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Abstract 
 

With the advent of the Model Driven Architecture, 

models are replacing code as the major artifact in 

software development. A critical success factor for this 

is the possibility to derive models from each other in 

terms of transformations. Existing approaches, such as 

the forthcoming QVT-standard, will provide a proper 

foundation for transforming models on a fine-grained 

level. They, however, do not provide appropriate 

abstraction mechanisms for different integration 

scenarios, such as integrating models representing 

cross-cutting concerns or integrating models even from 

different domains. This paper proposes so called mega 

operations representing an abstraction mechanism 

which allow to specify model integration at the meta-

level, thus forming the prerequisite to automatically 

derive a set of directives carrying out the actual 

integration at the model level. To cope with different 

integration scenarios, tight as well as loose integration 

of models is supported on top of a QVT-like language. 

 

 

1. Introduction 
 

The OMG has initiated the Model Driven Architecture 

(MDA), a software design methodology emphasizing 

the construction of models and the subsequent 

generation of executable code on basis of those models 

[23]. Thus models are replacing code as the major 

artifact in software development [4]. One of MDA’s 

main benefit is the abstraction of core business 

functionality from implementation specific details 

resulting in platform independent models (PIM) and 

platform specific models (PSM).  

The derivation of a model from another model is 

carried out through a transformation - ideally 

automated. In order to standardize such a model 

transformation language, several proposals for a 

Query/Views/Transformations (QVT)-language have 

been submitted to the OMG [12]. Model 

transformations as envisaged by QVT focus on 

transforming a model ma at the level M1 conforming to 

a meta-model Ma at the level M2 into a model mb 

conforming to a meta-model Mb, where Ma and Mb may 

potentially be the same.  

QVT definitely represents a major building block 

technology for basic model transformations in the 

MDA. It does not provide, however, appropriate 

abstraction mechanisms for different kinds of model 

integration scenarios, which are highly needed in 

practice and well-known from other research areas such 

as federated information systems [29], [32], 

megaprogramming [31], web service composition and 

[19] and aspect-oriented programming [18]. Such 

integration scenarios would require a series of basic 

model transformations which will simply not scale up 

when manually specified for complex models. 

Following, for example, the basic principle of 

separation of concerns in the modeling realm would 

avoid the construction of large, monolithic domain 

models which are difficult to handle and comprehend. 

At the same time, these models, each of them 

describing a certain cross-cutting concern of a whole 

domain (e.g., security aspects and transactional aspects 

of a web-based tourism information system), need to be 

tightly integrated into one coherent model representing 

the entire domain, as required for MDA. 

Integration is not only needed in the case of models 

representing aspects of the same domain, but also in 

case of models covering different domains. For 

example, it would be highly desirable to integrate web-

based reservation systems covering different domains 

like transportation (e.g, car rental) and accommodation 

(e.g., hotel booking) in order to allow them to 

interoperate providing new services for customers. This 



scenario requires for loose integration, i.e., 

synchronizing both domain models in certain ways by 

explicitly representing the model’s interrelationships, 

while providing their autonomy. 

Although these two scenarios look quite differently 

at a first sight, they bear several commonalties in mind. 

Both call for integrations which can be defined in an 

abstract and thus, scalable way, without burden the 

modeler with transformation primitives. Integration 

should not have to be defined repeatedly each time 

when models should be integrated, but rather be 

specified once at a meta-level, thus facilitating reuse of 

integration knowledge. Finally, in order to prevent ad-

hoc integration of models, the actual integration at the 

model level should be governed at the meta level and 

performed fully automated. 

To deal with these requirements and based on our 

experience with various web-based model integration 

scenarios (cf. [15], [16], [20], [26], [28]) we introduce 

so-called mega operations1 providing abstraction 

mechanisms for model integration, thus allowing 

modelers to develop web systems of several 

interrelated models. Mega operations offer a set of 

operators for dealing with model heterogeneity as well 

as synchronization and provide the possibility to 

specify integration constraints. Specified at the level of 

meta-models that are MOF-based [24], a set of 

integration directives can be automatically derived, 

carrying out the actual integration at the model level. 

To fulfill the needs of the integration scenarios 

outlined above, integration done by mega operations 

are required to follow two strategies. Facilitating the 

integration of aspect models into a coherent domain 

model, a so called weaving mega operation is 

proposed, achieving tight model integration. 

Integrating independent domain models requiring, e.g., 

synchronization and loose coupling to preserve their 

autonomy is supported by a so called sewing mega 

operation. These mega operations are based on a 

common architecture using primitive QVT-

transformations underneath.  

This paper introduces these two mega operations in 

Section 2 and 3, together with a set of appropriate 

operators for each of them. In Section 4, an architecture 

supporting these mega operations is outlined. After a 

detailed discussion of the benefits of our approach with 

respect to other closely related approaches in Section 5, 

                                                           
1 The term “mega operation” is influenced by the notion  of 

megaprogramming - a DARPA research program 

conducted in the late 1980's and early 1990's (cf.  [5], [31]) 

- and megamodel which is defined to be a model, whose 

elements represent models [4]. 

we conclude the paper pointing out further research 

issues. 

 

 

2. Weaving 
 

Weaving provides for a tight integration of models. 

This means that a model ma conforming to a meta-

model Ma and a model mb conforming to a meta-model 

Mb, can be woven to produce a model mab which in turn 

conforms to a woven meta-model Mab (cf. Fig. 1).  

 

Figure 1. The Weaving Mega Operation 
 

Note that the term weaving is adopted from aspect-

oriented programming (AOP) [18], where it describes 

the process of weaving code representing a cross-

cutting-concern into a base program. Transferring this 

basic idea into the modeling realm, but differently to 

the concept of weaving introduced by Bézivin et al. [3] 

(cf. Section 5), our weaving mega operation 

encompasses two steps:  
 

(1) The weaving of aspect meta-models each of them 

describing a certain cross-cutting concern 

produces a woven meta-model (cf. Fig. 2) 

(2) The subsequent weaving of aspect models, 

produces a woven model (cf. Fig. 3).  

These two steps run automatically, provided that a 

particular weaving specification defines how to execute 

the weaving mega operation (cf. below). 

Instead of only recording the semantic relationships 

between model elements, creating a woven model is 

necessary in case further processing or code generation 

mechanisms require so.   

Furthermore, an advantage of defining a woven 

meta-model prior to the weaving of models is the 

ability to perform conformance checks with respect to 

the woven meta-model. Furthermore, having a meta-

model for any given model is beneficial for defining 

transformations in the sense of MDA.  
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In the following we use a simplistic, though still 

sufficient running example to illustrate our basic ideas, 

stemming from the well-known domain of petri nets  

[25].  

The meta-model MPetri describes some basic 

structural aspects of a petri net consisting of places and 

transitions connected by arcs, whereas the meta-model 

MMark represents the aspect of markings, constituting 

places and marks (cf. Fig. 2).  

The first step of the weaving mega operation - meta-

model weaving - results in a woven meta-model 

MPetriMark, representing a petri net with certain markings. 

 

 
Figure 2. Meta-Model Weaving 

 

The second step deals with the weaving of models 

(cf. Fig. 3). Governed by the new woven meta-model 

MPetriMark, the woven model mPetriMark is produced, which 

consists of model elements from both source models 

mPetri and mMark. 

 

 
Figure 3. Model Weaving 

 

Applying weaving mega operations as described 

above may yield the following benefits: 

 

� Weaving allows the composition of domain meta-

models, and thus enables the re-use of previously 

existing domain knowledge. 

� Weaving allows several teams to model 

independently and weave their models as needed. 

� Weaving allows the evolution of a domain, as new 

concerns can be woven in the form of aspect 

models, and thus supports incremental 

development of models. 

� Weaving supports scalability, as there are no 

monolithic meta-models and models impairing 

comprehensibility. 

� Weaving allows libraries of models to be built up 

for later re-use. 

� Weaving makes modeling an activity of 

assembling pre-existing “components”. 

 

The following subsections discuss the pre-requisites 

for putting the weaving mega operation into use, in 

terms of the weaving specification, comprising weaving 

operators and model integration constraints. 

 

 

2.1. Weaving Operators 
 

This subsection discusses several operators which are 

essential for defining weaving operations. Such 

operators need to address the reconciliation of 

overlapping concepts and allow basic model re-

organization (cf., e.g., [30]). The set of operators 

comprises overrides, references, prune, and 

rename and does not claim to be complete.  

Overrides. In case that two meta-models overlap in 

the form of  elements representing the same concept, a 

weaving specification has to denote how to reconcile 

these model elements. Adopted from [30], but in 

contrast to them applied at a meta-level (cf. Section 5), 

we make use of an overrides operator which 

specifies that one meta-model element (qualified by 

“::”) and its properties at the left hand side, take 

precedence over another meta-model element at the 

right-hand side. 

With respect to the example shown in Fig. 3, the 

overrides operator expresses that meta-model 

element Place of the meta-model MMark replaces its 

pendant within the meta-model MPetri. 
 
MMark::Place overrides MPetri::Place; 

 

References and Inherits. If two meta-models do 

not conceptually overlap, a references operator 
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denotes to connect meta-model elements via a new 

association. This operator also allows to specify the 

multiplicities of the association established between 

two meta-model elements. In our example, this 

expresses the fact that a place is able to hold an 

arbitrary number of marks. 
 
MMark::Mark references(*,1) MPetri::Place; 

 

Similar to the references operator, but naturally 

not allowing for specifying multiplicities, we use an 

inherits operator to connect model elements via 

inheritance relationships. 

Prune and Rename. As the previously introduced 

weaving operators “enrich” meta-models with 

elements, only, they cannot deal with the renaming or 

the deletion of possibly obsolete model elements, as 

portrayed in [30].  

Therefore, a prune operator serves to rid all 

unnecessary meta-model elements in a meta-model. 

The example below shows the pruning of the obsolete 

Mark element. 

 
MMark::Mark prune; 

 

Renaming of meta-model elements can be done by 

applying a rename operator. As opposed to the 

previously mentioned weaving operators, prune and 

rename are unary in terms of meta-model elements. 

The example below shows the name change of the 

Place element. 
 
MPetri::Place rename(‘State’); 

 

 

2.2. Model Integration Constraints 
 

Besides weaving operators, a weaving specification 

shall contain certain constraints, called model 

integration constraints (MIC). MICs are used to restrict 

the application of a weaving operator when integrating 

at the model level, thus forming some kind of 

precondition. 

A MIC can be annotated for each application of a 

weaving operator. This means that the application of 

the operator at the model level is only carried out for 

those model elements, meeting the corresponding 

constraint. Thus, the MIC acts like a “filter”, sorting 

out all invalid weaving operations and is indicated after 

the keyword  “MIC:” . 

As shown in Fig. 3, only the Place model elements 

with id=‘1’ and id=‘3’ from the model mMark 

override the Place model elements in the mPetri model 

with the matching values. For this, the previous 

example of the overrides operator is extended by the 

following MIC-specification: 
 

MIC:  MMark::Place.id == MPetri::Place.id; 
MMark::Place overrides MPetri::Place;  

 

 

2.3. Performing Meta-Model Weaving and  

Subsequent Model Weaving 
 

A weaving operation can be reduced to a set of QVT 

transformations on the meta-model as well as on the 

model level. For the generation of the woven meta-

model QVT transformations, derivable from the 

weaving specification, can be specified on the 

transformation’s meta-level (M3) and applied to meta-

models. In this way QVT populates the woven meta-

model with model elements stemming from the meta-

models to be woven. Likewise the subsequent weaving 

of models is specified in QVT on the transformation’s 

meta-level (this time on M2) and applied to the model 

level. The actual QVT transformations to apply depend 

on the weaving operators involved and their attached 

MICs resulting in a certain transformation behavior. 

According to the latest QVT 2.0 proposal [26] and 

to the best of our knowledge, Fig. 4 depicts an example 

transformation which could be derived from a weaving 

as shown in Fig. 2 and Fig. 3. Assuming that a 

transformation executed beforehand has populated the 

mPetriMark model with the model elements from mPetri, the 

execution of the transformation below in the direction 

of the mPetriMark model, would enforce the overriding of 

place model elements and the creation of the 

according mark model elements. 

 

 
Figure 4. Example QVT Transformation  
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3.  Sewing  
 

As already mentioned, the weaving mega operation 

provides for a tight integration of models, by 

composing a coherent domain model from aspect 

models. Besides that, a loose coupling of models is 

required to integrate independent models pertaining to 

different domains and to keep them autonomous at the 

same time. 

Therefore, apart from weavings, we see the 

necessity to introduce another mega operation called 

sewing. Sewing seems an appropriate analogy, as loose 

coupling can be seen as a form of stitching the involved 

models together, and thereby connecting without 

modifying them.  

Analogous to weaving, a model ma conforming to a 

meta-model Ma and a model mb conforming to a meta-

model Mb can be sewn to produce a set of mediators 

[32] realizing the integration, by “supervising” the 

sewn model elements (cf. Fig. 5). 

Similar to a weaving specification, a sewing 

specification consists of operators annotated with 

MICs, and thus defines how to execute a sewing mega 

operation (cf. below). Specifying sewings on meta-

models prior to the sewing of models, is deemed 

necessary to enable a meta-modeler to clearly define 

which model elements are valid to be sewn, and to 

henceforth rule out the ad-hoc creation of possibly ill-

defined sewings.  

 

 
Figure 5. The Sewing Mega Operation  

 

Continuing our running petri net example, let’s 

imagine that we would like to have a graphical user 

interface (GUI) for a petri net simulation (cf. Fig. 6). 

The mega operator sewing could establish (similar to 

the model-view-controller paradigm) a loose coupling 

between the name attribute of the Place meta-model 

element belonging to the petri net model, and the 

title attribute of a TextField meta-model element 

belonging to the GUI model. 

A tight coupling in the form of weaving the GUI 

model and the petri net model would not be adequate in 

this situation, as different domains are involved and 

weaving would simply entangle the different domain 

concepts. 

 

 
Figure 6. Meta-Model Sewing 

 

As shown in Fig. 7, the application of a sewing 

mega operation at the meta-level results in the 

establishment of mediators between model elements, 

guided by MICs. 

 

 
Figure 7. Model Sewing 

 

Applying sewing mega operations as described 

above may yield the following benefits: 

 

� Sewing integrates models, but still allows them to 

exist independently without affecting their 

structure and thus keeping their autonomy. 

� Sewing serves to keep models synchronized. 
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� Sewing integrates models pertaining to different 

domains without entangling their concepts. 

The following subsections discuss sewing operators 

together with their corresponding MICs and realization 

in terms of mediators. 

 

 

3.1. Sewing Operators 
 

The particular behavior of mediators depends on the 

specific operators in the sewing specification. The 

following subsection introduces such operators, namely 

synchronizes and depends, which are useful for 

the sewing of models. Such operators enforce to 

supervise the sewn model elements by observing their 

states and appropriately propagate changes. 

Synchronizes. In case that, for instance, attributes 

of two model elements should be kept synchronized, a 

synchronizes operator can be used to denote that 

fact. With respect to the previous example (cf. Fig. 6 

and Fig. 7) the synchronizes operator together with 

a MIC is employed as follows: 
 
MIC:  MGui::TextField.title == 

 MPetri::Place.name; 

MGui::TextField.title synchronizes  

MPetri::Place.name; 

 

According to the MIC, synchronizations are 

established between TextField model elements and 

Place model elements, only, if having equal values for 

their title and name attributes, respectively. Applied 

on the model level (cf. Fig. 7), changing the value of 

the title attribute would lead to a change in the value 

of the name attribute. 

Depends. The depends operator is used to denote 

that the existence of one model element depends on the 

existence of another. If two teams are working on two 

separated, though related models, it can be useful to 

establish such correspondences between the related 

model elements. Thus, if one team decides to delete a 

model element, the related model element should 

immediately be deleted as to avoid inconsistencies 

among the teams’ models. The example below shows a 

sewing specification for the meta-model element 

TextField depending on the meta-model element 

Place. 

 
MIC: MGui::TextField.title == 

MPetri::Place.name; 
MGui:TextField depends MPetri::Place; 

  
It has to be noted, that sewing is focused on 

integrating existing models, not on creating them anew 

from another model, as QVT allows. Sewings therefore 

have a narrower domain and aim at simplifying certain 

integration tasks that would probably be more 

cumbersome to express using QVT alone. 

 

 

3.2. Sewing realized by Mediators 
 

The application of a sewing operator does not result in 

a newly produced, integrated model per se, as it is the 

case with weaving, where heterogeneities in the form of 

conceptual overlap can be eliminated through the 

establishment of woven meta-models and models. On 

the contrary, sewing has to handle, or better to say, 

transparently resolve existing overlap throughout sewn 

models. Thus, the outputs of the sewing mega-

operation are mediating entities producing the desired 

integration behavior. 

On the model level, mediators can manifest as QVT 

transformations propagating attribute changes or 

creating and deleting model elements accordingly.  

 Operators other than the two previously introduced 

depends and synchronizes, which would for 

instance allow model elements to be transparently 

connected via associations and generalizations across 

model boundaries, could be realized using the Java 

Metadata Interface (JMI) [10] and the Eclipse 

Modeling Framework (EMF) [9]. They provide an 

infrastructure for the generation of programming 

interfaces to instantiate and manipulate models as Java 

run-time objects. Such programs resulting from sewn 

models have to be adapted in a way, as to reflect the 

semantics and the mediating behavior of the specific 

operator. In case that it is not possible to influence the 

model code generation, an elegant solution would be to 

utilize an aspect-oriented approach and weave the 

necessary code fragments for the mediator pattern into 

the model code. The aspect code necessary would be 

derived from the sewing specifications. 

However, when finally code is to be produced from 

models, the mediating behavior also has to be realized 

on the system level, specific to a certain platform. 

Sewings can of course manifest as models themselves, 

which describe the respective semantics and the 

integration behavior imposed on models. The 

generation of platform specific “bridge” code 

facilitating a loose coupling on the system level is thus 

rendered a common task like any other model driven 

development, as integration of heterogeneities is taken 

care of on the model level. The mediation on the 

system level could for instance be carried out by a web 

service, connected to different systems generated from 

sewn models. 



4. Architecture  
 

This section proposes a first sketch of an architecture 

for the implementation of a mega-operation toolkit and 

briefly discusses relevant technologies. Fig. 8 shows a 

GUI component as means for handling a Mega-

Operations Controller, which orchestrates the toolkit’s 

components as required. A MOF repository serves as 

basis for storing meta-models and models. To access 

and manipulate them programmatically, programming 

interfaces like JMI or EMF Java mappings can be used. 

Although EMF and JMI provide the necessary 

infrastructure for manipulating models, they are not 

capable of model transformations in the sense of QVT. 

Hence, a QVT-like model transformation tool such as 

Marius
2
, which has been developed in the course of a 

former cooperation between the University of Linz and 

the University of South Australia, is employed for 

model transformation. Enforcing constraints on models 

can be accomplished by an Object Constraint Language 

(OCL) checker like [1]. 

 

 

Figure 8. Architecture for Mega Operations 
 

As already mentioned, the weaving mega operation 

can essentially be expressed as a series of QVT-like 

transformations, as can the sewing mega-operation 

concerning the model level. Thus, weaving and sewing 

specifications are parsed and input into a QVT 

generator, which can be seen as the toolkits core 

component, “compiling” weavings and sewings into 

QVT-code. The resulting code is in turn executed by a 

QVT-engine upon models stored in the repository to 

achieve the integration of models. A code generation 

component serves to create bridge code realizing the 

sewing mega-operation’s loose coupling on the system 

level. The therefore necessary “glue” code can be 

incorporated into the code derived from models either 

directly through customisation of the generated code or 

through an aspect weaver like AspectJ [18]. 

                                                           
2 The name Marius stems from Gaius Marius, a Roman 

consul and general, best known for initiating a series of 

reforms 107 B.C., completely restructuring the 

organization equipment and tactics of the Roman army. 

5. Related Work 
 

This section gives an overview on other approaches 

most relevant with respect to our idea of mega 

operations. For this, the main focus of each approach is 

summarized briefly, followed by clearly pointing out 

similarities and differences to our own approach.  

Table 1 summarizes the results by giving an 

overview on operators supported as well as whether the 

approach deals with arbitrary MOF-based models 

either on the M1 or the M2 level and if the 

specification on M2 is used for model integration on 

M1.  

 

Table 1. Comparison of Related Approaches 
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AMMA. Bézivin et al. [3], [4], [21] are developing 

the Atlas Model Weaver (AMW) as part of the AMMA 

model engineering platform, which is soon to be 

released under the Eclipse GMT project [8]. The AMW 

aims at supporting modelers to establish semantic links 

between elements of different models or meta-models, 

which can serve as input for further tools. Model 

weaving in the sense of Bézivin et al. seems to be a 

manual operation specifying links between elements of 

different models or meta-models. The set of links 

produced by such a weaving operation is represented 

by a weaving model. A weaving model appears to be 

similar to a weaving specification in our approach, 

which specifies operators linking meta-model elements.  
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Our approach, however, extends the notion of weaving 

from an activity that establishes semantic links between 

meta-models, to a mechanism that actually interprets 

operators specified between meta-model elements and 

carries out operations accordingly. These operations 

involve the automatic generation of a new woven 

metamodel, which is an integration of the original 

metamodels. Furthermore, we provide a mechanism to 

automatically integrate models into a new woven model 

conforming to the new woven meta-model. In our 

understanding, weaving is treated as a distinct 

abstraction mechanism for the integration of both, 

models and meta-models. 

Rondo. Within the Generic Model Management 

initiative, Bernstein et al., [2], [22] work on merging 

meta-data in the form of relational schemata and XML 

schemata. Rondo is an implementation thereof, 

providing model management operators that enable 

modelers to deal with models rather than model 

elements. Similar to our weaving and sewing operators, 

these operators include a match operator, which 

automatically establishes semantic correspondences 

between similar schema elements and a merge operator 

allowing to combine different model elements.  

In contrast to them, however, we explicitly focus on 

MOF-models in the sense of MDA, keeping a later 

code-generation step following model integration in 

mind. Furthermore, in our approach, a meta-modeler is 

able to specify the integration of models and meta-

models on a meta-level, instead of providing generic 

model management operators to manipulate models. 

Model Composition Semantics. Clark [7] 

introduces a composition mechanism for UML class 

diagrams. This approach deals with the composition of 

models representing different separated concerns. 

Overlapping concepts are identified in these models 

and thus merged as specified by a composition 

relationship, following so-called merge and override 

strategies. Merge integration for example applies when 

equivalent classes appear in multiple design models, 

and conflicts need to be reconciled among these. 

Override integration can be used to substitute obsolete 

parts of a design with new modeling constructs. Based 

on these basic integration behaviours, composition 

patterns [6] are introduced as an extension to UML 

templates.  

This approach, however, focuses on UML models, 

only, and does not provide for deletion of obsolete 

model elements after a weaving is performed, as 

required for our approach. 

Model Composition Directives. Based on [7], 

Straw et al. [30] propose so called composition 

directives for composing UML class diagrams. These 

basically include name rewriting, adding and deleting 

of model elements, change of references, and control of 

execution order. Inspired by aspect-oriented 

programming concepts, so-called primary models are 

composed with aspect models, which represent a cross-

cutting-concern to be interwoven.  

Although composition directives are comparable to 

our weaving operators, their primary focus seems to be 

on model weaving but not on meta-model weaving. We 

believe that our mega operations could in turn be 

transformed into composition directives at the model 

level. Since we avoid an ad-hoc integration of models, 

with our mega operations, licit integrated models can 

be generated, only. 

GME. The Generic Modeling Environment (GME) 

proposed by Karsai et al. [17] is a modeling and meta-

modeling toolkit based on UML notation and a GME-

specific meta-metamodel. GME allows for the 

composition of meta-models similar to our approach. 

The composition mechanisms comprise an equivalence 

operator creating a union of two model elements, 

similar to the merge semantics in [7] and two different 

inheritance operators, realizing implementation 

inheritance and interface inheritance. 

One major difference to our approach is that GME 

is not based on the MOF standard. Furthermore, we 

believe that our approach goes beyond the 

functionalities for meta-model composition in the GME 

by introducing model integration constraints, allowing 

even fine-grained integration of models. 

C-SAW. C-SAW, developed as a plug-in for the 

above-mentioned GME by Gray et al. [13], [14], is a 

so-called cross-cutting-concern weaver. Aspects are 

specified using the Embedded Constraint Language 

(ECL), which is a superset of OCL, additionally 

providing imperative constructs for model 

manipulation. 

The transformation capabilities of ECL are, 

however, limited to models of the same meta-model 

and it lacks support for abstract integration mechanisms 

as supported by our approach. 

Domain Composition Approach. Estublier et al. 

[9] propose a UML profile to allow the composition of 

separately designed domain models, as required when 

facing the federation of immutable components off the 

shelf. UML associations and association classes are 

specialized by dedicated stereotypes to express feature 

correspondence and concept overlapping. 

In principle, this approach is similar to our sewing 

mega operation. In contrary to this UML-based 

approach, our sewing mega operation is applicable to 

arbitrary MOF models. In addition, it seems that their 



focus lies not on tight integration of models, as done by 

our approach.  

 

 

6. Conclusion and Outlook 
 

This paper proposes mega-operations for model 

integration and shows the benefits that can be gained 

thereof. Apart from QVT-like mappings, which can be 

seen as the base requirement to the MDA approach, the 

introduced mega-operations weaving and sewing 

provide abstraction mechanisms to cope with complex 

modeling scenarios, allowing for a tight and loose 

coupling, respectively. Thus, enhanced scalability and 

further re-use capabilities of a model-driven approach 

are gained.  

Future work will especially concentrate on clearly 

defining the integration behavior enforced by weaving 

and sewing operators.  

Therefore, on the one hand the proposed operators 

have to be specified in detail, and on the other hand, 

further operators have to be conceived. Detailing 

would, e.g., include clarifying different reconciliation 

behaviors of the overrides operator, propagation 

behavior of the synchronizes operator, as well as 

detecting and resolving conflicts arising from the 

application of the mega-operations. 

With respect to both, weaving and sewing, a clear 

syntax and means for representing the mega-operations 

as MOF models have to be developed. 

Furthermore, an important issue to resolve will be to 

find ways to derive platform specific implementations 

for mediators. 

Finally, a prototypical implementation for mega-

operations shall be developed. Experiments with this 

prototype should yield valuable insight into the 

applicability of mega-operations as devised in this 

paper.  
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