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Abstract. Let R be a right noetherian ring and let P<∞ be the class of
all finitely presented modules of finite projective dimension. We prove that
findimR = n < ∞ iff there is an (infinitely generated) tilting module T such
that pdT = n and T⊥ = (P<∞)⊥. If R is an artin algebra, then T can be
taken to be finitely generated iff P<∞ is contravariantly finite. We also obtain
a sufficient condition for validity of the First Finitistic Dimension Conjecture
that extends the well-known result of Huisgen-Zimmermann and Smalø.

For a ring R, the little finitistic dimension, findimR, is defined as the supremum
of the projective dimensions attained on the category of all finitely generated right
R-modules of finite projective dimension. The big finitistic dimension, FindimR,
is defined correspondingly on the category of arbitrary right R-modules of finite
projective dimension.

It is well known that these dimensions may be infinite. Moreover, they do not
coincide in general. For example, if R is a commutative local noetherian ring,
we know by classical results of Bass, Gruson and Raynaud, and Auslander and
Buchweitz that FindimR is just the Krull dimension and findimR coincides with
the depth of R. So in this case, FindimR= findimR if and only if R is a Cohen-
Macaulay ring.

In the case when R is a finite-dimensional algebra over a field, the little and
the big finitistic dimensions may also differ; that is, the First Finitistic Dimension
Conjecture fails. The first example of this phenomenon was given by Huisgen-
Zimmermann in 1992. Later, Smalø showed that the difference between the two
dimensions can be arbitrarily big [18]. However, it is still an open question, known
as the Second Finitistic Dimension Conjecture, whether the little finitistic dimen-
sion of a finite-dimensional algebra R is always finite.

Positive answers are known in some particular cases. For instance, it was shown
by Auslander and Reiten [5] that findimR is finite provided that the category P<∞
of all finitely presented modules of finite projective dimension is contravariantly
finite in modR. It is then enough to consider the projective dimensions of the
right P<∞-approximations of the (finitely many) simple modules; the projective
dimension of any other finitely generated module is either infinite or bounded by the
maximum of these numbers. Huisgen-Zimmermann and Smalø [13] later extended
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this result to arbitrary modules by showing that every module of finite projective
dimension is then a direct limit of modules in P<∞. In this way, they proved that
contravariant finiteness of P<∞ implies FindimR = findimR.

The idea of Auslander and Reiten can be extended beyond the particular case
when P<∞ is contravariantly finite. The point is that the larger class A =
⊥((P<∞)⊥) always provides for right approximations. If R is right artinian, then
the little finitistic dimension can be computed as the maximum of the projective
dimensions of the right A-approximations of the (finitely many) simple R-modules,
[20].

In the present paper, we extend and refine the results mentioned above by provid-
ing sufficient conditions for validity of the First and the Second Finitistic Dimension
Conjectures. The novel idea here is to study the complete cotorsion pair cogener-
ated by P<∞ by means of the theory of (infinitely generated) tilting modules.

We show for any right noetherian ring R that findimR < ∞ if and only if the
Ext-orthogonal class (P<∞)⊥ equals T⊥ where T is an (infinitely generated) tilting
module in the sense of [1]. Moreover, findimR = pdT , and the artin algebras R for
which T can be chosen finitely presented are precisely those with P<∞ contravari-
antly finite.

We also prove that modules of finite projective dimension coincide with direct
summands of P<∞-filtered modules if and only if the category AddT is closed
under cokernels of monomorphisms. We thus obtain a sufficient condition for
FindimR= findimR that extends the result of Huisgen-Zimmermann and Smalø
mentioned above.

The paper is organized as follows. In Section 1, we review basic properties of
Ext-orthogonal classes, complete cotorsion pairs and tilting modules following [1]
and [9]. Our main results for the right coherent case are proved in Sections 2 and
3. Section 4 treats, in more detail, the particular case of artin algebras.

This research was done during a visit by the first author to MFF UK in Prague
in March 2001 and supported by an exchange program with LMU Munich. The
first author would like to thank the Department of Algebra of MFF UK for its
hospitality.

We wish to thank Birge Huisgen-Zimmermann and the referee for interesting
comments on an earlier version of this paper.1

1. Cotorsion pairs, tilting modules, and approximations

For an arbitrary ringR we denote by ModR the category of all (right)R-modules,
and by modR the subcategory of ModR consisting of all finitely presented modules.

Let M ∈ ModR and let

Θ : · · · fi+2−→ Pi+1
fi+1−→ Pi

fi−→ . . .
f1−→ P0

f0−→M −→ 0

be a projective resolution of M . Let i < ω. Then the module Im(fi) is called the
i-th syzygy of M in Θ. Dually, the i-th cosyzygy of M is defined in an injective
coresolution of M . Denote by Ωi(M) the class of the i-th syzygies occurring in

1Added in proof: In this paper, we have not considered the obvious dual questions concerning

relations between cotilting modules and the finitistic injective dimensions. In fact, if the cotilting
modules are assumed to be pure-injective, then the approximation theory works fine and some of
our results can be dualized. For more on this topic, we refer to the recent manuscript of Buan,
Krause and Solberg, “On the lattice of cotilting modules”.
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all projective resolutions of M . Similarly, Ω−i(M) denotes the class of the i-th
cosyzygies occurring in all injective coresolutions of M .

The ring R is called right coherent provided that all finitely generated right
ideals of R are finitely presented (equivalently, all finitely generated submodules of
finitely presented right modules are finitely presented). If R is right coherent and
M is finitely presented, then we will consider only projective resolutions consisting
of finitely presented modules; so all the syzygies of M will be finitely presented in
this case.

LetM⊆ ModR. For an integer i, define Ωi(M)=
⋃
M∈M Ωi(M). We say that

M is syzygy-closed, provided that Ω1(M) ⊆ M. Similarly, M is cosyzygy-
closed provided that Ω−1(M) ⊆M. Of course, ifM is syzygy-closed, then all the
classes Ωi(M), i < ω, are syzygy-closed.

For each 0 < i < ω, we set

M⊥i = {X ∈ ModR | ExtiR(M,X) = 0 for all M ∈M}
and

M⊥ =
⋂

0<i<ω

M⊥i .

Dually, we define ⊥iM = {X ∈ModR | ExtiR(X,M) = 0 for all M ∈ M}, and
⊥M =

⋂
0<i<ω

⊥iM.
Finally, recall that M is resolving (coresolving) if it is closed under exten-

sions, kernels of epimorphisms (cokernels of monomorphisms), and it contains all
projective (injective) modules. For example, for any M⊆ ModR, the classM⊥ is
coresolving, and ⊥M is resolving.

Obviously, any resolving class is syzygy-closed, and any coresolving class is
cosyzygy-closed. If M is a syzygy-closed class of modules, then M⊥1 = M⊥ is
coresolving, and ⊥(M⊥) = ⊥1(M⊥) is resolving. Similarly, ifM is cosyzygy-closed,
then ⊥1M = ⊥M is resolving, and (⊥M)⊥ = (⊥M)⊥1 is coresolving.

Next, we recall the notion of a cotorsion pair. This is the analog of the classical
(nonhereditary) torsion pair where Hom is replaced by Ext1:

Definition. Let A,B ⊆ ModR be classes of modules. Then (A,B) is a cotorsion
pair if A = ⊥1B and B = A⊥1 .

For any class C ⊆ ModR, we have the cotorsion pair (⊥1(C⊥1), C⊥1), called the
cotorsion pair cogenerated by C.

Now, if C is syzygy-closed, then the cotorsion pair cogenerated by C coincides
with (⊥(C⊥), C⊥). In particular, if C is a module and X = C⊥, then (⊥X ,X ) is
the cotorsion pair cogenerated by the set S = {Si | i < ω} where Si denotes the
i-th syzygy in a fixed projective resolution of C.

We will also need several concepts concerning approximations of modules.
Let M ⊆ ModR and A ∈ ModR. A morphism f ∈ HomR(A,X) with X ∈

M is an M-preenvelope of A provided that the abelian group homomorphism
HomR(f,M) : HomR(X,M) −→ HomR(A,M) is surjective for each M ∈ M. An
M-preenvelope f ∈ HomR(A,X) of A is special if f is a monomorphism and
Cokerf ∈ ⊥1M. Note that by the observation above, the cokernel of any special
M-preenvelope is actually contained in ⊥M provided that M is coresolving.

The notion of a (special) M-precover is defined dually.2

2In the representation theory of artin algebras, the usual terminology for a preenvelope and a
precover (in modR) is a left, respectively a right, approximation.
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The basic relation between cotorsion pairs and approximations goes back to Salce
[17]. It may be viewed as a substitute for the nonexistence of a duality for arbitrary
modules:

Lemma 1.1 ([17, Corollary 2.4.]). Let R be a ring and (A,B) a cotorsion pair.
The following are equivalent:

(1) every module has a special A-precover;
(2) every module has a special B-preenvelope.

In this case, the cotorsion pair (A,B) is called complete.

Remark 1.2 ([5, p. 125]). If we restrict all these notions to the category of all
finitely presented modules, Lemma 1.1 remains true provided that R is right co-
herent and injective envelopes of finitely presented modules are finitely presented
(this occurs in case R is an artin algebra, for example).

The key fact about cotorsion pairs — first proved in [9], and motivated by [10] —
says that any cotorsion pair (A,B) cogenerated by a set of modules S is complete.
Moreover, there is a description of the class A in terms of the modules from S. In
order to formulate it, we need one more notion:

Let σ be an ordinal. A chain of modules, (Mα | α ≤ σ), is continuous provided
that Mα ⊆Mα+1 for all α < σ and Mα =

⋃
β<αMβ for all limit ordinals α ≤ σ.

Let M be a module and C a class of modules. Then M is C-filtered provided
that there is a continuous chain (Mα | α ≤ σ) consisting of submodules of M such
that M = Mσ, and each of the modules M0, Mα+1/Mα (α < σ), is isomorphic to
an element of C.

Theorem 1.3. Let R be a ring and S ⊆ ModR a set of modules. Let (A,B) be
the cotorsion pair cogenerated by S.

(1) [9, Theorem 10] (A,B) is complete.
(2) [19, Theorem 2.2] If R ∈ S, then A consists of all direct summands of S-

filtered modules. Moreover, for each A ∈ A there exist C ∈ A∩B and an S-filtered
module D such that D = A⊕ C.

We will also use the following well-known homological facts:

Lemma 1.4 ([8, Theorem 7.3.4]). Let R be a ring. Let M and N be modules and
0 < n < ω. Assume that M is ⊥nN -filtered. Then M ∈ ⊥nN .

Lemma 1.5 ([8, Lemma 10.2.4]). Let R be a right coherent ring, 0 < n < ω, let
M be a finitely presented module, and let (Nα, fαβ | α < β ∈ I) be a direct system
of modules. Then

ExtnR(M, lim
−→

Nα) ∼= lim
−→

ExtnR(M,Nα).

In particular, M⊥n and M⊥ are closed under arbitrary direct limits for any class
of finitely presented modules M.

Lemma 1.6 ([4, Chap 1, Proposition 10.1]). Let R be a ring, 0 < n < ω, let M
be a pure-injective module, and let (Nα, fαβ | α < β ∈ I) be a direct system of
modules. Then

ExtnR(lim
−→

Nα,M) ∼= lim
←−

ExtnR(Nα,M).

In particular, ⊥nM and ⊥M are closed under arbitrary direct limits for any class
of pure-injective modules M.
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Finally, we recall several notions and results from tilting theory.
Let R be a ring. For a class of modulesM⊆ ModR, denote by AddM (respec-

tively, addM) the class consisting of all modules isomorphic to direct summands
of (finite) direct sums of elements ofM.

Definition. Let R be a ring. A module M is a tilting module provided that
(T1) pdM <∞;
(T2) ExtiR(M,M (I)) = 0 for each i > 0 and all sets I;
(T3) there is a long exact sequence 0 −→ RR −→M0 −→ · · · −→Mr −→ 0

where r ≥ 0 and Mi ∈ AddM for each 0 ≤ i ≤ r.

Observe that if M is a tilting module and X = M⊥, then (⊥X ,X ) is a complete
cotorsion pair. Moreover, the long exact sequence of (T3) can be obtained from
short exact sequences given by special X -preenvelopes. By Theorem 1.3(2) or
[1, 2.2], the cokernels of these preenvelopes have projective dimension bounded
by n = pdM , and by dimension shifting, the (n+ 1)-th sequence splits. So we can
assume that r ≤ pdM in condition (T3).

Tilting modules generalize the finite-dimensional tilting modules studied in the
representation theory of finite-dimensional algebras (cf. [11], [16] et al.) as well as
the infinitely generated tilting modules of projective dimension ≤ 1 studied in [6].

We point out some important properties.

Lemma 1.7. Let R be a ring, M ∈ModR a tilting module and X = M⊥.
(a) For each X ∈ X , there exists a short exact sequence 0 −→ K −→ M ′ −→

X −→ 0 with M ′ ∈ AddM and K ∈ X .
(b) AddM = X ∩ ⊥X .
(c) For each X ∈ X of projective dimension n there is a long exact sequence

0 −→Mn+1 −→Mn−→Mn−1 −→ · · ·−→M0−→X −→ 0

with Mi ∈ AddM for all i = 0, . . . , n+ 1.

Proof. (a) and (b) are shown in [1, 2.3 and 2.4]. Part (c) is only implicit in [1, 4.1],
and so we present a full proof here.

Let X ∈ X be a module of projective dimension n. Iterating (a), we obtain a

long exact sequence 0 −→ Kn −→ Mn
fn−→ Mn−1 −→ · · ·

f1−→ M0
f0−→ X −→ 0

with Mi ∈ AddM and Ki = Kerfi ∈ M⊥ for i = 0, . . . , n. Since pdX ≤ n, by
dimension shifting we have Ext1

R(Kn−1,Kn) ∼= Extn+1
R (X,Kn) = 0 and so Kn ∈

AddM .

The relationship between tilting modules and existence of preenvelopes is estab-
lished by the following fundamental result. Again, it is a common generalization of
the classical finite-dimensional case [5] and the case of infinitely generated modules
of projective dimension at most one [3].

Theorem 1.8 ([1, 4.1]). Let R be a ring and n < ω. Let X ⊆ ModR be a class
of modules closed under direct summands, cokernels of monomorphisms, and such
that X ∩ ⊥X is closed under coproducts. The following are equivalent:

(1) There exists a tilting module M of projective dimension at most n such that
X = M⊥.

(2) Every module has a special X -preenvelope, and all modules in ⊥X have pro-
jective dimension at most n.
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The proof of Theorem 1.8 is constructive: assuming (2), one obtains the tilting
module M in the form M =

⊕
i≤nMi where

0 −→ R
f0−→M0

f1−→M1 −→ · · ·
fn−→Mn −→ 0

is a long exact sequence obtained by an iteration of special X -preenvelopes of the
module R, of Cokerf0, etc.

Finally, observe that if M is a tilting module, then every module T with AddT
=AddM is again a tilting module with T⊥ = M⊥.

2. A tilting module measuring the little finitistic dimension

For a ring R, we denote by P the class of all modules of finite projective di-
mension and let P<∞= P ∩mod-R be the class of all finitely presented modules
of finite projective dimension.

Moreover, for n < ω, we letPn be the class of all modules of projective dimension
at most n, and set P<∞n = Pn ∩modR. Clearly, P =

⋃
n<ω Pn and P<∞=⋃

n<ωP<∞n . Note that the classes P and Pn (n < ω) are syzygy-closed, and the
same is true of the classes P<∞ and P<∞n (n < ω) provided that R is right coherent.

Denote by (A,B) the cotorsion pair cogenerated by the class P<∞. For each
n < ω, let (An,Bn) be the cotorsion pair cogenerated by the class P<∞n .

By Theorem 1.3 and Lemma 1.4, all these cotorsion pairs are complete, and
An ⊆ Pn.

If R is right coherent, it follows from Lemma 1.5 that B and all the classes
Bn are definable in the sense of [7, §2.3]. In particular, they are determined by
their (indecomposable) pure-injective modules. Furthermore, the modules in An
are direct limits of finitely presented modules in Pn, and the modules in A are
direct limits of finitely presented modules in P , as shown below.

Lemma 2.1. Let R be right coherent. Then every module in A is a direct limit of
modules in P<∞.

Proof. Denote by D the class of all direct limits of modules in P<∞. Since P<∞
consists of finitely presented modules, the modules D in D are characterized by
the property that every homomorphism h : F → D where F is finitely presented
factors through a module in P<∞; see [15, 2.1]. This implies first of all that D is
closed under direct limits, and thus under direct summands as well.

Moreover, it implies that D is closed under extensions. In fact, let 0 −→ A
f−→

B
g−→ C −→ 0 be an exact sequence with A and C in D, and h : F → B be a

homomorphism where F is finitely presented. Then gh factors through a module
P ′′ in P<∞; so there are maps σ′′ : F → P ′′ and τ ′′ : P ′′ → C such that gh = τ ′′ σ′′.
Let p : Rn → P ′′ be an epimorphism with an integer n ≥ 0, and let p′ : Rn → B
satisfy g p′ = τ ′′ p. Denote by g′′ : F ⊕Rn → P ′′ the coproduct map induced by σ′′

and p, and by h′′ : F ⊕Rn → B the coproduct map induced by h and p′. We then
obtain a commutative diagram

0 −−−−→ F ′
f ′′−−−−→ F ⊕Rn g′′−−−−→ P ′′ −−−−→ 0yh′ h′′

y yτ ′′
0 −−−−→ A

f−−−−→ B
g−−−−→ C −−−−→ 0
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Since P ′′ and F ⊕ Rn are finitely presented and the ring R is right coherent, we
deduce that F ′ is finitely presented. Thus, h′ factors through a module P ′ in P<∞;
so there are maps σ′ : F ′ → P ′ and τ ′ : P ′ → A such that h′ = τ ′ σ′. In the
push-out diagram

0 −−−−→ F ′
f ′′−−−−→ F ⊕Rn g′′−−−−→ P ′′ −−−−→ 0yσ′ σ

y y'
0 −−−−→ P ′

ρ−−−−→ P −−−−→ P ′′ −−−−→ 0
we have that P belongs to P<∞, and by the push-out property, we obtain a map
τ : P → B such that τ σ = h′′, hence τ σ |F = h. This shows that h factors through
a module P in P<∞. Therefore, B belongs to D.

So, we can conclude by transfinite induction that every P<∞-filtered module
belongs to D. Thus, if A is in A, it follows from Theorem 1.3(2) that A is a direct
summand of a module D in D, and therefore A belongs to D.

The close relation of these classes to tilting theory comes from the following
observation:

Lemma 2.2. Let n < ω. Let R be a right coherent ring and S a syzygy-closed
class of finitely presented modules. Denote by (U ,V) the cotorsion pair cogenerated
by S. The following are equivalent:

(1) U ⊆ Pn;
(2) there exists a tilting module T of projective dimension at most n such that

V = T⊥.

Proof. Since S is syzygy-closed, V is coresolving and U = ⊥V . Moreover, V is closed
under arbitrary direct limits by Lemma 1.5; so U ∩ V is closed under coproducts.
Finally, Theorem 1.3(1) implies that V provides for special preenvelopes. The claim
now follows from Theorem 1.8.

We now apply our observation to the cotorsion pairs considered above.

Proposition 2.3. Let R be a right coherent ring. For any n < ω, there is a tilting
module Tn of projective dimension at most n such that Bn = T⊥n . If R is right
noetherian and findimR ≥ n, then Tn has projective dimension n.

Proof. The first part is just Lemma 2.2 for S = P<∞n .
Assume that R is right noetherian with findimR ≥ n. So, there is a finitely

presented module M of projective dimension n. Assume that there is a tilting
module T ∈ Pn−1 with Bn = T⊥. By Lemma 2.2, we then have An ⊆ Pn−1. On
the other hand, P<∞n ⊆ ⊥1((P<∞n )⊥1) = An. This implies that M ∈ Pn−1, a
contradiction.

In general, the tilting modules Tn are infinitely generated. For artin algebras, we
will characterize the case when Tn can be taken finitely generated in Proposition
4.1 below.

The following example shows that the tilting modules Tn need not be Ext-
orthogonal.

Example 2.4. Let us consider the serial algebra R of global dimension 2 given
by the quiver • α−→ • β−→ • γ−→ • with the relation γβα = 0. We number

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



4352 LIDIA ANGELERI-HÜGEL AND JAN TRLIFAJ

the vertices from left to right and denote by Pi, Si and Ii the indecomposable
projective, the simple, and the indecomposable injective corresponding to the i-
th vertex, respectively. Then we see that we can choose T1 = P1 ⊕ P2 ⊕ S2 ⊕
P2/P4, while T2 will be the minimal injective cogenerator of ModR. In particular,
Ext1

R (T2, T1) 6= 0, because we have an almost split sequence 0 −→ P2/P4 −→
P1 ⊕ S2 −→ I2 −→ 0.

Observe that we get a large supply of tilting modules by varying the class S:

Remark 2.5. For all 0 < i ≤ n < ω, denote by (Ani,Bni) the cotorsion pair cogen-
erated by the class Ωi−1(P<∞n ). By dimension shifting, we have Bni = (P<∞n )⊥i .
Note that Bni ⊆ Bnj for i ≤ j, Bni ⊆ Bmi for m ≤ n, and Bni ⊆ Bn+k,i+k for all
k < ω.

Now, if R is right coherent, then Lemma 2.2 for S = Ωi−1(P<∞n ) yields a tilting
module Tni of projective dimension at most n − i + 1 such that Bni = T⊥ni. If R
is right noetherian and findimR ≥ n, then we can show as in Proposition 2.3 that
the projective dimension of Tni equals n− i+ 1.

In particular, it follows that the classes Bnn (n < ω) form an increasing chain of
tilting torsion classes in the sense of [6].

Our main result in this section characterizes the case of findimR < ∞ for right
noetherian rings:

Theorem 2.6. Assume that R is right noetherian. Then findimR <∞ if and only
if there is a tilting module T such that B = T⊥. In this case findimR = pd T , and
T can be taken P<∞-filtered.

Proof. The only-if-part is true for any right coherent ring by Proposition 2.3 for
n = findimR; that also gives findimR = pdT . The if-part holds by Lemma 2.2 for
S = P<∞. Finally, Theorem 1.3(2) and Lemma 1.7(b) provide for a P<∞-filtered
module D and a module C ∈ AddT such that D = C ⊕T . Then D is also a tilting
module with B = D⊥.

In particular cases, it is possible to compute the tilting module T explicitly:

Example 2.7. (a) Let R be a right noetherian ring of finite global dimension. Let
0 −→ R −→ I0−→I1 −→ · · ·−→In −→ 0 be the minimal injective resolution of R.
Then

⊕
i≤n Ii is a tilting module as in Theorem 2.6.

Indeed, in this case, P<∞ = mod−R; so B is the class of all injective modules.
As mentioned in Section 1, the tilting module T can be obtained by an iteration of
special B-preenvelopes of R, etc. In particular, the minimal injective resolution of
R yields a copy of T as above.

(b) Let R be a right coherent ring such that findimR <∞ and A∩B consists of
pure-injective modules. (Since A ∩ B =AddT , the latter condition is equivalent to
assuming that T is

∑
-pure-injective.) Let M be the direct sum of a representative

set of all indecomposable modules from A ∩ B. Then M is a tilting module with
B = M⊥.

This follows from Azumaya’s Decomposition Theorem and from the fact that
the

∑
-pure-injective module T is a direct sum of indecomposable summands with

local endomorphism rings.
(c) Finally, we consider Cohen-Macaulay algebras and show that the dual of the

dualizing module is a tilting module as in Theorem 2.6.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



TILTING THEORY AND THE FINITISTIC DIMENSION CONJECTURES 4353

Let R be an artin algebra with the usual duality D : modR→ Rmod. Following
[5], we call R a Cohen-Macaulay algebra if there is a dualizing module ω, that is,
a faithfully balanced bimodule R ω R which is a finitely generated strong cotilting
module on both sides. Here a left module M ∈ Rmod is said to be a cotilting
module if there is a tilting module T ∈modR such that M = D(T ). Furthermore,
M is called a strong cotilting module if, in addition, the category I<∞ of all finitely
presented left R-modules of finite injective dimension coincides with the subcategory
of Rmod consisting of all modules X that have a finite addM -resolution 0 −→
Mn −→ · · ·−→M0−→X −→ 0 with M0, . . . ,Mn ∈ addM .

Assume now that R is a Cohen-Macaulay algebra with dualizing module ω. We
show that the finitely presented tilting module TR = D(R ω) satisfies B = T ⊥.
First of all, ⊥(I<∞) = ⊥ω. In fact, the inclusion “⊂” follows immediately from
ω ∈ I<∞. Further, if RY ∈ ⊥ω and RX ∈ I<∞, then we see by induction on the
length of the addω-resolution of X that ExtiR (Y,X) = 0 for any i > 0.

Next, we show that the dualD(X) of a moduleXR ∈ T⊥ is contained in ⊥ω. This
follows from the well-known formula ExtiR (D(X), ω) ∼= DTorRi (D(X), D(ω)) ∼=
ExtiR (D(ω), X), where the second isomorphism holds because D(ω) is a finitely
generated module and R is noetherian.

Now we verify that every module XR ∈ T⊥ is contained in B. Take a module
AR ∈ P<∞. Of course, D(A) ∈ I<∞; hence ExtiR (D(X), D(A)) = 0 for any i > 0
by the above computations, and the formula ExtiR (A,X) ∼= DTorRi (D(X), A) ∼=
ExtiR (D(X), D(A)) again gives the claim. Finally, since T ∈ P<∞, we conclude
that B = T ⊥.

3. A criterion for equality of the finitistic dimensions

In this section, we give a criterion for validity of the First Finitistic Dimen-
sion Conjecture in terms of the tilting module T considered in Theorem 2.6. The
following general result will be crucial:

Proposition 3.1. Let R be a ring and M be a tilting module. Then the following
two conditions are equivalent:

(1) the category AddM is closed under cokernels of monomorphisms;
(2) P = ⊥(M⊥).

These conditions imply FindimR <∞.
If M is finitely presented, then these conditions also imply
(3) A = ⊥(M⊥).

If M is finitely presented and
∑

-pure-injective, then (3) implies (1); so all three
conditions are equivalent.

Proof. Put X = M ⊥.
Assume (1). By Theorem 1.8, we have ⊥X ⊆ Pn, where n is the projective

dimension of T , and for any module A ∈ P there is an exact sequence 0 −→ A −→
X −→ Y −→ 0 with X ∈ X and Y ∈ ⊥X . Clearly, X ∈ P . Let m be the projective
dimension of X . By Lemma 1.7(c), there is a long exact sequence

0 −→Mm+1 −→Mm−→Mm−1 −→ · · ·−→M0−→X −→ 0

with Mi ∈ AddM for all i = 0, . . . ,m+1. Using the assumption, and induction, we
obtain X ∈ AddM ⊆ ⊥X . Since ⊥X is resolving, we infer A ∈ ⊥X . This proves
that P ⊆ ⊥X , and hence P = ⊥X .
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Assume (2). Then AddM = P ∩X by Lemma 1.7(b). So AddM is closed under
cokernels of monomorphisms since P and X share this property. Moreover, P is
closed under arbitrary direct sums; hence there is n < ω such that P = Pn, and
FindimR <∞.

Now, assume M is finitely presented. Then M ∈ A, and hence ⊥X ⊆ A. If (2)
holds, we also have A ⊆ Pn = P = ⊥X , which proves (3).

Finally, let M be finitely presented and
∑

-pure-injective. Assume (3).

We first show that every monomorphism in addM splits. Indeed, let 0 −→ A
f−→

B −→ C −→ 0 be a short exact sequence with A and B in addM . By assumption,
addM ⊂ B ∩ P<∞. Since P<∞ is closed under cokernels of monomorphisms, we
have C ∈ P<∞ ⊂ A and A ∈ B; so Ext1

R (C,A) = 0 and f splits.
Since M is Σ-pure-injective, we infer that any monomorphism in AddM is pure,

and hence splits; cf. [13, Observation 3.3]. So (1) holds true.

Now, we easily obtain a characterization for A = P in the right coherent case:

Theorem 3.2. Let R be a right coherent ring. The following are equivalent:
(1) findimR < ∞, and every module of finite projective dimension is a direct

summand of a P<∞-filtered module.
(2) There is a tilting module T such that B = T⊥ and Add T is closed under

cokernels of monomorphisms.
(3) A = P.

Under any of these conditions we have FindimR = findimR <∞.

Proof. (1) is equivalent to (3): The second condition of (1) is equivalent to P ⊆
A by Theorem 1.3(2). Further, findimR < ∞ implies A ⊆ P by Lemma 1.4,
and conversely, A = P implies that P is closed under direct sums and therefore
FindimR <∞.

The equivalence of (1) and (2) now follows from Propositions 2.3 and 3.1. Finally,
condition (1) obviously implies that FindimR= findimR.

Corollary 3.3. Let R be a right coherent and right perfect ring. Then the following
statements are equivalent:

(1) A = P;
(2) A is closed under direct limits, and a module has finite projective dimension

if and only if it is a direct limit of finitely presented modules having finite projective
dimension.

Proof. Recall that every module in A is a direct limit of modules from P<∞ by
Lemma 2.1. If A = P , then P = Pn for some n ≥ 0, and since Pn is closed under
direct limits over any right perfect ring, we conclude that A coincides with the
class of all direct limits of modules from P<∞. The converse implication follows
immediately from the fact that P<∞ is contained in A.

Next, we discuss when A is closed under direct limits. Recall that a module M
with AddM being closed under products is said to be product-complete; see [14].

Theorem 3.4. Let R be a two-sided coherent and right perfect ring, and assume
that the modules of finite projective dimension coincide with the direct limits of
finitely presented modules having finite projective dimension. Then the following
statements are equivalent:

(1) A is closed under direct limits;
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(2) FindimR <∞, and B = T⊥ for a product-complete tilting module T ;
(3) FindimR <∞, and B = T⊥ for a

∑
-pure-injective tilting module T .

Proof. (1) implies (2): We know from Corollary 3.3 and Theorem 3.2 that A = P
and FindimR <∞. By assumption, the class P = Pn is closed under products; so
AddT = P ∩ B has the same property, and T is product-complete.

(2) implies (3) since any product-complete module is
∑

-pure-injective.
(3) implies (1): Since FindimR < ∞, we know from [8, Theorem 7.4.6] that

(P ,P⊥) is a cotorsion pair. We now show that it coincides with our cotorsion pair
(A,B). Then Corollary 3.3 will yield (1).

As mentioned in Section 1, the tilting module T with B = T⊥ can take the form
T =

⊕
i≤mBi, where 0 −→ R

f0−→ B0
f1−→ B1 −→ · · ·

fm−→ Bm −→ 0 is a long exact
sequence obtained by an iteration of special B-preenvelopes.

By Lemma 1.7 (b), also this special choice of T must then be
∑

-pure-injective.
Thus AddT consists of pure-injective modules and is contained in B = (P<∞)⊥.
From the assumption and Lemma 1.6, we then infer that AddT is even contained
in P⊥.

In particular, we deduce that Bi ∈ P⊥ for all i ≤ m. Moreover, the cokernels
Cokerfi are in A ⊆ P . So, the above long exact sequence can also be viewed as an
iteration of special P⊥-preenvelopes. Now, taking X = P⊥ in the proof of Theorem
1.8 (cf. [1, Theorem 4.1]), we get T⊥ = P⊥, and A = P .

The results above lead to the question of when are all modules from Pn direct
limits of modules from P<∞n . A sufficient condition in the semi-perfect case is as
follows:

Lemma 3.5. Let R be a ring such that each projective module is a direct sum of
finitely generated modules (e.g., let R be semi-perfect). Let 0 < n < ω. Assume
that each module from Pn−1 is a directed union of modules from P<∞n−1. Then each
module from Pn is a direct limit of modules from P<∞n .

Proof. Let M ∈ Pn. So there is an exact sequence 0→ N ↪→
⊕

β<λ Pβ →M → 0
where N ∈ Pn−1 and all Pβ (β < λ) are finitely generated and projective. By
assumption, N =

⋃
α∈I Nα for a directed set (I,≤) and for Nα ∈ P<∞n−1 (α ∈ I).

Without loss of generality, we assume that ω ≤ card(I).
For each α ∈ I, let Lα be the smallest finite subset of λ such that Nα ⊆⊕
β∈Lα Pβ . Then the short exact sequences 0 → Nα ↪→

⊕
β∈Lα Pβ → Mα → 0

(α ∈ I) form a direct system: for α ≤ α′ ∈ I, the direct system map fαα′ is defined
as the triple (µ, ν, π) where µ : Nα ↪→ Nα′ and ν :

⊕
β∈Lα Pβ ↪→

⊕
β∈Lα′ Pβ are

the inclusions, and π : Mα → Mα′ is the induced map. Observe that Mα ∈ P<∞n
for all α ∈ I.

Put L =
⋃
α∈I Lα. Then the direct limit of the direct system defined above is

the exact sequence 0 → N ↪→
⊕

β∈L Pβ → limαMα → 0. So M ∼= limαMα ⊕⊕
β<λ, β /∈L Pβ is a direct limit of elements from P<∞n .

As a first corollary, we obtain a result proved by Huisgen-Zimmermann in the
finite-dimensional algebra case (cf. [12, Observation 5])

Corollary 3.6. Let R be a semi-perfect ring and M ∈ P1. Then M is a direct
limit of a direct system of modules from P<∞1 .
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Proof. Since R is semi-perfect, each module from P0 is a direct sum of cyclic mod-
ules, hence a directed union of a direct system of modules from P<∞0 , and Lemma
3.5 applies.

Corollary 3.7. Let R be a two-sided coherent and right perfect ring such that
FindimR = 1. Then A = P iff all modules in A ∩ B are pure-injective.

Proof. This follows immediately from Theorem 3.4 and Corollaries 3.3 and 3.6.

Unfortunately, even for finite-dimensional algebras, M ∈ P1 need not be a di-
rected union of elements of P<∞1 , and the conclusion of Lemma 3.5 may fail for
n ≥ 2. The relevant example is due to Smalø [18]:

Example 3.8. For each m ≥ 2, there exists a finite-dimensional algebra R over an
algebraically closed field k and a module M ∈ Pm such that M is not a direct limit
of a direct system of modules from P<∞m . Indeed, consider the finite-dimensional
algebra R constructed in [18, §1] for n = 2. So findimR = 1 and FindimR = 2 by
[18, Theorem 1.1]. Then a module M of projective dimension 2 cannot be a direct
limit of a direct system of modules from P<∞m (= P<∞1 ) since P1 is closed under
direct limits. Let N be the first syzygy module of M ; so N ∈ P1. By Lemma 3.5,
N is not a directed union of elements of P<∞1 .

4. Finitistic dimensions of artin algebras

In this section, R will denote an artin algebra. We will prove that the tilting
module T in Theorem 2.6 can be chosen finitely presented if and only if the category
P<∞ is contravariantly finite.

Recall that a subcategoryM of modR is contravariantly (respectively, covari-
antly) finite in modR if every finitely presented module has an M-precover (re-
spectively, anM-preenvelope). In this case, it is well known that the M-precovers
(M-preenvelopes) have minimal versions which are special.

Proposition 4.1. Let R be an artin algebra. Let S be a syzygy-closed subclass of
P<∞. Denote by (U ,V) the cotorsion pair cogenerated by S. The following are
equivalent:

(1) U ∩modR is contravariantly finite in modR;
(2) there exists a finitely presented tilting module T such that V = T⊥.

Proof. That (2) implies (1) is due to Auslander and Reiten. In fact, we know
from [5, §5] that V ∩modR is coresolving and covariantly finite in modR. Then
U ∩modR is contravariantly finite by Remark 1.2

Assume (1). From S ⊆ P<∞ we deduce U ⊆ A; so U∩modR ⊆ A∩modR =
P<∞ by [20, Corollary 2.6]. Following [5, 3.9], there even exists n < ω such that
U ∩modR ⊆ P<∞n . Since S ⊆ U ∩modR, we see that V = M⊥ for a module M
of projective dimension at most n. Remark 1.2 gives that every finitely presented
module X has a special V-preenvelope 0 −→ X −→ V −→ U −→ 0 where V ∈
V ∩modR and U ∈ U ∩modR. We can then construct a long exact sequence
0 → R → V0 → V1 → · · · → Vn−1 → Vn → 0 with V0, . . . , Vn−1 ∈ V ∩modR and
all cokernels in U ∩modR. By dimension shifting, we see that Vn is contained in
M⊥, hence in V ∩modR. The same argument as in the proof of [1, 4.1] now shows

that T =
n⊕
i=0

Vi is a finitely presented tilting module such that V = T⊥.
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Theorem 4.2. Let R be an artin algebra. The following conditions are equivalent:
(1) P<∞ is contravariantly finite in modR;
(2) there is a finitely presented tilting module T such that B = T⊥.

Proof. By [20, Corollary 2.6], P<∞ = A∩modR over any right noetherian ring.
So the equivalence follows from Proposition 4.1 for S = P<∞.

If R is an artin algebra such that P<∞ is contravariantly finite in modR, then
it was shown by Huisgen-Zimmermann and Smalø in [13] that the First and the
Second Finitistic Dimension Conjectures hold true. The hard core of their proof
consisted of showing directly that P coincides with the class of all direct limits of
modules in P<∞. The following is a refinement of that result:

Corollary 4.3. If R is an artin algebra such that P<∞ is contravariantly finite in
modR, then every module of finite projective dimension is a direct summand of a
P<∞-filtered module. In particular, FindimR = findimR <∞.

Proof. By Theorem 4.2, there is a finitely presented tilting module T such that
B = T⊥. Since T is

∑
-pure-injective, Proposition 3.1 and Theorem 3.2 yield

A = P and FindimR= findimR <∞.

Corollary 4.4. Let R be an artin algebra. The following conditions are equivalent:
(1) P<∞ is contravariantly finite in modR;
(2) there is a finitely presented tilting module T such that P⊥ = T⊥;
(3) there is a finitely presented tilting module T such that T⊥ ⊂ M⊥ for all

tilting modules M .

Proof. (1) implies (2) is just Theorem 4.2 together with the condition A = P shown
in Corollary 4.3.

(2) implies (3) is clear since every tilting module M belongs to P , and hence
P⊥ ⊆M⊥.

(3) implies (1): In particular, it follows that T⊥ is contained in all Tn⊥ = Bn
considered in Proposition 2.3. Hence T⊥ is contained in their intersection B. Since
T ∈ P<∞, we conclude that B = T⊥, and (1) is verified by Theorem 4.2.

Remark 4.5. Applying Proposition 4.1 to S = Ωi−1(P<∞n ) with 0 < i ≤ n < ω,
we get the corresponding statements for the cotorsion pairs (Ani,Bni) considered
in Remark 2.5. More precisely, the category Ani ∩modR is contravariantly finite
in modR if and only if there is a finitely presented tilting module Tni such that
Bni = T⊥ni. (By [20, Corollary 2.4], this is also equivalent to the following assertion:
“For each simple module S there is a special Ani-precover of S, f : A → S, such
that A ∈modR.”) For i = 1, we infer that the class P<∞n is contravariantly finite in
modR iff there is a finitely presented tilting module Tn such that Bn = T⊥n (n < ω).
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