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A Scalable, Low-Overhead Rate Control Algorithm
for Multirate Multicast Sessions

Koushik Kar, Saswati Sarkar, Leandros Tassiulas

Abstract— In multirate multicasting, different users (receivers) within
the same multicast group can receive service at different rates, depending
on the user requirements and the network congestion level. Compared to
unirate multicasting, this provides more flexibility to the user, and allows
more efficient usage of the network resources. In this paper, we address
the rate control problem for multirate multicast sessions, with the objective
of maximizing the total receiver utility. This aggregate utility maximiza-
tion problem not only takes into account the heterogeneity in user require-
ments, but also provides a unified framework for diverse fairness objec-
tives. We propose an algorithm for this problem and show, through anal-
ysis and simulation, that it converges to the optimal rates. In spite of the
non-separability of the problem, the solution that we develop is completely
decentralized, scalable and does not require the network to know the re-
ceiver utilities. The algorithm requires very simple computations both for
the user and the network, and also has very low overhead of network con-
gestion feedback.

Keywords—Flow control, Multirate multicast, Layered multicast, Opti-
mization.

I. INTRODUCTION

In conventional or unirate multicasting, all receivers of the
same multicast group receive service at the same rate. However,
in general, different receivers belonging to the same multicast
group can have widely different characteristics. Thus a single
rate of transmission per multicast group is likely to overwhelm
the slow receivers and starve the fast ones. Multirate transmis-
sion, where the receivers of the same multicast group can receive
data at different rates, can be used to accommodate these diverse
requirements. Naturally, multirate multicasting is the preferred
mode of data delivery for many real-time applications, including
teleconferencing and audio/video broadcasting. Multirate trans-
mission allows a receiver to receive data at a rate that is com-
mensurate with its requirements and capabilities, and also with
the capacity of the path leading to it from the source. One way of
achieving multirate transmission is through hierarchical encod-
ing of real time signals. In this approach, a signal is encoded into
a number of layers that can be incrementally combined to pro-
vide progressive refinement. This layered transmission scheme
can be used for both audio and video transmissions over the in-
ternet [7], [29], and has potentials for use in ATM networks as
well [15]. In the case of the internet, each layer can be transmit-
ted as a separate multicast group and receivers can adapt to con-
gestion by joining and leaving these groups (see [18] and [20]
for internet protocols for adding and dropping layers). Note that
in multirate multicasting, there is no unique multicast session
rate, and one needs to consider receiver rates separately. Also
note that in this case, the transmission rate of a multicast session
(multicast group) on a link needs to be equal to the maximum of
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the rates of all receivers downstream of that link.
Compared to unirate multicasting, multirate multicasting al-

lows more efficient use of the network resources. For efficient
use of the network, an effective rate control strategy is neces-
sary. The rate control algorithm should ensure that the traffic
offered to a network by different traffic sources remain within
the limits that the network can carry. Moreover, it should also
ensure that the network resources are shared by the competing
flows in some fair manner. It may therefore be desirable that the
rate control algorithm would steer the network towards a point
where some measure of global fairness is maximized.

There can be many acceptable definitions of fairness, some
well-known ones being max-min fairness [5], proportional fair-
ness [13]. Fairness definitions can be generalized in a nice way
by using utilities. Utility of a user is a function connecting the
bandwidth given to the user with the “value” associated with
the bandwidth (note that throughout the paper, the terms “user”
and “receiver” are used synonymously). The utility could be
some measure of, say, the perceived quality of audio/video, the
user satisfaction, or even the amount paid by the user for the
bandwidth allotted to it. In this paper, we try to design the rate
control algorithms such that they maximize the sum of the util-
ities over all receivers, subject to the link capacity constraints.
This objective was proposed recently by Kelly [13]. It is easy
to see that various fairness objectives can be realized within this
utility maximization framework for different choices of the util-
ity functions (see [19]). Note that in our problem, the utility
functions can be different for different users (receivers). Thus
this framework allows us to differentiate among receivers on the
basis of their requirements and/or revenues. This is important,
since receivers could have heterogeneous requirements, and the
same amount of bandwidth could be valued differently by dif-
ferent receivers.

Recently, there has been a considerable interest in the prob-
lem of fair allocation of resources for multirate multicast ses-
sions. However, most of the work in this area is concerned
only with the notion of max-min fairness (see [23], [25], [26],
[27], [9]). Although there has been a lot of research on the util-
ity maximization problem for unicast case [14], [2], [17], [28],
[16], [10], the multirate multicast case has not received signifi-
cant attention. It is worth noting here that certain factors make
the multirate multicast problem significantly different and con-
siderably more complex than its unicast version. For instance,
the problem in the multirate multicast case is non-separable and
non-differentiable, unlike the unicast case (we discuss more on
this in the subsequent sections). The multirate multicast util-
ity maximization problem is addressed in [11]. Here, the au-
thors propose distributed algorithms for this problem; their ap-
proach is based on dual methods. In this paper, we take a dif-
ferent approach, and derive a primal algorithm based on non-
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differentiable optimization methods. The algorithm that we pro-
pose is distributed, scalable, and does not require the network to
know the receiver utilities. Also, both the user and the network
(link/node) sub-algorithms are extremely simple, and the over-
head of the communication between the network and the user is
very low. Moreover, in our algorithm, per-session states need
not be maintained at the network links. These features make
the algorithm attractive in terms of practical deployment. On
the other hand, the algorithms in [11] suffer from several practi-
cal shortcomings (they have high overhead of computation and
communication, and require the network links to maintain per-
session state). A detailed comparison of the algorithm proposed
in this paper and those in [11] is presented in Section VIII of
this paper. It is worth noting here that in this work, we do not
try to address the question of what utility functions should be
chosen, or how a desired fairness criterion can be mapped to
user utilities. Instead, we address the question of how the glob-
ally optimal rates can be achieved once the user utility functions
are appropriately chosen.

The paper is structured as follows. In Section II, the rate con-
trol problem is presented formally as an optimization problem.
In Section III, we state the algorithm requirements, and outline
our basic solution approach. In Section IV, we present an iter-
ative algorithm for the rate control optimization problem. Sec-
tion V presents the convergence analysis for this iterative opti-
mization algorithm. In Section VI, we describe how this algo-
rithm can be implemented in a real network. In Section VII,
we demonstrate the convergence of our algorithm in an asyn-
chronous network environment through simulations. We com-
pare our approach with the existing approaches in Section VIII,
and conclude in Section IX.

II. PROBLEM STATEMENT

First we describe the network model, and formulate the rate
control problem as a convex optimization problem. In the sub-
sequent sections, we will show how we can achieve the optimal
rates for this problem.

Consider a network consisting of a set L of unidirectional
links, where a link l ∈ L has capacity cl. The network is shared
by a set of M multicast groups (sessions). Each multicast group
is associated with a unique source, a set of receivers, and a set of
links that the multicast group uses (the set of links forms a tree)1.
Thus any multicast group m ∈ M is specified by {sm, Rm, Lm}
where sm is the source, Lm is the set of links in the multicast
tree, and Rm is the set of receivers in group m. As already men-
tioned, the total rate of traffic of a multicast group over any link
on the tree must be equal to the maximum of the traffic rates of
all downstream receivers of the group. Also note that unicast is
a special case of multirate multicast (in the unicast case, the tree
reduces to a single path between the source and the receiver).

Let R be the set of all receivers over all multicast groups. Also
let Sl ⊆ R denote the set of receivers using link l ∈ L. Each
receiver r has a minimum required transmission rate br ≥ 0,
and a maximum required transmission rate Br < ∞. Moreover,
each receiver r is associated with a utility function Ur : <+ →
<, which is assumed to be concave, bounded and continuously

1We assume fixed path routing. So the tree associated with each multicast
group is fixed.

differentiable2 in the interval Xr = [br, Br]. Thus receiver r has
a utility Ur(xr) when it is receiving traffic at a rate xr, where
xr ∈ Xr.3 We will refer to the variables xr as the “receiver
rates”.

We are interested in maximizing the “social welfare”, i.e., the
sum of the utilities over all receivers, subject to the link capacity
constraints, as well as the maximum/minimum rate constraints.
The problem can be posed as:

P : maximize
∑

r∈R

Ur(xr)

subject to
∑

m∈M

max
r∈Sl∩Rm

xr ≤ cl ∀ l ∈ L (1)

xr ∈ Xr ∀r ∈ R (2)

Note that Sl∩Rm is the set of receivers of group m that use link
l. Thus the term maxr∈Sl∩Rm

xr denotes the rate of traffic of
multicast group m on link l. Also note that when Sl ∩Rm = φ,
the term maxr∈Sl∩Rm

xr in (1) should be interpreted as zero.
Note that in the above formulation, the sets Xr are (bounded)

continuous intervals. Therefore, it is assumed that the receiver
rates can be continuous. In practice, however, bandwidth allo-
cations can be limited to some discrete levels only (for example,
in layered video, there will be some distinct bandwidth levels,
one corresponding to each layer). However, constraining the
set Xr to a set of discrete points (between the lower and the
upper bounds on the receiver rates), makes the problem much
harder to solve. Discretization of the rates destroys the convex-
ity of the problem (it becomes an integer programming prob-
lem), which is crucial for developing a distributed solution. In
the following, therefore, we develop a solution to the “convex-
ified” or “relaxed” problem, as stated above. The actual rate is
then computed by “rounding” the rates obtained (as a solution
of the convexified problem P) so that they correspond to the al-
lowed discrete bandwidth levels. The rounding procedure, and
the associated issues, are discussed in Section VI-C.

III. PRELIMINARIES

In this section, we introduce some new terminology, which
will help us in describing the algorithms presented in the sub-
sequent sections of this paper. We then discuss the features that
are necessary in any multirate multicast rate control algorithm
for the algorithm to be practically viable. In this section, we
also outline the basic solution approach that is used in deriving
the optimization algorithm presented in the next section.

A. Terminology

Consider Figure 1, which shows an example of a multicast
tree where s is the source node and {r1, r2, r3, r4} is the set
of receiver nodes. The rest of the nodes in the multicast tree
can be classified into junction nodes and non-junction nodes,
as shown in the figure. Junction nodes are the forking nodes,
i.e., nodes where the multicast tree “branches off”. Thus in Fig-
ure 1, {r5, r6, r7} are junction nodes. Receiver/junction nodes

2The differentiability assumptions are only for the sake of simplicity of ex-
position and analysis. The algorithms and convergence results presented in this
paper can be extended to non-differentiable functions by using subgradients [24]
instead of the usual derivatives.

3We also assume that Ur and Xr are known only to receiver r.
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of different multicast groups are considered to be logically dif-
ferent, even if they are physically located at the same node. In
the rest of the paper, we assume that the receivers are only at the
leaf nodes of the multicast tree. There is no loss of generality
in assuming this, since a receiver at a non-leaf node can be re-
placed by creating a new leaf node and placing the receiver in
it, and connecting the new leaf node to the non-leaf node (where
the receiver is actually located) by a link with infinite capacity.
Moreover, note that any leaf node must be a receiver node. The
parent of a receiver/junction node r refers to the closest junc-
tion/source node in the upstream path from r towards the source.
Also, by child of junction/source node r, we would refer to any
receiver/junction node whose parent is the node r. Thus in Fig-
ure 1, r5 is the parent of r1, r7 is the parent of r5, s is the parent
of r7. Similarly, r7 is a child of s, while r5, r6 are children of
r7, and so on.

junction nodes 

receiver nodes 

r 1

r 2

r 3

r 4

r 5

r 6

r 7s
(source node) 

non-junction nodes 

Fig. 1. An example of a multirate multicast tree

In general, we assume that the receiver decides its rate based
on its utility function and the network congestion feedback. It
then sends its request to its parent node. A junction node gathers
all such requests (from its children nodes), takes the maximum
of all the rates requested, and requests that rate from its parent
node. Requests go up the tree through the junction nodes in
this fashion until they reach the source node. The source sends
traffic to its children nodes at their requested rates; these nodes
then send traffic to their children nodes, and so on, and the traffic
finally reaches the receivers at their requested rates.

B. Algorithm Requirements

In order to be practically viable, a rate control algorithm must
be decentralized. Thus we would like to have a solution where
the nodes in the network act like processors in a distributed
computation system (where the coordinating information is ex-
changed in terms of congestion and rate feedbacks) and reach
the system optimum without any centralized coordinator.

Closely tied to decentralization is the issue of scalability. A
solution would not scale if, for example, the source or a junction
node in the multicast tree has to maintain some state information
for all downstream receivers of the tree. Since the number of re-
ceivers in the group can be large, this might lead to tremendous
processing/storage pressure on such a node, particularly if the
node is the source, or a junction node close to the source. There-
fore we would like to have a solution where processing/storage

overhead at a node in a multicast tree does not depend signifi-
cantly on the size of the tree.

The rate control algorithm must scale not only with the size
of a multicast group, but also with the total number of multicast
sessions going through a link/node of the network. Therefore,
we would like to have a solution where the network routers are
not required to maintain state information on a per-flow (per-
session) basis. However, due to the multirate nature of the traf-
fic, some state overhead is unavoidable for routers that are junc-
tion nodes of one or more multicast sessions. This is because a
junction node needs to store at least the rate information about
each of its children. Thus a router has to maintain per-session
information for all multirate multicast sessions for which it is a
junction node. However, we would like to have a solution where
the routers would not need to maintain any state information for
a session for which it is a non-junction node. Thus in such a so-
lution, no per-flow state would be required at the network nodes
if all the sessions are unicast (since there are no junction nodes
in the unicast case).

Conformity with existing standards is another important cri-
terion. The rate control algorithm should be such that it can be
implemented without a major modification to the existing stan-
dards. In the current networking standards like IP multicast, a
junction node may not know the identity of all the downstream
receivers, but will only know the downstream nodes it must for-
ward a packet to. Therefore we require a rate control algorithm
which does not require a junction node to communicate with
nodes other than its immediate neighbors.

We would also prefer to have a solution where the complex
computations (required for the optimization process) are limited
to the end-hosts only. For practical viability, the computations
that the core routers are required to perform must be kept simple.

It is also desirable that the overhead of information exchange
(required in the optimization process) between the network and
the end-hosts is as low as possible, such that it can be contained
within a few bytes in the packet header.

The rate control algorithm that we propose in this paper sat-
isfies all of the above criteria. It is distributed, and the user
and the network algorithms are appealingly simple. The algo-
rithm also has a low network feedback overhead. In the al-
gorithm, the network needs to know only the receiver rates.
This, however, can also be estimated by measuring the rates at
the network nodes. In our algorithm, with measurement-based
estimation of receiver rates, a router does not need to main-
tain per-session information for sessions for which it is a non-
junction node; the per-session information maintained for ses-
sions for which it is a junction node is also small. Moreover, a
source/junction/receiver node only needs to communicate with
its parent or children nodes, and does not need to know about
the nodes further downstream/upstream. Thus the solution is
scalable, and conforms well with the existing standards.

C. Solution Approach

Note that in the unicast version of the problem, the link con-
straints are linear and the problem P is separable. Separable
problems are amenable to distributed solutions [4]. In our case,
however, the problem P contains some max functions. The max
functions, besides being nonlinear, couple several variables to-
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gether, making the problem non-separable. Moreover, note that
the max functions are non-differentiable. All these factors make
the problem significantly different than its unicast version. Ob-
taining a solution that satisfies all the requirements described in
the last subsection is an interesting and challenging problem.

The algorithm that we propose in this paper is developed us-
ing non-differentiable optimization methods, particularly those
based on subgradients. A subgradient, defined in the context
of convex/concave functions, can be viewed as a generalized
gradient, and may exist even if the gradient does not (as is the
case for non-differentiable functions). See Appendix I for the
formal definition of subgradients and some of their important
properties. The motivation, derivation and analysis of our al-
gorithm draw from results in subgradient optimization theory,
mainly those by N.Z. Shor and B.T. Poljak [24], [21]. The prob-
lem of non-separability (as well as non-differentiability) of the
constraint functions can be effectively handled using subgradi-
ents. The use of subgradients thus allows us to develop a simple
distributed solution to the non-separable problem P. Our algo-
rithm is developed in such a way that the scalability and other
requirements stated above are also appropriately addressed.

IV. AN OPTIMIZATION ALGORITHM

In this section, we present an iterative optimization algorithm
for the problem P. The convergence properties of the algorithm
is investigated in the next section. In Section VI we show how
this algorithm can be implemented in a real network in a dis-
tributed and scalable way.

A. Notation

Before we present the algorithm, we introduce some notation
that we will use. Let R̂ be the set of all junction nodes (over
all multicast groups). Let R̃ = R ∪ R̂ be the set of all receiver
and junction nodes (over all multicast groups). For any r ∈ R̃,
let πr denote the parent node of r. Thus in Figure 1, πr1

= r5,
πr7

= s, etc. For any r ∈ R̂, let Cr = {r
′

: πr
′ = r} denote

the set of all children nodes of r. Thus in Figure 1, Cr7
=

{r5, r6}, Cr5
= {r1, r2}, etc. For any r ∈ R̃, let L̃r denote the

set of all links whose immediate downstream junction/receiver
node is r. In other words, L̃r is the set of all links between the
nodes πr and r in the particular multicast tree to which πr and
r belongs. Thus in Figure 1, L̃r7

consists of all links between s
and r7, L̃r5

consists of all links between r7 and r5, L̃r1
consists

of all links between r5 and r1, and so on. Now define the set
S̃l ⊆ R̃ as S̃l = {r : l ∈ L̃r}. Thus S̃l consists of all junction
and receiver nodes that are the immediate downstream nodes of
sessions that go through link l.

For any r ∈ R̂, let Tr denote the set of receiver nodes
that are included in the tree rooted at r. Thus in Figure 1,
Tr5

= {r1, r2}, Tr7
= {r1, r2, r3, r4} etc. Now for each r ∈ R̂,

define a variable xr such that it denotes the rate of traffic that the
junction node r receives from its parent node (we will call these
“junction rates” in analogy with “receiver rates”). Note that the
junction rates are functions of the receiver rates. Thus for any
r ∈ R̂, xr is defined as xr = maxr′∈Tr

xr
′ . Moreover, with this

notation, for any r ∈ R̂, xr = maxr′∈Cr
xr

′ . Also note that the
capacity constraint for link l (cf., (1)) can now be simply written
as

∑

r∈S̃l
xr ≤ cl.

For any r ∈ R̃, let Qr denote the set of all junction and
receiver nodes from the source node to r, including r but ex-
cluding the source node. Thus in Figure 1, Qr5

= {r7, r5},
Qr1

= {r7, r5, r1}, and so on.

B. An Iterative Algorithm

For any r ∈ R, let x
(n)
r denote the rate of the receiver node

r at the nth iterative step. Then for any r ∈ R̂, x
(n)
r =

maxr
′∈Tr

x
(n)

r
′ denotes the rate of the junction node r at the nth

iterative step.
In our algorithm, the rate update procedure for receiver r at

the nth iterative step can be summed up as follows: x
(n)
r in-

creases according to the “incremental utility” U
′

r(x
(n)), while it

decreases according to the “congestion penalty” p
(n)
r (p(n)

r will
be defined shortly). The quantity p

(n)
r can be thought of as a

measure of the congestion caused by r at step n, and thus de-
termines the rate at which r “backs off” on detecting congestion
in its path. As we will see later (when we describe the practical
implementation of the algorithm in Section VI), the congestion
penalty is basically the congestion feedback provided by the net-
work to the receiver (user). Before we describe the rate update
procedure in detail, let us define the congestion penalty formally
in terms of the receiver rates and network parameters.

First we introduce a few variables that will be useful in defin-
ing the congestion penalty p

(n)
r . For each link l ∈ L, define ε

(n)
l

as a 0-1 variable denoting whether link l is congested or not at
step n, i.e.,

ε
(n)
l =

{

0 if
∑

m∈M

∑

r∈S̃l
x

(n)
r ≤ cl

1 if
∑

m∈M

∑

r∈S̃l
x

(n)
r > cl

(3)

We will refer to the variable εl as the “link congestion indicator”
for link l. Now, for each r ∈ R̃, define e

(n)
r as

e(n)
r =

∑

l∈L̃r

ε
(n)
l (4)

Therefore, e
(n)
r indicates how many of the links in L̃r are con-

gested at step n.
Let Ω be the set of all source nodes (over all multicast groups).

Let R̃Ω ⊆ R̃ be the set of all junction and receiver nodes whose
parent node is a source node. Thus R̃Ω = {r : πr ∈ Ω}. Asso-
ciate a variable αr satisfying 0 ≤ αr ≤ 1 with each r ∈ R̃\R̃Ω.
We will refer to αr as the “penalty splitting factor” associated
with junction/receiver node r, the reasons for which will be clar-
ified shortly. Let α

(n)
r denote the penalty splitting factor for r at

the nth iterative step. We require these penalty splitting factors
to satisfy certain conditions, as we will see later.

The definition of the congestion penalty, as will be stated
shortly, can be motivated as follows. Let us interpret ε

(n)
l as

the penalty to be paid for congesting link l (by each of the mul-
ticast sessions using link l) at step n. Now consider a junction
node r

′

belonging to any multicast group m. Then e
(n)

r
′ is the to-

tal penalty to be paid by m for congesting the links in L̃r
′ . Let

this penalty be charged to r
′

(recall that for links in L̃r
′ , r

′

is the
closest downstream node belonging to m’s multicast tree). Now
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let r
′

split this penalty among its children nodes. Also for any
r

′′

∈ Cr
′ , let α

(n)

r
′′ be the factor that determines what proportion

of this penalty is charged to r
′′

(thus r
′′

is charged a penalty of
α

(n)

r
′′ e

(n)

r
′ ). Each child node then splits the penalty charged to it

amongst its children nodes (again according to the splitting fac-
tors of the nodes that are charged), and this goes on until the
penalties are transferred to the receivers. It is then easy to see
that the penalty charged to receiver r ∈ Tr

′ (for congesting the
links in L̃r

′ ) is equal to (
∏

r
′′∈Qr\Q

r
′
α

(n)

r
′′ ) e

(n)

r
′ . Note that for

any receiver node r, the penalty for congesting the links in L̃r

is charged entirely to r, since it is the only downstream receiver
(of that group) for those links.

Now assume that the penalties of all links of the multicast tree
are split up amongst the receivers in the manner just described.
Then a receiver pays a penalty for each of the links it uses (i.e.,
the links in the path from the source to that particular receiver).
Note that for any receiver r, ∪r

′∈Qr
L̃r

′ represents the set of
links that r uses. Therefore, the total penalty that receiver r
pays is the sum of the penalties paid for the links in ∪r

′∈Qr
L̃r

′ .
Now let us define the congestion penalty formally. For each

r ∈ R, define p
(n)
r as

p(n)
r =

∑

r
′∈Qr

(
∏

r
′′∈Qr\Q

r
′

α
(n)

r
′′ ) e

(n)

r
′ (5)

For r
′

= r, the term
∏

r
′′∈Qr\Q

r
′
α

(n)

r
′′ should be interpreted

as 1. Note that p
(n)
r is zero if none of the links that receiver

r uses is congested. Moreover, note that in the special case of
an unicast session, the congestion penalty of the receiver of the
session is simply the number of congested links in the path of
the receiver/session.

Now we state the update procedure for the receiver rates. In
the update procedure stated below, [ · ]Xr

denotes a projection4

on the set Xr. For each r ∈ R, xr is updated as follows

x(n+1)
r = [ x(n)

r + λn ( U
′

r(x
(n)
r ) − Kp(n)

r ) ]Xr
(6)

where K (the “penalty scaling factor”) is a positive constant,
and λn > 0 is the step-size at the nth iterative step.

C. Conditions on the splitting factors

For our algorithm to work correctly, at every step n, the split-
ting factors αr must satisfy the following conditions

α(n)
r ≥ 0 ∀ r ∈ R̃ \ R̃Ω (7)

∑

r
′∈Cr

α
(n)

r
′ = 1 ∀ r ∈ R̂ (8)

α(n)
r = 0 if x(n)

r < x(n)
πr

∀ r ∈ R̃ \ R̃Ω (9)

Constraints (7) state that the splitting factors are non-negative.
Constraints (8) state that the sum of the splitting factors of all of
the children of a junction node must add up to 1. Constraints (9)
state that the splitting factor of a node is zero if it is not receiving
the same rate as its parent. Since the rate of the parent node is

4Since Xr = [br , Br ], thus for any scalar y, [y]Xr
=

min(Br ,max(br , y)).

the maximum of the rates of its children, this implies that the
splitting factor of a node is zero if its rate is not the maximum
amongst the rates of all of its sibling nodes. In other words, the
penalty at a node is split amongst only those children who are
receiving the maximum rates.

Note that the above constraints allows us to have both frac-
tional and integral (0 and 1) splitting factors. Choosing frac-
tional splitting factors, however, has certain drawbacks in terms
of practical implementation, as we will discuss in Section VI.
Therefore, in the rest of the paper, we will only be concerned
with integral splitting factors. In that case, (7) is replaced by the
following constraint:

α(n)
r ∈ {0, 1} ∀ r ∈ R̃ \ R̃Ω (10)

V. CONVERGENCE ANALYSIS

In this section, we investigate the convergence of the iterative
algorithm outlined in the last section. For simplicity, the con-
vergence analysis presented here assume that the splitting fac-
tors satisfy (8)-(10). However, the results can be shown to hold
even if the splitting factors satisfy the more general conditions
(7)-(9).

In the following, let x = (xr , r ∈ R) denote the vector of
the receiver rates. Let x(n) denote the vector of receiver rates
at the nth iterative step. Let XR denote the entire region in the
|R|-dimensional space where x is constrained to lie due to (2),
i.e., XR = {(x1, ..., x|R|) : xr ∈ Xr ∀r ∈ R}. Thus the set of
constraints in (2) can be equivalently written as x ∈ XR.

A. Assumptions

In the convergence analysis, we make the following assump-
tions on the problem P.

Assumption 1: (Feasibility) The problem P is feasible, i.e.,
∑

m∈M maxr∈Sl∩Rm
br ≤ cl for all l ∈ L.

Note that in the special case when br = 0 ∀r ∈ R, the feasi-
bility assumption is satisfied.

Assumption 2: (Bounded slope) There exists an A < ∞ such
that U ′

r(xr) ≤ A ∀xr ∈ Xr for all r ∈ R.
For the sake of simplicity of the analysis, we make an addi-

tional assumption in this paper, as stated below. However, this
assumption is not necessary for guaranteeing convergence. Re-
fer to [12] for the convergence results in the more general case.

Assumption 3: (Strict Concavity) The utility functions Ur

are strictly concave in the interval Xr. Thus for every r ∈ R,
there exists a γr > 0 such that −U

′′

r (xr) > γr for all xr ∈ Xr.
Note that the above assumption also implies that the opti-

mal solution of P is unique. Let x∗ be the optimal solution
of P. Define the overall user utility function U : <

|R|
+ → < as

U(x) =
∑

r∈R Ur(xr), and let U∗ = U(x∗) be the correspond-
ing optimal value.

Next we state some convergence results under various condi-
tions of the step-sizes.

B. Exact convergence with diminishing step-sizes

Assume that the sequence of step-sizes {λn} in (6) satisfies
the following criteria

lim
n→∞

λn = 0
∞
∑

n=1

λn = ∞ (11)
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As an example, λn = (1/n) is a sequence that satisfies (11).
Let R̄ = maxm∈M |Rm| denote the maximum number of

receivers in any multicast group. The following theorem shows
that our algorithm converges to the optimum if the step-sizes
satisfy (11).

Theorem 1: Consider the iterative procedure stated in (3)-(6),
with the splitting factors satisfying (8)-(10), and the step-sizes
satisfying (11). Then for all K > AR̄, the sequence of rate
vectors {x(n)} converges to x∗, the unique optimal solution of
P.

The above theorem is proved in Appendix II. Note that from
the continuity of U it follows that limn→∞ U(x(n)) = U∗.

Theorem 1 states that there is a minimum value of the penalty
scaling factor K beyond which our algorithm converges to the
optimal solution. Note that in the unicast case, this lower bound
on K is simply the maximum derivative of the utility functions.

The algorithm can be also be shown to converge if the step-
sizes λn satisfy λn = Λλn where 0 < λ < 1 and Λ is a “suf-
ficiently large” constant. Note that all these step-sizes satisfy
limn→∞ λn = 0. This condition is required due to the non-
differentiability of the problem. In practice, however, it may
not be possible (due to precision limitations) or efficient (since
it could slow down the convergence rate considerably) to de-
crease the step-size beyond a certain value. In the next subsec-
tion, therefore, we investigate the convergence of our algorithm
with constant step-sizes.

C. Approximate convergence with constant step-sizes

If the step-sizes are constant, we can guarantee convergence
of the rates to a neighborhood of the optimum. The result
is formally stated below. A similar result holds even in the
case where the step-sizes are not constant but converge to some
positive value. Let Φδ(x

∗) be the set of all points at a dis-
tance of δ or less from x∗ (the δ-neighborhood of x∗), i.e.,
Φδ(x

∗) = {x : ||x−x∗|| ≤ δ}. Let ρ(x, Y ) = miny∈Y ||x−y||
denote the Euclidean distance of a point x from any compact set
Y .

Theorem 2: Let {x(n)(λ)} denote the sequence of rate vec-
tors defined by (3)-(6) (and the splitting factors satisfying (8)-
(10)) with λn = λ ∀n. Then there exists a function δ(λ) ≥ 0
satisfying limλ→0+ δ(λ) = 0, such that for all K > AR̄,

lim
n→∞

ρ(x(n)(λ), Φδ(λ)(x
∗)) = 0 ∀λ > 0

The above theorem can be proved along the same lines as
Theorem 1, and the proof is omitted for brevity. The theorem
states that for a constant step-size, the distance of the rate vec-
tor from a neighborhood around the optimum tends to zero, and
the size of this neighborhood becomes arbitrarily small with de-
creasing step-size. For a given constant step-size, the size of
the neighborhood depends on the parameters of the problem P,
including the utility functions. Although obtaining a general
explicit expression for the size of this neighborhood is difficult,
implicit expressions of δ(λ) in terms of λ can be calculated [12].
However, the size of the neighborhood calculated on the basis
of these expressions could be very conservative. Note that the
above theorem also implies that given any neighborhood around
the optimum, we can choose the step-size λ to be sufficiently

small so that our algorithm (with constant step-sizes) achieves
rates in that neighborhood.

Note that guaranteed convergence requires bounded utility
derivatives (Assumption 2). If the utility functions have un-
bounded derivatives (as is the case for the function log(x) at
x = 0), then the range of achievable rates can be restricted so
that the utility derivatives are bounded in the restricted range.
For instance, consider the utility function log(x) where the rate
x can vary over the range [0, B]. Since the utility derivative is
unbounded at x = 0, we could restrict the range to [ε, B], where
ε is some small positive number. Our algorithm can be applied
to the problem with this restricted range, and the rates achieved
will be close to optimal.

VI. DISTRIBUTED IMPLEMENTATION

Now we describe how the algorithm described in Section IV
can be implemented in an asynchronous network environment
in a distributed and scalable way .

A. Protocol Description

First we describe how the protocol works. As mentioned be-
fore, in our algorithms, a source/junction/receiver node needs
to communicate only with its parent and children nodes. As-
sume that each source/junction node sends congestion packets
(CP) (containing the congestion penalty information) to its chil-
dren nodes. Also assume that each receiver/junction node sends
rate packets (RP) (containing the rate information) to its par-
ent node. Thus the CPs move in the downstream direction of
the tree, while the RPs move in the upstream direction (see Fig-
ure 2). The CPs that a junction node sends to its children are sent
out when the junction node receives a CP from its parent. More-
over, the RP that a junction node sends to its parent is formed by
merging the RPs that it receives from all of its children. As in
the figure, each CP contains a congestion penalty field p, while
each RP contains a rate field x.

A junction/receiver node communicates its rate request to its
parent node through the x field of the RP. This is to let the parent
node know at what rate it needs to send traffic to the correspond-
ing child. The parent node also uses these communicated rates
to determine which of the children are requesting the maximum
rates, and penalize only those children. For this purpose, each
junction node r maintains Cmax

r (⊆ Cr), the set of the children
requesting the maximum rates.

A source/junction node conveys the appropriate congestion
penalty to its children nodes through the p field of the CP. Note
that choosing fractional splitting factors makes the penalty term
fractional, and this makes it difficult to convey it to the receiver
using a few bytes, without sacrificing precision. For good pre-
cision, we require that the p field be fairly large, and this results
in a high protocol overhead. To avoid this problem, we can just
assign integral splitting factors, i.e., 0 and 1. In this case, con-
ditions (8)-(9) require that a splitting factor of 1 be assigned to
any one of the children that is requesting the maximum traffic
rate, while a splitting factor of 0 be assigned to all other chil-
dren (whether they are requesting the maximum traffic rate or
not). Note that it does not matter which one of the children
(amongst those that request the maximum rate) is chosen to pay
the penalty, and the child that is penalized could be different
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Fig. 2. Message exchanges

at different times (iterations). The algorithms described below
assume this kind of penalty splitting. This ensures that the num-
ber of bytes that need to be allocated to the p field is small (we
discuss more on this later).

Also assume that link l (i.e., the node associated with link l,
which is usually the node where the link originates) is respon-
sible for keeping track of the link congestion indicator variable
εl. Moreover, for any receiver/junction node r, the node itself is
responsible for keeping track of the receiver/junction rate xr .

B. Link and Node Algorithms

On receiving RPs from all of its children nodes, a junction
node computes the maximum of the rates requested, and sends
an RP to its parent, setting the x field to this maximum requested
rate. When an RP is going through link l, the node reads the field
x and uses it to update the congestion indicator εl (see the link
algorithm below).

When sending a CP to a child, a source node stamps 0 in the
p field of the CP. Each link on the path to the child adds the link
congestion indicator (0 or 1) in the p field of the CP. A junction
node transfers the p field of the CP that it receives from its parent
node to the CP of one of the children that has requested the
maximum rate; the p fields of the CPs for the rest of the children
are stamped as 0. Thus when a receiver node receives a CP,
the p field contains the appropriate congestion penalty for that
receiver, which it uses for updating its rate according to (6).

Note that in real implementation, these control packets (CPs
and RPs) need not be communicated as separate packets; the
congestion penalty can be conveyed through a field in the data
packets, while the rate information can be conveyed through a
field in the acknowledgement (ACK) packets.

In the algorithms described below, the step-size for rate up-
dates is kept constant at λ.

Link l’s algorithm:

On receiving an RP:
1. Read the x field to know the current rate of that session, and forward the RP
on to the next link.

On receiving a CP:
1. Add εl to the p field of the CP and forward it on to the next link.

Periodically:
1. Update the link congestion indicator εl as

εl ←

{

1 if
∑

r∈S̃l
xr > cl

0 if
∑

r∈S̃l
xr ≤ cl

Source node s’s algorithm:

On receiving an RP:
1. Read the x field to know the new rate requested by the child.
2. Send a CP to that child, setting the p field to 0.

Receiver node r’s algorithm:

On receiving a CP:
1. Read the p field of the CP to know the current congestion penalty.
2. Send an RP to the parent node, setting the field x to xr.

Periodically:
1. Update the receiver rate as:

xr ← xr + λU ′

r(xr)− λKpr

where pr is an estimate of the current congestion penalty of r.
Now, if xr < br , set xr ← br, and if xr > Br , set xr ← Br .

Junction node r’s algorithm:

On receiving a CP:
1. Send one CP to each of the children nodes, setting the p field as follows:
(a) Pick any child node in Cmax

r , and set the p field of its CP to the p field of
the CP received from the parent node.
(b) Set the p fields of the CPs of all other children nodes to 0.

On receiving an RP:
1. Read the x field to know the new rate requested by the child, and do the fol-
lowing:
(a) Update the junction rate xr as: xr ← max

r
′
∈Cr

x
r
′ .

(b) Update Cmax
r as: Cmax

r ← {r
′

: x
r
′ = xr}.

2. On receiving RPs from all of the children nodes, send an RP to the parent
node, setting the x field to xr .

C. Implementation Issues

Note that in the algorithm described above, the receiver could
request any rate between its minimum and maximum required
rates. However, as discussed in Section II, in practice, band-
width allocation is constrained to occur only at certain discrete
levels (which are typically predetermined, and correspond to
the cumulative layer bandwidths). Therefore, a source node (or
junction node) can send traffic to a child node only at a rate that
corresponds to a discrete level close to the requested rate. The
granted discrete level can be the closest level no more than the
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requested bandwidth (rounding down), or it can be the closest
level no less than the requested bandwidth (rounding up). The
latter, however, can result in rates that are infeasible. Therefore,
in practice, rounding down may be more preferable, and will
result in rates that are feasible, and close to the optimal (the de-
gree of closeness (to optimality) depends on the density of the
discrete bandwidth levels).

Now let us calculate the number of bits that must be allo-
cated to the p field of the CP. Firstly note that the value of p is
upper bounded by L̄, the maximum number of links on a source-
receiver path. This is due to the fact that in the worst case, all
the links from the source to a receiver can be congested, and
the penalty splitting factors of all the junction/receiver nodes
on that path could be one. This implies that we need to allocate
blog2 L̄c+1 bits to the p field. Therefore for most real networks,
including the internet, allocating just one byte for the congestion
penalty field should be sufficient (note that one byte would allow
255 links on a path from the source to the receiver). Thus the
overhead of the network congestion feedback to the receivers is
quite small.

The implementation of the link algorithm, as described in the
previous subsection, has an important drawback. Note that in the
implementation described, the link has to keep track of the rates
of all individual sessions that traverse that link. This implies that
a router has to maintain per-session state even for sessions for
which it is a non-junction node. This is certainly undesirable, as
we have argued in Section III-B. However, note that the session
rates can also be estimated by traffic measurements at the links.
Also note that in order to determine whether a link is congested
or not, we only need to know the total rate of traffic at that link,
and not the individual session rates (see the link algorithm de-
scribed above). Thus we could determine the value of the link
congestion indicator just by measuring the total arrival rate at
the link. Therefore, with measurement-based rate estimation,
maintaining per-flow state at the links is not necessary. It is easy
to see that with this modification, the distributed implementa-
tion of our algorithm (as described in the previous subsection)
satisfies all the desirable features listed in Section III-B.

However, note that if rates are measured (and not commu-
nicated), there has to be estimation errors. These errors will
be more significant because the traffic is sent at rates that are
slightly different from the requested (computed) rates (due to
rounding, as discussed above). We will discuss the effects of
these estimation errors on performance in Section VII.

D. One-bit congestion feedback

As discussed, we require a byte in the packet header to carry
the network congestion feedback. Although using one byte of
the data packet/ACK packet header does not introduce a signif-
icant overhead, it is still interesting to investigate if the algo-
rithm can be implemented with a single bit of network conges-
tion feedback. In that case the algorithm could be implemented
with the proposed Explicit Congestion Notification (ECN) bit.

For one-bit implementation, we could use an approach similar
to Random Early Marking (REM) proposed in [1]. In this ap-
proach, there is a single bit for network congestion feedback in
each packet, and this bit is marked probabilistically at each link,
based on whether the link is congested or not. Each junction

node transfers this bit to the child receiving traffic at the max-
imum rate, in a way similar to that described in Section VI-B.
The receivers can then infer the congestion penalty by measur-
ing the number of marked packets received over some time win-
dow. The packet marking process at the links and the penalty
estimation process at the receivers are described more formally
below.

If a link is congested (according to (3)), then a packet is
marked with probability θ (0 < θ < 1), chosen appropriately. If
the link is not congested, the packet is not marked. The marking
process in different links are independent; therefore, the proba-
bility that the packet is marked after traversing k congested links
is 1−(1−θ)k. Let νr be the proportion of marked packets mea-
sured over some time window at receiver r. Then the estimated
congested penalty of receiver r, denoted by p̂r, can be calculated
as

p̂r = min{
log(1 − νr)

log(1 − θ)
, L̄} (12)

where L̄ is the maximum number of links on the path from a
source to a receiver, as before.

In the next section, we evaluate the performance of this ran-
dom single-bit marking based implementation of our algorithm
and compare it with the original (deterministic) implementation,
described previously.

VII. SIMULATION RESULTS

Simulations carried out on various network topologies/scenarios
confirm that our algorithm, as described in Section VI, achieves
the optimal rates in an asynchronous slowly time-varying net-
work environment. In this section, we present a few representa-
tive examples to demonstrate this fact.

Figure 3 shows the example network that we consider, which
consists of two multicast groups sharing a 11-node 10-link net-
work. We assume layered multicasting, and each multicast
group can send traffic in 20 layers, each of the layers having
a bandwidth of 0.25 MBps. Therefore, the maximum allowed
bandwidth is 5 MBps, and bandwidth can be allocated in units
of 0.25 MBps. Any particular discrete bandwidth level can be
achieved by sending an appropriate number of layers. Note that
layers are always sent cumulatively. Therefore, to achieve a rate
of k*0.25 MBps, the lowest k layers need to be sent. Note that
in layered multicasting, each data packet belongs to one partic-
ular layer. Therefore, a source/junction node can send traffic
to its child at a particular discrete bandwidth level (computed
by rounding down the rate requested by the child) simply by
sending/forwarding only those data packets which belong to a
corresponding set of cumulative layers.

In our experiments, the algorithms are implemented as de-
scribed in the previous section, and the step-size of rate updates
(λ) is kept fixed. However, the congestion penalty is not sent
through separate control packets (CPs); instead, the congestion
penalty field p is part of each data packet itself. Data packets,
that travel on the forward paths, are assumed to be 400 bytes
each. The rate information is carried on the upward path by
RPs, as described in Section VI. Each RP is assumed to have a
length of 40 bytes. Each receiver node/junction node sends out
these RPs to its parent node periodically (once every 0.05 secs).
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In all of the simulations described in this paper, maximum uti-
lization of a link is set to 95%. Therefore, a link determines if it
is congested or not depending on whether the overall estimated
traffic on the link exceeds 95% of its capacity or not.

In the network in Figure 3, the utility functions of receivers
r4 and r6 are 0.5 ln(1 + x), while those of the rest are ln(1 + x)
(where x is expressed in MBps). The minimum rate for each
receiver is 0, and the maximum rate is the capacity of the link
leading to the receiver. Note that since r5 is connected directly
to the source, it behaves essentially like an unicast session. In
our simulation scenario, the sequence of arrivals/departures of
receivers are as follows. The receivers r1, r2, r3, r6 and r7 ar-
rive at time t = 0. Receiver r5 joins at t = 30 secs, receiver r4

joins at t = 60 secs, r2 leaves at t = 90 secs, and r6 leaves at
t = 120 secs. All receivers start with an initial rate of zero. The
receiver rates are updated every 0.05 secs. Note that a receiver
will receive many data packets between two rate update instants,
and the congestion penalty in the p field of these packets could
be different. In our simulations, the congestion penalty estimate
that a receiver uses in the rate computation procedure is com-
puted by averaging the penalties over all data packets received
since the last rate update. For the simulation results presented in
this section, λ = 0.15 (in MBps), and K = 1.2.

First we consider the case where the rates are explicitly com-
municated to the links (the case with rate estimation at links is
considered later).

Figure 4, which shows some rate plots in the time window 0-
180 secs, demonstrates the performance of our algorithm in the
particular example considered. Figure 4 shows the computed
(requested) receiver rates of r2, r4, r6 and r7, along with the op-
timal rates (these 4 receivers were chosen arbitrarily, and rate
plots of the other receivers also exhibit a similar trend). The
rates are plotted every 0.05 secs, which is also the time interval
between successive rate updates at the receivers. Note that the
sudden changes in the optimal rates at t = 30, 60, 90, 120 are
due to the arrival/departure of receivers. The plots demonstrate
that the computed receiver rates track the optimal rates closely
even as the optimal rates change.

Observe that in the plots in Figure 4, the computed rates do
not exactly converge to the optimal rates, but fluctuate rapidly,
remaining close to the optimal rates. The thickening of the re-
ceiver rate plots are due to these small but rapid fluctuations
around the optimal values. Recall that in Section V, we argued
that due to the non-differentiability of the problem we need step-
sizes close to zero in order to guarantee exact convergence. If
the step-size is constant, but small, as in the case of the plots in
Figure 4, then we can only guarantee that our algorithm achieves
rates that are close-to-optimal (Theorem 2). When the total traf-
fic is close to the link capacity, the link congestion indicator
fluctuates between 0 and 1, as can be expected from intuition.
Moreover, when multiple children request the maximum traf-
fic rate from a junction node, the penalty splitting factors for
those children will also fluctuate between 0 and 1, as can be
expected from the description of the junction node’s algorithm
presented in the last section. This causes the receiver penalty pr

to fluctuate, causing rate fluctuations like those seen in Figure 4.
Smaller step-sizes cause smaller fluctuations, but also result in
lower convergence speeds. Thus the choice of the step-size is

a tradeoff between the convergence speed and the magnitude of
fluctuations. In practice, a receiver could choose large step-sizes
initially (to ensure fast convergence), and reduce the step-sizes
once it detects that its rate is fluctuating around the same mean
value (to reduce fluctuations when the rates are close to the op-
timal values).

Now consider the case where the links update their conges-
tion indicators based on measured rates. In our simulations, link
congestion indicators are updated after every 0.02 secs (based on
the average arrival rate since the last update instant). Figure 5
shows the rate plots for this case (all other simulation conditions
are similar to the case in Figure 4). The plots demonstrate that
computed rates track the optimal rates even when the link rates
are estimated by measurement. Comparing Figures 4 & 5, we
observe that the magnitude of rate fluctuations is slightly greater
(on an average) in the latter case. This is due to the errors in rate
estimation at the links.

Note that Figures 4 & 5 show the computed (requested) rates.
The rate at which a receiver receives traffic will typically be
slightly less, since it is computed by rounding down the re-
quested rate. The rates at which the receivers receive traffic are
shown in Figure 6. The rates shown are the traffic rates mea-
sured at the receiver (each point in the plot is computed by aver-
aging the receiver rates over a period of 1 sec). The figure shows
that the actual received rates are fairly close to the optimal rates.
The slight difference between the optimal and the received rates
are due to the rounding down procedure, as mentioned before.
Note that the optimal rates plotted in the figure are the optimal
rates computed based on the relaxed problem, and not the opti-
mal rates of the actual discretized problem (which can only be
computed by solving a very complex integer program). How-
ever, since the achieved rates are fairly close to the optimal rates
of the convexified problem, they are expected to be close to opti-
mal rates of the actual discretized problem (note that the optimal
objective function value of the convexified problem is an upper
bound on the optimal objective function value of the discretized
problem).

Recall that convergence of our algorithm is guaranteed only
when the constant K is “sufficiently large” (Theorems 1 & 2).
However, setting K to a very large value could reduce the av-
erage throughput considerably, as we would intuitively expect.
Therefore, the value of K should be chosen carefully to ensure
good performance in practice. Note the value of K in this ex-
ample is 1.2, which is less than the lower bound for guaranteed
convergence, as stated in Theorems 1 & 2. Therefore, this exam-
ple also demonstrates that in practice, the rates can converge to
the optimal values even for a value of K smaller than the stated
lower bound.

Note that in the scenario described above, there is a large
number of layers, and bandwidth can be allocated at fine granu-
larity. However, in practice, there can be a few layers (4-5, for
example) and the bandwidth difference between layers can be
large. Thus bandwidth can be allocated only at coarse granu-
larity. Figure 7 plots the received rates when there are 5 layers,
each of 1 MBps. All other simulation conditions are the same
as that in Figure 6. The figure also plots the optimal rates (com-
puted based on the relaxed problem, i.e., assuming no discrete-
ness in bandwidth allocation), and the optimal rates rounded
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Fig. 4. Convergence of computed rates (with explicit rate communication). (The straight lines represent the optimal (theoretical) rates.)

down so that it corresponds to a cumulative layer bandwidth. As
an example, if the optimal rate is 2.4 MBps, then the rounded
down optimal rate in this case will be 2 MBps, whereas if the
optimal rate is 1.7 MBps, the rounded down optimal rate is 1
MBps. The broken straight lines represent the optimal rounded
down rates. From Figure 7, we see that the received rates lie
between the optimal rates and the optimal rounded down rates.
This fact was observed in most of the simulations. In a few
cases, however, the rates lie between the optimal rates and the
rounded up optimal rates (defined in a similar way as rounded
down optimal rates). To sum up, in the case where there are few
widely separated layers, the rates achieved by our algorithms lie
within one layer (above or below) of the optimal rates of the re-
laxed problem. This error of one layer is unavoidable due to the
discreteness of the problem.

In the simulations described above, all the layers have equal
bandwidth. However, in practice, the layers could have widely
different bandwidths, and so the discrete achievable bandwidth
levels may not be evenly spaced. Figure 8 plots the received
rates for the case where the discrete bandwidth levels are geo-

metric. Here we have 5 layers, and the rates that can be allocated
are 0.25 MBps, 0.5 MBps, 1 MBps, 2 MBps and 4 MBps (there-
fore, the first layer has a bandwidth of 0.5 - 0.25 = 0.25 MBps,
the second layer has a bandwidth of 1.0 - 0.5 = 0.5 MBps, etc.).
The simulation environment is the same as before. As the plots
show, the observations in this case are similar to those described
previously in the context of Figure 7.

Next we evaluate the performance of the random marking
based single-bit implementation of our algorithm, as described
in Section VI-D. Figure 9 plots the received rates in this case
with φ = 0.25 and L̄ = 4 (see 12). (Note that the maximum
number of links on the path from a source to a receiver in the
network in Figure 3 is 4). The time window chosen for averag-
ing (for computation of the congestion penalty based on packet
marks) is 0.05 secs, which is also the interval between succes-
sive rate updates at the receivers. All other simulation conditions
are the same as those in Figure 6. The plots demonstrate that the
achieved rates track the optimal rates in this case too. Compar-
ison with Figure 6 reveals that the rate fluctuations in the case
with random marking is greater than that with the determinis-
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Fig. 5. Convergence of computed rates (with measurement based estimation of rates). (The straight lines represent the optimal (theoretical) rates.)
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Fig. 6. Convergence of received rates with 20 layers (with measurement based estimation of rates). (The straight lines represent the optimal (theoretical) rates.)
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Fig. 7. Convergence of received rates with 5 layers, uniformly spaced (with measurement based estimation of rates). (The unbroken straight lines represent the optimal
rates, computed based on the relaxed problem. The broken straight lines (− · −) represent the rounded down optimal rates.)
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Fig. 8. Convergence of received rates with 5 layers, geometrically spaced (with measurement based estimation of rates). (The unbroken straight lines represent the
optimal rates, computed based on the relaxed problem. The broken straight lines (− · −) represent the rounded down optimal rates.)
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tic algorithm, as we would intuitively expect. Figure 10 plots
the received rates with random marking, but with 5 layers of 1
MBps each. Comparing with Figure 7, we see that the obser-
vations in this case are similar, although the magnitude of rate
fluctuations is slightly larger with random marking. The simu-
lation results with geometrically spaced layers are similar, and
are omitted for brevity.

VIII. RELATED WORK

In this section, we mention some of the recent work on the
unicast version of the problem that we have addressed in this
paper. We also compare, in detail, the algorithm presented in
this paper with an alternative approach to the same problem (the
multirate multicast case), presented in [11].

An aggregate utility maximization approach to flow control
was suggested recently by Kelly [13]. Recently, this problem
has received considerable attention in the context of unicast net-
works. Several flow control algorithms, both rate-based and
window-based, have been proposed (see [17], [14], [16], [28],
[10]). These algorithms were derived using different optimiza-
tion approaches, and we will not discuss them here. Amongst
these, the unicast algorithm presented in [10] is also based on
subgradient optimization methods. For the special case of all
unicast sessions, the algorithm presented in this paper reduces
to a form that has certain similarities with the algorithm in [10]
(particularly the fact that in both cases, the congestion feedback
from the network to the user is the number of congested links on
user’s path). However, compared to the the algorithm in [10], the
all unicast version of our algorithm guarantees convergence un-
der much weaker assumptions on the receiver utility functions
and the penalty scaling factor.

For the case of multirate multicast sessions, the optimiza-
tion based rate control problem has not been adequately ad-
dressed. As we have already argued in earlier sections, the
non-separability and non-differentiability of the problem and the
multicast-specific requirements make this problem much more
complex than its unicast version. In [11], the authors address the
multirate multicast utility maximization problem and propose
dual-based algorithms for it. The algorithms are distributed, and
do not require the network to know the receiver utilities. The
processing, storage and communication overheads at a junction
node is proportional to its number of children. In spite of these
attractive features, the algorithms in [11] suffer from certain
drawbacks which limit their practical viability.

In the algorithms in [11], the network determines its conges-
tion level based on certain “pseudo-rates” which could be dif-
ferent from the actual rates. The pseudo-rates can not be in-
ferred from the actual traffic rates. These pseudo-rates need to
be stored at junction nodes, and also to be communicated be-
tween a parent and children nodes, thus increasing the storage
and communication overheads significantly. More importantly,
each link has to keep track of the pseudo-rate of each of the ses-
sions going through it (in order to update the link congestion
indicator). Therefore, the network links need to maintain per-
session state. Hence these algorithms do not scale as the number
of sessions traversing a link increases. Moreover, the pseudo-
rates are communicated between a parent and its children nodes,
thus increasing the storage and communication overheads sig-

nificantly. As we have argued before, in our algorithm, no per-
session information needs to be maintained at the non-junction
nodes. Moreover, we do not have any extra overhead of storing
and communicating pseudo-rates.

In the algorithms proposed in [11], the congestion informa-
tion (“congestion prices”) that the network needs to communi-
cate to the users are real numbers that could vary over a wide
range. This poses a difficulty in communicating the price to the
end-host using a small number of bits. While one can use some
probabilistic marking policies (following the approach in [1]) to
convey the congestion information is a single bit, it is not clear
if such policies can provide theoretical convergence guarantees
(note that even if the algorithm converges in that case, the con-
vergence would be in some probabilistic sense). On the other
hand, our algorithm has guaranteed deterministic convergence,
and would require, in practice, no more than one byte in the
packet header for conveying the congestion information.

In terms of computational overhead too, our algorithm is sig-
nificantly better than those proposed in [11]. In the latter, the
junction nodes are required to solve a maximization problem.
This could impose a considerable computational overhead on
the core routers of the network. In our case, however, the al-
gorithms of the junction (as well as the non-junction) nodes are
extremely simple, and therefore, the computational overhead on
the core routers is small. Moreover, in certain cases, the receiver
algorithm too could be much simpler in our case as compared to
that in [11] (note that the algorithms in [11] require the receiver
to compute a maximizer, whereas in our case, the receiver only
needs to compute a derivative).

It is also worth noting here that the algorithm presented here
guarantees convergence for a wider class of utility functions as
compared to the algorithms in [11]. Our algorithm guarantees
convergence for linear utility functions, and also a wide range of
non-differentiable utility functions, which is outside the frame-
work of the algorithms in [11].

IX. CONCLUDING REMARKS AND FUTURE WORK

In this paper, we considered the rate control problem for mul-
tirate multicast sessions, with the purpose of maximizing the
aggregate user utility. This utility maximization problem in-
tegrates various fairness criteria in a common framework. We
presented a simple rate control algorithm that achieves the opti-
mal rates for this problem, and can thus be used to achieve vari-
ous fairness criteria (by choosing the utility functions appropri-
ately). The algorithm is distributed, and scalable, both in terms
of the size of each session and the number of sessions in the
network. An attractive feature of the algorithm is that the com-
putational burden on the core routers, as well as the end-hosts,
is low. Moreover, the overhead of communication between the
user and the network is also small.
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Fig. 9. Convergence of received rates with 20 layers, and random single-bit marking (with measurement based estimation of rates). (The straight lines represent the
optimal (theoretical) rates.)
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a single bit (congested/uncongested) in our case. Whereas the
approach taken in our paper can be considered to be a general-
ization of the approach presented in [10] for the unicast case,
the approach in [8] can be viewed as a generalization of the ap-
proach proposed in [14], [28] for unicast sessions.
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APPENDIX I: SUBGRADIENTS AND THEIR PROPERTIES

Definition 1: [24] (Subgradient and Subdifferential) Con-
sider a convex and continuous function f defined on a convex
set F ⊆ <k. Then a vector w0 ∈ <k is called a subgradient of
f at a point x0 ∈ F if it satisfies

f(x) − f(x0) ≥ 〈w0, x − x0〉 ∀x ∈ F

where 〈·, ·〉 denotes the inner product.
The subdifferential of f at x0 ∈ F , denoted by ∂f(x0), is the

set of all subgradients of f at x0, i.e.,

∂f(x0) = {w0 ∈ <k : f(x) − f(x0) ≥ 〈w0, x − x0〉 ∀x ∈ F}
In general, subgradient at a point may be non-unique. How-

ever, if ∇f(x0) exists, then ∂f(x0) = {∇f(x0)}.
Next we state two properties of subgradients (see Theorems

1.12 & 1.13 of [24]), which will be useful in our analysis.
Lemma 1: Let I be a finite index set. Let fi, i ∈ I , be convex,

continuous functions defined on a convex set F . Let x0 ∈ F ,
and wi0 ∈ ∂fi(x0), i ∈ I .
(a) Let f(x) =

∑

i∈I aifi(x), where ai ≥ 0, i ∈ I . Then
∑

i∈I aiwi0 ∈ ∂f(x0).
(b) Let f(x) = maxi∈I fi(x). Define Ĩ(x) = {i ∈ I : fi(x) =
f(x)}. Then wi0 ∈ ∂f(x0), for all i ∈ Ĩ(x0).

APPENDIX II: PROOF OF THEOREM 1

First we state a few lemmas that would be used in the proof
of Theorem 1. For each l ∈ L, define gl : <

|R|
+ → < as gl(x) =

maxr∈Sl∩Rm
xr − cl =

∑

r∈S̃l
xr − cl. Thus the capacity

constraint for link l can be simply written as gl(x) ≤ 0.
Now consider the following problem

P̃ : maximize
∑

r∈R

Ur(xr) − K
∑

l∈L

max{0, gl(x)}

subject to xr ∈ Xr ∀r ∈ R

where K is a non-negative constant.
Let x̃∗ denote the optimal solution of P̃ (note that the unique-

ness of this optimum is guaranteed by Assumption 3).
Lemma 2: If K > AR̄, then x̃∗ = x∗.
The above result is fairly intuitive. Comparing problems P

and P̃, we see that the link constraints in P have been trans-
ferred to the objective function in P̃. The term K max{0, gl(x)}
can be interpreted as the penalty associated with the violation of
the capacity constraint of link l. Thus the above lemma states
that when the penalty associated with constraint violations is
sufficiently large, the optimal solution set of the unconstrained
problem P̃ becomes the same as that of P. Results similar to
the one stated above have been observed in the optimization lit-
erature. For example, see [3] (and the references therein) and
[24] (Theorem 4.2), where the above result is shown to hold for
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a slightly different lower bound on K. A rigorous proof of The-
orem 2 is quite complex, and is stated in [12].

Now define a function Ũ : <
|R|
+ → < as Ũ(x) =

∑

r∈R Ur(xr) − K
∑

l∈L max{0, gl(x)}. Thus P̃ is the prob-
lem of maximizing Ũ(x) subject to x ∈ XR. Let u

(n)
r =

U
′

r(x
(n)
r ), and v

(n)
r = u

(n)
r − Kp

(n)
r . Let u(n) = (u

(n)
r , r ∈ R)

denote the vector of the utility derivatives, and p(n) = (p
(n)
r , r ∈

R) denote the vector of the congestion penalties. Let v(n) =

(v
(n)
r , r ∈ R) = u(n) −Kp(n). Note that since p(n) depends on

the penalty splitting factors α
(n)
r , r ∈ R̃ \ R̃Ω (cf. (5)), so does

v(n).
Lemma 3: If α

(n)
r , r ∈ R̃ \ R̃Ω satisfy (8)-(10), then v(n) ∈

∂Ũ(x(n)).
Proof: Define Pl(x) = max{0, gl(x)}, and P (x) =
∑

l∈L Pl(x). Therefore, Ũ(x) = U(x) − KP (x).
We will first show that p(n) ∈ ∂P (x(n)). Define glm(x) =

maxSl∩Rm
xr . Then gl(x) =

∑

m∈M glm(x). Now for every
l ∈ L, let β

(n)
l = (β

(n)
l,r , r ∈ R) be a |R|-dimensional vector

whose components are given as

β
(n)
l,r =

{

0 if r /∈ Sl
∏

r
′′∈Qr\Q

r
′
α

(n)

r
′′ if r ∈ Sl

(13)

where r
′

is junction/receiver node immediately downstream of
link l in the multicast tree to which r belongs. Note that since
the splitting factors are either 0 or 1, the components β

(n)
l,r and

are also either 0 or 1. Then combining (5) and (4), it is easy to
see that p(n) can be written as

p(n) =
∑

l∈L

β
(n)
l ε

(n)
l (14)

Now for every l ∈ L and every m ∈ M , let β̃
(n)
lm = (β̃

(n)
lm,r, r ∈

R) be a |R|-dimensional vector whose components are given as

β̃
(n)
lm,r =

{

β
(n)
l,r if r ∈ Rm

0 if r /∈ Rm

(15)

Next we show that β̃
(n)
lm ∈ ∂(maxr∈Sl∩Rm

x
(n)
r ) = ∂glm(x(n)).

Consider any l ∈ L and any m ∈ M . Now consider the two
cases:
(i) Sl ∩ Rm = φ : In this case, it is easy to see that β̃

(n)
lm is a

zero vector. Thus β̃
(n)
lm ∈ ∂(maxr∈Sl∩Rm

x
(n)
r ), trivially.

(ii) Sl ∩ Rm 6= φ : From (8) and (10), it is easy to see
that only one component of β̃

(n)
lm is 1, and all the rest are 0.

(Note that for β̃
(n)
lm,r to be 1, the splitting factors of all the junc-

tion/receiver nodes in the downstream path from the link l to
receiver r has to be 1. It is easy to see that this will happen for
exactly one receiver of multicast group m). Let r

′

∈ Rm be
such that β̃

(n)

lm,r
′ = 1. Then using (9), it is also easy to show that

x
(n)

r
′ = maxr∈Sl∩Rm

x
(n)
r . Then, from Lemma 1 (b), it follows

that β̃
(n)
lm ∈ ∂(maxr∈Sl∩Rm

x
(n)
r ).

From cases (i) and (ii), it follows that β̃
(n)
lm ∈ ∂glm(x(n)) for all

l ∈ L and m ∈ M .

Note that β
(n)
l =

∑

m∈M β̃
(n)
lm . Hence, from Lemma 1 (a), it

follows that β
(n)
l ∈ ∂(

∑

m∈M glm(x(n)) = ∂gl(x
(n)). Using

this fact, and Lemma 1 (b), it is easy to show that β
(n)
l ε

(n)
l ∈

∂(max{0, gl(x
(n))}) = ∂Pl(x

(n)). Then from (14), and us-
ing Lemma 1 (a), it follows that p(n) ∈ ∂(

∑

l∈L Pl(x
(n))) =

∂P (x(n)).
It is straightforward to show that u(n) ∈ ∂U(x(n)). There-

fore, using Lemma 1 (a), v(n) = u(n) − Kp(n) ∈ ∂U(x(n)) −
KP (x(n)) = ∂Ũ(x(n)). 2

Proof of Theorem 1: We will first show that the sequence
{x(n)} converges to x̃∗. .

Choose an arbitrary δ > 0. Let δ′ = (δ/2). For any ε
′

> 0,
define Dε

′ as Dε
′ = {x : x ∈ XR, Ũ(x) ≥ Ũ∗ − ε

′

}. It follows
from Theorem 27.2 of [22] that there exists an ε = ε(δ′) > 0
such that

Dε ⊂ {x : ||x − x̃∗|| ≤ δ′} (16)

Consider an n for which x(n) /∈ Dε. Therefore, Ũ(x(n)) <
Ũ∗ − ε. Since v(n) ∈ ∂Ũ(x(n)) (from Lemma 3), and using the
definition of a subgradient (Definition 1), we obtain

〈

v(n), x(n) − x̃∗
〉

≤ Ũ(x(n)) − Ũ(x̃∗) < −ε (17)

Note that ||u(n)|| is upper-bounded (from Assumption 2), and so
are K and ||p(n)||. Therefore, ||v(n)|| = ||u(n) −Kp(n)|| is also
upper-bounded. Let ||v(n)|| ≤ Ã for all n. Also note that the
rate update procedure for the receiver nodes, as stated in (6), can
be compactly stated as: x(n+1) = [ x(n) + λnv(n) ]XR

. Using
these facts, and (17), we obtain,

||x(n+1) − x̃∗||2 = ||[ x(n) + λnv(n) ]XR
− x̃∗||2

≤ ||x(n) + λnv(n) − x̃∗||2 (18)
= ||x(n) − x̃∗||2 + λ2

n||v
(n)||2

+2λn

〈

x(n) − x̃∗, v(n)
〉

< ||x(n) − x̃∗||2 + Ã2λ2
n − 2ελn (19)

Note that (18) follows from the fact that x̃∗ ∈ XR (use projec-
tion theorem).

Since λn → 0, λn ≤ (ε/Ã2) when n is sufficiently large. For
all such n, from (19), we get

||x(n+1) − x̃∗||2 < ||x(n) − x̃∗||2 − ελn (20)

Now, for the sake of contradiction, let us assume that there
exists a N ′

ε < ∞ such that x(n) /∈ Dε for all n ≥ N ′
ε. Therefore,

there exists Nε ≥ N ′
ε be such that (20) holds for all n ≥ Nε.

Summing up the inequalities obtained from (20) for n = Nε to
Nε + m, we obtain

||x(Nε+m+1) − x̃∗||2 < ||x(Nε) − x̃∗||2 − ε

Nε+m
∑

n=Nε

λn (21)

which implies that ||x(Nε+m+1) − x̃∗|| → −∞ as m → ∞,
since

∑

λn diverges. This is impossible, since ||x(Nε+m+1) −
x̃∗|| ≥ 0. Hence our assumption was incorrect. Hence, there
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exists an infinite sequence n1,ε < n2,ε < n3,ε < ... such that
x(ni,ε) ∈ Dε for all i = 1, 2, 3, .... This implies that there exists
an i1 such that (20) holds for all n ≥ ni1,ε. Also, since λn → 0,
there exists and i2 such that λn ≤ (δ

′

/Ã) for all n ≥ ni2,ε.
Let i′ = max(i1, i2). We show that ||x(n) − x̃∗|| ≤ δ for all

n ≥ ni′,ε. Pick any n ≥ ni′,ε. There can be three cases:
Case 1 : n = nj,ε for some j ≥ i′ : In this case, x(n) ∈ Dε.
From (16), it trivially follows that ||x(n) − x̃∗|| ≤ δ′ < δ.
Case 2 : n = nj,ε + 1 for some j ≥ i′ : In this case, x(n) =
x(nj,ε+1) = [ x(nj,ε) + λnj,ε

v(nj,ε) ]XR
. Thus

||x(n) − x(nj,ε)|| = ||[ x(nj,ε) + λnj,ε
v(nj,ε) ]XR

− x(nj,ε)||

≤ ||x(nj,ε) + λnj,ε
v(nj,ε) − x(nj,ε)||

= λnj,ε
||v(nj,ε)|| ≤ Ãλnj,ε

≤ δ′ (22)

From (22) and the fact that ||x(nj,ε) − x̃∗|| ≤ δ′ (Case 1), we get

||x(n) − x̃∗|| ≤ ||x(nj,ε) − x̃∗|| + ||x(n) − x(nj,ε)||

≤ δ′ + δ′ = 2δ′ = δ (23)

Case 3 : nj,ε + 1 < n < nj+1,ε for some j ≥ i′ : Note that
x(n′) /∈ Dε for all n′ satisfying nj,ε < n′ < nj+1,ε. From (20),
it follows that ||x(n′+1) − x̃∗|| < ||x(n′) − x̃∗||. Summing up
these inequalities obtained for n′ = nj,ε + 1 to n− 1, we obtain
||x(n) − x̃∗|| < ||x(nj,ε+1) − x̃∗||. Since ||x(nj,ε+1) − x̃∗|| ≤ δ
(Case 2), it follows that ||x(n) − x̃∗|| ≤ δ.

From cases 1, 2, 3,, if follows that ||x(n) − x̃∗|| ≤ δ for all
n ≥ ni′,ε. By virtue of the arbitrariness of δ, it follows that
limn→∞ ||x(n) − x̃∗|| = 0. Now, from Lemma 2, it follows that
if K > AR̄, then limn→∞ ||x(n) − x∗|| = 0. 2
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