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Abstract

Security testing has gained significant attention recently due to the huge number of attacks against

software systems. This paper presents a novel security testing method using trace-based symbolic execu-

tion and satisfiability analysis. It reuses test cases generated from traditional functional testing to produce

execution traces. An execution trace is a sequence of program statements exercised by a test case. Each

execution trace is symbolically executed to produce program constraints and security constraints. A pro-

gram constraint is a constraint imposed by program logic on program variables. A security constraint is a

condition on program variables that must be satisfied to ensure system security. A security vulnerability

exists if there is an assignment of values to program variables that satisfies the program constraint but

violates the security constraint. This assignment of values is used to generate test cases to uncover the

security vulnerability. One novelty of this method is a test model that unifies program constraints and

security constraints such that formal reasoning can be applied to detect vulnerabilities. Another nov-

elty is attribute-based analysis that abstracts program variables and functions for effective and efficient

symbolic execution. A tool named SecTAC has been implemented and applied to 14 benchmark pro-
grams and 3 moderate size open-source programs. The experiment shows that SecTAC quickly detects
all reported vulnerabilities and 15 new ones that have not been detected previously. The merits of the

proposed method are threefold. First, trace-based symbolic execution reduces the search space greatly

as compared to conventional symbolic execution. Second, attribute-based analysis tracks more useful

information about program variables and functions than previous methods, resulting in more effective

detection of vulnerabilities. Third, it is efficient and effective as the experiment result indicates.

1 Introduction

Software security has gained significant attention in recent years due to the huge number of security attacks

that exploit vulnerabilities in software. Security testing is becoming an active area of research, aiming at

identifying software vulnerabilities effectively. Recently, many approaches have been proposed to detect

vulnerabilities in programs [27, 15, 12, 6, 24, 1, 22, 7, 25, 5, 11, 13, 28].

Static analysis has been used to scan source code for errors that either crash a system or cause security

problems [26, 16, 27]. Tools based on static analysis mainly check unsafe string functions and pointer

operations. For example, function strcpy(dst,src) can cause a buffer overflow problem if the length

of src is greater than the space allocated to dst. These static analysis tools use heuristics to determine if
a security problem could occur; they usually approximate or even ignore runtime dynamics such as branch

conditions and how buffer elements are visited. Thus, they are often imprecise, causing many false alarms.

Dynamic analysis examines program execution to detect security problems such as buffer overflow [14,

9, 10, 1, 22, 25]. These tools feed test data to a program and monitor its runtime behavior. A security

vulnerability is detected if the behavior is considered abnormal, e.g., the program accesses a buffer outside

its bounds. Although dynamic analysis tools can reduce false alarm rates, they require test inputs that actually

cause security problems. This places a huge burden on testers. Dynamic analysis does not offer any help
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in generating inputs that cause security problems. Our technique provides this help. We can generate new

inputs that trigger security problems, even if the user-supplied inputs do not.

Dynamic symbolic execution has been used in many automatic test data generation tools for finding errors

like assertion violations and bugs that crash a system or cause security problems [12, 24, 7, 5, 11, 13, 28].

These tools integrate static analysis and dynamic analysis; they do not need test inputs that can actually

cause security problems. However, these tools try to exhaustively explore possible paths to find security

vulnerabilities. Thus, they do not scale well to large and complex programs. Moreover, they are designed to

detect some specific types of vulnerabilities such as buffer overflow. It is difficult, and sometimes impractical,

to extend them for detection of new types of vulnerabilities.

In this paper, we propose a novel security testing approach using trace-based symbolic execution and

satisfiability analysis. Trace-based symbolic execution avoids the search space explosion of conventional

symbolic execution. In our approach, existing test cases are reused. Specifically, each test case is used to

generate an execution trace, i.e., the sequence of exercised program statements. Symbolic execution is then

applied to each execution trace to produce two predicates. The first predicate is called a program constraint

(PC), which is updated when a statement of the trace is symbolically executed; it specifies a condition that

program variables must satisfy after the execution of the statement. The second predicate is called a security

constraint (SC), which is produced at certain points based on security requirements during the symbolic

execution of the trace; it specifies the condition that program variables must satisfy to ensure the security of

the given program execution. A security requirement is a restriction on program values used by operations

that may cause security problems, such as buffer overflow caused by library function calls. A security

vulnerability is detected if there is an assignment of values to program variables satisfies PC but violates SC,

i.e., PC ∧¬ SC is satisfiable. We use the Yices [8] SMT solver to check the satisfiability of PC ∧¬ SC.
One novelty of our method lies in a test model that unifies program constraints and security constraints

using logical expressions so that formal reasoning can be performed to detect security vulnerabilities. Hence,

our approach can handle new types of vulnerabilities by simply formulating new security requirements for

them. Another novelty is an attribute-based method for analyzing execution traces. Specifically, we treat

program variables and functions as objects and introduce attributes in objects to effectively extract important

information like buffer size, string length, and function return type. Compared with existing methods, this

results in more precise and efficient symbolic execution. For example, previous methods do not track the

relation between the strings in the same buffer, while our method does. Moreover, trace-based symbolic

execution also makes it possible to test programs for vulnerability in parallel. This is because analyses on

different execution traces are independent from each other. We can partition the test cases into a number of

disjoint subsets and analyze these subsets in parallel. This cannot be directly achieved in dynamic symbolic

execution based approaches since test cases that exercise different paths are generated online during path

exploration. It is very difficult to split the testing task into “sub-tasks” at the beginning of testing. Certainly,

tools like DART [12] and CUTE [24] can be modified to reuse existing test cases and only test the paths

exercised in these test cases. However, in this case, they lose the benefit of automatically exploring program

paths, and their symbolic execution on traces are not as effective as ours. Finally, SecTAC is open source
and available at http://ranger.uta.edu/∼dliu/sectac.

To evaluate the effectiveness of our approach, we implemented a tool named SecTAC (A Security Testing
Approach for C programs) and applied it to 14 benchmark programs given in [19] and 3 open source pro-

grams. The benchmark programs were designed to evaluate buffer overflow detection tools by simulating

historic real-world vulnerabilities in server programs. Compared with the results in [19, 29, 28], SecTAC
can detect every reported vulnerability as long as the vulnerability exists in the execution traces tested in

our experiments. In addition, SecTAC detected 6 previously unreported vulnerabilities in the 14 benchmark
programs 1. SecTAC also detected 9 vulnerabilities in the open-source programs that, to the best of our

1Two of them have been confirmed by the authors of [19] via personal communication. We are waiting for more responses.
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knowledge, have not been reported previously.

The rest of this paper is organized as follows. In the next section, we explain our basic ideas. In Section

3, we overview the SecTAC design. In Section 4, we describe the SecTAC implementation. In Section 5,
we present the experiment result. In Section 6, we review related work and compare SecTAC with existing
methods. We discuss the limitations of SecTAC in Section 7 and draw some conclusions in Section 8.

2 Basic Ideas of Our Approach

Software systems must be tested to ensure that the required functionalities are correctly implemented. Unlike

conventional software testing, our goal is to detect security vulnerabilities that exist in the software system.

A program is said to be vulnerable if there is an execution path that can be exploited to compromise the

security of the system. To detect such security vulnerability, we rely on a set of security requirements that

must be satisfied by all execution paths of the program. An example of security requirements is that the

length of the string copied to a buffer using function strcpymust not exceed the capacity of the buffer.

Testing for security vulnerabilities implies the generation of test cases that can effectively detect violations

of security requirements. However, it is well known that effective test case generation is both difficult and

time-consuming. Therefore, it is desirable to reuse the test cases that are already generated during conven-

tional software testing. The merit of this is twofold. First, these test cases typically accomplish some required

coverage criteria such as branch coverage. Second, the branches covered by the test cases are deemed im-

portant by the developer. Our goal is to provide a security testing method for software developers who have

access to the source program and the test cases produced by traditional functional testing.

In our approach, we use existing test cases to generate execution traces. Each execution trace is a sequence

of source code statements exercised by a test case. There are no loops in execution traces since a loop in

the original program will be unfolded when it is exercised by a test case. We then symbolically execute

each execution trace to determine whether it contains a security vulnerability. Symbolic execution of each

trace produces two predicates. The first predicate is the program constraint (PC), which is updated during

the symbolic execution of the trace; it specifies a condition that the program variables must satisfy. In other

words, the program constraint specifies the possible values of variables at each point during the symbolic

execution of the trace. The second predicate is the security constraint (SC), which is produced at certain

points during the symbolic execution of the trace; it specifies a condition that program variables must satisfy

to ensure the security of the software system. A security problem will occur when the values of some

variables violate the security constraint. Testing C programs for vulnerabilities is therefore equivalent to

determining whether at each point in the trace, there exists an assignment of values to program variables that

satisfies PC but violates SC.

In the following, we will first explain the ideas of deriving program and security constraints at each point

in the trace. We will then use a concrete example to demonstrate our approach.

Program constraints: The program constraint at a given point in the trace is determined by the pro-

gram statements exercised to reach this point. These statements include declaration statements, assignment

statements, branching statements, and library function calls; they impact the values of variables as follows:

• A declaration statement contains important information about the type and size of the declared program
variable. These two pieces of information determine the initial program constraint on the variable. As an

example, the declared size of a buffer or an array constrains the space available for holding data.

• An assignment statement constrains the value of its left expression to the result of its right expression.
• A branching statement in the program indicates that different execution paths could be taken under differ-
ent conditions. However, our execution trace is produced by running the program under a real test case.

We already know which execution path is taken by the test case. Hence, we can immediately determine a
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condition expression that specifies a constraint between the involved variables. For example, if statement

“if(i>j)” exercises the FALSE branch, we know that i≤j is a constraint between i and j.
• A library function call restricts the range of its return value if it has one. For example, the return value of
function open is always greater than or equal to -1. In addition, some library functions have side-effects
(i.e., modifying the states in addition to returning a value) that also impose constraints on variables. For

example, calling function getcwd will change the content of the buffer specified by the parameter.

According to the above rules, symbolically executing each statement produces an expression describing

the constraint between the program variables involved in the statement. To distinguish it from the program

constraint (PC), we call such expression the program constraint conjunction (PCC). Thus, the program con-

straint at any given point in the trace can be expressed as the conjunction of all PCCs produced so far.

security-critical func. security requirement

strcpy(dst,src) dst.space>src.strlen
strncpy(dst,src,n) (dst.space≥ n) ∧ (n ≥ 0)

strcat(dst,src) dst.space>dst.strlen + src.strlen
malloc(size) size>0
calloc(nmemb,size) (size>0) ∧ (nmemb>0)
getcwd(buf,size) (buf.space≥ size) ∧ (size ≥ 0)
fgets(dst,size,f) (dst.space≥ size) ∧ (size ≥ 0)
scanf(format, ...) # formats = # parameters-1

printf(format, ...) # formats = # parameters-1

Table 1: Security requirements for library function calls.

“x.space” is the size of the memory allocated to x and

“x.strlen” is the string length of x.

Security constraints: Producing security

constraints requires clearly-defined high-level

security requirements, e.g., the length of the

string copied to a buffer must not exceed the

capacity of the buffer. A wide range of secu-

rity vulnerabilities like buffer overflow, SQL in-

jection, and format string, are caused by im-

proper uses of operations such as strcpy,
sql.exec, and printf. Correct uses of

such operations can be expressed as security re-

quirements, which can then be used to gener-

ate security constraints. For example, a secu-

rity requirement for strcpywill be “the length
of the second argument must not exceed the capacity of the first argument”. If the trace includes a

statement strcpy(a,b), where a is a buffer and b is a string, we produce a security constraint:

a.space>b.strlen, where a.space denotes the capacity of buffer a and b.strlen denotes the
length of string b. We use first-order logic to express security constraints.

SecTAC can detect the violation of a security requirement as long as such requirement can be expressed
as a condition that program variables must satisfy. In the current implementation, we support two kinds of

security requirements: pointer addition requirements and function parameter requirements. The former is

derived from a useful observation made in [17], i.e., the result of a pointer addition must point to the same

original object. The latter is generated from security-critical library functions, i.e., the library functions

whose parameters must satisfy a condition to ensure the security of a software system. For example, functions

strcpy and printf are both security-critical library functions. We have selected 20+ library functions
that are well known to be “insecure” and formulated their security requirements. Table 1 shows some of

these functions and the corresponding security requirements.

1: void foo(int a,char *s){
2: char buf[10];
3: if(a>0)
4: strcpy(buf,s);
5: }

Figure 1: A sample program

Formulating security requirements for a given type of

vulnerability requires time and effort. Such formulation

is usually straightforward given some basic understand-

ings about the vulnerabilities. In fact, it only takes us lit-

tle effort to formulate security requirements for pointer

operations and selected security-critical library functions

in our experiment. We will study effective methodolo-

gies for formulating security requirements in the future. Once the security requirements for a given type of

vulnerability are formulated, they can be easily added in SecTAC to detect such vulnerability in C programs.

An example: Figure 1 shows a sample program, which copies the second argument s into a buffer, if
the first argument is greater than 0. Assume that there is only one security requirement, i.e., the length of a
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string copied to a buffer using function strcpy must not exceed the capacity of the buffer. Furthermore,
we assume that both arguments are user inputs, meaning they can be any values that are not known in

advance. Now, consider a test case that includes the call foo(x,y) with x=1 and y=’’test’’. This
test case generates an execution trace (1,2,3,4) of statement numbers. Although this test case does not
trigger any security problem, we will demonstrate that our method can effectively find the vulnerability in

the trace. Table 2 shows the result of symbolically executing this execution trace. The first column indicates

the statement number, and the second and third columns give the program and security constraints at the

respective statements.

Line # Program Constraint Security Constraint

1 (MIN≤ a≤MAX)∧
(s.strlen≥ 0) TRUE

2 (MIN≤ a≤MAX)∧
(s.strlen≥ 0) TRUE

3 (0<a≤MAX)∧
(s.strlen≥ 0) TRUE

4 (0<a≤MAX)∧
(s.strlen≥ 0) s.strlen<10

Table 2: Program and security constraints for the exe-

cution trace (1, 2, 3, 4)

As shown in the table, the PC at statement

1 is (MIN≤a≤MAX)∧(s.strlen≥ 0), where
[MIN, MAX] defines the range of an integer num-
ber, which is usually machine dependent, and

s.strlen is a symbolic value denoting the length
of string s. This is because both a and s are user
inputs, i.e., a can be any integer value and s can
be any string. The security constraint at statement

1 is TRUE since the statement does not include

any operation that may violate any security require-

ment. More specifically, it does not include a call to

the strcpy function. Statement 2 is a declaration
statement of a buffer; it sets the space of the buffer to 10. We do not include this in the program constraint.
Instead, we directly update the space field of the buffer, i.e., buf.space=10, for simplicity.

Statement 3 is a condition statement and the test case exercises the TRUE branch, which implies that

a > 0 must be TRUE. Thus, the program constraint changes from (MIN ≤ a≤MAX)∧(s.strlen≥0) to
(0<a≤MAX)∧(s.strlen≥0), as shown in the third line of the table. A security constraint is produced at
statement 4, as shown in the fourth line of the table. The reason is that function strcpy is associated with
a security requirement, i.e., the string length of the second argument must be less than the space allocated

to the first argument. As a result, we produce a security constraint: s.strlen<buf.space. Since
buf.space=10, we have s.strlen<10.

A security vulnerability exists at a particular point in the trace if an assignment of values to program

variables satisfies PC but violates SC, i.e., PC ∧¬ SC is satisfiable at this point. This means that there exists
a test case that can reach this point and also violates the security requirements. At statement 4, we check

the satisfiability of PC ∧¬ SC, i.e., (0<a≤ MAX) ∧ (s.strlen≥ 0)∧¬ (s.strlen<10). We use a
theorem prover and find that a=1 and s=’’012345678910’’ satisfies PC∧¬ SC. Thus a test case can be
generated to uncover the vulnerability.

3 SecTAC Design

The goal of SecTAC is to detect security vulnerabilities in a program. As discussed, SecTAC reuses existing
test cases for achieving high coverage and reducing testing effort. Specifically, we extract the execution trace

of the program under each test case and then analyze each execution trace to determine whether it contains a

security vulnerability. Figure 2 shows the workflow of SecTAC.

SecTAC performs security testing through three steps, preprocessing, symbolic execution, and satisfia-
bility analysis, as indicated in Figure 2. In preprocessing, we generate execution traces from existing test

cases and prepare the symbol table for tracking the state of program variables; in symbolic execution, we

analyze every execution trace to extract the program and security constraints at each point in the trace; and

in satisfiability analysis, we find inputs that can detect security vulnerabilities.

Preprocessing: In this step, we first use the transformer to transform the source program into an inter-
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mediate representation consisting of an operator and its two operands, i.e., the three-address code. To obtain

execution traces, the instrumenter parses and inserts the trace-logging code into this transformed program.

This transformed, instrumented program is compiled and then executed by the program executor using all

test cases. The trace-logging code generates an execution trace for each test case.
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Figure 2: SecTACWorkflow

The symbol-table builder constructs a sym-

bol table for all program variables for effectively

tracking the program constraints on them. In ad-

dition to the size and type information, each pro-

gram variable is also associated with additional

attributes. For example, for a pointer that points

to a buffer, we introduce two attributes to track

which buffer and which position in the buffer it

points to so that we can test the out-of-boundary

buffer access.

Symbolic execution: We use the symbolic

executor to symbolically execute the trace to

capture program constraints and check the pat-

tern of each executed statement against the se-

curity requirements. Whenever a security re-

quirement applies, e.g., a security-critical func-

tion call or a pointer addition statement is ex-

ercised, we generate a security constraint corre-

sponding to such security requirement. The pro-

gram and security constraints are predicates on

the symbolic values of program variables and their attributes.

Satisfiability analysis: For each statement in the trace that generates a security constraint (SC), we get the

program constraint (PC) at that statement and use a satisfiability checker to check if PC ∧¬ SC is satisfiable.
If it is, a security vulnerability is detected. The solution given by the satisfiability checker is then used to

generate test data to uncover the vulnerability. We express both program and security constraints using the

SMT-LIB format [21] and use the Yices SMT-solver [8] as the satisfiability checker.

4 SecTAC Implementation

typedef struct _Packet{
char name[32];

}Packet;
DoParse(char * p){

Packet pkg;
strcpy(pkg.name, p);

}
void main(){

char cmd[32];
recv(sock, cmd, sizeof(cmd),0);
if(strlen(cmd)>5) DoParse(cmd);

}

Figure 3: The sample program

In this section, we describe the implementation of

SecTAC in detail. Our discussion follows the workflow
illustrated in Figure 2. During the discussion, we also

use a concrete example to facilitate the understanding of

the workflow. In this example, we apply SecTAC to the
program shown in Figure 3, which receives a piece of

data from the network and uses function DoParse()
to process the data. To save space, we do not include the

socket initialization and connection code.

4.1 Step 1: Preprocessing

The main tasks of preprocessing are (1) generating exe-

cution traces and (2) constructing the symbol table.
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4.1.1 Generating Execution Traces

In SecTAC, the program is transformed by CIL [20], instrumented by the Java parser generator JavaCC,
and executed under each test case to produce the corresponding execution trace. An execution trace is previ-

ously defined in Section 2 as a sequence of source code statements exercised by a test case. This definition

facilitates the understanding of the basic ideas of our approach. However, SecTAC, an implementation of our
approach, generates execution traces consisting of sequences of expressions and special marks. Expressions

are either assignment statements or library function calls. Special marks are used to indicate: (1) function

call entry and exit, (2) conditional branching, (3) parameter passing, and (4) returning of values to variables

from function calls.

1 @enter main;
2 __cil_tmp4=0;
3 __cil_tmp5=(unsigned long)(cmd)

+__cil_tmp4;
4 __cil_tmp6=(char *)__cil_tmp5;
5 recv(sock, __cil_tmp6, 32, 0);
6 __cil_tmp7=0;
7 __cil_tmp8=(unsigned long)(cmd)

+__cil_tmp7;
8 __cil_tmp9=(char *)__cil_tmp8;
9 tmp = strlen(__cil_tmp9);
10 @true (tmp > 5);
11 __cil_tmp10=0;
12 __cil_tmp11=(unsigned long)(cmd)

+__cil_tmp10;
13 __cil_tmp12=(char *)__cil_tmp11;
14 @enter DoParse;
15 @parampass p=__cil_tmp12;
16 __cil_tmp3=0;
17 __cil_tmp4=0+__cil_tmp3;
18 __cil_tmp5=(unsigned long)(& pkg)

+__cil_tmp4;
19 __cil_tmp6=(char *)__cil_tmp5;
20 strcpy(__cil_tmp6, p);
21 @exit DoParse;
22 @exit main;

Figure 4: The execution trace

Figure 4 shows an example of the execution

trace generated for the program given in Figure

3. This trace is produced by using a test case that

sends a string, “testdata”, to the program. The ex-

ecution trace includes many ”__cil_tmp” style
variables introduced by CIL during code transfor-

mation. We will explain how SecTAC analyzes
this trace line by line in Section 4.2.3. Decla-

ration statements are not included in execution

traces. The reason is that they are not “exe-

cuted” by test cases. For example, the above trace

does not include the declaration of cmd. How-
ever, declaration statements contain important in-

formation about the type and size of program vari-

ables. SecTAC handles declaration statements in
the symbol-table builder, which we will discuss

later.

4.1.2 Constructing the Symbol Table

The symbol table is used to track the state of pro-

gram variables; it includes information about all

program variables and user-defined functions in

the trace. Specifically, the symbol-table builder

parses the program and creates a data object for

each program variable and a function object for

each user-defined function. These objects include

various attributes to track the state of program variables. Our symbolic execution is thus attribute based. This

allows us to precisely capture the semantics of variables and functions to conduct more accurate reasoning.

Next we describe the creation of the objects and discuss features added to address pointer dependency and

object locating.

Data objects: The symbol-table builder creates a data class for every program variable type. A data

class includes the size and type information as well as some other attributes about the data type it represents;

an object of this class is created for each program variable of this data type. In SecTAC, we have a pre-
defined class for each primitive type or primitive type with qualifiers. For example, we use classes Int and
BCharacter for integers and characters declared in the program, respectively. For each composite type,
we create a class using its type name. For example, for the data type _Packet in the code given in Figure
3, we create a class named _Packet as shown in Figure 5. We also have a pre-defined class Pointer for
pointers, arrays, and buffers. All the above data classes are extended from a common base class BaseType
that defines common attributes such as name, type, and symbolic value. It also includes a typesize field to
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record the size of the memory allocated to the variable. For example, the typesize field of an Int object
is 4 in a 32-bit computer.

Function objects: SecTAC also creates a class for each user-defined function to facilitate the trace analy-
sis, i.e., help locate objects in the scope of any user-defined function. For example, for the program in Figure

3, SecTAC creates classes for user-defined functions main() and DoParse(). For every function class
f, we create objects for the parameters to the corresponding function and the local variables declared in this
function. These objects are the members of this function class f. Other statements in the function body are
not included in class f.

class _Packet extends BaseType{
Pointer name=new Pointer("Char","name",

"32");
public BaseType getObject(String name){
if(name.compareTo("name")==0)

return name;
return null;

}
public BaseType getObject(int offset){
if(offset<name.getsize())

return name.getObject(offset);
return null;

}
}

Figure 5: Class for Packet struct

All function classes are extended from a

common abstract base class Function that
includes a getObjectmethod, which can be
used to locate the object representing a local

variable or function parameter in the scope of

a user-defined function given a name.

In C programs, the global variables or static

variables declared in the file scope are not in-

cluded in any function. To track these vari-

ables, SecTAC also constructs a Global
class and a file-scope class for each file, and

puts the variables in these classes accordingly.

Pointer dependency: It is possible that

several pointer-type variables are declared and

point to the same array. For example, we can

declare “char p[10]” and define a pointer “char *q=p+5” in a C program. We know that both pointers
p and q point to the same array. The only difference is that p points to the beginning of the array, while q
points to the sixth element of the array. The pointer objects are said to be related or dependent if they point

to the same array. Hence, p and q are related. We notice that the operation on a given pointer object may
impact its related pointer objects. For example, if we copy a string of length 6 to p, then the string lengths of
p and q become 6 and 1, respectively. If we immediately copy another string of length 4 to q, then the string
lengths of p and q become 9 and 4, respectively.

To correctly analyze the impact of pointer operations on related pointer objects, the Pointer class also
includes a start field and a space field. A pointer object uses start to record its starting position in
the array, and space to record the size of the space from its starting position to the end of the array. Thus,
we can determine how the operation on one pointer object can impact others. From the previous example,

we know that the start fields of the objects for p and q are 0 and 5, respectively. If a string of length 6 is
copied to p, then we immediately know that q is impacted and its string length should be 1.

Object locating: Object locating addresses how to determine the target object(s) of a program statement.

For example, for statement “i=j.id;”, we need to locate the objects created for variable i and the member
id of the structure j. As discussed before, each function class provides a method getObject to locate the
object created for variables in its scope given a name. However, when a member of a composite type variable,

e.g., j.id in the above example, is referenced, we need to further locate the member object representing the
member of this variable.

Every class created for a composite type variable (e.g., struct or array) has a method getObject to
locate the member object given a name or an offset. If the name is given, locating the member object is

straightforward. However, after the program is transformed by CIL, the member of a composite type variable

is always referenced using the offset, i.e., the distance from the beginning of this variable in memory to the

member we are looking for. For example, the reference of name in strcpy in the following code
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struct Person{ int age; char name[12];};
Person students[20];
strcpy(students[5].name, "Mike");

will be transformed by CIL into the reference of __cil_tmp6 as follows:

__cil_tmp2=0;
__cil_tmp3=4+ __cil_tmp2;
__cil_tmp4=80;
__cil_tmp5=__cil_tmp4+__cil_tmp3;
__cil_tmp6=(unsigned int)students+__cil_tmp5;

An array or struct object is able to locate its member object through the offset because it knows the size

of the memory allocated to each member. In the above example, the symbolic value of __cil_tmp5 is a
constant and can be simplified to value 84. Thus we call the getObject(84)method of the students
object. Since the size of an array element is 16, we know that the member we are looking for is in the

Person object that represents the sixth element in the array. We then lookup in this Person object with
offset 4, which returns its member object at offset 4, i.e., the name object. Note that the above method will
not work when the offset is not an constant, e.g., it depends on external inputs. Fortunately, such usage rarely

occurs in practice, and we did not see this kind of usage in experiments. If this usage does appear in the

program, SecTAC simply gives a warning.

As shown in Figure 5, the object created for composite type variable _Packet in the program given in

Figure 3 includes two getObject methods, one for locating the object given a name and the other for
locating the object given an offset.

4.2 Step 2: Symbolic Execution

Once we have the execution trace and the symbol table, we start to analyze the execution trace statement by

statement to capture the program and security constraints using symbolic execution (symbolic value propa-

gation). In the following, we will first overview when to produce program and security constraints during the

symbolic execution. We will then discuss the main algorithm for trace-based symbolic execution. Finally,

we will illustrate our algorithm using the execution trace given in Figure 4.

4.2.1 Producing Program and Security Constraints

The program constraint will be updated when we are building the symbol table. Specifically, when we create

an object for a program variable, we produce a program constraint conjunction according to the variable

declaration information. For example, statement “int i;” leads to the creation of an Int type object i.
Thus, we produce a program constraint conjunction (MIN≤i.sym≤MAX), where i.sym is the symbolic
value of i. The program constraint will also be updated when a statement in the trace is symbolically

executed.

• If it is an assignment statement, the attributes of the object for the right part determines the attributes
of the object for the left part. In this case, we directly update the attributes of the left object instead of

updating the program constraint. However, a program constraint conjunction may be generated when we

symbolically execute the right part of the statement, which we will show later.

• If it is a branch statement, we update the program constraint based on which branch is exercised. For

example, a conditional expression “@true i>j” indicates that the TRUE branch is exercised. Thus,
SecTAC generates a program constraint conjunction (i.sym>j.sym).

• If the statement calls a library function, we need to update the program constraint according to its seman-
tics. If the return value of the library function is assigned to a variable, we generate a program constraint
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conjunction according to this return type. Since some library functions have constraints on their return

values, a program constraint conjunction that further restricts the range of the returned value is produced.

For example, the return value of fopen is always greater than or equal to -1, which is different from
the default range of its return type. In addition, some library functions have side-effects on their pa-

rameters. Some side-effects can be considered as equivalent to updating the object attributes, e.g., for

strcpy(dst,src), the strlen field (a symbolic value that denotes the string length) of the dst ob-
ject is updated to that of the src object. Some side-effects, however, impose constraints on the involved
parameters. For example, after calling getcwd(buf,n), the strlen of buf is less than n if the length
of the current path is less than n, and unchanged otherwise. In this case, we also generate a program
constraint conjunction.

A program statement in the execution trace is said to be security critical if it may violate a security

requirement. In the current implementation of SecTAC, any statement involving either a security-critical
function or a pointer addition is a security-critical statement. SecTAC produces a security constraint, i.e., a
first order logic expression, at every security-critical statement.

4.2.2 Algorithm for Symbolic Executor
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Figure 6: Symbolic executor

We now describe the detail of the SecTAC sym-
bolic executor as given in Figure 6. We first

create a stack to keep track of the current func-

tion object, i.e., the active function object in use,

which is always the one at the top of the stack.

SecTAC then processes each statement in the
trace according to the following rules: (1) if it

is a function entry, SecTAC creates a new ob-
ject of this function class and pushes the ob-

ject into the stack; (2) if it is a function return,

SecTAC pops an object from the stack; (3) If it
is an assignment statement, SecTAC performs
symbolic execution on the left and right expres-

sions, and updates the symbolic values of the in-

volved variables; (4) if it is a conditional state-

ment, SecTAC produces a program constraint

conjunction that captures which branch is exer-

cised; (5) if it is a library function call, SecTAC
processes it as shown in Algorithm 7. If the

function is in the right part of an assignment

statement, a new object is created according to its return type. If the function further limits its return value

to a smaller range compared to its type, the program constraint on this object is updated. If the function also

has side-effects, the attributes of the involved objects are updated accordingly, and the program constraint is

also updated as needed. If the function is also a security-critical function, a security constraint is generated.

SecTAC needs to locate the object given a variable name or an offset in a composite type variable. Given a
name, SecTAC seeks the object in the current function object (i.e., the one at the top of the stack), the caller
function object, the file-scope function object, or the global function object using getObject provided
in every function object. In addition, given an offset and a composite type object, SecTAC locates the
corresponding object using function getObject provided in every composite type object. We do not
consider paddings used for memory alignment in a composite type variable.

In Figures 6 and 7, F is the function class for a user-defined function; L is the name of a library function;
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newname() returns a unique string that has never been used; newobject(t) creates an object of type
t; outputPCC() outputs a program constraint conjunction (PCC); and outputSC() produces a security
constraint (SC).
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Figure 7: processLibFunc()

Symbolic Execution on Expressions: A

critical part of the algorithm in Figure 6

is the symbolic execution on expressions,

symExpr(). An expression e can be a con-
stant number n, a character c, a constant string
str, a variable v, a pointer dereference ∗v,
a variable reference &v, a dyadic operation
e1 op e2, a struct membership operation v.m, or
a library function call.

The algorithm in Figure 8 shows the symbolic

execution procedure on expressions. Given an

expression e, the symbolic execution works as
follows: (1) if e is a constant number or char-
acter, a new object of the class for such data

type is created, and its symbolic value is set to

this constant value; (2) if it is a constant string,

a Pointer object is created, and its strlen
field is set to be the length of this constant string;

(3) if it is a variable, we will locate the corresponding object and return it; (4) if it is ∗v, we locate the object
corresponding to v and return the object specified by the point_to field of this pointer object; (5) if it is
&v, we locate the object corresponding to v and create a Pointer object. We then set the point_to field
of the newly created object to the object corresponding to v; (6) if it is v.m, we locate the object of v, then
return its member object with the name m; (7) if it is e1 op e2, we recursively perform symbolic execution

on expressions e1 and e2. Based on the types of the returned objects, we take different actions as shown in

Figure 8; (8) if it is a library function call, we handle it in the same way as we handle library function calls

in Figure 6.

In Figure 8, symOp() concatenates two symbolic values with the operator. symAddSpec() processes
the addition between a Pointer object p and an Int object i as follows:

• If p points to a buffer, we create a new Pointer object obj and set its space, start, and strlen
fields based on p and i. Specifically, obj.space and obj.start are set to p.space-i.sym and
p.start+i.sym respectively. obj.strlen is set to the following conditional expression:

((p.strlen≥i.sym) (p.strlen-i.sym) newsym)

This expression indicates that obj.strlen is set to p.strlen-i.sym if p.strlen≥i.sym, and a
new symbol newsym otherwise. A program constraint conjunction is also produced for the new symbol

newsym, i.e., newsym≥ 0. Finally, the new object obj is returned.
• If p points to a composite type object, e.g. array or struct, then we need to find a member object in-
side this composite object through offset i. In this case, we use the getObject(i) method in object
p.point_to to locate and return the object.

• If p points to neither a buffer nor a composite type data, then it is just a pointer arithmetic. In this case, a
new object will be created in a similar way as the first case. The only difference here is that the strlen
field need not be set.

SecTAC determines the above three patterns through the element type of pointer and the type cast before
it. As we discussed, SecTAC generates a security constraint for every pointer addition to check whether the
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Statement Program Constraint Conjunction Security Constraint

declaration cmd.strlen≥0 TRUE

3 (newsym1 ≥ 0) (0+0 < 32)

5 ((cmd.strlen ≥ 0) (cmd.strlen-0) newsym1)≥ 0 (32 ≤ 32-0)

7 (newsym2 ≥ 0) (0+0 < 32)

10 ((cmd.strlen ≥ 0) (cmd.strlen-0) newsym2)>5
12 newsym3 ≥ 0 (0+0 < 32)

20 32 > ((cmd.strlen ≥ 0) (cmd.strlen-0) newsym3)

Table 3: Program and security constraints

result still points to the same original object.
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Figure 8: symExpr()

Pointer analysis : We have already discussed

the pointer dependency problem in the last sub-

section. In the following, we will discuss how we

analyze related (or dependent) pointers in sym-

bolic execution. Specifically, when we create an

object for a buffer, we also include a number of

links in this object through which we can locate

all Pointer objects that operate on this buffer.
Let us consider a particular pointer p that points
to a buffer. When we update the object for this

pointer, we will need to find the object for the

original buffer this pointer points to and locate all

Pointer objects that operate on this buffer. Let
q be a Pointer object we find. We first check
p.start and q.start to decide their relative
positions in the buffer. There are two cases:

• If q’s position in the buffer is before that of p’s,
we compare q.strlen with the distance be-
tween them. If q.strlen is larger than the
distance, we have to update q.strlen ac-
cordingly; otherwise, nothing needs to be done.

• If q’s position in the buffer is after p’s, we
compare p.strlenwith the distance between
their positions. If p.strlen is larger than
the distance, we have to update q.strlen ac-
cordingly; otherwise, nothing needs to be done.

4.2.3 Example of Symbolic Execution

Next we will show the result of applying our symbolic execution on the trace given in Figure 4. We process

one statement in the trace at a time. Since the first statement is the function entry mark “@enter main”,
SecTAC creates a new object main1 of the function class main() and pushes it into a stack that records
the current active function object. SecTAC keeps a global counting variable to assure the name uniqueness
of every new object.

Statement 2 is an assignment statement. SecTAC uses function locateObject to locate the object
for the left expression by calling main1.getObject("__cil_tmp4"). Since the right expression is
a constant 0, we create a new object of the pre-defined Int class, set its symbolic value to 0, and return it
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as the object for the right expression. Based on the semantics of assignment statements, we then copy its

symbolic value to the left object. Thus, the object for __cil_tmp4 has the symbolic value 0.
Statement 3 is also an assignment statement. We use locateObject("__cil_tmp5") to locate the

object For the left part. For the right part, it is a pointer addition where the pointer points to buffer cmd.
We thus create a Pointer object obj that points to the same buffer as the cmd object and set its space,
start, and strlen fields as follows. The space field is set to cmd.space-__cil_tmp4.sym.
Since the symbolic values of cmd.space and __cil_tmp4 is 32 and 0 respectively, the symbolic value
of obj.space is set to 32-0. Similarly, the symbolic value of obj.start is set to 0+0. According to
symAddSpec(), the strlen field of obj is set to:

((cmd.strlen≥ 0) (cmd.strlen-0) newsym1).

The newly created object obj is then used to update the object for the left part, i.e., __cil_tmp5. In
addition, we also generate a program constraint conjunction on newsym1, as given in the table. Since the
right part is a pointer addition, we also generate a security constraint based on our pointer addition security

requirement: cmd.start+__cil_tmp4.sym < cmd.space, which is actually 0+0<32 (i.e., TRUE).

Statement 4 is an assignment statement, and we simply copy the attribute values of the right object to that

of the left object.

Statement 5 calls recv(), which is a security-critical function according to our security requirement.
Thus we generate a security constraint: 32≤__cil_tmp6.space, i.e., the number of bytes to receive
should not exceed the size of the receiving buffer. Since the symbolic value of __cil_tmp6.space is
32-0, we have a security constraint 32≤32-0 (i.e., TRUE) as shown in Table 3. Since recv() has side-
effects, we also capture its program constraint. Specifically, according to the specification of recv(), the
receiving buffer __cil_tmp6 is not null terminated. Thus, the strlen field of the receiving buffer, which
is copied from __cil_tmp5, should be greater than or equal to 0. Thus, we generate a program constraint
conjunction as shown in Table 3.

Statements from 6 to 8 have the same patterns as statements from 2 to 4 and are processed in the same

way.

Statement 9 involves another library function strlen which retrieves the length of a given string. Thus,
we create an Int object and set its symbolic value to __cil_tmp9.strlen. This object is then used to
update the symbolic value of the left object.

Statement 10 is a branch condition with the @true mark. Thus we generate a program constraint by

replacing the involved variables with their symbolic values, as shown in Table 3.

Statements from 11 to 14 have the same patterns as statements from 1 to 4 and are processed in the same

way. Statement 15 is an assignment statement with mark @parampass to simulate parameter passing. The
left part is the formal parameter of a user-defined method, and the right part is the actual parameter. This

mark tells SecTAC to skip the current function object (callee) when locating the object for the right part of
the statement, i.e., the actual parameter. Once we locate the objects, we process this statement in the same

way as other assignment statements.

Statements 16 and 17 are both assignment statements and are processed in the same way as others.

Statement 18 is an assignment statement where the right part indicates that we are visiting a member

inside a struct object through an offset. SecTAC recognizes this pattern from the type of the Pointer
object for &pkg and the type cast before it. It implies that the pointer which points to a |_Packet|object
is type-casted to an address. Thus, for expression &pkg, SecTAC creates a new Pointer object and sets
its point_to field to object pkg. Then, for the right part, SecTAC calls the getObject(0)method of
pkg to find the object at offset 0, where 0 is the symbolic value for __cil_tmp4. It will return the object
that represents the name buffer inside pkg.

Statements 19 is another assignment statement and is processed in the same way as others.
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Statement 20 calls a library function strcpy. Based on its semantics, SecTAC updates the strlen
field of the object for __cil_tmp6 using that of the object for p. Based on the pointer dependency, the
objects for __cil_tmp5 and pkg.name are __cil_tmp6’s related Pointer objects that point to the
same buffer. Thus, the strlen fields of these two objects are also updated. In addition, this function is also
a security-critical function. We thus have __cil_tmp6.space>p.strlen, which produces a security
constraint as shown in Table 3.

The next two statements makes SecTAC pop the two function objects from stack, and the symbolic

execution stops here.

4.3 Step 3: Satisfiability Analysis

Finally, the program and security constraints are expressed in SMT-LIB [21] format, which is recognized by

many SMT solvers. Table 3 shows the program and security constraints for the statements in the trace given

in Figure 4 that either produce a security constraint or a program constraint conjunction. We use the SMT

solver Yices [8] to check the satisfiability of PC ∧¬ SC for each SC and the PC at the same point in the trace.
For each security constraint, SecTAC combines its negation with the program constraint at the same

statement in the trace. They are represented in first-order logic and form an input file to the SMT solver

Yices [8]. Suppose that we are trying to check if a security vulnerability exists at statement 20. We then

retrieve the PC at statement 20 as follows:

(cmd.strlen>=0) AND (newsym1>=0) AND
(((cmd.strlen>=0) (cmd.strlen-0) newsym1)>=0) AND
(newsym2>=0) AND (newsym3>=0) AND (((cmd.strlen>=0) (cmd.strlen-0) newsym2)>5)

We found that PC ∧¬ SC is satisfiable at statement 20. The SMT solver Yices gives a solution, from
which we generate a test case that sends the program a 32 bytes long string whose last character is not null.

This test case causes strcpy to overflow the name buffer in pkg. A buffer overflow vulnerability is thus
detected.

Note that the PC at a given point in the trace may include a large number of conjunctions. In this case,

checking the satisfiability of PC ∧¬ SC could be very expensive. However, we note that a lot of PC con-
junctions are actually irrelevant to SC since they only involves variable symbols that do not impact SC.

Removing these irrelevant conjunctions will not change the result of satisfiability analysis. We thus use only

SC-dependent PC conjunctions to save the cost. Two conjunctions are said to be directly related if they

include at least one common variable symbol. Then, starting from an empty S, we first identify all PC con-
junctions that are directly related to SC and put them in S. We then repeatedly check every PC conjunction
and add it into S if it is SC-dependent, i.e., directly related to at least one conjunction in S. We stop when
there are no more SC-dependent PC conjunctions. Let PC′ be the conjunction of all conjunctions in S. We
only need to check the satisfiability of PC′ ∧¬ SC instead of PC ∧¬ SC.

4.4 False Negatives and Positives

Given a security vulnerability in a program, SecTAC can detect such security problem if (1) the vulnerability
is modeled by one of the security requirements, (2) an execution path that can trigger such security problem

is exercised by one of the test cases, and (3) the theorem prover for satisfiability analysis can correctly find

a solution if PC ∧¬ SC is satisfiable. In other words, there will be false negatives if one of the above three
conditions is false. Similarly, SecTAC will generate a false positive if the theorem prover returns a solution
when PC ∧¬ SC is not satisfiable. In our experiments, we did not find any false positive.
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Program LOC Input LOT Time(mm:ss) #KnownBugs #FoundBugs #FP Remark

Bind 1 1116 www.cnn.com 539 00:01 1 1 0

Bind 2 1306 cnn.com 1117 00:01 1 1 0

Bind 3 380 default 365 00:01 1 1 0

Bind 4 645 www.nbc.com; 162 00:01 1 2 0 1 new bug

www.cnn.com

Sendmail 1 537 default 6207 00:02 6(5)∗ 6 0 1 new bug

Sendmail 2 791 default 5509 00:03 1 1 0

Sendmail 3 416 default 2534 00:03 1 2 0 1 new bug

Sendmail 4 485 default 1379 00:03 4 4 0

Sendmail 5 622 default 6669 00:03 3 3 0

Sendmail 6 390 default 129 00:01 1 1 0

Sendmail 7 929 default 2145 00:03 2 2 0

Wu-ftp 1 503 /tmp/aa 79 00:01 4 4 0

Wu-ftp 2 744 /tmp/test.c 106 00:01 1 2 0 1 new bug

Wu-ftp 3 689 /tmp/aa 399 00:01 6 8 0 2 new bugs

nullhttpd-0.5.1 2328 50 test cases 12447 08:07 1 2 0 1 new bug

lancer 4261 50 test cases 118657 49:18 0 4 0 4 new bugs

bftpd-2.3 5766 10 test cases 65027 11:42 0 1 0 1 new bug

* According to the BAD marks in the program, there are 6 bugs in the trace. However, we found that one of them is not a bug.

Table 4: Experimental Results. “LOC” represents the number of lines of the code; “Input” represents the

program input we use; “LOT” represents the number of lines in the execution trace exercised by the test

case; “Time” represents the time that our tool used; “#KnownBugs” is the number of previously reported
vulnerabilities in the execution trace; “#FoundBugs” is the number of vulnerabilities found by SecTAC;
and “#FP” is the number of false positives.

5 Experiments

To evaluate the effectiveness of our approach, we developed a tool named SecTAC and applied it on 14
benchmark programs [19], two open source http server programs, nullhttpd-0.5.1 and lancer, and
an open source ftp server program bftpd-2.3. We used their latest versions in our experiment. The
benchmark programs represent various kinds of memory corruption vulnerabilities in certain versions of the

Bind, Sendmail, and Wu-ftp programs. They have been used to evaluate the effectiveness of many buffer

overflow detection tools [19, 29, 28, 23]. For each of these programs, there is a buggy version and a fixed

version. We used the buggy version in our experiment. Our results show that SecTAC can detect every
reported vulnerability as long as the vulnerability exists in the traces. In addition, SecTAC also detected six
vulnerabilities in the benchmark programs, four vulnerabilities in nullhttpd-0.5.1, four vulnerabilities
in lancer, and one vulnerability in bftpd-2.3 that, to the best of our knowledge, have not been reported
previously. Next, we will report our findings in detail.

Table 4 summarizes our experimental results. The first 14 rows show the result of evaluating SecTAC
on the 14 benchmark programs [19]. The numbering for each program in Table 4 is identical to what was

used in [19]. As shown in the last column of the table, we found new vulnerabilities in Bind 4, Sendmail 1,

Sendmail 3, Wu-ftp 2, Wu-ftp 3, nullhttpd-0.5.1, lancer, and bftpd2.3 programs.

Test inputs: For each buggy benchmark program version, [19] either provided a specific input file as the

test data or hard-coded the values of some variables in the program to trigger the vulnerability. However, a

major merit of SecTAC is that it can detect vulnerabilities under test cases from functional testing that do not
trigger any vulnerability. Hence, in our experiments, whenever it is possible, we use test inputs that exercise

paths containing the reported vulnerabilities but do not trigger any of them. Only when it is impossible to

find a test case exercising the known vulnerable path without triggering the vulnerability, we use the test

input provided in [19]. For the sake of presentation, we call a test case normal if it does not trigger any
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Program Test Input that Triggers the New Vulnerability Location of the New Vulnerability Remarks

Bind 4 www.cnn.com; www.nbc.com ns-lookup-bad.c:277 nsp out-of-bound

Sendmail 1 default crackaddr-bad.c:460 buflim out-of-bound

Sendmail 3 default mime1-bad.c:212 infile out-of-bound

Wu-ftp 2 a 200 bytes long string for argv[1] call fb realpath.c:94 strcpy buffer overflow

Wu-ftp 3 /a...a (48 a’s)/aa realpath-2.4.2-bad.c:269 where out-of-bound

Wu-ftp 3 /a...a (48 a’s)/aa realpath-2.4.2-bad.c:257 strcpy buffer overflow

Table 5: New Vulnerabilities in the benchmark programs

vulnerability. We call the test cases provided in [19] default in the table.

For http server programs, we randomly generate 50 normal http requests. For the ftp server program, we

manually generate 10 test cases that include basic ftp commands such as “ls”, “get”, and “put”. We use GCC

bounds checking extension to monitor the program execution. These test cases do not trigger any out-of-

boundary operation. Next we describe the test input to every benchmark program tested in the experiment.

In the Bind 1 program, a vulnerability occurs when a negative value is passed as the third argument

of memcpy, which causes the program to copy a huge amount of data to a buffer. In [19], a constant string
“sls.lcs.mit.edu” is hard-coded as the second argument of strcpy to achieve this. SecTAC can detect this
vulnerability easily. However, to make our experiments more illustrative, we use string “www.cnn.com” as
the normal test data under which the program runs normally. Similarly, for the Bind 2 program, we use

string “cnn.com” as the normal test input instead of the original hard-coded input string “sls.lcs.mit.edu”
that crashes the program. The Bind 3 program does not check the buffer space when calling memcpy. The
provided test case is a file s3.inwhose content is “9283721”. However, we notice that as long as its content
is not “0”, the vulnerability always occurs and crashes the program. Thus we just use the original test case.

The Bind 4 program uses sprintf without boundary checking. A string of 1072 bytes long is provided in
[19] as the input to trigger the vulnerability. We do not use this input. Instead, we use a normal test input as

given in Table 4.

The test input to each Wu-ftp program is a string that represents a path. For the Wu-ftp 1 program, the

original test case in [19] is “/tmp/” followed by 24 ’a’s. This is carefully designed to trigger the buffer
overflow caused by strcpy. For the Wu-ftp 2 program, the original test case is also a specific complex
path with 9 subdirectories, which triggers the vulnerability caused by strcat. For the Wu-ftp 3 program,
the length of the input path is made more than 47 to trigger the vulnerability caused by strcpy. In our
experiments, we use normal test inputs. Specifically, for Wu-ftp 1 and Wu-ftp 3, we use a normal test

input “/tmp/aa” that does not trigger the vulnerability. For Wu-ftp 2, we also use a normal test input
“/tmp/test.c”, which is the path of an existing file and does not trigger the vulnerability.

Most of the vulnerabilities in the Sendmail programs are caused by out-of-bound pointer operations. These

operations are usually in a loop in the program where the pointer is increased by 1 for each looping. As a

result, in the execution trace, the out-of-boundary operation of a pointer only occurs when a test case can

actually trigger the vulnerability. In other words, the execution trace under a normal test case does not contain

the vulnerability. Thus, we use test cases provided by the benchmark programs in our experiments.

Performance: We did the experiments on a 2GHz Core 2 Desktop running Ubuntu-8.10 Linux operating

system. We let the JVM use a maximum of 1G heap memory during our experiments. The fifth column of

Table 4 shows the execution time of SecTAC for analyzing all traces for each program. The execution time
is the sum of the times needed for trace-based symbolic execution and satisfiability analysis. We can see that

SecTAC can quickly analyze C programs for vulnerability.

New vulnerabilities: In addition to the known bugs, SecTAC also detected six new vulnerabilities in
the 14 benchmark programs as shown in Table 5. Test cases that trigger these vulnerabilities can be directly

derived from the solutions given by the satisfiability checker Yices [8] in SecTAC. Notably, we detected a
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vulnerability that is previously considered to be safe. The authors of [19] explicitly commented the line 257

of file realpath-2.4.2-bad.c in the Wu-ftp 3 program as a safe call. However, our experiment shows
that it is not. As shown in Table 5, when the length of a directory name is long enough, the strcpy function
at line 257 will overflow the destination buffer whose size is only 46 bytes.

For the nullhttpd-0.5.1 program, SecTAC found three buffer overflow vulnerabilities at line 143
of file “http.c”. The attacker can overflow three different buffers in this line of code. In addition, it also found

a new vulnerability at line 58 of file “config.c”, where the program uses snprintf to copy a string variable
config.server_base_dir and a constant string “/bin” to buffer server_bin_dir. However, the
space allocated to server_bin_dir is 255. If the string length of config.server_base_dir is 255,
the buffer is not null terminated and the string “/bin” cannot be copied to the buffer, causing a configuration
error. Lines 59 to 61 in the same file have the same vulnerability. For the lancer program, SecTAC
found four buffer overflow problems in “handler.c” and “host.c”. These problems have the same pattern: the

author declared a buffer with the size of n, and used strncpy to copy at most n-1 non-zero characters
to the buffer. However, it is possible that the buffer is not null-terminated and cause buffer overflow. For

the bftpd-2.3 program, SecTAC detected that the buffer of “bu host” can be not null-terminated whose
content comes from an external input. We reported this vulnerability to the author of the program and a new

version was released subsequently to fix this bug.

6 Related Work

This section reviews existing security testing approaches and compare them with our approach. The method

in [15] detects buffer overflow vulnerabilities using existing test cases. This method inserts checking code

into the source program as assertions to check if string library functions are properly used. They do not

perform symbolic analysis and ignore branch conditions, causing many false alarms. The predictive testing

approach in [18] inserts assertion statements into the source program and uses a combination of concrete and

symbolic execution on the given test inputs to discover assertion violations. This method uses concrete values

for expressions like library function calls. Our trace-based symbolic execution is more precise in handling

the library functions. In addition, SecTAC also addresses the pointer dependency problem.

Dynamic symbolic execution is used in many test data generation tools for security testing [12, 24, 7, 11, 5,

13]. DART [12, 11] and CUTE [24] can automatically generate test cases. However, they use concrete values

for complex constraints that they cannot handle. Many possible paths are ignored. The coverage is often not

as good as the test cases that are carefully designed in traditional testing. SecTAC can take advantage of
previous test effort for high coverage. In addition, these tools overlook useful information about variables

and functions such as pointer dependency and function return type. In contrast, SecTAC uses attribute-based
analysis; it treats program variables and functions as objects and introduces attributes like buffer size, string

length, and function return type in objects to achieve more accurate analysis. Moreover, these tools do not

scale well to large and complex programs. Our tool is more scalable since it avoids the search space explosion

problem and can perform testing in parallel.

EXE [7] and KLEE [5] were developed to achieve high branch coverage. They only detect memory

overflow vulnerabilities. SecTAC features a novel test model that unifies program constraints and security

constraints for detecting vulnerabilities; it can detect a wider range of attacks than EXE and KLEE. As one

example, EXE and KLEE cannot detect security vulnerabilities caused by pointer dependency. Nevertheless,

SecTAC can take advantage of the high coverage achieved by EXE and KLEE. Specifically, we can reuse
the test cases produced from EXE or KLEE to uncover vulnerabilities in the program.

SPLAT [28] improves DART by introducing a length attribute in each buffer. It also represents a fixed-

length prefix of the buffer elements symbolically. Other buffer elements are represented using concrete values

during execution. The limitation is that when the program visits a buffer element beyond the prefix, their
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symbolic execution becomes concrete. SecTAC treats related buffer elements (e.g., those belonging to the
same string) as a single object and generates new objects only when a particular buffer element is visited.

This greatly improves the precision and reduces the cost.

SAGE [13] also employs trace-based symbolic execution with satisfiability analysis. However, SAGE

works on the binary level; a lot of useful information in the source code is not directly available for facilitating

the analysis. For example, in the binary level, it is very difficult to extract information about the declared

buffer size and the pointer dependency unless the debug information is available, in which case it is no

longer “binary” level. This means that SAGE cannot handle pointer dependency. Similarly, we found that

the methods in [4, 23] also work on binary code and thus cannot handle the pointer dependency issue. In

addition, SAGE is still not available for public evaluation. In contrast, SecTAC is open source and available
at http://ranger.uta.edu/∼dliu/sectac.

7 Limitations and Suggestions

SecTAC has a number of limitations. First, we must have the test cases ready before doing the security
testing. The effectiveness of SecTAC depends on the completeness of the existing test cases. In fact, the
branch coverage of the test cases determines the number of paths that our method can check. We plan

to address this limitation by complementing SecTAC with systematic path exploration techniques. For
example, after checking the existing test suite for security vulnerabilities, we could use concolic execution

techniques to generate additional paths, which we then can also check for vulnerabilities with SecTAC.

Second, the size of an execution trace for large complex programs may be huge, e.g., millions of lines

of statements. Analyzing a large execution trace can cause many problems. For example, the program

constraint at a given point in the trace may consist of millions of conjunctions, making it infeasible for a

theorem prover to do the satisfiability analysis efficiently. As another example, it may be the case that a large

number of statements in the trace generate security constraints. As a result, SecTAC may invoke the SMT
solver very frequently, which can slow down security testing significantly. We plan to improve SecTAC by
managing program and security constraints more efficiently, e.g., by using BDDs [2, 3].

Third, although a wide range of security requirements can be modeled by improper uses of certain oper-

ations, a generic and effective method is needed to model security requirements in complex scenarios. As

one example, our approach will fail if a security problem only occurs when multiple execution traces are

involved. How to effectively model such security requirement is a challenging problem that we would like

to investigate in the future.

8 Conclusion and Future Work

In this paper, we proposed an approach for testing the security of C programs using trace-based symbolic

execution and satisfiability analysis. We developed a tool named SecTAC to demonstrate the effectiveness
of our approach. We evaluated this tool on 14 benchmark programs and 3 open source programs. The result

shows that our tool quickly identified every reported vulnerability in the traces and also found 15 new vulner-

abilities. In conclusion, our tool is effective and efficient in testing the security of current software systems

since test cases from traditional software testing can be reused to reduce the testing effort and perform more

effective symbolic execution.

We are interested in the following directions in the future. First, although our approach can handle multi-

threaded programs as long as the test cases are available, it only analyzes a specific combination of the traces

generated by different threads. We propose to identify the trace for each thread and seek effective ways to

combine them to improve the detection of security vulnerabilities in multi-threaded programs. Second, we
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will also seek solutions to further improve the efficiency of SecTAC and conduct more experiments on large
and complex programs to evaluate our approach.
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