
Living with CLASSIC:When and How to Use a KL-ONE-Like LanguageRonald J. BrachmanDeborah L. McGuinnessPeter F. Patel-SchneiderLori Alperin ResnickAT&T Bell LaboratoriesMurray Hill, NJAlexander BorgidaRutgers UniversityNew Brunswick, NJAppears in Principles of Semantic Networks: Explorations in theRepresentation of Knowledge, edited by John F. Sowa: Morgan KaufmannPublishers, San Mateo, CA, 1991, pp. 401{456.Abstractclassic is a recently-developed knowledge representation system that follows theparadigm originally set out in the kl-one system: it concentrates on the de�nitionof structured concepts, their organization into taxonomies, the creation and manipu-lation of individual instances of such concepts, and the key inferences of subsumptionand classi�cation. Rather than simply presenting a description of classic, we com-plement a brief system overview with a discussion of how to live within the con�nesof a limited object-oriented deductive system. By analyzing the representationalstrengths and weaknesses of classic, we consider the circumstances under which itis most appropriate to use (or not use) it. We elaborate a knowledge-engineeringmethodology for building kl-one-style knowledge bases, with emphasis on the mod-eling choices that arise in the process of describing a domain. We also address someof the key di�cult issues encountered by new users, including primitive vs. de�nedconcepts, and di�erences between roles and concepts, as well as representational\tricks-of-the-trade," which we believe to be generally useful. Much of the discussionshould be relevant to many of the current systems based on kl-one.

Contents1 Introduction 12 The CLASSIC Knowledge RepresentationSystem 32.1 Knowledge Base Components . 62.1.1 Named Concepts and Conjunction 62.1.2 Role Restrictions . 62.1.3 Other Restrictions . 72.1.4 Rules . 82.2 Knowledge Base Inferences . 92.3 Knowledge Base Operations . 113 When is CLASSIC Appropriate? 133.1 When to Use CLASSIC . 133.2 When Not to Use CLASSIC . 154 Di�cult Ideas 184.1 Primitive and De�ned Concepts . 184.2 De�nitional and Incidental Properties . 204.3 Concepts and Individuals . 214.4 Rule Application . 224.5 Unknown Individuals in CLASSIC . 224.6 Updates . 244.7 No Closed World Assumption . 245 Building CLASSIC Knowledge Bases 265.1 Basic Ontological Decisions|Individuals and Roles 265.1.1 Individuals versus Concepts . 265.1.2 Concepts versus Roles . 275.2 A Simple Knowledge Enginering Methodology for CLASSIC 295.3 A Sample Knowledge Base . 366 Tricks of the Trade 466.1 Negation and Complements . 466.2 Disjunction . 476.3 Defaults . 476.4 More Powerful Rules . 486.5 Integrity Checking . 486.6 Restrictions on Roles . 486.7 Dummy Individuals . 497 Conclusion 51
i

1 IntroductionWork on the kl-one Knowledge Representation System [Brachman and Schmolze, 1985]in the late 1970's inspired the development of a number of frame-based representationsystems. These systems have all embraced the ideas of frames as structured descriptions,di�erentiation between terminological and assertional aspects of knowledge representation,and the central nature of subsumption and classi�cation inferences. At this point thereare at least a dozen systems with this shared philosophy and heritage, with widespreadinternational distribution and much ongoing development. All told, there is a large andgrowing population of users of \kl-one-like systems."While the kl-one family has garnered its share of technical publications, virtually allof its literature has described technical details of language design, inference complexity,and semantics. One key issue, of concern to the growing community of users, has remainedrelatively ignored:1 how does one go about developing a knowledge base with one of theselanguages? It is one thing to understand the syntax and semantics of a formal knowledgerepresentation language, but quite another to comprehend how to take a complex domainand represent it appropriately with the constructs a�orded by the language.In this chapter, we attempt to capture some of the lore of building knowledge bases inkl-one-like systems. We do this in the context of classic, a new frame-based descrip-tion system inspired by kl-one and most immediately descended from kandor [Patel-Schneider, 1984] (and, as it turns out, closely related to back [Peltason et al., 1987]).classic adopts the point of view that a knowledge base can be treated as a deductivedatabase, in this case one with an object-centered avor. Because of its intended role as adatabase-style repository, classic intentionally limits what the user can say. As a bene�t,all inferences can be done in a timely manner. All kl-one-like languages are limited insome way, and learning to live with such limitations is one of the keys to making good useof these systems in knowledge-based applications.classic has a number of novel features that distinguish it from other kl-one-likesystems, but here we concentrate less on interesting new developments in the language andfocus instead on how to make good use of it.2 To that end, we �rst give a brief introductionto the formalities of classic. We then address the key issue of when a system like classicis appropriate for an application and when it is not. While we can not give a comprehensiveformula for when to use the system, we have tried to give some insight into its strengthsand weaknesses, and thus which applications may be best suited to its abilities.Since classic and some other kl-one-like systems emphasize certain issues relatingto terminology and classi�cation that are not common in other KR systems, there tend tobe a number of subtle ideas that a user must grasp before he or she can make best useof such systems. Therefore, we address ourselves to several important ideas that may bedi�cult for the novice user of classic. These involve, among other things, the di�erencesbetween primitive and de�ned concepts and some di�erences in working with concepts andindividuals. We also address the perennial issue of when to make something a concept ora role. Subsequently, we present some guidelines for developing classic knowledge bases,1An exception is a recent paper on how to build medical knowledge bases in the nikl language [Senyk etal., 1989]. Discussion regarding \ontological engineering" in cyc [Lenat and Guha, 1990] is also somewhatrelevant here.2The interested reader is referred to [Borgida et al., 1989] for details on classic and its novel contri-butions. 1

including a sketch of a knowledge engineering methodology that has worked for us in recentapplications. Finally, we o�er some \tricks of the trade" for classic users|some tips onways to represent certain information that are not obvious from the syntax of the language.For example, judicious use of \test" concepts and classic rules can provide a facility forintegrity checking. All in all, we try to give the potential user an idea not so much of whatclassic is, but rather how best to live with it and make it work well in an application.

2

2 The CLASSIC Knowledge RepresentationSystemclassic3 is a frame-based knowledge representation system, i.e., its primary means ofrepresentation is in describing objects as opposed to asserting arbitrary logical sentences.It allows the user to make assertions about objects (e.g., \Kalin-Cellars-Semillon is a wine,"and \Mary drinks Marietta-Old-Vines-Red") and to describe classes of objects (e.g., \a winemade from Cabernet-Sauvignon and Merlot grapes"). The frames in classic|which wecall \concepts"|are interpreted as descriptions rather than assertions. Thus, if we de�nea wine as a drink with a number of other properties, then being a drink is a necessary partof being a wine, and no wine can violate this requirement.There are three kinds of formal objects in classic:� concepts, which are descriptions with potentially complex structure, formed by com-posing a limited set of description-forming operators (e.g., WHITE-FULL-BODIED-WINE4might represent the concept of a WINE whose color property is restricted to beingWhite and whose body is Full); concepts correspond to one-place predicates, andthus are applied to one individual at a time;� roles, which are simple formal terms for properties (e.g., grape might represent thegrape(s) a wine is made from); roles correspond to two-place predicates, and are usedto relate two individuals at a time. Roles that must be �lled by exactly one individualare called attributes (e.g., color might be an attribute representing the color of awine);� individuals, which are simple formal constructs intended to directly represent objectsin the domain of interest; individuals are given properties by asserting that theysatisfy concepts (e.g., \Chardonnay is a GRAPE") and that their roles are �lled byother individuals (e.g., \Kalin-Cellars-Semillon's color is White").Concepts and individuals in classic are divided into two realms: CLASSIC and HOST.CLASSIC concepts are used to represent classes of real-world individuals of a domain, whileHOST concepts are used to describe individuals in the implementation language (currentlyCommon LISP), such as numbers and strings. We treat HOST concepts and individualsdi�erently from their CLASSIC counterparts by not allowing them to have roles (e.g., wecannot attach any properties to the integer 3).Concepts and individuals are put into a taxonomy, or hierarchy. A more general con-cept will be above a more speci�c concept in the taxonomy. For example, if there were aconcept for \a wine made from Cabernet-Sauvignon and Merlot grapes," then this would3classic stands for \CLASSi�cation of Individuals and Concepts." It has a complete implementationin Common LISP.4Throughout this chapter, we use the following orthographic conventions:CONCEPT-NAME: typewriter font, upper case;Individual-Name: typewriter font, capitalized;role-name: typewriter font, lower case;REALM: slanted, upper case;function-name: boldface roman, lower case;CLASSIC-OPERATOR: boldface roman, small capitals.3

be a more speci�c concept than \a wine made from at least one grape," because the�rst concept describes wines made from at least two grapes. In the taxonomy, individu-als are found underneath all the concepts that they satisfy. For example, the individualKalin-Cellars-Semillon, which happens to be a wine whose color is white, would beunder the concept WHITE-WINE in the taxonomy. To maintain this taxonomy classic alsodetermines the derivable properties of all individuals and concepts|inheriting propertiesfrom more-general descriptions as well as combining properties as appropriate.There are numerous deductive inferences that classic provides:� completion: logical consequences of assertions about individuals and descriptions ofconcepts are computed; there are a number of \completion" inferences classic canmake:{ inheritance: restrictions that apply to instances of a concept must also applyto instances of specializations of that concept; in a sense, then, properties are\inherited" by more speci�c concepts from those that they specialize;{ combination: restrictions on concepts and individuals can be logically combinedtogether to make narrower restrictions;{ propagation: when an assertion is made about an individual, it may hold logicalconsequences for some other, related individuals; classic \propagates" thisinformation forward when an assertion is made;{ contradiction detection: it is possible to accidentally assert two facts about anindividual that are logically impossible to conjoin together; classic detects thiskind of contradiction;{ incoherent concept detection: it is possible to accidentally give a concept somerestrictions that combine to make a logical impossibility, thereby not allowingany instances of the concept to be possible; classic detects this kind of incon-sistent description;� classi�cation and subsumption:{ concept classi�cation: all concepts more general than a concept and all conceptsmore speci�c than a concept are found5;{ individual classi�cation: all concepts that an individual satis�es are determined;{ subsumption: questions about whether or not one concept is more general thananother concept are answered (this is important during concept classi�cation);� rule application: simple forward-chaining rules have concepts as antecedents andconsequents; when an individual is determined to satisfy the antecedent of a rule, itis asserted to satisfy the consequent as well.classic has a uniform, compositional language, with term-forming operators for creat-ing descriptions of concepts and individuals. The grammar for this language can be foundin Figure 1 (we discuss the operators below). Note that individuals can be described withthe same expressiveness as concepts. Information can be added to existing individuals, andinformation can also be retracted from them, with the appropriate consequences.5Note that object-oriented programming languages usually have inheritance, but not classi�cation.4

<concept-expr> ::= THING | CLASSIC-THING | HOST-THING |<concept-name> |(AND <concept-expr>+) |(ALL <role-expr><concept-expr>) |(AT-LEAST <positive-integer><role-expr>) |(AT-MOST <non-negative-integer><role-expr>) |(FILLS <role-expr> <individual-name>+) |(SAME-AS <attribute-path><attribute-path>) |(TEST-C <fn><arg>�) |(TEST-H <fn><arg>�) |(ONE-OF <individual-name>+) |(PRIMITIVE <concept-expr> <index>) |(DISJOINT-PRIMITIVE <concept-expr> <group-index> <index>)<individual-expr> ::= <concept-expr><concept-name> ::= <symbol><individual-name> ::= <symbol> | <cl-host-expr><role-expr> ::= <mrole-expr> | <attribute-expr><mrole-expr> ::= <symbol><attribute-path> ::= (<attribute-expr>+)<attribute-expr> ::= <symbol><cl-host-expr> ::= <string> | <number> |'<CommonLISP-expr> | (quote <CommonLISP-expr>)<fn> ::= a function in the host language (Common LISP) with three-valued logical return type<arg> ::= an expression passed to a test function<index> ::= <number> | <symbol><group-index> ::= <number> | <symbol>Figure 1: The classic Grammar.

5

We should add that we have taken the approach in classic that a knowledge repre-sentation system should be small and simple (i.e., limited in expressive power), so thatits response time is quick, and thorough inference can be peformed. Thus, a user cannotexpect to program arbitrary computations in classic. One should envision classic as be-ing one component within a larger application system, where it would be used to representthe domain knowledge of the system and calculate a limited set of domain-independentinferences from that knowledge. Other modules in the system would be responsible for themore complicated inferences relating to the particular domain and task.2.1 Knowledge Base ComponentsThe classic operators are used to form conjunctions, role restrictions, test restrictions,enumerated concepts, and primitive and disjoint primitive concepts. The typical way ofdescribing a new concept or individual in classic is to give a list of more general concepts(or in the case of an individual, a list of concepts that are satis�ed by the individual), andthen a list of restrictions that specify the ways in which this new concept or individualdi�ers from these more general concepts. At the end of this subsection, we also discuss therule component of classic.2.1.1 Named Concepts and ConjunctionThe simplest type of concept expression is a single symbol designating a concept. classicstarts o� with a number of built-in named concepts, including THING, CLASSIC-THING,HOST-THING, and concepts for each of the Common LISP types.6 These names can beused in other concept expressions to build up complex de�nitions. While the user can createa new name and make it directly synonymous with an existing one, the simplest usefulmeans of building a compound concept expression is the AND operator, which creates anew concept that is the conjunction of the concepts given as arguments. For example, ifWHITE-WINE and FULL-BODIED-WINE are two concepts that have been previously de�ned,we can de�ne their conjunction as(AND WHITE-WINE FULL-BODIED-WINE)and call it WHITE-FULL-BODIED-WINE. This name can then be used in later concept de�ni-tions. Note that the AND operator can be applied to any concept expressions (as long asany names are de�ned before they are used), not just simple named ones (see Section 2.1.2�for examples).2.1.2 Role RestrictionsThe �ve operators ALL, AT-LEAST, AT-MOST, FILLS, and SAME-AS form expres-sions known as role restrictions, and can be used only in CLASSIC concepts and individuals,not in their HOST counterparts. As speci�ed in the grammar, a role restriction is itself awell-formed concept.6Technically, THING, CLASSIC-THING, and HOST-THING are primitive concepts, with the latter two beingdisjoint (see Section 2.1.3). The concepts for the Common LISP types are formed using the TEST-Hconstruct (see also Section 2.1.3), so that all instances of them can be recognized automatically.6

A universal value restriction, or ALL restriction, speci�es that all the �llers of a partic-ular role must be individuals described by a particular concept expression. For example,a CALIFORNIA-WINE might be de�ned as a wine whose region is a California region, wherethe California regions are Napa Valley, Sonoma Valley, etc. The region role restrictionwould be written (ALL region CALIFORNIA-REGION).AT-LEAST and AT-MOST restrictions restrict the minimum and maximum numberof �llers allowed for a given role on a concept or individual. For example, part of thede�nition of a wine might be that it is made from at least one kind of grape, which wouldbe written (AT-LEAST 1 grape),where grape is a role.The FILLS operator speci�es that a role is �lled by some speci�ed individuals (al-though the role may have additional �llers). For example, we might de�ne the conceptCHARDONNAY-WINE as a wine whose grapes include chardonnay; the restriction would bewritten as (FILLS grape Chardonnay).A SAME-AS restriction requires that the individual found by following one attribute-path is the same individual as that found by following a second attribute-path. For example,suppose that there is a food and a drink associated with each course at a meal. Then theconcept REGIONAL-COURSE might be de�ned as a course where the food's region is the sameas the drink's region. This would be written as(AND MEAL-COURSE (SAME-AS (food region) (drink region))).2.1.3 Other RestrictionsTests: There are two operators that allow procedures to be used in specifying concepts:one is used in CLASSIC concepts (TEST-C), and one is used in HOST concepts (TEST-H).7A test restriction requires that an individual must pass the test to satisfy the restriction.For example, the concept EVEN-INTEGER might be de�ned as the conjunction of the built-inconcept INTEGER and a test to see if the integer is an even number:(AND INTEGER (TEST-H evenp))(assuming evenp is a function in the host language). The individual currently being testedis assumed to be the �rst argument to the function, and other arguments can be speci�edas well. Since CLASSIC individuals may change, the test functions return one of threevalues when applied to a CLASSIC individual:� NIL: the individual is inconsistent with this restriction;7There are two di�erent operators for tests in order to allow classic to recognize the realm of anyconcept directly from its expression. While it can do this with all other constructs, since tests are opaque,classic can not tell just by looking whether an unmarked test concept is a CLASSIC concept or a HOSTconcept. Thus we have two operators, which directly indicate the realm.7

� ?: unknown, i.e., the individual is currently consistent with the restriction, but ifinformation is added to the individual, the individual may become either inconsistentwith or provably described by the restriction. In other words, the individual neitherprovably satis�es the restriction nor provably falsi�es it;� T: the individual de�nitely passes the test, i.e., it provably satis�es it.Test functions must be monotonic; that is, it should not be possible for the same testfunction to return T (or NIL) for an individual at one time and NIL (T) at a later time,unless an explicit retraction (see Section 2.3) has been done in between.Enumerated concepts: A ONE-OF concept (or enumerated concept) enumerates a setof individuals, which are the only instances of the concept. For example, a wine whosebody could be either full or medium would have the restriction(ALL body (ONE-OF Full Medium)).Primitive concepts: Normally, when one gives a classic de�nition for a concept, itis both necessary and su�cient. For example, if we de�ne a FULL-BODIED-WHITE-WINEas a FULL-BODIED-WINE and a WHITE-WINE, we expect the relationship to be an \if andonly if" relationship. The PRIMITIVE and DISJOINT-PRIMITIVE operators allow auser to form concepts that cannot be fully speci�ed by necessary and su�cient conditions.These operators can only de�ne concepts in the CLASSIC realm. If we want to de�nea wine as a drink with special properties we do not want to or cannot fully specify, wewould de�ne the concept WINE as (PRIMITIVE POTABLE-LIQUID *wine*), with *wine*being an arbitrary symbol (the index) used simply to distinguish this concept from others.8WINE is then known to be di�erent from any other PRIMITIVE concepts de�ned underPOTABLE-LIQUID (i.e., those with di�erent indices|see the discussion on indices in Sec-tion 4.1). A DISJOINT-PRIMITIVE concept is just like a PRIMITIVE concept, exceptthat any concepts within the same \disjoint grouping" are known to be disjoint from eachother, and thus, no individual can be described by two DISJOINT-PRIMITIVEs in thesame disjoint grouping. For example, if we know that �sh and shell�sh are both types ofseafood, and nothing can be both a �sh and a shell�sh, then we could de�ne �sh and shell�shas disjoint primitives under seafood within the same disjoint grouping. That is, we wouldde�ne the concept FISH as (DISJOINT-PRIMITIVE SEAFOOD *type* *fish*), andwe would de�ne the concept SHELLFISH as (DISJOINT-PRIMITIVE SEAFOOD *type**shellfish*), where *type* is an arbitrary symbol designating the grouping.2.1.4 RulesAside from the language constructs used in forming concept and individual expressions,classic allows for forward-chaining rules. A classic rule consists of an antecedent anda consequent, both of which are concepts, where the antecedent must be named. As soonas an individual is known to satisfy the antecedent concept, the rule is \triggered," andthe individual is also known to satisfy the consequent concept. For example, if there is arule that says that the best wine for a dessert course is a full-bodied, sweet wine, then ifMary is eating a dessert course, the rule is �red and classic will deduce that her course8Any symbol at all can be used as an index. We use symbols that mirror the names of the concepts justto make it easier to keep them straight. There is absolutely nothing special about the symbol *wine*."8

is one whose wine is full-bodied and sweet. Consequents of rules are treated as derivedinformation|if the antecedent of a rule is retracted from an individual, then the consequentis also retracted (see Section 2.3). (This di�ers from the treatment of rules in typical rule-based systems, such as OPS, where the consequents of retracted antecedents remain in theknowledge base.)2.2 Knowledge Base Inferencesclassic provides a number of di�erent deductive inferences. The three main types arecompletion, classi�cation/subsumption, and rule application. Completion involves com-puting the implicit logical consequences of assertions about individuals and descriptionsof concepts. For example, when a new concept is de�ned in terms of existing concepts,inheritance is used to determine all of the properties of the new concept|the new concept\inherits" all of the properties from the existing concepts. Thus, if WINE is de�ned to haveexactly one body, avor, and color, and WHITE-WINE is de�ned as a WINE whose color iswhite, then WHITE-WINE will inherit the properties that it has exactly one body, avor,and color, in addition to having the color white. When a new individual is described interms of existing concepts, it inherits the properties of those concepts. For example, ifChateau-d-Yquem-Sauterne is an individual which is, among other things, a WHITE-WINE,then it inherits from WHITE-WINE the property that its color is white. It also inherits fromWINE the properties that it has exactly one body, avor, and color.When a new concept or individual is created, all of its properties are combined, which canlead to a number of conclusions. Suppose that the concept FULL-OR-MEDIUM-BODIED-WINEis de�ned as a wine whose body is either full or medium:(AND WINE (ALL body (ONE-OF Full Medium))),and the concept MEDIUM-OR-LIGHT-BODIED-WINE is de�ned as a wine whose body is eithermedium or light:(AND WINE (ALL body (ONE-OF Medium Light))).Suppose that we de�ne the concept SPECIAL-BODIED-WINE as both a FULL-OR-MEDIUM-BODIED-WINE and a MEDIUM-OR-LIGHT-BODIED-WINE:(AND FULL-OR-MEDIUM-BODIED-WINE MEDIUM-OR-LIGHT-BODIED-WINE).classic combines the properties inherited on the body role by intersecting the two ONE-OF restrictions, and discovers that the body for SPECIAL-BODIED-WINE must be Medium.As another example, suppose that Mary wants to serve a regional course (the food anddrink are from the same region). She is not very knowledgeable about regions of wines,but she would like to serve a Chianti wine. She knows it is from either France or Italy,so she decides to serve either beef bourgogne or lasagna|whichever one is consistent. Sheattempts to create an individual course with the following de�nition (note: CHIANTI isconsidered a general class here, Beef-Bourgogne an individual food):(AND REGIONAL-COURSE(ALL drink CHIANTI)(FILLS food Beef-Bourgogne)).9

classic will not accept this course description, because the food and drink are from dif-ferent regions. If Mary were instead to create the course description with the food beingLasagna, the assertion would be successful.When combining properties of an individual, classic may discover that a role is closed,i.e., it can have no more �llers. For example, suppose a wine is de�ned to have exactlyone maker, which is a winery. If the individual Kalin-Cellars-Semillon is known to bea wine with maker Kalin-Cellars, perhaps represented as(AND WINE (FILLS maker Kalin-Cellars)),then the maker role is implicitly closed by classic on Kalin-Cellars-Semillon, since itcan have no more �llers. Thus, if the user tries to add a �ller to the maker role, this willcause an error. The user may also explicitly close a role (see Section 2.3).When a new individual is created, inheritance and combination of properties may alsocause certain information to be propagated to another individual. For example, supposewe know that Sue drinks Chateau d'Yquem Sauterne, and we tell classic that Sue drinksonly dry wines. The information is then propagated that the individual Chateau-d-Yquem-Sauterne must be a dry wine. Contradiction detection will take place during propagationof properties. In this example, if Chateau d'Yquem Sauterne were already known to bea sweet wine, a contradiction would be detected. When a contradiction is found on anindividual, the assertion that caused the contradiction is retracted (i.e., that Sue drinksonly dry wines), and all the inferences done up to the point of discovering the contradictionare undone (Chateau-d-Yquem-Sauterne is reverted back to being a sweet wine).When a new concept is de�ned, and all of its properties are inherited and combined,classic determines whether the concept is incoherent (i.e., if the concept can have noinstances because it contains inconsistent information). For example, if the concept FULL-BODIED-WINE is a wine whose body must be full, MEDIUM-BODIED-WINE is a wine whosebody must be medium, and a wine must have exactly one body, then(AND FULL-BODIED-WINE MEDIUM-BODIED-WINE)will be detected to be an incoherent concept, since a wine cannot have a body of both fulland medium at the same time|it cannot have more than one body.When a new concept is de�ned, classi�cation is used to �nd all concepts more gen-eral than the new concept and all concepts more speci�c than it. For example, sup-pose that the concept FULL-BODIED-WHITE-WINE is de�ned as a WINE whose body is Fulland whose color is White. When it is classi�ed, the concepts FULL-BODIED-WINE andWHITE-WINE would be found as parent (more general) concepts (assuming these conceptshave been previously de�ned), while the concept FULL-BODIED-STRONG-WHITE-WINE wouldbe found as a child (more speci�c) concept (assuming it has been previously de�ned). Dur-ing classi�cation, subsumption is used to determine whether one concept is more generalthan another concept. In this example, FULL-BODIED-WINE would be found to subsumeFULL-BODIED-WHITE-WINE, since it is impossible to have an instance of the latter that isnot an instance of the former. Rules are ignored when determining whether one conceptsubsumes another.When a new individual is created, classi�cation is also invoked, to �nd all conceptsthat are satis�ed by the individual. For example, suppose that the individual Forman-Chardonnay is known to be a WINE whose body is Full, whose color is White, and whose10

flavor is Moderate. When it is classi�ed, it would satisfy the concept FULL-BODIED-WHITE-WINE, but not the concept FULL-BODIED-STRONG-WHITE-WINE. When a new conceptwith a test restriction is de�ned, and a subsumption test is done between that concept andanother existing concept, also containing a test restriction, the Common LISP functionsare not analyzed to see if one is more general than another. However, when a new individualis created, and a check is done to see if that individual satis�es an existing concept con-taining a test restriction, the test function is run on the individual to see if the individualsatis�es the restriction.As discussed in Section 2.1.4, a classic rule consists of an antecedent and a consequent,both of which are concepts. When an individual is known to satisfy the antecedent conceptof a rule, the rule is applied, or \triggered," and the individual is also known to satisfy theconsequent concept. In the example from Section 2.1.4, when Mary is known to be eatinga dessert course, the rule is �red that asserts that the wine she drinks with the course is afull-bodied, sweet wine. If she is known to be drinking a dry wine, then a contradiction issignaled, because the information implied about the wine she is drinking is inconsistent.2.3 Knowledge Base OperationsThere are a number of operations a user can perform on a knowledge base in classic.The user can query the knowledge base for information, by asking the following types ofquestions:� \What are all the instances of this concept?" (\Which individuals satisfy this de-scription?")� \Which concepts does this individual satisfy?"� \Which individuals �ll role r on individual I?"� \How is role r restricted on concept C (or on individual I)?"A user can de�ne a new concept, role, or individual. This may cause any of a number ofinferences to be performed (see Section 2.2). A user can also add information to a knownindividual. For example, if the user originally asserts that Mary has exactly one child,she might later assert that Mary's child is Sue. Concept de�nitions cannot be modi�ed,although a user can add new rules with any concept as an antecedent at any time.A user can assert about an individual that a speci�c role is closed, i.e., its current �llersare the only �llers (unless a role is closed, explicitly with a function call, or implicitly whenthe number of �llers reaches the AT-MOST restriction, it may have more �llers, since thereis no closed-world assumption in classic|see Section 4.7). There is no CLOSE operatorin the expression language. Instead, there is a separate function used to close a role on anindividual.9Information that has previously been asserted about an individual can be retracted inclassic. For example, suppose Mary was originally de�ned to be a PERSON, and thenshe is asserted to be a NON-WINE-DRINKER (a person who drinks no wines). If some-one then sees Mary drinking wine, he or she could retract the information that Mary is a9This is because a CLOSE operator would provide a di�erent kind of knowledge (autoepistemic) fromall other operators. 11

NON-WINE-DRINKER. In that case, Mary would revert back to being simply a PERSON, andany inferences that may have been made due to her being a NON-WINE-DRINKER are un-done. The user can also retract rules that have been added to the knowledge base. Noother information about concepts can be changed.

12

3 When is CLASSIC Appropriate?As we have seen, classic includes both a language for representing certain kinds of knowl-edge, and a system that supports the manipulation of descriptions in this language. Assuch, it is part of a large family of computer systems variously known as data or knowledgebase management systems. As with all such systems, classic has certain characteristicsthat make it appropriate for some applications and inappropriate for others. These keycharacteristics include the following:� object-centered: all individuals have a unique, intrinsic and immutable identity ob-tained at time of creation; the user cannot form arbitrary logical sentences;� terminological: the system supports the de�nition of complex \noun phrases" in theform of concepts (and the discovery of their inter-relationships); these concepts canthen be used to make assertions about objects. classic is therefore good at describingcomplex objects, but not particularly suitable for making complex assertions, suchas ones involving multiple quanti�ers or disjunction;� deductive: classic is not just a passive repository for unconnected assertions, like arelational database; the system actively searches to �nd an entire class of propositionsentailed by the facts it has been explicitly told;� incremental: partial, incomplete descriptions of individuals are acceptable;� supports knowledge retraction: the system tracks dependencies between facts andallows certain facts to be retracted;� supports simple rules: these are applied in a simple forward chaining manner, when-ever appropriate individuals are found;� supports procedural tests: complex concepts, not otherwise expressible in classic,can be described procedurally in the host language, so that individuals satisfyingthem can be recognized;� well-integrated with the host language: classic allows values from the host program-ming language to be managed as instances of their own classes without requiringthem to be \encoded" as classic individuals.These characteristics allow classic to provide a great deal of power for certain types ofapplications, but also limit its utility in some situations.3.1 When to Use CLASSICThe most notable feature of classic's family of languages is the \self-organization" of theconcepts de�ned: because concepts have clear de�nitions, it is possible to have the systemorganize them into the subsumption hierarchy, rather than have the user specify their exactplace. This is important because standard logic and production systems, for example, donot address the knowledge engineering issue of organizing large collections of knowledge.Thus, classic, and more generally, its \sibling" languages can be exploited in any domainwhere it is useful to organize a large set of objects that can naturally be represented in13

terms of \features" or \roles." For example, it has been argued that this kind of automaticclassi�cation is a useful way of organizing a large set of rules in an expert system [Yen et al.,1989]: by classifying the left-hand sides, the system automatically calculates a well-foundedspeci�city ordering over the rules (the generalization hierarchy); this can be used directlyin conict resolution.Another example of such a family of applications would be information retrieval, whereevery object10 has a complex description, and a query may be phrased as a descriptionof objects having a certain structure (e.g., \�nd all meals with at least two courses, eachof which has a sweet wine as its drink"). In such cases, the descriptions can be classi�edwith respect to each other so that similar objects are grouped together. This can provide amuch more sophisticated indexing scheme than simple keyword schemes, without increasingretrieval time signi�cantly since everything is preclassi�ed. (The cost for this type ofsystem is at concept classi�cation time, but presumably that would not be a problemin a library scenario.) The lassie system [Devanbu et al., 1990; 1989] is one exampleof such an application: it maintains information about a large software system and itscomponents, viewed from multiple perspectives, and it can be queried as part of the e�ortof understanding the software system. lassie accepts queries in the form of structuredobject descriptions (e.g., \an action that drops a user from a call and is caused by abutton-push by an attendant"), and uses classi�cation to �nd all matching instances of thequery. lassie was �rst implemented in the kandor language, and has now been convertedto classic.Because the hierarchy of concepts can change dynamically, classic and its close rela-tives are also more appropriate for database-like applications that have an evolving schema|the normal state of a�airs in design and speci�cation e�orts, for example. In contrast,standard database management systems are relatively poor at supporting schema changes,in comparison to straight updates to data.Another important class of applications consists of those involving incrementally evolv-ing descriptions. In contrast to standard repositories of data, such as traditional databases,a classic knowledge base allows the user to maintain a partial, incomplete view of thedomain of discourse, a view in which information is incrementally acquired. The followingare some of the features of classic that support this:� role �llers of individuals can be described in ways other than by simple enumeration;for example, it is possible to{ assert how many objects an individual is related to via some role, without know-ing the actual objects (e.g., \every wine has at least one object related to it viathe grape role");{ describe the �llers of a role, without knowing them; for example, \all the �llersof the drink role for this course are from France";� incomplete information may be gradually re�ned as new knowledge is acquired; thus{ a particular meal can be said to have at least three courses, and then laterdiscovered to have at least four;10An object might be a text document, some software component, a chemical compound, a meal, etc.14

{ a particular individual may �rst be known to be an instance of FRUIT (someprimitive class), and then later be discovered to be an instance of GRAPE (a morespecialized primitive class), without knowing the exact variety of grape (each ofwhich is a primitive subclass of GRAPE);� the \closed world assumption," normally invoked in data and knowledge bases, viewsthe state of knowledge to be complete at any time; therefore when additional infor-mation (not contradicting past data) is added, one is often faced with the problemof having to retract certain conclusions that were reached \too hastily." The absenceof the closed world assumption in classic avoids these problems by not drawingconclusions until all information is known, and hence classic supports incremental�lling-in of a partially-known situation.This ability to handle partial knowledge can be usefully exploited in such tasks as the designor con�guration of artifacts (where something is being created, without having an exactidea of all its parts until it is completed), or the \detective" process involved in recognizingobjects from clues discovered over time (e.g., identifying criminals). Languages in the kl-one family have been used for such purposes in con�guration tasks [Owsnicki-Klewe, 1988],among others.classic is also suitable for applications that want to enforce constraints on collectionsof facts because inheritance is strict and \trigger"-like rules are available. We have oneapplication (a con�gurator) that uses classic mostly as an integrity checker. This appli-cation makes use of inheritance by putting constraints on high level concepts and then letsclassic enforce the constraints on all subconcepts, avoiding the redundancy that wouldbe necessary in many database implementations of the same facts.classic, unlike other languages of its kind, has been designed to allow the relativelyeasy integration of individuals from the host programming language in a manner consistentwith CLASSIC individuals. This makes classic easier to use in situations where values suchas integers, etc., need to be stored in the knowledge base, and in the case of languages likeCommon LISP, it allows arbitrary data structures and programs to be kept in a classicknowledge base|an important feature for AI applications to Software Engineering, forexample.Because of the object-centered nature of classic, individuals can be created withoutknowing some or all of their �nal descriptors. This allows a user to take the following setof steps: 1) create some new \dummy" individual; 2) relate it to some existing individual(e.g., as a role �ller); and 3) inspect the KB to see what additional descriptors have beenattached to the dummy individual as a result of rule �rings and other deductions. Theresult is a technique for obtaining so-called \intensional" answers to queries|descriptionsof conditions that must hold of any individual, currently existing or not, which satis�escertain relationships (see [Borgida et al., 1989] and Section 6.7 for more details). Suchquerying is not supported by traditional databases.3.2 When Not to Use CLASSICPrevious sections have mentioned the goals and philosophy behind the design of classic.In keeping with our principles of providing e�ective reasoning services, certain expressivefeatures have been deliberately left out of the language. These features obviously inuencethe situations where classic is appropriate as a representation tool.15

Because of its object-centered nature, classic is likely to be cumbersome to use incases where mathematical entities such as tuples, sequences, geometric entities, etc., are thecenter of attention. This is because such entities usually have a notion of \equality" basedon (recursive) component identity. For example, calendar dates are structured objects, andit seems natural to model them as classic individuals with three attributes: day, month,and year. However, object identity may provide surprising results: if we are tracking thedate on which wines are bottled through an attribute bottled-on, and we are interestedin �nding out whether two bottles Wine-bottle-53 and Wine-bottle-661 were bottledthe same day, then simply checking that Wine-bottle-53's bottled-on is the same asWine-bottle-661's bottled-on may result in the answer \false" even if the two dateshave the same day, month, and year. In order to avoid such problems, the user would haveto search the knowledge base before entering any date, to make sure that a date with thesame attribute values did not already exist.11With classic, an application requiring simple retrieval of told facts, with no interestin derived consequences or a complex query language, will pay an unnecessary performancepenalty (both in time and in space) during the processing of input data, and especiallyin the revision of told facts, since updates would normally be quite simple in that case.Furthermore, at least at the moment, classic does not have e�cient data access facilitiesbuilt-in in order to handle very large numbers of individuals, such as desired in data-processing applications.Since classic does strict inheritance, defaults and exceptions are not easily encoded inthe language. If an application is inherently oriented toward defaults, classic should notbe the language of choice. If, however, there are only a small number of certain kinds ofdefaults, classic may be adequate (see Section 6.3).classic provides only a limited form of rules, where both the antecedent and theconsequent refer to the membership of a single individual in some concept (which of coursemight be structured). Applications requiring complex conditions in the antecedent aremuch more di�cult to handle properly. First, classic supports neither full negation norfull disjunction, so these constructs are not usually available for expressing complex triggerconditions (but see Sections 6.1 and 6.2). Nor is it possible to write rules that are triggeredby the existence of two or more individuals that are not directly related by some chain ofroles (e.g., \if there exist wines x and y such that one is twice as old as the other, then. . . ").One could consider using something like ops5 as a front-end rule-processing system anduse classic as a back-end structured working memory. An alternative explored in [Yen etal., 1989] has been to expand the role of the knowledge base to manage both the space ofrules and the policy of rule �ring.classic does not have full negation. If an application will constantly need to refer toa concept that includes everything that is not an instance of some other concept, then theapplication is not well-suited for classic. Limited uses of negation are discussed in Section6.1.Classi�cation systems such as classic are usually implemented as forward-chaining11In classic, this problem could sometimes be resolved through the use of complex objects in the host-language domain, as long as the host language performs equality checking in a component-wise fashionon certain data structures, such as is the case with Common LISP's equal predicate. However, in thatcase, the internal structure of the objects of interest (e.g., dates) would not be accessible to classic forreasoning. 16

inference systems. (By way of contrast, queries in prolog and databases augmented withrecursive rules are usually processed by working backward from the query to the databaseof explicitly asserted facts.) This means that the addition of new concepts or individuals istime-consuming, though retrieval is more e�cient. Therefore if updates are frequent andtime-critical, current implementations would make such systems less than ideal when thenumber of objects becomes large.Because classic distinguishes individuals from (generic) concepts, and does not sup-port \meta-concepts," classic itself is not suitable in situations where some individualmay in certain cases be viewed as a class with instances. For example, there is no directway to associate with the concept WINE a speci�c value through a role such as average-ageor maximum-sugar-content|roles that do not make sense when applied to individual bot-tles of wine. Note however that this is not an intrinsic lack of kl-one-style languages|itcould easily be remedied in future generations.Similar problems arise in situations where the \ontology" of the domain is not self-evident: in a knowledge base about wines, does an instance Kalin-Cellars-Chardonnayof the concept CHARDONNAY-WINE correspond to a speci�c kind of wine, to a particularvintage (\the 1985 one"), or, even more speci�cally, to a particular bottle? In the case ofthe vintage, is it after bottling, or later on, or both? Such shifts of perspective are noteasily supported by knowledge representation languages that maintain a strict distinctionbetween individuals and concepts (see Section 5.1.1).Finally, classic and its relatives have general (weak) reasoning procedures, and donot support the direct and e�cient addition of specialized kinds of inferences. This meansthat applications needing to make intensive use of temporal reasoning or spatial reasoning,for example, would �nd it di�cult to have classic deduce the desired relationships (butsee [Litman and Devanbu, 1990] for an extension to classic that makes it more useful inplanning applications).While some of the above limitations are inherent to the object-centered view of classic,extensions to the system may eventually relax some of the other restrictions. Under activeconsideration now are the addition of defaults, a more elaborate rule framework, and large-scale data storage facilities with a powerful query language.

17

4 Di�cult IdeasOnce you have decided to use classic to build a knowledge base it is important to under-stand several subtle issues. We will address these in relation to classic; however, manyare equally applicable to the other languages in the kl-one family. The issues concern thephilosophy of the language and knowledge-base design, and can a�ect decisions concerningthe gross structure of the KB. The issues include the amount and kind of information thatshould go into a concept de�nition, individuals versus concepts, classic's detection ofincoherencies in role �llers, when rule application occurs, how classic handles unknownindividuals, how updates are done, and the impact of eschewing a closed world assump-tion. Two other key (and somewhat di�cult) ontological considerations are covered inSection 5.1.4.1 Primitive and De�ned ConceptsIt has been traditional in the kl-one family of languages to provide for two kinds ofconcepts|de�ned and primitive. A de�ned concept is like a necessary \if and only if"statement in logic. For example, if a white wine is de�ned to be exactly a wine whose coloris white, then deductions can be done in two directions:� if we know something is a white wine, then we know that it is a wine and it is white;� if we know something is a wine and has color white, then we know it is a white wine.In other words, this kind of de�nition includes necessary and su�cient conditions for mem-bership in the class. So, if WHITE-WINE is de�ned in the obvious way, any object that isasserted to be one will be both a wine and something whose color is white; also, anythingthat is known to be a wine and have white color will be classi�ed as a WHITE-WINE.A primitive concept includes only necessary (but not su�cient) conditions for member-ship. In contrast to de�ned concepts, primitive concepts support deductions in only onedirection (like an \if" statement instead of an \if and only if" statement). For example, itis hard to de�ne \wine" completely. So one might say that, among other things, a wine issomething that has a color that is either Red, White, or Rose. In this case, when classicis told that something is a wine, it will infer that it has a value restriction on the colorrole, but just because something has a color role �lled with value Red, classic does notinfer it to be a wine.Determining whether a concept should be primitive or de�ned is a key aspect of buildinga classic KB. The basic idea is that a primitive concept is appropriate when no completede�nition exists or when only part of a completely known de�nition is relevant. In theformer case, we have no choice but to use a primitive concept|if we use a de�ned concept,accidental and inappropriate \only if" deductions will be sanctioned. In the latter case,there may be no need to bother with a complete de�nition if the application never demandsthat the system automatically recognize an instance of the concept. If the user can beguaranteed to assert class membership directly, then a full de�nition of a concept like WINEis not necessary, even if one is possible. De�ned concepts are appropriate when the completede�nition is known and relevant, or when one wants the system to determine membershipin a class. Primitive concepts are usually found near the top of a generalization hierarchy18

and de�ned concepts typically appear as we move further down by specializing generalconcepts with various restrictions.In classic, primitive concepts are distinguished by indices. Thus concepts FOOD andWINE could be de�ned as classic terms (PRIMITIVE CLASSIC-THING *food*) and(PRIMITIVE CLASSIC-THING *wine*) respectively; the indices *food* and *wine* al-low these two concepts to be di�erent, and at the same time permit synonyms to be de�ned:FAVORITE-BEVERAGE might also be de�ned as (PRIMITIVE CLASSIC-THING *wine*).The use of indices reinforces that the meaning of a primitive concept de�nition is con-tained in its expression|as is the case with all other classic descriptor types|while thename is simply a label that helps the user. De�ned concepts do not need an index asthey are distinguished from other concepts by their very de�nitions. Synonyms can alsobe created by de�ning two concepts with equivalent descriptions. Both the concept namesmay be used later, but in the concept hierarchy they refer to the same entity.In general, there are three reasons to consider creating a de�ned concept in systems likeclassic:1. The most important reason is simply that the meaning of an important domain termcan be fully de�ned within the language. In many cases, there will be a naturalname in the domain for the concept and an obvious set of necessary and su�cientconditions. For example, OENOLOGIST might be de�ned as a PERSON who studieswines. There will be many of these concepts in an arti�cial domain, and few if thedomain covers mainly naturally occurring objects.2. In some ontologies, it can be useful to organize the antecedents of rules into a taxon-omy. Rules can be organized so that each consequent is associated with an antecedentat the right level of generality, and rules that apply to more general situations canbe inherited and applied in speci�c situations. This allows classi�cation|and notjust direct assertion|to determine when a rule is invoked. For example, as in oursample knowledge base (see Section 5.3), we might have partial knowledge aboutan appropriate wine associated with the general property that a course's food isseafood (i.e., the wine's color must be white), and another fact associated with amore speci�c property, for example, that the course's food is shell�sh (i.e., the winemust be full-bodied). Organization of the antecedents into a hierarchy makes theontology clearer and makes knowledge base maintenance substantially easier. Herea de�ned concept is simply used to express the antecedent of a rule, and need notcorrespond to any natural class in the domain; such concepts will most likely not haveany naturally-occurring names in the domain. In our sample KB, we have used con-structed names like \SHELLFISH-COURSE" for these concepts, although such nameshold no signi�cance other than as placeholders (the antecedents of rules in classicmust be named).3. For some primitive concepts, there may be a number of ways that class memberscan be recognized, even if there is not a single necessary and su�cient de�nition.A �nal use for de�ned concepts is to express su�ciency conditions for recognitionof members of an otherwise primitive class. For example, while PERSON would mostlikely be primitive in most ontologies, conditions like \featherless biped" and \childof a person" might be considered su�cient conditions for determining personhood. Inclassic, one can use a de�ned concept to represent each set of su�cient conditions19

(e.g., FEATHERLESS-BIPED would be a de�ned concept). Each such concept would bethe antecedent of a rule whose consequent was the primitive concept whose memberswere to be recognized (PERSON, in this case).4.2 De�nitional and Incidental PropertiesIt is important in classic to distinguish between a concept's true de�nition and anyincidental properties that its instances all share. For example, consider red Bordeaux wines,which are always dry. The color and the region would clearly be part of the de�nition ofthe concept RED-BORDEAUX-WINE, since this constitutes part of the very meaning of theterm. But the property of being dry is certainly not part of the meaning of \red Bordeauxwine," even if it is a (contingent) universal property of red Bordeaux. Thus, in a classic-style representation the �rst two properties, (FILLS color Red) and (FILLS regionBordeaux), would be part of the concept RED-BORDEAUX-WINE, whereas the third would beexpressed as a rule, whose consequent would be (FILLS sugar Dry) and whose antecedentwould be RED-BORDEAUX-WINE.The distinction between de�nitions and incidental properties is not important in KRsystems that do not perform classi�cation, as it has no e�ect on how these systems work.However, in classic, since they represent only necessary, and not su�cient conditions,rules do not participate in either recognition or classi�cation. So, for example, putting the\dryness" property into the de�nition of RED-BORDEAUX-WINE would mean that a winewould have to be dry to be recognized as a RED-BORDEAUX-WINE (as opposed to hav-ing \dryness" automatically asserted about wines that have already been recognized asRED-BORDEAUX-WINEs); it would also mean that RED-BORDEAUX-WINE would be inappropri-ately classi�ed under the concept DRY-WINE. (See also Section 5.3, especially footnote 19.)This type of inappropriate classi�cation also a�ects primitive concepts. Consider theearlier primitive de�nition of WINE as something that has, among other things, a color thatis either Red, White, or Rose:(PRIMITIVE (AND (ALL color (ONE-OF Red White Rose))(AT-LEAST 1 color))*wine*).Another way to view this might be to make WINE an atomic primitive concept (i.e., directlybelow CLASSIC-THING), and use a rule to express the color restriction. In both cases, sinceWINE is primitive, the color restriction would not be used to answer subsumption questions.Also, if an individual were stated to be a wine, in both cases, the individual's color rolewould be checked for consistency with the restriction. However, there is an importantdi�erence. If we added a de�ned concept, COLORED-THING (something that has at least onecolor), then if WINE were only a primitive thing that had a color restriction in a rule, it wouldnot be classi�ed under COLORED-THING. The WINE concept that included the restriction aspart of its meaning would, on the other hand, get classi�ed under COLORED-THING.The distinction between de�nitional and incidental properties must be carefully madefor all concepts in classic, not just de�ned concepts. In general, the user must decideon ontological grounds whether a restriction should be taken as part of the meaning ofa concept (and thus participate in classi�cation and recognition) or simply as a derivedproperty to be inferred once class membership is ascertained. The di�erence between20

primitive and de�ned concepts is that in the former case class membership must be asserteddirectly (by the user or a rule), and in the latter the system can determine it.4.3 Concepts and IndividualsAlthough in some ways concepts look very similar to individuals (e.g., classic's syntaxallows the same types of expression for each), there are some subtle (and some not so sub-tle) di�erences between them. It is useful to understand some of the important distinctionswhen trying to understand classic's classi�cation and deductive processes. First, individ-uals have unique identities and are countable. An individual can be described by conceptexpressions that apply to it, but there is a uniqueness assumption that guarantees that twoindividuals with di�erent names|even with the same description|will be di�erent individ-uals. Concepts are descriptions and because of the compositional nature of descriptions, theconcept space is in�nite. The concept hierarchy could include things like full-bodied-wines,full-bodied-white-wines, full-bodied-white-medium-avored-wines, etc. When consideringthe knowledge base, it makes sense to count the individual wines but it is not clear how orwhy one would want to count all the descriptions of those wines.Next, facts in the world can change, and thus individuals can change, too. One mightwant to add information to a particular individual or perhaps change something about it,for example, the price of a wine. In contrast, concept de�nitions and their relationships toeach other do not change. Once someone de�nes a white wine, say as a wine whose coloris white, classic will continue to classify all individuals and concepts with respect to thisde�nition until someone reloads the entire knowledge base. A more subtle issue is thatretraction and addition of facts about individuals do not change the concept classi�cationhierarchy. Individuals, and their classi�cation, can change through assertion and retractionof facts; but the semantics of classic was designed to make the concept hierarchy beimmune to changes in individuals. (The concept hierarchy would change monotonically ifa new concept de�nition were added.)For example, given a concept PICNIC-BASKET de�ned as(AND BASKET(AT-LEAST 2 drink) (AT-MOST 2 drink) (ALL drink WINE)(AT-LEAST 3 food) (ALL food EDIBLE-THING)),a CALIFORNIA-PICNIC-BASKET de�ned as(AND PICNIC-BASKET (ALL drink CALIFORNIA-MADE)),and a KALIN-CELLARS-BASKET de�ned as(AND PICNIC-BASKET(FILLS drink Kalin-Cellars-Chardonnay Kalin-Cellars-Cabernet)),then even though both the wines in the de�nition of KALIN-CELLARS-BASKET happen to bemade in California, KALIN-CELLARS-BASKET will be classi�ed under PICNIC-BASKET but notunder CALIFORNIA-BASKET. The motivation is that the concept hierarchy should not have tochange if the incidental facts about one individual changed. If Kalin Cellars moved its win-ery to Oregon, we would not want to have to reclassify the concept KALIN-CELLARS-BASKET.Note, however, that if there were an individual Kalin-Cellars-Basket-1 that was a21

KALIN-CELLARS-BASKET, this would in fact be classi�ed under CALIFORNIA-BASKET. Thedi�erence is that this is an individual, and as such it is classi�ed based on the knownproperties of all individuals, including its role �llers. Concepts are not classi�ed based onproperties of individuals; they are only classi�ed based on information that is necessarilytrue. The individual Kalin-Cellars-Basket-1 could later be reclassi�ed if the proper-ties of either Kalin-Cellars-Chardonnay or Kalin-Cellars-Cabernet were changed ormodi�ed.As mentioned previously, in classic, rules function di�erently with respect to conceptsand individuals. Rules are associated with concepts but they are not \�red" until anindividual is found to be an instance of the concept. Thus, although there may be a rulethat says that wines for seafood courses must be white, this rule would not be enforceduntil there was a known individual seafood course.4.4 Rule ApplicationA rule (see also Sections 2.1.4 and 6.4) is not actually \�red" until an individual is found tobe an instance of the antecedent concept. Thus, if one creates a rule that says that whitewines must be drunk with seafood courses, this information does not get propagated untila seafood course exists. One rami�cation of this is that in order to test all the rules in aknowledge base, e.g., for global consistency, one needs to create individual instances of allthe concepts that are the antecedents of rules. For example, consider the SEAFOOD-COURSEconcept above and a concept SHELLFISH-COURSE that is a kind of SEAFOOD-COURSE witha rule stating that the wine drunk with a SHELLFISH-COURSE must be a full- or medium-bodied wine. In order to check consistency of the rules and to observe restrictions appearingon the wines of courses, individual seafood and shell�sh courses would need to be created.Once we created a shell�sh course with an associated wine, we would �nd that the winewould be restricted to being a white, full- or medium-bodied wine.Because the right hand sides of rules are concepts and not commands, it is not possiblefor a retraction to result from the application of a rule. Thus, the only thing that a rulemay do is state that if an individual is found to be an instance of the antecedent concept,then it is an instance of the consequent concept. If this is not consistent with the otherfacts in the knowledge base, then the statement about the individual that triggered the�ring of the rule would not be allowed as input to the knowledge base.It should be noted that rules work in one (and only one) direction. In the previousexample, because a course is a seafood course, then we know that the wine for the coursemust be a white wine. The system would not make the backward inference that because awine for a course is not a white wine, then the course must not be a seafood course.4.5 Unknown Individuals in CLASSICOne of the advantages of classic, as pointed out earlier, is that it allows the description ofpartially known objects. For example, one way to give information about \null values"|values that exist but are not currently known to the KB|is through identities betweenattribute paths. We can say, for example, that the Thanksgiving day menu will havethe same drink for lunch as for dinner (by adding (SAME-AS (lunch drink) (dinnerdrink)) to the description of Thanksgiving-Day-Menu), without knowing the identity of22

the lunch, dinner or drink objects.More usually, it is possible to give �ller information about roles of unknown objects;for example, one can take an individual course, Course-1, and add to its description therestriction (ALL drink (FILLS grape Riesling))to state that the wine served with it is made from Riesling grapes, without knowing theactual wine to be served.These examples might make one believe that the system actually creates and maintainsclassic individuals for all entities in the domain implied by the current knowledge base(these are sometimes called \Skolem individuals"). This, however, is not the case. Wecannot say that some restaurant's wine list includes the drink of Course-1, and then, lateron, when we �nd out what is the speci�c drink of Course-1, expect it to show up on thewine list.In the current implementation of classic the processing of individuals is complete onlyin the case when the �llers of roles are all known. The following two examples illustrateincompleteness that occurs when some role �llers are not known.First, in order to determine that some individual Ind is an instance of a concept of theform (ALL p (ALL q C)), it is su�cient to know the complete set of the q's of the p's ofInd without necessarily knowing the p's of Ind. Course-1 above illustrates this possibility:we know that the grapes of the drinks of Course-1 include Riesling, but we don't knowthe drinks; if Riesling were known to be a fruit and the grape role could have at most one�ller, a more complete reasoner would recognize Course-1 as an instance of the concept(ALL drink (ALL grape FRUIT)).For the current implementation, we believe that situations in which such conclusions canbe reached are su�ciently rare that we have chosen to avoid the ever-present overhead oflooking for them.Second, the implementation does not perform case analysis over the set of possible �llersfor some role or role-path. This means that even if Course-2 has one drink, which is eitherMouton-Cadet or Chateau-Lafite, and both are made in France, the system will fail torecognize that no matter which object is the actual �ller of drink, Course-2 should be aninstance of the concept(ALL drink (FILLS made-in France)).We emphasize that the above incompleteness arises only in the presence of the construc-tions (ALL p (FILLS q ...)) and (ALL p (ONE-OF ...)), used because the actual�llers of the p role are not yet known. In the current implementation, when informationabout individuals is incomplete in this way, the subsumption mechanism normally used forconcepts is used (since that deals with descriptions intended to be incomplete). However,with that mechanism, the properties of individuals are not considered (e.g., the regions ofthe wines in the above example; for the reasons for this, see Section 4.3), even though theyought to be when processing individuals.
23

4.6 UpdatesAs mentioned in Section 2.3, classic allows information that has been explicitly assertedby the user about individuals to be retracted. However, classic does not allow retractionof information that has been derived from other information. This is best explained withan example.Let us begin with an individual that has a restriction on all of the �llers of a roleand a known �ller for that role, and then try to retract the restriction on the �ller. Ifclassic were told that Lori drinks only kosher wines and that one of the wines that shedrinks is Shalom-Cream-White-Concord, then Shalom-Cream-White-Concord would beinferred to be kosher (by a propagation inference). If at some point, we actually wereto discover that Shalom-Cream-White-Concord was not kosher, we might want to retractthat fact from our knowledge base. classic would not allow this retraction since itsknowledge about this fact is considered to be derived information. classic would forcethe retraction of some piece of user-stated information that led to the conclusion thatShalom-Cream-White-Concord was kosher. For example, the user could retract either thefact that Lori drinks Shalom-Cream-White-Concord or the fact that Lori drinks only kosherwines.The reason for disallowing retraction of derived information is to maintain consistencyof the knowledge base. If classic allowed direct retraction of the fact that Shalom-Cream-White-Concord was kosher, then if someone asked if it was, it would be unclear how toanswer: if the ALL restriction on Lori's drinks role were enforced, the answer would be\yes"; if the directly stated facts on Shalom-Cream-White-Concord were examined, theanswer would be \no." Also, if classic allowed retraction of derived information, someupdates would appear never to have occurred. classic's approach to updates is to retractthe stated information and automatically retract all derived information that was basedon that information. Then the system rederives all facts that hold in the new situation. Ifclassic allowed the retraction of the fact that Shalom-Cream-White-Concord was kosher,then following this algorithm, it would have to reclassify Shalom-Cream-White-Concord. Itwould once again �nd that Shalom-Cream-White-Concord was a wine that Lori drank andthen it would propagate the restriction that the wine must be kosher. Thus the knowledgebase would simply revert back to the previous state wherein Shalom-Cream-White-Concordwas kosher; the update would appear never to have occurred. The only other way tomaintain consistency would be for classic to retract a piece of information that led to thederived information. In this case, it is not clear which piece of information that should be,thus it seems appropriate to force the user to make the choice.4.7 No Closed World Assumptionclassic does not work under the closed world assumption (CWA) for individuals, thatis, it does not assume that anything that it does not know is false. Thus, if some basketwere known to have two speci�c wines in it, classic would not assume that it had onlytwo wines in it|it would deduce only that the basket had at least two wines in it. Soif this same basket had three things to eat in it and we knew that PICNIC-BASKETs byde�nition had at least three things to eat and at most two wines in them, this basket couldnot be classi�ed as a PICNIC-BASKET. It would only be classi�ed as such when the drinkrole became \closed"|i.e., when classic was told or it derived that there could be no24

other �llers for the drink role. This example shows that in general an individual cannotbe classi�ed under a concept with an AT-MOST restriction until the corresponding role isclosed. The same is true for concepts with ALL restrictions.12A role can be closed in two ways. The user may explicitly tell classic that a particularrole on an individual will have no more �llers. Alternately, the system may derive that a rolemust be closed. If the system is told that an individual is an instance of a PICNIC-BASKET,and it also knows that PICNIC-BASKET contains the wines Kalin-Cellars-Chardonnay andMarietta-Zinfandel, then classic can deduce that the role is closed since the de�nitionof PICNIC-BASKET states that there may be at most two wines.

12There is one way to classify an individual with respect to concepts with AT-MOST or ALL restrictions.If the individual in question has a restriction (either directly or by inheritance), then classic can makedeductions based on this restriction, including determining that it implies the target AT-MOST or ALLrestriction. If, for example, classic is trying to classify something as a CALIFORNIA-BASKET and its drinkrole is not closed, but it does have a restriction that all its drinks are made in the Napa Valley, and weknow that everything that is made in Napa Valley is made in California, then even without knowing allthe �llers of the drink role, classic can make the deduction that it satis�es the ALL restriction on drinkof CALIFORNIA-BASKET. 25

5 Building CLASSIC Knowledge BasesOnce it has been determined that classic is an appropriate language to use in describinga domain, and some of the more subtle language issues are well in hand, there is still thesigni�cant problem of designing the knowledge base given the domain structure. While notidentical to the traditional expert systems process, the process of developing a classicKB is a form of knowledge engineering, where the key is �nding the right way to break thedomain into objects and their relationships. While there is no single method for producingsuch an ontology, we discuss some general issues to consider and o�er one possible processfor creating a knowledge base. We also present parts of a classic knowledge base, toillustrate the style of description of a typical domain representation.5.1 Basic Ontological Decisions|Individuals and RolesSince frame systems like classic are object-centered, the key idea is to determine what the\objects" in the domain are. This involves the speci�cation of the individual items aboutwhich information can be gathered and asserted (the individuals of the domain), as wellas the speci�cation of classes of those items that share common properties (the concepts).The properties of the individuals and the relationships between them are then representedas roles. This is all complicated by two key facts: what constitutes an \individual" is notalways clear (di�erent levels of abstraction are possible), and some terms seem equally wellexpressible as concepts and as roles. In all of these cases, the knowledge engineer needs tomake a determination fairly early in the KB design process.Let us consider these two issues in turn, and then we will discuss a general procedurefor getting a domain characterized in classic.5.1.1 Individuals versus ConceptsImagine that we are developing a knowledge base of foods and wines. Intuitively, it wouldseem clear that items like WINE and WHITE-WINE (a wine whose color is white) should beconcepts. It is likewise reasonably clear that CHARDONNAY-WINE (a wine made from thechardonnay grape) should also be a concept. However, things are not so simple when weattempt to represent a single \wine."In some knowledge bases, for example in an application that will recommend a wine toa patron for a general class of dinners (e.g., shell�sh), an individual winery's varietal (e.g.,Forman Chardonnay) will be an appropriate individual. In our sample knowledge base(Section 5.3), we use this as the level of our individuals. However, for some problems, thislevel might not be �ne-grained enough. For the discriminating wine-drinker, the vintage ofa particular wine may be critical, and thus FORMAN-CHARDONNAY would have to be a concept,in order that 1981-Forman-Chardonnay could be an individual. Or, it might be necessaryin some applications to make individual bottles of wine be individuals in classic.While di�erent kinds of objects can be considered individuals from di�erent points ofview, in a system like classic we are forced to make a commitment at the outset. Inthat case, the key question to ask is, which objects would be appropriate to count in anapplication? Or, alternatively, in a retrieval application, which objects would be best toretrieve given a query? For a wine-advisory application, the answer given by a wine stewardto the question, \How many wines do you stock?" would indicate which items to count as26

individuals (e.g., Forman-Chardonnay). Alternatively, one could count as individuals theitems appearing on a menu (e.g., winery, varietal, and vintage).Whatever level we �x for our individuals, any other descriptions in the domain thatcould be considered individuals from some other point of view can be handled in one oftwo less-than-ideal ways. First, they could simply be represented as concepts. Thus, if1981-Forman-Chardonnay was an individual, FORMAN-CHARDONNAY would be a concept,and the former would probably be described by the latter. An alternative would be toallow both objects to be individuals. But since classic does not currently support a\meta-description" facility, this representation would be incomplete in an important way,in that classic would maintain no relationship at all between the two individuals. Onecould go so far as to place a generic-varietal role on 1981-Forman-Chardonnay and �llthat role with Forman-Chardonnay, but classic would treat that role just as any other,and no properties of the more generic varietal individual would be inherited by the morespeci�c vintage one.5.1.2 Concepts versus RolesAs mentioned, another key distinction that the user of a language like classic is forced tomake is that between concepts and roles. A number of people working with kl-one-likelanguages have reported having di�culty deciding whether something should be a conceptor a role. Terms like \father," \landlord," etc., can be used equally well in either sense. Forexample, \Ron is a new father" uses father as a concept. \Ron is the father of Rebecca"uses it as a role. Even a more straightforward term like \grape"|an obvious candidatefor concepthood|can present a problem. We can easily imagine the properties of grapes(color, where-grown, age-of-vines, etc.), and can visualize GRAPE's place in a taxonomyof types of foods. However, it is equally plausible to imagine a grape role for the conceptof WINE, indicating the kind of grape a wine is made from. Should grape be a concept, arole, or both?While the treatment of any particular domain term will really depend on the application,there are some general guidelines to use when trying to design concepts and roles. Since partof the problem is the use of nouns in natural languages to correspond to both conceptsand roles, we need to look beyond the surface properties of words. In languages likeEnglish, certain nouns seem to reect items that have existence independent of any others(e.g., \person," \apartment," \wine," \grape"), and others reect items that depend onothers for their existence (e.g., \father," \landlord," \vintage," \skin"). The former mostobviously correspond to one-place predicates in �rst-order logic. We would have no troubledescribing an individual by one of these terms without reference to any other individualson whose existence they depend. Thus, we could independently characterize an object asa grape without needing to make reference to any wines made of out of such grapes, norwould there ever have to be any. The description of an item as a grape would stand on itsown, without implying the existence of any unmentioned individuals.13On the other hand, while we might naturally use some terms from the latter set asif they were also one-place predicates (e.g., \Deb is a landlord"), they in actuality imply13This discussion is intended to be intuitive, and relies only on a naive understanding of the ontologyof the world. It is not intended to invoke deep discussion about existence, objecthood, or any othermetaphysical issues. 27

the existence of a second argument (e.g., whom Deb is the landlord of). In this case, theprimary representation in classic should be as a role. Any interpretation of the term asa concept would be derivative from its interpretation as a role, since there is always animplied second argument.The clear guideline for discrimination between concepts and roles is thus the determi-nation as to whether a description can stand on its own without implying an unmentionedobject related to the object in question. In an intuitive ontology, SHELLFISH would clearlybe a concept, and vintage would clearly be a role. There are some cases|including thosejust mentioned|where it will be quite easy to determine which is which. In the case of anunquestionable concept like SHELLFISH, it is almost impossible to imagine using the term ina phrase like, \the shell�sh of hsomething elsei." That is, it would be very hard to imaginea property of something called its \shell�sh." In the case of an unquestionable role likevintage, it is almost impossible to consider using the term without the \of" phrase. Forexample, it is unusual to use \vintage" in any other way than as the vintage of a particularwine.Unfortunately, most terms will not be so pure in their natural use. However, the basicguideline still applies. Even though we can refer to a \wine's grape" (i.e., its composition),the concept of a grape stands on its own and does not need to lean on the existenceof any wines. Even though someone is referred to as a \father," that description is nottruly meaningful without taking into account the implied child. One interesting di�erencebetween these two cases (in which a term can be used either as a concept or as a role) isthat in the latter case, the value restriction used for the father role would have a di�erentname (MAN) than the role, whereas it seems most natural in the former case to name therole with the same name as the value restriction (the grape role of a WINE would be �lled bya GRAPE). It would seem somewhat silly and uninformative to have the value restriction ofthe father role be FATHER. This is because the only di�erence between the concept MAN andany proposed concept like FATHER is the man's playing the role of father. One could �ndall of the fathers in a knowledge base simply by �nding the set of men and then discardingthose not known to �ll the father role for some individual. The concept of a father clearlyhas its meaning compositionally dependent on the meaning of the father role.In the history of kl-one-style languages, proposals have been made for a type of ob-ject called a \qua-concept" [Freeman, 1982], which would be a concept whose meaning isdependent on some role. FATHER as a qua-concept would have a slightly di�erent structurethan, say, MAN, reecting the dependence of someone's being a father on the existence ofanother individual (some interesting property inheritance can be done in this case as well).classic, however, has no facility for this, so the best one can do is adhere to some reason-able conventions. If a separate concept for the role father is truly necessary (e.g., to actas a value restriction for some other role), consider naming it MAN-qua-father, to indicatethe functional dependence. This concept would be a subconcept of MAN, and it could bemade to work as if it were a qua-concept through the use of a procedural test, so that atleast classi�cation of all fathers could be achieved automatically.14In the case of a WINE's grape, one could use the same name for the role and the conceptwithout resorting to any other mechanism. classic will not get confused; however, users14What will be missing in this case is the automatic recognition that an OLD-FATHER is a FATHER, sinceno subsumption is computed on test functions (assuming FATHER and OLD-FATHER each had a single testfunction to compute their membership). 28

might. Thus, for clarity, it might be safer either to preface the role name with \has" toclearly distinguish the two senses (i.e., has-grape would be a role of WINE), or to create acompound concept name so that the role name will be simple. In our sample knowledgebase in Section 5.3, we do the latter, creating the category of a WINE-GRAPE, and usinggrape as a role for WINE. In many cases, there is a natural role name to use so that thisproblem will not even arise. Such is the case with a term like \vintage," where the valuerestriction of the vintage role for WINE would be YEAR. It is also not required in any waythat the names of roles should be nouns. made-from would be a perfectly reasonable namefor the role we have been calling grape.Finally, one should in general consider using roles to represent parts of objects, intrinsicproperties (e.g., the color of a wine), and extrinsic properties (e.g., the price of a wine, whichis not an intrinsic feature, but rather set in some external way), as well as for functionally-de�ned terms like \vintage."5.2 A Simple Knowledge Enginering Methodology for CLASSICWhen attempting to analyze a domain and build a classic-style representation, it isoften di�cult to know how to begin. Over the years, we have developed some guidelinesfor building knowledge bases that break the process down into a series of steps, startingwith a rough cut at the domain ontology and then re�ning the representation in severalpasses. While this method may oversimplify the knowledge representation process, it maybe useful in many application areas, especially for those who are just getting started inusing classic or other languages like it. We continue using our wine and meal examples.We have included below sketches of portions of the evolving KB to exemplify most of thesteps.1. Enumerate Object Types. First, without making any �ne-grained distinctions,it is useful to try to write down a list of all types of objects you would ever care tomake statements about or explain to a user. For example, important wine-relatedobject-types will include wine; grape; winery; location; a wine's color, body, avor,and sugar-content; di�erent types of food, like shell�sh and red-meat; subtypes ofwine such as white wine; etc. The key thing initially is to get a comprehensive list ofnames without worrying about overlap between concepts or any properties that theitems might have.
2. Distinguish Concepts from Roles. Looking at the list, make a major cut bydistinguishing between objects that have independent existence and those that dependon other objects for their existence (see Section 5.1.2). The former will be concepts,the latter must be roles. For example, wines will exist as independent objects, as29

will wineries, but the body of a wine and its sugar content are more appropriatelythought of as roles. In developing a classic KB, it is also necessary to distinguishwhich roles are attributes, i.e., which ones have exactly one �ller. Thus, color mightbe an attribute, since a given wine can have only one color, and grape would be aregular, multiply-�llable role, since a wine can be made from more than one type ofgrape.

3. Develop Concept Taxonomy. Group the concept objects into a hierarchical tax-onomy by asking if by being an instance of a type, an object will necessarily (i.e.,by de�nition) be an instance of some other type. The latter will then be above theformer in the hierarchy. For example, if something is a WHITE-WINE, it will neces-sarily be a WINE. Thus WHITE-WINE will be a descendant of WINE in the taxonomy.Remember that it is possible for a type to be an immediate descendant of more thanone other type. For example, a DRY-WHITE-WINE must be both a DRY-WINE and aWHITE-WINE.15

15Note that once the �nal representation of a concept like DRY-WHITE-WINE is completed, classic willbe able to determine automatically that it is a subconcept of the other two concepts. However, whendeveloping the domain ontology, it is not a bad idea to sketch out these relationships by hand; once theformal representation is constructed and everything is classi�ed, the user can check the resulting taxonomyagainst his/her original conception of the domain, to see if the formal representation is correct.30

4. Individuals. Isolate the set of key individuals that will be important in all uses ofthe application. For example, wine colors like red, white, and rose, and wine sugar-levels like dry and sweet will be critical in the de�nition of concepts like WHITE-WINEand DRY-WINE. For each individual, try to determine all of the concepts that aptlydescribe it.

5. Determine Properties and Parts. Once the basic ontology is laid out, withthe taxonomic relationships between concepts being fairly clear, it is time to turnattention to the internal structure of the concepts. For each concept enumerated sofar, write down a list of its properties. These should include� \intrinsic" properties like the color and body of a wine;� \extrinsic" properties like a wine's name and its price;� parts, if the type of object is structured; these can be both physical and abstract\parts" (e.g., the courses of a meal, the grape of a wine, the casks of a winery).(In the case of wines, we have no intuitively obvious parts.)Record also any key relationships between individual members of the class and otheritems (e.g., relationships like employee that might not be considered properties orparts of a winery). Each of the above relationships should be assigned to a role (whileit is useful to distinguish between parts and other properties, classic and relatedlanguages do not have any formal mechanism for distinguishing amongst di�erenttypes of roles). It is reasonable to expect that many of the roles will be used in manyconcepts. Each of the items determined to be a role in Step 2 should be accountedfor.N.B. Some of the roles determined to be relevant to a concept in this step willultimately end up playing a part in the de�nition of the concept, and some willbe used to express derived properties. In other words, some of the role restrictionsgenerated in Steps 6{9 must be satis�ed for an individual to be considered to satisfya concept; the other restrictions will be appropriate to infer about the individual onceit is determined to satisfy the concept de�nition. For example, a value restriction like(FILLS color White), derived in Step 7, will be part of the meaning of WHITE-WINE;this means that an individual will need to have its color be provably white before itwill be placed in that category. The same restriction could, however, be a derived31

property of CHARDONNAY-WINE, since it is not necessary to determine that a wine iswhite before deciding that it is a Chardonnay (it need only be known that it is madewith a Chardonnay grape). Keep this in mind for Step 10. Also, see Section 4.2 formore on this distinction.

6. Determine Number Restrictions. For each concept and each role that is relevantto its meaning, determine the cardinality of the set of role �llers (e.g., that a winecan have only one region but several grapes). These will be expressed in classic asAT-LEAST and AT-MOST restrictions.

7. Determine Value Restrictions. For each concept and each of its relevant roles,determine the class of values that can appropriately �ll the role. These \value restric-tions" (e.g., that the region of a WINE must be a geographic region) will be expressedin ALL restrictions. In the event that a role must be �lled by a single individual (e.g.,a CHARDONNAY-WINE must have its grape role �lled by exactly Chardonnay), or a �xedset of individuals, use the FILLS construct in conjunction with an AT-MOST restric-tion. If there is more than one potential �ller (not all of which must necessarily �llthe role), but the set of candidates is a �xed set of individuals, use the ONE-OF con-struct (e.g., a NON-SWEET-WINE has as the �llers of its sugar role the set (ONE-OFDry Off-Dry)).
32

8. Detail Unrepresented Value Restrictions. For each value restriction thus needed,make sure that the appropriate concept exists in the previously-generated generaltaxonomy. If it had previously been proposed, add it to the general taxonomy (forexample, it is probable that we had not thought to create the concept of a geographicregion prior to thinking about the structure of WINE). If the concept will be impor-tant in the domain model, go through all of the above steps for that new conceptand any related ones you neglected to create before. For example, if you determinethat the grape of a WINE must be a WINE-GRAPE, and the concept of such a grapeis important, consider creating specialized subconcepts that might be useful (e.g.,CHARDONNAY). For each of the new concepts, consider their properties and relationsto other concepts and individuals.9. Determine Inter-role Relationships. For each concept, enumerate any relation-ships among its roles that might be important to your domain knowledge (for example,it might be important to restrict the suggested-retail-price of a WINE such thatit is the WINE's maker's marketing-rep that sets it). classic and languages like ithave only limited means of expressing these inter-role restrictions, but they are usefulto enumerate. For a classic representation, any constraint that can be expressedas an equality between two chains of attributes on the same object can be expressedwith the SAME-AS construct. Any other constraints must be expressed in opaqueform with the TEST-C or TEST-H construct.
33

10. Distinguish Essential and Incidental Properties. At this point, for each con-cept, we will have determined a set of parent concepts (expressed in the taxonomy)and a set of restrictions, namely number, value, inter-role equality (SAME-AS), andopaque test restrictions. For each concept, look over this set, think about what itwould mean to be a member of the class speci�ed by the concept, and isolate theset of concepts and restrictions that would appropriately constitute a set of essentialproperties. These properties would be su�cient for determining membership in theconcept in question. For example, with a RED-BORDEAUX-WINE, the fact that it is aWINE whose color is Red and whose region is Bordeaux would be essential to itsde�nition. It sugar content would be an incidental property and would not be neces-sary to know before determining that something was a red Bordeaux. The essentialproperties would constitute the de�nition of the concept while the other propertieswould then be expressed as the consequents of rules associated with the concept (e.g.,RED-BORDEAUX-WINE would have a rule asserting that the wine is a DRY-WINE; thusthe sugar content need not be known in order to determine that something is a redBordeaux, but it would be universally true of all red Bordeaux wines).
11. Distinguish Primitive and De�ned Concepts. Determine if each proposed con-cept de�nition is complete. That is, do the conditions determined by the above stepsconstitute a complete set of necessary and su�cient conditions for the concept? Inthe case of a RED-BORDEAUX-WINE, the conditions that it is a WINE, that its colormust be exactly Red, and that its region must be Bordeaux would indeed be bothnecessary and su�cient. For those items whose de�nitional complement is not fullysu�cient, make the concepts primitive. For example, we may not consider WINE tobe fully de�ned as a POTABLE-LIQUID with at least one grape; we would not wantevery liquid made from grapes to be considered a wine. Thus WINE would have to be34

primitive.12. Determine DISJOINT-PRIMITIVE Concepts. For those concepts determinedto be primitive, determine if any are mutually exclusive. Group those so determinedinto clusters under a common superconcept.16 Typically, the highest concepts in thehierarchy will be primitive and disjoint. For example, SHELLFISH and FISH wouldbe good candidates for disjoint primitive concepts with a mutual parent of SEAFOOD.They are disjoint because no individual can be described by more than one of themat a time, and they are primitive because in this domain we are not interested in anyinternal structure or further description of individuals that satisfy these descriptions(we will typically declare by �at that Crab is a SHELLFISH, without expecting classicto be able to determine it by itself). Use the DISJOINT-PRIMITIVE construct tospecify these concepts.The result of translating the informal representation created above into classic willbe a knowledge base of concepts, roles, individuals, and rules (note that an item mustbe de�ned prior to its �rst use, since there are no circular de�nitions allowed; however, aconcept can be used in the consequent of a rule that is associated with it). The conceptswill have a set of necessary, and sometimes, necessary and su�cient conditions expressed assets of more general concepts and restrictions (those concepts with no su�cient conditionswould be constructed using the PRIMITIVE or DISJOINT-PRIMITIVE operators).The parents and restrictions on a concept would be conjoined with the AND operator,and each restriction would be expressed with an ALL, AT-LEAST, AT-MOST, FILLS,or SAME-AS operator (or a TEST, if appropriate). Named concepts would also be theantecedents of rules expressing necessary conditions|descriptions that would follow oncesomething were determined to be a member of the class. Here we show both the schematicform and the classic form of the two examples we have been following:16In classic, there can be several disjoint groupings under the same concept, with the assumption thatthere is a common dimension along which all the items in a grouping di�er (imagine, for example, groupingsubconcepts of PERSON by gender or by age). Thus the DISJOINT-PRIMITIVE construct requires theuser not only to specify the parent concept, but to name a grouping into which to put the primitive beingspeci�ed.

35

5.3 A Sample Knowledge BaseIn order to illustrate the general ways a user will use classic to build a knowledge base,we will now consider some sample de�nitions from the world of wines and meals. The basicgoal here is to allow a user to describe the food eaten at a particular course of a meal (in avery simple way), and have the KB recommend an appropriate set of wines. The knowledgeis organized so that a new wine can be described in a number of di�erent ways (e.g., it36

might be asserted to be a late-harvest Semillon, or a white wine from the Loire region); it isthen classi�ed with respect to a general set of useful wine-types (e.g., CHARDONNAY-WINE).Once the wine is classi�ed, properties not directly asserted by the user are derived usingrules whose antecedents are the general wine-types (e.g., if all Chardonnays are eitherfull- or medium-bodied, this information will be represented as a rule whose antecedent isthe concept of a Chardonnay wine). Thus wines can be entered in a variety of ways|byregion, by varietal, by color, etc.|and ultimately as much as possible about their color,body, sweetness, etc., will be ascertained automatically.In parallel to the hierarchy of useful wine-types, we have a simple hierarchy of food-types. The food-types are used to describe a course the user is considering having (e.g., \aMEAL-COURSE17 whose food is a SHELLFISH"). The connection between wines and food is tobe made via a hierarchy of course-types (e.g., SHELLFISH-COURSE). Each useful course-type(not every possible course-type forces a choice of wines) has an associated rule that stateswhat characteristics are required of its wine (e.g., seafood-courses demand white wines,oyster-courses need sweet wines). The system makes a \recommendation" in a simpleforward-chaining way: the user's course-type is classi�ed, rules applying to it are inheritedfrom all descriptions that apply to the course, the rules are �red, and the consequents assertvarious constraints on the drink of the course. The user can then examine the drink roleof the course to see what characteristics are necessary for the wine, as well as which winesare compatible with those characteristics. This is an example of a simple forward-chainingconstraint propagation application. The value of organizing the knowledge in this fashionis that the wine descriptions are decoupled from the requirements for each course type. Anew wine can be added, a given wine can easily have its characteristics changed, or a givenfood can be associated with di�erent wine characteristics, all by making only local changes.Figure 2 shows the top few levels of the concept hierarchy for our wine and food KB.In the subsequent �gures illustrating our concepts, we do not present the informationin the exact form in which we would type it to classic|that would involve for each itema call to a Common LISP function. Instead, we have used the notation in Figure 3 tosignify the type of description being de�ned or applied.Thus, for example,WINE-COLOR , (AND WINE-PROPERTY (ONE-OF White Rose Red))would mean that WINE-COLOR is fully de�ned as a WINE-PROPERTY whose only possibleinstances are White, Rose, and Red. Similarly,SEAFOOD-COURSE � (ALL drink WHITE-WINE)would mean that if an object were determined to be a SEAFOOD-COURSE, it automaticallyfollows that all of its drinks are WHITE-WINEs. The two de�nitions,MEAL-COURSE
+1) CONSUMABLE-THING,(AND (AT-LEAST 1 food)(ALL food EDIBLE-THING)(AT-LEAST 1 drink)(ALL drink POTABLE-LIQUID))17In the sample KB, we use course for the role of a course at a meal, and MEAL-COURSE for the conceptof a course. 37

Figure 2: Hierarchy of the Sample Knowledge Base38

expression meaningc , e c is fully de�ned by the expression ec) e c is a primitive subconcept of the concept represented by ec
i) e c is a disjoint primitive subconcept of the conceptrepresented by e, in the disjoint grouping labeled \i"c is the combination of the expression E andc
+i) e, E a (unnamed) disjoint primitive subconcept of the conceptrepresented by e (which is in the disjoint grouping labeled \i")c � e c is the antecedent of a rule whose consequent is ei ! e i is an individual and is asserted to have the propertiesdescribed by er 7! r is a roler !7! r is an attributeFigure 3: Symbols Used to Describe the Sample Knowledge Baseand MEAL
+1) CONSUMABLE-THING,(AND (AT-LEAST 1 course)(ALL course MEAL-COURSE))would mean that MEAL-COURSE and MEAL were both specializations of CONSUMABLE-THING,they were mutually disjoint, and they each had the additional properties speci�ed.Figure 4 illustrates the beginning of our wine and food KB. Since roles are used inconcept de�nitions, and, in the current version of classic, do not themselves depend onany other constructs, the roles to be used in the KB would be de�ned �rst. In this case, weassume the following roles are de�ned at the beginning of the KB: color, body, flavor,sugar, region, grape, maker, drink, food, and course (note that all but grape andcourse are attributes). After the roles are de�ned, it is usually a good idea to de�ne theclasses of objects that are used only in value restrictions of other concepts. In the �gure,we de�ne a simple primitive, WINE-PROPERTY, which will serve as the parent for all wine-properties later used in the KB.18 Since we want wines to have colors, and we can specifyin advance all of the individuals that can be wine colors, we create a de�ned subconceptof WINE-PROPERTY called WINE-COLOR, specifying all of its possible instances with a ONE-OF description. Similarly, we create the wine-properties of WINE-BODY, WINE-FLAVOR, andWINE-SUGAR.Next we create the top part of the main hierarchy. Because concepts and roles must bede�ned before they are used, a classic KB �le will generally proceed from most generalconcepts to most speci�c ones. In Figure 5, we de�ne a few high-level primitive concepts.The simple world we are describing is broken into four disjoint parts: WINE-PROPERTYs,WINERYs, WINE-REGIONs, and CONSUMABLE-THINGs (this will be used for foods and wines,18As illustrated, WINE-PROPERTY is a member of disjoint grouping number 1 of CLASSIC-THING. In Fig-ure 5, we illustrate the other concepts that are disjoint from this one.39

Wine and Meal Knowledge Base.After de�ning the roles, de�ne value restriction concepts andindividuals to be used in further de�nitions.color !7!body !7!flavor !7!sugar !7!region !7!grape 7!maker !7!drink !7!food !7!course 7!WINE-PROPERTY
1) CLASSIC-THINGWINE-COLOR , (AND WINE-PROPERTY (ONE-OF White Rose Red))WINE-BODY , (AND WINE-PROPERTY (ONE-OF Light Medium Full))WINE-FLAVOR , (AND WINE-PROPERTY (ONE-OF Delicate Moderate Strong))WINE-SUGAR , (AND WINE-PROPERTY (ONE-OF Sweet Off-Dry Dry))Figure 4: Sample Knowledge Base | Roles and Some Basic Value Restrictions

40

De�ne the other topmost concepts.WINERY
1) CLASSIC-THINGWINE-REGION
1) CLASSIC-THINGCONSUMABLE-THING
1) CLASSIC-THINGEDIBLE-THING
1) CONSUMABLE-THINGPOTABLE-LIQUID
1) CONSUMABLE-THINGSEAFOOD
1) EDIBLE-THINGFRUIT
1) EDIBLE-THINGSHELLFISH
1) SEAFOODFISH
1) SEAFOODDe�ne some instances of WINERY and WINE-REGION.Forman ! WINERYKalin-Cellars ! WINERYNapa-Valley ! WINE-REGIONDe�ne WINE-GRAPE and some instances of it.SWEET-FRUIT
1) FRUITGRAPE
1) SWEET-FRUITEATING-GRAPE) GRAPEWINE-GRAPE) GRAPEChardonnay ! WINE-GRAPESemillon ! WINE-GRAPEFigure 5: Sample Knowledge Base | More General Conceptsas well as meals and courses|special categories needed to trigger the inferences aboutwine-types for di�erent foods|see Figure 9). In this �gure we also de�ne several types ofCONSUMABLE-THING, and then some representative instances of WINERY and WINE-REGION.We then include some information about grapes that will be needed later. Note that theremay be some grapes used for eating that are also used for making wine, so EATING-GRAPEand WINE-GRAPE have been de�ned as primitive but not disjoint concepts under GRAPE.So far, we have created only simple primitive concepts. classic allows the constructionof much more complex, but still primitive concepts. For example, we might want to giveWINE some complex necessary conditions as part of its meaning, but tell classic that theconditions we give it are not su�cient for recognizing wines. We would accomplish this byde�ning WINE as a primitive with a complex expression, as illustrated in Figure 6. We canread this de�nition of WINE as something like, \a wine is, among other things, a potableliquid with exactly one color [because color is an attribute], which must be a wine-color,exactly one body, . . . "Once we have the key basic concept of a WINE de�ned, we can describe the more special-ized types of wines we would like to be able to recognize automatically. Figure 7 illustratesthree fully-de�ned wine subconcepts. For example, a WHITE-WINE is fully de�ned as awine whose color is white. The condition that the color of a WHITE-WINE must be exactly41

De�ne the concept of a wine.WINE) (AND POTABLE-LIQUID(AT-LEAST 1 color)(ALL color WINE-COLOR)(AT-LEAST 1 body)(ALL body WINE-BODY)(AT-LEAST 1 flavor)(ALL flavor WINE-FLAVOR)(AT-LEAST 1 sugar)(ALL sugar WINE-SUGAR)(AT-LEAST 1 region)(ALL region WINE-REGION)(AT-LEAST 1 grape)(ALL grape WINE-GRAPE)(AT-LEAST 1 maker)(ALL maker WINERY))Figure 6: Sample Knowledge Base | WINEWhite is su�ciently stated as (FILLS color White), since color has been de�ned asan attribute, and an attribute has exactly one �ller. In the case of CHARDONNAY-WINE,whose grape role must be �lled by exactly the individual Chardonnay, the de�nition ofWINE says that a CHARDONNAY-WINE (or any wine) must have at least 1 grape, and therestriction on CHARDONNAY-WINE, (ALL grape (ONE-OF Chardonnay)), speci�es whatthat grape is, and that there can be no additional �llers for the grape role. Returningto WHITE-WINE, note that White is consonant with the general value restriction previouslystated for the color role of WINE (i.e., White is a WINE-COLOR). In any case, classic willrecognize any wine whose color is determined to be white by any means (user assertion,rule �ring, propagation from some other assertion, etc.) as an instance of WHITE-WINE.Figure 7 also illustrates some rules based on CHARDONNAY-WINE. Since we have statednothing speci�c about the Chardonnay grape (i.e., it is never stated that wines made fromthis grape are white), we have a rule stating that Chardonnays have color white. Thus, anywine whose grape is recognized to be exactly Chardonnay will end up being a WHITE-WINEas well, since the rule will assert that its color is white, and classi�cation will use the factthat it is a wine and also white to determine that it is a WHITE-WINE.19 We also includerules about the body and avor of Chardonnays.Once we have the wine hierarchy de�ned, it is reasonable to create and describe indi-viduals for various particular wines. Figure 8 illustrates two typical descriptions of suchindividuals. Note that by inheritance Forman-Chardonnay will end up with all knownproperties of CHARDONNAY-WINEs (as well as of WINEs in general), as well as the individualproperties stated in the �gure. As we mentioned above, once this individual is created,it will be classi�ed under all appropriate de�ned concepts, such as FULL-BODIED-WINE. Inaddition, in this case, the rule that says that Chardonnays are always white will �re, and19Note that if we had included the white color restriction as part of the de�nition of CHARDONNAY-WINE,it would have made that restriction one of the conditions necessary for a wine to have before it could bedetermined to be a Chardonnay wine. Since the essential property of being a Chardonnay wine is havingthe right grape, then the white color is a derivative property that should not be included in the basicconcept de�nition. Thus we use a rule to assert that Chardonnays are white.42

De�ne some subcategories of wines.A white wine is a wine whose color is white.WHITE-WINE , (AND WINE (FILLS color White))A full-bodied wine is a wine whose body is full.FULL-BODIED-WINE , (AND WINE (FILLS body Full))A CHARDONNAY-WINE is a wine with exactly one grape, which is Chardonnay.CHARDONNAY-WINE , (AND WINE (ALL grape (ONE-OF Chardonnay)))Now assert some rules about Chardonnay wines.Chardonnays are always white.CHARDONNAY-WINE � (FILLS color White)Chardonnays are always either full- or medium-bodied wines.CHARDONNAY-WINE � (ALL body (ONE-OF Full Medium))Chardonnays are not delicate.CHARDONNAY-WINE � (ALL flavor (ONE-OF Strong Moderate))Figure 7: Sample Knowledge Base | De�ned Wine SubconceptsForman-Chardonnay will end up being classi�ed as a WHITE-WINE as well. Also note thatKalin-Cellars-Semillon is only partially described, in that we have stated that one ofits grapes is Semillon, but have not closed the grape role.In Figure 9 we illustrate some simple primitive concepts that will appear below SHELLFISHin the hierarchy. We then represent the concepts MEAL-COURSE and MEAL as disjoint prim-itive concepts under CONSUMABLE-THING (disjoint also from POTABLE-LIQUID and EDIBLE-THING|see Figure 5), but having complex structure. A MEAL-COURSE is de�ned as havingexactly one food and exactly one drink (recall that food and drink are attributes), whilea MEAL is de�ned as having at least one course. In this simple application, the type of foodserved at a course will be stated directly; the categorization of the course on the basis ofthis food will then be used to trigger rules constraining the properties of any wine served.Thus, the food concepts and individuals need no internal structure. A course individualwill be classi�ed under a speci�c type of course (e.g., SEAFOOD-COURSE in Figure 10) assoon as its food is known, and the drink role will be used to accumulate properties of thewine for the given course.Finally, to allow our knowledge base to perform the appropriate inferences when wedescribe an individual course, we will need a set of rules that constrain the type of wine tobe drunk with each appropriate food-type. In some cases, we can have very general rules,such as seafood requiring white wines, and in others we can have very narrowly applicableones, such as oysters requiring sweet wines. Each rule is associated with the appropriateconcept in the KB, as illustrated in Figure 10. When a given course is described (such asCourse-256 in the �gure), all rules that apply will be inherited and triggered. In the caseof Course-256, since the food of the course is oysters, the course will be classi�ed as anOYSTER-SHELLFISH-COURSE: because food is an attribute, the food role of Course-256 isclosed as soon as it is asserted that it is �lled with Oysters; with Oysters as the only43

Create and describe some individual wines.Forman-Chardonnay ! (AND CHARDONNAY-WINE(FILLS body Full)(FILLS flavor Moderate)(FILLS sugar Dry)(FILLS maker Forman))Kalin-Cellars-Semillon ! (AND WINE(FILLS grape Semillon)(FILLS body Full)(FILLS flavor Strong)(FILLS sugar Dry)(FILLS maker Kalin-Cellars))Figure 8: Sample Knowledge Base | Individual Wines
De�ne some primitive food-types.OYSTER-SHELLFISH
1) SHELLFISHNON-OYSTER-SHELLFISH
1) SHELLFISHCreate some instances of foods.Oysters ! OYSTER-SHELLFISHCrab ! NON-OYSTER-SHELLFISHDe�ne the concepts for a course and a mealMEAL-COURSE
+1) CONSUMABLE-THING,(AND (AT-LEAST 1 food)(ALL food EDIBLE-THING)(AT-LEAST 1 drink)(ALL drink POTABLE-LIQUID))MEAL
+1) CONSUMABLE-THING,(AND (AT-LEAST 1 course)(ALL course MEAL-COURSE))Figure 9: Sample Knowledge Base|Foods, Meals, and Courses

44

De�ne some concepts that allow recognition of course-types,which will be antecedents of rules constraining wines.SEAFOOD-COURSE , (AND MEAL-COURSE (ALL food SEAFOOD))Note that SHELLFISH-COURSE will be classi�ed under SEAFOOD-COURSE andOYSTER-SHELLFISH-COURSE will be classi�ed under SHELLFISH-COURSE:SHELLFISH-COURSE , (AND MEAL-COURSE (ALL food SHELLFISH))OYSTER-SHELLFISH-COURSE , (AND MEAL-COURSE (ALL food OYSTER-SHELLFISH))Now assert rules pertaining to course-types:SEAFOOD-COURSE � (ALL drink WHITE-WINE)SHELLFISH-COURSE � (ALL drink(AND (FILLS body Full)(ALL flavor (ONE-OF Moderate Strong))))OYSTER-SHELLFISH-COURSE � (ALL drink (FILLS sugar Sweet))Create a speci�c course with oysters as food.Course-256 ! (AND MEAL-COURSE (FILLS food Oysters))Figure 10: Sample Knowledge Base | Course-types with Rules�ller of that role, the ALL restriction on OYSTER-SHELLFISH-COURSE is satis�ed. Theclassi�cation of Course-256 as an OYSTER-SHELLFISH-COURSE makes applicable all rulesfrom OYSTER-SHELLFISH-COURSE, SHELLFISH-COURSE, and SEAFOOD-COURSE. The drink ofCourse-256 will thus be constrained to be a sweet (from OYSTER-SHELLFISH-COURSE), full-bodied (from SHELLFISH-COURSE) white wine (from SEAFOOD-COURSE), of either moderateor strong avor (from SHELLFISH-COURSE).

45

6 Tricks of the TradeThe expressive limitations of classic mean that there are many things that it cannotdirectly represent. After building a number of knowledge bases using the system, we havefound some ways of getting around some of these expressive limitations.The reason these techniques are presented in a separate section is that the meanings thatclassic places on the resultant concepts are di�erent than their intuitive meanings. Undersome circumstances classic will act in a way inconsistent with the intuitive meanings.Often this divergence only shows up when certain types of extra information are added tothe knowledge base|if this extra information is never added, then classic will adhere tothe intuitive behavior. (For example, see the �rst way of representing a limited form ofnegation in Section 6.1.) Therefore, the knowledge base designer must be extremely carefulwhen using these techniques.These techniques are most useful when used sparingly. If a designer �nds it necessary touse a large number of these \tricks," then perhaps classic should not be used for his/herapplication.6.1 Negation and ComplementsAs noted before, there is no full negation in classic, but there are a few ways to representlimited forms of negation or complements.One method can be used to de�ne the concept of non-sweet wines. Given that wineshave exactly one �ller for their sugar role, and that the only possible �llers for the sugarrole of wines are Dry, Off-Dry, and Sweet, a non-sweet wine can be de�ned as(AND WINE (ALL sugar (ONE-OF Dry Off-Dry))).Since WINE-SUGAR has exactly three instances, this concept is the complement of sweetwines (WINEs with �ller Sweet for their sugar role) in the universe of wines.However, this trick does not work as well when a restriction is based on a primitiveconcept (i.e., WINE-GRAPE) and not on a ONE-OF concept (i.e., WINE-SUGAR). A non-Chardonnay wine can be de�ned as(AND WINE (ALL grape (ONE-OF Semillon))),since Chardonnay and Semillon are the only grapes in the KB. However, if a new grape isadded to the KB (i.e., Riesling), then this de�nition would no longer represent the winesmade from all grapes except Chardonnay.Another form of negation can be represented with disjoint primitives. If the conceptsFISH and SHELLFISH are disjoint primitives under the concept SEAFOOD, then there canbe no individuals belonging to both FISH and SHELLFISH. However, in this situation, it ispossible for something to be a seafood and neither a �sh nor a shell�sh, and thus FISH isnot exactly the relative complement of SHELLFISH with respect to SEAFOOD.Finally, test concepts can also be used to capture part of the meaning of complements. Atest function that returns false if an individual satis�es some concept, true if the individualcannot possibly satisfy it, and unknown otherwise, can be used to create a complementconcept. However, there is a small problem with this method of complementation. Thecomplement concept will not be recognized as disjoint from the other concept, so, for46

instance, the conjunction of the two concepts will not be considered incoherent, althoughit cannot, in reality, have any instances.6.2 DisjunctionAlthough there is no \OR" operator in the classic language, disjunction can be capturedin some special cases.The �rst of these is simply a ONE-OF concept, which provides an extremely simpleand uninteresting case of disjunction (of the individuals in the set). The second case buildson the �rst by using the ONE-OF concept in a value restriction. For example, the concept(AND WINE (ALL grape (ONE-OF Semillon Sauvignon)))represents the disjunction of wines made from semillon grapes and wines made from sauvi-gnon grapes. Once a disjunctive concept like this is formed with a ONE-OF embeddedin an ALL, such a concept can in turn be used in another ALL restriction, thus allowingarbitrarily deep nesting.The above types of disjunction are not really tricks at all. They represent true dis-junction|however, only certain, very limited, types of disjunction can be represented thisway.General disjunction can be crudely approximated, however, by using a simple trick.When one concept subsumes others, then it subsumes their disjunction, and can, undersome circumstances, act like their disjunction. For example, in Figure 5, SEAFOOD subsumesthe disjunction of SHELLFISH and FISH. If no individuals become instances of SEAFOODwithout becoming instances of either SHELLFISH or FISH then SEAFOOD can be consideredto be the disjunction of SHELLFISH and FISH. Because there may be instances of SEAFOODthat are neither SHELLFISH nor FISH, this is not true disjunction. (Learning that anindividual is not an instance of FISH does not make it an instance of SHELLFISH.)6.3 Defaultsclassic enforces a strict inheritance hierarchy and does not provide a default operator.However, a limited form of defaults can be represented with the aid of rules and testfunctions.For example, to make wines have default color red, use a test function (perhaps calledno-known-color) that returns true if the number of currently known �llers of the colorrole is zero, and false otherwise20 and use it in the concept WINE-CAUSE-DEFAULT-RED,de�ned asWINE-CAUSE-DEFAULT-RED , (AND WINE (TEST-C no-known-color))WINE-CAUSE-DEFAULT-RED � (FILLS color Red).This will cause wines that are not given a color to become red wines because they will passthe test function, become instances of WINE-CAUSE-DEFAULT-RED, and be given color Redas a result of the �ring of the rule above.20This is di�erent from knowing that there are no possible �llers for the color role, as classic canrepresent individuals, such as instances of WINE, for which there must be a �ller for a role without knowingthe actual �ller. 47

WARNING: Small changes to the implementation of classic could cause this trick tofail as it uses a test function that violates the conditions placed on test functions. (Testfunctions in classic should be monotonic, i.e., adding information cannot cause the resultof a test function to change from true to false, or vice versa.) Use this trick with extremecaution.6.4 More Powerful RulesRules are an important part of classic, but are limited in that the antecedent of a rulecan only be a named classic concept. However, using test restrictions in the antecedentof rules allows arbitrary pattern-matching to determine rule applicability. For example,we might want to extend the wine example to consider vintages and then conclude thatif some wine is from a good vintage year then it is expensive. The de�nition of \goodvintage" might be quite complicated, and not expressible in classic without using a testrestriction.This method does not cause any particular problems, aside from the general probleminherent in the use of (opaque) test functions, as long as the test conforms to the conditionsplaced on test functions. However, excessive use of test functions can cause performancedegradation if the test concepts end up near the top of the concept hierarchy, where theirtests will be run frequently.6.5 Integrity CheckingRules can also be used to provide a sort of integrity checking, by using test concepts astheir conclusions. In this case, once an individual is found to satisfy the antecedent of therule, it is made an instance of the test concept. Part of this process is to run the testfunction on the individual; if the individual is inconsistent with the test function then theindividual is also removed from the antecedent concept. In this way complicated integrityconstraints can be created for otherwise test-free concepts.For example, we might want to check that late-harvest grapes have a sugar content ofat least 30. This can be done by creating a ruleLATE-HARVEST-GRAPE � (TEST-C sugar-at-least-30)where sugar-at-least-30 returns unknown if there is no currently known �ller of the sugar-content role of a grape, true if the �ller is known and is at least 30, and false otherwise.This is di�erent from including the test condition as part of LATE-HARVEST-GRAPE intwo ways. First, the test does not become part of the de�nition of the concept so it willnot be subsumed by another concept that happens to incorporate the same test. Second,if LATE-HARVEST-GRAPE is a de�ned concept then individuals can be recognized as itsinstances without passing the test; they are forced to be (and remain) consistent with thetest.6.6 Restrictions on RolesThe classic language supports restrictions of the form \all of the drinks in a picnic basketare wines," and \a picnic basket has at least one drink," but there is no operator for saying48

precisely \at least two of the drinks in a picnic basket are white wines."21When this sort of restriction is needed, a test can be used. For example, a test functionto determine if at least two of the drinks in a picnic basket are white wines can be writtenas follows:� if there are two known �llers of the drink role of the picnic basket that are instancesof WHITE-WINE then return true;� otherwise, if there can be at most one �ller of the drink role of the picnic basket,then return false;� otherwise, if all the �llers of the drink role of the picnic basket must be white winesbecause the type of its drinks is subsumed by WHITE-WINE, and there must be at leasttwo drinks for the picnic basket, then return true;� otherwise, if all the picnic basket's drinks are known, then if there is at most one ofthem that is an instance of WHITE-WINE then return false;� otherwise return unknown.As with all tests, classic treats the function as a black box, and will not discover anysubsumption relationships between di�erent test functions. This can pose a problem herebecause there are a large number of possible subsumption relationships between these sortsof restrictions. For example, \at least two of the drinks in a picnic basket are white wines"subsumes \at least three of the drinks in a picnic basket are full-bodied white wines,"but classic cannot discover these relationships, which depend on the behavior of testfunctions.Further, this test function contains a potentially dangerous \closed-world assumption"in that it assumes that a drink that is not known to be an instance of WHITE-WINE will neverbe an instance of WHITE-WINE. Since classic allows the acquisition of extra informationabout individuals, it is possible that a drink could later become an instance of WHITE-WINE,thus invalidating the conclusion drawn by this test function.6.7 Dummy IndividualsAs mentioned in Section 3.1, classic can answer queries about mandated properties of�llers of roles without knowing the identity of the �llers. Some of these queries can beanswered by getting the value restriction for the role. For example, Course-256 fromFigure 10 must have the body of all its drinks be Full, since it has the property(ALL drink (FILLS body Full)),by virtue of its being a SHELLFISH-COURSE. This can be determined by classic withoutknowing the actual drink of the course.However, this method does not pick up the rules that might be applied to the role �ller.For example, under the de�nitions,21This is a deliberate omission, as the inclusion of such operators makes determining subsumption com-putationally intractable [Nebel, 1988]. 49

KOSHER-WEDDING , (AND WEDDING (ALL meal KOSHER-MEAL))KOSHER-MEAL � (ALL course (ALL drink KOSHER-WINE))Lori's-Wedding ! KOSHER-WEDDING,the value restriction for the drink of any course of the meal at Lori's-Wedding wouldnot be known to be a KOSHER-WINE, even though the meal at Lori's-Wedding must bea KOSHER-MEAL and there is a rule on KOSHER-MEAL asserting that all the drinks of eachcourse must be KOSHER-WINEs. To pick up this restriction it is necessary to create a\dummy" meal for Lori's-Wedding. Then the rule will �re, and assert the restriction thatthe drink for each course of this dummy meal must be a KOSHER-WINE.The creation of dummy individuals must be performed with care, as classic assumesthat they are distinct from all other individuals. Thus when the real meal is found, itcannot just be added, but, instead, either the dummy individual must be removed as a�ller, or the two individuals must be merged in an application-dependent manner. It isbest to use a dummy individual to answer the query, and then immediately remove it.

50

7 ConclusionBy now it is clear that learning a programming language involves more than just learningits syntax and semantics: there are usually an associated methodology or paradigm of usethat needs to be absorbed, a collection of techniques for handling various special situations,warnings about frequent pitfalls, and the recognition that some other language might bemore appropriate for a speci�c programming task. For example, in order to use prolog ex-pertly one should, among other things, understand the paradigm of logic programming, thetrick of building data structures with unbound variables (which are assigned a value laterin the computation), the problems of negation by failure, and the cost of non-deterministicsearch/backtracking.Knowledge representation languages are no di�erent in this respect. For this reason, wehave chosen to provide in this chapter more than just the description of an existing, imple-mented classi�cation-based frame language. We have attempted to present the paradigmof using such languages by working through examples and by listing situations in whichclassic is likely to be useful. Additionally, we have indicated under what circumstanceslanguages like classic may prove to be less than ideal. We have also assembled from ourexperiences of using the language and teaching it to others a collection of potentially con-fusing distinctions, together with \tricks of the trade" for representing special situations.Most importantly, we have presented a methodology for working through a domain andproducing a knowledge base that reects the domain structure in classic terms.

51

References[Borgida et al., 1989] Alex Borgida, Ronald J. Brachman, Deborah L. McGuinness, andLori Alperin Resnick. CLASSIC: A structural data model for objects. In Proceedings ofthe 1989 ACM SIGMOD International Conference on Mangement of Data, pages 59{67.Association for Computing Machinery, June 1989.[Brachman and Schmolze, 1985] Ronald J. Brachman and James G. Schmolze. Anoverview of the KL-ONE knowledge representation system. Cognitive Science, 9(2):171{216, April{June 1985.[Devanbu et al., 1989] Premkumar Devanbu, Peter G. Selfridge, Bruce W. Ballard, andRonald J. Brachman. A knowledge-based software information system. In Proceedingsof the Eleventh International Joint Conference on Arti�cial Intelligence, pages 110{115,Detroit, Michigan, August 1989. International Joint Committee on Arti�cial Intelligence.[Devanbu et al., 1990] Premkumar Devanbu, Ronald J. Brachman, and Peter G. Selfridge.LaSSIE|a classi�cation-based software information system. In Proceedings of the In-ternational Conference on Software Engineering, Nice, France, 1990. IEEE ComputerSociety.[Freeman, 1982] Michael W. Freeman. The qua link. In James G. Schmolze and Ronald J.Brachman, editors, Proceedings of the 1981 KL-One Workshop, pages 54{64, Jackson,New Hampshire, June 1982. Bolt Beranek and Newman Inc.[Lenat and Guha, 1990] Douglas B. Lenat and R. V. Guha. Building Large Knowledge-Based Systems. Addison-Wesley, Reading, Massachusetts, 1990.[Litman and Devanbu, 1990] Diane Litman and Premkumar Devanbu. Clasp: A plan andscenario classi�cation system. AI Principles Research Department, AT&T Bell Labora-tories, 1990.[Nebel, 1988] Bernhard Nebel. Computational complexity of terminological reasoning inBACK. Arti�cial Intelligence, 34(3):371{383, April 1988.[Owsnicki-Klewe, 1988] Bernd Owsnicki-Klewe. Con�guration as a consistency mainte-nance task. In W. Hoeppner, editor, Proceedings of GWAI-88|the 12th German Work-shop on Arti�cial Intelligence, pages 77{87. Springer Verlag, September 1988.[Patel-Schneider, 1984] Peter F. Patel-Schneider. Small can be beautiful in knowledgerepresentation. In Proceedings of the IEEE Workshop on Principles of Knowledge-BasedSystems, pages 11{16, Denver, Colorado, December 1984. IEEE Computer Society.[Peltason et al., 1987] Christof Peltason, Kai von Luck, Bernhard Nebel, and AlbrechtSchmiedel. The user's guide to the BACK system. KIT-Report 42, Fachbereich In-formatik, Technische Universit�at Berlin, January 1987.[Senyk et al., 1989] Oksana Senyk, Ramesh S. Patil, and Frank A. Sonnenberg. Systematicknowledge base design for medical diagnosis. Applied Arti�cial Intelligence, 3(2{3):249{274, 1989. 52

[Yen et al., 1989] John Yen, Robert Neches, and Robert MacGregor. Using terminologicalmodels to enhance the rule-based paradigm. In Proceedings of the Second InternationalSymposium on Arti�cial Intelligence, Monterrey, Mexico, October 1989.

53

