berlin; 1981

[Hirst82] G. Hirst, E. Charniak; Word Sense and Case Slot Disambiguation; Conf. of the American
Association for Artificial Intelligence; 1982

[Hobbs87] J.R. Hobbs, S.M. Shieber; An Algorithm for Generating Quantifier Scopings;
Computational Linguistics; Vol. 13; 1987

[Hobbs88] J.R. Hobbs et.al.; Interpretation as Abduction; Proc. 26th Annual Meeting of the
Association for Computational Linguistics; 1988

[Hobbs92] J.R. Hobbs et.al.; SRI International: Description of the FASTUS System Used for MUC-4;
Proc. Fourth Message Understanding Conf.; 1992

[Hoeksema84] J. Hoeksema; Categorial Morphology; Diss. Univ. Groningen; 1984

[Höfferer94a] M. Höfferer, B. Knaus, W. Winiwarter; Using Genetics in Information Filtering; Proc.
22nd Annual Conf. of the Canadian Association for Information Science; 1994

[Höfferer94b] M. Höfferer, B. Knaus, W. Winiwarter; Cognitive Filtering of Information by Genetic
Algorithms; Proc. Workshop Genetic Algorithms within the Framework of Evolutionary
Computation, 18. Deutsche Jahrestagung für Künstliche Intelligenz; 1994

[Höfferer94c] M. Höfferer, B. Knaus, W. Winiwarter; Adaptive Information Filtering by Monitoring
User Behavior; Proc. 8th Int. Symp. Methodologies for Intelligent Systems; 1994

[Höfferer94d] M. Höfferer, B. Knaus, W. Winiwarter; Adaptive Information Extraction from Online
Messages; Proc. RIAO, Intelligent Multimedia Information Systems and Management;
1994

[Hoffman93] B. Hoffman; The Formal Consequences of Using Variables in CCG Categories; Proc. 31st
Annual Meeting of the Association for Computational Linguistics; 1993

The Integrated Deductive Approach to Natural Language Interfaces 110

References

[Höppner83] W. Höppner et.al.; Beyond Domain Independence: Experience with the Development of a
German Language Access System to Highly Diverse Background Systems; Proc. Int. Joint
Conf. Artificial Intelligence; 1983

[Hovy91] E.H. Hovy; Approaches to the Planning of Coherent Text; in: C.L. Paris, W.R. Swartout,
W.C. Mann (eds.); Natural Language Generation in Artificial Intelligence and
Computational Linguistics; Kluwer, Boston; 1991

[Hui88] L.L. Hui, I. Zukerman; Common-sense Resolution of Syntactic Ambiguity in Database
Queries; Proc. 1st Australian Joint Conf. Artificial Intelligence; 1988

[Hui93] S.C. Hui, A. Goh, J.K. Raphel; CLOG: A Class-Based Logic Language for Object-
Oriented Databases; Int. Symp. Object Technologies for Advanced Software; 1993

[Hui94] S.C. Hui, A. Goh, J.K. Raphel; The CLOGBase Programming Environment for
Constructing Intelligent Database Applications; Proc. Int. Conf. Data and Knowledge
Systems for Manufacturing and Engineering; 1994

[Hull92] J.J. Hull, Combining Syntactic Knowledge and Visual Text Recognition: a Hidden
Markov Model for Part of Speech Tagging in a Word Recognition Algorithm; Proc.
AAAI Symp. Probabilistic Approaches to Natural Language Processing; 1992

[Hsu93] L.S. Hsu, C.L. Tan, Z. Wu; Handling Real World Input by Abduction; Proc. 1st Conf. of
the Pacific Association for Computational Linguistics; 1993

[Ioannidis87] Y.E. Ioannidis et.al.; BERMUDA - An Architectural Perspective on Interfacing Prolog to
a Database Machine; Tech. Rep. 723, Univ. Wisconsin; 1987

[Isermann79] H. Isermann; Strukturierung von Entscheidungsprozessen bei mehrfacher Zielsetzung (in
German); OR Spektrum; Vol. 1, No. 3; 1979

[Ishikawa93] I. Ishikawa et.al.; The Model, Language, and Implementation of an Object-Oriented
Multimedia Knowledge Base Management System; ACM Trans. on Database Systems;
Vol. 18, No. 1; 1993

[Jacobs90] P.S. Jacobs, L.F. Rau; SCISOR: Extracting Information from On-line News; CACM; Vol.
33, No. 4; 1990

[Jacquemin93] C. Jaquemin; A Coincidence Detection Network for Spatio-Temporal Coding: Application
to Nominal Composition; Proc. 13th Int. Joint Conf. Artificial Intelligence; 1993

[Jain91] A.N. Jain, A.H. Waibel; Parsing with Connectionist Networks; in: M. Tomita (ed.);
Current Issues in Parsing Technology; Kluwer, Boston; 1991

[Jajodia91] S. Jajodia, R.S. Sandhu; Toward a Multilevel Secure Relational Data Model; Proc. ACM
Int. Conf. Management of Data (SIGMOD); 1991

[Jarke86] M. Jarke, J. Clifford, M. Vassiliou; An Optimizing Prolog Front End to a Relational
Query System; Proc. ACM - SIGMOD Conf. Management of Data; 1986

[Jensen87] K. Jensen, J. Binot; Disambiguating Prepositional Phrase Attachments by Using On-line
Dictionary Definitions; Computational Linguistics; Vol. 13, No. 3-4; 1987

[Kalita86] J.K. Kalita, M.A. Jones, G.I. McGalla; Summarizing Natural Database Responses;
Computational Linguistics; Vol. 12, No. 2; 1986

[Kambayashi86] Y. Kambayashi; An Overview of a Natural Language-Assisted Database User Interface:
ENLI; Proc. IFIP 10th World Computer Congress; 1986

[Kamp81] H. Kamp; A Theory of Truth and Semantic Representation; in: J.A.G. Groendijk, T.M.V.
Jansen, M.B.J. Stokhof (eds.); Formal Methods in the Study of Language; Mathematical
Centre Tracts, Amsterdam; 1981

[Kamp88] H. Kamp; Discourse Resolution Theory: What it is and where it Ought to Go; in: A.
Blaser (ed.); Natural Language at the Computer; Springer, Berlin; 1988

The Integrated Deductive Approach to Natural Language Interfaces 111

References

[Kaplan73] R.M. Kaplan; A General Syntactic Processor; in: R. Rustin (ed.); Natural Language
Processing; Algorithmics Press, New York; 1973

[Kaplan82] R.M. Kaplan, J. Bresnan; Lexical-Functional Grammar: A Formal System for
Grammatical Representation; in: J. Bresnan (ed.); The Mental Representation of
Grammatical Relations; MIT Press, Cambridge, MA; 1982

[Kappel94] G. Kappel, S. Vieweg; Database Requirements for CIM Applications; J. Integrated
Manufacturing; 1994

[Karttunen87] L. Karttunen et.al.; TWOL: A Compiler for Two-Level Phonological Rules; in: Dalrymple
et.al. (eds.); Tools for Morphological Analysis; Stanford University Press, Stanford; 1987

[Katz88] B. Katz; Text Processing with the START Natural Language System; in: E. Barrett (ed.);
Text, ConText, and HyperText; MIT Press, Cambridge, MA.; 1988

[Katz89] E. Katz et.al.; A Mathematical Model for Translation of Natural Languages; Information
Sciences; Vol. 47; 1989

[Kay73] M. Kay; The MIND System; in: R. Rustin (ed.); Natural Language Processing;
Algorithmics Press, New York; 1973

[Kay85] M. Kay; Parsing in Functional Unification Grammar; in: D.R. Dowty, L. Karttunen, A.
Zwicky (eds.); Natural Language Parsing; Cambridge Univ. Press, Cambridge, MA.; 1985

[Keenan91] F.G. Keenan, L.J. Evett, R.J. Withdraw; A Large Vocabulary Stochastic Syntax Analysis
for Handwriting Recognition; Proc. First Int. Conf. Document Analysis; 1991

[Kehler93] A. Kehler; The Effect of Establishing Coherence in Ellipsis and Anaphora Resolution;
Proc. 31st Annual Meeting of the Association for Computational Linguistics; 1993

[Kifer86] M. Kifer, E.L. Lozinskii; Filtering Data Flow in Deductive Databases; Proc. 1st Int. Conf.
Database Theory; 1986

[Kitano93] H. Kitano; A Comprehensive and Practical Model of Memory-Based Machine
Translation; Proc. 13th Int. Joint Conf. Artificial Intelligence; 1993

[Kittredge86] B. Kittredge, A. Polguère, E. Goldberg; Natural Language Report Synthesis: An
Application to Marine Weather Forecasts; Proc. Canadian Conf. Artificial Intelligence;
1986

[König89] E. König; Parsing as Natural Deduction; 27th Annual Meeting of the Association for
Computational Linguistics; 1989

[Koskenniemi83] K. Koskenniemi; Two-level Morphology: A General Computational Model for Wordform
Recognition and Production; Helsinki University Press, Helsinki; 1983

[Kripke63] S. Kripke; Semantical Consideration on Modal Logic; Acta Philosophica Fennica; Vol.
16; 1963

[Krishnamurthy88a]R. Krishnamurthy, S. Naqvi; Non-Deterministic Choice in Datalog; Proc. 3rd Int. Conf.
Data Knowledge Bases; 1988

[Krishnamurthy88b]R. Krishnamurthy, C. Zaniolo; Optimization in a Logic Based Language for Knowledge
and Data Intensive Applications; Proc. Int. Conf. Extending Database Technology; 1988

[Kunifji84] S. Kunifji, H. Yokota; Prolog and Relational Databases for the 5th Generation Computer
Systems; in: H. Gallaire, J. Minker, J.M. Nicolas (eds.); Advances in Logic and
Databases, Vol. 2; Plenum Press, New York; 1984

[Küpper82] H.-U. Küpper; Ablauforganisation (in German); Fischer, Stuttgart; 1982

[Lassez88] J.-L. Lassez, M.J. Maher, K. Marriott; Unification Revisited; in: J. Minker (ed.);
Foundations of Deductive and Logic Programming; Kaufmann, Los Altos; 1988

The Integrated Deductive Approach to Natural Language Interfaces 112

References

[Lee90] K. Lee, S. Lee; An Object-Oriented Approach to Data/Knowledge Modelling Based on
Logic; Proc. IEEE Conf. Data Engineering; 1990

[Lefebre89] A. Lefebre, L. Vielle; On Deductive Query Evaluation in the DedGin System; Proc. 1st
Int. Conf. Deductive and O-O Databases; 1989

[Levesque84] H.J. Levesque; A Logic of Implicit and Explicit Belief; Proc. Conf. of the American
Association for Artificial Intelligence; 1984

[Lewis89] D.D. Lewis, W.B. Croft, N. Bhandaru; Language-Oriented Information Retrieval; Int. J.
Intelligent Systems; Vol. 4; 1989

[Lewis92] D.D. Lewis, R.M. Tong; Text Filtering in MUC-3 and MUC-4; Proc. 4th Message
Understanding Conf.; 1992

[Li84] D. Li; A Prolog Database System; Research Institute Press, Letchworth; 1984

[Litman87] D.J. Litman, J.F. Allen; A Plan Recognition Model for Subdialogues in Conversations;
Cognitive Science; Vol. 11, No. 2; 1987

[Lloyd87] J.W. Lloyd; Foundations of Logic Programming; Springer, New York; 1987

[Lockemann92] P.C. Lockemann; Object-Oriented Databases and Deductive Databases: Systems Without
Markets ? Market Without Systems ?; Proc. Int. Conf. Database and Expert Systems
Applications; 1992

[Lou91] Y. Lou, Z.M. Ozsoyoglu; LLO: An Object-Oriented Deductive Language with Methods
and Methods Inheritance; Proc. ACM Int. Conf. Management of Data; 1991

[Luckhardt82] H.-D. Luckhardt; Keine Sorge - «SUZY» geht noch in den Kindergarten. Zum derzeitigen
Stand der maschinellen Sprachübersetzung (MÜ) am Beispiel des Saarbrücker
Übersetzungsmodells «SUZY» (in German); Deutscher Drucker; Vol. 3; 1982

[Luger89] G.F. Luger, W.A. Stubblefield; Artificial Intelligence and the Design of Expert Systems;
Benjamin/Cummings, Redwood City; 1989

[Lunin84] L. Lunin, L. Smith; Perspectives on Artificial Intelligence: Concepts, Techniques,
Applications, Promise; JASIS; Vol. 25, No. 4; 1984

[Lytinen84] S.L. Lytinen, A. Gershman; ATRANS: Automatic Processing of Money Transfer
Messages; Proc. Conf. of the American Association for Artificial Intelligence; 1984

[Lytinen86] S.L. Lytinen; Dynamically Combining Syntax and Semantics in Natural Language
Processing; Proc. Conf. of the American Association for Artificial Intelligence; 1986

[Magerman94] D.M. Magerman; Natural Language Parsing as Statistical Pattern Recognition; Diss.,
Stanford Univ.; 1994

[Maier88] P. Maier, P. Steffens; Determinatoren und Quantoren in einer kategorialen
Unifikationsgrammatik des Deutschen (in German); Proc. 4. Österreichische Artificial-
Intelligence Tagung; 1988

[Makuta-Giluk93] M. Makuta-Giluk, C. DiMarco; A Computational Formalism for Syntactic Aspects of
Rhetoric; Proc. 1st Conf. of the Pacific Association for Computational Linguistics; 1993

[Matsumoto93] Y. Matsumoto, Y. Den, K. Yanagi; A Flexible Natural Language System with
Concurrency and Meta-level Processing; Proc. Fourth Int. Workshop Natural Language
Understanding and Logic Programming; 1993

[McCabe92] F. McCabe; Logic and Objects; Prentice Hall, Englewood Cliffs; 1992

[McCarthy80] J. McCarthy; Circumscription: A Form of Non-Monotonic Reasoning; Artificial
Intelligence; Vol. 13; 1980

[McCord85] M.C. McCord; Modular Logic Grammars; Proc. Annual Meeting of the Association for
Computational Linguistics; 1985

The Integrated Deductive Approach to Natural Language Interfaces 113

References

[McDonald87] D.D. McDonald; Natural-Language Generation; in: S.C. Shapiro, D. Eckroth (eds.);
Encyclopedia of Artificial Intelligence; Wiley, New York; 1987

[McFetridge88] P. McFetridge et.al.; System X: A Portable Natural Language Interface; Proc. 7th
Biennial Conf. of the Canadian Society for Computational Studies of Intelligence; 1988

[McFetridge90] P. McFetridge, C. Groeneboer; Novel Terms and Coordination in a Natural Language
Interface; in: S. Ramani, R. Chandrasekar, K.S.R. Anjaneyulu (eds.); Knowledge Based
Computer Systems; Springer, Berlin; 1990

[McKeown93] K.R. McKeown; Language Generation for Multimedia Explanations; Proc. First Conf. of
the Pacific Association for Computational Linguistics; 1993

[Meknavin93] S. Meknavin, T. Theeramunkong, H. Tanaka; Parsing Ill-Formed Input with ID/LP Rules;
Proc. 4th Int. Workshop Natural Language Understanding and Logic Programming; 1993

[Merkl94a] D. Merkl, E. Schweighofer, W. Winiwarter; CONCAT - Connotation Analysis of
Thesauri Based on the Interpretation of Context Meaning; Proc. 5th Int. Conf. Database
and Expert Systems Applications; 1994

[Merkl94b] D. Merkl, E. Schweighofer, W. Winiwarter; Automatic Knowledge Acquisition for
Creating Nuclear Juridical Lexica; Proc. Post-COLING Int. Workshop Directions of
Lexical Research; 1994

[Millies89] S. Millies; Kategoriales Parsing mit definiten Klauseln (in German); Proc. 13.
Jahrestagung Künstliche Intelligenz; 1989

[Minsky75] M. Minsky; A Framework for Representing Knowledge; in: P. Winston (ed.); The
Psychology of Computer Vision; McGraw-Hill, New York; 1975

[Mittal93] V.O. Mittal, C.L. Paris; Automatic Documentation Generation: The Interaction of Text
and Examples; Proc. 13th Int. Joint Conf. Artificial Intelligence; 1993

[Moore73] R.C. Moore; D-SCRIPT: a Computational Theory of Description; Proc. Int. Joint Conf.
Artificial Intelligence; 1973

[Moore85] R.C. Moore; Semantical Considerations on Nonmonotonic Logic; Artificial Intelligence;
Vol. 25; 1985

[Moore91] J.D. Moore, W.R. Swartout; A Reactive Approach to Explanation: Taking the User's
Feedback into Account; in: C.L. Paris, W.R. Swartout, W.C. Mann (eds.); Natural
Language Generation in Artificial Intelligence and Computational Linguistics; Kluwer,
Boston; 1991

[Morris86] K. Morris, J.D. Ullman, A. Van Gelder; Design Overview of the Nail! System; Proc. Int.
Conf. Logic Programming; 1986

[Morris87] K. Morris et.al.; YAWN! (Yet Another Window on NAIL!); IEEE Data Eng., Special
Issue on Databases and Logic; Vol. 10, No. 4; 1987

[Mundt88] B. Mundt; Fehlerlokalisation und Korrektur von Textwörtern mit Trigrammlexika (in
German); Sprache und Datenverarbeitung; Vol. 1; 1988

[Nagao93a] K. Nagao; Abduction and Dynamic Preference in Plan-Based Dialogue Understanding;
Proc. 13th Int. Joint Conf. Artificial Intelligence; 1993

[Nagao93b] K. Nagao, K. Hasida, T. Miyata; Understanding Spoken Natural Language with Omni-
Directional Information Flow; Proc. 13th Int. Joint Conf. Artificial Intelligence; 1993

[Naqvi87] S. Naqvi; A Logic for Negation in Database Systems; in: J. Minker (ed.); Foundations of
Deductive Databases and Logic Programming; Kaufmann, Los Altos; 1987

[Naqvi88] S. Naqvi, R. Krishnamurthy; Semantics of Updates in Logic Programming; Proc. 7th
ACM SIGMOD-SIGACT Symp. Principles Database Systems; 1988

The Integrated Deductive Approach to Natural Language Interfaces 114

References

[Naqvi89] S. Naqvi, S. Tsur; A Logical Language for Data and Knowledge Bases; Computer Science
Press, Rockville; 1989

[Navathe83] S. Navathe, A. Cheng; A Methodology for Database Schema Mapping from Extended
Entity Relationship Models into the Hierarchical Model; in: G.C. Davis et.al. (eds.); The
Entity-Relationship Approach to Software Engineering; Elsevier, New York; 1983

[Nijholt88] A. Nijholt; Computers and Languages; North-Holland, Amsterdam; 1988

[Novak89] H.-J. Novak, B. Wesche; Analyse und Synthese in einer kategorialen Unifikations-
grammatik: Möglichkeiten und Grenzen (in German); Proc. 12. Jahrestagung Künstliche
Intelligenz; 1989

[Ogden87] W.C. Ogden, A. Sorknes; What Do Users Say to their Natural Language Interface ?; Proc.
Conf. Human-Computer Interaction; 1987

[Pareschi87] R. Pareschi, M. Steedman; A Lazy Way to Chart-Parse with Categorial Grammars; Proc.
25th Annual Meeting of the Association for Computational Linguistics; 1987

[Paris91] C.L. Paris; Generation and Explanation: Building an Explanation Facility for the
Explainable Expert Systems Framework; in: C.L. Paris, W.R. Swartout, W.C. Mann
(eds.); Natural Language Generation in Artificial Intelligence and Computational
Linguistics; Kluwer, Boston; 1991

[Pereira80] F.C.N. Pereira, D.H.D. Warren; Definite Clause Grammar for Language Analysis - A
Survey of the Formalism and a Comparison with Augmented Transition Networks;
Artificial Intelligence; Vol. 13, No. 3; 1980

[Pereira81] F.C.N. Pereira; Extraposition Grammars; AJCL, Vol. 7, No. 4; 1981

[Pernul93a] G. Pernul, W. Winiwarter, A M. Tjoa; The Deductive Filter Approach to MLS
Prototyping; Proc. 9th Annual Computer Security Applications Conf.; 1993

[Pernul93b] G. Pernul, W. Winiwarter, A M. Tjoa; The Entity-Relationship Model for Multilevel
Security; Proc. 12th Int. Conf. Entity-Relationship Approach; 1993

[Perrault80] C.R. Perrault, J.F. Allen; A Plan-Based Analysis of Indirect Speech Acts; AJCL; Vol. 6;
1980

[Phillips93] J.D. Phillips; Choosing the Right Word - Lexical Knowledge & Context in Machine
Translation; Proc. 1st Conf. of the Pacific Association for Computional Linguistics; 1993

[Przymusinski87] T. Przymusinski; On the Semantics of Stratified Deductive Databases and Logic
Programs; in: J. Minker (ed.); Foundations of Deductive Databases and Logic
Programming; Kaufmann, Los Altos; 1987

[Quillian68] M.R. Quillian; Semantic Memory; in: M. Minsky (ed.); Semantic Information Processing;
MIT Press, Cambridge, MA; 1968

[Ramakrishnan88] R. Ramakrishnan, C. Beeri, R. Krishnamurthy; Optimizing Existential Datalog Queries;
Proc. 7th ACM SIGMOD-SIGACT Symp. Principles Database Systems; 1988

[Ramsay87] A. Ramsay; Knowing that and Knowing what; J. Hallam, C. Mellish (eds.); Advances in
Artificial Intelligence; Wiley, Chichester; 1987

[Raskutti93a] B. Raskutti, C. Rowles; Using Prosody for Lexical Access to Large Vocabularies; Proc.
Workshop Natural Language Processing, 6th Australian Joint Conf. Artificial
Intelligence; 1993

[Raskutti93b] B. Raskutti, I. Zukerman; Generating Queries during Cooperative Consultations; Proc.
6th Australian Joint Conf. Artificial Intelligence; 1993

[Rayner93] M. Rayner; Abductive Equivalent Translation and its Application to Natural Language
Database Interfacing; Diss., Royal Inst. of Technology, Stockholm; 1993

The Integrated Deductive Approach to Natural Language Interfaces 115

References

[Reiter80] R. Reiter; A Logic for Default Reasoning; Artificial Intelligence; Vol. 13; 1980

[Reiter93] E. Reiter, C. Mellish; Optimizing the Costs and Benefits of Natural Language
Generation; Proc. 13th Int. Joint Conf. Artificial Intelligence; 1993

[Reyle88] U. Reyle; Compositional Semantics for LFG; in: U. Reyle, C. Rohrer (eds.); Natural
Language Parsing and Linguistic Theories; Reidel, Dordrecht; 1988

[Rich87] E. Rich; Natural Language Interfaces; in: R.W. Baecker, W.A.S. Buxton (eds.); Readings
in Human-Computer Interaction: A Multidisciplinary Approach; Kaufmann, Los Altos;
1987

[Riesbeck78] C. Riesbeck, R.C. Schank; Comprehension by Computer; in: W. Levelt, G.B. Flores
d'Arcais (eds.); Studies in the Perception of Language; Wiley, Chichester; 1978

[Ritchie80] G.D. Ritchie; Computational Grammar; Barnes and Noble, New York; 1980

[Robinson82] J.J. Robinson; DIAGRAM: A Grammar for Dialogues; CACM; Vol. 25, No. 1; 1982

[Rowles93] C. Rowles et.al.; The Use of Context in the Understanding of Spoken English; Proc. 6th
Australian Joint Conf. Artificial Intelligence; 1993

[Sacca87a] D. Sacca, C. Zaniolo; Magic Counting Methods; Proc. ACM-SIGMOD Conf.; 1987

[Sacca87b] D. Sacca et.al.; The Advanced Database Environment of the KIWI System; IEEE Data
Eng., Special Issue on Databases and Logic; Vol. 10, No. 4; 1987

[Sacca87c] D. Sacca, C. Zaniolo; Implementation of Recursive Queries for a Data Language Based on
Pure Horn Logic; Proc. 4th Int. Conf. Logic Programming; 1987

[Sacca88a] D. Sacca, C. Zaniolo; Differential Fixpoint Methods and Stratification of Logic Programs;
Proc. 3rd Int. Conf. Data Knowledge Bases; 1988

[Sacca88b] D. Sacca, C. Zaniolo; The Generalized Counting Method for Recursive Logic Queries; J.
Theoretical Computing Science; Vol. 61; 1988

[Sacerdoti87] E.D. Sacerdoti; Language Access to Distributed Data with Error Recovery; Proc. 5th Int.
Joint Conf. Artificial Intelligence; 1977

[Salton83] G. Salton, M.J. McGill; Introduction to Modern Information Retrieval; McGraw-Hill,
New York; 1983

[Salton88] G. Salton; A Simple Blueprint for Automatic Boolean Query Processing; Information
Processing & Management; Vol. 24, No. 3; 1988

[Sarkar93] A. Sarkar; Extending Kimmo's Two-Level Model of Morphology; Proc. 31st Annual
Meeting of the Association for Computational Linguistics; 1993

[Schank74] R.C. Schank, C.J. Rieger; Inference and the Computer Understanding of Natural
Language; Artificial Intelligence; Vol. 5; 1974

[Schank75] R.C. Schank (ed.); Conceptual Information Processing; North-Holland, Amsterdam; 1975

[Schank77] R.C. Schank, R. Abelson; Scripts, Plans, Goals and Understanding; Lawrence Erlbaum,
Hillsdale; 1977

[Scheer84] A.-W. Scheer; EDV-orientierte BWL (in German); Springer, Berlin; 1984

[Scheer88] A.-W. Scheer; CIM. Der computergesteuerte Industriebetrieb (in German); Springer,
Berlin; 1988

[Schröder88] M. Schröder; Evaluating User Utterances in Natural Language Interfaces to Databases;
Computers and AI; Vol. 7, No. 4; 1988

[Schubert82] L.K. Schubert, F.J. Pelletier; From English to Logic: Context-Free Computation of
Conventional Logical Translation; AJCL; Vol. 8, No. 1; 1982

The Integrated Deductive Approach to Natural Language Interfaces 116

References

[Schwanke91] M. Schwanke; Maschinelle Übersetzung (in German); Springer, Berlin; 1991

[Schwarz90] C. Schwarz; Content Based Text Handling; Information Processing & Management; Vol.
26, No. 2; 1990

[Schwartz82] S.P. Schwartz; Problems with Domain-Independent Natural Language Database Access
Systems; Proc. 20th Annual Meeting of the Association for Computational Linguistics;
1982

[Schweighofer93a] E. Schweighofer, W. Winiwarter; Refining the Selectivity of Thesauri by means of
Statistical Analysis; Proc. 4th Int. Congress Terminology and Knowledge Engineering;
1993

[Schweighofer93b] E. Schweighofer, W. Winiwarter; Legal Expert System KONTERM - Automatic
Representation of Document Structure and Contents; Proc. 4th Int. Conf. Database and
Expert Systems Applications; 1993

[Schweighofer94] E. Schweighofer, W. Winiwarter; Intelligent Information Retrieval: KONTERM -
Automatic Representation of Context Related Terms within a Knowledge Base for a Legal
Expert System; Proc. 25th Anniversary Conf. of the Istituto per la documentazione
guiridica of the CNR: Towards a Global Expert System in Law; 1994

[Schwind85] B.C. Schwind; Semantikkonzepte in der Künstlichen Intelligenz (in German); in: C.
Habel (ed.); Künstliche Intelligenz; Springer, Berlin; 1985

[Seiffert88] R. Seiffert; STUF: Ein flexibler Graphunifikationsformalismus und seine Anwendung in
LILOG (in German); in: W. Brauer, C. Freksa (eds.); Wissensbasierte Systeme; Springer,
Berlin; 1988

[Selfridge86] M. Selfridge; Integrated Processing Produces Robust Understanding; Computational
Linguistics; Vol. 12, No. 2; 1986

[Shieber84] S.M. Shieber; The Design of a Computer Language for Linguistic Information; Proc. Int.
Conf. Computational Linguistics; 1984

[Shieber86] S.M. Shieber; An Introduction to Unification-Based Approaches to Grammar; CSLI
Lecture Notes, No. 4; Chicago Univ. Press, Chicago; 1986

[Shieber94] S.M. Shieber, Y. Schabes, F.C.N. Pereira; Principles and Implementation of Deductive
Parsing; Tech. Rep., TR-11-94, Harvard Univ.; 1994

[Shmueli87] O. Shmueli, S. Naqvi; Set Grouping and Layering in Horn Clause Programs; Proc. 4th
Int. Conf. Logic Programming; 1987

[Shmueli88] O. Shmueli, S. Tsur, C. Zaniolo; Rewriting of Rules Containing Set Terms in a Logic
Data Language (LDL); Proc. 7th ACM SIGMOD-SIGACT Symp. Principles Database
Systems; 1988

[Siekmann90] J. Siekmann; Unification Theory; J. Symbolic Computation; 1990

[Smadja93] F. Smadja; Retrieving Collocations from Text: Xtract; Computation Linguistics; Vol. 19,
No. 1; 1993

[Smeaton86] A.F. Smeaton; Incorporating Syntactic Information into a Document Retrieval Strategy:
An Investigation; Proc. ACM Conf. Research and Development in Information Retrieval;
1986

[Smedt84] K. de Smedt; Using Object-Oriented Knowledge-Representation Techniques in
Morphology and Syntax Programming; Proc. European Conf. Artificial Intelligence;
Elsevier, Amsterdam; 1984

[Smith92] K. Smith, M. Winslett; Entity Modeling in the MLS Relational Model; 18th Conf. Very
Large Database Systems; 1992

[Sowa84] J. Sowa; Conceptual Structures; Addison-Wesley, Reading, MA; 1984

The Integrated Deductive Approach to Natural Language Interfaces 117

References

[Sparck-Jones91] K. Sparck-Jones; Tailoring Output to the User: What Does User Modelling in Generation
Mean ?; in: C.L. Paris, W.R. Swartout, W.C. Mann (eds.); Natural Language Generation
in Artificial Intelligence and Computational Linguistics; Kluwer, Boston; 1991

[Srihari93] R.K. Srihari, C.M. Baltus; Incorporating Syntactic Constraints in Recognizing
Handwritten Sentences; Proc. 13th Int. Joint Conf. Artificial Intelligence; 1993

[Steedman85] M. Steedman; Dependency and Coordination in the Grammar of Dutch and English;
Language; Vol. 61; 1985

[Steedman87] M. Steedman; Combinatory Grammars and Parasitic Gaps; Natural Language and
Linguistic Theory; Vol. 5; 1987

[Steedman91] M. Steedman; Parsing Spoken Language; in: M. Tomita (ed.); Current Issues in Parsing
Technology; Kluwer, Boston; 1991

[Steel84] S. Steel; Simplifying Recursive Belief for Language Understanding; Proc. European Conf.
Artificial Intelligence; 1984

[Su93] S.Y.M. Su et.al.; OSAM*.KBMS: An Object-Oriented Knowledge Base Management
System for Supporting Advanced Applications; ACM SIGMOD; 1993

[Sumita93] E. Sumita et.al.; Example-Based Machine Translation on Massively Parallel Processors;
Proc. 13th Int. Joint Conf. Artificial Intelligence; 1993

[Sundheim92] B.M. Sundheim; Overview of the Fourth Message Understanding Evaluation and
Conference; Proc. Fourth Message Understanding Conf.; 1992

[Suthers93] D. Suthers; Preferences for Model Selection in Explanation; Proc. 13th Int. Joint Conf.
Artificial Intelligence; 1993

[Tauzovich89] B. Tauzovich; An Expert System for Conceptual Modelling; Proc. 8th Int. Conf. Entity-
Relationship Approach; 1989

[Tennant83] H.R. Tennant et.al.; Menu-Based Natural Language Understanding; Proc. 21st Annual
Meeting of the Association for Computational Linguistics; 1983

[Teorey86] T.J. Teorey, D. Yang, J.P. Fry; A Logical Design Methodology for Relational Databases
Using the Extended Entity-Relationship Model; ACM Computer Science; Vol. 18, No. 2;
1986

[Thompson75] F. Thompson, B. Thompson; Practical Natural Language Processing: The REL System as
Prototype; in: M. Rubinoff, B. Yovits (eds.); Advances in Computers, Vol. 13; Academic
Press, New York; 1975

[Thompson83] C.W. Thompson et.al.; Building Usable Menu-Based Natural Language Interfaces to
Databases; Proc. 9th Int. Conf. Very Large Databases; 1983

[Thurmair82] G. Thurmair; Morphologische Verfahren in Information-Retrieval-Systemen (in
German); in: H.G. Fischer (ed.); Information Retrieval und natürliche Sprache; Saur,
München; 1982

[Tjoa93] A M. Tjoa, L. Berger; Transformation of Requirement Specifications Expressed in
Natural Language into an EER Model; Proc. 12th Int. Conf. Entity-Relationship
Approach; 1993

[Tomita91] M. Tomita (ed.); Current Issues in Parsing Technology; Kluwer, Boston; 1991

[Trost90] H. Trost, E. Buchberger; Datenbank-DIALOG: How to Communicate with your Database
in German (and Enjoy it); Interacting with Computers; Vol. 2, No. 3; 1990

[Tsur86] S. Tsur, C. Zaniolo; LDL: A Logic-Based Query Language; Proc. 12th Int. Conf. Very
Large Data Bases; 1986

[Tsur90a] S. Tsur; Applications of Deductive Database Systems; Proc. COMPCON; 1990

The Integrated Deductive Approach to Natural Language Interfaces 118

References

[Tsur90b] S. Tsur; Data Dredging; IEEE Data Engineering; Vol. 13, No. 4; 1990

[Tsur90c] S. Tsur, F. Olken, D. Naor; Deductive Databases for Genomic Mapping; Proc. NACLP
Workshop Applications of Deductive Databases; 1990

[Ullman89] J.D. Ullman; Principles of Database and Knowledge-Base Systems, Vol. 2: The New
Technologies; Computer Science Press, Rockville; 1989

[Ullman90] J.D. Ullman, C. Zaniolo; Deductive Databases: Achievements and Future Directions;
ACM SIGMOD Record; Vol. 19, No. 4; 1990

[Uszkoreit86a] H. Uszkoreit; Categorial Unification Grammars; Proc. Int. Conf. Computational
Linguistics; 1986

[Uszkoreit86b] H. Uszkoreit; Syntaktische und semantische Generalisierungen im strukturierten Lexikon;
Proc. German Workshop Artificial Intelligence and 2. Österreichische Artificial-
Intelligence-Tagung; 1986

[Vieille86] L. Vieille; Recursive Axioms in Deductive Databases: The Query-Subquery Approach;
Proc. Int. Conf. Expert Database Systems; 1986

[Vieweg94] S. Vieweg et.al.; Enhancing CIM Environments by Security Control; Proc. Int. Conf.
Data and Knowledge Systems for Manufacturing and Engineering; 1994

[Vijay-Shanker90] K. Vijay-Shanker, D.J. Weir; Polynomial Parsing of Combinatory Categorial Grammars;
Proc. 28th Annual Meeting of the Association for Computational Linguistics; 1990

[Vijay-Shanker94] K. Vijay-Shanker, D.J. Weir; Parsing Some Constrained Grammar Formalisms;
Computational Linguistics; Vol. 19, No. 4; 1994

[Wagner85] E. Wagner; Post-Editing SYSTRAN - A Challenge for Commission Translators;
Terminologie et Traduction; Vol. 3; 1985

[Wallace84] M. Wallace; Communicating with Databases in Natural Language; Horwood, Chichester;
1984

[Waltz77] D.L. Waltz, B.A. Goodman; Writing a Natural Language Data Base System; Proc. Int.
Joint Conf. Artificial Intelligence; 1977

[Waltz78] D.L. Waltz; An English Language Question Answering System for a Large Relational
Database; CACM; Vol. 21, No. 7; 1978

[Warren82] H.D. Warren, F.C.N. Pereira; An Efficient Easily Adaptable System for Interpreting
Natural Language Queries; AJCL; Vol. 8, No. 3-4; 1982

[Webber83] B.L. Webber; So what Can we Talk about now; in: M. Brady, B. Berwick (eds.);
Computational Models of Discourse; MIT Press, Cambridge, MA.; 1983

[Weir88] D. Weir, A. Joshi; Combinatory Categorial Grammars: Generative Power and
Relationship to Linear Context-Free Rewriting System; Proc. 26th Annual Meeting of the
Association for Computational Linguistics; 1988

[Weischedel83] R.M. Weischedel, N.K. Sondheimer; Meta-Rules as a Basis for Processing Ill-Formed
Output; Computational Linguistics; Vol. 9, No. 3-4; 1983

[Weischedel93] R. Weischedel et.al.; Coping with Ambiguity and Unknown Words through Probabilistic
Models; Computational Linguistics; Vol. 19, No. 1; 1993

[Wesche88] B. Wesche; Non-Constituent Coordination ohne Funktionale Komposition und
Typenanhebung (in German); Proc. 4. Österreichische Artificial-Intelligence Tagung;
1988

[Wheeler86] P. Wheeler; The LOGOS Translation System; Proc. 1st Int. Conf. State of the Art in
Machine Translation in America, Asia and Europe; 1986

The Integrated Deductive Approach to Natural Language Interfaces 119

References

[White90] G.M. White; Natural Language Understanding and Speech Recognition; CACM; Vol. 33,
No. 8; 1990

[Whitelock88] P.J. Whitelock; A Feature-Based Categorial Morpho-Syntax for Japanese; in: U. Reyle, C.
Rohrer (eds.); Natural Language Parsing and Linguistic Theories; Reidel, Dordrecht;
1988

[Wilensky83] R. Wilensky; Planning and Understanding; Addison-Wesley, Reading; 1983

[Wilks75] Y. Wilks; An Intelligent Analyzer and Understander of English; CACM; Vol. 18, No. 5;
1975

[Winiwarter93a] W. Winiwarter, A M. Tjoa; Natural Language Interfaces as Integrated Constituents of
Deductive Databases; Proc. Symp. Next Generation Database Systems and Their
Applications; 1993

[Winiwarter93b] W. Winiwarter, A M. Tjoa; Morphological Analysis in Integrated Natural Language
Interfaces to Deductive Databases; Proc. 4th Int. Workshop Natural Language
Understanding and Logic Programming; 1993

[Winiwarter93c] W. Winiwarter; Syntactic Analysis for Natural Language Interfaces - the Integrated
Deductive Approach; Proc. Workshop Natural Language Processing, 6th Australian Joint
Conf. Artificial Intelligence; 1993

[Winiwarter94] W. Winiwarter; Extended CUG for Free Word Order Languages and its Efficient
Implementation within an IDA Architecture; Proc. Joint Conf. of 8th Asian Conf.
Language, Information and Computation and 2nd Pacific Asia Conf. Formal and
Computational Linguistics; 1994

[Winograd72] T. Winograd; Understanding Natural Language; Academic Press, New York; 1972

[Winograd83] T. Winograd; Language as a Cognitive Process, Vol. 1: Syntax; Addison-Wesley,
Reading; 1983

[Wittenburg86] K. Wittenburg; Natural Language Parsing with Combinatory Categorial Grammar in a
Graph-Unification Based Formalism; Diss., Univ. Texas, Austin; 1986

[Wittenburg87] K. Wittenburg; Predictive Combinators: A Method for Efficient Parsing of Combinatory
Categorial Grammars; Proc. 25th Annual Meeting of the Association for Computational
Linguistics; 1987

[Wittenburg91] K. Wittenburg, R.E. Wall; Parsing with Categorial Grammar in Predictive Normal Form;
in: M. Tomita (ed.); Current Issues in Parsing Technology; Kluwer, Boston; 1991

[Wong87] S.K.M. Wong et.al.; On Modeling of Information Retrieval Concepts in Vector Spaces;
ACM Trans. on Database Systems; Vol. 12, No. 2; 1987

[Woods70] W.A. Woods; Transition Network Grammars for Natural Language Analysis; CACM;
Vol. 13; 1970

[Woods72] W.A. Woods, R.M. Kaplan, B. Nash-Webber; The Lunar Sciences Natural Language
Information System; Bolt Beranek and Newman, Cambridge, MA.; 1972

[Woods73] W.A. Woods; An Experimental Parsing System for Transition Network Grammars; in: R.
Rustin (ed.); Natural Language Processing; Algorithmics Press, New York; 1973

[Woods75] W.A. Woods; What's in a Link: Foundations for Semantic Networks; in: D.G. Bobrow, A.
Collins (eds.); Representation and Understanding: Studies in Cognitive Science;
Academic Press, New York; 1975

[Woods78] W.A. Woods; Semantics and Quantification in Natural Language Question Answering;
in: M. Yovitz (ed.); Advances in Computers; Vol. 17; Academic Press, New York; 1978

[Woods80] W.A. Woods; Cascaded ATN-Grammars; AJCL; Vol. 6, No. 1; 1980

The Integrated Deductive Approach to Natural Language Interfaces 120

References

[Wu93] D. Wu; An Image-Schematic System of Thematic Roles; Proc. 1st Conf. of the Pacific
Association for Computational Linguistics; 1993

[Young85] M.A. Young, P.J. Hayes; Automatic Classification and Summarization of Banking
Telexes; in: C.R. Weisbin (ed.); Artificial Intelligence Applications; IEEE Press,
Washington; 1985

[Yuan93] L.Y. Yuan, J.-H. You; The Alternating Semantics for Default Theories and Logic
Programs; Proc. 6th Australian Joint Conf. Artificial Intelligence; 1993

[Zaniolo85] C. Zaniolo; The Representation and Deductive Retrieval of Complex Objects; in Proc.
11th Int. Conf. Very Large Data Bases; 1985

[Zaniolo88] C. Zaniolo; Design and Implementation of a Logic Based Language for Data Intensive
Applications; Proc. Int. Conf. Logic Programming; 1988

[Zaniolo90a] C. Zaniolo; Architectures of Deductive Database Systems; Proc. COMPCON; 1990

[Zaniolo90b] C. Zaniolo; Deductive Databases - Theory Meets Practice; Proc. 2nd Int. Conf. Extending
Database Technology; 1990

[Zaniolo90c] C. Zaniolo; Rule Rewriting Methods in the Implementation of the Logic Data Language
LDL; R.A. Meersman, Z. Shi, C.-H. Kung (eds.); Artificial Intelligence in Databases and
Information Systems; North-Holland, Amsterdam; 1990

[Zeevat88] H. Zeevat; Combining Categorial Grammar and Unification; in: U. Reyle, C. Rohrer
(eds.); Natural Language Parsing and Linguistic Theories; Reidel, Dordrecht; 1988

[Zsolnai87] S. Zsolnai, H. Trost; Towards Automatic Semantic Classification for a Natural Language
Understanding System; Proc. 3. Österreichische Artificial-Intelligence-Tagung; 1987

[Zukerman93] I. Zukerman, R. McConachy; Generating Concise Discourse that Addresses a User's
Inferences; Proc. 13th Int. Joint Conf. Artificial Intelligence; 1993

The Integrated Deductive Approach to Natural Language Interfaces 121

List of Figures

List of Figures

Figure 1: Natural language interface... 1
Figure 2: Process model of natural language analysis... 3
Figure 3: Components of SALAD.. 16
Figure 4: Example of SALAD files .. 17
Figure 5: Example of morphological features.. 20
Figure 6: Example of coverage of surface forms... 20
Figure 7: Example of auxiliary dictionary entries... 21
Figure 8: Derivation structure of complex word categories .. 24
Figure 9: Example of recursive transition network... 40
Figure 10: Example of ATN dealing with constituent transfer .. 41
Figure 11: Example of unification of syntactic features ... 54
Figure 12: LDL code segment of syntactic analysis... 55
Figure 13: Test of the applicability of the right side of a grammar rule .. 55
Figure 14: Example of syntactic analysis .. 56
Figure 15: Example of syntactic structure ... 57
Figure 16: Example of conceptual dependency... 59
Figure 17: Example of frame .. 59
Figure 18: Example of semantic features.. 61
Figure 19: Example of LDL code for generation of deep form ... 62
Figure 20: Example of UVL-analysis... 63
Figure 21: LDL code for generation of USL... 64
Figure 22: Example of de-referencing anaphora ... 65
Figure 23: Example of script ... 66
Figure 24: Example of uniform semantic resolution method.. 67
Figure 25: Similarity value for insertion of one character .. 71
Figure 26: Similarity value for substitution of one character .. 71
Figure 27: Similarity value for deletion of several characters .. 72
Figure 28: Similarity value for substitution of several characters... 72
Figure 29: LDL rule for spelling error correction .. 73
Figure 30: Database support in CIM.. 75
Figure 31: Types of resources... 76
Figure 32: EER model of static PPC view... 79
Figure 33: LDL base predicates of static PPC view... 80
Figure 34: EER model of dynamic PPC view.. 81
Figure 35: LDL base predicates of dynamic PPC view.. 82
Figure 36: Example of questionnaire A ... 95
Figure 37: Example of questionnaire B ... 96
Figure 38: LDL code of semantic analysis for PPC ... 98
Figure 39: Process model of natural language analysis in IDA .. 99

The Integrated Deductive Approach to Natural Language Interfaces 122

List of Tables

List of Tables

Table 1: Value domains of semantic category insert ... 91
Table 2: Value domains of semantic category delete .. 91
Table 3: Value domains of semantic category update ... 92
Table 4: Value domains of semantic category timeshift... 92
Table 5: Value domains of semantic category failure .. 92
Table 6: Value domains of semantic category release .. 92
Table 7: Value domains of semantic category suspend... 93
Table 8: Value domains of semantic category scheduling ... 93
Table 9: Value domains of semantic category delay ... 93
Table 10: Value domains of semantic category cancel.. 93
Table 11: Value domains of semantic category query ... 94
Table 12: Number of dictionary entries for PPC .. 97
Table 13: Response times of PPC .. 102
Table 14: Response times of additional features... 102

The Integrated Deductive Approach to Natural Language Interfaces 123

