
Social Coverage for Customized Test Adequacy and
Selection Criteria

Breno Miranda
Università di Pisa

Largo B. Pontecorvo, 3 - 56127
Pisa, Italy

miranda@di.unipi.it

Antonia Bertolino
ISTI - CNR

Via Moruzzi 1 - 56124
Pisa, Italy

antonia.bertolino@isti.cnr.it

ABSTRACT
Test coverage information can be very useful for guiding
testers in enhancing their test suites to exercise possible un-
covered entities and in deciding when to stop testing. How-
ever, for complex applications that are reused in different
contexts and for emerging paradigms (e.g., component-based
development, service-oriented architecture, and cloud com-
puting), traditional coverage metrics may no longer provide
meaningful information to help testers on these tasks. Var-
ious proposals are advocating to leverage information that
come from the testing community in a collaborative testing
approach. In this work we introduce a coverage metric, the
Social Coverage, that customizes coverage information in a
given context based on coverage data collected from similar
users. To evaluate the potential of our proposed approach,
we instantiated the social coverage metric in the context of
a real world service oriented application. In this exploratory
study, we were able to predict the entities that would be of
interest for a given user with an average precision of 97% and
average recall of 75%. Our results suggest that, in similar
environments, social coverage can provide a better support
to testers than traditional coverage.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools (e.g., data generators, coverage testing)

General Terms
Measurement, Verification

Keywords
Coverage Testing, Relative Coverage, Service-Oriented Ap-
plication, User Similarity

1. INTRODUCTION
Test coverage information can be very useful for guiding

testers in enhancing their test suites so to exercise possibly

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AST ’14, May 31 - June 1, 2014, Hyderabad, India
Copyright 14 ACM 978-1-4503-2858-6/14/05 ...$15.00.

uncovered parts of the program and in deciding when to
stopping testing. Although there is no consensus about the
relationship between code coverage of a given test suite and
its ability to reveal faults, having coverage information is
still important as it is evident that a test suite can hardly
find bugs in code that is never executed.

The adequacy criteria proposed in the literature are typi-
cally based on the same underlying principle: a set of entities
that must be covered (they could be statements, branches,
paths, operations, and so on) is identified, and a program is
not considered to be adequately tested if some entities have
never been executed by any test data. Coverage is mea-
sured as the ratio between the covered entities and the total
number of entities in the program under test. However, the
application of this traditional way of measuring coverage to
complex systems that are reused in different contexts might
not always provide meaningful information. In fact, not all
entities might be of interest in every context.

This is particularly true for several new programming
paradigms emerged in the last decade: component-based de-
velopment, service-oriented architecture (SOA), and cloud
computing are just a few examples. In many cases, the rea-
sons that make these paradigms attractive also make them
more challenging to test. In the SOA domain for example,
the separation between interface and code is a key feature
behind the highly appreciated flexibility of this technology.
Several researchers however have remarked as such separa-
tion also leads to low testability [6, 5].

Speaking of coverage testing, a same service makes avail-
able many operations that may be invoked by different testers
for different purposes and in different combinations. In op-
eration coverage testing, an operation is covered if, during
the service execution, it is called at least once. Traditional
coverage would indifferently assess the operations invoked
by each of those testers against the full set of operations
made available, which may provide a misleading low ratio.

This work is inspired by the idea of Relative Coverage,
originally defined in [3], and subsequently exploited in [8].
Relative coverage introduces the notion of a flexible and
context-dependent test adequacy measure. Differently from
traditional coverage, relative coverage adapts to a tester’s
context, and measures the ratio between the covered entities
and those that are considered relevant in the given situation
and environment, which do not necessarily comprise the full
set of available entities.

This is an attractive idea, but brings the difficult challenge
on how to identify what are the relevant entities from time
to time (i.e., what is the denominator in the coverage ratio).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

AST’14, May 31 – June 1, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2858-6/14/05...$15.00
http://dx.doi.org/10.1145/2593501.2593505

22

The cited works [3, 8] solved this challenge by requiring the
testers themselves to specify explicitly the entities of inter-
est. However this information may not be easily a-priori
known by testers.

In this work we propose a method for identifying the rel-
evant entities that is inspired by the recent trend of col-
laborative testing of web services [2], [24], [28]. Our cov-
erage metric, called the Social Coverage, customizes cover-
age information in a given context leveraging information
from coverage data collected from similar users. In our ex-
ploratory study on a real-world service-oriented infrastruc-
ture we obtain some preliminary evidence that information
on system usage from service users that behave similarly to
the tester can provide more meaningful test guide than tra-
ditional coverage approaches. Our proposed approach can
mitigate the limitations of traditional coverage and can pro-
vide meaningful coverage results to testers, guiding them
towards increasing test coverage in the areas that are rele-
vant to them.

In summary, the contribution of this paper includes the
definition of a novel notion of relative coverage, called so-
cial coverage; an approach to measure social coverage that
leverages coverage information obtained from similar users
to automatically identify the targeted entities; and an ex-
ploratory study on a real-world system assessing social cov-
erage accuracy in predicting a tester’s targeted entities.

In the remainder of the paper, Section 2 motivates our
approach through an example scenario; Section 3 defines
and illustrates the approach application on the motivating
scenario; Section 4 reports the results from an exploratory
study on the data log of the gCube real-world system; finally,
Sections 5 and 6 discuss related work, conclusions and future
work.

2. MOTIVATING SCENARIO
To introduce the notion of Social Coverage, we will use

the example of a service provider S implementing a Travel
Reservation System (TRS). As illustrated in Figure 1, TRS
includes several features, relative to flight and hotel booking,
car reservation, user registration, login and payment. These
features can be accessed via a set of operations (in total 42
for our illustrative example) that are made available through
the service public interface. Many operations can be asso-
ciated with a same feature (e.g., the flight booking feature
can contain the operations FlightLookup, CheckSeatAvail-
ability, getFlightTicketPrice, and so on).

Service

Consumer B

Car

Reservation

Flight

Booking
Login

Hotel

Booking
Payment

User

Registration

Service

Consumer A

Service

Consumer C

Service

Consumer D

Service

Consumer A

Figure 1: Travel Reservation System implemented
by service provider S.

TRS services can be used by many consumers. In the ex-
ample in Figure 1 we show five different service consumers,
each using different combinations of the provided operations.
Service consumer A, for example, uses operations from the
flight booking, payment, user registration, and login fea-
tures, suggesting that it is a service being used in a travel
agency. Service consumer B, on the other hand, adopts op-
erations from car reservation, user registration, login, and
payment, suggesting that the service is being used by a car
rental company. Service consumers A and B are different
clients making use of the same service provider.

Let us now assume that a new service, say service con-
sumer N , is developed. It is used in a travel agency and,
as depicted in Figure 2, it is implemented to invoke the op-
erations available from: flight booking, hotel booking, user
registration, login, and payment. To diligently test the in-
tegration of the new service N with TRS, a tester creates
a test suite to exercise the operations implemented by the
new service N as well as the operations used from the service
provider S.

Service

Consumer N

Car

Reservation

Flight

Booking
Login

Hotel

Booking
Payment

User

Registration

flight_booking_03

flight_booking_01

flight_booking_05

flight_booking_07

payment_02

payment_01

payment_09

registration_01

registration_04

registration_07

login_01

login_02

hotel_booking_01

hotel_booking_02

hotel_booking_03

hotel_booking_05

hotel_booking_09

Figure 2: Service consumer N .

Let us assume that the test suite covers a total of 17 oper-
ations (those listed in Figure 2), and the tester is interested
in assessing coverage over S (in terms of operation cover-
age). Traditional coverage, as seen in Equation 1, would be
calculated by dividing the amount of operations invoked by
N by the total amount of operations available in the service
provider S.

Traditional coverage =
covered entities

available entities
⇒ 17

42
≈ 40%

(1)
Such a coverage metric would be helpful if the tester were

interested in thoroughly testing the service provider S con-
sidering all the operations, including the ones that are never
used by N , such as those in the car reservation feature. If,
on the other hand, the tester is deliberately not interested in
some operations, which, in fact, is the case in this example,
this coverage information would not be meaningful.

Even worse, let us suppose that, besides calculating the
ratio of covered operations, service N would also like to
get the list of un-tested operations among those provided
by S. Again, this list would be of little value if it can-
not help testers to identify possibly relevant operations that
have been left un-tested. In this very simple example, us-
ing the traditional approach to measure coverage, such list
would contain among un-tested operations also those from
car reservation; for really large applications, the number of
not relevant operations could be so big that providing such
information would be useless.

23

For the testing of N , we would like to measure coverage
over the actually relevant operations, and not over the whole
set of 42 operations. We introduce the intuitive notion of
targeted entities, as those entities that are of relevance to a
tester when measuring coverage on a provided service S.

The approach we present in the next section assumes that
in an effort to better support customers in their testing ac-
tivities, service provider S is willing to provide relevant cov-
erage information to them. One way of doing that would be
customizing coverage information for customer tester based
on what operations have been invoked by service consumers
that are “similar” to the service consumer under test. Thus,
we call it the Social Coverage testing approach.

3. SOCIAL COVERAGE
To overcome the limitations of traditional coverage illus-

trated in Section 2, we propose the social coverage mea-
sure that customizes coverage information in a given context
based on coverage data collected from similar users.

3.1 Approach
As for any coverage criterion, social coverage measurement

presupposes that the code is instrumented so to allow the
identification of the entities exercised by customers (they
could be humans or other software).

For a target tester (i.e., the tester who is interested in re-
ceiving coverage information), social coverage measurement
can then be summarized in the following steps:

1. Data collection: the entities exercised by the target
tester are monitored. In addition, for social coverage
testing it is assumed that usage information, including
the list of entities exercised, are being routinely col-
lected for all customers using the system under test.

2. Similarity calculation: the similarity between the
target tester and all other system customers is calcu-
lated.

3. Identification of targeted entities: the list of tar-
geted entities is obtained by combining information
about the entities exercised so far by the tester and
the ones exercised by similar system customers.

4. Coverage measurement: social coverage is calcu-
lated and the results are provided to the target tester.

5. Coverage increase: a list of possibly relevant entities
that have not been exercised by the target tester is
suggested.

To better explain the approach, in the next section we
apply it to the motivating scenario depicted in Section 2.

3.2 Illustration
Owning the instrumented code, the service provider S can

get detailed information about the operations used by each
of its service consumers. As the first step of our approach,
using this information the service provider S can calculate
the similarity between the service N and all the other service
consumers to find the most similar services.

Many similarity measures could be adopted to find similar
service consumers: Jaccard similarity coefficient [16], Pear-
son Correlation [13], and Euclidean Distance [22] are just
a few examples. At this stage, we do not go deep in the

details of each technique as we are still investigating which
one would be the most adequate to our purpose.

For this illustrative example and for the exploratory study
presented next, we used the Jaccard similarity coefficient.
This decision was taken based on the results achieved by
Hemmati and Briand [16]. In this work, the authors com-
pared the cost of different similarity functions both in terms
of computational complexity and the actual time required
for the similarity calculation, when applied to the task of
test case selection, and Jaccard was shown to be the most
cost-effective similarity measure.

Table 1 reports the Jaccard similarity coefficient (pre-
sented as percentage) between service N and the other ser-
vice consumers. The table shows that, based on the oper-
ations used by each client, service consumer E is the most
similar service when compared to service N with a similar-
ity degree of 88%; service consumer C is the second most
similar service with a similarity degree of 70%; and so on.

Having calculated the similarities, the next step is iden-
tifying what are the targeted entities for service consumer
N , that is, the operations that might be of interest to ser-
vice consumer N and should be considered when calculating
coverage (the denominator of Equation 2). For this task,
it is important to define a similarity threshold to guarantee
that only the most similar service consumers are considered
when defining the set of targeted entities.

To continue with our example, let us assume that we are
interested in analysing only the service consumers whose
similarity with N is at least 70%. In this case, services A,
B, and D would be discarded. As we are using the Jaccard
similarity coefficient in this example, a simple way to define
the entities targeted by N would be considering the union
(or the intersection) of the operations invoked by the most
similar service consumers. The adoption of collaborative
filtering technique [21], on the other hand, would be more
powerful as it would allow us not only to identify the set
of entities exercised by similar clients, but also to estimate
the probability that the service N is interested in a given
entity. Such improvements will be deeper investigated in
future work.

Using the union of the operations exercised by similar ser-
vice consumers, the set of targeted entities for N is composed
by 23 operations: all operations from service consumer C
plus hotel_booking_09 (invoked by E). We can now calcu-
late the social coverage according to Equation 2:

Social coverage =
covered entities

targeted entities
⇒ 17

23
≈ 74% (2)

In comparison with traditional coverage calculated ac-
cording to Equation 1, this is a more meaningful measure:
the point is not in merely achieving a higher score, but in
having a more realistic estimate of what could be achieved
by augmenting the test suite.

Moreover, service S can provide a list of possibly relevant
operations that have not been invoked by N (see Table 2).
Since the list shown in Table 2 has been customized for N
according to the behavior of similar services, it can be much
more helpful in guiding testers to decide whether or not they
need to increase the coverage of their test suites than simply
providing the full list of operations available in the system.
In the case the tester decides to create new test cases to
cover previously un-tested operations, steps 1 to 5 of our

24

Table 1: Similarity calculation for service consumer N .
Service Consumer Service A Service B Service C Service D Service E

Covered Entities

flight booking 01 payment 01 flight booking 01 payment 01 flight booking 01
flight booking 02 payment 02 flight booking 03 payment 02 flight booking 03
flight booking 04 payment 03 flight booking 05 payment 09 flight booking 07
flight booking 07 payment 09 flight booking 07 registration 01 payment 01
flight booking 08 registration 01 payment 01 registration 04 payment 02
payment 01 registration 04 payment 02 registration 07 payment 09
payment 02 registration 05 payment 03 login 01 registration 01
payment 09 registration 07 payment 04 login 02 registration 04
registration 01 login 01 payment 05 car reservation 03 registration 07
registration 04 login 02 payment 09 car reservation 04 login 01
registration 07 car reservation 02 registration 01 car reservation 07 login 02
login 01 car reservation 03 registration 02 hotel booking 01 hotel booking 01
login 02 car reservation 05 registration 03 hotel booking 02 hotel booking 03

car reservation 07 registration 04 hotel booking 05 hotel booking 05
registration 05 hotel booking 08 hotel booking 09
registration 07
login 01
login 02
hotel booking 01
hotel booking 02
hotel booking 03
hotel booking 05

Similarity with N 50% 35% 70% 52% 88%

Table 2: Possibly relevant operations that have not
been invoked by N .

Un-tested Operations

payment 03
payment 04
payment 05
registration 02
registration 03
registration 05

approach are repeated and social coverage information is
updated according to the new data available.

4. EXPLORATORY STUDY
In this section we share our experience in instantiating the

social coverage metric in the context of a real world system.
The Research Question addressed in this exploratory study
is to what extent would our approach be able to accurately
predict the operations that would be relevant to a given user
based on the analysis of the operations invoked by similar
users. Details are given in the next sections.

4.1 Study Setup
Our study was carried out in the context of gCube, a Ser-

vice Oriented Infrastructure enabling software, supporting
the definition of Virtual Research Environments (VREs). A
VRE is a flexible and agile application development model
based on the notion of Software as a Service (SaaS), in which
components may be bound instantly, just for the time they
are needed, and then the binding may be discarded. gCube
has been implemented with the support of the European
Commission in the context of a series of projects [12].

gCube was apt for experimenting our social coverage ap-
proach, since it is equipped with a monitoring tool based
on a messaging system that logs, among other things, the
usage of some of the available services accessed through a
web portal. In particular, the log from the D4Science infras-
tructure [1], enabled by gCube, was used to carry out our
study.

Whenever a portal operation is called, the following infor-
mation are stored: the operation called, the user that made
the call, the date and time, the calling scope, and the mes-
sage exchanged on that call. These data are made available
through a consumer library. Such library allows the user to
retrieve database content, exposes facilities to parse results
as JSON objects, and aggregate information for the creation
of statistics.

The steps below summarize the procedure followed in this
study:

1. Collect usage data from D4Science portal using the
consumer library API

2. Cleanup the data collected by removing fake users
(used for testing purposes), portal administrators, and
users with very few operations invoked

3. For each remaining user:

(a) Split the data generated by that user into training
and testing sets

(b) Use the data available in the training set to pre-
dict what entities would be relevant to that user

(c) Use the information from the testing set to com-
pute the precision and recall of the predictions
made

25

Table 3: Precision and Recall (training set = 10 invocations).

User
Similar

Users
Predicted
Entities

List of Actually
Covered Entities

Precision Recall

.

U 025 5
ga i loginrecord, hlrecord, ga i hlrecord, ga i loginrecord,

100% 75%
loginrecord hlrecord, loginrecord

U 026 2
loginrecord, ebob sl loginrecord, loginrecord, ebob sl loginrecord,

80% 100%hlrecord, ebob sl hlrecord, hlrecord, ebob sl hlrecord
loginrecord

U 027 10
hlrecord, loginrecord ga t loginrecord, hlrecord

100% 66%
loginrecord

U 028 11
ds dvre loginrecord, ebob loginrecord, ebob loginrecord, ebob sl hlrecord,

83% 100%ebob sl hlrecord, ebob sl loginrecord, ebob sl loginrecord, hlrecord,
hlrecord, loginrecord loginrecord

U 029 51 hlrecord, loginrecord hlrecord, loginrecord 100% 100%
.

Overall Average: 99% 72%

4.2 Preliminary Results
We collected usage data (step 1) from 2009-11-05 to 2013-

11-28, which resulted in 94.768 invocations logged from a
total of 484 portal users. In the cleaning up phase (step
2), we noticed that many users had very little information
logged. For example, about half of the users had only one
invocation logged. When working with predictions/recom-
mendations, such situations could be affected by the cold-
start problem [18], the very well-known issue that a given
system cannot draw any inferences for users about whom it
does not have sufficient information.

Defining the minimum amount of information required for
obtaining good predictions/recommendations is a hard task.
This is an acknowledged problem in the recommender sys-
tems literature [7, 20]. The authors of [7] investigated the
effects of profile length for an explicit and rating-based elici-
tation strategy (in the movie recommendation domain) and
suggested that the optimal number of ratings is more likely
to be 10. Even though in our approach the data is col-
lected implicitly (rather than explicitly), based on the find-
ings of [7] we decided to remove all the users with less than
10 invocations logged to make sure that we would have a
minimum of information available to split the data between
training and testing sets. After the cleaning up phase, data
from 159 users remained for our study.

For the step 3a, we used the first T invocations (under
varying values for T) of a given user as the training set
and the remaining ones as the testing set. After identify-
ing the possibly relevant entities for a given user (step 3b),
we evaluate the quality of the predictions made using two
well-established metrics, namely precision and recall (step
3c). Precision measures how often the approach makes an
appropriate prediction. In our context, an appropriate pre-
diction is achieved for a given user when our algorithm sug-
gests an entity that is, in fact, covered in the future. Recall
measures how many of the operations invoked by a given
user are actually predicted by the algorithm. Table 3 shows
for example the values of precision and recall achieved with
T=10. Due to space limitations, the table shows only an
excerpt of the results (the original table contains a total of
63 users). To preserve confidentiality, the data in the ta-
ble have been anonymized by removing user names and by
changing the actual operation names.

We observed the behavior of our approach when using dif-
ferent configurations. We repeated the study using different
training set sizes (10, 20, 30, 40, and 50 invocations) and
different values for the Jaccard similarity coefficient (0.50,
0.66, and 0.75). The training set size defines the amount
of information (in our case, number of invocations) used to
create the user profile. The Jaccard similarity coefficient,
on the other hand, influences the decision of whether two
given users are similar or not. For example, when using Jac-
card similarity coefficient equal to 0.50, two users A and B
are considered to be similar if the intersection of the oper-
ations invoked by them is at least 50% of the union of the
operations invoked by each user individually.

Table 4 shows the overall precision and recall achieved
when using different values for the Jaccard similarity coeffi-
cient. As we can see, the best results for both precision and
recall have been achieved when using similarity equal to 0.75.
A possible explanation for this result is the fact that the al-
gorithm is more conservative when making predictions and,
consequently, the predictions are more accurate. A trade-
off of using high values for the Jaccard similarity coefficient,
however, is that less predictions are made. As we can see
in Table 4, the amount of users that received recommenda-
tions (predictions) varied between 23 and 63, depending on
the different sizes of training sets (10, 20, 30, 40, and 50).
Thus, it is important to find a balance between the number
of predictions made and the accuracy that is appropriate for
the environment in which the approach is being applied.

Table 4: Precision and Recall achieved for different
values of Jaccard Similarity Coefficient.

Jaccard
Similarity
Coefficient

User
Span

Overall
Average
Precision

Overall
Average
Recall

0.50 49 to 100 73% 67%
0.66 38 to 88 78% 68%
0.75 23 to 63 97% 75%

Table 5 shows detailed information about the values of
precision and recall achieved for the different training set
sizes when using Jaccard similarity coefficient equal to 0.75.

26

Table 5: Precision and Recall achieved when using
training sets with different sizes (similarity = 0.75).

Training
Set

Predictions
made

Avg.
Precision

Avg.
Recall

10 invocations 63 99% 72%
20 invocations 44 98% 77%
30 invocations 36 96% 75%
40 invocations 28 97% 73%
50 invocations 23 96% 77%

Although the reported results are preliminary and can-
not be generalized to other systems, they are promising and
encourage us to perform further studies.

5. RELATED WORK
In this work we have introduced a coverage metric, the

social coverage, for customized test adequacy and selection
criteria. The topic of adequacy criteria has been deeply ex-
plored by researchers. Since the notion of a test criterion
(i.e., the criterion that defines what constitutes an adequate
test) was introduced in the 1970’s by Goodenough and Ger-
hart [14, 15], a lot of contributions have been made on the
definition of new test criteria [19, 27, 17, 11] and consider-
able research effort has also been devoted to the comparison
of multiple criteria to provide support for the use of one
criterion or another [4, 25, 10, 26, 9].

Although many contributions have already been done in
the topic of coverage testing, the definition of new adequacy
criteria (or the adaptation of the existing ones) has not been
able to follow the same pace of the emerging paradigms
(e.g., component-based development, service-oriented archi-
tecture, and cloud computing). This point was raised, for
example, by Bartolini et al. [3]. In this work, the authors
argued that traditional test approaches should be revised to
deal with service-oriented systems, and proposed a method-
ology called SOCT (service-oriented coverage testing) that
enables the use of practical test adequacy criteria to service-
oriented applications.

Our proposed metric was supported by the idea of rel-
ative coverage whose definition allows us to have a flexi-
ble and context-dependent number of targeted entities that
does not necessarily comprise the full set of available enti-
ties of a given kind. Relative coverage has also been used
in [8]. In this work, the authors proposed an approach
in which testable services (services instrumented to provide
their clients with coverage information) are provided along
with test metadata to help their testers to get a higher cov-
erage. In their approach, coverage is calculated based on
a list of operations of the testable service that are actually
used by a given client. Differently from our work, in which
the list of relevant entities is defined in an automated way
based on coverage data collected from similar users, in [8]
the list of relevant entities is manually defined by the user.

Various proposals are advocating to leverage information
that come from the community of users in a collaborative
testing approach [2, 23, 24]. In [2], for example, the authors
proposed a test-broker architecture in which all the stake-
holders within the composite web service can contribute to
improve the testing of the services. Besides supporting the
submission, indexing, and querying of test artifacts such as
test cases, defect reports and evaluations, the test broker

can also provide the services for the test generation, test
coordination, and distributed testing services.

In [24] the authors suggest that Collaborative Verifica-
tion and Validation (CV&V) should be used as the testing
paradigm for web service testing instead of Independent Ver-
ification and Validation (IV&V). The proposed approach can
be used to rank the fault detection capability of test scripts
and to establish the oracle for most test inputs.

The authors of [28] proposed an approach in which past
failure data of similar neighbors is used to predict the relia-
bility of a given web service. This is very similar to our work
as we also use past data of similar users to provide cover-
age information to a given tester. The main difference when
compared to our approach is that, while in [28] the relia-
bility of web services is predicted without providing further
support for the testing activities, in our work we attempt
to extrapolate the topic of coverage testing by customizing
coverage information for a tester based on what operations
have been invoked by similar users and by suggesting possi-
bly relevant entities that have not been tried yet.

6. CONCLUSIONS AND FUTURE WORK
In this work we have introduced Social Coverage, a cover-

age metric that customizes coverage information for a tester
based on coverage data collected from similar users. The
proposed approach can mitigate the limitations of tradi-
tional coverage and can provide meaningful coverage results
to testers, guiding them towards increasing test coverage in
the areas that are relevant to them. We have hereby defined
the approach, implemented an instance of it, and performed
a preliminary study to evaluate its potential.

The results achieved in our preliminary investigations sug-
gest that, in similar environments, social coverage can pro-
vide a better support to testers than traditional coverage.
In our exploratory study, our approach achieved satisfactory
values for the precision (ranging from 73% to 97%, depend-
ing on the Jaccard similarity coefficient adopted) and recall
(ranging from 67% to 75%).

In the future, we plan to extend this work in several ways.
First, we plan to adopt different techniques to find similar
users (e.g., Pearson Correlation, Euclidean Distance, etc)
and to recommend entities. This will allow us to objectively
compare the different techniques is terms of the quality of
the recommendations achieved, the computational cost, and
the actual time required for the similarity calculation. Sec-
ond, while in this work we studied the capability to predict
a user/service coverage based on similar users/services, we
plan to investigate whether social coverage can actually im-
prove the testing process cost-effectiveness ratio. Third, we
plan to investigate the usefulness of social coverage when
considering different adequacy criteria such as statement
coverage and branch coverage, for example. Finally, we plan
to perform further studies to obtain a better understanding
of the cost, performance, and potential benefits of adopting
the social coverage adequacy criterion.

7. ACKNOWLEDGMENTS
The authors wish to thank the colleagues of the D4Science

project for their collaboration in the exploratory study. Breno
Miranda wishes to thank the Brazilian National Council for
Scientific and Technological Development (CNPq) for pro-
viding his scholarship grant.

27

8. REFERENCES
[1] P. Andrade, L. Candela, D. Castelli, A. Manzi, and

P. Pagano. The D4Science Production Infrastructure.
Technical Report 2009-TR-054, Istituto di Scienza e
Tecnologie dell’Informazione “A. Faedo”, CNR, 2009.

[2] X. Bai, Y. Wang, G. Dai, W.-T. Tsai, and Y. Chen. A
framework for contract-based collaborative verification
and validation of web services. In Proc. of the 10th
International Conference on Component-based
Software Engineering, CBSE’07, pages 258–273,
Berlin, Heidelberg, 2007. Springer-Verlag.

[3] C. Bartolini, A. Bertolino, S. Elbaum, and
E. Marchetti. Whitening SOA testing. In Proc. of the
7th joint European software engineering conf. and the
ACM SIGSOFT symposium on The foundations of
software engineering, ESEC/FSE ’09, pages 161–170,
New York, NY, USA, 2009. ACM.

[4] V. R. Basili and R. W. Selby. Comparing the
effectiveness of software testing strategies. IEEE
Trans. Softw. Eng., 13(12):1278–1296, Dec. 1987.

[5] A. Bertolino, G. De Angelis, A. Sabetta, and
A. Polini. Trends and Research Issues in SOA
Validation, chapter 4, pages 98–115. IGI Global, 2012.

[6] G. Canfora and M. Di Penta. Testing services and
service-centric systems: Challenges and opportunities.
IT Professional, 8(2):10–17, 2006.

[7] P. Cremonesi, F. Garzotto, and R. Turrin. User effort
vs. accuracy in rating-based elicitation. In Proceedings
of the Sixth ACM Conference on Recommender
Systems, RecSys ’12, pages 27–34, New York, NY,
USA, 2012. ACM.

[8] M. Eler, A. Bertolino, and P. Masiero. More testable
service compositions by test metadata. In Service
Oriented System Engineering (SOSE), 2011 IEEE 6th
International Symposium on, pages 204–213, 2011.

[9] P. Frankl and S. Weiss. An experimental comparison
of the effectiveness of branch testing and data flow
testing. Software Engineering, IEEE Transactions on,
19(8):774–787, 1993.

[10] P. G. Frankl and S. N. Weiss. An experimental
comparison of the effectiveness of the all-uses and
all-edges adequacy criteria. In Proceedings of the
symposium on Testing, analysis, and verification,
pages 154–164. ACM, 1991.

[11] P. G. Frankl and E. J. Weyuker. An applicable family
of data flow testing criteria. IEEE Trans. Softw. Eng.,
14(10):1483–1498, Oct. 1988.

[12] gCube Development Team. gCube Website.
https://www.gcube-system.org, 2008.

[13] P. Good. Robustness of Pearson correlation. Interstat,
15(5):1–6, 2009.

[14] J. Goodenough and S. Gerhart. Toward a theory of
test data selection. IEEE Transactions on Software
Engineering, SE-1(2):156–173, 1975.

[15] J. Goodenough and S. Gerhart. Toward a theory of
testing: Data selection criteria. Current Trends in
Programming Methodology, 2(2):44–79, 1977.

[16] H. Hemmati and L. Briand. An industrial
investigation of similarity measures for model-based
test case selection. In Proc. of the 2010 IEEE 21st Int.
Symposium on Software Reliability Engineering,
ISSRE ’10, pages 141–150, Washington, DC, USA,
2010. IEEE Computer Society.

[17] B. Hetzel. The complete guide to software testing.
QED Information Sciences, Inc., Wellesley, MA, USA,
2nd edition, 1988.

[18] X. N. Lam, T. Vu, T. D. Le, and A. D. Duong.
Addressing cold-start problem in recommendation
systems. In Proceedings of the 2Nd International
Conference on Ubiquitous Information Management
and Communication, ICUIMC ’08, pages 208–211,
New York, NY, USA, 2008. ACM.

[19] G. J. Myers. The art of Software Testing. John Wiley
& Sons, Inc., New York, NY, USA, 1979.

[20] A. M. Rashid, G. Karypis, and J. Riedl. Learning
preferences of new users in recommender systems: An
information theoretic approach. SIGKDD Explor.
Newsl., 10(2):90–100, Dec. 2008.

[21] J. B. Schafer, D. Frankowski, J. Herlocker, and S. Sen.
Collaborative filtering recommender systems. In The
adaptive web, pages 291–324. Springer, 2007.

[22] H. Sun, Y. Peng, J. Chen, C. Liu, and Y. Sun. A new
similarity measure based on adjusted euclidean
distance for memory-based collaborative filtering.
Journal of Software (1796217X), 6(6), 2011.

[23] W.-T. Tsai, Y. Chen, Z. Cao, X. Bai, H. Huang, and
R. Paul. Testing web services using progressive group
testing. In C.-H. Chi and K.-Y. Lam, editors, Content
Computing, volume 3309 of LNCS, pages 314–322.
Springer Berlin Heidelberg, 2004.

[24] W.-T. Tsai, Y. Chen, R. Paul, N. Liao, and H. Huang.
Cooperative and group testing in verification of
dynamic composite web services. In Computer
Software and Applications Conference COMPSAC
2004. Proc. of the 28th Annual International,
volume 2, pages 170–173 vol.2, Sept 2004.

[25] S. N. Weiss. Comparing test data adequacy criteria.
SIGSOFT Softw. Eng. Notes, 14(6):42–49, Oct. 1989.

[26] E. Weyuker and B. Jeng. Analyzing partition testing
strategies. Software Engineering, IEEE Transactions
on, 17(7):703–711, 1991.

[27] M. Woodward, D. Hedley, and M. Hennell. Experience
with path analysis and testing of programs. Software
Engineering, IEEE Transactions on, SE-6(3):278–286,
1980.

[28] Z. Zheng and M. R. Lyu. Personalized reliability
prediction of web services. ACM Trans. Softw. Eng.
Methodol., 22(2):12:1–12:25, Mar. 2013.

28

