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Background: In the not-too-distant past, the dorsal root ganglion (DRG) was portrayed as a passive neural structure without
involvement in the development or maintenance of chronic neuropathic pain (NP). The DRG was thought of as a structure that
merely “supported” physiologic communication between the peripheral nervous system (PNS) and the central nervous system
(CNS). Newer scientific information regarding the anatomic and physiologic changes that occur within the DRG as a result of
environmental pressures has dispelled this concept and suggests that the DRG is an active participant in the development of NP.
This new information, along with new clinical data showing that stimulation of the DRG reduces intensity of pain, suggests that the
DRG can be a robust target for neuromodulation therapies.

Methods: A review of the anatomical and physiological literature regarding the role of the DRG in the development of NP was
performed utilizing SciBase, PubMed, and Google Scholar. The information gathered was used to lay an anatomic and physiologic
foundation for establishing the DRG as a relevant target for neuromodulation therapies and to formulate a hypothesis as to how
electrical stimulation of the DRG might reverse the process and perception of NP.

Conclusions: The DRG is an active participant in the development of NP. DRG stimulation has multiple effects on the abnormal
changes that occur within the DRG as a result of peripheral afferent fiber injury. The sum total of these stimulation effects is to
stabilize and decrease hyperexcitability of DRG neurons and thereby decrease NP.
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INTRODUCTION

There are numerous targets for neuromodulation therapies used
today, including the brain, the spinal cord, the cardiovascular
system, the peripheral neuromuscular system, the peripheral
nervous system (PNS), the gastroesophageal system, and the sacral
nerves. Various intraspinal structures are often targeted in both spe-
cific and non-specific ways by the application of electrical fields to
modulate their function as a greater part of what is referred to as
spinal cord stimulation. This review focuses on the dorsal root gan-
glion (DRG) and the extent to which this structure is involved in the
development of chronic neuropathic pain (NP). Furthermore, the
DRG is highly accessible to clinical interventions for the control of
pain (1–3) and is a robust target for neuromodulation therapy (i.e.,
electrical stimulation) for the relief of NP (4–6).

ANATOMY
Structure and Function

The DRG contains the cell bodies of the primary sensory neurons
responsible for transducing and modulating sensory information
and transmitting it to the spinal cord. There are several types of DRG
neurons, classified by the size of the cell bodies and their function.
Type A DRG neurons are large and are responsible for touch, vibra-
tion, and proprioception; type B neurons are small in size and are
responsible for nociception. Histological studies estimate that the
number of small neurons (type B) exceeds that of large neurons
(type A) at a ratio of 71:29 (7).

The cell bodies, previously thought to be only metabolic storage
“helpers” to peripheral processes, are now known to participate in
the signaling process by sensing certain molecules and manufactur-
ing other molecules that modulate these processes (8). Because of
its important roles in the modulation of sensory processing, includ-
ing nociceptive pain, and the development of NP, along with its
anatomic accessibility to clinical intervention (2,3), the DRG is an
excellent clinical target for pain control. The DRG can be accessed
both from outside the neural foramen into the epidural space and
from the epidural space to the outside through the neural foramen
(Fig. 1). The DRG is a known clinical target for the delivery of
anti-inflammatory steroids (10,11), for surgical ablation (ganglio-
nectomy) (12), for radio-frequency ablation (13–15), for pulsed-
radio frequency therapy (16), and also for neuromodulation therapy
(4–6).

Pseudo-Unipolar Neurons and Axons
In humans, there are 31 right-and-left pairs of “mixed” spinal

nerves carrying autonomic and sensorimotor information between
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the spinal cord and the periphery. These spinal nerves, formed from
dorsal afferent sensory axons that became the dorsal rootlets and
ventral efferent motor axons that became the ventral rootlets,
emerge from the intervertebral neural foramina between adjacent
vertebral segments and between the superior and inferior pedicles.
As the dorsal sensory root fibers travel laterally, their processes
connect via a T-junction with their cell bodies, which make up the
DRG. The DRG lies between the medial and lateral aspects of the
pedicle within the neural foramen. This collection of pseudo-
unipolar cell bodies is surrounded by complexes of satellite glial
cells (SGCs). The distal axons of the dorsal sensory root form the
primary sensory nerve. As most studies of the DRG are performed in
rats, it should be stated that the rat and the human differ with
respect to the number of spinal segments and thus primary sensory
nerves (17).

The primary sensory neuron starts in the neuron’s peripheral
receptive field, a region of the body in which a stimulus—as in injury
or inflammation—alters the firing of the neuron, and ends within
the central nervous system (CNS) (18). These neurons are the largest
neurons in the body, up to 1.5 m in length (9), and send collaterals to
the prevertebral sympathetic ganglia (19). Pseudo-unipolar neurons
within the DRG are endowed with receptors for numerous neu-
rotransmitters.

Because DRG neurons have axons that divide into two separate
branches, connected by a T-junction that goes from the branching
axon to the cell body, they are called pseudo-unipolar neurons to
distinguish them from unipolar neurons, which have axons that
leave both “poles” of the cell body toward their respective synapses
(Fig. 2).

One branch of the axon of the pseudo-unipolar neuron extends
from the T-junction to the periphery, and one branch extends from
the T-junction toward the spinal cord. The T-junction of the DRG
neuron can act as an impediment to electrical impulses traveling
from the peripheral nociceptor to the dorsal root entry zone of the
spinal cord, participate in the propagation of the electrical pulse, or
act as a low-pass filter to electrical information from the periphery
(20) (Fig. 3).

Satellite Glial Cells
The cell bodies of the DRG neurons are separated from each

other by an envelope of SGCs that do not interact with one
another, but do respond to peripheral and central processes,

including nociception, peripheral afferent fiber (PAF) injury,
and inflammation. SGCs form units of function that surround the
peripheral sensory neuron within the DRG and play important
roles, both in health and in disease. SGCs carry receptors for
numerous neuroactive agents (cytokines, ATP, bradykinins, etc.),
receive signals from other cells, respond to changes in their
environment, and influence other neighboring cells, including
DRG neurons (21). Therefore, it is likely that SGCs participate in
signal processing and transmission within the DRG. Damage to
the axons of sensory neurons (PAF injury) is known to contribute
to neuropathic pain by affecting SGCs, and it may be that these
cells have a role in pathological changes within the ganglia (21)
(Fig. 4).

Glial cells are active participants in most processes of the
CNS (22–25) and have been shown to undergo both morphologi-
cal and biochemical changes after nerve damage (26–28). Glial
cells have important roles in pathological states such as pain
and inflammation (29–31), are involved in the regulation of
transmission between synapses (22,32), form Ca++ waves that
transmit signals over long distances (33), and contain numerous
receptors to neurotransmitters and other bioactive molecules
(23).

Figure 1. Anatomic relationships of the dorsal root ganglion (DRG) within the spinal canal. a. A cartoon of a section through the cervical intravertebral foramen
showing the position of the DRG outside of the intervertebral neural foramen and its relationship to the intrathecal space, the neuroforamina, the epidural space, and
the dorsal and ventral roots. Taken from the Internet with permission (http://www.csus.edu/indiv/m/mckeoughd/AanatomyRev/CNS/scXsect/scXsect.htm). b. Axial
cryomicrotome section through the C5–6 intervertebral foramen in a human specimen; injected with green ink by an epidural approach before freezing. Notice that
the dorsal root ganglion (DRG) lies outside the neural foramen, posterior to the vertebral artery (VA). Reprinted from Hogan (9), with permission from Lippincott
Williams & Wilkins.
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Figure 2. Pseudounipolar neurons. a. A pseudo-unipolar sensory neuron. A
pseudopolar neuron has one axon that is divided into two separate branches,
one from the periphery to the body and one from the body to the spinal cord,
connected to the soma by a T-stem axon. There are no dendrites. Unipolar cells
are not to be confused with bipolar cells (b), where the body lies within the path
of the axon.
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ROLE AFTER PERIPHERAL AFFERENT
FIBER INJURY
Development of Neuropathic Pain

Injury to a PAF results in hyperexcitability only in axotomized DRG
neurons, sparing nonaxotomized neurons (34). Injured DRG
neurons become more excitable; their SGC sheaths increase their
number of cells (35,36), and they exhibit ectopic firing (37,38). Wall

and Devor showed that electrical impulses in PAF injury may origi-
nate not only from the damaged PAF, but from within the DRG itself
(38), and that systemic application of lidocaine suppressed ectopic
impulse discharges generated both at sites of experimental nerve
injury and within axotomized DRG cells (39). These studies suggest
that these electrical impulses, originating in the DRG, are due in part
to activation of normal or abnormal sodium (Na+) channels, which
play a very important role in the development of hyperexcitability
and NP.

The development of NP involves not only neuronal pathways, but
also Schwann cells, SGCs, components of the peripheral immune
system, and activated spinal microglia (40). Broadly speaking, PAF
injury, as in axotomy, results in neuroimmune activation that
involves activation of cells that interface with the PNS, including
DRG neurons and glial cells (41). Cutting spinal nerves just distal to
the DRG triggers massive spontaneous ectopic discharge in
axotomized afferent A neurons within the DRG. Observations by
Sukhotinsky et al. (42) support the hypothesis that ectopic firing in
DRG A neurons induces central sensitization and clinical allodynia.

Activation of glia by PAF injury leads to the release of an immune
cascade of inflammatory mediators, which sensitizes and lowers the
threshold for neuronal firing, leading to peripheral and central sen-
sitization and chronic, aberrant NP (43–45) (Fig. 5).

Changes in Gene Expression
Changes in gene expression within primary sensory neurons also

represent an important mechanism underlying NP. Studying
molecular alterations within the DRG 14 days after peripheral
axotomy, Xiao et al. (46) found up-regulation of multiple neuropep-
tides, receptors, ion channels, signal transduction molecules, synap-
tic vesicle proteins, and other factors involved in the development
of NP. Herdege et al. (47) studied the effect of changes in gene
expression after transection of the sciatic nerve in adult rats and
found increases in c-Jun and Jun-D within the DRG. Many of these
changes in gene transcription manifest themselves by altering func-
tion at the level of the cell body. Although further work on transla-
tional and post-translational response mechanisms is needed, the
resultant focus on changes at the level of the perikaryal membrane
is a key element to neuromodulation of these cells.

Ion Channel and Ion Current Changes
Much is known regarding the role of Na+, K+, and Ca++ ion current

changes and up- and down-regulation of ion channels as a result of
PAF injury in the development of NP. DRG neurons coexpress several
types of Na+ channels (48), and it is hypothesized that various sub-
types of these channels are associated with NP (49–52). Na+ chan-
nels within the DRG after PAF injury can change expression levels
and gating properties and can give rise to spontaneous action
potential activity or pathological burst firing, which is the electro-
physiological signature of NP (53,54).

DRG neurons also show pharmacological differences, including
varying degrees of sensitivity to the Na+ channel blocking drug
tetrodotoxin (TTX) (55–58). Tumor necrosis factor alpha enhances
the up-regulation of tetrodotoxin-resistant (TTX-R) Na+ channels in
nociceptive DRG neurons (59–61) and, as such, could be an under-
lying cause of hyperexcitability and NP. The neurotrophin, glial cell
line-derived neurotrophic factor, is known to be necessary for the
survival of DRG cells that bind the LB4 ion (62), and its analgesic
effects are attributed to a blockade of the expression of TTX-R Na+

channels in the injured DRG (63). Given the putative importance of

Figure 3. The T-junction acts either as 1) a barrier to the propagation of action
potentials (APs) to the dorsal horn (DH) of the spinal cord, 2) a low-pass filter to
the propagation of APs to the DH, or 3) an active participant in the propagation
of APs to the DH of the spinal cord.

Figure 4. a. A low-power electron micrograph of mouse dorsal root ganglion,
showing the arrangement of satellite glial cells (SGCs) around the neurons
(N1–4). The neurons with their associated SGCs are separated by a connective
tissue (ct) space. Note that the outer contour of the glial sheath is smooth. The
asterisks indicate nonmyelinated axons that are surrounded by Schwann cells
(SC). Two SGC cell bodies are indicated with arrows. b. Schematic diagram
describing the anatomic relations between neurons (N1–N6) and SGCs in
sensory ganglia. Reprinted from Hanani (21) with permission from Elsevier.
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these channels in NP, they are potential therapeutic targets. TTX-R
Na+ channels are amenable to pharmacotherapies (59) that block,
stabilize, or phenotypically alter these channels. Electrical stimula-
tion is also known to modulate Na+ channels in vitro (60) and in
muscle cells (61). Klein et al. (62) wrote that “a change in neuronal
activity (electrical stimulation) can alter the expression of sodium
channel genes in a subtype-specific manner.” Thus, one could
envision electrical stimulation inducing changes in sodium channel
expression and function, thereby changing the effective membrane
physiology to the extent that pathology is partly reversed, stabiliz-
ing function to more “normal” or healthy levels.

It is known that cutaneous afferent DRG neurons express K+ cur-
rents (63). Nerve injury leads to striking reductions in voltage-gated
K+ channel subunit expression in DRG neurons, suggesting that
besides up-regulation of TTX-R Na+ channels, K+ channels play an
important role in the development of hyperexcitability of injured
nerves (64–68),. Again, modulating the expression and/or function
of these channels can help normalize membrane function and
provide potential mechanisms by which electrical fields can chroni-
cally modulate these cells.

There are many reasons to suggest that an increase in voltage-
activated Ca++ currents may contribute to inflammation-induced
increase in afferent nerve input associated with NP: 1) an increase in
low-threshold, or T-type, voltage-activated (LVA) Ca++ currents in
peripheral afferent terminals is associated with a decrease in noci-
ceptive threshold (68); 2) inflammatory injuries are associated with
an increase in the α-subunit protein thought to underlie P- and

Q-type high-threshold voltage-activated (HVA) Ca++ currents (69); 3)
persistent inflammation results in an increase in Ca++-dependent
transmitter release from primary afferents (70); 4) inflammation and
nerve injury appear to have opposite effects on the expression of
several ion channels (71), and nerve injury results in a decrease in
both HVA (72) and LVA Ca++ currents in primary afferents (73); and 5)
persistent inflammation alters the density and distribution of
voltage-activated Ca++ channels in subpopulations of rat cutaneous
DRG neurons (74).

After chronic constriction injury of the peripheral axon, LVA Ca++

currents are significantly reduced, contributing to increased excit-
ability after injury to sensory neurons. Through decreased Ca++

influx, the cell becomes less stable and more likely to initiate or
transmit bursts of action potentials. Loss of inward Ca++ current in
A-type neurons within the DRG after peripheral nerve injury con-
tributes to increased sensory neuron excitability (75), and restoring
the inward Ca++ current leads to decreased neuronal excitability (76).
For a review of the role of decreased DRG neuron membrane Ca++

currents in the genesis of neuropathic pain, see Hogan (77).
Lee showed that external electrical stimulation of the DRG

modifies both bursting and tonic activity of pseudounipolar
neurons within the DRG (78). Koopmeiners et al. (79) showed that
electrical field stimulation of the DRG increases Ca++ influx into
DRG neurons, decreases the frequency of multiple action poten-
tials within DRG neurons, and significantly reduces conduction
velocity when compared with baseline before stimulation. These
authors concluded that direct excitation of the DRG by electrical

in response to injury or 
inflammation, these cells 
produce.. 

CYTOKINES 

white 
cells 

macrophag
es T-cells glial cells* schwann 

cells* 

chemokines growth factors interleukins tissue necrosis factors interferons 

* produced in the DRG in response to injury/inflammation 

Figure 5. Immune cascade as a result of peripheral afferent fiber (PAF) injury. In response to injury or inflammation, white blood cells, T-cells, macrophages, glial cells,
and Schwann cells in the nervous system produce cytokines locally which regulate the function of neighboring cells. *Produced in the dorsal root ganglion in
response to injury/inflammation.
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fields reduces neuronal excitability and may provide a new anal-
gesic approach. Consequently, modulation of Ca++ currents by
electrical stimulation of the DRG may be a potential method of
therapeutic intervention for NP.

Summary
The DRG, an anatomically accessible organ for interventional

pain management (1–3) and electrical stimulation (4–6), is no
longer considered a passive conduit for afferent transmission
following PAF injury, inflammation, and the development of NP;
rather, it is known to be deeply involved in peripheral processes
that lead to NP. As a result of PAF injury or inflammation, a myriad
of cellular changes occur within neurons in the DRG, resulting in
membrane hyperexcitability. There are several potential ionic
changes that contribute to these phenomena, including altera-
tions in Na+, K+, and Ca++ ion channels and ion current flux.
These changes, which occur as a result of injury and inflammation,

lead to increased excitability of both peripheral and central
neural tissues. Electrical stimulation has effects on the immune
system and can restore abnormal Na+ channels to normal (60)
(Fig. 6).

ELECTRICAL STIMULATION OF THE DRG

Recent studies indicate that low-intensity electrical stimulation is
functionally equivalent to the administration of various growth
factors, enhancing and guiding growth of spinal neurons (80,81),
fostering regeneration in bone (82,83) and muscle mass (84), and
promoting wound healing (85,86). Because activity of growth
factors and of the growth-associated protein GAP-43 within the DRG
does play a role in the development of NP, and as it is known that
electrical stimulation stimulates the synthesis of growth factors (87),
it would not be a gross leap forward to speculate that perturbations
of these growth factors within the DRG could be modified by direct

Figure 6. Release of various factors after injury or inflammation to a peripheral afferent fiber. In response to tissue inflammation or injury of a peripheral afferent
fiber, the dorsal root ganglion (DRG) produces changes in glial cells, chemokines, nerve growth factors, gene expression, and ion channels including Na+ channels,
K+ channels, and Ca++ channels.
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or indirect electrical stimulation of the DRG, resulting in a decrease
in chronic pain. In a similar vein, because the nervous system and
the immune system are inexorably integrated, with one system
directly affecting the other, and because it is known that stimulation
of the nervous system does modify immune responses, it is possible
that electrical stimulation of the DRG may decrease chronic pain by
impacting the immune response to PAF injury.

Stimulation of the DRG may have both upstream and down-
stream physiologic effects. We also know that stimulation of the
DRG has downstream autonomic effects (88). Also, through normal
afferent connective pathways, modulation of neurons within the
DRG could provide a substrate for polysynaptic effects on other
downstream neurons involved in chronic pain. It is proposed that
electrical stimulation of the DRG could result in chronic pain relief
and amelioration of secondary symptoms through 1) its upstream
vasodilatory effects, 2) its proposed stabilizing effects at the periph-
eral sensitized nociceptors, 3) its downstream effects of deactivat-
ing sensitized wide-dynamic-range neurons within the dorsal horn,
and 4) its potential modulation of supraspinal brain regions
involved in the development and maintenance of chronic pain.

Amir et al. has shown that PAF injury also leads to abnormal
neural patterns of oscillatory and bursting activity within the DRG
(59). It is proposed that, like electrical stimulation of deep brain
structures (deep brain stimulation, DBS) (89), electrical stimulation
of the DRG may alter this abnormal electrical activity of DRG
neurons resulting from PAF injury, thereby decreasing chronic pain
(89). As previously stated, Lee showed that external electrical stimu-
lation of the DRG modifies both bursting and tonic activity of
pseudo-unipolar neurons within the DRG (78), and Koopmeiners
et al. (79) showed that electrical field stimulation of the DRG
increases Ca++ influx into DRG neurons, thereby decreasing the firing
of multiple action potentials within DRG neurons and significantly
reducing conduction velocity when compared with baseline before
stimulation. It is also possible that electrical stimulation of the DRG,

like the effect that DBS has on activated astrocytes and glia within
the brain (90,91), will reverse changes within DRG microglia result-
ing from PAF injury that lead to a cytokine cascade. In fact, Zhou
et al. (92) have shown that electrical stimulation suppresses the pro-
inflammatory effect of microglia in a rat photic model.

Finally, it is proposed that electrical stimulation of the DRG will
stabilize the hypersensitivity of DRG neurons that occurs after PAF
injury as a result of Na+, K+, and Ca++ channel changes and ion fluxes.
Electrical stimulation is known to modulate Na+ channels in vitro
(60) and in muscle cells (61). Klein et al. (62) wrote that “a change in
neuronal activity (electrical stimulation) can alter the expression of
sodium channel genes in a subtype-specific manner.” Koopmeiners
et al. (79) showed that electrical field stimulation of the DRG
increases Ca++ influx into DRG neurons, decreases the frequency of
multiple action potentials within DRG neurons, and significantly
reduces conduction velocity when compared with baseline before
stimulation. Figure 7 and Table 1 summarize this hypothesis of the
mechanism of action of electrical stimulation of the DRG for
the control of aberrant pain.

CONCLUSION

Electrical stimulation around the DRG may result in the relief of
chronic aberrant pain, and direct electrical stimulation of the DRG
results in decreased hyperexcitability of the DRG neurons. The DRG
is a vibrant and active organ participating in the origination and
modulation of electrical activity in response to environmental pres-
sures. In response to injury or inflammation, a whole cascade of
events occurs within and around DRG cell bodies, including
changes in cytokine and chemokine production, up-regulation of
immune factors, changes to glial cells and SGCs, early and late
genetic changes, and changes in Na+, K+, and Ca++ ion channels. With
our understanding of the underlying cellular mechanisms of chronic

Figure 7. Hypothetical mechanisms of action of electrical neuromodulation of the dorsal root ganglion (DRG). This cartoon representation of the modulating effects
of DRG stimulation shows that electrical stimulation of the DRG has both upstream and downstream effects on both DRG pseudo-unipolar neurons and satellite glial
cell (SGC) wraps, stabilizing the release of cytokines, the abnormal production of genes for inflammatory proteins, and the production of abnormal Na+, K+, and Ca++

channels and abnormal ion current flows across membranes resulting from PAF injury. The end result is a decrement of hyperexcitability and decrease in chronic pain.
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pain comes our ability to potentially understand the impact of elec-
trical neuromodulation on the DRG and its subsequent impact on
chronic pan. Moreover, by understanding the basic neuroscience
and the contributions that specific neural tissues and cells make in
the development and maintenance of chronic pain, we can better
develop targeted therapies to treat this condition.
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Table 1. Hypothesized Mechanisms of Action of Dorsal Root Ganglion Stimulation.

Modification of growth
factor release

Release of abnormal growth factors and inhibition of normally produced growth factors within the DRG resulting from PAF
injury may be modified by direct or indirect electrical stimulation of the DRG, resulting in a decrease in chronic pain.
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