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Abstract

This paper proposes an application of the Infinite Unit Axiom and grossone,
introduced by Yaroslav Sergeyev (see [15] - [19]), to classify one-dimensional
cellular automata whereby each class corresponds to a different and distinct
dynamical behavior. The forward dynamics of a cellular automaton map are
studied via defined classes. Using these classes, along with the Infinite Unit
Axiom and grossone, the number of configurations that equal those of a given
configuration, in some finite central window, under an automaton map can
now be computed. Hence a classification scheme for one-dimensional cellular
automata is developed, whereby determination in a particular class is dependent
on the number of elements in their respective forward iteration classes.

Keywords: Cellular automata, Infinite Unit Axiom, grossone, metric,
dynamical systems.

1. Introduction

Cellular automata, originally developed by von Neuman and Ulam in the
1940’s to model biological systems, are discrete dynamical systems that are
known for their strong modeling and self-organizational properties (for exam-
ples of some modeling properties see [3], [5], [22], [23], [24], and [26]). Cellular
automata are defined on an infinite lattice and can be defined for all dimensions.
In the one-dimensional case the integer lattice Z is used. In the two-dimensional
case, Z X Z. An example of a two-dimensional cellular automata is John Con-
way’s ever popular “Game of Life”!. Probably the most interesting aspect about

1For a complete description (including some of the more interesting structures that emerge)
of “The Game of Life” see [1] Chapter 25.
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cellular automata is that which seems to conflict our physical systems. While
physical systems tend to maximal entropy, even starting with complete disorder,
forward evolution of cellular automata can generate highly organized structure.

As with all dynamical systems, it is important and interesting to understand
their long term or evolutionary behavior. Hence it makes sense to develop a
classification of a system based on its dynamical behavior. The concept of
classifying cellular automata was initiated by Stephen Wolfram in the early
1980’s, see [25] and [26]. Through numerous computer simulations, Wolfram
noticed that if an initial configuration (sequence) was chosen at random the
probability is high that a cellular automaton rule will fall within one of four
classes.

The examples to follow are referred to by a rule numbering system developed
by Wolfram, see [25] and [27]. In [27], one-dimensional cellular automata are
partitioned into four classes depending on their dynamical behavior, see figure
1 (Totalistic Rule 36) for an example of a Wolfram class 1 cellular automaton.
Class 1 are the least chaotic, indeed Wolfram labeled these as automata that
evolve to a uniform state. Figure 2 (Totalistic Rule 24) is an example of a
Wolfram class 2 cellular automaton. Wolfram described the evolution of au-
tomata of this class as leading to simple stable or periodic structures. Figure 3
(Totalistic Rule 12) is an example of a Wolfram class 3 cellular automaton. In
these automata the dynamical behavior is more complicated, however triangles
and other small structures are seen to emerge in the form of a chaotic pattern.
Figure 4 (Totalistic Rule 20) is an example of a class 4 cellular automaton.
Wolfram labeled class 4 the most chaotic whereby localized complex structures
emerge. In these figures it can be seen that a cellular automaton map starts
with a given (random) initial configuration and evolves in a downward direc-
tion upon forward iterations (evolution) of the cellular automaton rule. It is
interesting to note the two persisting structures that emerge in the figure 4 au-
tomaton. The structure on the left evolves straight down, while the structure on
the right evolves on a diagonal. Eventually the one on the right will ‘crash’ into
the structure on the left and they will either annihilate each other or produce
another persisting structure.

A later and more rigorous classification scheme for one-dimensional cellu-
lar automata, see [7], was developed by Robert Gilman. Here a probabilis-
tic/measure theoretic classification scheme was developed based on the proba-
bility of choosing a configuration that will stay arbitrarily close to a given initial
configuration under forward iteration (evolution) 2. Gilman’s classification par-
titions the cellular automata rules into three classes. Class A is the class of
equicontinuous automata, whereby there is an open disk of configurations that
stay arbitrarily close to the given initial configuration. Automata in class B con-
form to a stochastic analog of equicontinuity. Automata in this class have the
property that the probability is positive that one can find (at random) another

2Gilman’s classification is based on choosing an infinite product probability measure on
the space of cellular automata.
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Figure 1: Wolfram Class 1 Cellular Automaton (Totalistic Rule 36)
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Figure 2: Wolfram Class 2 Cellular Automaton (Totalistic Rule 24)

configuration that can stay arbitrary close to an initial under forward evolution.
Automata in class C have the property that the probability of finding another
configuration that stays arbitrarily close to the initial under forward iterations
is 0. Owing to the fact that the lens of measure theory does not distinguish
between countably infinite and uncountably infinite (in the Cantor sense) sets,
it is noted that automata in all the classes have some indistinguishable dynamic
similarities. For instance, in both Gilman classes A and B there are an infinite
amount of configurations that can stay arbitrarily close to a given initial con-
figuration under forward evolution. In the classification presented herein, using
the infinite unit axiom of Sergeyev, see [15] - [19], this similarity is overcome
by actually having a numeric representation for the number of configurations in
each class that equal (or match) an initial configuration under forward evolution.
Thus making the classes more distinguishable.



Figure 3: Wolfram Class 3 Cellular Automaton (Totalistic Rule 12)

Figure 4: Wolfram Class 4 Cellular Automaton (Totalistic Rule 20)



2. The Infinite Unit Axiom

The new methodology of computation, initiated by Sergeyev (see [15] - [18]),
provides a new way of computing with infinities and infinitesimals. Indeed,
Sergeyev uses concepts and observations from physics (and other sciences) to
set the basis for this new methodology. This basis is philosophically founded on
three postulates:

Postulate 1. “We postulate the existence of infinite and infinitesimal objects
but accept that human beings and machines are able to execute only a finite
number of operations.”

Postulate 2. “We shall not tell what are the mathematical objects we deal with.
Instead, we shall construct more powerful tools that will allow us to improve our
capacities to observe and to describe properties of mathematical objects.”

Postulate 3. “We adopt the principle: ‘The part is less than the whole’, and
apply it to all numbers, be they finite, infinite, or infinitesimal, and to all sets
and processes, finite or infinite.”

These postulates set the basis for a new way of looking at and measuring
mathematical objects. The postulates are actually important philosophical real-
izations that we live in a finite world (i.e. that we, and machines, are incapable
of infinite or infinitesimal computations). All the postulates are important in the
application presented herein, however Postulate 1 has a ready illustration. In
this paper we will deal with counting and hence representing infinite quantities
and measuring (by way of a metric) extremely small or infinitesimal quantities.
Postulate 2 also has a ready consequence herein. In the classification presented
in this paper, more powerful numeral representations will be constructed that
actually improve our capacity to observe, and describe, mathematical objects
and quantities. Postulate 3 culminates in the actual classification scheme pre-
sented in this paper. Indeed, the cellular automata classification presented here
is developed by partitioning the entire space into three classes. It is quite inter-
esting to notice that the order of Postulates 1 - 3 seem to dictate the exposition
and order of results of this paper. It must be noted that the Postulates should
not be conceived as axioms in this new axiomatic system but rather set the
methodological basis for the new system?.

The Infinite Unit Aziom is formally stated in three parts below and are
assumed throughout this paper. This axiom involves the idea of an infinite unit
from finite to infinite. The infinite unit of measure is expressed by the numeral
O, called grossone, and represents the number of elements in the set N of natural
numbers.

1. Infinity: For any finite natural number n, it follows that n < 0.
2. Identity: The following involve the identity elements 0 and 1

3See [18], section 2, for a complete discussion.
4In [11], G. Lolli gives a clear distinction and discussion of the Postulates and Axioms.
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3. Divisibility: For any finite natural number n, the numbers
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are the number of elements of the n** part of N°.

An important aspect of [J that will be used extensively in this paper is
the numeric representation of 07" for ¢ > 0 (note that i can be infinite as
well). These numbers are called infinitesimals. The simplest infinitesimal is
Ot = ﬁ It is noted that O~ " is the multiplicative inverse element for .

That is, 07" -0 = 0-0°" = 1. It is also important (and essential in this
paper) to note that all infinitesimals are not equal to 0. In particular, ﬁ > (S
As noted above, the set of natural numbers is represented by

N={1,2,3,..,0-2,0-1,0}
and the set of integers, with the new grossone methodology, is represented by
z={-0,-0+1,-0+2,..,-3,-2,-1,0,1,2,3,...,.0-2,0 - 1,0}

However, since we will be working with the set 5% as the domain of definition
for cellular automata maps, we will need to make use of the set of extended
natural numbers by applying the arithmetical operations to O

N={1,2,3,...0-2,0-1,0,0+1,.,0"%..2",...08 2

5In [18], Sergeyev formally presents the divisibility axiom as saying for any finite natural
number n sets N ,,, 1 < k < n, being the nth parts of the set N, have the same number of

elements indicated by the numeral % where
n
N ={k,k+nk+2nk+3n,..}, 1<k<n, |JNpn=N
k=1
and illustrates this with examples of the odd and even natural numbers.
6In [15] and [17] this is also shown as a limiting process. That is,
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The extended natural numbers will be used to represent the number of elements
in a set and their reciprocals used for infinitesimal quantities. The sequence of
forward iterates of an automaton map will only go up to 0, as the maximum
number of elements in a sequence cannot be more than grossone’. Cellular
automata are important models of computation, namely parallel computation.
However, the theory of grossone has already been successfully applied to study-
ing other models of computation, see [20] and [21].

3. Cellular Automata

Let S is an alphabet of size s = |S| such that s > 2 and let X = SZ, i.e. the
set of all maps from the lattice Z to the set S. That is, forx € X,z : Z — S.
One-Dimensional cellular automata (hence just called cellular automata from
now on) are induced by arbitrary local maps:

F.8@rth g

These are usually called local rules or block maps in the literature, see [7] and
[8]. The value r € Ny is called the range of the map. The automaton map f
induced by F is defined by f(z) = y with

y(i) = Flz(i —r), ..., z(i +7)]

To illustrate the importance of discrete time steps in the forward evolution of
the automaton, we will use the following formula where ¢ represents time.

Y(@) 41 = Fla(i — 1), ooy x(i 4 7)¢]

The study of dynamical systems, in this case discrete dynamical systems, en-
deavors to understand the forward evolution (or forward iterations) of the sys-
tem map and in this case the automaton rule. In this paper Ny is used to
represent the set of N U {0}. f*(z) is used to represent the ¢ iterate of the
automaton map f. That is,

fi@)=fofof of(x)

"In [18], Theorem 5.1, Sergeyev shows, using the new methodology, that the number of
elements of any infinite sequence is less or equal to 0. It is also mentioned in this reference,
that a subsequence, being a sequence from which some of the elements have been removed,
can be an infinite sequence having its number of terms less than grossone.



where 0 < ¢ < [J.

The restriction of z € X to a non-empty interval [i,j] of Z, where —00 <
i < j < 0O is called a word. Words are written x[i, j|]. The length of a word
w = xi, j] is Jw| = j —i+ 1. It is important to note that, using 0, words (or the
length of a word) can be infinite, however cannot have an endpoint greater than
O (nor less than —0). Also, for any a € S, define z, € X by x(i) = a, for i € Z.
Words of infinite length are mentioned in [7] but not much is done with them as
the metric used cannot handle infinite computations. The introduction of the
Infinite Unit Axiom and grossone make infinite, and infinitesimal, computations
possible. As stated in the abstract and introduction, this paper is concerned
with the development of a classification of one-dimensional cellular automata.
However, before a classification scheme can be presented, it is useful to first
define a metric on the space of cellular automata.

Definition 3.1. Let

T if x=y
TAy=1Q = if x(0) # y(0) or z(0) = =*
z(—n)...z(0)..x(n) if z(i) =y(i) Vi € [-n,n] and * outside

With the introduction of the Infinite Unit Axiom, —n can be infinite and equal
—0 + k for some finite integer k£ < 0, similarly n can equal O — k for some
finite integer £ > 0 (note that if & = 0, then x = y). Hence computations on
infinite configurations are allowed. Thus, x Ay is the place where two sequences
agree on the largest symmetric window around 0 and is * valued outside. Let
A be an arbitrary real-valued function defined on the alphabet S and taking
values in the open interval (0,1), i.e. A: S — (0,1) where \; = A(z(4)), hence
0 < A; < 1. Keeping in line with the metric development in [4], we need the
following definition®.

Definition 3.2.
|1 if xAy=x
Pz ny) = { [, AN if Ay=..x*xxz(—n)..z(0)..x(n) *** ..

We now form the following metric on the space of bi-infinite sequences:
Definition 3.3.

_J o if v=y
d(z,y) = { F(z Ay) otherwise

It is a simple exercise to check that this is indeed a metric and satisfies the
nonarchimedian or ultra metric inequality

d(z,y) < max{d(x, z),d(z,y)}

8The function F : X — (0,1] is called an evaluation function, see [4] for a more for-
mal development of a general nonarchimedean metric and [14] for a complete reference on
nonarchimedean analysis.



The great advantage of this metric and grossone lies in the fact that we can now
use configurations (and do computations) that agree, and hence are infinitesi-
mally close to each other, on infinite intervals, as the next example shows.

Example 3.1. Given S = {0,1}, let

-0 U
N =~
e="1 ..1111111..71

and

-0 —O+41-0O42 O

PP S NN PONS

y= 0 0 0 11..111(1)111..1 1

That is, x is the sequence of all 1’s and y is the sequence of all 1’s except for
3 zeros at the megative infinite indicated positions. In our examples, when not
explicitly denoted, we will use the symbol { ) to denote the zeroth place on the
integer lattice. The sequences x and y agree completely on the right hand side,
and don’t agree at integral values —, —0 + 1, and —0 4 2. Hence,

zAy=z(-0+3),z(-0+4),..,2(-1),2(0), z(1),...,2(0 — 4),2(0 — 3).

and the evaluation function becomes

FlxzAy) = AgQD*ﬁ).

IftA = %, for example, then the distance becomes

1

d(z,y) = m :

Note that the value of A\g was not needed since these configurations have only
1’s where they agree, however the value should still be given and used when
needed. Hence, the distance between the two points x and y is infinitesimal. Of
course, as the following example shows, the above construction easily covers the
finite distance case.

Example 3.2. Again, using the binary alphabet S = {0, 1}, let
= ..1110(1)0011...
and

y = ...1110(1)0101...

Then
x Ay =..xxxx(—1)z(0)x(1) * x* ...

That is, the sequences differ in the 2nd integral position and hence is * valued
outside the central places where they agree. Therefore, depending on the values
of Mo and A1,

d({E,y) = )\0 . /\1 . /\0



Note that, to compute their distance, we do not need to know the rest of these
sequences past the 2nd and the —2nd integral positions, hence ‘..." is used to
mean the sequences continue to the —[0 position on the left and the O position
on the right.

Under the usual product topology, a cylinder is a set C(i,j,w) = {z €
X|z[i,j] = w}, where |w| = j — i+ 1. We define the open disk of radius &
around z to be Ci_, () = C(—n,n,z[-n,n]). Here, it is important to note,
€ > 0 and that £ can be infinitesimal. It should be clarified that € must be
computed with respect to the metric defined above but first with the respective
values of A chosen. As the following example illustrates.

Example 3.3. Given the alphabet S = {0,1} and Ao = Ay = 1/2, then the disk
centered at x and of radius € = 1/8 is denoted by Cj_1 1)(x)?.

It should also be noted that being a nonarchimedean metric space, given any
two open disks, either one contains the other or they intersect trivially, see [14]
for a complete introduction to nonarchimedean spaces. In connecting the new
methodology with traditional topological dynamics, the following definitions are
classical in the theory of cellular automata and should be stated.

Definition 3.4. For ¢ > 0 (note that € can be infinitesimal) and x € SZ, let
D(x,e) = {yl d(f*(y), ['(x)) <&,V i€ No}.

Definition 3.5. f is expansive if there is an € > 0 such that for all x,
D(z,e) = {z}.

Expansive cellular automata demonstrate a very strong form of sensitivity to
initial conditions. Indeed, a cellular automata is called expansive if there exists
a finite window such that, for all configurations, any differences will eventually
propagate inside this window. This means that, for all configurations, say =
and y with x # y, there will be a forward iterate n such that f™(x) # f™(y).
The left (or right) shift map is an example of an expansive automaton. Indeed,
for all configurations sufficiently ‘close’ to each other, a small difference (no
matter how far away) will eventually propagate inside the finite window. The
important item to notice here is that D(z,¢) is defined using the metric and
hence requires a symmetric window around the zeroth place.

The following is a simple, but important, example of a cellular automaton of
range r = 1. The evolutionary behavior of this automaton is clearly exhibited.

Example 3.4. Let S = {0,1} and let f be the automaton induced by the local
rule F : S — S by F(1,1,1) = 1 and F(a,b,c) = 0 otherwise. If we apply
forward iterations of the induced automaton map f, all sequences eventually go
to the quiescent state of xg, except for the initial sequence x1 which remains
constant!©.

9We can also take the convention, once the A values are fixed, to denote C1/8(z) as the
disk of radius 1/8.

10This is an example of a Gilman class A automaton. For this and other examples, including
Gilman class B automata, see [7]



In the previous example, given any finite word z[i, j] with at least one el-
ement in the word not equal to 1, every configuration will eventually evolve,
under forward iterations, to the quiescent state of xy. Moreover, if we choose an
open disk C|_,, »j(x) around that point, every configuration in the open disk will
eventually evolve to zy. Hence it is important to determine how many elements
are in these open disks. Using Theorem 5.2 of [18]'!, this was answered in [4].
Theorem 3.1 and its corollaries below show the answer.

Theorem 3.1. Given the space S” of bi-infinite sequences, the number of ele-

ments x € S is equal to |S|2U+1.

Proof. See [4] for the proof. O

Corollary 3.1. The open disk Ci_,, »)(z) around x contains |S|2(D’”) elements.

Proof. Follows directly from Theorem 3.1, see [4]. O

Corollary 3.2. If there are |S|2D72” elements in an open disk C|_y, ()

of X, then there are |S|2D72” - (|S|*" 1 — 1) elements in the complement of
O[—n,n] ({E)12.

Proof. An open disk, C|_,, »(x), must be centered and symmetric around the

zeroth element. Hence, by Corollary 3.1, C[_,, ,, () contains |S|2(D_") elements.
Since an open disk must be centered around a word of at least length one (the
zeroth place), there are |S|?" ! —1 other disks. The space is nonarchimedean and
hence the open disks are either disjoint or one contains the other. Therefore
there are |S[*"*1 — 1 other C|_,, ,(y) disks that are disjoint from C[_,, ,(x)

|S|2D72n

and each one of these disks contain elements, any other disk will be

contained in one of these. Being that there are |S |2D+1 total elements in the
space X, the number of elements in the complement of Cj_, ,(z) is (as the

computation goes):

|S|2n+171

|S|2|:|+1 _ |S|2|:|72n _ |S|2D72n L+ |S|2|:|72n _ |S|2D72n . (|S|2n+1 _ 1)
|

Given the definitions and the previous corollaries, it is allowable to define an
open disk of infinitesimal radius. A disk of infinitesimal radius is an open disk
around a word of infinite length. For example, the disk C’FDJr2 0—g (z) has ex-

actly |S|2H-(H-2+0-2) — | 5|4 clements. As is seen, open disks of infinitesimal
radius can have very few elements. It should be noted that Corollaries 3.1 and
3.2 also apply to disks of infinitesimal radius.

HTn this reference it is shown the number of elements of the set Z is equal to 201. This
notation represents 200 + 1 in the new positional number system.
I2M. Margenstern proves a general result, see [12] Proposition 1.



4. Classes of One-Dimensional Automata

To understand the dynamics of cellular automata it is necessary to study
the forward iterates of configurations that equal or match those of a given con-
figuration, call it “z”, on a given interval of Z. Here the relation x ~ y iff
Vi € No, (f(y))[m,n] = (f'(z))[m,n] forms an equivalence relation with equiv-

alence classes denoted by By, »(z). That is,

Bun(x) = {y | (f'(y))[m,n] = (f*(x))[m,n] Vi€ No}.

By.n () is the set of y for which (fi(y))[m,n] = (fi(z))[m,n], for m <0 < n,
under forward iterations of the cellular automaton function. That is, Vi € Ny.
Recall, (f¥(y))[m,n] represents words and that the cellular automaton function,
f is first applied to the entire configuration x (or y), and then restricted to
the interval [m,n]. Note that m can equal —0 + k and n can equal O — k, for
some finite integer k£ > 0. In those cases the words are left-sided, right-sided
or both sided infinite. Hence elements in the B, ,(z) classes will agree with,
and so will their forward iterations, z[m, n] and all forward iterations of x[m, n]
under the automaton map f. This will form the effect of an infinite vertical
strip (column), not necessarily symmetric, around the central window.

The dynamical analysis of cellular automata presented herein is based on
counting the number of elements in the entire domain space, X. Hence, in this
section we will use O to count the number of elements in the class By, »(z)
whose forward iterates match those of x in the central window and develop a
simple classification of one-dimensional cellular automata based on this count.
One-dimensional cellular automata rules are thus partitioned into three classes.

Definition 4.1. Define the classes of one dimensional cellular automata, f, as
follows:

1. f € A if there is a By, n(x) that contains at least |S|2D’k elements, for
some finite integer k > 0.

2. f € B if there is a By, n(x) that contains at least |S’|0‘D_]C elements, for
some finite integer k > 0, 0 < a < 2 and « not infinitesimal, but f does
not belong to class A.

3. f € C otherwise.

Class C is the most chaotic class of automata. Indeed, in this class there
may only be finitely many elements or simple infinitely many elements in any
By, () class. Hence, beginning with an initial configuration, most other con-
figurations will diverge away from the initial configuration. Automata in class A
are the least chaotic and most elements will equal an initial configuration upon
repeated applications (iterations) of the automata rule on the infinite strip. The
following theorems show the relationship between an open disk and the number
of configurations in a B, ,(z) class.

Theorem 4.1. If there exists a By, n(x), for cellular automaton f, that contains
an open disk of non-infinitesimal radius, then f € A.



Proof. If there is a By, n(z), for cellular automaton f that contains an open
disk C[_;, () of non-infinitesimal radius, then C|_, ,j(x) contains |S|2(D*")

elements. Therefore By, () contains at least |S |2D_2" elements. Take finite

k = 2n and by Definition 4.1 the theorem is proved. O

Theorem 4.2. If f € A then there exists a By, n(x) class that contains an open
disk.

Proof. If By, (x) contains points y, then they must equal z[m,n], and so must
all forward iterations, on the central window [m,n] that contains the 0*" place.
Given f € A, there is a By, ,(z) that contains |S|QD_’C elements, for some k > 0.
Recalling m < 0 < n, if |m| > |n|, take k = 2|m| and choose Cp, _p(x). If
|m| < |n|, take k = 2|n| and choose C|_,, ,,(), and the theorem is proved. [

Hence, the dynamical behavior of automata in class A is determined by a
finite amount of information on the initial configuration x. This is not true for
the other classes. For example, the forward (or backwards) dynamics of the
right or left shift map cannot be determined by a finite amount of information.

The remainder of this section is dedicated to some examples.

Example 4.1. By Theorem 4.1, the automaton defined in Example 3.4 above
is an example of a class A automaton.

Example 4.2. The left shift map, o, is a cellular automaton of range 1, defined
by o(x;) = iq1. i.e. the map that shifts all symbols of a configuration to the
left, as illustrated below:

z = ..01110011011(1)010010100011...
of(z) = ..11100110111(0)10010100011...
2

o%(z) = ..11001101110(1)0010100011 ...

Obuiously all configurations y € By, n(x) would have to agree with x to the
right, out to O and at the zeroth place. Therefore there are at least |S|D7k

elements, for some finite k > 0 and at most |S|Ij elements in By, n(z), hence
oc€eB

It should be noted that, by definitions 3.4 and 3.5, the left (or right) shift
automaton is expansive. However it must be noted that there are also an infinite,
but representable quantity in the new methodology, amount of configurations,
under the left or right shift, that will not propagate inside a finite window.
These are precisely those that differ to the left of a finite window for the left
shift and those that differ to the right of a finite window for a right shift. Hence
it is shown that class B contains, in the classical sense, expansive automata.



5. Probabilities

In [25] Wolfram based his classification on the observation that if a configura-
tion is chosen at random then the probability is high that the cellular automaton
rule will lie in one of four classes. In [7] Gilman based the classification on the
probability of finding another configuration that will stay arbitrarily close to the
initial configuration. In this section we show and compute some of the proba-
bilities, for the classification presented herein, of finding another configuration
that stays arbitrarily close to an initial configuration. Here again the advantage
of using the Infinite Unit Axiom is demonstrated. Grossone gives us the ability
to actually compute real probabilities, with a higher degree of accuracy than
shown in [7]. Here we assume the equiprobable probability distribution. That
is, given a finite alphabet S, the probability of each element occurring is

1
5]

For f € A there is a By, »(z) that contains at least |S|QD_’C elements, for
some finite k& > 0. Hence the probability, P(y), of randomly finding another
configuration y that equals z on the central vertical strip (stays close to x),
under forward iteration of the cellular automaton, is

1 1
< P < — .
g <PW < 1g

Under the definitions, it is possible for the probability P(y) to equal ﬁ, for
example the automaton map that takes everything to the quiescent state of
0’s. Hence everything gets mapped to 0 and the probability is ﬁ that another

randomly chosen configuration will equal the initial in the 0" place and then
equal the initial under forward iterations.

For f € B there is a By, »(z) that contains at least |S|"‘D_7C elements, for
some finite k > 0, 0 < a < 2 and « not infinitesimal, but f ¢ A. Hence the
probability of finding another configuration y that stays arbitrarily close to =
under forward iteration, is at most

1
|S|(2—o¢)|:|+k+1 ’

A simple computation will show this. For f € B, the probability of randomly
finding another configuration, that will equal an initial configuration = in a cen-
tral window upon forward iteration, is infinitesimal and hence highly improba-
ble. However it is not impossible. Indeed, there are still a lot of configurations
available. For a specific example see Example 4.2, the left (or right) shift map
would have to have all other configurations agreeing with the initial on an infi-
nite word out to the right (or left, respectively) and these values would have to
be fixed without choice. In particular, choosing B_; 1(z) for the left shift map



o, the probability of finding another configuration that would equal the given x
in the finite window x[—1, 1]*® upon forward iterations of o would equal

1
|S|D+2 ’

It is obvious that this probability is infinitesimal however, as the following illus-
tration shows, there are still an infinite number of configurations in the B_q 1(z)
class.

O+2 places fixed without choice

T = .. *xxxxxx%x1(1)010010100011...
o(x) = ..x%%%%xx11(0)10010100011...
o%(z) = ..k x*x*xx* 110(1)0010100011 ...

Here the * means a wildcard choice for an element of alphabet S. Hence each
element choice, on the fixed side, has a probability of occurrence of ﬁ

For f € C the probability of finding another configuration that equals a
given initial configuration in a central window, under forward iterations, is much
smaller and can possibly be 0.

6. Discussion and Conclusions

In this paper a classification scheme for one-dimensional (linear) cellular au-
tomata, based on the Infinite unit axion and grossone, has been presented. The
entire domain space of one-dimensional automata, X = S%, contains |S |2D+1
configurations. This puts an upper bound representation on the number of ele-
ments in the entire space, hence we sub-divide the space into three components
and use this to build a classification on the number of configurations whose for-
ward evolution, under a cellular automaton, equal those (on a central window)
of a given initial configuration.

This classification is in line with that of Wolfram and that of Gilman, how-
ever it is based on a numeric representation of counting elements in a set. Au-
tomata in class A are the least chaotic, having a very large number of configu-
rations equaling those of a given configuration, on some central window'*, upon
forward iterations of the automaton map. Automata in class B, such as the left
shift automaton, are more chaotic than those in class A. However, it seems that

13The reader is reminded that, according to the definitions, this does not have to be a
symmetric central window but has to include the zeroth place.

4 Given the definition of the metric, it is allowable to say “staying close together” upon
forward iterations.



they can still be described without too much complexity. Automata in class
C are more difficult to find and are the most chaotic in the respect that there
are relatively very few other configurations that will follow and stay close to a
given. Indeed, the number of configurations that stay close to a given initial
configuration, upon forward iterations, is much less than the other classes and
may be simple infinite (either O, or 02, ..., or O™, or some part thereof), finite
or a single configuration.

Wolfram class 1 and 2 (see figure 1 and figure 2) seem to correspond to
class A automata. By Theorem 4.1, Gilman’s class A automata corresponds
to the class A automata presented in this paper, however there may be some
overlap with Gilman’s class B automata. Being expansive, the left (or right)
shift map belongs in Gilman’s class C' automata, while they both belong to
class B presented herein. This shows the classifications have some differences.
Automata in Wolfram class 4, for example rule 20 as seen in figure 4, seem
to be similar to the shift map and hence are conjectured to fall into class B.
Wolfram class 3, as seen in rule 12 (see figure 3), exhibit aperiodic behavior
and seem to correspond to the most chaotic, class C. However some of the
Wolfram totalistic rules are conjectured to, and some were proven to, be capable
of universal computation, see [26]. Due to the nature of universal computation,
some of these automata can fall into class C. It is left as an open problem to
show these. On the whole, the presented classification would be stronger if there
was an algorithm to determine membership in the different classes and we pose
this as an open problem.
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