Psychological Review
1998, Vol. 105, No. 3, 442481

Caopyright 1998 by the American Psychological Association, Inc.
0033-295XM%/33.00

A Neuropsychological Theory of Multiple Systems in Category Learning

F. Gregory Ashby, Leola A. Alfonso-Reese, And U. Turken, and Eiliott M. Waldron

University of California, Santa Barbara

A neuropsychological theory is proposed that assumes category learning is a competition between
separate verbal and implicit (i.e., procedural-learning-based) categorization systems. The theory
assumes that the caudate nucleus is an important component of the implicit system and that the
anterior cingulate and prefrontal cortices are critical to the verbal system. In addition to making
predictions for normal human adults, the theory makes specific predictions for children, elderly
people, and patients suffering from Parkinson’s disease, Huntington’s disease, major depression,
amnesia, or lesions of the prefrontal cortex. Two separate formal descriptions of the theory are also
provided. One describes trial-by-trial learning, and the other describes global dynamics. The theory
is tested on published neuropsychological data and on category learning data with normal adulis.

Humans are remarkably adept at categorizing objects and
events in their environment. In fact, it is now well established
that humans can learn some extremely complex (i.e., nontinear)
categorization rules (e.g., Ashby & Maddox, 1992; McKinley &
Nosofsky, 1995; Medin & Schwanenflugel, 1981}. One charac-
teristic of demanding categorization problems is that experts
use rules that are often difficult or impossible to describe ver-
bally. For example, it is difficult to verbalize the decision rules
used by farmers to sex chicks, those used by wine tasters to
determine that a certain wine is a Zinfandel or a Cabernet Sau-
vignon, or those used by artists to categorize unfamiliar paint-
ings according to the Renaissance master who created them. On
the other hand, in many cases, contrasting categories are sepa-
rated perfectly (or nearly so) by some decision rule that can be
described verbally. For example, a simple verbal rule separates
triangles from rectangles, oranges from lemons, and evergreens
from deciduous trees.

Current theories of category learning do not discriminate
between these two kinds of tasks. Rather, they assume that all
rules, whether verbal or nonverbal, are learned by using the
same basic processes. Nevertheless, growing evidence indicates
a qualitative difference in performance depending on whether
the optimal decision rule—that is, the rule that maximizes cate-
gorization accuracy—can be described verbally. For exampie,
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people can leamn complex rules that are difficult or impossible to
verbalize; when feedback about accuracy is withdrawn, however,
people are restricted to rules that are easily verbalized (see
the next section for details). Also, recent neuroimaging results
indicate qualitatively different patterns of activation in verbal
and nonverbal categorization tasks (E. E. Smith, Patalano, Jon-
ides, & Koeppe, 1996). A complete theory of category learning
must account for these qualitative differences.

This article proposes a formal neuropsychological theory that
assumes people have available at least two separate categoriza-
tion systems: a verbal system based on explicit reasoning that
is under conscious control and a nonverbal implicit system that
uses procedural learning. The theory generalizes and formalizes
a number of recent results from the neurosciences. Principal
among these are Squire’s (1992) hypothesis that the striatum
plays a key role in categorization and Posner and Petersen’s
{1990) model of executive attention that assigns key functions
to the cingulate and prefrontal cortices.

The theory that we develop here assumes that category learn-
ing is a competition between separate verbal and implicit’ cate-
gorization systems. As a consequence, we refer to this new
theory by the acronym COVIS (competition between verbal
and implicit systems). COVIS assumes that the verbal system
initially dominates, presumably because it is controlled by con-
sciousness. With training and experience, however, the potential
of the implicit system for superior performance often overcomes
the initial bias in favor of the verbal system. Nevertheless,
CQOVIS predicts that, in most cases, both the verbal and the
implicit systems remain active even after learning is complete,

' Often, learning and knowledge are labeled implicit only if they occur
without conscious awareness, that is, only if the participant is unaware
of the knowledge that has been obtained and is even unaware that any
learning has occurred (e.g.. Reber, 1989; Shanks, Green, & Kolodny,
1994). For the implicit system we are postulating, the latter of these
requirements will not generally be met. Because explicit feedback abourt
categorization accuracy is commonly given, participants in categoriza-
tion experiments will generally be explicitly aware that learning has
occurred.
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and each determines a significant proportion of categorization
judgments.

Marr (1982) argued persuasively that, if a theory is t© be
complete, it should be formulated at several different levels.
Specifically, he argued for the importance of descriptions at the
implementational (i.c., hardware), algorithmic, and computa-
tional levels. Following Marr, we provide separate descriptions
of COVIS at each of these levels. Together, the three resulting
versions of COVIS provide a far broader theory of category
learning than would be possible with a model described at only
one of Marr's (1982) levels. At the implementational level, we
describe the neural structures and pathways that COVIS assumes
mediate category learning. To our knowledge, this is the first
attempt to provide a detailed neuropsychological description of
categorization. Not surprisingly, this version of the theory is
necessarily speculative. Even so, we offer it here because it
suggests a wide variety of new research directions that will
likely lead to important insights into categorization processes,
even if many of the details of the neuropsychological version
of COVIS prove to be incorrect. For example, this version of
COVIS makes specific predictions about category learning in
patients suffering from lesions of the prefrontal cortex, from
Parkinson’s or Huntington’s disease, and from depression or
amnesia, as well as in children and elderly people. The algorith-
mic-level description of COVIS is a connectionist network that
makes specific trial-by-trial category learning predictions. The
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computational-level description is a formal model of the global
dynamics of category learning that makes it easy to derive pre-
dictions about important experimental variables such as quality
of feedback and salience of alternative verbal rule types.

This article begins with a review of the evidence supporting
the notion of multiple categorization systems. The neuropsycho-
logical version of COVIS is then presented, and some of its
predictions for various special populations are tested on pub-
lished neurepsychological data. Next, the algorithmic-level de-
scription, which is based on standard connectionist architecture,
is developed and tested. Finally, the computational version of
COVIS is described, and the theory’s global dynamics are ex-
plored. Several strong predictions of these formal versions of
the model are derived and tested, both on previously published
data and on data from a new experiment. We close by consider-
ing a prominent alternative to the multiple systems postulated
by COVIS.

Multiple Categorization Systems

The distinction between verbal and nonverbal rules is illus-
trated in Figure 1. Figure la shows the category prototypes
from an experiment reported by Maddox and Ashby (1993) that
used two different types of stimuli: rectangles that varied in
height and width and circles that varied in size and in the orienta-
tion of a radjal line. Figure 1b shows the category structure
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Figure 1.

Stimuli and category structure of an experiment reported by Maddox and Ashby (1993). Panel

(a): Category (A and B) prototypes for the rectangle condition and the circle condition. Panel (b): Common
calegory structure used in both conditions. A plus sign indicates an exemplar from Category A, and a circle
indicates an exemplar from Category B. The diagonal line is the decision bound that maximizes accuracy.
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from the Maddox and Ashby (1993) experiment. The abscissa
and ordinate correspond to width and height, respectively, in the
case of the rectangles and to size and orientation, respectively,
in the case of the circles. The plus signs indicate the coordinates
of the exemplars of Category A, and the circles indicate the
exemplars of Category B. The categories overlap, so perfect
performance is impossible. Accuracy is maximized (at 82.5%)
by the rule associated with the diagonal bound. Specifically, the
optimal rule is to respond A to any stimulus falling above the
bound and B to any stimwlus falling below. On each trial of the
experiment, a stimulus is sampled randomly from one of these
two categories and shown to the observer (as a rectangle or a
circle, depending on the experimental condition) . The observer's
task is to assign the stimulus to Category A or B (by pressing
a button}. Feedback indicating the correct category is given
after every trial. This ‘‘randomization technique’” was used ef-
fectively by Ashby and Gott (1988) and Ashby and Maddox
{1990, 1992).

With the rectangles, the optimal rule in this task has the
following simple verbal description: ‘‘Respond A if the stimulus
rectangle is taller than it is wide; respond B if the rectangle is
wider than it is tall’”’ For the circles, however, the same rule
has no simple verbal description. The best approximation is as
follows: ‘‘Respond A if the orientation of the radial line is
greater than the size of the circle; respond B if the size is greater
than the orientation.”” However, because orientation and size are
expressed in different units, this is like comparing apples and
oranges. We have collected extensive amounts of data in tasks
in which the optimal rule is difficult or impossible to verbalize.
After the last experimental session, we typically ask participants
for a verbal description of their response strategy. None of the
participants in these ‘‘nonverbal’’ tasks have ever described the
optimal rule, At best, they give a complex description that only
roughly approximates their performance. Many participants,
however, simply say that their responses were just a *‘gut reac-
tion.”” It is as if learning of these complex rules is implicit or
procedural (e.g., Anderson, 1976; N. J. Cohen & Squire, 1980;
Schacter & Tulving, 1994b; Squire, 1984). For convenience, we
refer to decision rules that cannot be verbalized as nonverbal
rules.

Maddox and Ashby (1993) included 6 participants in the
experiment described in Figure 1. Three were shown rectangles,
and 3 were shown circles. Each participant completed 400 trials
per experimental session. Sessions were repeated over consecu-
tive days until a criterion accuracy level had been reached (i.e.,
75% ). Table 1 summarizes performance. All participants in the
rectangles condition exceeded the criterion accuracy level dur-

Table 1
Summary Statistics Describing Performance in the
Experiment Shown in Figure 1 and Reported

by Maddox and Ashby (1993)

Statistic Rectangles Circles
Days to criterion 1 2
Percentage correct 80.7 76.7
d 1.74 1.48

ing their first experimental session. Participants in the circles
condition needed an average of two sessions to achieve criterion
accuracy. In addition, the rectangles participants were more ac-
curate during their first session than were the circles participants
during their last session. Thus, performance in the two condi-
tions was qualitatively different.

The Maddox and Ashby (1993 ) data also show that the dis-
tinction between verbal and nonverbal rules is not one simply
of complexity. By any objective measure, compiexity is identical
in the circles and rectangles conditions; for example, optimal
accuracy is the same, within- and between-category similarity
is the same, and the optimal bound (i.e., y = x) is the same.
Therefore, if the task is more difficult with circles than rectan-
gles, then it cannot be because of any objective difference be-
tween the conditions. Rather, it must be due to a difference in
how the human participants perceive the stimuli or solve the
two categorization problems. Although the participants in the
Maddox and Ashby (1993 ) experiment found the *‘verbal’’ (i.e.,
rectangles) condition to be easier than the ‘‘nonverbal’’ (i.e.,
circles) condition, it is important to note that we are not claim-
ing that verbal categorization rules are always easier to learn
than nonverbal rules. Clearly, some complex verbal rules are
exceedingly difficult to learn. Qur point only is that performance
in tasks in which the optimal rule is easily verbalized is often
qualitatively different from performance in tasks in which the
optimal rule is difficult or impossible to verbalize.

There is other evidence for multiple systems of categorization.
First and perhaps most impressive are the recent neurcimaging
data of E. E. Smith et al. (1996). In this study, participants
categorized artificial animals in separate verbal (i.e., rule) and
nonverbal (i.e., similarity ) conditions during position emission
tomography (PET) scanning. Activation patterns were qualita-
tively different in the two conditions, and, on this basis, Smith
et al. argued that different categorization mechanisms dominate
the two conditions.

Second, category learning is qualitatively different depending
on whether trial-by-trial feedback is provided. As mentioned
earlier, with supervision (i.e., trial-by-trial feedback), people
can learn complex, nonverbal rules (e.g., Ashby & Maddox,
1992; McKinley & Nosofsky, 1995; Medin & Schwanenflugel,
1981). In contrast, in unsupervised and free sorting tasks, in
which no feedback is given as to the correct response, people
almost always use simple verbal rules { Ahn & Medin, 1992;
Ashby, Queller, & Berretty, 1997; Imai & Garner, 1965; Medin,
Wattenmaker, & Hampson, 1987, Wattenmaker, 1992).

For example, in the Ashby et al., (1997) study, two widely
separated categories were created from lines that varied in
length and orientation. In two conditions a verbal (i.e., unidi-
mensional ) rule was optimal, and in two conditions the optimal
rule was nonverbal. Participants used verbal rules in all four
conditions. Interestingly, there was no evidence of leaming in
the nonverbal conditions, but there was strong evidence of learn-
ing in the verbal conditions. For example, in both verbal condi-
tions, a number of participants initially tried a verbal rule of
the incorrect type (i.e., a unidimensional rule on the wrong
dimension), and then, in every case, they spontaneously
switched to the correct verbal rule (i.e., to the correct dimen-
sion). In a follow-up nonverbal condition, participants were
told explicitly that no unidimensional rule was optimal and,
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therefore, that they had to use both stimulus dimensions when
selecting a response. (In fact, the optimal rules were of the
following type: ‘‘Respond A if length + orientation > some
criterion; otherwise, respond B.’) Despite these instructions, 8
of 10 participants used some form of unidimensional rule. The
other 2 used a conjunctive rule of the form ‘‘Respond A if the
length >> x; and the orientation > x,; otherwise, respond B, for
some appropriately chosen constants x; and x,.”” Thus, none of
the participants responded optimally, and they all used rules that
were easily verbalized. The 2 participants who used conjunctive
rules are especially important because, in this experiment, a
conjunctive rule is two dimensional but suboptimal. Thus, these
data contradict the hypothesis that unidimensional rules are priv-
ileged in izman category learning only because they are simpler
(i.e., one dimensional) than nonverbal rules (which are two
dimensional with the circle, rectangle, or line stimuli). If this
were true, then the participants who expended the extra effort
to use conjunctive rules should instead have responded opti-
mally. The fact that they used conjunctive rules supports the
hypothesis that humans have a separate category learning system
that is constrained to use verbal rules.

The notion that there are multiple forms of reasoning is very
old. Sloman (1996) traced the idea back to Aristotle and re-
viewed evidence that there are separate rule-based and associa-
tive reasoning systems. A similar distinction between explicit
and implicit learning systems also evolved many years ago,
originally to account for artificial grammar learning (e.g., Reber,
1967) and more recently to account for the many forms of
human amnesia (e.g., N. J. Cohen & Squire, 1980). Even within
the more specialized context of categorization, the idea of multi-
ple systems is not new. For example, almost 20 years ago,
Brooks (1978) distinguished between *‘deliberate, verbal, ana-
lytic control processes and implicit, intuitive, nonanalytic pro-
cesses’” (p. 207) that are active during category leamning.

Although it seems clear that the verbal system, if it exists,
would rely on explicit reasoning, the nature of the implicit sys-
tem is less clear. An examination of the categorization and mem-
ory literatures points toward two prominent possibilitics. Exem-
plar theory assumes that people assign objects to categories by
accessing memory traces of exemplars from relevant categories
(e.g., Brooks, 1978; Estes, 1986; Medin & Schaffer, 1978; No-
sofsky, 1986}. As such, exemplar theory hypothesizes that cate-
gorization depends on instance-based or exemplar-based mem-
ory. In contrast, decision bound theory assumes that people
gradually learn to associate category labels (i.e., responses)
with different regions of psychological space (Ashby, 1992;
Ashby & Lee, 1991, 1992; Ashby & Maddox, 1990, 1992, 1993;
Maddox & Ashby, 1993). The idea is that people learn a proce-
dure for generating a response and do not access any exemplar
memories during the categorization process. As such, the learn-
ing and memory involved are procedural {(e.g., N. J. Cohen &
Squire, 1980; Schacter & Tulving, 1994b; Squire, 1984). Both
theories have been impressively successful at accounting for
asymptotic categorization performance, and formal modeling
attempts have been unable to distinguish empirically between
the two (e.g., Maddox & Ashby, 1993; McKinley & Nosofsky,
1995).

Brooks {1978) postulated separate rule-based and exemplar-
based categorization systems, and a formal model of this type

was recently proposed by Erickson and Kruschke (in press). In
contrast, Squire (e.g., 1992) argued for separate exemplar-based
and procedural learning systems. We believe that the neuropsy-
chological data, reviewed later in this article, can be accounted
for best by a model that assumes separate rule-based and proce-
dural-learning-based categorization systems.’ As mentioned ear-
lier, we call the new theory based on this assumption COVIS.
The rule-based, or theory-based, system is explicit and invaolves
logical reasening and semantic memory. Our operational defini-
tion is that this system operates on categorization rules that can
be easily verbalized. The procedural-icarning-based system is
assumed to be implicit. ‘

Categorization has not traditionally been considered to rely
either on verbal-based reasoning or on procedural learning. As
a consequence, before describing COVIS in detail, we briefly
elaborate on the nature of the verbal system, and we consider
the relation between category learning and more traditional pro-
cedural (i.e., motor) learning tasks.

Verbal Rules in Categorization

Although previous theories of categorization have not explic-
itly considered verbal-based strategies, many theories have pos-
tulated categorization systems that are quite simnilar to the verbal
system of COVIS. Historically, these systems have been of three
types. The earliest notion was that categorization is a process
of hypothesis testing (Bruner, Goodnow, & Austin, 1956). More
recently, a number of theorists have argued for a rule-based
category learning system (e.g., Busemeyer & Mvyung, 1992;
Nosofsky, Palmeri, & McKinley, 1994) or a theory-based system
(Murphy & Medin, 1985). The verbal system of COVIS should
be considered as a particular instantiation of category learning
systems of these types.

One difficulty with postulating a rule-based or theory-based
category learning system is that the terms rule and theory are
rarely defined rigorously. If the goal is to construct a computa-
tional model that makes specific quantitative predictions, then
this is a serious problem. As a first step toward solving this
problem, we operationally define rule or theory as any strategy
that can be described verbally. This definition works weil for
the applications considered in this article, but we acknowledge
that, under some conditions, explicit reasoning might occur that
is not verbally based. As a consequence, the current version of
the verbal system in COVYIS should be considered tentative, A
more complete account of this system awaits a detailed theory
of explicit reasoning.

Simply defining a rule or theory as any strategy that can be
verbalized does not solve all problems. In particular, any theory
that postulates a separate categorization systemn that operates
only on decision rules that can be verbalized must specify which
rules can be verbalized and which cannot. This is also a difficult
problem that we do not claim to have solved. Nevertheless,
some inferences are possible. To begin, note that two cperations
are required to instantiate successfully a verbal rule such as the

* Even so, we suspect that a complete account of human category
learning may require separate systems of all three types (i.e., rule,
exemplar, and procedural learning}.
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following: ‘“‘Respond A if the circle is large and B if it is small.”’
First, of course, there must be a semantic label that corresponds
to the particular property of the stimulus set on which the rule
operates. In this case, the semantic label is ‘‘size.’”” Second, the
classifier must be able to attend selectively to this property of
the stimulus. For example, it is possible to verbalize a rule such
as “‘Respond A if the saturation of the color patch exceeds a
criterion value; otherwise, respond B.”’ Even so, it is generally
thought that humans are incapable of attending to saturation in
a way that is unaffected by variations in hue and brightness. A
theory of verbal rules in categorization, therefore, must answer
two questions. First, which rules can be verbalized? Second, to
which components of a stimulus can the classifier selectively
attend? We discuss each of these questions in turn.

An attempt to define precisely the complete set of verbalizable
rules is beyond the scope of this articte. However, it is straight-
forward to identify a large subset of verbalizable rules. In partic-
ular, most unidimensional rules are verbalizable. By a unidimen-
sional rule, we mean a rule that uses a decision bound that is
orthogonal to some stimulus dimension. Such a rule can always
be written as follows: ‘‘Respond A if the value on dimension x
> ¢, respond B if the value on dimension x < ¢, for some
appropriately chosen constant ¢.”’ In the categorization litera-
ture, unidimensional rules are associated with selective atten-
tion, but their relaticn to verbalization has been overlooked.

There are at least two arguments as to why unidimensional
rules are verbalizable. First, one could argue that a major func-
tion of language is to denote psychologically salient aspects of
the environment. Stimulus dimensions are those aspects of the
stimulus that the experimenter chooses to manipulate. Because
experimenters usually choose to manipulate psychologically sa-
liem aspects, stimulus dimensions will generally have an associ-
ated semantic label. The second argument works in the reverse
direction. Because humans are verbal animals, experimenters
are drawn to stimu]us aspects that have semantic labels when
selecting aspects of the stimulus to manipulate. Thus, unidimen-
sional rules and verbal rules are highly confounded.

Of course, many rules that are not unidimensional can also
be verbalized. For example, in the case of the circular stimuli
shown in Figure 1, consider the following rule: ‘*Respond A if
the size exceeds the orientation; respond B if the orientation
exceeds the size’” Although such a rule can be verbalized, we
have never had a participant describe his or her behavior in this
fashion, even when his or her observable performance was well
described by such a rule. Thus, we argue that rules of this type,
although possible to verbalize, have very low saliency. As a
result, the verbal categorization system will almost never sponta-
neously select such a rule. In fact, in this article, we assume
that rules of this type are never selected by the verbal system.

Another important class of verbal rules comprises those in-
volving a combination of unidimensional rules (among others,
conjunctive, disjunctive, and exclusive—or rules). Whereas it is
true that normal adults can learn these rules without excessive
difficulty {e.g., Salatas & Bourne, 1974), it is guite clear that
such rules are less salient than simple unidimensional rules. For
example, in unsupervised categorization, unidimensional rules
dominate (e.g., Ahn & Medin, 1992; Imai & Garner, 1965;
Wattenmaker, 1992). In experiments of the type reported in this
article, in which accuracy is maximized with a linear or qua-

dratic decisicn bound, it is extremely rare to encounter a data
set that is better described by a conjunctive- or disjunctive-type
rule than by a linear or quadratic-bound-type rule.

Alfonso-Reese (1996) attempted to measure the salience of
alternative categorization rules. She presented 47 participants
with lines that varied uniformly across trials in length and orien-
tation. Participants were asked to divide the stimuli into two
calegories according to any criterion they desired. This task was
repeated for each participant five different times, so, in effect,
each participant was asked to choose five different categoriza-
tion strategies. Participants overwhelmingly preferred unidimen-
sional rules. In fact, only 1 participant used a conjunctive rule,
and this occurred on that participant’s fifth and final sort. For
these reasons, in the modeling that follows, we make the simpli-
fying assumption that the verbal system does not routinely for-
mulate rules of the conjunctive—disjunctive type.

The issue of which stimulus aspects can receive selective
attention is more straightforward, at least theoretically. The criti-
cal distinction is whether the stimulus dimensions are separable
or integral. With separable dimensions, it is straightforward to
attend to one and ignore the other. With integral dimensions,
however, it is difficult or impossible to attend selectively to a
single dimension (Ashby & Maddox, 1994; Ashby & Townsend,
1986; Garner, 1974; Lockhead, 1966; Maddox, 1992; Shepard,
1964). Prototypical separable dimensions are hue and shape,
and prototypical integral dimensions are saturation and bright-
ness (for a review of this literature, see, e.g., Maddox, 1992).
Therefore, when stimuli are constructed from separable dimen-
sions, unidimensional rules should be fairly simple to form and
to implement. With integral dimensions, however, unidimen-
sional rules should be difficult or impossible to form. For this
reason, COVIS predicts that, in category learning tasks in which
the stimuli are constructed from integral dimensions, the implicit
system should dominate the verbal system.

Procedural Learning in Categorization

As mentioned earlier, procedural memory is the memory of
procedures or skills. It is closely related to what some theorists
call associative memory (e.g., Oakley, 1981), and it is thought
to be distinet from episodic memory (e.g., Tulving, 1985). The
prototypical task that is thought to depend critically on proce-
dural Jearning and memory is the learning and retention of motor
skills (e.g., tennis playing). Logan (1988) proposed an influen-
tial theory assuming that a skill becomes automatic when ‘it
relies on the retrieval of stored instances’’ (p. 492). As such,
Logan’s theory could be interpreted as an instance-based ac-
count of tasks that have traditionally been thought to rely on
procedural leaming and memory. Similarly, COVIS could be
viewed as a procedural (and semantic) memory account of a
task that has traditionally been thought to rely on instance-based
memory (as a result of the popularity of exemplar theory).

Consider a tennis player as his or her opponent initiates a
ground stroke. The ball traveling over the net toward the player
defines a complex stimmlus that is essentially unique on every
trial. The player’s task is to assign the stimulus to one of a
number of categories and then to initiate the motor program
associated with that category (e.g., cross court topspin fore-
hand). The process by which a novice learns to become a profi-
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cient tennis player is a classic example of procedural leamning.
Usually the motor component of the tennis playing task is em-
phasized, but a complex categorization component is also in-
cluded. We believe that standard perceptual categorization in-
volves a similar procedural learning process. For example, parti-
cipants in the Maddex and Ashby (1993) experiment saw a
unique stimulus on every trial, assigned it to one of a number

of categories (i.e., two), and then initiated the motor program-

associated with that category (by pressing the left or right re-
sponse key). It is true that the motor component of the standard
categorization task is far simpler than the motor component
associated with tennis playing, but apart from this complexity
difference, the logical structure of the two tasks is similar.
There is now substantial evidence that the striatum, a region
in the basal ganglia consisting of the putamen and the caudate
nucleus, is necessary for procedural learning (e.g., Jahanshahi,
Brown, & Marsden, 1992; Mishkin, Malamut, & Bachevalier,
1984, Saint-Cyr, Taylor, & Lang, 1988; Willingham, Nissen, &
Bullemer, 1989). For example, procedural learning is impaired
in patients with diseases of the basal ganglia (e.g., Huntington’s

and Parkinson’s disease) but not in cortical diseases, such as

Alzheimer’s (Gabrieli, 1995; Heindel, Butters, & Salmon, 1983;
Heindel, Salmon, Shults, Walicke, & Butters, 1989; Knopman &
Nissen, 1991).

Much of the recent work on procedural learning has involved
Nissen and Bullemer's (1987} serial reaction time (SRT) task,
in which participanis are required to produce a sequence of
button presses. The greatest improvements in reaction time oc-
cur when the sequence has some repeating structure, even when
participants display no explicit knowledge of the sequential
structure (a defining characteristic of procedural learning) and
even when they suffer from ammesia (Nissen & Bullemer, 1987
P. J. Reber & Squire, 1994). A number of studies have found
evidence for striatal involvement in the SRT task. For example,
patients with Huntington’s disease and patients with Parkinson’s
disease both show reduced implicit learning in the SRT task
(Jackson, Jackson, Harrison, Henderson, & Kennard, 1995;
Knopman & Nissen, 1991; Willingham & Koroshetz, 1993). In
addition, a recent neurcimaging study found striatal (i.e., in
putamen ) activation in an implicit learning condition in which
attention was drawn away from the sequence because of a tone-
counting secondary task (Grafton, Hazeltine, & Ivry, 1995},
These results reinforce the argument that the striatum is a critical
component of the procedural learning system.’

Within the striatum, the putamen is most closely associated
with motor behavior, and the caudate nucleus is most closely
associated with cognitive behavior (e.g., Heimer, 1995). There-
fore, if the striatum participates in category learning, one’s focus
should be on the caudate. In fact, there is evidence from nonhu-
man animal studies that the caudate may mediate perceptual
decision processes of the type that should be important in cate-
gory learning (e.g., McDonald & White, 1993, 1994; Packard,
Hirsch, & White, 1989; Packard & McGaugh, 1992; Packard &
White, 1991). The most popular of the relevant experimental
designs uses a maze of some sort {e.g., radial arm or water
maze) and two experimental conditions. In one, a rat must return
to a certain spatial location to receive a reward, whereas, in the
other, a specific perceptual cue signals reward. For example,
Packard and McGaugh {1992) used a water maze with two

floating rubber balls. One was attached to a hidden platform
that the animal could mount, thereby escaping the water. The
other was attached to a thin anchor that could not be mounted.
At the same time, one of the balls was marked with vertical
stripes and the other was marked with horizontal stripes. In the
spatial condition, the safe ball (i.e., the one attached to the
platform) was always in the same spatial location within the
maze but was not consistently associated with either the hori-
zontal or vertical stripes. In the visual discrimination condition,
the visual pattern on the safe ball was always the same, and the
spatial location varied from trial to trial. In all of these studies,
rats with hippocampal lesions (i.e., to the fornix ) were impaired
in the spatial condition but not the visual discrimination condi-
tion, whereas rats with caudate lesions were impaired in the
visual discrimination condition but not in the spatial condition.

In the spatial condition of the Packard and McGangh (1992)
study, virtually all cues associated with the safe platform were
the same on every trial, except for the horizontal and vertical
stripes. Thus, the rat could obtain reward by recognizing that
the conditions associated with the safe platform were familiar

*On the other hand, it is now clear that there is also a significant
cortical component t¢ SRT learning. For example, several neuroimaging
studies have reported learning-related changes in motor cortex {Grafton
et al., 1995; Pascual-Leon, Grafman, & Hallet, 1994), and Grafton et
al. (1995) also found activation in the supplementary motor cortex and
the inferior parietal cortex in their implicit learning condition. These
findings have caused some researchers to question the significance of
the striatal contribution to SRT learning (e.g., Curran, 1995; Keele &
Curran, in press). There are a number of reasons to believe, however,
that the striatum may play a more significant role in implicit category
learning than in SRT learning. First, much learning in the SRT task is
explicit. In fact, it has been questioned whether any significant compo-
nent of SRT learning is implicit (Perruchet & Amorim, 1992; Shanks &
St. John, 1994). Second, the SRT task is very different from traditional
perceptual categorization, because it requires learning long response
sequences. In contrast, perceptual categorization requires a simple motor
response but involves complex pattern recognition. It may be that the
caudate nucleus is more important for the pattern recognition process
than for the chaining required to link a sequence of moter responses.
Some evidence supports this hypothesis. In particular, lesions in rat
stratum impair visual pattern recognition but have no effect on spatial
exemplar-based memory, even when the pattern recognition task and the
spatial memory task require the same motor response (Packard,
Hirsch, & White, 1989; Packard & White, 1991). Also, patients with
Parkinson’s disease are impaired in category learning but not in recogni-
tion memory (Knowlton, Mangels, & Squire, 1996). Third, evidence
from the SRT task suggests that the striatum may be able to learn simple
stimulus —response mappings but not higher order associations {see, e.g.,
Curran, 1995, for a review). For example, A. Cohen, Ivry, and Keele
{1990) showed that in the presence of a secondary attention demanding
task, which was thought to block explicit learning, SRT learning occurred
only when the sequence contained unique pairwise associations. In tradi-
tional perceptual categorization tasks, the learning of unique stimulus—
response mappings is all that is required to maximize response accuracy
(e.g., Ashby, 1992; Ashby & Gott, 1988). This is true even in so-called
probabilistic categorization tasks, in which some stimuli have a nonzero
probability of belonging to two or more categories (e.g., as in the Mad-
dox & Ashby, 1993, experiments described earlier). Furthermore, the
evidence is good that humans do learn deterministic stimulus-response
mappings in perceptual categorization tasks { Ashby & Maddox, 1998),
although this position is not without controversy (e.g., Estes, 1995).
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For this reason, the spatial condition is similar to a recognition
memory task. In contrast, in the visual discrimination condition,
only one cue remained constant, namely the visual pattern on
the safe ball. The rat had to therefore learn to associate this
single cue with reward. This condition is similar to a category
learning task. In fact, in both the Packard and McGaugh (1992)
study and the Maddox and Ashby (1993) circle condition, an
important component of the relevant stimali was line crientation.
The major difference between these studies was that Packard
and McGaugh's (1992) “'safe’’ category contained only a singie
exempiar.

Although most studies of this type have used rats, similar
results have been obtained with monkeys. For example, in a
series of experiments, Gaffan and colleagues successively le-
sioned all major output pathways from visual association (ie.,
inferotemporal} cortex, except for the projection to the candate
nucleus (e.g., projections to the hippocampus and amygdala
were lesioned by Gaffan & Harrison, 1987; projections to the
prefrontal cortex were lesioned by Eacott & Gaffan, 1992, and
Gaffan & Eacott, 1995). None of these lesions affected visual
discrimination leaming, which prompted Gaffan and Eacott
(1993) to conclude that the caudate is a critical component of
such leaming. Thus, a large number of lesion studies with rats
and monkeys all support the hypothesis that the caudate nuclens
mediates a form of perceptual discrimination learning that is
independent of the instance-based learning and memory thought
to be mediated by hippocampal structures.

The Neuropsychological Version of COVIS

COVIS assumes that there are separate verbal and implicit
(i.e., procedural-learning-based ) category learning systems and
that the striatum is a key structure in the implicit system. Of
course, many cortical areas must also be involved. For example,
the verbal system must depend heavily on frontal and temporal
language areas {and possibly on cingulate cortex ). With visual
stimuli, the visual cortex is required for representation and early
processing, and the posterior parietal cortex is probably required
to direct visual attention. How can the striatum, a region in the
basal ganglia, coordinate with such a wide variety of cortical
areas?

A number of parallel circuits have now been identified, all
with the same basic structure. In each case, a pathway has been
identified that projects from an area of cortex to striatum, from
striatum to the globus pallidus (the output portion of the basal
genglia), from globus pallidus to thalamus, and, finally, from
thalamus back to cortex ( Alexander, DeLong, & Strick, 1986).
it has been proposed that such loops play & major role in motor
performance (e.g., Strick, Dum, & Picard, 1995), working
memory {e.g., Gabrieli, 1995; Goldman-Rakic, 1995b}, selec-
tive attention (Miller & Wickens, 1991; Posner & Petersen,
1990), and skill learning (Gabrieli, 1995). There is even evi-
dence that such a loop mediates verbal rules of categorization
(Corbeua, Miezin, Dobmeyer, Shulman, & Petersen, 1991). We
propose that cortical—striatal—pallidal —thalamic loops mediate
category learning in functionally separate verbal and implicit
systems.

A very rough sketch of the more important neuropsychologi-

cal underpinnings of COVIS is shown in Figure 2 (obviously,
many other structures are also involved). The model assumes a
hierarchical structure consisting of three primary levels: cortex,
thalamus, and the basal ganglia. Communication among levels
is mediated by parallel cortical--striatal - pallidal - thalamic cir-
cuits. Two such circuits are shown in Figure 2. The posterior
circuit, originating in extrastriate visual areas (e.g., inferotem-
poral cortex [IT]), defines the implicit system. The anterior
circuit, which originates in anterior cingulate gyrus and prefron-
tal cortex, defines the verbal system. Projections from each of
these cortical areas (i.e., inferotemporal cortex and other high-
levet visual areas, cingulate gyrus, and prefrontal cortex ) to the
caudate nucleus are known to exist (e.g., Selemon & Goidman-
Rakic, 1985; Yeterian & Pandya, 1995).

Implicit System

A high-level visual representation of the stimulus is computed
in the inferotemporal cortex and other extrastriate visual areas
(e.g., Damasio, 1985; Mishkin, Ungerleider, & Mako, 1983;
Tanaka, 1993). These arcas are known to project to the tail of
the caudate, which, according to COVIS, learns to associate a
category response with each stimmulus. At this poimt, there is
little in the literature that allows one to speculate on the details
of this associative learning. There are two prominent possibili-
ties. First, the striatum might learn a decision bound through
some reward-mediated procedural leaming process. On each
trial, the resulting striatal network would then determine on
which side of the bound the stimulus representation lies and
subsequently recornmend the appropriate respense, Second, the
striatum might naively learn to associate a category response
with different subregions of the perceptual space (Ashby &
Maddox, 1989). In this model, the decision bound is an emergent
property that separates the subregions assigned to the different
category responses.” This latter model, which requires littie or
no computation by the striatum, might be more consistent with
known neurophysiology (e.g.. Wickens, 1993}, but we know of
no behavioral data that distinguish between these two
possibilities.

Regardless of how the association between stimulus and re-
sponse is learned (or computed), we assume that, for every
categorization judgment, the striatum activates a unit in prefron-
tal cortex associated with one of the alternative category re-
sponses (via a pathway through the globus pallidus and the
thalamus) and that the strength of this activation is a measure
of the confidence that the implicit system has responded cor-
rectly. The category units in prefrontal cortex are assumed to be
abstract representations that project via { glutaminergic) cortico-
cortical projections to appropriate motor units in premotor or
motor cortex. Frith, Friston, Liddle, and Frackowiak {1991z,
1991b; Friston, Frith, Liddle, & Frackowiak, 1991) reported
PET scanning data that support this model of prefrontal cortex.
In fact, they argued that their data pointed toward a more general
model in which prefrontal cortex modulates activity in a variety
of remote, but task-relevant, cortical areas (e.g., temporal lan-

* It is important to note that this second possibility is not an exemplar-
based model, because a subregion of perceptual space is not an exemplar.
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Figure 2. A schematic depicting the neuropsychological underpinnings of COVIS (competition between
verbal and implicit systems ). The dotted lines denote dopamine projections. VTA = ventral tegmental area;
SN = substantia nigra; NAC = nucleus accumbens; IT = inferotemporal cortex.

guage areas) in many tasks requiring ‘‘willed action.”” One Ashby & Perrin, 1988; Ashby & Townsend, 1986; Maddox &
important advantage of this model of prefrontal cortex in the Ashby, 1993). Let the vector x denote the representation of the
present application is that it allows rapid transfer in categoriza- stimulus as computed, for example, in IT. With the circular stimuli
tion tasks in which the motor response is changed, but not the shown in Figure 1, x would be the two-dimensional vector
category structure (e.g., rather than button pressing with index
fingers, participants are asked to depress a foot pedal).

Categorization by the implicit system can be modeled in a ;
straightforward fashion by decision bound theory (Ashby, 1992; x [X’J
Ashby & Lee, 1991, 1992; Ashby & Maddox, 1990, 1952, 1993,

X2
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where x, is the perceived size of the circle and x; is the perceived
orientation of the radial line. A decision bound can be described
as the set of all perceived sizes and orientations that satisfy the
condition k,{x} = 9 for some function %,. For example, for the
linear bound shown in Figure 1, Ay(X) = 2, — x, = 0. If a
perceptual representation does not fall exactly on the decision
bound, then either 2,(x) > 0 or A/(x) < 0. In fact, it turns out
that all points on the same side of the bound generate the same
sign in k:{x). For example, in Figure 1, 7,(x) > 0 for all points
above the bound, and /,{x) < O for all points below the bound.
As a consequence, the decision rule ““Respond A to all points
on one side of the bound and B to all points on the other side’’
is equivalent to the following rule: *‘Respond A if Ay(x) >
0 and respond B if A(x) < 0. Because the function 4,{x)
discriminates between stimuli on either side of the decision
bound, it is often called a discriminant function.

The absolute value of the discriminant function provides a
measure of response confidence, because |A(x)| tends to in-
crease with the distance between x and the decision bound.
Stimuli near the bound could belong to either category, and so
response confidence is low, and [B/(x)| is small. Stimuli far
from the bound obviously belong to only one of the two catego-
ries, and so confidence is high, and |h{x)| is large. COVIS
assumes that the output of the striatum is a discriminant value,
but, for now at least, we make no assumptions about how the
discriminant value is computed (i.e., we do not choose between
either of the two alternatives just described).

According to this model, animals with caudate lesions shouid
be impaired in visual discrimination tasks, not because of any
visual deficits but because of impaired decision processes. As
menticned previously, many studics support this prediction
{e.g., Eacott & Gaffan, 1992; Gaffan & Eacott, 1995; Gaffan &
Harrison, 1987; McDonald & White, 1993, 1994; Packard ot
al., 1989; Packard & McGaugh, 1992; Packard & White, 1991).
For example, in one study, rats with caudate lesions failed to
learn an orientation discrimination (vertical lines vs. horizontal
lines; Packard & McGaugh, 1992}, and, in another, rats with a
similar lesion failed to learn a flicker-rate discrimination (high
flicker rate vs. low flicker rate; Reading, Dunnett, & Robbins,
1991}, In both cases, the stimuli varied on a single dimension,
so the optimal decision rule was of the form ‘‘Respond A if x,
+ ¢ > 0, and respond B if x; + ¢ < 0" where x, is either
perceived orientation or perceived flicker rate { depending on the
application). Because the animals had intact visual systems,
COVIS predicts that their perception of orientation and flicker
tate was normal and that their deficits occurred because of an
inability to learn or implement this discriminant function.®

There are also projections from auditory cortex to caudate and
from somatosensory cortex to caudate (e.g., Amaulkd, Jeantet,
Arsaut, & Demotes-Mainard, 1996; Chudler, Sugiyama, &
Dong, 1995}, so it is possible that implicit category leamning of
the type we are¢ postulating for viswal stimuli might also occur
for auditory and haptic stimuli. At this point, however, much
less is known about these projections, and there is also a corre-
sponding dearth of behavioral data on auditory and haptic cate-
gory learning. Therefore, although the generalization to other
sensory modalities appears promising, at this point COVIS
should be considered a theory of category leamning with visual
stimuli.

Verbal System

Before the verbal system can recommend a categorization
response, it must select among the alternative types of verbal
rules and access the appropriate visual and semantic informa-
tion. Among these tasks, perhaps the most critical is selection
of the appropriate verbal rule type. For example, in experiments
in which two alternative categories are composed of the Figure
1 circles, there are two especially simple types of verbal rules.
One is to set a criterion on size, and the other is to set a criterion
on orientation. The first type of verbal rule is of the form *‘Re-
spond A if the circle is large and B if it is small.”” A verbal rule
of the second type is ‘‘Respond A if the radial line is tilted up
and B if it is tilted down.”’ In a task in which the optimal rule
is of the first type, a participant who selects a verbal rule of the
second type will perform poorly.

Posner and Petersen {1990) postulated that a similar kind of
selection process is carried out by an anterior attentional net-
work that includes the anterior cingulate and prefrontal cortices.
Their arguments were based partly on neurcimaging studies
suggesting that the cingulate may be heavily involved in rule
selection. In these studies, cingulate activation is found in tasks
in which the participant must select among various interpreta-
tious or aspects of the stimulus. In conditions in which such
selection is not required, the cingulate is not activated. For exam-
ple, Corbetta et al. (1991 ) found cingulate activation in a same—
different task in which two visual stimuli could differ in any
one of three components but not when the stimuli could differ
only in one component. The former condition requires selection
of the appropriate dimension, whereas the latter condition does
not. Similarly, the cingulate is not activated when participants
are simply required to read a stimulus word, but it is activated
when the word is a color name printed in the ink of a different
color (i.e., the classic Stroop task; Bench et al., 1993) or when
participants are required to name a verb related to the stimulus
word (Peterson, Fox, Posner, Mintan, & Raichle, 1988). Reading
a word does not require one to select a meaning, but naming a
retated verb does, and Stroop tasks require one 16 select between
conflicting semantic and perceptual cues.

Following Posner and Petersen (1990), we hypothesize that
the anterior cingulate selects among the alternative types of
verbal rules in categorization tasks. Specifically, we hypothesize
that a cingulate—prefrontal cortex network is responsible for
learning which type of verbal ruje is most effective in a particu-
lar task and for selecting one for use on each trial.

In an experiment in which the stimuli are the Figure ! circles,
let x, denote perceived size and let x, denote perceived orienta-
tion. Then the verbal rules on size and orientation are formally
equivalent to “Respond A if Ay(x) = x, + ¢, > 0 and B if
hy(X) = x; + ¢y <07 and *‘Respond A if hy(x) = X + ¢ >
Oand B if Ay (X) = x; + £ << 0,7 respectively, for some constants
¢y and ¢;. In addition to learning which type of verbal rule is

5 COVIS predicts that, in humans, such unidimensional rules would
be learned more quickly by the verbal system. Even so, the implicit
system in COVIS could also learn the unidimensional rules used in these
rat studies. Because, presumably, category learning in rais is dominated
by the implicit system, the only way rats can learn these unidimensional
rules is via their analogue of the implicit system.
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most accurate, the verbal system must also learn the optimal
values of the response criteria, ¢, and c,. There is little in the
literature to suggest where such learning might occur. Perhaps
most relevant are the animal studies discussed earlier in which
lesions of the caudate nucleus disrupted the learning of a simple
{unidimensional} visna! discrimination (e.g, Packard &
McGaugh, 1992; Reading et al.,, 1991). Because of these data,
we tentatively assume that criterion learning in the verbal system
is also mediated by the striatum. This is not a critical assumption
of COVIS, For example, none of the COVIS predictions derived
and tested in this article depend in any way on this assumption.

Selection and Switching in the Verbal System

The Wisconsin Card Sorting Test (Berg, 1948) is a widely
used neuropsycholegical instrument in which participants com-
plete a series of categorization tasks (e.g., Kolb & Whishaw,
1990). Stimuli are geometric patterns that vary in color, shape,
and symbol numerosity, and in all cases the correct categoriza-
tion rule is easily verbalized (i.e., the correct rule is always
unidimensional}. Owen et al. (1993} argued that perseverative
errors on the Wisconsin Card Sorting Test could oceur for two
different reasons. One is a failure to select the appropriate verbal
rule, and the other is a failure to switch attention from an inap-
propriate to an appropriate rule. To test the hypothesis that two
different kinds of errors can be made on the Wisconsin Card
Sorting Test, Owen et al. (1993) designed two new tasks in
which the different errors would each be observable. Using this
clever design, Owen et al. (1993} found that patients with le-
sions of the prefrontal cortex were impaired in the switching
task but not in the selection task, whereas { unmedicated ) Parkin-
son’s patients were impaired in both tasks. These resulis support
the hypothesis that selection and switching are separate
operations.

More recently, Ashby, Isen, and Turken (1998) argued that
the anterior cingulate mediates the selection operation and the
basal ganglia mediate the switching operation via cortical—stria-
tal—pallidal —thalamic loops. Much of the evidence implicating
the anterior cingulate in the selection operation was reviewed
earlier when we introduced the Posner and Petersen (1990)
anterior attentional network. In addition, the Ashby et al. hypoth-
esis is consistent with the Owen et al. (1993) data because
frontal patients presumably have no anterior cingulate damage,
but Parkinson’s patients do (this is discussed in more detail
iater).

The evidence that the basal ganglia mediate the switching
operation is as follows. First, injections of a glutamate agonist
directly into the striatum increase the frequency with which cats
switch from one motor activity to another in a task in which food
rewards are delivered for such switching behaviors (Jaspers, de
Vries, & Cools, 1990a, 1990b). Second, lesioning the dopamine
fibers that project from the ventral tegmental area (VIA) into
the prefrontal cortex actually improves the performance of mon-
keys in an analogue of the Wisconsin Card Sorting Test (Roberts
et al., 1994). If switching occurs in the prefrontal cortex, then
such lesions should impair switching performance. In fact, this
result is strong evidence that the basal ganglia mediate switch-
ing. This is because such lesions tend to increase dopamine
levels in the basal ganglia® (Roberts et al., 1994). If the basal

ganglia are responsible for switching and switching is enhanced
by dopamine, and if lesioning the dopamine fibers that enter the
prefrontal cortex increases dopamine levels in the basal ganglia,
then lesioning dopamine fibers in prefrontal cortex should im-
prove switching. Cortical - striatat—pailidal - thalamic loops pro-
vide a perfect mechanism through which the striatein could
contribute to rule-switching behavior. For example, separate
loops could be established for each altemnative rule type from
prefrontal cortex down to the caudate and back up to prefrontal
cortex. The caudate could participate in rule switching by inhib-
iting all but one of these loops.

If this hypothesis is correct, then, according to COVIS, it
should be difficult to find special populations that are impaired
in category learning tasks in which the optimal rule is nonverbal
but not in tasks in which the optimal rule is verbal.” This is
because the caudate is a critical structure for both systems. As
such, any population with widespread striatal dysfunction
should be impaired in all types of category learning tasks. On
the other hand, populations with dysfunction limited to frontal
areas (i.e., either the prefrontal cortex or the anterior cinguiate)
should be impaired in tasks in which the optimal rule is verbal
but not ia tasks in which the optimal rule is nonverbal. As shown
shortly, the neuropsychological literature generally supports this
predicted dissociation.

There are several major dopamine pathways in the mamma-
lian brain ( Beatty, 1995). In the nigrostriatal system, dopamine-
producing cells in the substantia nigra project into striatum. In
the mesocorticolimbic system, dopamine-producing cells in the
VTA project to a number of different areas {e.g., Scheeb-Krii-
ger & Wilner, 1991), but with respect to COVIS, the most im-
portant projections are into prefrontal cortex and anterior cingu-
late (i.e., see Figure 2). Ashby et al. (1998) also hypothesized
that the dopamine projections from VTA into anterior cingulate
facilitate rule selection. Evidence supporting this hypothesis can
be found in the neuropsychological literature. First, dopamine
anfagonists (i.e., haloperidol ) increase the number of persevera-
tive errors in a simplified version of the Wisconsin Card Sorting
Test {Berger et al., 1989). Second, amphetamines, which stimu-
late dopamine release, increase the number of alternation re-
sponses in a two-choice guessing task (Ridley, Baker, Frith,
Dowdy, & Crow, 1988). Third, schizophrenics with negative
symptoms (e.g., flattened affect and motivational difficulties),
who are thought to have decreased dopamine levels in frontal
areas, perseverate in the Wisconsin Card Sorting Test {e.g.,
Malmo, 1974). Fourth, schizophrenics with positive symptoms
(e.g., delusions and hallucinations), who are thought to have
increased dopamine levels in frontal arcas (e.g., Crow, 1980,
1982), have difficulty maintaining cognitive set (e.g., see the
Diagnostic and Statistical Marual of Menta!l Disorders [4th

* Dopamine levels in basal ganglia are apparently increased because
the prefrontal cortex tonically inhibits the VTA. Lesioning the dopamine
fibers into prefrental cortex releases this inhibition, which effectively
stimnlates the VTA. There are a number of scenarios in which increased
VTA activation could lead to increased dopamine levels in the striatum.
Perhaps the most likely is the VTA -nuclens accumbens-substantia ni-
gra—striatnm pathway.

7 According to COVIS, the most likely exception would be a patient
group with striatal damage restricted to the tail of the caudate.
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edition; DSM-IV; American Psychiatric Association, 1994]).
Fifth, Parkinson’s patients show difficulty in rule switching
(e.2., R. G. Brown & Marsden, 1988; Cools, van den Bercken,
Horstink, van Spaendonck, & Berger, 1984). Although the most
widely known effect of Parkinson’s disease is damage to 'the
nigrostriatal system, there is also concomitant damage to the
mesocorticolimbic system. In particular, dopamine production
in VTA is substantially diminished as the disease progresses
(Javoy-Agid & Agid, 1980; Scatton, Rouquier, Javoy-Agid, &
Agid, 1982). Finally, positive affect, which is thought to in-
crease dopamine levels ( Ashby et al., 1998), has been shown
to facilitate cognitive set switching (i.e., to reduce anchoring)
in medical diagnoses (Estrada, Isen, & Young, 1997).

For these reasons, COVIS predicts that any condition that
decreases dopamine levels in anterior cingulate below normal
levels should cause a selective impairment in category learning
tasks in which the optimal rule is verbal (e.g., as in Parkinson’s
disease). Slight increases in dopamine, such as might occur
during periods of mild transient happiness, could improve per-
formance in verbal conditions. This latter prediction, however,
must be considered tentative because there are many reasons,
unrelated to those discussed here, why it could fail (see Ashby
et al., 1998, for more details). Finally, large increases in frontal
dopamine levels, such as might occur with positive schizophre-
nia or under the influence of certain drugs (e.g., cocaine),
should also impair performance in verbal categorization tasks,
because the excess dopamine should increase the probability
that inappropriate verbal rules are selected.

Competition Among the Systems, Learning, and the
Role of Dopamine

The output of the verbal and implicit striatal units is a discrim-
inant value. In information-processing terms, the sign of this
valve signals whether the category response should be A or
B, and the magnitude of the discriminant value increases with
response confidence. Thus, COVIS assumes that a sttmulus on or
near the category decision bound elicits a weak striatal response,
because it does not strongly favor either category. However, a
stimulus far from the bound elicits a strong response, because
it strongly favors one category over the other.

Next, the verbal and implicit units must compete with each
other, with the result that the system producing the strongest
response wins out. There is little in the literature on how such
competition might be resolved. In principle, it could occur at
many different levels (e.g., striatal, pallidal, thalamic, and corti-
cal). With respect to COVIS, however, the only important detail
is that the competition is resolved somewhere (and somehow).
One intriguing possibility is that the competition between the
two systemns is resolved via lateral inhibition within the striatum.
Competition of this type is thought to be common in the stria-
tum® (i.e., mediated by the acetylcholine spiny matrix; see, e.g.,
Alexander & Wickens, 1993; Miller & Wickens, 1991). There
are also suggestions that dopamine may enhance this inhibition,
perhaps through activation of D, receptors on cholinergic inter-
neurons (e.g., Miller & Wickens, 1991; Wickens, 1993; Wick-
ens, Alexander, & Miller, 1991). In Parkinson’s disease, the
dopamine-producing cells in the substantia nigra die, and, as a
result, the striatum loses its dopamine input. Loss of dopamine

in the striatum is thought to produce muscle rigidity, which
is characteristic of Parkinson’s disease, in the following way
(Hayashi et al., 1988; Wickens, 1993). Separate units in the
striatum (i.e., in the putamen) are associated with different
muscle groups. When a movement is initiated, the unit associ-
ated with the appropriate muscle group inhibits opposing muscle
groups, and fluid movement results. In Parkinson’s disease, the
loss of dopamine greatly reduces such inhibition, and, as a
result, oppoesing muscle groups simultaneousty fire, which pro-
duces the muscle rigidity that is characteristic of the disease. It
would be interesting if the competition between verbal and im-
plicit categorization systems is resolved in a similar fashion.

Another possible means of resolving the competition was
suggested by Berns and Sejnowski (1996), who argued that the
anatomy of the output portion of the basal ganglia is ideally
suited for selecting among a broad class of competing cognitive,
motor, and sensory states. In the Berns and Sejnowski model,
the competition is resolved in the internal segment of the globus
pallidus (i.e., the GP;, which is the output structure of the basal
ganglia), and a critical role is played by the so-called indirect
pathway, which passes from the striatum to the GP; via the
external segment of the globus pallidus and the subthalamic
nuclens.

As learning progresses, COVIS assumes that the more suc-
cessful of the two systems begins to dominate the other. For
example, in a task in which the optimal rule is nonverbal, the
model predicts that people will initially tend to use verbal rules
and then gradually rely more heavily on nonverbal rules. Even
highly experienced classifiers, however, are predicted to use
verbal rules on some trials.

Within the striatum, the verbal system must learn the appro-
priate response criteria, and the implicit system must learn the
appropriate decision bound. Because such learning must occur
quickly (i.e., over the course of an hour or 2), neural ‘plasticity
is required. The striatum is an excellent candidate for such
learning because it containg a large number of NMDA binding
sites (Monaghan & Cotman, 1985), which have been implicated
in the Hebbianlike leaming associated with long-term potentia-
tion (Bliss & Lgmo, 1973). In addition, learning in the striatum
is facilitated by a dopamine projection from the substantia nigra
(see Figure 2). Dopamine may facilitate category learning in
two different ways. First, if the verbal and implicit units inhibit
each other in the striatum and dopamine enhances this inhibi-
tion, then this should allow the more accurate of the systems to
quickly dominate the less accurate. Second, dopamine input to

2 This assumption seems to require that regions of prefrontal cortex
and IT project to nearby areas in the caudate. As already mentioned,
extrastriate visual areas project most heavily to the tail of the caudate
(e.g., Yeterian & Pandya, 1995). In contrast, the prefrontal cortex appar-
ently projects to a strip that runs longitudinally from the head of the
caudate to the tail { Selemon & Goldman-Rakic, 1985). Thus, the caudate
projections of prefrontal cortex and extrastriate visual areas overlap. In
particular, both areas, together with the anterior cingulale, praject to the
ventrocaudal striatum, which includes the tail of the caudate and the
adjacent part of the ventral putamen (e.g., Brown, Desimone, & Mishkin,
1995). Because this region in striatum has been implicated in visual
discrimination learning, it is a possible candidate for the hypothesized
imhibiting effects.
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the striatum is thought to function as the reward signal in re-
ward-mediated learning (e.g., Beninger, 1983; Wise, 1982;
Wise & Rompré, 1989). In one plausible scenario (e.g., Wick-
ens, 1993), glutamate projections from cortex and dopamine
projections from the substantia nigra both synapse on the den-
dritic spines of striatal neurons (DiFiglia, Pasik, & Pasik, 1978;
Freund, Powell, & Smith, 1984). A cortical signal causes an
influx of free Ca®* into the spines (e.g., through NMDA recep-
tors}, which initiates a cascade of reactions that modify the
synapse (Lynch, Larson, Kelso, Barrionuero, & Schottler, 1983;
Wickens, 1993). Because the spines are somewhat separated
from the bulk of the intracellular medium, free Ca®* persists
until the arrival of the dopamine reward signal (Gamble &
Koch, 1987; MacDermott, Mayer, Westbrook, Smith, & Barker,
1986). Dopamine (acting through D, receptors) leads to the
inhibition of a process that reverses the calcium-activated synap-
tic modification (Hemmings, Walaas, Ouimet, & Greengard,
1987; Pessin et al., 1994; Wickens, 1990, 1993). Thus, the
presence of dopamine strengthens the synapses that were active
on a trial when reward was delivered (e.g., Hnang & Kandel,
1995).

The separation of function in visual cortex and striatum is
an important advantage of a corticostriatal categorization sys-
tem. The perceptual representation is computed in the visual
cortex, and the categorization decision is computed in the stria-
tum. In this way, learning a rule for separating two arbitrary
categories of the type encountered in a typical psychological
experiment does not fundamentally alter the way a person per-
ceives the world, as it might if representation and decision were
computed in the same neural tissue. In addition, such separation
allows perceptual learning to cccur independently of what is
typically called category (i.e., decision) learning. The striatum
receives a dopamine projection, whereas the visual cortex appar-
ently does not (e.g., Lidow, Goldman-Rakic, Gallager, & Rakic,
1991), Therefore, according to COVIS, category learning is
facilitated by a reward signal, whereas perceptual learning is not.
As such, although categorization may affect perceptual learning
(e.g., Goldstone, 1994; Schyns & Rodet, 1997), we predict
that these two types of learning are qualitatively different. For
example, category learning should be severely disrupted by the
withdrawal of feedback, whereas at least some forms of percep-
tnal learning shonld be unaffected by a feedback signal.

It is important to note that the neuropsychological version of
COVIS is a theory of category learning. It specifically is not a
theory of categorization behavior in experts. It seems quite
likely that the development of expertise is a process by which
the subcortical pathway through the basal ganglia is gradually
replaced by a more direct path from perceptual to motor areas.
One intriguing possibility is that cortico-cortical projections
develop from extrastriate visual areas to the relevant motor units
in premotor or motor cortex (or perhaps to the abstract category
units in prefrontal cortex). Such projections, which are promi-
nent in primate cortex (Heimer, 1995}, would have a distinct
speed advantage over the longer pathway through the striatum,
globus pallidus, and thalamus postulated by COVIS. Why, then,
is the longer, subcortical pathway needed at all? One obvious
possibility is that because of the prominent dopamine projection
into the striatum, the subcortical pathway enjoys a higher level
of neural plasticity than the cortical pathway. The idea here

is that the dopamine projection into the striatum allows the
subcortical pathway to learn new category structures quickly.
During this time, the cortical pathway is slowly learning the
same thing, perhaps because the subcortical pathway is activat-
ing the appropriate cortical motor units. Eventually, the subcorti-
cal pathway is no longer needed, and expertise has developed.

This model of expertise is speculative and is not considered
further here. However, before moving on, we briefly mention
three pieces of evidence that support a model of this type. First,
several studies have reported learning-related changes in motor
cortex, which are consistent with this model, in more traditional
procedural learning tasks (i.e., the SRT task; e.g., Grafton et
al., 1995; Pascual-Leon, Grafman, & Hallet, 1994). Second,
neuropsychological patients with damage o the striatum (e.g.,
those with Parkinson’s or Huntington’s disease) are not im-
paired in terms of assigning objects to well-learned categories
(e.g., they can still determine whether a novel object is a chair
or table). Third, it is widely known that Parkinson’s patients
can execute some highly complex, well-learned motor behaviors
flawlessly, even though they have extreme difficulty with novel,
willed actions (e.g., Langston & Palfreman, 1995). For example,
one of us is familiar with the case of a Parkinson’s patient who
played tennis throughout his life. After the disease developed, he
experienced the prototypical Parkinson’s movement difficulties,
except when playing tennis. Within the current model, the sub-
cortical pathway, which is damaged by Parkinson’s disease, is
necessary for learning and executing novel actions. Highly
learned actions, however, can be executed via the cortico-corti-
cal projections, which are relatively unaffected by the disease.

Neuropsychological Tests of COVIS

Several recent neuroimaging studies provide general support
for the newropsychological version of COVIS. Seger, Poldrack,
Prabhakaran, and Gabricli (1997) performed functional mag-
netic resonance imaging (f MRI) on participants as they were
leaming two categories created from low-level distortions of
two texture patterns. A verbal rule allowed an accuracy level of
about 95% correct, so COVIS predicts that the verbal system
will be active throughout category learning. In support of this
prediction, Seger et al. (1997) reported that categorization elic-
ited significantly more activation in the anterior cingulate than
did a baseline task. Poldrack et al. (1997) reported the resuits
of a similar study in which each of 14 highly distinct visual
patterns was probabilistically asscciated with each of two cate-
gories in such a way that the optimal rule was nonverbal. In
this case, COVIS predicts that the implicit system will eventually
dominate and that the activity of the verbal system will decrease
with experience. In support of these predictions, Poldrack et al.
(1997) found that categorization was associated with signifi-
cantly more activation in the caudate nucleus than the baseline
task and that there were learning-related decreases in activation
in the (left) dorsolateral prefrontal cortex (i.e., a prominent
structure in the COVIS verbal system). These results represent
promising preliminary support for the COVIS network illus-
trated in Figure 2. With the recent dramatic proliferation of
neuroimaging studies, other direct tests of COVIS are likely.

Another less direct methad of testing COVIS is to examine
category learning in certain special neuropsychological popula-
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tions. COVIS makes specific predictions about the categoriza-
tion abilities of a number of such special populations. In general,
these predictions have not been completely tested. Even so,
in many cases there are results that partially test the COVIS
predictions. In this section, we develop some of these predic-
tions and review the available evidence.

Parkinson’s Disease

Parkinson’s disease causes the death of dopamine-producing
cells, most notably in the substantia nigra but also in the VTA
(e.g., Kolb & Whishaw, 1950}. As a result, patients with Parkin-
son’s disease have decreased dopamine levels in the substantia
nigra and VTA projection sites. This includes a namber of struc-
tures that play a critical role in COVIS, including the striatum,
the prefrontal cortex, and the anterior cingulate, COVIS makes
the following predictions about the effects of decreased dopa-
mine levels on category learning.

1. Decreased dopamine levels in the tail of the caudate should
cause impaired category learning in tasks in which the optimal
rule is nonverbal.

2. Decreased dopamine levels throughout the caudate should
cause deficits in tasks that require switching executive attention.
This includes many verbal category learning tasks.

3. Decreased dopamine levels in frontal areas (i.e., prefrontal
cortex and anterior cingulate ) should cause deficits in rule selec-
tion (Ashby et al., 1998) and in working memory (e.g., Gold-
man-Rakic, 1995a; Roberts et al., 1994), which are important
components of explicit reasoning. Such deficits should impair
category learning in most verbal rule tasks.

In Parkinson’s disease, there are large individual differences
in the amount of damage sustained by the tail of the caudate,
the head of the caudate, and frontal cortical areas (e.g., van
Domburg & ten Donkelaar, 1991). For example, some patients
have very little cortical damage until late in the disease. Some
Parkinson’s patients, however, will have significant damage in
each of these areas, so COVIS predicts that within the popula-
tion of Parkinson’s patients, there will be widespread deficits
in all kinds of category learning tasks. At the individual patient
level, however, significant individual differences should be ex-
pected. Within the striatum, there is evidence that damage in
the head of the caudate is usually more severe than in the tail
(van Domburg & ten Donkelaar, 1961). As a consequence,
COVIS predicts that although Parkinson’s patients, as a group,
should be impaired in verbal as well as nonverbal category
learning, deficits in verbal tasks should be more common or
severe, or both.

When testing these predictions, it is important to consider the
effects of medication (e.g., L-DOPA), especially because there
is a possibility that standard dopamine replacement therapies
correct striatal dysfunction more successfully than frontal dys-
function. In particular, the well-known improvements in motor
activity associated with medication indicate at least some reduc-
tion in striatal dysfunction. On the other hand, a recent large
meta-analytic study found that the standard Parkinson’s medica-
tions produced little, if any, reduction in the cognitive impair-
ments associated with the frontal dysfunction common to the
disease (Delis & Massman, 1992). On the basis of these results,

COVIS predicts that medication might improve Parkinson’s pa-
tients more in nonverbal than in verbal category learning tasks.

The prediction that Parkinson’s patients should be impaired
in category learning tasks in which the optimal rule is nonverbal
was supported recently by Knowlton, Mangels, and Squire
(1996). In their study, stimuli varied on four binary-valued di-
mensions. Each of 14 different stimuli was associated prababi-
listically with two categories in such a way that no simple
verbal rule was optimal. All participants completed 150 trials
of category learning, and feedback was provided after every
response. Medicated Parkinson’s patients were impaired in this
task relative to age-matched controls. In addition to their overall
poorer performance, there was a strong negative correlation (7
= —.55) between severity of the Parkinsonism and performance
on the category learning task; that is, patients with more severe
symptoms of Parkinson’s disease {as measured by the Hoehn
and Yahr Scale; Hoehn & Yahr, 1967) performed substantially
worse in the category learning task.

There is a substantial literature showing that Parkinson’s pa-
tients are impaired in category learning tasks in which the opti-
mal rule is easily verbalized. For example, it is well known that
Parkinson’s patients are impaired in terms of their performance
on the Wisconsin Card Sorting Test (Brown & Marsden, 1988,
Cools et al., 1984).

Elderly People

During the course of normal aging, dopamine levels in the
human brain decrease by 7% or 8% during each decade of life
(e.g., Gabrieli, 1995; van Domburg & ten Donkelaar, 1991). It
is thought that there are no obvious behavioral effects of this
decrease until overall dopamine levels are reduced by about
70%. At this point, elderly people begin to experience motor
and cognitive deficits similar to those seen in the early stages
of Parkinson’s disease. In fact, it has been hypothesized that
Parkinson’s disease occurs when the normal dopamine depletion
process is accelerated for one reason or anothf:r (e.g., Calne &
Langston, 1983). As a consequence, COVIS predicis that
healthy elderly people should show categorization deficits of
the same type, albeit not as severe, as patients with mild cases
of Parkinson’s disease.

There is abundant evidence that elderly people are less adept
at rule selection than normal younger adults. For example, el-
derly individuals show more perseverative errors on the Wiscon-
sin Card Sorting Test than young adults (e.g., Collins & Tellier,
1994; Kramer, Humphrey, Larish, & Logan, 1994; Parkin &
Lawrence, 1994). On the other hand. we know of no rigorous
tests of the hypothesis that elderly people are impaired, relative
to voung adults, on categorization tasks in which the optimal
rule is nonverbal. Even so, a pilot study using the randomization
technique found that elderly people were unable to learn a qua-
dratic decision bound of the type readily learned by younger
adults (W. T. Maddox & J. V. Filoteo, personal communication,
November 12, 1995).

Huntingron’s Disease

Huntington’s disease attacks and kills the output cells in the
caudate nucleus of the striatum (e.g., Kolb & Whishaw, 1990).
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According to COVIS, these are the cells that signal the response
of the implicit system, so Huntington’s patients should be im-
paired in category learning tasks in which the optimal rule is
nonverbal. On the other hand, the dopamine input to the striatum
is intact in Huntington’s patients, so for those output cells not
affected by the disease, learning should be normal, Thus, al-
though Huntington’s and Parkinson’s patients both suffer from
diseases of the basal ganglia, COVIS predicts a subtle difference
in their category learning deficits. In Parkinson’s disease, there
should be partial but impaired learning inall striatal output cells,
whereas, in Huntington’s disease, striatal output cells should be
reduced in number but show normal learning.” Without a maore
detailed model of exactly how the striatum associates category
responses and percepts, however, it is difficult to predict how
such a difference might manifest itself in behavioral data.

The COVIS prediction that Huntington’s patients should be
impaired in category learning tasks in which the optimal rule is
nonverbal was supported recently by Knowlton, Squire, et al.
(1996), This study used the same task as the Knowlton, Mangels,
and Squire (1996) Parkinson’s experiment. In particular, each of
14 different stimuli varying on four binary-valued dimensions was
probabilistically associated with two categories in such a way that
no simple verbal rule was optimal. All participants completed 150
trials of category learning, and feedback was provided after every
response. Patients with Huntington’s discase were significantly
impaired in this task relative to age-matched controls. In fact,
according to Knowlton, Squire, et al. (1996), ‘‘the patients with
HD [Huntington’s disease] exhibited no demonstrable learning
across 150 trials of training’” (p. 541).

On the other hand, Knowlton, Squire, et al. (1996) reported
that the same Huntington’s patients showed no deficits in artifi-
cial grammar learning. In this task, a set of 23 grammatical
letter strings was generated from a finite-state artificial grammar
rule system. Participants studied these training items and then
were shown 46 new letter strings, one at a time. Half of these
strings were generated from the same artificial grammar, and
half were not. The participants’ task was to determine whether
each new string was grammatical or nongrammatical. The Hun-
tington’s patients were not significantly worse than the age-
matched controls during this testing phase.

Technically, artificial grammar learning is a categorization
task because there are two categories (grammatical and non-
grammatical ), and each contains many exemplars. Also, there
is clearly no simple verbal rule that is optimal. As one might
therefore expect, people can respond at above-chance accuracy
levels without explicit awareness of the optimal rule {e.g.,
Knowlton & Squire, 1994, 1996; Reber, 1976). Indeed, the arti-
ficial grammar learning literature has discussed in considerable
detail many of the issues considered in this article (e.g., implicit
vs. explicit learning, the roles of consciousness and verbaliza-
tion, and whether implicit learning is instance based; e.g., Du-
lany, Carlson, & Dewey, 1985; Mathews et al., 1989; Reber,
1993; Vokey & Brooks, 1992; Whittlesea & Dorken, 1993). On
the other hand, artificial grammar leaming differs in several
important ways from the more traditional category learning task
in which the Huntington’s patients were impaired. In particular,
in the Knowlton, Squire, et al. (1996) artificial grammar task,
the letter strings used during training and test were different.
Thus, any associative learning between specific stimuli and re-

sponses that occurred during training could not be used directly
during testing. In addition, the relevant categories were not per-
ceptual, in the sense that category membership was not defined
by perceptual similarity. If the striatum learns to associate re-
sponses with regions in perceptual space, then it could not par-
ticipate in artificial grammar learning, because there was no
relation between location of the test stimuli in the perceptual
space and category membership.

Amnesic patients also perform normally in artificial grammar
learning (Knowlton, Ramus, & Squire, 1992; Knowlton &
Squire, 1994), so Knowlton, Squire, et al. (1996) concluded
that “‘it appears that this type of learning is independent of both
the medial temporal lobe and diencephalic structures damaged
in amnesia as well as the basal ganglia’ (p. 544). Knowlton,
Squire, et al. (1996) argued that success in artificial grammar
learning depends, at least partly, on the perceptual priming of
specific letter bigrams and trigrams. Apparently, then, a com-
plete theory of category learning also may need to include a
mechanism that learns through perceptual priming.

Unlike in Parkinson’s disease, the prefrontal cortex and cingu-
late gyrus are not directly affected in Huntington's disease (at
least not in the early stages). Thus, Huntington’s disease should
provide a test of whether the striatum contributes to rule switch-
ing. If it does, then Huntington’s patients should be impaired in
category learning tasks in which the optimal rule is verbal.
However, if rule selection and switching are performed exciu-
sively within the cingulate-prefrontal cortex, then Huntington's
patients should not be significantly impaired in categorization
tasks in which the optimal rule is verbal (although they may be
impaired in learning the optimal value of the criterion). This
issue is far from resolved. Huntington’s patients do perseverate
in rule-switching tasks such as the Wisconsin Card Sorting Test,
but there are reports that this is true only during later stages of
the disease (Josiassen, Curry, & Mancall, 1983), when cortical
impairment is likely. Specifically, Josiassen et al. (1983) found
that patients in the early stages of Huntington's disease did
not make any more perseverative errors on the Wisconsin Card
Sorting Test than a control group.

In general, however, Huntington’s patients may not provide
strong tests of COVIS predictions because of the concomitant
dementia that is a direct consequence of the disease. According
to the DSM -1V (American Psychiatric Association, 1994), ‘the
onset of Huntington’s disease is often heralded by insidious
changes in behavior and personality, including depression, irrita-
bility, and anxiety’’ (p. 149).

Patients With Lesions in the Prefrontal Cortex

According to COVIS, patients with lesjons restricted to the
prefrontal cortex (e.g., from stroke) should have an impaired

°Early in the disease, the greatest damage is to the striatal output
cells that project to the external segment of the globus pallidus (e.g.,
Strange, 1992). This is the first stage in the so-called indirect pathway
that continues through the subthalamic nucleus and into the GP;. The
direct pathway is defined by cells that project directly from the striatum
to the GP;. As mentioned earlier, Berns and Sejnowski (1996) postulated
that the indirect pathway is vital for resolving competition among com-
peting cognitive, motor, and sensory states. If this hypothesis is correct,
then Huntington’s patients should have difficulty resolving the competi-
tion between the verbal and implicit category learning systems.
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waorking memory and an impaired ability to switch from one
verbal rule type to another. Although we tentatively hypothesized
. that the basal ganglia initiates switching, it should be recalled
that the hypothesized switching was between cortical—striatal
loops. As such, by disrupting these loops, cortical (i.e., prefron-
tal cortex) lesions should impair switching. Therefore, frontal
patients should be impaired in category learning tasks in which
the optimal rule is easily verbalized. On the other hand, because
the implicit system is assumed to not involve frontal areas, such
patients should not be impaired in tasks in which the optimal
- rule is not easily verbalized. A huge amount of data supports
the first prediction. In fact, perseverative responding on the Wis-
consin Card Sorting Test is perhaps the classic symptom of a
frontal lesion (e.g., Kolb & Whishaw, 1990; Robinson, Heaton,
Lehman, & Stilson, 1980). There is considerably less known
about the performance of frontal patients in nonverbal category
learning tasks. Even so, Knowlton, Mangels, and Squire (1996)
reported that frontal patients performed normally in the same

nonverbal category learning task in which Parkinson’s patients .

were impaired.

Amnesia

Amnesia is another neuropsychological condition in which
category learning has been studied. In most of these studies, the
focus has been on medial temporal lobe amnesia, but Korsa-
koff ’s patients are sometimes also included. Still another strong
prediction of COVIS is that neuropsychological patients with
damage to structures not shown in Figure 2 should show rela-
tively normal category learning. Patients with medial temporal
lobe amnesia have damage to hippocampal structures (some-
times including the parahippocampal gyrus), but in classical
cases, they have intact basal ganglia and frontal cortices. As a
result, COVIS predicts that amnesic patients should show rela-
tively normal category learning. This prediction has been sup-
ported in a number of different studies (Knowlton et al., 1992;
Knowlton & Squire, 1993; Kolodny, 1994). On the other hand,
Knowlton, Squire, and Gluck (1994 ) found that their amnesic
patients performed as well as controls during the first 50 trials
but thereafter showed a deficit. This study used 14 highly dis-
tinct stimuli, so it is possible that the amnesic deficit occurred
because the control participants began memorizing some of the
responses. This hypothesis is supported by the results of a study
that used randomly configured dot patterns as stimuli (Kolodny,
1994). With confusable stimuli of this type, memorization is a
more difficult strategy. In the Kolodny (1994) study, amnesic
and control participants each classified several hundred dot pat-
terns, yet there was no accuracy difference between the two
groups, even during the last test block,

The one special case in which COVIS predicts that amnesic
patients may be impaired in category learning is when the task
is difficult (so that learning is slow) and the optimal rule is
verbal. In such cases, an important component of success is to
remember which verbal rules have already been tested and re-
jected. Depending on the duration of learning, amnesic patients
may show deficits in this type of memory.

Depression

COVIS also predicts that there may be selective categorization
deficits in people suffering from depression. Depression may

appear in a number of psychiatric disorders, including schizo-
phrenia and bipolar disorder (American Psychiatric Association,
1994). In these latter cases, the etiology may be different than

" with major depression, which is thought to be due to abnormal

functioning in monoamine pathways (e.g., Hyman & Nestler,
1993). Specifically, current research has focused on serctonin,
norepinephrine, and, to a lesser extent, dopamine. Because
monoamine pathways project to a wide variety of neural sites,
there is potential for depression-linked deficits in a wide variety
of cognitive and motor tasks. Of particular relevance 10 COVIS
are monoamine projections into the basal ganglia and prefrontal
cortex.

Depressed patients often show psychemotor agitation or psy-
chomotor retardation ( American Psychiatric Association, 1994),
both of which are consistent with abnormal functioning in the
basal ganglia. In addition, they are impaired on the Wisconsin
Card Sorting Test and other neuropsychological tests that are
thought to measure prefrontal cortex functioning (e.g., Berman,
Doran, Pickard, & Weinberger, 1993; Franke et al., 1993). In
particular, depressed patients perseverate in rule-switching tasks,
which is indicative of prefrontal cortex hypofunctioning. On
the other hand, PET studies of menoamine metabolism are not
entircly consistent with these behavioral data. Specifically,
;\gren et al. (1993) detected abnormalities in the prefrontal
cortex of depressed patients but found no differences between
depressed and control patients with respect to0 monoamine me-
tabolism in the basal ganglia.

On the basis of these results, COVIS predicts that people
with depression should be impaired, relative to age-matched
controls, on categorization tasks in which the optimal rule is
verbal. The data on monoamine metabolism suggest that depres-
sion should not affect tasks in which the optimal rule is nonver-
bal, but the presence of characteristic psychomotor abnormali-
ties makes this prediction more tentative.

J. D. Smith, Tracy, and Murray (1993) reported data that can
be used to test these predictions. Depressed and nondepressed
people (as measured by the Beck Depression Inventory; Beck,
1967) participated in two categorization tasks. In both tasks, two
categories were constructed from stimuli (either letter strings or
schematic faces) that varied on four dimensions. In one task,
the optimal rule was verbal (i.e., unidimensional ), and, in the
other task, it was nonverbal. Call the four dimensions x,, x,, X1,
and x,. Then, in the verbal task, the optimal rule was of the
following form: ‘‘Respond A if the value on dimension x3 < ¢;
respond B if the value on dimension x; > ¢, for some appropri-
ately chosen constant ¢.”” In the nonverbal task, perfect perfor-
mance could be achieved by using the following rule: ‘‘Respond
Adfx +x+x3+x,<c;respond Bifx; + x, + x; + x, >
¢.’ This rule is nonverbal because the dimensions are expressed
in different units.

In two separate experiments, one with university students and
one with psychiatric and medical patients, there was no differ-
ence in the performance of the depressed and control groups on
the nonverbal task. However, in both experiments, the depressed
participants were impaired on the verbal task relative to the
nondepressed controls.'’ Specifically, on the verbal task, the

Y In the study with psychiatric and medical patients, a third group of
moderately depressed participants performed the same as the nonde-
pressed control group.
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depressed participants required significantly more training to
achieve a criterion level of accuracy. Interestingly, however, both
before and after criterion accuracy was reached, depressed and
nondepressed participants performed equivalently (sec Figure
6a for the shifted learning curves of the two groups}. The only
difference between the two groups involved the number of train-
ing blocks reguired to achieve criterion accuracy. According to
COVIS, these results are expected from anyone with a selective
deficit in the rule selection and switching architecture of pre-
frontal cortex and cingulate gyrus.

Children

The prefrontal cortex is one of the last brain areas to fully
develop during normal growth (Diamond & Goldman-Rakic,
1989). As a result, COVIS predicts that young children (e.g.,
under the age of 5 years) will have difficulty in rule switching
and so will be impaired in category learning tasks in which the
optimal rule is verbal. A mumber of results in the literature
support this prediction. First, in tasks in which the optimal rule
is verbal, young children perseverate on incorrect rules, even in
the face of overwhelming disconfirmatory evidence (Aschken-
asy & Odom, 1982; Gholson, Levine, & Phillips, 1972; Kemler,
1978).

A second set of relevant results comes from restricted classi-
fication tasks, in which participants are presented with three
stimuli and asked to decide which two ‘‘go together best™ or
“‘belong in the same group.”” Call the stimuli A, B, and C. In
the most popular design, stimuli A and B have an identical value
on one stimulus dimension but differ substantially on a second
dimension. In contrast, stimuli B and C differ by a small amount
on two dimensions. This is an unsupervised task; no feedback
1s given ( because there is no objectively correct response ). Parti-
cipants who sort by overall similarity (a nonverbal rule) will
place stimuli B and C in the same category, whereas participants
who use a logical criterion (a verbal rule) will place stimuli A
and B together. There is little or no chance for procedural learn-
ing to occur in this task (i.e., because no feedback is given),
s0 COVIS predicts that normal adults will tend to use unidimen-
sional rules. This finding is well established (e.g., J. D. Smith,
1989; J. D. Smith & Kemler, 1977, 1978; Ward, 1983). For
many years, it was thought that children sort by overall similar-
ity. However, recent results and more sophisticated reanalyses
of the earlier data indicate that children also use unidimensional
rules (Cook & Qdom, 1988, 1992; Thompson, 1994; Wilken-
ing & Lange, 1987). Even so0, in accord with COVIS predictions,
children tend to use these rules inconsistently, and they often
fixate on a single stimulus dimension (Thompson, 1994).

It is interesting to note, however, that adults have been re-
ported to switch from the verbal to the nonverbal rule in this
restricted classification task when encouraged to respond
quickly (J. D. Smith & Kemler-Nelson, 1984; Ward, 1983) or
impulsively (i.e., on the basis of their first impression; Foard &
Kemler-Nelson, 1984; J. D. Smith & Kemler-Nelson, 1984).
These results are easily predicted by COVIS if the reasonable
assumption is added that processing time for the verbal system
is greater than processing time for the implicit system. Ac-
cording to COVIS, another manipulation that should induce
adults to switch from the verbal to the nonverbal rule in re-

stricted classification is to require them to perform simultane-
ously a secondary verbal task. J. D. Smith and KemlerNelson
(1984, Experiment 6) required adults to count backward orally
by 17s while simultaneously performing the restricted classifi-
cation task. As predicted by COVIS, the concurrent verbal task
significantly increased the frequency of overall similarity classi-
fications (i.e., use of the nonverbal rule).

Nonhuman Animals

All vertebrates have a brain structure analogous to the stria-
tum, but they do not all have a prefrontal cortex or even a
neocortex. For example, in rats, the prefrontal cortex is almost
nonexistent (Uylings & van Eden, 1990), and pigeons have no
neocortex ( Patterson & Rose, 1992). Instead, the striatum plays
the role of the cortex in the pigeon brain. In these animals, the
analogue of the verbal system is absent. Some animals (e.g.,
nonhuman primates) may have explicit reasoning systems that,
although primitive relative to those of humans, allow them to
solve certain problems through *‘insight’’ (e.g., Kohler, 1925).
Therefore, the complexity of the *‘verbal’’ system may vary
contimously across the phylogenetic scale. Even so, COVIS
predicts that most nonhuman animals must learn to categorize
via some sort of striatal-based implicit system. One might even
argue that, because of common ancestors, the implicit systems
of vertebrates are all similar in some rudimentary fashion (e.g.,
Ashby & Lee, 1993). .

These hypotheses lead to some straightforward predictions
about the differences between nonhuman and human category
learning. In particular, humans should show the greatest advan-
tage over other animals in category learning tasks in which the
optimal rule is verbal. Although such a predicted interaction is
interesting, note that COVIS makes the obvious prediction that,
under most conditions, humans will outperform other animals
in all types of category learning tasks. Even so, COVIS predicts
that, under certain special conditions, animals may outperform
humans. In particular, consider a task in which the optimal rule
is nonverbal but in which there is a verbal rule that performs
reasonably well. In this case, pigeons or rats may learn to per-
form optimally, but, as a result of the initial bias favoring the
verbal system, humans may be misled into using the suboptimal
verbal rule. Such a demonstration would be strong evidence
in favor of the multiple categorization systems proposed by
COVIS.

In fact, a demonstration very similar to this was reported by
Jitsumori (1993 ). The performance of pigeons and humans was
compared in the same category learning task. Two categories
comprised visual stimuli that varied on the dimensions of sym-
bol color, background color, symbol shape, and symbol numer-
osity. Denote these four dimensions by x;, x5, x3, and x4, respec-
tively. Perfect performance could be achieved by the following
nonverbal rule: *‘Respond A if x; + x, + x; > ¢; respond B if
x) + x2 + X3 << ¢,” where ¢ is the appropriate response criterion.
The pigeons were reinforced for key pecks to all category A
exemplars. No reinforcement was given to any key pecks made
in the presence of category B exemplars.

All participants were trained to a criterion level of accuracy
on a subset of the category exemplars. They were then shown
a set of 56 new stimuli, some of which were further removed
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from the optimal bound than any of the training stimuli. All
pigeons showed a high level of transfer to the new stimuli. In
contrast, the humans performed poorly on the transfer stimuli.
For example, only 1 of 10 humans exhibited better-than-chance
performance on the transfer stimuli that were furthest from the
optimal bound. When queried, the humans reported using com-
plex verbal rules that * ‘were all in conditional or ‘if, then’ form™’
(Jitsumori, 1993, p. 249}. Thus, these data support the conclu-
sion that the humans constructed elaborate verbal rules during
training. Apparently, these rules worked well for the training
stimuli, but they did not perfectly separate the categories and
so failed on the transfer stimuli.

A fundamental assumption of COVIS is that in the learning
of some new category structure, there is a large initial bias in
favor of the verbal system. The implicit system can overcome
this bias only if it is reinforced at a higher rate than the verbal
system over some reasonably long block of trials. In the Jitsu-
mori (1993) experiment, the humans found a verbal rule that
succeeded on the training stimuli. Thus, during training, the
verbal system was reinforced at least as frequently as the implicit
systemn. As a result, COVIS predicts that the initial bias in favor
of the verbal system will be preserved throughout training and,
therefore, that humans will tend to use verbal rules during the
transfer condition. In contrast, because pigeons lack a verbal
system, their only recourse was to rely on procedural learning,
which, in this case, was the optimal strategy.

Conclusions

The predictions of COVIS are strong and clear cut. Any ab-
normality in the tail of the caudate nucleus should cause deficits
in visual category learning tasks in which the optimal rule is
nonverbal, whereas widespread abnormalities throughout the
caudate should cause deficits in tasks in which the optimal rule
is verbal. Although more research is needed, these predictions
are generally supported by results from elderly people and from
patients with Parkinson’s or Huntington’s disease. Abnormali-
ties or immaturity in the cingulate—prefrontal cortex should lead
to deficits in categorization tasks in which the optimal rule is
verbal. Furthermore, assuming that the striatum is fully devel-
oped and functioning normaily, performance should be normal
in categorization tasks in which the optimal rule is nonverbal.
Evidence from patients with frontal lesions, depressed adults,
children, and nonhuman animals generally supports this predic-
tion. Finally, neuropsychological patients with damage to struc-
tures that are not part of the COVIS network should show rela-
tively normal category learning, Evidence from patients with
amnesia generally supports this prediction.

A Connectionist Implementation of COVIS

Figure 2 describes the neuropsychological “‘hardware™ medi-
ating the separate verbal and implicit categorization systems
hypothesized by COVIS. This section develops a connectionist
network that provides an algorithmic-level description of
COVIS and makes quantitative predictions about trial-by-trial
learning. Later we describe the global-level dynamics of this
network. The resulting computational-level version of COVIS

is useful for deriving specific global-level predictions about cate-
gory learning,

It is strazghtforward to construct a connectionist network with
the same global architecture as the neuropsychological version
of COVIS shown in Figure 2. When applied to the circle condi-
tion from the Maddox and Ashby (1993; i.e, see Figure 1)
experiment, the resulting model takes the form shown in Figure
3. Each component in the network is constructed from standard
connectionist architecture. The unique feature of the model,
therefore, is that it assumes separate (and parallel ) verbal and
implicit systems that compete throughout category learning. Re-
cently, Erickson and Kruschke (in press) proposed a similar
connectionist model of category learning. In the Erickson and
Kruschke model, however, the competition is between rule-
based (i.e., unidimensional ) and exemplar-based categorization
systems.

In the Figure 3 model, the implicit system is a perceptronlike
network that implements the decision bound model of categori-
zation (of the type described by Maddox & Ashby, 1993). Let
X, = [x;(n), x2(n)}’ denote the psychological representation—
as computed in IT, for example-—of the nth stimulus in the
training sequence. It is well documented that, in experiments
such as the one illustrated in Figure 1 (i.e., in which the optimal
decision bound is linear), the category A and category B re-
sponses of individual participants are accurately separated by a
linear bound (Ashby & Gott, 1988; Ashby & Maddox, 1990;
Maddox & Ashby, 1993). Therefore, in experiments in which
the optimal bound is linear, we assume that the striatal output
of the implicit system can be modeled by the linear discriminant
function

h(x,) = a(n)x;(n) + ax(n)x(n) + b{n}), (1

where a,(n), a;(n), and b;(n) are weights that the network
updates after each trial. The decision bound implemented by
the implicit system on trial n is the set of all x satisfying A,(x,)
=a;(n)x;(n) + ax(n)xz(n) + b(n) = 0. It is straightforward
to generalize this model to allow more complex decision bounds
(e.g., quadratic), but, for data from the Figure 1 experiments,
linear bounds are sufficient. It is important to realize, however,
that although we are modeling the striatal output of the implicit
system by the discriminant function shown in Equation |, we
make no assumptions about the manner in which this discrimi-
nant function is computed. As mentioned before, the two promi-
nent possibilities are that the striatum learns the weights a,(n),
ax(n), and b,(n) directly or that the striatum simply learns to
associate responses with regions of perceptual space (e.g., via
an algorithm like the one proposed by Ashby & Maddox, 1989).
In this latter model, the linear decision bound is the partition
between the regions of perceptual space that are associated with
each of the two responses.

The verbal system has two parts. The rule selection mecha-
nism selects the rule type that will be active during the upcoming
trial. Once a rule type is selected, the verbal system computes its
own discriminant function. We now describe the rule selection
algorithm. Denote the set of all salient verbal rule types by #
= {Ry, Rs, ..., Rn}, and suppose rule R, is used on trial n
(with the circle stimuli m = 2). If the response on trial # is
correct, then rule R; is used again on trial n + 1. If the response
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on trial 7 is incorrect, then the active rule on trial n + 1 is
selected via the following three steps.

Step 1: Choose a rule at random from . Call this rule R;.

Step 2: Define a weight, Y,(n), for each rule as follows:
Y.(n) = Z,(n) + v, for the active rule R;; Y;(n) = Z;(n) + X,
for the rule R; chosen in Step 1; and Y,(n) = Zi(n), for all
rules R, # R; or R;. The constant Z,(n) measures the current
salience of rule R,. The initial salience of rule R, is Z,(0), but
this value is updated each time rule R, is used. Specifically, if
rule R, is used on trial » — 1 and a correct response occurs,
then Z{(n) = ZAn — 1) + A, where A, is a positive constant.
If rule R. is used on trial n — 1 and an error occurs, then Z.{n)
=ZAn — 1) — Ag, where Ag is also a positive constant. The
parameter ¥ is a positive constant that reflects the tendency of
the participant to perseverate. The larger the value of vy, the
greater the tendency to perseverate on the current rule, even in
the presence of negative feedback. Finally, X is a positive-valued
random variable that represents the attempt of the anterior cingu-
late to select rule R;. We have assumed that X is Poisson
distributed.

Step 3: Choose the rule for trial n + 1 with the greatest
weight ¥4 that is, choose rule R-on trial n + 1 if Y,(n) =
max[Y,(n), Ya(n), ..., Y.(n)].

This algorithm has a number of attractive properties. First,
the more salient the rule, the higher the probability that it will
be selected. For example, with rectangles, shape is more salient
than height; that is, Zype(0) > Zieign (0) (e.g., Krantz & Tver-
sky, 1975). Thus, on the first trial of a category learning task
in which the exemplars are all rectangles, we expect the verbal
system to select a rule on shape with greater probability than a
rule on height. Second, after the first trial, feedback is used to
adjust the selection probabilities up or down, depending on the
success of the rule type. Third, the model has separate selection
and switching parameters, reflecting the assumption of COVIS
that these are separate operations. The random variable X models
the selection operation. The greater the mean of X, the greater
the probability that the selected rule (K;) will become active.
Following Ashby et al. (1998), we assume that this parameter
(i.e., the mean of X ) increases with the dopamine level in ante-
rior cingulate. In contrast, the parameter y models switching

Extrastriate
Visual Areas

Prefrontal
Cortex

Anterior Cingulate

to language areas.

®'® Striatum Yy
" "
Response

Figure 3. A schematic illustrating a connectionist implementation of COVIS (competition between verbal
and implicit system). VTA = ventral tegmental area; SN = substantia nigra.
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because, when v is large, it is unlikely that the system will
switch to the selected rule R;.

Once a rule type is selected, the verbal system computes its
own discriminant function. With the circular stimuli of Figure
1, only two verbal rules are salient. If the verbal system chooses
to set a criterion on length, then the relevant discriminant func-
tion is h'Rl(x,,) = x;(n) + bg(n); if the choice is to set a
criterion on orientation, the discriminant function is kg, (x,) =
Xz(n) + bp,(nr), where bg (1) and bg,(n) are weights that the
network updates during the course of learning. The verbal sys-
tem in the COVIS connectionist network is similar to the rule
competition model proposed by Busemeyer and Myung (1992).
The two models make different assumptions about the rule selec-
tion process, but the global-level descriptions are identical.

Next, the network weights the verbal and implicit discrimi-
nant values by the system weights Wy(n) and Wi(n). These
values measure the degree to which the network believes in or
trusts the component systems. Initially, W, (»n) is much greater
than W,(n), both because the verbal system is the only one
controlled by consciousness and because, at the outset of the
experiment, the implicit system has not yet learned anything.
As the experiment progresses, feedback is used to adjust the
two system weights up or down depending on the success of
the relevant component system. '

To select a response, the network compares the two weighted
discriminant values. The one with the larger absolute value de-
termines the response. For example, suppose

[Wo(n)hg,(xn)| > [Wi(n)hi(x,)] (2)

where i = 1 or 2, depending on whether the verbal system
selected Rule Type 1 (i.e., set a criterion on length) or 2 (ie,,
set a criterion on orientation). Then the decision rule of the
network is ‘‘Respond A if Az (x,) < 0; respond B if &g (x,) >
0.”" If, instead,

[Wy(n)hg (Xa)] < [Wi(n)Ri(x,)],

then the overall decision rule is ‘‘Respond A if A)(x,) < 0;
respond B if A, (x,) > 0.7 - .

As mentioned earlier, the absolute magnitude of the discrimi-
nant value can be interpreted as a measure of response confi-
dence. A discriminant value near zero occurs when the stimulus
is near the decision bound. In this case, confidence is low be-
cause an error of any kind (e.g., perceptual or criterial noise)
could change the response (i.e., move the stimulus to the other
side of the bound). A discriminant value far from zero occurs
when the stimulus is far from the bound. In this case, confidence
is high because even a substantial error would not change the
response."!

In this model, learning occurs in four places. First, the implicit
system must learn the values of a,(n), ax(n), and b,(n) that
are associated with the optimal bound. Second, the verbal system
must learn which rule type is most effective. Third, the verbal
system must learn the values of the response criteria be, (n) and
bg,(n} that maximize the accuracy of the verbal rules R; and
R, respectively. Finally, the overall network must learn whether
the verbal system or the implicit system is more accurate; that
is, it must learn the optimal values of Wy(x) and Wi(n). A

detailed description of all parts of the network is provided in
Appendix A.

Consider again the categorization task described in Figure 1.
Suppose that, by the end of training, the verbal system has
settled on a verbal rule on orientation (i.e., on each trial, the
probability that the verbal system selects a rule on orientation
is much greater than the probability that it selects a rule on
length). Suppose, alse, that the implicit system has learned the
optimal bound for this task. Under these conditions, what is the
observable performance of the overall network? In other words,
what is the effect of the competition between the verbal and
implicit systems on cbservable categorization behavior? It is
straightforward to show that, in the absence of noise, the overall
network’'s Category A and Category B responses will be parti-
tioned perfectly by a linear bound that is intermediate in slope
to the effective bounds of the implicit and verbal systems. The
argument is sketched out in Figure 4.

The dotted lines in Figure 4 illustrate the asymptotic bounds
learned by the verbal and implicit systems. These two bounds
partition the psychological space into four regions. In the re-
gions marked “‘1’" and ““2,’" the verbal and implicit systems
agree on their category response (i.e., A in Region 1 and B in
Region 2). In Regions 3 and 4, which are shaded, the two
systems disagree. Suppose the verbal and implicit weights are
equal, that is, Wy (z) = W {n). In this case, the network emits
the response associated with the system for which the current
stimulus is farthest from 1is bound. For example, consider the
stimulus at the point illustrated in Region 4, This point is closer
to the verbal bound than the implicit bound. As such, the implicit
system is more confident in its suggestion to respond B than
the verbal system is in its suggestion to respond A. As a conse-
quence, the network responds B to this stimulus. In fact, it is
easy to see that any stimulus in Region 4 that falls below the
solid line bound is farther from the implicit bound than from
the verbal bound, so the network responds B to all of these
stimuli. Similarly, any stimulus that falls above the solid line

‘bound in Region 4 is farther from the verbal bound, so the

network responds A. In Region 3, the argument is reversed.
Points above the solid line are farther from the implicit bound,
so the network responds A, whereas points below the solid line
are farther from the verbal bound, so the network responds B.
In summary, the network responds A to any stimulus falling
above the solid line bound and B to any stimulus falling below,

! For simplicity of presentation, we have expressed confidence as the
absolute value of the weighted discriminant value. It is straightforward
to show that the discriminant value #{x) can be interpreted as the log
of the likelihood ratio of the eéstimated category distributions (e.g.,
Ashby, 1992; Ashby & Alfonso-Reese, 1995). Balakrishnan and Ratcliff
(1996) recently reported evidence that response confidence is more
closely related to the distance between the percept and the decision
bound than to the likelihood ratio. This result suggests that a more
accurate model would replace Equation 2 with

[ Wy (n)Dy(x,)| > [W(n)Di(x,)],

where D;(x,) is the distance from X, to the decision bound used by
system J (where J = V; or I). Even so, for the applications reported
in this article, the two models of response confidence make the same
predictions.
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X9

X1

Figure 4. A demonstration that the connectionist version of COVIS
(competition between verbal and implicit systems) predicts sharp cate-
gory bounds (in the absence of perceptual and criterial noise). The
category response regions are denoted by **A™ and “B.”

even though this bound is not used by either the verbal or implicit
system. If the verbal and implicit system weights are unequal
and both are greater than zero—that is, Wy(n) = Wi(n) = 0—
then the observable bound will still be intermediate in slope to
the verbal and implicit bounds, but it will be closer 1o the bound
of the systern having the larger weight.

As an initial test of this connectionist implementation of
COVI1S, we asked whether the network could account for learn-
ing curves from standard perceptual categorization experiments.
There are many such curves published in the literature. However,
in almost all cases, these curves are averaged across participants
in a block-by-block fashion. Unfortunately, this practice can
obscure important qualitative properties of the individual partici-
pant learning curves. For example, when the optimal rule is
verbal, COVIS predicts that accuracy will often increase dramat-
ically over the course of just a few trials, with the jump occurring
when the participant suddenly discovers the correct rule. It is
well known that sudden jumps of this type will not appear in the
averaged data, even if they appear in the data of each participant
{because they are likely to occur on different trials for different
participants; see, e.g., Estes, 1956; Laming, 1973). A better way
to present learning data is to plot the so-called backward learn-
ing curves. The idea is to find the first block of trials for which
each participant first achieves a criterion accuracy level. This
block is then designated as Block 0 for each participant, and,
for example, the immediately preceding block becomes —1 and
the immediately succeeding block becomes +1. After this re-
numbering is complete, the data can be safely averaged over
participants.

The first data set that we modeled came from the 3 partici-
pants in the circle condition of the Maddox and Ashby (1993)
experiment described in Figure |. The averaged backward learn-
ing curve from this experiment is shown in Figure 5a. Each
block included 100 trials, and criterion accuracy was defined
as 75% correct for two consecutive blocks (this was the most
stringent criterion met by all 3 participants ). Note that accuracy
appears to increase gradually over the course of the experiment,

unti] an asymptotic value is reached. None of the individual
learning curves showed any dramatic jumps. Thus, learning ap-
pears to be incremental.

When simulating the performance of COVIS in this experi-
ment, we assumed that the two verbal rule types are equally
salient: Z....(0) = Z,ienaion (0). We also assumed that the initial
system weights strongly favored the verbal system: W, (0) =
.99, W,(0) = .01. The other parameters in the network (e.g.,
learning rates ) were all set to certain prespecified values as well
(see Appendix A for details ), with the exception of the decay
rate on the output node, which was coarsely estimated from
the data. Thus, the model had only one free parameter in this
application. The resulting learning curve, averaged over 50 repli-
cations, is shown in Figure 6b. The criterion of two consecutive
blocks of at least 75% correct was met in 48 of the 50 replica-
tions. The data from the 2 replications that failed to meet this

(A) Maddox & Ashby (1993)
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Figure 5. Backward (i.c., shifted ) learning curves from the circle con-
dition of an experiment reported by Maddox and Ashby (1993; ie.,
illostrated in Figure 1). a: Learning curve from the 3 participants in the
experiment. b: Simulated learning curve from the COVIS (competition
between verbal and implicit systems) connectionist network.
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criterion are not included in the Figure 5b curve. Note the
incremental increase in accuracy from an initial percentage cor-
rect rate of about 65% to a final value of about 77%. These
values agree nicely with the data shown in Figure 3a (which
increase from 64% to 77.5%). As expected, the final system
weights favored the implicit system, but it is interesting to note
that the verbal weight asymptoted at a substantial nonzero value:
W, (1,200) = 42, W,(1,200) = .538. Thus, the model predicts
that, even after 1,200 trials of practice, participants were still
using verbal rules on a significant proportion of trials.

In the Maddox and Ashby (1993) rectangle condition, learn-
ing occurred so suddenly and so early in training that the learn-
ing curves were essentially flat for all participants. The qualita-
tive difference between the learning curves in the circle and
rectangle conditions supports the hypothesis of separate cate-
gory learning systems, but it is not much of a challenge for
COVIS to account for the flat learning curves from the rectangle
condition (this is easily done by assuming that the most salient
verbal rule is one on shape). Learning curves that are qualita-
tively different from those in Figure 3, and that provide a much
more difficult challenge for the model, were reported by J. D.
Smith et al. (1993). As mentioned previously, in these experi-
ments a number of depressed and nondepressed people partici-
pated in two categorization tasks. In both tasks, two categories
of four exemplars each were constructed from stimuli (either
letter strings or schematic faces) that varied on four binary-
valued dimensiens. In one task, the optimal rule was verbal
(i.e., unidimensional), and, in the other task, it was nonverbal.
The learning curves for both the depressed and nondepressed
groups are shown in Figure 6a for the verbal condition in the
experiment with letter strings. The learning curves from the
verbal condition in the experiment with schematic faces exhib-
ited the same qualitative properties as the curves shown in Figure
6a (i.e., see Figure 8 of J. D. Smith et al.,, 1993). In both
experiments, each of the eight exemplars that defined the two
categories was shown in random order on each of six consecu-
tive blocks of trials. Note that participants in both groups dra-
matically increased to perfect accuracy within the course of a
single block (although this critical block number differed across
participants and groups).

Two properties of these data make them especially difficult
to model. First, of course, is the sudden jump in accuracy exhib-
ited by both groups over the course of a single block of eight
trials (from about 65% correct to 100% correct). The second
challenge is to account for the difference between the depressed
and nondepressed groups. On average, the depressed partici-
pants required about one extra block of training to reach crite-
rion accuracy. To our knowledge, no existing computational
models of category learning can account for such differences.

In the network simulations, we assumed that the four verbal
rule types (i.e., the four unidimensional rules) had equal initial
salience and, again, that the initial system weights favored the
verbal system: Wy (0) = .99, W, (0} = .01. We assumed that
the only difference between the depressed and nondepressed
groups was that the depressed group had a higher tendency
toward perseveration (so y was larger for the depressed group
than for the nondepressed group). All other parameters for the
two groups were the same (see Appendix A for details). Be-
cause the perseveration parameter {i.e., y) has no effect on the

(A)  Smith, Tracy, & Murray (1993)
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Figure 6. Backward (i.e., shifted) learning curves from an experiment
reported by J. D. Smith, Fracy, and Murray (1993) in which the optimal
rule was verbal. Panel (a): Leaming curves from depressed and control
participants. Panel (b): Simulated learning curves from the COVIS {(com-
petition between verbal and implicit systems) connectionist network.

implicit system, these assumptions mean that the COVIS net-
work correctly predicts no difference between the depressed and
nondepressed groups in the nonverbal conditions of the J. D.
Smith et al. (1993) experiments.
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Figure 6b shows the learning curves from the COVIS simula-
tions, and Figure 7 shows the mean number of blocks until
criterion for the J. D. Smith et al. (1993) participants and for
the COVIS network. A comparison of Figure 6a and Figure 6b
indicates that the COVIS network accurately reproduced the
dramatic jump in accuracy during the last block of trials before
criterion was reached (i.e., from about 65% correct to perfect
accuracy ). In COVIS, this jump is due primarily to the verbal
system. Three of the four verbal rules achieve chance accuracy,
and one yields perfect accuracy. Thus, the accuracy of the verbal
system jumps dramatically on the trial when the verbal system
first switches to the correct rule. A comparison of Figures 5
and 6 shows that COVIS successfully accounts for the qualitative
difference between learning curves in ‘‘verbal’’ and ‘‘nonver-
bal’’ categorization experiments. COVIS also correctly ac-
counted for the slower learning in the depressed group, although,
overall, COVIS learned slightly slower than the Smith et al.
(1993) participants.

We believe that the difference between Figures 5a and 6a
represents a qualitative difference in how the verbal and implicit
systems learn. In the COVIS implicit system, learning is incre-
mental. As the bound gradually moves toward its optimal value,
accuracy often will gradually increase. In contrast, in the verbal
system, learning often occurs suddenly. Typically, different ver-
bal rules will yield very different accuracy values, so accuracy
will often increase dramatically on the trial in which the optimal
verbal rule is first instantiated. On the other hand, exceptions
should sometimes be expected. For example, if the optimal rule
is verbal but complex, then learning may appear incremental
because the participant may begin with a simple rule and succes-
sively generalize it in a series of discrete steps that eventually
produce the optimal rule. In contrast, learning may be sudden
in some tasks in which the optimal rule is implicit, if the con-
trasting categories are widely separated. This is because many
bounds are optimal in such a case, so learning in the implicit
system need not be as precise as in tasks in which only a single
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Figure 7. Number of blocks until learning occurred for the participants
in an experiment reported by J. D. Smith, Tracy, and Murray (1993)
and for the COVIS (competition between verbal and implicit systems)
simulations of this experiment.

bound maximizes accuracy (e.g., as in the Maddox & Ashby,
1993, experiments).

A Global Description of COVIS Dynamics

The neuropsychological version of COVIS sketched in Figure
2 describes the ‘‘hardware’’ used by the separate verbal and
implicit categorization systems. The connectionist network
shown in Figure 3 provides a description of the algorithms
used by the separate systems Lo select a response. Although the
COVIS network can be used to generate predictions about trial-
by-trial learning, the form of the model makes it difficult to
derive global-level or qualitative predictions. In this section, we
show how to overcome this traditional limitation of connec-
tionist networks.

A connectionist network is an example of a dynamical sys-
tem. A useful method of characterizing an unfamiliar dynamical
system is to study its trajectories through the so-called *‘state
space’’ (e.g., Strogatz, 1994; Wiggins, 1990). For example,
consider the implicit component of the COVIS connectionist
network. For the experiment illustrated in Figure 1, we assumed
that the output of the striatal units could always be described
by a linear discriminant function (i.e., by Equation 1). Thus,
the state of the implicit system on trial » is given by the numeri-
cal values of the Equation 1 parameters, that is, by the triple
[ai(n), a;(n), by(n)]. The state space is defined as the space
in which there is one dimension for each parameter value (so,
in the present case, the state space has dimensions a,;, a;, and
b;). On each trial, the state of the system is represented by a
single point in the state space, and the system trajectory is the
path taken by the system (over trials) through the state space.

In the COVIS network, the implicit system adjusts its weights
via a modified form of the delta rule (see Appendix A). As a
result, the trial-by-trial learning of the implicit system is equiva-
lent to a process of gradient descent over the probability of error
surface (Rumelhart, Hinton, & Williams, 1986). Every point in
the state space—that is, every triple [a,(n), a:(n), b/(n)] —
is associated with some probability of error in the categorization
task. A gradient descent algorithm is one that always travels
through the state space in the direction associated with the
quickest decrease in probability of error. Gradient descent learn-
ing algorithms are extremely popular in the category learning
literature. They are the basis, for example, of Kruschke’s (1992)
attention learning covering map (ALCOVE) model and of the
hill-climbing model of category learning proposed by Buse-
meyer and his colleagues (Busemeyer & Myung, 1987; Buse-
meyer, Swenson, & Lazarte, 1986, Myung & Busemeyer, 1989).

Gradient descent is also a general property of any connec-
tionist model that uses back propagation or the delta rule
(Rumelhart et al., 1986). One well-known property of gradient
descent learning is that it is highly susceptible to local minima.
Specifically, once a gradient descent system reaches a local
minimum, it most remain there for all time. Thus, all category
learning models based on gradient descent predict that category
learning problems in which the probability of error surface is
characterized by local minima (over the relevant parameter
space) will be difficult to solve.

The parameters a,(n), a.(n), and b;(n) describe the linear
bound used by the implicit system. However, only two of the
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three parameters are free (only two parameters are needed to
describe a line). It is much easier to visualize trajectories in
two dimensions than in three dimensions, so, before proceeding,
it is worthwhile to reparameterize the linear bound predicted
by the implicit system. The usual parameterization of a line is
in the slope—intercept form. Unfortunately, this form cannot be
used to describe a vertical line (because the slope is infinite).
As a consequence, we developed an alternative two-parameter
description of linear decision bounds. Details are provided in
Appendix B. Briefly, the parameters are & and . The § parameter
is the angle of rotation of the linear bound (i.e., the angle the
bound subtends relative to the abscissa}, so the slope of the
bound is tan(#). The + parameter determines the intercept on
the x; or x, dimension. To define it precisely, note that in Figure
1, all stimuli have positive values on both stimulus dimensions.
Therefore, any reasonable decision bound must eventually inter-
sect either the x,-axis or the x,-axis (or both) at some nonnega-
tive value. Now, let w denote the smallest positive intercept (of
the x; and x, intercepts ). Then 7 is defined as follows:

w, if the smallest positive intercept
is the x; intercept.

—w, if the smallest positive intercept
is the x; intercept.

The only purpose of this reparameterization is that it allows us
to express any linecar bound using only two parameters. As a
result, we gain the convenience of expressing COVIS trajecto-
ries for the Figure | experiment in a two-dimensional, rather
than a three-dimensional, state space.

o
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The probability of error surface for the implicit system in the
Figure | experiment is shown in Figure 8. The diagonal valley
that cuts across Figure 8 shows a trade-off between # and T
that keeps the overall error rate reasonably small. The pole,
which indicates the minimum of the surface, defines the optimal
bound. The gradient at any point on the surface gives a measure
of how quickly error rate changes with changes in the bound.
The trajectories of the implicit system in the COVIS network
tend to follow the steepest downhill course over this surface.

With the circular stimuli, there are two types of salient verbal
rules. The first is to set a criterion on length. This produces a
vertical line (i.e., & = 90°) decision bound (when the abscissa
is length and the ordinate is orientation). The second type sets
a criterion on orientation and produces a horizontal decision
bound (i.e., & = 0°). For each rule type, accuracy changes with
the value of the criterion. The COVIS network adjusts these
values via a modified form of the delta rule, so, for each rule
type, the verbal system performs gradient descent over a one-
dimensional state space (i.e., over alternative values of the re-
sponse criterion ). Figure 9 shows the one-dimensional probabil-
ity of error surfaces associated with both rule types.

The verbal system in the COVIS network also learns which of
the alternative verbal rule types are most accurate by iteratively
adjusting the weights associated with the rule types in such a
way that, as training progresses, the more accurate verbal rule
type becomes more and more likely to be selected (see the
previous section for details). This procedure tends to minimize
the probability that the verbal system makes an error. A graphical
method of deriving probability of error predictions for the verbal

400

Figure 8. Probability of error for every possible linear bound in the circle condition of the Maddox and

Ashby (1993) experiment.
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Figure 9. Probability of error for every possible version of the two salient verbal rule types in the circle
condition of the Maddox and Ashby (1993) experiment. Also shown is a graphical method for deriving the
overall probability of error predictions for the verbal system.

system as a whole, illustrated in Figure 9, is to draw a line that
connects the probability of error associated with the current
state of the two verbal rule types. Call the length of this line
one unit and denote the & = 0° endpaint as the orientation
endpoint and the # = 90° endpoint as the length endpoint. Sup-
pose the probability that the verbal system selects a rule on
orientation equals p,. Then the probability of an error for the
overall verbal system equals the height of the point A on the
connecting line thar is distance p, from the length endpoint. The
dynamical behavior of p, can be anticipated by imagining that
the line is a wire and the point A is a bead that slides freely
downhill on that wire.

Using this method, it is straightforward to show that the
COVIS network virtually always predicts that the verbal system
will eventually settle on one rule type (and ignore the other),
even when the two rule types are equally accurate (as in Figure
9). In other words, the state in which p, = 0.5 is not stable.
Thus, in the circle condition of Figure 1, COVIS predicts that,
by the end of the experiment, participants will consciously be
focusing on one of the two stimulus dimensions (i.e., through
the anterior attentional system), even though their implicit sys-
tem may be attending to both dimensions equally (i.e., through
the posterior attentional system).

The final step in understanding the global dynamics of COVIS
is to predict trajectories of the overall combined COVIS net-
work. The key to solving this problem is to recall that, in the
absence of noise, the overall network’s category A and category
B responses will be partitioned perfectly by a linear bound that

is intermediate in slope to the effective bounds of the implicit
and verbal systems (see Figure 4). Let &, and 8y denote the
slope parameters of the active decision bounds of the implicit
and verbal systems, respectively (so 8y = 0% or 90°), and let T,
and Ty denote the corresponding intercept parameters. Then, in
fact, the slope parameter of the observable overall bound equals

g = Wi, + Wby

° W, + Wy

where W; and Wy are the weights on the implicit and verbal
systems, respectively. To find the intercept of the observable .
bound, note from Figure 4 that the observable bound passes
through the point at which the verbal and implicit bounds inter-
sect. Given the slope (i.e., #,) and a point on the line, it is
straightforward to solve for T,.

Suppose the verbal system is restricted to using a rule on
orientation {i.e., so 8y = 0°). Then the trajectories of the verbal
system through the (@, T) state space have only a single degree
of freedom (7 is free to vary, but ¢ is not}. On the other hand,
the trajectories of the implicit system have two degrees of free-
dom (both 4 and T are free to vary). Because the verbal and
implicit systems move independently, the trajectories of the
overall COVIS network in this example have three degrees of
freedom. In other words, every triple (8,, 7,, 7y} determines a
single observable bound (6,, 7,). But because three degrees of
freedom are used to fix the two parameters of the observable
bound, any observable bound (#,, 7,) can be realized by more
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than one triple (6, 7, 7v). The implication of this mapping
from a three-dimensional parameter space to a two-dimensional
space is that the observable trajectories of the COVIS network
through the (#,, T,) space can cross, even in the absence of
noise. Trajectories of (deterministic ) dynamical systems cannot
cross (e.g., Wiggins, 1990), so there is no two-dimensional
dynamical system equivalent to the COVIS network. One conse-
quence of this result is that COVIS predicts that, at two different
times in learning, a participant could have exactly the same
observable bound, yet performance could deteriorate after the
first time and converge to the optimal bound after the second
time. In contrast, gradient descent models predict that partici-
pants can never spontaneously revisit the same state, and if some
experimental intervention induces them back to the same state,
then they must follow exactly the same learning trajectory the
second time.

Ancther straightforward prediction of COVIS is that the ob-
servable trajectories will not satisfy gradient descent, even
though all of its component networks learn by gradient descent.
There are several reasons why gradient descent fails in the over-
all system. First, trajectories in gradient descent systems cannot
cross (e.g., Wiggins, 1990). Second, and more important, gradi-
ent descent fails because the verbal system will typically jump
back and forth between horizontal and vertical decision bounds.
As a result, the overall learning trajectories should periodically
make large discrete jumps. Because of such jumps, COVIS pre-
dicts that people will usually “‘jump out’” of local minima. On
the other hand, as learning progresses and participants discover
which type of verbal rule is best, the probability of shifting
from one type of verbal rule to another will gradually decrease.
This process endows COVIS with a natural ‘‘simulated anneal-
ing’’ mechanism (Geman & Geman, 1984). As a consequence,
COVIS predicts that the probability of escaping from a local
minimum decreases with experience.

Alfonso-Reese (1996) obtained empirical estimates of learn-
ing trajectories in two categorization experiments using the ran-
domization technique. In both experiments, the exemplars from
the two categories were lines that varied in length and orienta-
tion, and the optimal decision bound was linear but not easily
verbalized. The trajectories for all participants violated gradient
descent. The trajectories initially showed large discrete jumps
between the alternative verbal rules. Later in learning, the jumps
became less frequent, and the trajectories gradually began con-
verging on the optimal bound. Thus, the empirical trajectories
displayed the same qualitative properties predicted by COVIS.

Because the various component networks learn by gradient
descent, if there is no noise, the effective implicit system bound
in COVIS should be nearly optimal at asymptote, so long as
accurate feedback is provided on every trial. In addition, the
verbal system should have learned which rule type is most accu-
rate and the optimal value of the criterion associated with that
rule. Under these conditions, the overall observable decision
bound is determined by the value of the system weights, W; and
Wy. COVIS assumes that these weights are also learned via a
modified form of the delta rule (see Appendix A), so in the
absence of noise and in a task in which the optimal rule is
nonverbal, the ratio W,/ (W; + W) eventually should be driven
to 1.0. Even so, there are at least two potential problems with
this prediction.

First, W, might not ever dominate Wy because the implicit
system fails to learn the optimal bound. Second, the initial bias
in favor of the verbal system means that a huge amount of
change in the W, and W, parameters is required before the ratio
W,/ (W, + W) is close to 1.0. For example, in the simulations
of the COVIS network described in the previous section, the
initial values of the system weights were W;(0) = .01 and
Wy (0) = .99 If the best verbal rule is nearly as accurate as the
optirmal bound, then the gradient driving W; up and W, down
will be nearly flat. In this case, any noise in the system will
probably cause learning of the system weights to stop, well
before the ratio W,/ (W, + W) is close to 1.0. As a consequence,
the verbal system would contribute significantly to categoriza-
tion behavior, even after learning had ceased and even though
the optimal bound is nonverbalizable.

An experiment in which such an asymptotic suboptimality
might occur is described in Figure 10. This experiment used
the randomization technique (Ashby & Gott, 1988) described
earlier with two categories, denoted A and B, each composed
of lines of various lengths and orientations. Each plus sign
represents an exemplar from Category A, and each circle repre-
sents an exemplar from Category B. The decision rule that
maximizes overall accuracy is to respond A to any stimulus with
length and orientation that fall above the solid line shown in
Figure 10 and to respond B to any stimulus that falls below this
line.

The optimal bound in this experiment had a slope of 0.6;
therefore, the optimal decision rule is ‘‘Respand A if Orientation
— 0.6 X Length > 0; respond B if Orientation — 0.6 X Length
< 0.’ Because orientation and length are expressed in different
units, this rule cannot be described verbally {or, at least, it has
extremely low saliency). Two verbal rule types are salient: (a)
**Respond A if the line is long; respond B if the line is short™
and (b) ‘‘Respond A if the line is tilted up; respond B if the
line is tilted down.”” Rules of the first type produce linear bounds
that are vertical, whereas rules of the second type produce hori-
zontal bounds. The most accurate versions of both of these rule
types are shown by the dotted line bounds in Figure 10. Also
shown are the predicted accuracies associated with each of these
bounds.

Suppose that the implicit system learns the optimal bound for
the experiment illustrated in Figure 10 and the verbal system
learns both the type of verbal rule that is most accurate and the
optimal intercept value associated with that rule type. In other
words, suppose the implicit system learns to use the solid line
bound in Figure 10 and the verbal system learns to use the
dotted line horizontal bound. Figure 11 shows how accuracy
changes in this experiment as a function of the ratio W,/(W, +
Wy). This entire function is extremely flat, so if there is any
perceptual or criterial noise, one would expect the sysiem
weights to stabilize long before W, approaches 1. As a result,
COVIS predicts that asymptotic performance in this task is
likely to be suboptimal.'* The suboptimality will be difficult to
see in a crude measure such as percentage correct, because the
verbal system can achieve an accuracy that is nearly optimal.

2 The analyses in this section all assumed that the implicit system
uses a linear decision bound. If a more complex bound is used (e.g.,
quadratic), then the state space for the implicit system will be more
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Figure 10. Category structure of a hypothetical experiment. A plus sign indicates an exemplar from
Category A, and a circle indicates an exemplar from Category B. The optimal decision bound is the line
x; = 0.6x,. The vertical and horizontal dotted lines represent the most accurate verbal rules on length and

orientation, respectively. The numerical values are the accuracies associated with each bound.

A better measure of this suboptimality is the slope of the deci-
sion bound that best accounts for the observed data. COVIS
predicts that this slope frequently will be shallower than optimal.
This prediction is tested in the next section.

Before ending this discussion, it is important to note that
predicted suboptimality depends critically on the fact that some
verbal rule is nearly as accurate as the optimal bound. In experi-
ments in which no verbal rules achieve high accuracy, COVIS
predicts that there will be no systematic bias toward verbal

than two dimensional. The main tools for deriving qualitative predictions
from the COVIS connectionist network are the error surface for the
implicit systern illustrated in Figure 8, the error surfaces for the verbal
system illustrated in Figure 9, and the error surface for the system
weights illustrated in Figure 11. If the implicit system uses a complex
decision bound, then the dimensionality of the error surface for- the
implicit system increases, but the dimensionality of the error surfaces
for the verbal systemn and the system weights is unchanged. As a result,
a qualitative analysis of this more complex version of COVIS would
proceed in a similar fashion.

rules, the reason being that accuracy will increase significantly
with the ratio W,/(W, + W, ). Thus, for example, COVIS cor-
rectly predicts the nearly optimal performance found in random-
ization experiments in which the optimal bound is quadratic
(Ashby & Maddox, 1993).

A Bias Toward Verbal Rules

As described in the previous section, COVIS predicts that,
so long as the verbal and implicit systems learn to use the
most accurate possible bounds, participants in the Figure 10
experiment typically will not use the optimal bound. Instead,
there will always be some residual pull of the most accurate
verbal rule: “*‘Respond A if the line is rotated more than 37.3°
counterclockwise.”” As a consequence, COVIS predicts that even
experienced participants will adopt a bound with a slope of less
than 0.6. To our knowledge, COVIS is the only model of cate-
gory learning that predicts (a priori) such an asymptotic bias in
categorization performance. For example, consider Nosofsky’s
(1986) generalized context model, which, arguably, has been
the most successful of the formal exemplar models. Nosofsky
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Figure 11. Probability of error for the experiment described in Figure 10 as a function of the relative
strength of the implicit system, that is, of W,/(W, + Wy).

(1986) assumed *‘that subjects will distribute attention among
the component dimensions so as to optimize performance in a
given categorization paradigm. That is, it is assumed that the
artention parameters will tend toward those values that max-
imize the average percentage of correct categorizations™ (p.
41). It is straightforward 1o show that the generalized context
model predicts maximal accuracy in this experiment when equal
attention is allocated to the two stimulus dimensions, regardless
of the level of overall discriminability, and that under these
conditions the **decision bound™’ of the model is identical to the
optimal bound.'* Thus, the generalized context model predicts a
priori that there will be no systematic bias in this experiment.

One difficulty with this design is that decision bounds that are
shallower than optimal might occur simply because participants
are allocating too mmch attention to the orientation dimension,
perhaps because orientation is more salient than length. In this
case, it would be a mistake to infer a competition between separate
verbal and implicit systems. To guard against this possibility, a
second condition can be created by rotating the stimuli shown in
Figure 10 about the line x, = x,. The result is shown in Figure
12, Now the optimal bound has a slope of 1.67, and the most
accurate nearby verbal rule is **Respond A if the length is greater
than 114 pixels.” According to COVIS, if the verbal rules on
length and orientation are equally salient, then participants in this
condition should settle on decision bounds with slopes that are
greater than optimal (i.e., 1.67). However, if more attention is
allocated to orientation than to length, then in this new experiment
the best-fitting bounds should have slopes less than optimal.

In summary, there are four prominent possibilities in this experi-

ment. First, asymptotic performance could be optimal in both
conditions. This result would be problematic for COV1S but easily
accommodated by virtually all current category learning models
(e.g., Kruschke’s, 1992, ALCOVE model and Nosofsky,
Kruschke, & McKinley’s, 1992, exemplar learning model ). Sec-
ond, the best-fitting decision bounds could be shatlower than opti-
mal in both conditions, and, third, they could be steeper than
optimal in both conditions. Finally, participants might use bounds
that are shallower than optimal in the Figure 10 condition (i.e.,
the shallow condition) and bounds that are steeper than optimal
in the Figure 12 condition (i.e., the steep condition). This last
possibility is easily accommodated by COVIS and is the one that

"* The generalized context model (GCM) predicts no decision bound
per se. However, the analogue in the GCM is the equivocality contour
(i.e., the contour on which the probability of responding A equals the
probability of responding B). It follows directly from Propositions 3
and 4 of Ashby and Maddox {1993 ) that, in the Figure 10 experiment,
the equivocality contour in the GCM is identical to the optimal decision
bound if cw = ¢{l — w), where w is the attention allocated to the
length dimension, 1 — w is the attention allocated to orientation, and ¢
is a measure of overall discriminability. Because predicted accuracy is
maximized in the GCM when the equivocality contour equals the optimal
decision bound, it follows that the GCM predicts a priori that equal
attention will be allocated to the two dimensions and, thus, that there
will be no systematic bias of the type predicted by COVIS. Note that
this prediction holds regardless of the overall level of discriminability. In
fact, if one adds the reasonable assumption that overall discriminability
increases with experience, then this prediction holds even if atlocation
of attention is not optimal (Ashby & Alfonso-Reese, 1995).
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Category B.

would be most problematic for other current models of category
learning. We tested these predictions in the following experiment.

Method

Participants. Thirteen graduate students at the University of Califor-
nia, Santa Barbara, participated in this experiment. Five were assigned
to the shallow condition, and 8 were assigned to the steep condition.
Eleven students were each paid $32 for four 40-min sessions. The other
2 students were members of F. Gregory Ashby’s laboratory and partici-
pated in four sessions without pay. None of the participants had any
prior knowledge of the design or goals of the experiment.

Stimuli and apparatus.  The stimuli were lines varying in length and
orientation. Each stimulus in both conditions was generated by randomly
sampling from one of two bivariate normal category distributions. The
category A distribution was specified by a mean vector u, and a vari-
ance—covariance matrix X. The category B distribution was defined by
a mean vector gz and by the same covariance matrix . The distribution
parameter values in the shallow condition were as follows:

180 (200 mdz_[m 0}
iadl FT"Y R I “lo 72

The stimulus set for the shallow condition is depicted in Figure 10.
The category A stimuli are plotted as plus symbols, and the category B
stimuli are plotted as circles. The optimal bound is x, = 0.6x;. An ideal
observer using the optimal bound could obtain 75.9% correct. The most
accurate verbal rule on orientation or length could obtain 72.7% or
64.1% correct. The stimuli in the steep condition were generated by
rotating the category distributions from the shallow condition about the
line x; = xy. As a result, the optimal bound is x, = 1.67x; {see Figure
12). Optimal percentage correct is again 75.9%, and the maximwm
possible accuracy using unidimensional rules on orientation or length
is now 64.1% or 72.7% correct.

Each (x;, x;) pair was converted to a line stimulus by letting x; deter-
mine line length and x, determine orientation. For example, the category
A prototype in the shallow condition is converted to a line 180 pixels
long rotated 130{w/550) radians counterclockwise from horizontal. The
(7 /550) scaling factor was chosen in an attempt to equalize the salience
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Table 2
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Summary Statistics for the Last Experimental Session in the Steep and Shallow Conditions

General linear classifier statistic

Percentage

Condition Participant correct AIC Best-fitting bound
Shallow 1 61.6 455 x, = —.06x, + 138

2 64.8 471 X =220+ 77

3 65.6 394 x, = —.06x + 129

4 67.8 454 x = 07x + 87

5 752 283 x; = .50x, + 15
Steep 1 >68.4 352 x; = 69x, — 498

2 67.6 400 x, = 214x; — 2,374

3 70.6 329 x, = 5%, + 107

4 70.4 365 x = 1.0%x + 72

5 722 330 x = 1.87x, — 24

6 74.8 229 X = 1.52x + 33

7 744 396 x = 1.27x, + 47

8 63.8 458 x = —56.7x + 6,344
Note. AIC = **A’ information criterion,

of orientation and length. The orientation of the lines shown in the shallow
condition varied from 10° to 63°, and their visual angle varied from 1.7°
to 4.3° The orientation of the lines shown in the steep condition varied
from 37° to 87° and their visual angle varied from 0.5° to 3.2°. The
stimuli were computer generated and displayed on a Mitsubishi Electric
Color Display Monitor (Model C-9918NB) in a dimly lit room.

Procedure. The participants’ task was to classify each line stimulus
into category A or £ by pressing an appropriate response key. A brief
high-pitched tone was sounded if the response was correct, and a longer
low-pitched tone was sounded if the response was incorrect. Each stimu-
lus was response terminated and displayed for up to 5 s. The task
consisted of four 40-min consecutive daily sessions, each containing
500 trials. At the end of each session, the percentage of correct responses
appeared on the monitor. In the instructions, participants were told that
about half of the stimuli came from category A and half from category
B. They were also told that, as is common in real life, the categories
were not clearly separated (e.g., some plants look like bushes, even
though they are actually trees), so the best performance an expert could
achieve was about 75%.

Results

Some of the results from this experiment are summarized in
Table 2. All participants in both experimental conditions
achieved between 66% and 75% correct during their best experi-
mental session. In most cases, this was the last {i.e., fourth)
session, but 4 participants achieved highest accuracy in an ear-
lier session. For every participant in both conditions, we fit a
number of different decision bound models to the data collected
from the final experimental session. All models were variants
of the general linear classifier described by Maddox and Ashby
(1993), which assumes the use of a linear decision bound. In
the present application, this model had three free parameters:
the slope and intercept of the decision bound (or, alternatively,
¢ and 7) and the variance of perceptual and criterial noise.
Special cases of the model assume the use of a verbal rule or
the optimal decision bound. The optimal model has only one
parameter ( noise variance ), whereas the verbal rule models have

two parameters {noise variance and the value of the response
criterion on the relevant stimulus dimension ).

The parameters were estimated using an iterative maximum
likelihood procedure, and the goodness-of-fit statistic (**A’ in-
formation criterion [ AIC]) was AIC = 2r — 2 log L, where »
is the number of free parameters and L is the likelihood of the
model given the data (Akaike, 1974; Takane & Shibayama,
1992). The AIC statistic penalizes a model for exira free param-
eters in such a way that the smaller the A1C, the closer a model
is to the “‘true model,’” regardless of the number of free parame-
ters. Thus, to find the best model among a given set of competi-
tors, one simply computes an AIC value for each model and
chooses the model associated with the smallest AIC value.

In the shallow condition, the model that assumes a verbal rule
on crientation fit best in three cases (Participants 1, 3, and 4),
and the general linear classifier fit best in two cases. In the steep
condition, the general linear classifier fit best in five cases, the
model that assumes a verbal rule on length fit best in two cases
(Participants 2 and 8}, and the optimal classifier fit best in one
case (Participant 5). In both conditions, however, the mean AIC
value across participants was smallest for the general linear
classifier by a substantial amount. In addition, the null hypothe-
sis that the general linear classifier is correct could not be re-
jected for any participant in either condition (using the data
from the final session; p > .20, n = 497). Thus, overall, the
fits of the general linear classifier were excellent. Furthermore,
the general linear classifier was the only model that provided
consistently good fits; the null hypotheses that participants used
the optimal bound and that they used a verbal rule were both
rejected for some participants (p < .20). The poor performance
of the optimal classifier relative to the general linear classifier
allowed us to convincingly reject one of the four prominent
possibilities that we counsidered earlier, namely, that participants
will use the optimal rule in these cenditions.

Table 2 lists the decision bound of the best-fitting peneral
linear classifier, together with its associated AIC value. In the
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shallow condition, the slope of the optimal bound was 0.6. In
contrast, the slopes of all best-fitting bounds were less than
optimal {two were actually negative), with a mean of 0.16. In
the steep condition, two bounds were essentially vertical lines,
two had slopes steeper than optimal but shallower than the
nearby verbal rule on length, and four had slopes shallower than
optimal. The mean slope was 2.(9, and the slope of the optimal
bound was 1.67." Figure 13 shows the responses of typical
participants in each condition during the last experimental ses-
sion. Also shown are the optimal and best-fitting bounds (the
dotted and solid lines, respectiveiy). Thus, in both conditions,
the mean slopes of the best-fitting general linear classifier sup-
ported the COVIS prediction of an asymptotic bias toward the
nearby verbal rule.
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Figure 1