Biochimica et Biophysica Acta 1733 (2005) 210-223 http://www.elsevier.com/locate/bba # Time-resolved fluoroimmunoassays of the complete set of secreted phospholipases A₂ in human serum Timo J. Nevalainen^{a,*}, Leena I. Eerola^a, Esa Rintala^b, V. Jukka O. Laine^c, Gérard Lambeau^d, Michael H. Gelb^e ^aDepartment of Pathology, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland ^bDepartment of Medicine, Satakunta Central Hospital, Pori, Finland ^cDepartment of Pathology, Turku University Hospital, Turku, Finland ^dInstitut de Pharmacologie Moléculaire et Cellulaire, CNRS, Sophia Antipolis, Valbonne, France ^cDepartments of Chemistry and Biochemistry, University of Washington, Seattle, WA, USA Received 22 September 2004; received in revised form 3 December 2004; accepted 20 December 2004 Available online 7 January 2005 #### Abstract Time-resolved fluoroimmunoassays (TR-FIA) were developed for all human secreted phospholipases A2 (PLA2), viz. group (G) IB, GIIA, GIID, GIIE, GIIF, GIII, GV, GX and GXIIA PLA₂ and the GXIIB PLA₂-like protein. Antibodies were raised in rabbits against recombinant human PLA₂ proteins and used in sandwich-type TR-FIAs as both catching and detecting antibodies, the latter after labeling with Europium. The antibodies were non-cross-reactive. The analytical sensitivities were 1 µg/L for the TR-FIA for GIB PLA₂, 1 µg/L (GIIA), 35 µg/L (GIID), 3 µg/L (GIIE), 4 µg/L (GIIF), 14 µg/L (GIII), 11 µg/L (GV), 2 µg/L (GX), 92 µg/L (GXIIA) and 242 µg/L (GXIIB). All secreted PLA₂s were assayed by these TR-FIAs in serum samples from 34 patients (23 men and 11 women, mean age 53.2 years) treated in an intensive care unit for septic infections, and in control samples from 28 volunteer blood donors (14 men and 14 women, mean age 57.0 years). Five serum samples (3 in the sepsis group and 2 in the blood donor group) gave high TR-FIA signals that were reduced to background (blank) levels by the addition of non-immune rabbit IgG to the sera. This reactivity was assumed to be due to the presence of heterophilic antibodies in these subjects. In all other subjects, including septic patients and healthy blood donors, the TR-FIA signals for GIID, GIIE, GIIF, GIII, GV, GX and GXIIA PLA₂ and the GXIIB PLA₂-like protein were at background (blank) levels. Four patients in the sepsis group had pancreatic involvement and elevated concentration of GIB PLA2 in serum (median 19.0 µg/L, range 13.1-33.7 µg/L, n=4) as compared to the healthy blood donors (median 1.8 μg/L, range 0.8–3.4 μg/L, n=28, P<0.0001). The concentration of GIIA PLA₂ in the sera of septic patients (median 315.7 μg/L, range 15.9-979.6 μg/L, n=34) was highly elevated as compared to that of the blood donors (median 1.8 μg/L, range 0.8–5.8 μg/L, n=28, P<0.0001). Our current results confirmed elevated concentrations of GIB and GIIA PLA₂ in the sera of patients suffering from acute pancreatitis or septic infections, respectively, as compared to healthy subjects. However, in the same serum samples, the concentrations of the other secreted PLA2s, viz. GIID, GIIE, GIIF, GIII, GV, GX and GXIIA PLA2 and the GXIIB PLA2-like protein were below the respective analytical sensitivities of the TR-FIAs. It is concluded that generalized bacterial infections do not lead to elevated serum levels of GIIE, GIIF, GIII, GV and GX PLA2s above the detection limits of the current TR-FIAs. © 2004 Elsevier B.V. All rights reserved. Keywords: Blood donor; Immunoassay; Infection; Inflammation; Intensive care; Sepsis ### 1. Introduction Phospholipase A₂ (PLA₂) was first identified in snake venoms and mammalian pancreas [1]. A large number of distinct PLA₂ types have been characterized and classified in the broad categories of intracellular and secreted forms of the enzyme [2–6]. Ten human secreted PLA₂s have been identified. They are group (G) IB, GIIA, GIID, GIIE, GIIF, GIII, GV, GX and GXIIA PLA₂ and the GXIIB PLA₂-like protein. GIIC PLA₂ found in murine testis is a pseudogene in the human [7]. Secreted PLA₂s are typically low ^{*} Corresponding author. Tel.: +358 2 3337500; fax: +358 2 3337459. *E-mail address:* timo.nevalainen@utu.fi (T.J. Nevalainen). molecular mass proteins (14–19 kDa) with a highly conserved catalytic site and Ca²⁺-binding loop [3,8]. All 10 secreted PLA₂s have been sequenced, cloned and expressed, and their organ/cellular sites of expression have been variously reported by a number of authors. In these studies, gene expression has been investigated at the mRNA level by Northern blotting, RT-PCR or in situ hybridization on tissue sections, or/and at the protein level by Western blotting, immunoassays or immunohistochemistry. GIB PLA₂ (pancreatic PLA₂) is a digestive enzyme synthesized and secreted by pancreatic acinar cells. Its function is to catalyze the hydrolysis of dietary phospholipids in the lumen of the duodenum [1]. The enzyme has been purified from human pancreas and localized by immunohistochemistry in the apical zymogen granule portion of pancreatic acinar cells [9]. The highest GIB PLA₂ protein concentration among human organs has been measured in the pancreas [10]. In addition, GIB PLA₂ is expressed at both mRNA and protein levels in nonpancreatic tissues including the lung, spleen, kidney and ovary where the enzyme has been proposed to promote cell proliferation and migration [11]. The GIB PLA₂ gene was the first human PLA₂ cloned [12]. GIIA PLA₂ (synovial PLA₂) was cloned from blood platelets and synoval fluid [13,14]. The enzyme is involved in inflammation [15] and expressed at mRNA and protein levels in Paneth cells of the small intestinal mucosa, lacrimal gland and prostatic epithelial cells and cartilage [16]. Recently cloned secreted PLA₂s include GIID PLA₂ that is expressed at the mRNA level in the pancreas, thymus, spleen, colon, skin, lung and eosinophils, and interestingly, its expression appears to be regulated by inflammatory challenges [17–19]. GIIE PLA₂ is expressed at the mRNA level in the brain, heart, lung and placenta, and its expression is markedly enhanced in the lung and intestine of endotoxin-challenged GIIA PLA2-deficient C57BL/6J mice [20]. GIIF PLA₂ is expressed at the mRNA level in the placenta, testis, thymus, liver and kidney [21], and the enzyme protein has been demonstrated in synovial lining cells, capillary endothelial cells and plasma cells of rheumatoid arthritic joints [22]. GIII PLA₂ is a well-known component of bee and lizard venoms [2]. The human GIII PLA₂ gene has been cloned and its mRNA demonstrated in the kidney, heart, liver and skeletal muscle [23]. GV PLA₂ is expressed at the mRNA level in the heart, lung, placenta and neutrophils [24,25]. Recent studies show that the enzyme augments cytosolic PLA2-mediated arachidonic acid release in mouse macrophages [26]. In the lung, the mRNA of GV PLA₂ has been localized to airway epithelial cells by in situ hybridization [27]. GX PLA₂ is expressed at the mRNA level in the spleen, thymus and peripheral blood leukocytes [25,28], and the enzyme protein has been demonstrated in lung alveolar epithelial cells and postulated to be involved in pulmonary inflammatory responses [27,29]. GXIIA PLA₂ is expressed at the mRNA level in the heart and skeletal muscle, kidney and pancreas with weaker expression in the brain, liver, small intestine, lung, placenta, ovaries, testis and prostate [5]. The recently cloned GXIIB PLA₂-like protein is expressed at the mRNA level in the liver, kidney and small intestine. The GXIIB PLA₂-like protein is catalytically inactive due to a mutation of the catalytic site histidine to leucine [6]. All secreted PLA₂ proteins have been produced by recombinant technology in quantities sufficient to produce antibodies for immunochemical investigations [6,25,30]. Time-resolved fluoroimmunoassays (TR-FIA) have been developed earlier for the measurement of the concentration GIB PLA₂ [31] and GIIA PLA₂ [32] in human serum. In the serum of healthy subjects, the concentration of both GIB and GIIA PLA₂ is below 10 µg/L [31,32]. Elevated serum levels of GIB PLA2 are associated to acute pancreatitis [33,34], and the serum levels of GIIA PLA₂ increases up to 100-200-fold in various diseases involving inflammation [35]. The presence of the other secreted PLA₂s besides GIB and GIIA in the serum has not been reported. However, it can be hypothesized that the diversity of human secreted PLA₂s indicates important physiological and pathological functions for these proteins, e.g. in inflammation. As reviewed above, a number of secreted PLA2s are expressed in many tissues and inflammatory cells. Therefore, we surmised that these enzymes may be secreted into the blood plasma, especially in generalized inflammatory diseases such as sepsis. In the current investigation, we developed TR-FIAs for the measurement of all human secreted PLA₂s and studied their levels in serum samples from patients suffering from severe septic infections, as well as in serum of healthy blood donors. ### 2. Materials and methods 2.1. Production of recombinant human secreted phospholipases A_2 and antibodies in rabbits Recombinant human secreted PLA₂s were prepared as described previously [6,30]. The proteins were pure and fully native (all disulfides formed) as judged by SDS-PAGE and mass spectrometric analyses [30]. Rabbit anti-human secreted PLA₂ antisera were prepared as described and were shown by Western blotting to be highly specific for each PLA₂ molecular species [25]. #### 2.2. Time-resolved fluoroimmunoassay TR-FIAs for human GIB, GIIA, GIID, GIIE, GIIF, GIII, GV, GX and GXIIA PLA₂ and the GXIIB PLA₂-like protein were developed as described earlier for human GIB and GIIA PLA₂ [31,32], with slight modifications. The assays are based on corresponding anti-PLA₂ antibodies raised in rabbits. All reagents used were of analytical grade. Milli-Q-purified water (Millipore, Bedford, MA, USA) was used throughout. IgG was isolated by passing 1-2 mL rabbit anti-PLA₂ antiserum
through a 1 mL HiTrap Protein A HP column (Amersham Biosciences, Uppsala, Sweden) according to the manufacturer's instructions. Twenty mM sodium phosphate buffer, pH 7 containing 0.9% NaCl (phosphate buffered saline, PBS), was used as the binding buffer and 0.1 M glycine, pH 2.5 as the elution buffer. After overnight dialysis against PBS and freeze-drying, IgG was dissolved in 300 µL of water, and 100 μL Delfia Eu-labelling reagent (Perkin Elmer Wallac, Turku, Finland) was added and incubated overnight at 4 °C according to the manufacturer's instructions. Eu-labelled IgG was isolated from the unreacted Eu-labelling reagent by size exclusion chromatography on a column 1.6 cm in diameter containing proximal 16 cm Superdex 75 (Pharmacia, Uppsala, Sweden) and subsequent 40 cm Trisacryl GF 2000 (LKB, Bromma, Sweden) gels. The column was equilibrated and eluted with 50 mM Tris-HCl buffer, pH 7.75 containing 0.9% NaCl and 0.05% sodium azide (TSA). High molecular weight fractions with time-resolved fluorescence $>5 \times 10^5$ counts per second (cps)/µL were pooled and stored at 4 °C until used as tracers in TR-FIAs as described below. To coat microtitration wells (96-well Delfia microtitration plates, Wallac) with the catching antibody, $100~\mu L$ of protein A-purified IgG diluted to $10~\mu g/mL$ by TSA was added to the wells and incubated overnight at room temperature followed by washing (Delfia Platewash, Wallac) with TSA. For blocking, $300~\mu L$ of TSA containing 0.1% BSA, 6% D-sorbitol, 3.9% diethylenetriaminepentaacetic acid (DTPA, Titriplex V, Merck, Darmstadt, Germany) and 1~mM CaCl $_2$ were added and, after an overnight incubation at room temperature, the fluid was aspirated, and the plates were stored at $4~^{\circ}C$ in a moist atmosphere until used. Protein was assayed by a spectrophotometric method by using bovine serum albumin (BSA, Sigma Chemical Co., St. Louis, MO, USA) as a standard [36]. For TR-FIA, 10 μL of serum sample or standard solution and 90 μL of Delfia assay buffer (Tris–HCl buffered NaCl solution, pH 7.8 containing BSA, bovine gammaglobulins, Tween 40, DTPA and an inert red dye, Wallac) were added to the IgG-coated microtitration wells and incubated at room temperature for 30 min with shaking at 240 cycles/min (Delfia Plateshake, Wallac). After washing with TSA, 100 µL of detecting antibody (Eu-labelled IgG solution diluted to 10 μg/mL with assay buffer, 1 μg/mL in the experiments on analytical recovery and interassay variation) was added to the wells and incubated for 30 min with shaking as above. After washing, 100 µL of Delfia enhancement solution (Triton X-100, acetic acid and chelators, Wallac) was incubated in the wells for 5 min with shaking as above, and after 10 min standing at room temperature, fluorescence was measured with a 1230 Arcus or a Victor fluorometer (Wallac) at excitation and emission wavelengths of 340 nm and 615 nm, respectively. In the preliminary experiments, high signal levels were seen in a few serum samples in all TR-FIAs. It was surmised that these signals were due to the presence of heterophilic antibodies in these sera [37]. In order to suppress this interference, IgG purified as described above from non-immunized rabbit serum was added to all serum samples to a concentration 500 μ g/mL, and the mixtures were incubated at room temperature for 60 min before the assays. Human secreted PLA₂ produced by recombinant techniques as described above were used as standards in the TR-FIAs. The proteins were diluted with assay buffer to the desired concentrations. Both linear and polynomial regression formulas were used to convert the cps-readings from the fluorometer to the corresponding PLA₂ concentration (μg/L) values. To study the analytical recovery, recombinant PLA₂s were added to the serum from a healthy blood donor at concentrations of 50, 100 and 200 μg/L for GIB, GIIA, GIIE, GIIF, GIII, GV and GX PLA₂, 125, 250 and 500 μg/L for GXIIA PLA₂ and 500, 1000 and 2000 μg/L for the GXIIB PLA₂-like protein. Recovery is expressed as [measured increase in concentration]/[predicted increase in concen- Table 1 Absence of cross-reactivity between unrelated antisera and antibodies | Sample | Assays | | | | | | | | | | | |--------|--------|-------|------|-------|------|------|------|-------|-------|-------|--| | | GIB | GIIA | GIID | GIIE | GIIF | GIII | GV | GX | GXIIA | GXIIB | | | GIB | 61.8 | 1.2 | 0.8 | 1.2 | 1.0 | 1.6 | 1.0 | 0.6 | 1.0 | 1.7 | | | GIIA | 0.9 | 582.0 | 1.1 | 1.2 | 1.0 | 1.1 | 0.8 | 0.7 | 0.9 | 0.9 | | | GIID | 0.9 | 1.0 | 3.4 | 1.0 | 0.9 | 0.9 | 0.8 | 0.6 | 1.5 | 0.8 | | | GIIE | 0.8 | 0.9 | 0.7 | 101.0 | 1.0 | 0.9 | 0.8 | 0.6 | 1.0 | 0.3 | | | GIIF | 0.9 | 0.8 | 0.7 | 1.0 | 24.3 | 0.9 | 0.8 | 0.6 | 0.9 | 0.5 | | | GIII | 1.0 | 0.9 | 1.0 | 1.0 | 1.0 | 15.8 | 1.0 | 0.8 | 0.9 | 0.6 | | | GV | 0.9 | 0.8 | 0.7 | 0.9 | 0.9 | 1.2 | 15.4 | 0.7 | 0.8 | 0.6 | | | GX | 0.9 | 0.8 | 0.8 | 1.0 | 0.9 | 0.9 | 1.0 | 136.0 | 0.9 | 0.7 | | | GXIIA | 0.8 | 0.8 | 0.7 | 1.0 | 1.0 | 1.0 | 0.9 | 1.5 | 6.8 | 0.8 | | | GXIIB | 0.8 | 0.8 | 0.7 | 1.0 | 0.9 | 0.9 | 0.8 | 1.3 | 0.8 | 10.4 | | Each of the 10 rabbit anti-PLA₂ IgGs purified from the respective antisera was reacted in microtitration wells with all 10 recombinant human secreted PLA₂s used in the immunization and, after washing and adding Europium-labeled PLA₂-specific detecting antibody, fluorescence was measured by time-resolved fluorometry as described in Materials and methods, sample volume $10~\mu$ L. The signals from the fluorometer were normalized by dividing the counts-per-second (cps) values by the mean zero-standard cps value of the respective TR-FIA run. Unity indicates the zero-standard (blank) signal level. The normalized signals for the specific antigen-antibody pairs are in bold. tration]×100%. To study the reproducibility of the assays, interassay variations were determined by measuring the PLA₂ levels in the same standard solutions containing recombinant PLA₂s on 4 different days. In these experiments, the PLA $_2$ concentrations of the standards solutions were 50 and 100 μ g/L for GIB, GIIA, GIIE, GIIF, GIII, GV and GX PLA $_2$, 125 and 250 μ g/L for GXIIA PLA $_2$ and 500 and 1000 μ g/L for the GXIIB PLA $_2$ -like protein. In addition, the Fig. 1. Standard curves and precision profiles of TR-FIAs for human GIB, GIIA, GIID, GIIE, GIIF, GIII, GV, GX and GXIIA PLA₂ and the GXIIB PLA₂-like protein. Each data point represents the mean of at least 6 duplicates. Fig. 1 (continued). reproducibility of TR-FIA for GIIA PLA₂ was tested by assaying the same serum samples from 33 septic patients at two occasions 6 months apart. Mann–Whitney U test and Pearson linear regression were used for statistical analysis, and P<0.05 was regarded significant. ### 2.3. Serum samples from septic patients and healthy blood donors The cohort of septic patients consisted of 34 patients admitted to the intensive care unit of Satakunta Central Hospital because of severe sepsis. The study protocol was approved by the local ethical committee. The criteria for enrollment were: systemic inflammatory response syndrome (SIRS) and clinical or laboratory evidence of at least one organ failure related to severe sepsis [38]. The mean age (S.D.) was 53.3 (18.4) years, and there were 11 (32.3%) men and 23 (67.6%) women. Seventeen patients (50%) had septic shock. The infections included peritonitis, meningitis, pancreatitis, pneumonia, gas gangrene, and pyelonephritis. Staphylococcus aureus, Escherichia coli, Streptococcus salivarius, Neisseria meningitidis, Klebsiella pneumoniae, Streptococcus pneumoniae, and Streptococcus acalactiae were identified by blood cultures. Negative blood culture results were seen in 24 (70.5%) cases. Serum and plasma samples for PLA_2 and other analyses were taken as soon as possible after the admission before the beginning of antimicrobial therapy and subsequent samples frequently during the treatment in the intensive care unit. Plasma amylase activity and the concentration of C-reactive protein (CRP) in the serum were assayed by standard methods (Thermo Clinical Labsystems, Vantaa, Finland) in the hospital laboratory. Control serum samples were obtained from 28 healthy blood donors, 14 men and 14 women, with mean (S.D.) age of 57.0 (13.7) years. All samples were stored at -20 °C until assayed. #### 3. Results #### 3.1. Specificity of antisera The specificity of the rabbit antisera was tested by measuring with TR-FIA the cross-reactivity of each of the 10 anti-PLA₂ antisera with all 10 antigens used in the immunizations. The signals from the fluorometer were normalized for comparison by dividing the counts-persecond (cps) values by the mean zero-standard (blank) cps value of the respective TR-FIA run (signal-to-background ratio). All signals except those for the antigen—antiserum pair for each immunized rabbit were close to the blank values (signal-to-background ratio close to unity) indicating the absence of cross-reactivity (Table 1). ## 3.2. Standard curves, precision profiles and sensitivities of the assays The TR-FIAs for different PLA2s varied in their performance, most probably due to the biological variation in the process of immunization of individual rabbits that resulted in differences in the affinities of the antibodies. The standard curves and the precision profiles for each TR-FIA are illustrated in Fig. 1. The assays for GIB, GIIA and GIIE PLA₂s had high PLA₂ standard-signal responses, whereas the responses in the assays for GIIF, GIII, GV and XIIA and the XIIB PLA₂-like protein were relatively low. The analytical sensitivity for each assay was calculated by determining the PLA₂ concentration that corresponds to the mean fluorescence of zero standard (at least 6 replicates) plus 3 S.D.s. The sensitivities were 1 μg/L for GIB PLA₂, 1 μ g/L (GIIA), 35 μ g/L (GIID), 3 μ g/L (GIIE), 4 μ g/L (GIIF), 15 μ g/L (GIII), 11 μ g/L (GV) and 2 μ g/L
(GX). The assays for GXIIA PLA₂ and the GXIIB PLA₂-like protein were less sensitive, 92 µg/L and 242 µg/L, respectively. Since the sample volume was 10 µL, it was possible to detect the majority of the PLA₂s in the picogram range (from 10 pg for GIB PLA₂ to 350 pg for GIID PLA₂), and GXIIA PLA₂ and the GXIIB PLA₂-like protein in the nanogram range (0.92 ng and 2.42 ng, respectively) by the current TR-FIAs. Table 2 Analytical recoveries (%) for TR-FIAs for GIB, GIIA, GIIE, GIIF, GIII, GV and GX PLA2 after adding 50, 100 and 200 μ g/L of each recombinant protein to serum from a healthy blood donor | μg/L | GIB
(%) | GIIA
(%) | GIIE
(%) | GIIF
(%) | GIII
(%) | GV
(%) | GX
(%) | GXIIA
(%) | GXIIB
(%) | |------|------------|-------------|-------------|-------------|-------------|-----------|-----------|--------------|--------------| | 50 | 74.0 | 95.7 | 79.7 | 133.3 | 82.2 | 127.9 | 80.3 | | | | 100 | 84.8 | 95.4 | 72.3 | 116.7 | 83.6 | 111.3 | 65.9 | | | | 200 | 78.7 | 100.0 | 82.3 | 119.5 | 85.6 | 137.3 | 61.0 | | | | Mean | 79.2 | 97.0 | 78.1 | 123.2 | 83.8 | 125.5 | 69.1 | | | | 125 | | | | | | | | 153.1 | | | 250 | | | | | | | | 179.3 | | | 500 | | | | | | | | 119.8 | | | Mean | | | | | | | | 150.8 | | | 500 | | | | | | | | | 216.0 | | 1000 | | | | | | | | | 169.0 | | 2000 | | | | | | | | | 155.0 | | Mean | | | | | | | | | 180.0 | For GXIIA PLA2 and the GXIIB PLA2-like protein, 125, 250 and 500 μ g/L, and 500, 1000 and 2000 μ g/L were added, respectively. Table 3 Interassay variation (CV%) as determined by measuring on 4 four different days the PLA_2 levels in the same standard solutions containing 50 and 100 μ g/L of recombinant PLA_2 for GIB, GIIA, GIIE, GIIF, GIII, GV and GX PLA_2 , 125 and 250 μ g/L for GXIIA PLA_2 and 500 and 1000 μ g/L for the GXIIB PLA_2 -like protein | μg/L | IB | IIA | IIE | IIF | III | V | X | XIIA | XIIB | |------|------|------|------|------|------|------|------|------|------| | | CV | | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | | 50 | 13.7 | 14.4 | 16.7 | 7.7 | 36.0 | 17.6 | 23.3 | | | | 100 | 6.8 | 16.6 | 13.1 | 14.3 | 50.5 | 24.4 | 32.4 | | | | Mean | 10.2 | 15.5 | 14.9 | 11.0 | 43.2 | 21.0 | 27.8 | | | | 125 | | | | | | | | 20.2 | | | 250 | | | | | | | | 15.1 | | | Mean | | | | | | | | 17.6 | | | 500 | | | | | | | | | 21.0 | | 1000 | | | | | | | | | 27.4 | | Mean | | | | | | | | | 24.2 | #### 3.3. Analytical recovery and reproducibility of the assays Analytical recovery was tested by adding recombinant PLA₂ proteins at three different concentrations to serum from a healthy blood donor. Mean recoveries ranged from 69.1% for GX PLA₂ to 125.5% for GV PLA₂. The recoveries for GXIIA PLA₂ and the GXIIB PLA₂-like protein gave exceedingly high readings: mean values 150.8% and 180.0% (Table 2). Interassay variations were determined by measuring the same 2 standard samples on 4 different days. The variation (mean CV%) ranged from 10.2% for GIB PLA₂ to 43.2% for GIII PLA₂ (Table 3). There was a highly significant correlation (r=0.967, n=33, P<0.0001) between the results when the same serum samples from septic patients were tested for GIIA PLA₂ at 2 different occasions 6 months apart. # 3.4. Phospholipase A_2 levels in serum samples of septic patients and healthy blood donors High TR-FIA readings were found in a few subjects for all different PLA2 types when untreated serum samples were tested. Interestingly, the TR-FIA signals in these subjects were reduced to blank levels after incubating the serum samples with IgG obtained from non-immunized rabbits (Fig. 2). We assumed that the high signals in the TR-FIAs for all 10 PLA₂s in the serum samples of occasional subjects were due to the presence of factor(s), most probably heterophilic antibodies capable of binding rabbit IgG in general rather than just the PLA₂-specific rabbit IgG [37]. Non-immune rabbit IgG obviously prevented the binding of the Eu-labelled IgG tracer to these non-PLA2 rabbit IgG binding factors. Subjects with putative heterophilic antibodies in their sera included septic patients (sp) 4, sp11, and sp30, and blood donors (bd) 50 and bd53. There were no consistent clinical characteristics common to these patients that would separate them from the rest of the current septic patients. The main clinical observations on these patients can be summarized as follows. Sp4 (male, 66 years of age) suffered from epilepsy and chronic cystitis. He had *S. aureus* bacteremia and septic shock but recovered fully. Sp11 (male, 60 years) had advanced multiple sclerosis complicated by perineal gas gangrene. He developed fatal septic shock, and *E. coli* was identified in urine. Sp30 (female, 75 years of age) suffered from Crohn's disease and was operated on because of intestinal obstruction. She had a fatal myocardial infarction 17 days after the operation. In contrast to the rest of the secreted PLA₂s, the TR-FIA signals for GIB and GIIA PLA₂ remained high after the addition of non-immune rabbit IgG to the serum samples of Fig. 2. TR-FIA signals (cps, counts per second as recorded by a fluorometer) in serum samples of septic patients (subjects 1–34, n=34) and healthy blood donors (subjects 36–63, n=28) before (IgG-, open columns) and after (IgG+, filled columns) the addition of non-immune rabbit IgG. "B>" indicates the blank level (cps) for each assay. Fig. 2 (continued). a number of septic patients (Fig. 2). The values referred to below are derived from assays done after adding IgG isolated from non-immune rabbit serum to the samples. Group IB PLA₂ is a serum marker of pancreatic acinar cell injury [33]. In the current study (Table 4), patients with elevated serum GIB PLA₂ levels included sp1, sp7, sp9, and sp19. Sp1 (female, 48 years of age) suffered from alcoholic acute pancreatitis complicated by perforated intestine and fatal peritonitis. Her plasma amylase activity concentration (a commonly used clinical laboratory test for pancreatic injury) was 448 U/L (the upper limit of the reference interval 300 U/L), and the serum GIB PLA $_2$ concentration was 13.1 μ g/L. Sp7 (female, 71 years) had biliary acute pancreatitis and developed fatal septic shock. Her plasma Fig. 2 (continued). amylase was 2509 U/L and serum GIB PLA₂ concentration 18.3 μ g/L. Sp9 (male, 64 years) had severe atherosclerosis, acute myocarditis and pneumonia and developed fatal shock. His plasma amylase was 5899 U/L and serum GIB PLA₂ concentration 19.7 μ g/L. Sp19 (male, 53 years) suffered from acute appendicitis complicated by fatal peritonitis. His plasma amylase was 496 U/L and serum GIB PLA₂ concentration 33.7 μ g/L. Collectively, the serum levels of GIB PLA₂ in the septic patients with pancreatic involvement (median 19.0 μ g/L, range 13.1–33.7 μ g/L, n=4) were significantly higher than those in healthy blood donors (median 1.8 μ g/L, range 0.8–3.4 μ g/L, n=28, P<0.0001). The concentration of GIIA PLA₂ in serum is highly elevated in systemic bacterial infections and septic shock [39]. In the current study (Table 4), the concentration of GIIA PLA₂ in the sera of septic patients (median 315.7 μ g/L, range 15.9–979.6 μ g/L, n=34) was significantly higher than that of healthy blood donors (median 1.8 μ g/L, range 0.8–5.8 μ g/L, n=28, P<0.0001). The measurement of the concentration of C-reactive protein (CRP, the upper limit of the reference interval 10 mg/L) in the serum is a commonly used laboratory test for the acute phase response caused by bacterial infection. The current septic patients (Table 4) had elevated serum CRP levels (median 181 mg/L, range 5–545 mg/L, n=33). There was a statistically significant positive correlation between the CRP and GIIA PLA₂ values (r=0.352, n=33, P<0.05), whereas the correlations between the CRP and GIB PLA₂ and between GIIA PLA₂ and GIB PLA₂ values were not significant. #### 4. Discussion In the current study, we developed TR-FIAs for the measurement of the concentrations of all human secreted PLA₂s, viz. GIB, GIIA, GIID, GIIE, GIIF, GIII, GV, GX and GXIIA PLA₂ and the GXIIB PLA₂-like protein serum. By these assays, we confirmed earlier observations on the presence of GIB PLA₂ and GIIA PLA₂ at low levels in the sera of healthy subjects and elevated levels of GIB PLA₂ in the sera of septic patients with pancreatic involvement and highly elevated levels of GIIA PLA₂ in patients with septic infections [35]. Our novel observation was that the serum concentrations of GIID, GIIE, GIIF, GIII, GV, GX and Fig. 2 (continued). GXIIA PLA₂ and the GXIIB PLA₂-like protein were below the analytical sensitivities of the current TR-FIAs in both healthy subjects and patients suffering from sepsis or acute pancreatitis. GIB PLA₂ is synthesized by pancreatic acinar cells and secreted via the pancreatic duct system into the duodenum where it functions as a digestive enzyme. GIB PLA₂ has been localized by immunohistochemistry in pancreatic acinar cells [9] that most probably serve as the cellular source of the enzyme found in circulating blood. GIB PLA₂ is present in the serum of healthy individuals in low (<10 μ g/L) concentrations [33]. Pancreatic injury, caused e.g. by pancreatitis or pancreatic cancer, results in increased release of GIB PLA₂ into the blood circulation, and the detection of elevated levels of GIB PLA₂ in the serum is as a sensitive and specific marker of pancreatic damage [33,34]. GIIA PLA₂ is a mediator of inflammation [40], an acute phase protein [41] and bactericidal both in vitro [42] and in vivo [43]. GIIA PLA₂ is the most effective antibacterial agent against Gram-positive bacteria among secreted PLA₂s [44]. However, GIIA PLA₂ alone is ineffective against Gramnegative bacteria, whereas GXIIA PLA₂ is capable of killing Gram-negative bacteria in vitro [44]. The concentration of GIIA PLA₂ is low ($<10 \mu g/L$) in the sera of healthy individuals, but increases up to 100-200-fold in patients suffering
from inflammatory diseases such as sepsis and bacterial infections [39], multiple organ failure [45], acute pancreatitis [34], in trauma victims [46], after surgical operations [47,48], as well as in chronic inflammatory diseases such as Crohn's disease [49] and rheumatoid arthritis [50]. The cellular source of circulating GIIA PLA₂ has not been identified unequivocally. Unlikely sources include the spleen and neutrophils, because the concentration of GIIA PLA₂ remained elevated in patient sera after splenectomy [51], and elevated concentrations of GIIA PLA2 were measured in the serum of febrile patients suffering from hematological malignancy and neutropenia after cytotoxic treatment [52]. A recent study established the absence of the expression of the mRNA of GIIA PLA₂ from human blood neutrophils [25]. Putative sources of circulating GIIA PLA₂ include hepatocytes and blood platelets. The expression of the mRNA of GIIA PLA2 has been localized by in situ hybridization in hepatocytes under pathological conditions [53,54], and cytokine-stimulated hepatoma cells secrete GIIA PLA₂ in vitro [41]. The GIIA PLA₂ protein was originally purified from platelets [13], and the mRNA of GIIA PLA2 has been Table 4 Concentrations of GIB PLA₂, GIIA PLA₂ and C-reactive protein (CRP) in sera of 34 septic patients | Patient | Gender/age | GIB PLA ₂ | GIIA PLA ₂ | CRP | | |---------|------------|----------------------|-----------------------|--------|--| | | | $(\mu g/L)$ | $(\mu g/L)$ | (mg/L) | | | 1 | F 48 | 13.1 | 44.0 | 30 | | | 2 | M 20 | 2.5 | 568.3 | 139 | | | 3 | M 62 | 2.3 | 542.4 | 285 | | | 4 | M 66 | 1.8 | 604.6 | 345 | | | 5 | M 72 | 6.1 | 719.1 | 55 | | | 6 | F 73 | 3.4 | 387.0 | 187 | | | 7 | F 71 | 18.3 | 334.4 | 67 | | | 8 | M 21 | 1.5 | 40.0 | 5 | | | 9 | M 64 | 19.7 | 293.3 | 97 | | | 10 | M 75 | 3.7 | 713.6 | 5 | | | 11 | M 60 | 1.1 | 96.7 | 200 | | | 12 | F 55 | 1.3 | 813.2 | 266 | | | 13 | M 49 | 8.1 | 979.6 | 545 | | | 14 | F 61 | 2.7 | 136.1 | 187 | | | 15 | M 40 | 3.0 | 533.9 | 133 | | | 16 | F 58 | 2.8 | 275.0 | 45 | | | 17 | M 49 | 2.1 | 94.6 | 238 | | | 18 | F 78 | 2.8 | 15.9 | 202 | | | 19 | M 53 | 33.7 | 710.2 | 181 | | | 20 | M 67 | 3.1 | 599.8 | _ | | | 21 | M 58 | 1.4 | 243.7 | 256 | | | 22 | F 53 | 1.3 | 36.0 | 123 | | | 23 | M 51 | 4.1 | 278.9 | 147 | | | 24 | M 45 | 2.6 | 116.1 | 112 | | | 25 | M 20 | 5.3 | 954.5 | 243 | | | 26 | M 66 | 2.7 | 716.5 | 192 | | | 27 | M 33 | 1.6 | 140.3 | 246 | | | 28 | M 63 | 0.8 | 17.5 | 62 | | | 29 | F 81 | 0.6 | 24.6 | 151 | | | 30 | F 75 | 9.9 | 271.5 | 127 | | | 31 | F 20 | 0.6 | 297.1 | 352 | | | 32 | M 17 | 3.6 | 688.4 | 57 | | | 33 | M 30 | 0.7 | 402.2 | 323 | | | 34 | M 57 | 1.4 | 573.5 | 477 | | | Mean | 53.2 | 5.0 | 390.1 | 184.2 | | | S.D. | 18.4 | 6.8 | 290.9 | 127.2 | | F, female; M, male; age, years. The figures refer to TR-FIA results obtained after adding non-immune rabbit IgG to the serum samples. demonstrated by in situ hybridization in megakaryocytes that are the precursors of platelets [55]. In addition to GIB and GIIA PLA₂, a number of other secreted PLA2s are expressed in various tissues and inflammatory cells, e.g. the mRNA of GIID PLA₂ in human eosinophils [19] and both the mRNA and protein of GV and GX PLA₂s in human neutrophils [25]. GV PLA₂ protein was localized in both azurophilic and specific granules, whereas GX PLA₂ was confined to azurophilic granules [25]. An interesting observation was that no other secreted PLA2s besides GV and GX PLA₂s were expressed at the mRNA and protein levels in neutrophils [25]. In an earlier study, GIIA PLA₂ protein was not found by TR-FIA [32] in human neutrophils isolated from blood buffy coat but, in contrast, the enzyme protein was demonstrated in human neutrophils by immunoelectron microscopy [56]. Besides differences in the specificity of antibodies used in these studies, the discrepancies may be due to variable phagocytosis of the enzyme protein by neutrophils from the surrounding medium, e.g. blood plasma. Enhanced expression levels of secreted PLA₂s in addition to GIB and GIIA PLA₂ have been reported in connection to inflammation. GIIF PLA2 protein was found at sites of inflammation in human rheumatoid arthritic synovial and vascular cells [22]. GV and GX PLA₂s were found in human pulmonary epithelial cells and were postulated to be involved in lung injury [27]. the mRNA of GIIE PLA2 was demonstrated in murine intestine and lung, where its expression was enhanced by lipopolysaccharide-treatment of the experimental animals [20]. The expression of GIID PLA₂ at the mRNA level was enhanced after treatment with endotoxin in the rat and mouse thymus [18]. However, the expression responses of secretory PLA2s under inflammatory conditions may differ in the human from that seen in experimental animals and from responses recorded in various cell types in vitro. Besides the potential role for GV PLA₂ in arachidonic acid metabolism [26] and bacterial killing by GIIA PLA₂ in human serum [57] and tears [58], the physiological and pathological functions of secreted PLA₂s are largely unknown. As a step towards understanding their putative involvement in the generalized inflammatory reaction in humans, we addressed in the current study the release of secreted PLA₂s from tissue and/or inflammatory cells into the blood circulation of patients suffering from severe generalized bacterial infections and septic shock. For this purpose, we developed specific TR-FIAs for the measurement of all human secreted PLA₂s, viz. GIB, GIIA, GIID, GIIE, GIIF, GIII, GV, GX and GXIIA PLA2 and the GXIIB PLA2-like protein. The assays were based on antibodies raised in rabbits against PLA₂ proteins produced by recombinant technology. The specificity of the antibodies was confirmed by excluding cross-reactivity between each antibody and all 10 PLA₂s used in immunizing the rabbits. The analytical sensitivities of the current TR-FIAs allowed the measurement of the PLA₂ concentrations down to the picogram range, except for GXIIA PLA₂ and the GXIIB PLA₂-like protein, for which assays the sensitivities were in the nanogram range. While most of the current assays were robust as indicated in their fair sensitivity and reproducibility, for unknown reasons, the assays for GXIIA PLA₂ and the GXIIB PLA₂-like protein were suboptimal both in analytical sensitivity and recovery. In addition, the interassay variation of the TR-FIA for GIII PLA₂ markedly exceeded that of the other assays. Furthermore, experiments on recovery and interassay variation could not be carried out on the TR-FIA for GIID PLA2 because of paucity of the GIID PLA₂ recombinant protein available. Therefore, the current results concerning GIID, GIII and GXIIA PLA₂ and the GXIIB PLA₂-like protein must be must be interpreted with caution. A few subjects (3 in the sepsis group and 2 in the blood donor group) had substances in their serum interfering with all the current TR-FIAs. The elevated signals were reduced to the background (blank) levels by adding IgG from non-immunized rabbits to the serum samples. The interference with immunoassays by non-analyte antibody-binding substances has been documented earlier [59]. A common source of this artifact is the presence of heterophilic antibodies in the sample [37]. This interference was effectively prevented by the inclusion of nonimmunized rabbit IgG in the current TR-FIAs. Elevated levels of circulating GIB and GIIA PLA2 have been measured in various inflammatory diseases including acute pancreatitis (GIB PLA₂) [33] and generalized infections (GIIA PLA₂) [15,35]. In the current study, we confirmed significantly increased concentrations of GIB and GIIA PLA₂ (up to 33.7 μg/L for GIB PLA₂ and 979.6 μg/L for GIIA PLA₂) in the sera of patients suffering from acute pancreatitis or severe septic infections, respectively, as compared with the levels in the sera of healthy blood donors (up to $3.4 \mu g/L$ for GIB PLA₂ and 5.8 μg/L for GIIA PLA₂). The serum levels of CRP and GIIA PLA₂ correlated significantly in the current septic patients indicating an active acute phase response. The current results obtained with specific TR-FIAs for the other secreted PLA₂s in the same serum samples indicated serum concentrations below the analytical sensitivities of these assays, viz. 35 µg/L for GIID PLA₂, 3 µg/L (GIIE), 4 µg/L (GIIF), 15 μg/L (GIII), 11 μg/L (GV), 2 μg/L (GX), 92 μg/L (GXIIA) and 242 µg/L (GXIIB). However, we cannot exclude the possibility that the serum levels of some secreted PLA₂s were slightly elevated, but only to levels not detectable by the current assays. All secreted PLA2s are encoded by different genes that are not highly similar [2,4], and their expression is driven by distinct promoters that do or do not respond to inflammatory stimuli. In summary, our current results confirmed that, under normal conditions, GIB and GIIA PLA2s were present in serum samples at low levels, and that elevated levels were found by specific TR-FIAs in sera of patients with acute pancreatitis (GIB PLA₂) and septic infections (GIIA PLA₂). However, in the same serum samples of septic patients and healthy blood donors, the concentrations of the other secreted PLA₂s, viz. GIID, GIIE, GIIF, GIII, GV, GX and GXIIA PLA₂ and the GXIIB PLA₂-like protein were below the analytical sensitivities of the respective TR-FIAs. Our results indicate that generalized bacterial infections that induce the acute phase response do not lead to elevated serum levels of secreted GIIE, GIIF, GIII, GV and GX PLA₂s. These results suggest that GIIA PLA₂ is the main secretory PLA₂ species that is likely to have a role in sepsis, e.g. as an antibacterial agent. The low serum levels of the other secreted PLA₂s suggest that their functions may be unrelated to septic infections. Whether these other PLA2s are secreted into circulating blood under pathological conditions different from sepsis remains to be determined. #### Acknowledgements The authors thank Markku Haapamäki for blood
donor serum samples, Ulla Hohtari-Kivimäki for assistance in handling the blood samples and Heikki Peuravuori for methodological advice. This work was supported by the research funds of the Turku University Hospital and Satakunta Central Hospital and grants from Paulo Foundation (to V.J.O.L.) and the National Institutes of Health (HL36235 to M.H.G.). #### References - [1] H. van den Bosch, Intracellular phospholipases A, Biochim. Biophys. Acta 604 (1980) 191–246. - [2] D.A. Six, A.E. Dennis, The expanding superfamily of phospholipase A₂ enzymes: classification and characterization, Biochim. Biophys. Acta 1488 (2000) 1–19. - [3] J. Balsinde, M.V. Winstead, E.A. Dennis, Phospholipase A₂ regulation of arachidonic acid mobilization, FEBS Lett. 531 (2002) 2-6. - [4] E. Valentin, G. Lambeau, Increasing molecular diversity of secreted phospholipases A₂ and their receptors and binding proteins, Biochim. Biophys. Acta 1488 (2000) 59-70. - [5] M.H. Gelb, E. Valentin, F. Ghomashchi, M. Lazdunski, G. Lambeau, Cloning and recombinant expression of a structurally novel human secreted phospholipase A₂, J. Biol. Chem. 275 (2000) 39823–39826. - [6] M. Rouault, J.G. Bollinger, M. Lazdunski, M.H. Gelb, G. Lambeau, Novel mammalian group XII secreted phospholipase A₂ lacking enzymatic activity, Biochemistry 42 (2003) 11403–11494. - [7] J.A. Tischfield, A reassessment of the low molecular weight phospholipase A₂ gene family in mammals, J. Biol. Chem. 272 (1997) 17247–17250. - [8] D.L. Scott, P.B. Sigler, Structure and catalytic mechanism of secreted phospholipases A₂, Adv. Protein Chem. 45 (1994) 53–88. - [9] J.U. Eskola, T.J. Nevalainen, H.J. Aho, Purification and characterization of human pancreatic phospholipase A₂, Clin. Chem. 29 (1983) 1772–1776. - [10] T.J. Nevalainen, T.J. Haapanen, Distribution of pancreatic (group I) and synovial-type (group II) phospholipases A₂ in human tissues, Inflammation 17 (1993) 453–464. - [11] K. Hanasaki, H. Arita, Biological and pathological functions of phospholipase A₂ receptor, Arch. Biochem. Biophys. 372 (1999) 215–223. - [12] J.J. Seilhamer, T.L. Randall, M. Yamanaka, L.K Johnson, Pancreatic phospholipase A₂: isolation of the human gene and cDNAs from porcine pancreas and human lung, DNA 5 (1986) 519–527. - [13] R.M. Kramer, C. Hession, B. Johansen, G. Hayes, P. McGray, E.P. Chow, R. Tizard, R.B. Pepinsky, Structure and properties of a human non-pancreatic phospholipase A₂, J. Biol. Chem. (1989) 5768-5775. - [14] J.J. Seilhamer, W. Pruzanski, P. Vadas, S. Plant, J.A. Miller, J. Kloss, L.K. Johnson, Cloning and recombinant expression of phospholipase A₂ present in rheumatoid arthritic synovial fluid, J. Biol. Chem. 264 (1989) 5335–5338. - [15] T.J. Nevalainen, M.M. Haapamäki, J.M. Grönroos, Review. Roles of secretory phospholipases A₂ in inflammatory diseases and trauma, Biochim. Biophys. Acta 1488 (2000) 83-90. - [16] M. Kallajoki, T.J. Nevalainen, Expression of group II phospholipase A₂ in human tissues, in: W. Uhl, T.J. Nevalainen, M.W. Büchler (Eds.), Phospholipases A₂: basic and clinical aspects in inflammatory diseases, Progress in Surgery, vol. 24, Karger, Basel, 1997, pp. 8–16. - [17] E. Valentin, R.S. Koduri, J.-C. Scimeca, G. Carle, M.H. Gelb, M. Lazdunski, G. Lambeau, Cloning and recombinant expression of a novel mouse-secreted phospholipase A₂, J. Biol. Chem. 274 (1999) 19152–19160. - [18] J. Ishizaki, N. Suzuki, K. Higashino, Y. Yokota, T. Ono, K. Kawamoto, N. Fujii, H. Arita, K. Hanasaki, Cloning and characterization of novel - mouse and human secretory phospholipase A_2 s, J. Biol. Chem. 274 (1999) 24973–24979. - [19] M.C. Seeds, D.L. Bowton, R.D. Hite, J.I. Gyves, D.A. Bass, Human eosinophil group IID secretory phospholipase A₂ causes surfactant dysfunction, Chest 123 (2003) 376S-377S. - [20] N. Suzuki, J. Ishizaki, Y. Yokota, K. Higashino, T. Ono, M. Ikeda, N. Fujii, K. Kawamoto, K. Hanasaki, Structures, enzymatic properties, and expression of novel human and mouse secretory phospholipase A₂s, J. Biol. Chem. 275 (2000) 5785–5793. - [21] E. Valentin, A.G. Singer, F. Ghomashchi, M. Lazdunski, M.H. Gelb, G. Lambeau, Cloning and recombinant expression of human group IIF-secreted phospholipase A₂, Biochem.Biophys. Res. Commun. 279 (2000) 223–228. - [22] M. Murakami, K. Yoshihara, S. Shimbara, G. Lambeau, M.H. Gelb, A.G. Singer, M. Sawada, N. Inagaki, H. Nagai, M. Ishihara, Y. Ishikawa, T. Ishii, I. Kudo, Cellular arachidonate-releasing function and inflammation-associated expression of group IIF secretory phospholipase A₂, J. Biol. Chem. 277 (2002) 19145–19155. - [23] E. Valentin, F. Ghomashchi, M.H. Gelb, M. Lazdunski, G. Lambeau, Novel human secreted phospholipase A₂ with homology to the group III bee venom enzyme, J. Biol. Chem. 275 (2000) 7492-7496. - [24] J. Chen, S.J. Engle, J.J. Seilhamer, J.A. Tischfield, Cloning and recombinant expression of a novel human low molecular weight Ca²⁺-dependent phospholipase A₂, J. Biol. Chem. 269 (1994) 2365–2368. - [25] N. Degousee, F. Ghomashchi, E. Stefanski, A. Singer, B.P. Smart, N. Borregaard, R. Reithmeier, T.F. Lindsday, C. Lichtenberger, W. Reinisch, G. Lambeau, J. Arm, J. Tischfield, M.H. Gelb, B.B. Rubin, Groups IV, V, and X phospholipases A₂ in human neutrophils. Role in eicosanoid production and Gram-negative bacterial phospholipid hydrolysis, J. Bio. Chem. 277 (2002) 5061–5073. - [26] Y. Satake, B.L. Diaz, B. Balestrieri, B.K. Lam, Y. Kanaoka, M.J. Grusby, J.P. Arm, Role of group V phospholipase A₂ in zymosan-induced eicosanoid generation and vascular permeability revealed by targeted gene disruption, J. Biol. Chem. 279 (2004) 16488–16494. - [27] M.C. Seeds, K.A. Jones, R.D. Hite, M.C. Willingham, H.M. Borgerink, R.D. Woodruff, D.L. Bowton, D.A. Bass, Cell-specific expression of group X and group V phospholipases A₂ in human lung airway epithelial cells, Am. J. Respir. Cell Mol. Biol. 23 (2000) 37–44. - [28] L. Cupillard, K. Koumanov, M.H. Mattei, M. Lazdunski, G. Lambeau, Cloning, chromosomal mapping, and expression of a novel human secretory phospholipase A₂, J. Biol. Chem. 272 (1997) 15745–15752. - [29] K. Hanasaki, T. Ono, A. Saiga, Y. Morioka, M. Ikeda, K. Kawamoto, K. Higashino, K. Nakano, K. Yamada, J. Ishizaki, H. Arita, Purified group X secretory phospholipase A₂ induced prominent release of arachidonic acid from human myeloid leukemia cells, J. Biol. Chem. 274 (1999) 34203–34211. - [30] A.G. Singer, F. Ghomashchi, C. Le Calvez, J. Bollinger, S. Bezzine, M. Rouault, M. Sadilek, E. Nguyen, M. Lazdunski, G. Lambeau, M.H. Gelb, Interfacial kinetic and binding properties of the complete set of human and mouse groups I, II, V, X, and XII secreted phospholipases A₂, J. Biol. Chem. 277 (2002) 48535–48549. - [31] J.U. Eskola, T.J. Nevalainen, T.N.-E. Lövgren, Time-resolved fluoroimmunoassay of human pancreatic phospholipase A₂, Clin. Chem. 29 (1983) 1777–1780. - [32] T.J. Nevalainen, P.T. Kortesuo, E. Rintala, F. Märki, Immunochemical detection of group I and group II phospholipase A₂ in human serum, Clin. Chem. 38 (1992) 1824–1829. - [33] T.J. Nevalainen, J.U. Eskola, A.J. Aho, V.T. Havia, T.N.-E. Lövgren, V. Näntö, Immunoreactive phospholipase A₂ in serum in acute pancreatitis and pancreatic cancer, Clin. Chem. 31 (1985) 1116–1120. - [34] M. Büchler, P. Malfertheiner, H. Schädlich, T. Nevalainen, H. Friess, H.G. Beger, Role of phospholipase A₂ in human acute pancreatitis, Gastroenterology 97 (1989) 1521–1526. - [35] T.J. Nevalainen, Serum phospholipase A₂ in inflammatory diseases, Clin. Chem. 39 (1993) 2453–2459. - [36] M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72 (1976) 248-254. - [37] L.M. Boscato, M.C. Stuart, Heterophilic antibodies: a problem for all immunoassays, Clin. Chem. 34 (1988) 27–33. - [38] American College of Chest Physicians/Society of Critical Care Medicine Consensus Committee, Definitions of sepsis and organ failure and guidelines for the use of innovative therapies in sepsis, Crit. Care Med. 20 (1992) 864–874. - [39] E.M. Rintala, T.J. Nevalainen, Group II phospholipase A₂ in sera of febrile patients with microbiologically or clinically documented infections, Clin. Infect. Dis. 17 (1993) 864–870. - [40] W. Pruzanski, P. Vadas, Phospholipase A₂—a mediator between proximal and distal effectors of inflammation, Immunol. Today 12 (1991) 143–146. - [41] R.M. Crowl, T.J. Stoller, R.R. Conroy, C.R. Stoner, Induction of phospholipase A₂ gene expression in human hepatoma cells by mediators of the acute phase response, J. Biol. Chem. 266 (1991) 2647–2651. - [42] Y. Weinrauch, P. Elsbach, L.M. Madsen, A. Foreman, J. Weiss, The potent anti-Staphylococcus aureus activity of a sterile rabbit inflammatory fluid is due to a 14-kD phospholipase A₂, J. Clin. Invest. 97 (1996) 250–257. - [43] V.J.O. Laine, D.S. Grass, T.J. Nevalainen, Protection by group II phospholipase A₂ against *Staphylococcus aureus*, J. Immunol. 162 (1999) 7402–7408. - [44] R.S. Koduri, J.O. Gronroos, V.J. Laine, C. Le Calvez, G. Lambeau, T.J. Nevalainen, M.H. Gelb, Bactericidal properties of human and murine groups I, II, V, X, and XII secreted phospholipases A₂, J. Biol. Chem. 277 (2002) 5849–5857. - [45] K.M. Nyman, W. Uhl, J. Forsström, M. Büchler, H.G. Beger, T.J. Nevalainen, Serum phospholipase A₂ in patients with multiple organ failure, J. Surg. Res. 60 (1996) 7–14. - [46] W. Uhl, M. Büchler, T.J. Nevalainen, A. Deller, H.G. Beger, Serum phospholipase A₂ in patients with multiple injuries, J. Trauma 30 (1990) 1285–1290. - [47] J.M. Grönroos, K. Kuttila, T.J. Nevalainen, Group II phospholipase A₂ in serum in critically ill surgical patients, Crit. Care Med. 22 (1994) 956-959. - [48] J.M. Grönroos, K. Kuttila, J. Perttilä, T.J. Nevalainen, Phospholipase A₂ in the serum of patients after coronary artery bypass surgery, Crit. Care Med. 24 (1996) 259–262. - [49] M.M. Haapamäki, J.M. Grönroos, H. Nurmi, K. Söderlund, H.
Peuravuori, K. Alanen, T.J. Nevalainen, Elevated group II phospholipase A₂ mass concentration in serum and colonic mucosa in Crohn's disease, Clin. Chem. Lab. Med. 36 (1998) 751–755. - [50] P. Kortekangas, H.T. Aro, T.J. Nevalainen, Group II phospholipase A₂ in synovial fluid and serum in acute arthritis, Scand. J. Rheumatol. 23 (1994) 68-72. - [51] V.J.O. Laine, J.M. Grönroos, T.J. Nevalainen, Serum phospholipase A₂ after splenectomy, Eur. J. Clin. Chem. Clin. Biochem. 34 (1996) 419–422. - [52] E.M. Rintala, T.J. Nevalainen, Synovial-type (group II) phospholipase A₂ in serum of febrile patients with haematological malignancy, Eur. J. Haematol. 50 (1993) 11–16. - [53] T.J. Nevalainen, M. Kallajoki, E. Pesonen, S. Andersson, P. Kärkkäinen, K. Höckerstedt, Origin of circulating group II phospholipase A₂ in hepatocytes in a patient with epitheloid hemangioendothelioma of the liver, Lab. Invest. 74 (1996) 585-591. - [54] K.A. Talvinen, E.A. Kemppainen, T.J. Nevalainen, Expression of group II phospholipase A₂ in the liver in acute pancreatitis, Scand. J. Gastroenterol. 36 (2001) 1217–1221. - [55] K.M. Nyman, P. Ojala, V.J.O. Laine, T.J. Nevalainen, Distribution of group II phospholipase A₂ protein and mRNA in rat tissues, J. Histochem. Cytochem. 48 (2000) 1469-1477. - [56] M.D. Rosenthal, M.N. Gordon, E.S. Beuscher, J.H. Schlusser, L.K. Harris, R.C. Franson, Human neutrophils store type II 14-kDa phospholipase A₂ in granules and secrete active enzyme in response to soluble stimuli, Biochem. Biophys. Res. Commun. 208 (1995) 650-656. - [57] J.O. Grönroos, V.J.O. Laine, Y.J. Nevalainen, Bactericidal group IIA phospholipase A₂ in serum of patients with bacterial infections, J. Infect. Dis. 185 (2002) 1767-1772. - [58] X.D. Qu, R.I. Lehrer, Secretory phospholipase A₂ is the principal bactericide for staphylococci and other Gram-positive bacteria in human tears, Infect. Immun. 66 (1996) 2791–2797. - [59] L.M. Boscato, M.C. Stuart, Incidence and specificity of interference in two-site immunoassays, Clin. Chem. 32 (1986) 1491–1495.