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Abstract

We consider excited lepton (l̄∗l or l̄∗l∗) production in the context of effective theories with
being four-fermion contact interaction at LHC. We also consider the two body decay mode
of excited lepton (l∗) to standard model fermion(l) and a gauge boson V (≡ γ, Z,W ).
We have performed next-to-leading order (NLO) QCD corrections to this process. In
spite of non-renormalizable nature of the interaction, the higher order QCD corrections
are possible and meaningful. We have shown that these corrections can be substantial
and significant. By considering the issue of scale dependence, it is shown that the scale
dependence of the NLO cross sections are greatly reduced as compare to leading order
(LO) cross section.
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1 Introduction

The recent discovery of a Higgs like scalar particle at LHC may complete the most successful
model in particle physics namely the Standard Model (SM). In spite of this huge success,
there are other issues like the replication of the fermion families, dark matter, baryogenesis
etc. that are still not understood within the framework of the SM and addressing them needs
physics beyond the standard model. Some possible candidates are supersymmetry [1], grand
unification [2, 3] (with or without supersymmetry), family symmetries (gauged or otherwise)
and compositeness for quarks and leptons [4] more suitable than the SM.

The proliferation of fermion generations suggests the possibility of quark-lepton composite-
ness. In these theories [5, 6], the fundamental constituents, preons [7], experience unobserved
strong force. At energies far above the certain scale known as composite scale Λ, preons are
asymptotically free. At a composite scale Λ, the interaction of preons become very strong to
form a bound state (composites) which are to be identified as quarks and leptons compositeness.
For energies below the scale Λ, the effective four-fermion Lagrangian is given by [9]

LCI =
2π

Λ2

∑

i,j=L,R

[

ηij
(

q̄iγµqj
)(

ℓ̄∗iγ
µℓj
)

+ η′ij

(

q̄iγµqj
)(

ℓ̄∗iγ
µℓ∗j

)

+ h.c.

]

(1)

where ℓ and ℓ∗ represents the SM and excited lepton respectively. The Lagrangian of eqn.(1)
is not the most general the effective four-fermion Lagrangian. There can be similar operators
involving the quarks alone or the leptons alone. However, the Lagrangian of eqn.(1) is enough
to serve our purpose. There are other kind of four-fermion like processes mediated by a particle
with a mass significantly higher than the energy transfer can be approximated by a contact
interaction [9] term. The theories with extended gauge sectors, leptoquarks [11], sfermion
exchange in a supersymmetric theory with broken R-parity [12] etc. are the examples of such
type of interactions. In all these cases, the heavy fields with masses Mi

>∼ Λ [13], have been
integrated out and left with a series of such higher-dimensional terms. The terms in eqn.(1) are
just the lowest order (in Λ−1) ones. However, we shall consider only terms involving qq̄ℓ̄∗ℓ (qq̄ℓ̄ℓ∗)
or qq̄ℓ̄∗ℓ∗.

The excited fermions can also be transformed into ordinary SM fermions through the gauge
bosons. The effective gauge mediated Lagrangian [9, 10] is given by

LGM =
1

2Λ
f̄ ∗
Rσ

µν
[

gsfs
λa

2
Ga

µν + gf ′′ τ

2
.Wµν + g′f ′Y

2
Bµν

]

fL + h.c. (2)

where Ga
µν ,Wµν and Bµν are the field strength tensor of the SU(3), the SU(2) and the U(1)

gauge fields respectively. f ∗ and f denote the excited fermion and SM fermion respectively.
fs, f

′′ and f ′ are parameters of the compositeness. Usually they are taken to be order of 1.
It is evident that these operators may lead to significant phenomenological effects in collider

experiments, like e+e− [15], e P [14] or hadronic [16, 22, 23]. It is quite obvious that the effects
would be more pronounced at higher energies for a given higher-dimensional nature of L. The
best constraints on compositeness came from the Delphi [15] and CDF [16] experiments. More
recently the measurement of the ℓ̄ℓγ cross section [22,23] at high invariant masses set the most
stringent limits on contact interactions of the type given in eqn.(1).

It is well known the QCD corrections can alter the cross sections quite significantly at
hadron colliders. As for example, a simple process like Drell-Yan, the leading order (LO) cross
sections have been seriously underestimated. This forced us to incorporate the next-to-leading
order (NLO) or next-to-leading log (NLL) [20, 21] results in Monte Carlos codes [20] or event
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generators such as JETRAD [18] and HERWIG [19]. Recently, contact interactions of type
eqns.(1,2) has received much attention both CMS [22] and ATLAS [23] collaborations. They
have searched for heavy excited lepton via ℓ̄ℓγ channel and put the mass bound on excited
lepton. However, there is no higher order QCD corrections existed to such heavy excited lepton
production cross sections mediated by a contact interaction given in eqn.(1). Therefore, all
collider searches of contact interaction have either been based on the leading order calculations,
or, have assumed that the higher order corrections are exactly the same as the SM one. In this
article, we aim to rectify this unsatisfactory state of affairs. While it may seem that the NLO
corrections to processes driven by such non-renormalizable interactions are ill-defined, it is not
quite true [24, 27]. In particular, if the interaction can be factorized as two currents such that
one current with colored object and other current with colored neutral object then the NLO
QCD corrections can be done with colored current one without any difficulties. For example,
Ref. [24] dealt with contact interaction with SM fermions.

The rest of the article is organized as follows. In Section 2, we start by outlining the
general methodology and follow it up with the explicit calculation of the NLO corrections to
the differential distribution in the dilepton (ℓ̄∗ℓ, ℓ̄ℓ∗, ℓ̄∗ℓ∗) invariant mass. Section 3 we present
our numerical results. And finally, we summarize in Section 4.

2 NLO corrections

We consider excited lepton(s) production in the context of contact interaction as exemplified
by eqns.(1,2) at LHC. The processes are

P (p1) + P (p2) → l∗
(−)

(l1) + l̄

( )

(l2) +X(pX)
|→ l

(−)

(l3) + V (p4) .
(3)

P (p1) + P (p2) → l̄∗(l1) l∗(l2) +X(pX)
|
| |→ l(l4) + V (p5)
|→ l̄(l3) + V ′(p4) .

(4)

where pi(i = 1, 2) denotes the momenta of the incoming hadrons and li those for the outgoing
leptons. The pj(j = 4, 5) is outgoing vector boson V (V ′ = γ, Z,W ) momentum. Similarly, the
momentum pX carries by the inclusive hadronic state X . In the above mentioned processes, we
have considered only two body leptonic decay of excited leptons. The excited lepton can have
three body decay mode. This three body decay mode may have affected by QCD corrections
which we are considering in our future work in progress [25]. The hadronic cross section is de-
fined in terms of the partonic cross sections convoluted with the appropriate parton distribution
functions fP

a (x) and is given by

2S
dσP1P2

dQ2
=

∑

ab=q,q̄,g

∫ 1

0
dx1

∫ 1

0
dx2 f

P1
a (x1) f

P2
b (x2)

∫ 1

0
dz 2 ŝ

dσab

dQ2
δ(τ − zx1x2) (5)

where xi is the fraction of the initial state proton’s momentum carried by the parton. i.e.
the parton momenta ki are given by ki = xi pi. For our calculational purposes, we used same
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notation of Ref [24]. For completeness, we have given below

S ≡ (p1 + p2)
2 ŝ ≡ (k1 + k2)

2 Q2 ≡ (l1 + l2)
2

τ ≡ Q2

S
z ≡ Q2

ŝ
τ ≡ z x1 x2.

(6)

As we argued above, that the current-current structure of the effective lagrangian makes possible
the higher order QCD corrections. Although the effective Lagrangian is a nonrenormalizabe
one, the offending higher order nature can be factored out. Of our particular interest is the
leptonic tensor with two massive particle final state, namely

Ljj′→ l l′ =
∫ 2
∏

i

(

dnli

(2π)n
2π δ+(l2i −m2

i )

)

(2π)n δ(n)
(

q − l1 − l2
)

|Mjj′→ l∗l′|2 , (7)

and which leads to

Ljj′→l∗ l′ =
(

− gµν +
qµqν

Q2

)

Ll∗l′(Q
2) (l′ = l, l∗) (8)

with

Ll∗l(Q
2) =

1

12

(

Q2 − m2
1 +m2

2

2
− (m2

1 −m2
2)

2

2Q2

)

. (9)

To calculate the Q2 distribution of the excited lepton pair (l̄∗l∗ or l̄∗l), one needs to calculate
the hadronic tensor. For this part of our calculation, we have followed the procedure of [24]. We
have checked our analytical results with Ref. [24,26,27]. The physical hadronic cross section is
be obtained by convoluting these finite coefficient functions with appropriate parton distribution
functions. Finally the inclusive differential cross section is given by

2S
dσP1P2

dQ2
(τ, Q2) =

∑

q

∫ 1

0
dx1

∫ 1

0
dx2

∫ 1

0
dz δ(τ − zx1x2)FV A GV A

GV A ≡ Hqq̄(x1, x2, µ
2
F )
{

∆
(0),V A
qq̄ (z, Q2, µ2

F ) + as∆
(1),V A
qq̄ (z, Q2, µ2

F )
}

+
{

Hqg(x1, x2, µ
2
F ) +Hgq(x1, x2, µ

2
F )
}

as∆
(1),V A
qg (z, µ2

F )

(10)

where the renormalized parton flux Hab(x1, x2, µ
2
F ) and the finite coefficient functions ∆

(i)
ab are

given in Ref. [24,26,27]. The constants FV A contains information of all couplings, propagators
and the massive final state particles which is given by

FV A =
|η|2β
12

Q2

Λ4

{

1− (m2
1 +m2

2)

2Q2
− (m2

1 −m2
2)

2

2Q4

}

(11)

β =

(

1 +
m4

1

Q4
+

m4
2

Q4
− 2

m2
1

Q2
− 2

m2
2

Q2
− 2

m2
1

Q2

m2
2

Q2

)
1
2

. (12)

3 Results and Discussion

In the previous section, we have calculated the differential distributions with respect to the
excited lepton (pair) invariant (either l̄∗l(l̄l∗) or l̄∗l∗) mass. For our interest, we have expressed
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the aforementioned differential distribution to the total cross section by integrating over Q2.
For the time being, we have first considered µ2

R = µ2
F = Q2 and later we have shown the scale

dependence of our results. From the eqn.(10), the total cross section is obtained by integrating
over Q2 and is given by

σP1P2(M2
∗ , S,Λ) =

∫

dσP1P2(τ, Q2)

dQ2
dQ2. (13)

For the numerical analysis, we present our results at three different LHC energies
√
S =

7, 8, 14 TeV. Although the calculation of QCD correction does not depend on the contact
interaction scale Λ, for definiteness we have used Λ = 6 TeV for each LHC energy unless it
is quoted. In presenting our results, we have put all contact interaction coupling strength to
be unity. In our numerical analysis, we have used Cteq6Pdf [30] parton distribution functions
(PDFs) otherwise mentioned specifically. For Cteq6Pdf, the leading order (LO) hadronic cross
section is obtained by convoluting the LO parton distribution (namely Cteq6l1) function with
LO partonic cross section and for the NLO hadronic cross section, we have convoluted NLO
parton distribution (namely Cteq6m) with NLO partonic cross section. We did our numerical
analysis with ΛQCD = 0.226(0.165) GeV for NLO (LO) for nf = 5. To start with we will first
discuss the NLO corrections of l̄∗l (l̄l∗) and l̄∗l∗ productions in general and later we consider
only a particular process l̄lγ production where we have multiplied by the branching fraction of
the excited lepton l∗ (l̄∗) (decays to lγ (l̄γ)) to the production cross section l̄∗l (l̄l∗). The later
process has been analyzed by both CMS [22] and ATLAS [23] collaborations. Although the
two body decays of excited lepton l∗ (l̄∗) (decays to lγ (l̄γ)) does not have any effect on QCD
correction, for definiteness we have done this analysis so that NLO results can be read directly
from the figures.
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Figure 1: Variation of total cross-section for ℓ̄∗ℓ∗ and ℓ̄∗ℓ (ℓ̄ℓ∗) production with respect to excited
lepton mass M∗ at LHC. For each set, the solid (dashed) refer to NLO (LO) cross sections.
Upper (lower) set is represents ℓ̄∗ℓ (ℓ̄∗ℓ∗) for Λ = 6 TeV only.

In figure 1, we have plotted total cross section of excited lepton pair (l̄∗l∗) as well as one
excited lepton and a SM lepton (l̄∗l, l̄l∗) versus the excited lepton mass of M∗ for all the light
flavors (u, d, s-quarks). In figure 2, we have shown the variation of total cross section of one
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Figure 2: Variation of total cross-section for ℓ∗ℓ̄(ℓℓ̄∗) production with respect to excited lepton
mass M∗ at LHC. For each set, the solid (dashed) refer to NLO (LO) cross sections. In upper
panel, the upper (lower) set represents uū(dd̄) initiated process and in lower panel, the upper
(lower) set represents ud̄(dū) initiated process at born level for Λ = 6 TeV only.

excited lepton and a SM lepton (l̄∗l, l̄l∗) with respect to excited lepton mass M∗ for individual
flavor at initial state. We have done this to examine whether it is flavor dependent or not. As
we have seen from figures 1, 2 that the cross section decreases as excited lepton mass of M∗

increases due to the fact that parton distribution functions fall at higher momentum fractions.
The fall of total cross section is more lower center of mass (c.o.m.) energy

√
S(≡ 7, 8 TeV

say) than the higher c.o.m. energy
√
S(≡ 14 TeV). The reason for this is higher momentum

fraction τ(≡ x, the Bjorken scale) and hence we are integrating over small phase space region
at lower center of mass energy

√
S. As expected, the l̄∗l∗ production cross section is less and

falls faster as compare to l̄∗l (l̄l∗) production cross section. All the cross sections (figures 1, 2)
look similar behaviour except the numerical values. From figure 2, it apparently seems that the
cross sections for different flavors at initial state are different i.e. they are flavor dependent.
Actually it is not. This difference between the individual cross sections are due the individual
flux difference. This implies that contact interaction is flavor blind.

To quantify the enhancement of NLO cross section, we define a variable called K-factor
given by

Ki =
σNLO
i

σLO
i

i = total, uū, dd̄, ud̄, dū (14)

where the LO (NLO) cross sections are computed by convoluting the corresponding parton-level
cross sections with the LO (NLO) parton distribution functions.

In figures 3,4 we have shown the variation of K-factor with respect to the M∗. The variation
of total K-factor (figure 3) is about 25% − 30% for moderate values of M∗(≤ 1 TeV) at low
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Figure 3: Variation of k-factor with respect to excited lepton mass M∗ for Λ = 6 TeV at LHC.
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Figure 4: Variation of k-factor with respect to excited lepton mass M∗ for Λ = 6 TeV at LHC.

c.o.m energies (
√
S = 7, 8 TeV). At larger mass region (M∗ > 1 TeV), the K-factor rises very

fast 25% − 60%. At high c.o.m energies (
√
S = 14 TeV), the variation of K-factor is about

25%− 30% for reasonably high value of mass range (M∗ ≤ 2 TeV). In figure 4, we have shown
the K-factor variation for individual flavor only for the l̄∗l(l̄l∗) production process. In figures
(3,4), the rate of fall of K-factor is much slower at higher c.o.m energy (say

√
S = 14 TeV) than

the lower c.o.m energies because of the fact that at lower c.o.m energy, we are integrating over
smaller phase space region and also higher momentum fraction. As the Bjorken x increases
to unity, the parton distribution function falls very steeply and also the fall of LO parton
distribution is more than the NLO parton distribution. This is the reason at lower energy,
the K-factor increases very fast as mass M∗ increases towards the center of mass energy. As
expected (flavor independent), variation of individual K-factor is quite similar to the variation
of total K-factor. One can also see from figure 4 the numerical difference between the individual
quark K-factors is due to their respective flux difference.

3.1 ℓ̄ℓγ production

The excited heavy lepton will decay into a light SM fermion and a electroweak gauge bosons
V (≡ γ, Z,W ) according to Eqn(2). The total NLO cross section of lepton pair (l̄l) and a gauge
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boson V can be calculated by multiplying the branching ratio to Eqn.13 as given below

σP1P2(M2
∗ , S,Λ) = BR(l∗ → lV )

∫

dσP1P2(τ, Q2)

dQ2
dQ2. (15)

The partial decay widths of excited leptons for various electroweak gauge bosons are given
by

Γ(l∗ → lV ) =
1

8
α f 2

V

M2
∗

Λ2

(

1− m2
V

M2
∗

)(

2 +
m2

V

M2
∗

)

(16)

with

fγ = f T3 + f ′Y

2
(17)

fZ = f T3 cot θw − f ′Y

2
tan θw (18)

fW =
f√
2
csc θw (19)
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Figure 5: Total cross-section for ℓℓ̄γ production at LHC. For each set, the solid (dashed) refer
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In figure 5, we have plotted total cross section versus invariant mass of one lepton and
a photon M∗(≡ Mℓγ,Mℓ̄γ)) for two PDFs CTEQ6 and MSTW 2008 [31] all the light flavors
(u, d, s-quarks) for two different contact interaction scale Λ = 2, 6 TeV. The cross section
decreases as invariant mass M∗ increases due to the fact that parton distribution functions fall
at higher momentum fractions as mentioned above. The variation of cross section looks same
from figure 5 for two different PDFs. In Actual practice they are not same. This can be found
out from figures 6 and has been explained later on. From the figures 5 we see that as the
contact interaction scale (Λ) increases, the cross section (both LO as well as NLO) decreases
uniformly as Λ−4 as expected (from Lagrangian 1) for a fixed center of mass energy (S) and
for different values of Λ, the cross section scales accordingly. Therefore, one can obtain the
cross section (for both LO as well as NLO) for arbitrary values of Λ by multiplying with an
appropriate scale factor to our results.
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Figure 6: K-factor for ℓℓ̄γ production at three different energies of LHC. The upper (lower) set
is for MSTW 2008 (CTEQ6) parton distribution functions.

In figures 6, we have shown the variation of total K-factor with respect to the M∗. The
variation of K-factor is about 25%−35% for both PDFs CTEQ6 and MSTW 2008. The major
difference in K-factor between the two PDFs (specially at low center of mass energy) is due
different parameterizations of their parton distribution functions and the different data sets. In
figures 6, the rate of fall of K-factor is much slower at higher c.o.m energy (say

√
S = 14 TeV)

than the lower c.o.m energy as explained before.
In our above discussion, we consider for simplest case µ2

F = µ2
R = Q2 where the cross section

depends only on physical scales the c.o.m. energy (
√
S) and the masses of final state particles

(M∗). Now we turn on another scale called factorization scale µ2
F (= µ2

R the renormalization
scale). In figure 7, we have shown the factorization scale dependence. We have seen from this
figure that the scale dependence reduced greatly at NLO cross section compare to LO cross
section. This signifies the necessity of NLO QCD corrections.
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scale.

4 Conclusions

To conclude, we have systematically calculated the next-to-leading order QCD corrections for
the V ± A type contact interactions eqn.(1). Opposed to naive expectations, we have showed
that that the QCD corrections are meaningful and reliable to such non-renormalizable theory.

We have analyzed the variation of cross section with respect to excited lepton mass (and
hence the invariant mass of one SM lepton and one SM gauge boson) at the LHC. The en-
hancement of NLO cross sections over the LO cross sections expectations are found to be quite
significant. To quantify the enhancement, we present the corresponding K-factors in a suitable
form for use in experimental analyzes. As it is well known that the predictions on cross sec-
tions calculated at leading order in perturbation theory suffer scale uncertainty resulting from
arbitrary choice of factorization scales and renormalization scales. These scale uncertainties are
due to the absence of higher order contributions to the leading order in perturbation theory. By
including more and more higher order contributions to theory, these scale uncertainties reduce
gradually and the predictions become more reliable. We have showed these scale dependence
of our results. As expected, we have seen that the scale dependences reduced greatly for the
case of the NLO results as compared to that for the LO case.
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