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Abstract

This paper presents details of an open access web site that can be used by hydrologists and other scientists to evaluate time series models.
There is at present a general lack of consistency in the way in which hydrological models are assessed that handicaps the comparison of reported
studies and hinders the development of superior models. The HydroTest web site provides a wide range of objective metrics and consistent tests
of model performance to assess forecasting skill. This resource is designed to promote future transparency and consistency between reported
models and includes an open forum that is intended to encourage further discussion and debate on the topic of hydrological performance eval-
uation metrics. It is envisaged that the provision of such facilities will lead to the creation of superior forecasting metrics and the development of
international benchmark time series datasets.
� 2006 Elsevier Ltd. All rights reserved.
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Name of the product: HydroTest website
Developed by: Christian W. Dawson
Contact address: Department of Computer Science, Lough-

borough University, Loughborough, LE11 3TU, UK.
Available since: 2005
Coding language: PHP: Hypertext Pre-processor
Availability: via http://www.hydrotest.org.uk
Cost: Free

1. Introduction

Krause et al. (2005: p. 89) list three main reasons for the
performance assessment of hydrological models which can
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E-mail address: c.w.dawson1@lboro.ac.uk (C.W. Dawson).
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be paraphrased as follows: (1) to provide a quantitative indica-
tor of model skill at reproducing catchment behaviour; (2) to
provide a means for evaluating improvements to the model
or method of modelling; (3) to provide a mechanism for com-
paring the results obtained in different modelling studies. To
select the best model from a set of competing models available
for a particular application is also a difficult undertaking in
that the purpose of the model must be matched to the measures
that are used to assess forecasting skill with regard to opera-
tional requirements. The process of assessing the performance
of a hydrological model requires both subjective and objective
estimates to be made of the relationship that exists between
simulated behaviour and observed behaviour. Evaluation is re-
ported in terms of closeness of fit and in most cases with re-
spect to observations recorded at the catchment outlet. The
most fundamental method of assessing model performance
in terms of functional behaviour is through a visual inspection
of the differences between simulated and observed time series
plots. In doing so, the hydrologist can formulate subjective as-
sessments of the model behaviour with respect to systematic

http://www.hydrotest.org.uk
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(e.g., overprediction or underprediction) and dynamic (e.g.,
timing, rising limb, falling limb, and base flow) behaviour of
the model. For objective assessment, however, the hydrologist
will require the production of one or more mathematical esti-
mates of the error that occurs between the simulated and ob-
served hydrological time series record.

There is a pressing need to develop superior metrics for the
quantitative evaluation of hydrological forecasts. Metrics
are defined as a system of parameters, or methods of quantita-
tive assessment, for something that is to be measured. Metrics de-
fine what is to be measured along with the processes that are used
to perform such measurement. Teegavarapu and Elshorbagy
(2005: p. 200) in a consideration of traditional error metrics
concluded that conventional measures ‘‘have limited use and
may not always provide a comprehensive assessment of the
performance of the model developed for a specific applica-
tion’’. Earlier models could be reported in terms of output
evaluations that were considered to be ‘‘sufficient’’ or ‘‘ac-
ceptable’’ or ‘‘adequate’’ since the inner workings of the
model had strong theoretical support. Traditional evaluation
metrics were intended to support this level of assessment,
but struggled to maintain a realistic distinction between dif-
ferent models, developed on different combinations of struc-
tures and parameter sets, and could not be used to validate
model structure. Moreover, most calibrated models possess
sufficient parameters to produce an ‘‘acceptable result’’ in
terms of a ‘‘reasonable fit to output discharge’’, in contrast
to the operational requirement which is for solutions that
will deliver ‘‘best possible accuracies’’. The last decade has
witnessed a virtual explosion in the application of soft com-
puting methodologies throughout the hydrological sciences
and much of that effort has been directed towards the
production of superior forecasting solutions. Numerous other
opportunities are also being explored, such as the potential
for significant savings to be made in terms of model devel-
opment time and effort, or the need to model nonlinear sys-
tems where traditional parameter estimation techniques are
not convenient (Singh and Woolhiser, 2002). For reviews of
neural network applications in the hydrological sciences
see: ASCE (2000), Dawson and Wilby (2001), Maier and
Dandy (2000). This rapid and widespread uptake of ‘‘data-
driven technologies’’ or ‘‘smart solutions’’ is not intended
to be a substitute for conceptual watershed modelling. It
has nevertheless created a mass of operational solutions
that can produce improved hydrological modelling outputs
but which, ipso facto, have no theoretical support and where
‘‘avoidance of overfitting’’ is required (Giustolisi and Lau-
celli, 2005). This field of modelling is based on numerous
combinations of computational algorithms and numerical as-
sessment procedures; total reliance is placed upon evaluation
metrics throughout both model construction and model veri-
fication operations. The modelling power of a ‘‘smart solu-
tion’’ has no theoretical constraints and under the right
circumstances the final product should be able to surpass
the imperfect representational capabilities of traditional eval-
uation metrics. To develop superior soft computing solutions
will in consequence require the development of more
efficacious metrics upon which to construct and test the
next generation of models that are needed to service the hy-
drological demands of operational planners and managers.
The first step in this process is to bring together the estab-
lished set of past and present model evaluation procedures
in a standardised toolbox. This will promote the detailed explo-
ration and cross-comparison of each metric in terms of (a) poten-
tial merits and (b) possible drawbacks. The toolbox will
thereafter serve as a springboard for subsequent improvements.

This paper is about the assessment of time series forecasting
models. However, commeasure with past (e.g. Clarke, 1973) and
present (e.g. Jakeman et al., 2006; Refsgaard and Henriksen,
2004; Refsgaard et al., 2005) concerns about the need to de-
velop consistent hydrological modelling protocols and termi-
nologies, it is important to be clear about what does or does
not constitute a time series forecasting model. A prediction is
a statement or a claim that a particular event will occur (the et-
ymology of this word comes from the Latin præ- ‘‘before’’ plus
dicere ‘‘to say’’). It covers something that is expected to occur
provided that a set of preconditions is (or is not) satisfied. It as-
serts the existence of a temporal relationship between the state-
ment that is being made and the event itself, but the latter does
not need to possess a specific temporal component, or the tim-
ing of the event can be directional but open ended. Anderson
and Burt (1985: p. 2) adopt a similar stance and state that
‘‘the aim of most hydrological modelling is to provide a progno-
sis of the future performance of a hydrological system; such
a judgement may be made with respect to real-time (forecast-
ing) or without specific time reference (prediction)’’. Klemes
(1986) also supports this viewpoint: ‘‘Following the general us-
age in hydrology, by forecasting is meant real-time forecasting
while prediction is used for estimation of future states which are
not specified in time .’’. Thus expectations that involve a spec-
ified temporal component can be treated as a special case of pre-
diction; often sub-divided into the estimation of future
conditions (forecasting), present conditions (nowcasting) or
past conditions (hindcasting). The temporal component that is
involved in nowcasting operations remains a matter of debate
and the term should perhaps be restricted to short term forecasts
of up to about two hours ahead. The essential difference be-
tween shorter period nowcasts and longer period forecasts is as-
sociated with the rapid decline in accuracies that will occur over
time due to the complex and ever changing nature of our hydro-
logical and meteorological environments. The upshot to this ra-
tionalisation of time series forecasting models is that models
which are designed to produce estimates of future conditions
or variables in terms of specified temporal units should be
called forecasting models irrespective of the processes or data-
sets that are used to build and test such tools; it is their intended
application that countsdnot the methods or the mechanics of
their development. The temporal component in real time fore-
casting requires specified temporal input units and output units
and for the model inputs to be processed with sufficient speed
such that no backlog occurs. Thus, sampling intervals and up-
dating procedures are important in an operational setting as is
the progressive integration of digital networks with telemetric
stations.
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Scientific and engineering shortcomings in the 1980s and
1990s led to an assessment of published papers which noted
that model developers typically do not provide consistent or
standard quantitative evaluation criteria. This does not assist
either readers or users in determining how well their model re-
produces the observed dataset or how well their model com-
pares with other models (ASCE, 1993). There was, and still
is, a general lack of transparency, objectivity and consistency
with respect to the manner in which hydrological models are
assessed, evaluated and/or compared in reported studies (Leg-
ates and McCabe, 1999). Not only are a number of different
error metrics used from one study to the next, but there is
also no guarantee that in cases where the same error metric
is used, it has been applied consistently and correctly. For
these reasons it is often difficult to compare objectively the re-
sults presented in different studies. Moreover, analogous terms
and expressions are being used in different papers, to represent
either the same metric or different metrics. This matter is
a source of potential confusion, that extends from a simple
doubling-up based on replacement expressions and formats
(e.g. ‘‘mean’’ is degraded to ‘‘average’’ or ‘‘ratio’’ is converted
into a ‘‘percentage’’), to the more disturbing use of different
terms and labels for the description of identical metrics (e.g.
mean absolute relative error is sometimes shortened to mean
relative error; Karunanithi et al., 1994; Elshorbagy et al.,
2000; Teegavarapu and Elshorbagy, 2005), or, in reverse, using
identical labels to represent different metrics (e.g. normalised
root mean squared error is being calculated in a number of dif-
ferent manners; Atiya et al., 1999; Jain and Srinivasulu, 2005;
Karunasinghe and Liong, 2006). The need for a universal vo-
cabulary, based on consistent equations, is obvious but until
such time as a definitive source has been established there re-
mains a requirement to include each individual algorithm in
each individual paper, or for each interested reader to refer
to previous papers, in order to obtain detailed particulars and
a fuller understanding of the metric that is being reported.
However, even cross referencing and the use of citations is
not a foolproof method, since previous errors and omissions
can be propagated throughout the field, e.g. incorrect bracket
notation in a published equation (MAE; Chang et al., 2002).
It is better to be consistent and transparent and to promote col-
lective development activities, that are open to inspection, and
that would support and encourage maximum potential testing,
correctness and peer group endorsement.

Chiew and McMahon (1993) argued that amongst practi-
tioners the use of different evaluation metrics for hydrological
modelling purposes was related to whether or not the relevant
procedures were provided in common software packages. Iden-
tical stumbling blocks occur in the case of multi-purpose statis-
tical software for data analysis operations that are provided on
the web: e.g. StatCrunch (http://www.statcrunch.com/) where
usage has grown to the point that it is no longer feasible to offer
free access and support. The proposed solution to such prob-
lems is the construction of a web processing platform that is
dedicated to the evaluation of hydrological forecasting models.
This solution will also be used to promote a consideration of
metrics that might not otherwise be considered, and present
the latest innovations in this field, for operational appraisal
and testing purposes. There is, moreover, no universal measure
of performance and the metric(s) that is (are) chosen should
correspond to the particular needs of each individual applica-
tion. Further, since single measurements are insufficient, the
use multiple measurements is a common occurrence such
that hydrologists must be able to select their preferred metrics
from a comprehensive range of potential options. Jakeman
et al. (2006) note that other criteria should be tested, including
tests on residuals for cross-correlation with predictors, hetero-
scedasticity, autocorrelation, etc. It is also desirable that mod-
ellers compare the relative performance of different evaluation
procedures tested under different conditions; for a recent com-
parison of nine different evaluation metrics tested on three dif-
ferent types of synthetic error that were introduced into
a discharge time series see Krause et al. (2005).

The purpose of this paper is to present the main details of
an open access web site that can be used by hydrologists
and other scientists to evaluate their (hydrological) mod-
elsdproviding a broad spectrum of quantitative tests and con-
sistent measures of performance. The site has been developed
primarily to assess hydrological model time series forecasts,
but it can also be used to evaluate any other models that pro-
duce time series outputs. The aim of this site is to provide
a uniform set of quantitative tests that will ensure transparency
and consistency between reported studies. By establishing
a single web site location for model evaluation purposes we
are hoping to provide scientists with the following:

1. Research support;
2. Fast and efficient service;
3. Method for the accreditation of computed results;
4. Evaluation tools built on community involvement and

testing;
5. Metadata rule base that highlights and standardises imple-

mentation issues;
6. International warehouse of popular and seldom used math-

ematical algorithms;
7. International forum for open discussion and debate that

will further this subject.

In return, users of the site are requested to:

1. Register with the site;
2. Cite the web site in related publications;
3. Participate in transparent discussions and debates on test-

ing procedures;
4. Inform the site developers of any improvements, correc-

tions and amendments.

The privacy of users is important and details provided dur-
ing registration will not be passed on to any other parties. Reg-
istration will allow the site developers to monitor uptake and
usage of the site and keep users informed of any updates
and corrections.

The remainder of this paper is arranged as follows. Sec-
tion 2 discusses the evaluation metrics that have been
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incorporated into the web site. Section 3 discusses the differ-
ent types of errors produced by hydrological models; four ex-
ample model outputs are provided and the relationships
between the evaluation metrics and the model output errors
are discussed. Section 4 provides a case studydshowing
how the site was used to establish the ‘‘best’’ model from
a series of model calibrations. Section 5 introduces the site
itself, its interface, and how it should be used. Section 6
presents some conclusions and discusses future developments
for the site and this project.

2. Evaluation metrics

This section will describe each evaluation metric that is cal-
culated on the HydroTest web site. ASCE (1993) reviewed
a number of evaluation metrics for the assessment of hydro-
logical models which were split into two distinct categories;
those for evaluating continuous hydrographs and those that
should be applied to single-event models. HydroTest computes
both types of evaluation metric and the user should be aware
of the limitations and appropriate applications of each of met-
ric that is reported. The different types of metric on the web
site can be categorised as follows:

a. Statistical parameters of observed and modelled time se-
ries datasets.

b. Statistical parameters of the residual error between ob-
served and modelled time series datasets.

c. Dimensionless coefficients that contrast model perfor-
mance with accepted norms or recognised standards.

In the following equations, Qi is the observed (i.e. ex-
pected) value, bQi is the modelled (i.e. forecast) value (where
i ¼ 1 to n data points), Q is the mean of the observed data,
and ~Q is the mean of the modelled values.

The metrics are aimed primarily at evaluating river dis-
charge forecasting models (for example, models predicting
discharge measured in cumecs) although most of the metrics
can also be used to evaluate other forecasting systemsdfor ex-
ample, in the estimation of river stage (e.g. level of water mea-
sured in metres), water quality parameters (e.g. CO2

concentration), water temperature, air temperature, etc. Care
must be taken, however, when using these metrics to evaluate
other forecasts to ensure that the measurements are applicable.
For a more detailed discussion of particular evaluation metrics
the interested reader is directed to: Armstrong and Collopy
(1992); ASCE (1993); Beran (1999); Green and Stephenson
(1986); Hall (2001); Krause et al. (2005); or Legates and
McCabe (1999). Chiew and McMahon (1993) and
Houghton-Carr (1999) provide comparisons of quantitative
metrics with qualitative assessments based on expert opinions.

Table 1 provides a list of indicative references for the nu-
merous metrics that are computed on the web site and pre-
sented in this paper. Hydrologists are invited to recommend
other metrics and case studies for incorporation in subsequent
processing operations and reporting activities.
2.1. Statistical parameters of observed and modelled
time series datasets

The general characteristics of each individual dataset can
be described or summarised using standard descriptive statis-
tics. It must be stressed that the calculation of statistical pa-
rameters is not in itself a testing operation since it involves
the production of individual descriptors for each dataset and
no direct comparison is performed. It does nevertheless lead
to various possibilities for subsequent quantitative and qualita-
tive comparisons. The overall level of agreement between the
two datasets with respect to their computed statistical param-
eters can be evaluated in direct terms of ‘‘relative magnitude’’
or through the use of mathematical constructs such as ‘‘ra-
tios’’. Eight individual descriptive statistics are computed for
the observed and modelled time series datasets comprising:
minimum, maximum, mean, variance, standard deviation,

Table 1

Evaluation metrics used in recent reported hydrological modelling studies

Eq. Metric Example studies

(1)a AME None found

(2)a PDIFF None found

(3) MAE Chang et al. (2004); Chen et al. (2006);

Dawson et al. (2006a); Karunasinghe and

Liong (2006); Liong et al. (2000);

Supharatid (2003)

(4)a ME Chang et al. (2001)

(5)a RMSE Alvisi et al. (2006); Bowden et al. (2002);

Campolo et al. (2003); Corani and Guariso

(2005); DeVos and Rientjes (2005);

Lauzon et al. (2006); Sudheer et al. (2003);

Wagener and McIntyre (2005)

(6) R4MS4E Baratti et al. (2003); Cannas et al. (in press)

(7) AIC Chibanga et al. (2003); Hsu et al. (1995)

(8) BIC Chibanga et al. (2003); Hsu et al. (1995)

(9)a NSC None found

(10) RAE None found

(11) PEP Lin and Chen (2004); measured on annual basis:

Sudheer et al. (2003)

(12) MARE Riad et al. (2004); Jain and Srinivasulu

(2004, 2005)

(13) MdAPE Lin and Chen (2005)

(14) MRE Dawson et al. (2006a); measured on a seasonal

basis: Jeong and Kim (2005)

(15) MSRE Dawson et al. (2002, 2006a)

(16) RVE Expressed as a percentage: Lin and Chen (2004);

Rajurkar et al. (2004); Yapo et al. (1996); Yu and

Yang (2000)

(17) RSqr Giustolisi and Laucelli (2005); See and

Abrahart (1999)

(18) CE Boughton (2006); Coulibaly et al. (2000);

Dawson et al. (2006a); DeVos and Rientjes (2005);

Kumar et al. (2005); Shamseldin (1997)

(19) IoAd None found

(20) PI Anctil et al. (2004); Chang et al. (2004); Chen et al.

(2006); DeVos and Rientjes (2005); Gaume and

Gosset (2003); Jain and Srinivasulu (2005); Lauzon

et al. (2006)

a Used by the National Weather Service to calibrate the SAC-SMA Model

(Gupta et al., 1998). ME and RMSE are expressed in terms of daily measures

by the National Weather Service but the reported equations can be applied to

different temporal periods.
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skewness, kurtosis, and lag-one autocorrelation coefficient.
Chiew and McMahon (1993) provided equations for what
was regarded to be a set of simple parameters that could be
used to describe the characteristics of each particular time se-
ries: i.e. mean, standard deviation, skewness, lag-one autocor-
relation coefficient. The authors accepted that other statistical
parameters such as kurtosis, or higher order moments and
higher-lag autocorrelation coefficients, could be used but
maintained that since most hydrological applications at that
point were based on a comparison of observed and modelled
means (and sometimes standard deviations) their four chosen
parameters were sufficient to describe the similarities that ex-
ist between two discharge time series datasets. However, soft
computing methodologies are sensitive to other factors, so
four other standard descriptive parameters have also been in-
cluded on the web site: minimum and maximum to represent
range; variance to represent statistical dispersion; kurtosis to
cover the shape of the distribution in terms of ‘‘peakedness’’,
with higher values meaning that more of the variance is due to
infrequent extreme deviations, as opposed to frequent modest-
sized deviations.

2.2. Statistical parameters of residual error between
observed and modelled time series datasets

It is important to provide a quantitative assessment of
model error expressed in terms of the units of the variables
of interest and that can thereafter be interpreted in a meaning-
ful manner. It is also desirable to include in such evaluations
a consideration of other factors such as the number of param-
eters and to test for systematic errors. Measurements in this
category are termed absolute errors. It is also important to pro-
vide a quantitative assessment of model error expressed in
terms of unbiased unit-free metrics that can thereafter be
used to support interpretation in a purposeful context. Mea-
surements in this category are termed relative errors and re-
cord the mismatch that occurs between the observed and
modelled values, expressed in terms of ratios and percentages,
based on the relative relationship that exists between observed
records and model error values. The use of relative error mea-
surements is intended to redress the limitations of absolute er-
ror measurements which, although useful, do not necessarily
give an indication of the importance of an error. For example,
an error of 1 cm is very significant over a measurement of
2 cm, but virtually irrelevant over a measurement of 10 m.
The two different types of assessment metric in this section:
(a) can be used to provide a comparison between equivalent
models, produced on the same catchment, but cross catchment
comparisons are invalid since no common standard exists; and
(b) possess no fixed criterion in terms of what does or does not
constitute a ‘‘good’’ value; it is nonsense to state that ‘‘the
model is good (bad) because a particular evaluation measure
is less (greater) than x’’, unless one is referring to a specific
degree of accuracy that is relevant to a particular forecasting
application. For absolute parameters such accuracies must be
expressed in identified units of measurement; for relative
parameters such accuracies must be expressed in terms of rel-
ative proportions.

2.2.1. Estimation of absolute parameters
Eq. (1) is used to calculate the absolute maximum error

(AME). This metric records in real units the magnitude of
the worst possible positive or negative error that the model
has produced. It is a non-negative metric that has no upper
bound and for a perfect model the result would be zero. It
does not attempt to represent in a direct manner the level of
overall agreement between the two datasets and individual
outliers can have a marked influence or produce a misleading
effect. The measure is nevertheless useful in situations where
it is important to establish whether or not a particular environ-
mental threshold has been exceeded, i.e. maximum permitted
error.

AME¼max
���Qi� bQi

��� ð1Þ

Eq. (2) is used to calculate the peak difference (PDIFF). This
metric records in real units how well the highest output value
in the modelled dataset matches the highest recorded value in
the observed dataset. It is a signed metric that has no upper
bound and for a perfect model the result would be zero. As
a signed metric this measure indicates whether or not the fore-
casts are biased, i.e. does a systematic error exist such that the
forecasts tend to be either disproportionately positive or nega-
tive. The metric is positive if a model under-estimates the
overall actual values, or negative if a model over-estimates
the overall actual values. It is worth noting that some authors
(for example, Chang et al., 2001) present these kinds of statis-
tics the opposite way round, i.e. negative values for an under-
estimate and vice versa. The signed metrics produced by the
HydroTest site consistently represent under-estimates as posi-
tive values and over-estimates as negative values.

PDIFF does not attempt to represent in a direct manner the
level of overall agreement between the two datasets and the
temporal relationship that exists between the highest magni-
tude in each dataset is not considered. There is no requirement
for the two peak values to coincide; indeed, the highest peak in
the observed dataset might occur near the beginning of the se-
ries, whereas the highest peak in the modelled dataset might
appear towards the end of the period that is being modelled.
PDIFF is nevertheless useful in terms of providing an indica-
tion as to whether or not the model is able to produce a similar
range of forecast values to that which occurs in the observed
dataset. This being the case it would appear to be more appro-
priate for single-event modelling as opposed to continuous
modelling and care must be taken when applying this metric
to continuous hydrographs since the two maximums that are
being compared might derive from different storm events in
the observed and modelled datasets.

PDIFF¼maxðQiÞ �max
�bQiÞ ð2Þ

Eq. (3) is used to calculate the mean absolute error (MAE).
This metric records in real units the level of overall agreement
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between the observed and modelled datasets. It is a non-neg-
ative metric that has no upper bound and for a perfect model
the result would be zero. It provides no information about un-
der-estimation or over-estimation. It is not weighted towards
high(er) magnitude or low(er) magnitude events, but instead
evaluates all deviations from the observed values, in both an
equal manner and regardless of sign. MAE is comparable to
the total sum of absolute residuals (TSAR; Stephenson,
1979) that was recommended for the comparison of single-
event models in a major review of evaluation criteria that
was conducted by Green and Stephenson (1986) and thereafter
endorsed by ASCE (1993).

MAE¼ 1

n

Xn

i¼1

��Qi� bQij ð3Þ

Eq. (4) is used to calculate the mean error (ME). This signed
metric records in real units the level of overall agreement be-
tween the observed and modelled datasets. It is unbounded and
for a perfect model the result would be zero. However, a low
score does not necessarily indicate a good model in terms of
accurate forecasts, since positive and negative errors will
tend to cancel each other out and, for this reason, MAE (Eq.
(3)) is often preferred to ME.

ME is not weighted towards high(er) magnitude or low(er)
magnitude events, but instead evaluates all modelling devia-
tions from the observed values in an equal manner including
the sign. To compare ME values across different variables or
across events with different magnitudes (for non-negative vari-
ables) it can be normalised; ME is divided by the mean of the
observed values over the period or event to produce the nor-
malised mean bias error (NMBE; Jain and Srinivasulu, 2004,
2005).

ME¼ 1

n

Xn

i¼1

�
Qi� bQi

�
ð4Þ

Eq. (5) is used to calculate the root mean squared error
(RMSE). This metric records in real units the level of overall
agreement between the observed and modelled datasets. It is
a non-negative metric that has no upper bound and for a perfect
model the result would be zero. It comprises a weighted mea-
sure of the error in which the largest deviations between the
observed and modelled values contribute the most. It is com-
puted on squared differences and assessment is thus biased in
favour of peaks and high(er) magnitude events, that will in
most cases exhibit the greatest errors, and be insensitive to
low(er) magnitude sequences. It is in consequence more sensi-
tive than other metrics to the occasional large error: the squar-
ing process gives disproportionate weight to very large errors.
RMSE can provide a good measure of model performance for
high flows (Karunanithi et al., 1994), but significant variations
in the assessment of different catchments will occur, since the
evaluation metric is dependent on the scale of the dataset that
is being analysed. It is perhaps better to report RMSE, rather
than mean squared error (MSE; Chang et al., 2004; Chen et al.,
2006; Furundzic, 1998; Riad et al., 2004;), because RMSE is
measured in the same units as the original data, rather than
in squared units, and is thus more representative of the size
of a ‘‘typical’’ error. MSE was at one point the most widely
used measure of overall accuracy for a forecasting method
but it is also the method that has incurred the most criticism
(e.g. Clements and Hendry, 1993). RMSE is usually similar
in magnitude to, but slightly larger than, MAE (Eq. (3)) and
the extent to which RMSE exceeds MAE is an indicator of
the extent to which outliers (or variances in the differences be-
tween the modelled and observed values) exist in the datasets
(Legates and McCabe, 1999). To compare RMSE values
across different variables or across events with different mag-
nitudes (for non-negative variables) it can be normalised;
RMSE is divided by the mean of the observed values over
the period or event to produce the relative root mean squared
error (RMSEr; Fernando and Jayawardena, 1998; Pebesma
et al., 2005). Jain and Srinivasulu (2004, 2005) refer to this
metric as normalised root mean squared error (NRMSE). It
should also be noted that a number of other formulations exist
for calculating normalised root mean squared error, e.g. Atiya
et al. (1999) or Karunasinghe and Liong (2006). RMSE is
comparable to sum squared error (SSE; Giustolisi and Lau-
celli, 2005; Lauzon et al., 2006) and the latter was once one
of the most popular metrics for evaluating hydrological simu-
lation models (Diskin and Simon, 1977). SSE, used for the
evaluation of single event models, is termed ’’simple sum of
squared residuals’’ (G); for the evaluation of continuous mod-
elling over a number of events it is termed total sum of squared
residuals (TSSR). SSE measures were also recommended in
the review of Green and Stephenson (1986) and thereafter en-
dorsed by ASCE (1993). It should be noted that G and TSSR,
like MSE, are expressed in squared units whereas RMSE is in
real units.

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðQi� bQiÞ2

n

vuuut
ð5Þ

Eq. (6) is used to calculate the fourth root mean quadrupled
error (R4MS4E). This metric records in real units the level
of overall agreement between the observed and modelled data-
sets. It is a non-negative metric that has no upper bound and
for a perfect model the result would be zero. It comprises
a weighted measure of the error in which marked emphasis
is placed upon the largest deviations between the observed
and modelled values. R4MS4E is related to RMSE (Eq. (5))
in that higher order even powers can be used to further bias
the evaluation process in favour of peaks and high(er) magni-
tude events, that will in most cases exhibit the greatest errors,
and be insensitive to low(er) magnitude sequences (Blackie
and Eeles, 1985: p. 324). R4MS4E is also comparable to
mean higher order error (MS4E; Abrahart and See, 2000)
which is expressed in squared units whereas R4MS4E mea-
surements are in real units. Cannas et al. (in press) used this
as one of several measures for evaluation of different forecast-
ing models.
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R4MS4E ¼
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Eqs. (7) and (8) are used to calculate the Akaike information
criterion (AIC; Akaike, 1974) and the Bayesian information
criterion (BIC; Schwarz, 1978). AIC and BIC are model selec-
tion metrics in which some traditional evaluation measure is
adjusted according to the number of free parameters in each
model, p, and the number of data points that were used in
its calibration, m. Each metric attempts to account for model
complexities; a model, for example, with more parameters
or more calibration data might be expected to forecast more
accurately than a parsimonious model with fewer degrees of
freedom (providing that it is calibrated correctly). Each metric
attempts to find the minimal model that best explains the data-
set, which can be contrasted with more traditional approaches
to modelling, such as starting from a null hypothesis. Each
metric quantifies the relative performance of a model on the
understanding that a model with lots of parameters will pro-
vide a close fit to the dataset, but will have few degrees of free-
dom, and thus be of limited utility. This balanced approach
discourages overfitting. Thus, a potential solution that contains
lots of parameters, calibrated on a large amount of material, is
penalised, while credit is given to simpler and less demanding
models. AIC and BIC in this instance comprise modified and
weighted versions of RMSE (Eq. (5)). The scores follow a sim-
ilar format to RMSE; comprising non-negative metrics that
have no upper bounds, the preferred model being the one
that has the lowest value, with the result for a perfect model
being zero. Neither of two evaluation measures will be in
real units, and although each score attempts to record the level
of overall agreement between the observed and modelled data-
sets, each metric nevertheless suffers form the same problems
as RMSE; the result comprises a weighted measure of the er-
ror in which marked emphasis is placed upon the largest devi-
ations between the observed and modelled values.

AIC¼ m lnðRMSEÞ þ 2p ð7Þ

BIC¼ m lnðRMSEÞ þ p lnðmÞ ð8Þ

Eq. (9) is used to calculate the number of sign changes (NSC;
which is not to be confused with the NasheSutcliffe coefficient
that is sometimes abbreviated to ’’NSC’’; see Eq. (18)). This
metric comprises a simple sequential count of the number of in-
stances in which the sign of the residual changes throughout
each series. It can be either positive or negative. It is unbounded
and for a perfect model the result would be zero (although a score
of zero does not necessarily imply a perfect model). It measures
the level of overall agreement between the observed and mod-
elled datasets in terms of ‘‘systematic error’’ and a ‘‘consistent
outcome’’. The closer this value is to zero the more consistent
the model is at either over-estimating or under-estimating the
observed dataset. The maximum score is related to the size of
the dataset, and would occur when each point in the series has
been either over-estimated or under-estimated, in the opposite
direction to that in which the previous data point in that series
was either over-estimated or under-estimated, i.e. the maximum
score is n. However, a high score does not indicate a poor model
in terms of accurate forecasts, since it measures crossover and
not real differences in the magnitude of the error such that to
criss-cross the observed record at each step by a small margin
of error would in fact be a good thing to do in terms of overall
fit. NSC is not related to the dimensions of the records that are
being modelled. It is not weighted towards either high(er) mag-
nitude or low(er) magnitude events and evaluates all deviations
from the observed values in a sequential manner, based on sign,
but is itself an unsigned measure of error. The principal use of
this count is to increase the set of unrelated evaluation metrics
that are used to record the computed difference between simu-
lated and observed datasets for model calibration purposes
(Gupta et al., 1998).

NSC¼ Number of sign changes ðof residualsÞ ð9Þ

2.2.2. Estimation of relative parameters
Eq. (10) is used to calculate the relative absolute error

(RAE). This metric comprises the total absolute error made
relative to what the total absolute error would have been if
the forecast had simply been the mean of the observed values.
It is a non-negative metric that has no upper bound and for
a perfect model the result would be zero. It records as a ratio
the level of overall agreement between the observed and mod-
elled datasets. The lower the value the better the performance
of the model compared to forecasting the mean of the series:
a score of one indicates the same performance as forecasting
the mean. This metric should be not considered in isolation
since its evaluation of model output forecasts is related to
the spread of the observed records. Thus, for a particular score,
a model that is forecasting outputs within a limited range
should be more accurate than a model that is forecasting
across a broader range of values. RAE must not be confused
with ‘‘absolute relative error’’ (ARE; Hu et al., 2001) which
does not perform a comparison with the mean of the time
series.

RAE¼

Pn
i¼1

jQi� bQij

Pn
i¼1

jQi�Qj
ð10Þ

Eq. (11) is used to calculate the percent error in peak (PEP).
This metric comprises the difference between the highest
value in the modelled dataset and the highest value in the ob-
served dataset, made relative to the magnitude of the highest
value in the observed dataset, and expressed as a percentage.
It can be either positive or negative. It is unbounded and for
a perfect model the result would be zero. PEP does not attempt
to represent in a direct manner the level of overall agreement
between the two datasets, and the temporal relationship that
exists between the maximum value in each dataset is not
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considered. Like PDIFF, there is no requirement for the two
peak values to coincide. PEP would thus appear to be more ap-
propriate for single-event modelling as opposed to continuous
modelling and care must be taken when applying this metric to
continuous hydrographs since the two maximums that are be-
ing compared might derive from different storm events in the
observed and modelled datasets. The test could also be modi-
fied to perform a comparison that was limited to a consider-
ation of annual maximums such that numerous computations
would be performed on temporal subsets of the full record,
e.g. Sudheer et al. (2003). Eq. (11) is in fact a modified version
of the original simple ‘‘percent error in peak’’ that was recom-
mended for the comparison of single-event models in the ma-
jor review of evaluation criteria that was conducted by Green
and Stephenson (1986) and thereafter endorsed by ASCE
(1993). The metric in this case has been adjusted by swapping
over the observed and modelled values in the numerator so
that under-estimates produce a positive value and over-esti-
mates produce a negative value i.e. equivalent to PDIFF (Eq.
(2)). PEP differs from PDIFF in that the former has been di-
vided by the maximum observed value.

PEP¼maxðQiÞ �maxðbQiÞ
maxðQiÞ

� 100 ð11Þ

Eq. (12) is used to calculate the mean absolute relative error
(MARE). This metric comprises the mean of the absolute error
made relative to the observed record. It has also been termed
‘‘relative mean error’’ (RME; Khalil et al., 2001) and, in con-
flict with Eq. (14), ‘‘mean relative error’’ (Karunanithi et al.,
1994; Elshorbagy et al., 2000; Teegavarapu and Elshorbagy,
2005). It is a non-negative metric that has no upper bound
and for a perfect model the result would be zero. It records
as a ratio the level of overall agreement between the observed
and modelled datasets and is often expressed in percentage
terms; the mean absolute percent error (MAPE; Armstrong
and Collopy, 1992; Maier and Dandy, 1996; Bowden et al.,
2002). MARE is a relative metric which is sensitive to the
forecasting errors that occur in the low(er) magnitudes of
each dataset. In this case, because the errors are not squared,
the evaluation metric is less sensitive to the larger errors that
usually occur at higher magnitudes. It is nevertheless subject
to potential ‘‘fouling’’ by small numbers in the observed re-
cord. The principal difference between RAE (Eq. (10)) and
MARE (Eq. (12)) is that the latter measurement is expressed
in units that are relative to the observed record, as opposed
to units that are relative to variation about the mean of the ob-
served record, which could be difficult to interpret in an oper-
ational or decision-making context (Makridakis, 1993).

MARE¼ 1

n

Xn

i¼1

jQi� bQij
Qi

ð12Þ

Eq. (13) is used to calculate the median absolute percentage
error (MdAPE). This metric comprises the median of the ab-
solute error made relative to the observed record. It is
a non-negative metric that has no upper bound and for a perfect
model the result would be zero. It records as a ratio the level of
overall agreement between the observed and modelled datasets
and is similar to MARE (Eq. (12)). However, being based on
the median, as opposed to the mean, this metric is less affected
by skewed error distributions and the detrimental impact of
problematic outliers. Trimming, in which high and low errors
are discarded, in this case removes from consideration all
values that are higher and lower than the middle ranked value.
It thus helps to counter, in a radical manner, the powerful ef-
fects of high(er) magnitude errors and low(er) magnitude foul-
ing whilst at the same time, serving to reduce the natural bias
that exists in favour of low(er) output forecasts (Armstrong
and Collopy, 1992; Fildes, 1992; Gardner, 1983). MdAPE
also provides a standard trimming rule that can assist in the
comparison of different studies (Armstrong and Collopy,
1992).

MdAPE¼Median

�����Qi� bQi

Qi

����� 100

�
ð13Þ

Eq. (14) is used to calculate the mean relative error (MRE).
This metric comprises the mean of the error made relative to
the observed record. It is a signed metric that is unbounded
and for a perfect model the result would be zero. It records
as a ratio the level of overall agreement between the observed
and modelled datasets. However, a low score does not neces-
sarily indicate a good model in terms of accurate forecasts,
since positive and negative errors will tend to cancel each
other out and, for this reason, MARE (Eq. (12)) or MdAPE
(Eq. (13)) are more popular metrics.

MRE is a relative metric which is sensitive to the forecast-
ing errors that occur in the low(er) magnitudes of each dataset.
In this case, because the errors are not squared, the evaluation
metric is less sensitive to the larger errors that usually occur at
higher values. It is nevertheless subject to potential fouling by
small numbers in the observed record.

MRE¼ 1

n

Xn
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�
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�
ð14Þ

Eq. (15) is used to calculate the mean squared relative error
(MSRE). This metric comprises the mean of the squared rela-
tive error in which relative error is error made relative to the
observed record. It is a non-negative metric that has no upper
bound and for a perfect model the result would be zero. It re-
cords as a ratio the level of overall agreement between the ob-
served and modelled datasets. However, a low score does not
necessarily indicate a good model in terms of accurate fore-
casts, since positive and negative errors will tend to cancel
each other out and for this reason MARE (Eq. (12)) or MdAPE
(Eq. (13)) are more popular metrics. MSRE works in a similar
manner to MRE (Eq. (14)) in that this metric provides a rela-
tive measure of model performance, but in this case, the use of
squared values makes it far more sensitive to the larger relative
errors that will occur at low(er) magnitudes. It will in conse-
quence be less critical of the larger absolute errors that tend
to occur at higher magnitudes and more prone to potential
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fouling by small numbers in the observed record. The scale of
the records that are to be analysed is thus important; moderate
to low(er) values throughout (e.g. less than 100 cumecs) would
make it more difficult for a model to achieve a superior score
in comparison to one that was forecasting high(er) events (e.g.
over 1000 cumecs). The high(er) magnitude model would have
to make some particularly poor estimates to achieve a similar
score to the low(er) magnitude model that could be predicting
the actual values to within 20 cumecs. It is a sensitive metric
and special care should be taken in performing quantitative
comparisons between different studies and different
catchments.

MSRE¼ 1
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Eq. (16) is used to calculate the relative volume error (RVE).
This signed metric comprises the total error made relative to
the total observed record. It is unbounded and for a perfect
model the result would be zero. It records as a ratio the level
of overall agreement between the observed and modelled data-
sets and is a popular metric that is often expressed in percent-
age terms using different phrasing, e.g. ‘‘error in volume’’
(Rajurkar et al., 2004); ‘‘error of total runoff volume’’ (EV;
Lin and Chen, 2004); ‘‘percent bias’’ (PBIAS; Yapo et al.,
1996; Yu and Yang, 2000); ‘‘deviation of runoff volumes’’
(Dv; WMO, 1986; ASCE, 1993). RVE is a relative measure
of overall volume error that is used to provide an indication
of the overall water balance of the model, i.e. it is equivalent
to the difference in mean flow over the period. RVE has sim-
ilar properties to MRE and MSRE in that a low score does not
necessarily indicate a good model, in terms of accurate fore-
casts, since positive and negative errors will tend to cancel
each other out. Indeed, a perfect model will return a score
of zero, but it is also possible for a model that bears no resem-
blance to the actual hydrograph to produce a zero.

RVE was considered to be an ‘‘adequate measure’’ for the
volumetric assessment of single event models (Green and
Stephenson, 1986); but, conversely, it is a recommended met-
ric for the evaluation of continuous hydrographs (ASCE,
1993). RVE must not be confused with similar sounding met-
rics such as ’’percent error in volume’’ (PEV; Paik et al., 2005)
which is an unsigned equivalent.

RVE¼
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2.3. Dimensionless coefficients that contrast model
performance with accepted norms or standards

Eq. (17) is used to calculate the ’’coefficient of determina-
tion’’ which is the square of the ’’Pearson product moment cor-
relation coefficient’’ (RSqr; Pearson, 1896). This metric
comprises the squared ratio of the combined dispersion of
two series to the total dispersion of the observed and modelled
series. It describes the proportion of the total statistical variance
in the observed dataset that can be explained by the model. It
ranges from 0.0 (poor model) to 1.0 (perfect model). It records
as a ratio the level of overall agreement between the observed
and modelled datasets; the equation, however, is based on a con-
sideration of linear relationships and limited in that it standard-
izes to the observed and modelled means and variances. The
metric is insensitive to additive and proportional differences be-
tween the observed and modelled datasets, such that high
scores can be obtained, even if the simulated values are consid-
erably different from the observed values in terms of magnitude
and variability. Indeed, since quantification is restricted to
a consideration of differences in dispersion, a solution with sys-
tematic errors that over-estimated or under-estimated on each
occasion would still produce a good result even if all of the
numbers were wrong. The model in such cases would exhibit
serious flaws that should, but does not, preclude it from being
assigned a ‘‘near perfect’’ score. The metric is also oversensi-
tive to outliers and thus biased towards a consideration of ex-
treme events such that the true overall relationship is
obscured. The limitations of this metric and other correlation-
based measures are well documented (e.g. Kessler and Neas,
1994; Legates and Davis, 1997; Legates and McCabe, 1999);
it was, nevertheless, still ’’common practise’’ to use such mea-
sures in the 1990s (Chiew and McMahon, 1993). To redress
such quandaries it is possible to make better use of additional
material such as the intercept and gradient of the regression
equation upon which this metric is based. For good agreement,
the intercept should be close to zero, and the gradient can be
used to provide a weighted version of this metric (wRSqr;
Krause et al., 2005). This metric is a basic statistical method
and its output can be tested for ‘‘statistical significance’’. Test-
ing would involve the use of traditional parametric procedures
and requirements not least of which are the assumptions of a bi-
variate normal distribution and a homoscedastic relationship.
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Eq. (18) is used to calculate the coefficient of efficiency (CE;
Nash and Sutcliffe, 1970). This popular metric has several ali-
ases and is sometimes confused with other metrics: ‘‘determi-
nation coefficient’’ or ‘‘coefficient of determination’’, the
‘‘efficiency index’’, the ‘‘F index’’ or the ‘‘NasheSutcliffe co-
efficient’’ R2. It is one minus the ratio of sum square error
(SSE) to the statistical variance of the observed dataset about
the mean of the observed dataset. CE is intended to range from
zero to one but negative scores are also permitted. The maxi-
mum positive score of one represents a perfect model; a value
of zero indicates that the model is no better than a one param-
eter ‘‘no knowledge’’ model in which the forecast is the mean
of the observed series at all time steps; negative scores are un-
bounded and a negative value indicates that the model is
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performing worse than a ‘‘no knowledge’’ model. If the last
observed record was an input to the model a negative score
would suggest that the model is degrading the information
that has been provided. It records as a ratio the level of overall
agreement between the observed and modelled datasets and
represents an improvement over the coefficient of determina-
tion (RSqr) for model evaluation purposes since it is sensitive
to differences in the observed and modelled means and vari-
ances. For such reasons it carries strong past support (e.g.
NERC, 1975; ASCE, 1993). It nevertheless suffers from cer-
tain similar handicaps, owing to the use of squared differences
that are sensitive to peak flow values and insensitive to low(er)
magnitude conditions. CE is also insensitive to systematic pos-
itive or negative errors and has been criticised for interpreta-
tional difficulties, since even poor models can produce
relatively high values and the best models do not produce
values that on first examination are that much higher (Garrick
et al., 1978: p. 376; Krause et al., 2005). It will also produce
optimistic results in cases where the hydrological regime of in-
terest exhibits marked seasonal variations, such that intrinsic
periodic variation is an important part of total observed varia-
tion (Garrick et al., 1978; Lorrai and Sechi, 1995). The mod-
ified coefficient of efficiency (MCE; Legates and McCabe,
1999; Krause et al., 2005) is a more generic metric that could
be of particular interest since, through the use of absolute
values, it will permit errors and differences to be given
a more appropriate weighting, i.e. no inflated squared values.
It is also possible to construct a relative coefficient of effi-
ciency (Erel; Krause et al., 2005). Beran (1999) and Garrick
et al. (1978: p. 376) present strong arguments against using
the observed mean to develop a horizontal hydrograph for
modelling comparison purposes; better methods exist to define
the baseline against which a model should be compared, e.g.
use of persistence or seasonal averages. No simple equation
exists to determine the statistical significance of this metric
and bootstrap methods are required to address such matters:
see Efron (1981a,b), Efron and Gong (1983), or Willmott
et al. (1985).

CE¼ 1�

Pn
i¼1

ðQi� bQiÞ2

Pn
i¼1

ðQi�QÞ2
ð18Þ

Eq. (19) is used to calculate the index of agreement (IoAd;
Wilmott, 1981). This metric is one minus the ratio of sum
square error (SSE) to ‘‘potential error’’ in which potential er-
ror represents the sum of the ’’largest quantification’’ that can
be obtained for each individual forecast with respect to the
mean of the observed dataset. It is based on a two part squared
distance measurement in which the absolute difference be-
tween the model-simulated value and the observed mean is
added to the absolute difference between the observed record
and the observed mean. The result is then squared and
summed over the series. IoAd ranges from 0.0 (poor model)
to 1.0 (perfect model). It records as a ratio the level of overall
agreement between the observed and modelled datasets and
also represents an improvement over the coefficient of deter-
mination (RSqr) for model evaluation purposes since it is sen-
sitive to differences in the observed and modelled means and
variances. Its outputs are similar in range and interpretation to
the coefficient of determination (RSqr); but dissimilar in range
and interpretation to the coefficient of efficiency, since despite
being based on the mean, IoAd has no meaningful zero to pro-
vide a convenient reference point against which to compare
model outputs in terms of forecasting capabilities with respect
to the observed mean. It was a purposeful attempt to overcome
the shortcomings of past metrics that were considered to be in-
sensitive to differences in the observed and model-simulated
means and variances whilst at the same time attempting to re-
tain the use of fixed upper and lower bounds and thus avoid the
problem of negative scores and subjective interpretations of
‘‘performing worse than a ‘no knowledge’ model’’. It also suf-
fers from certain similar handicaps, owing to the use of
squared differences that are sensitive to peak flow values
and insensitive to low(er) magnitude conditions. IoAd is also
insensitive to systematic positive or negative errors and has
been criticised for interpretational difficulties, since even
poor models can produce relatively high values, and the best
models do not produce values that on first examination are
that much higher (Willmott et al., 1985; Krause et al.,
2005). The modified index of agreement (MIoAd; Willmott
et al., 1985; Legates and McCabe, 1999; Krause et al.,
2005) is a more generic metric that could be of particular in-
terest since through the use of absolute values it will permit
errors and differences to be given a more appropriate weight-
ing, i.e. no inflated squared values. It is also possible to con-
struct a relative index of agreement (drel; Krause et al., 2005).

IoAd¼ 1�

Pn
i¼1

ðQi� bQiÞ2

Pn
i¼1

ðjbQi�Qj þ jQi�QjÞ2
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Eq. (20) is used to calculate the coefficient of persistence (Ki-
tanidis and Bras, 1980). The use of this metric is on the in-
crease and it is often referred to in published papers under
different aliases such as the persistence index (PI) or Gbench.
It is one minus the ratio of sum square error (SSE) to what
sum square error (SSE) would have been if the forecast had
been the last observed value. It has strong similarities with
CE (Eq. (18)); in this instance, however, the last observed re-
cord is used instead of the observed mean for the purposes of
model comparison. PI is intended to range from zero to one
but negative scores are also permitted. The maximum positive
score of one represents a perfect model; a value of zero indi-
cates that the model is no better than a one parameter ‘‘no
knowledge’’ model in which the forecast is the last observed
record at all time steps and equates to ‘‘a no change situation’’;
negative scores are unbounded and a negative value indicates
that the model is performing worse than a ‘‘no knowledge’’
model. This metric compares model outputs with forecasts ob-
tained by assuming that the process being modelled is a Wiener
process, i.e. variance increases linearly with time and so the
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best estimate for the future is given by the latest measurement.
It records as a ratio the level of overall agreement between the
observed and modelled datasets and represents an improve-
ment over both the coefficient of efficiency and the coefficient
of agreement. For lead time model forecasting assessments
a more meaningful value, or floor against which to measure
poor levels of fit, is required since testing relationships in
terms of variations about the mean of the observed series is
neither stringent nor rigorous and produces results that are dif-
ficult to interpret (Anctil et al., 2004). This metric suffers from
the problem of negative scores and subjective interpretations
of ‘‘performing worse than a ‘no knowledge’ model’’. It also
suffers from certain similar handicaps, owing to the use of
squared differences that are sensitive to peak flow values
and insensitive to low(er) magnitude conditions.

PI can be interpreted as a special case with respect to the
‘‘benchmark proposals’’ of Seibert (2001). It was suggested
that the performance of a model should be compared with
the performance of a target model, as opposed to a constant
mean. The target model could be anything devised by the
userdsuch as the observed runoff shifted backwards by one
or more time stepsdthat, at the first time step, equates to
this particular metric. The same comments apply regarding
statistical significance as with CE and IoAd.

PI¼ 1�

Pn
i¼1

ðQi� bQiÞ2

Pn
i¼1

ðQi�Qi�1Þ2
ð20Þ

2.4. Summary

Table 2 summarizes some properties of the statistical mea-
sures introduced above. It provides the ‘‘best’’ possible value
for the statistic (i.e. produced when applying the measure to
a perfect model) and the ‘‘worst’’ possible theoretical value
(quite often �N but, in practice, models are unlikely to result
in a value anywhere near this magnitude). This table also pres-
ents some subjective indicators of values that might represent
‘‘good’’ models, ‘‘satisfactory’’ models and ‘‘poor’’ models.
This use of non-specific nomenclature is similar to the ap-
proach of Shamseldin (1997) who considered models with
a CE score of 0.9 and above to be ‘‘very satisfactory’’, be-
tween 0.8 and 0.9 to be ‘‘fairly good’’, and below 0.8 to be
‘‘unsatisfactory’’.

In cases where the statistic is data dependent (i.e. its mag-
nitude varies according to the scale or quantity of data that are
analysed) this value cannot be determined and is represented
by DD. In these cases it would be wrong to draw fixed conclu-
sions from the calculated statistic which should not be used to
perform cross catchment comparisons between different stud-
ies. However, data dependent statistics can provide measures
that can be used to compare models based on the same catch-
ment and dataset.

Note that although ‘‘good’’, ‘‘satisfactory’’, and ‘‘poor’’
figures are given for RSqr these values are actually dependent
on the number of data points analysed. The statistical signifi-
cance of the RSqr relationship should be calculated separate-
lydthese figures merely provide a guide for large datasets.

3. Examples of model error

Given the wide array of performance metrics, a problem
facing the hydrological modeller is deciding which error mea-
sure or measures are most appropriate for a particular type of
hydrological application. Hall (2001), for example, stressed
the importance of using a set of measures that was focussed
on important aspects of model behaviour; whereas ASCE
(1993) reviewed various measures of fit with respect to hydro-
logical models and recommended the use of three metrics for
continuous hydrograph time series flow predictions and four
metrics for single-event hydrographs in which the response
of a catchment to a single storm is predicted. Chiew and
McMahon (1993) showed that high levels of overlap can occur
in solutions that are considered to be ‘‘perfect’’; CE scores
�0.93 corresponded to RSqr values �0.97 or RSqr values
�0.93 in cases where mean simulated flow was within 10%
of mean recorded flow. It is also possible to develop a purpose-
ful integration of different evaluation metrics: Tang et al.
(2006) combined weighted root mean squared error (RMSE)
values computed on different partitions of the discharge record
(low, average, high) for use in the calibration process; mean
squared error (MSE) has been combined with mean absolute
relative error (MARE; see previous comments on MRE) to
produce pooled mean squared error (PMSE; Elshorbagy
et al., 2000) and fuzzy mean squared error (FMSE; Teegavar-
apu and Elshorbagy, 2005) for use in the testing process. Watts
(1997: p. 176) also noted that ‘‘in a flood routing model accu-
rate prediction of time to peak flow may be essential’’;
whereas in a model used for water resource allocation
‘‘long-term low flows may be of interest’’. It is thus important
that modellers select appropriate and relevant evaluation

Table 2

Summary of statistical measures (DD is data dependent)

Statistic Best Worst Good Satisfactory Poor

AME 0 N DD DD DD

PDIFF 0 �N DD DD DD

MAE 0 N DD DD DD

ME 0 �N DD DD DD

RMSE 0 N DD DD DD

R4MS4E 0 N DD DD DD

NSC 0 n DD DD DD

RAE 0 N DD DD DD

PEP 0 �N DD DD DD

MARE 0 N DD DD DD

MdAPE 0 N DD DD DD

MRE 0 �N DD DD DD

MSRE 0 N DD DD DD

RVE 0 �N DD DD DD

RSqr 1 0 �0.85 �0.7 <0.7

IoAd 1 0 �0.9 �0.8 <0.8

CE 1 �N �0.9 �0.8 <0.8

PI 1 �N DD >0 �0
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measures from the set of existing metrics that were discussed
earlier. The modeller must be placed in an informed position,
such that the decision to select a specific metric is based on the
particular requirements of each individual application. The
modeller will also on occasion need to resolve conflicting
evaluations.

Fig. 1 (adapted from Dawson and Wilby, 2001) helps to
highlight the dilemma facing the modeller by showing differ-
ent types of model error related to four sets of hypothetical
flow forecasting model outputs. The hypothetical model out-
put datasets are available for download from the HydroTest
web site in text format. It is hoped that other interested parties
might develop improved evaluation metrics based on these
four hypothetical datasets, or submit a recorded time series da-
taset for inclusion on the web site as a ‘‘benchmark series’’,
such that the international research effort will in due course
use such donated datasets or other relevant international data-
sets to develop a set of cross-catchment standards for model
testing and the quantification of model forecasting skill
(Seibert, 2001).

Hypothetical Model A, which is somewhat naive, predicts
the shape of the hydrograph well but consistently over-esti-
mates the flow and appears to model the observed flow la-
tedthe ‘‘Na€ıve Model’’. Hypothetical Model B follows low
flow regimes accurately but misses the flood peak complete-
lydthe ‘‘Low Flow Model’’. Hypothetical Model C follows
the hydrograph reasonably closely, but contains a lot of noise;
either over- or under-predicting each flow event by around
15%dthe ‘‘Noisy Model’’. Hypothetical Model D, although
capturing the flood peak well, is weak at modelling low flows
- consistently over-estimating low flow eventsdthe ‘‘High
Flow Model’’. Presented with these four hypothetical models,
the dilemma facing the hydrologist is in deciding upon which,
if any, measure(s) will provide an objective indication of the
most appropriate model to use under different hydrological
circumstances or with which to perform specific modelling op-
erations. From a visual inspection of the hydrographs it is rel-
atively easy to categorise the four different types of model, but
scientists require more objective measures of model perform-
ancedespecially when the different types of model output er-
ror are less distinctive than in these simple illustrative
examples.

Table 3 presents the error measures discussed in the previ-
ous section for the four hypothetical models. Those values
highlighted in bold in this table indicate the ‘‘best’’ model
out of the four when assessed using each particular evaluation
metric. It can be seen from this table that no one model is con-
sistently ‘‘best’’ in terms of the numerous evaluation metrics,
although some models appear to be ‘‘better’’ than others, and
various trade-offs exist.

Take, as an example, two popular evaluation metri-
csdmean squared relative error (MSRE) and root mean
squared error (RMSE). MSRE measures relative performance
and is thus more critical of errors that occur at low flows. For
example, a model that predicts a flow of 2 cumecs when the
observed flow is 4 cumecs is more heavily penalised than
a model that predicts a flow of 102 cumecs when the observed
flow is 104 cumecs. Hypothetical Model B appears in Fig. 1 to
model the low flow events most accurately and, unsurprisingly,
has the lowest MSRE value of 0.0208. It nevertheless misses
the flood peak by a considerable margin. The Na€ıve Model
(A), conversely, generally over estimates all of the observed
values and has the ‘‘worst’’ MSRE (0.0510).
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Fig. 1. Four hypothetical river flow model outputs.
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RMSE, on the other hand, measures overall performance
across the entire range of the dataset. It is sensitive to small
differences in model performance and being a squared mea-
sure exhibits marked sensitivities to the larger errors that occur
at higher magnitudes. In this case, because Hypothetical
Model C generally follows the hydrograph across the full
range of flow events, it has the smallest RMSE. This simple
example illustrates the dangers of relying on one measure
alone to evaluate and select between different models. Scien-
tists should use a range of methods to evaluate their models,
including subjective visual inspection of the forecast outputs,
in order to inspect the relevant features of the functional be-
haviour in which they are interested.

Looking at each model in turn, Hypothetical Model A (the
Naive Model) is not identified as the ‘‘best’’ model by any of
the evaluation metrics. However, there are times when this
model appears to perform well according to certain measures.
For example, in terms of RSqr (which equates to 82.73%), the
Na€ıve Model is the second ‘most accurate’ of the four models.
This echoes the results of Legates and McCabe (1999) who
point out the fallibility of this evaluation metric which does
not penalise additive and proportional differences.

Hypothetical model B (the Low Flow Model) scores well in
terms of relative evaluation metrics such as MSRE, MAE and
MARE but less well when assessed using indicators that are
critical of models that are poor in forecasting high flow events;
AME and PDIFF. Because this model misses the flood peak by
some margin it is heavily penalised by a number of other error
measures too (i.e. it is ranked least accurate); RMSE, CE,
R4MS4E and RSqr. These evaluation measures on their own
might lead the modeller to discard such a model even though
it is far more accurate than any other hypothetical model dur-
ing the low flow periods.

Hypothetical Model C (the Noisy Model) appears to model
the general shape of the hydrograph well but any individual
forecast is only accurate to within around 15% of the observed
record. Consequently, this model performs well according to

Table 3

Error measures computed on four hypothetical models

Statistic Model A Model B Model C Model D

AME 118 211 75.45 75.25

PDIFF �50 202 �74.3 0

MAE 56.8875 27.5688 42.8728 45.4266

ME �50.4500 27.5688 L0.0534 �45.4266

RMSE 61.2389 67.4775 44.5832 52.5474

R4MS4E 68.0833 111.6074 48.6038 57.5843

NSC 5 1 160 1

RAE 0.9677 0.4690 0.7293 0.7728

PEP �9.9404 40.1590 14.7714 0

MARE 0.2090 0.0612 0.1500 0.1837

MdAPE 21.9879 0.0000 15.0000 25.0000

MRE �0.1931 0.0612 0.0000 �0.1837

MSRE 0.0510 0.0208 0.0225 0.0447

RVE �0.1765 0.0965 L0.0002 �0.1589

RSqr 0.8273 0.5604 0.7704 0.9240

IoAd 0.8714 0.6283 0.9311 0.8852

CE 0.4359 0.3151 0.7010 0.5847

PI �43.6252 �53.1806 L22.652 �31.857
RMSE, CE, ME, and PI, but badly when evaluated using
NSC.

Hypothetical Model D (the High Flow Model) forecasts the
peak flow accurately and, although over-estimating the low
flow events, follows the low flow period closely. As one would
expect this High Flow Model scores well for PDIFF and AME,
which focus on the assessment of the peaks, and badly with
MdAPE. This model also scores well in terms of RSqr, primar-
ily because it follows the general shape of the hydrograph
well.

It is worth noting that all four sets of example model
outputs have returned a negative PI value, indicating that the
models appear to be ‘‘degrading’’ the input dataset. Clearly,
if the models were attempting to make one-step-ahead
forecasts the modeller would be advised to use a naive one-
step-ahead model based on this index. However, in the example
datasets, the lead time for the models has not been specified
and care must taken when evaluating a t þ n model using
this index when n is greater than 1. Ideally the PI should
be adapted so that the model under evaluation is compared
with the equivalent feasible naive time-delayed model (i.e.
Qi � 1 in the denominator of Eq. (20) is changed to Qi � t

where t is the lead time of the model under investigation)
or with an appropriate benchmark series such as those pro-
posed by Seibert (2001).

4. Case study

In this section the application of the HydroTest web site to
the real problem of developing and evaluating a rainfall-runoff
model for the River Ouse in northern England is discussed.
The model developed for this catchment was an artificial neu-
ral network (ANN) which required a number of parameters to
be established during calibration. While the detail of this kind
of model is beyond the intended scope of this paper, a brief
summary of its calibration process is presented here.

The usual approach to developing and evaluating such
models involves the use of three datasets: one for training a se-
ries of different models (the training dataset), one for validat-
ing these models and selecting the ‘‘best’’ one (the validation
dataset), and one for the final ‘‘unseen’’ testing of the chosen
model (the test dataset). During calibration the modeller is at-
tempting to find the ‘‘best’’ configuration for the ANN model
(how many hidden nodes it should have in its structure) and
also the optimum training period (ANNs are trained by expos-
ing them to the training dataset a number of timesdcalled
epochs). Thus, the modeller creates a number of different
models (optimised according to the mean squared error)dwith
different structures, trained for different periods using the
training datasetdbefore selecting the ‘‘best’’ model by evalu-
ating all these models against the validation dataset.

The data for this study come from the River Ouse which is
a catchment of 3315 km2 containing an assorted mix of urban
and rural land uses. It exhibits a significant amount of natural
variation, from dissected uplands in the west that experience
substantial precipitation, to cultivated lowlands in the east
with more equitable weather. The city of York is the main
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point of concentrated development in the catchment (popula-
tion of 181,094; 27,200 hectares). Hourly data were available
for this study from three winter periods (spanning 1 October to
31 March) and were split according to the study of Dawson
et al. (2006b) as follows; 1993/1994 was used for training;
1995/1996 was used for validation; 1994/1995 was used for
testing. Flow data were available for three upstream sites at
Crakehill, Skip Bridge and Westwick along with data from
five rainfall gauges at Tow Hill, Arkengartdale, East Cowton,
Osmotherly and Malham Tarn. These data were analysed and
processed to provide nine predictors of flow (measured in cu-
mecs) for the River Ouse at Skelton with a lead time of 24 h.

During training a number of different networks were devel-
oped. They were trained from between 200 and 4000 epochs in
steps of 200 epochs (a range known to be effective based on
past experience), using 2, 3, 4 and 5 hidden nodes (also chosen
based on past experience). The subsequent trained models
were then analysed and the validation dataset used to identify
the ‘‘best’’ model based on various statistics that are available
on the HydroTest web site.

Fig. 2 illustrates the problem encountered by the modeller
when attempting to decide on the ‘‘best’’ model for implemen-
tation. In this figure the values of MSRE, RMSE, CE and
MAE are presented for each neural network configuration
(2, 3, 4, 5 hidden nodes) and for each training period (200e
4000 epochs). Although it appears that the four node model
appears to consistently produce the ‘‘best’’ results according
to these four metrics, there is still some uncertainty as to
how long the model should be trained for. Fig. 2 highlights
the optimum result for each error measuredidentified by the
arrow. RMSE and CE statistics identify the ‘‘best’’ model as
that trained for only 400 epochs, MSRE identifies the best
model as that trained for 1400 epochs, while MAE identifies
the model trained for 1200 epochs as the most accurate
when assessed with the validation dataset.

The modeller must now decide which of these statistics
gives her/him the best indication of model performance for
the chosen application. The modeller may be tempted by the
400 epoch model as this appears to be the most accurate ac-
cording to two evaluation metrics. The 1400 epoch model is
perhaps the ‘‘best’’ model for modelling low flows according
to the MSRE. However, the 1200 epoch model appears to pro-
vide the best absolute model. A compromise could involve the
selection of a model trained for say 800 or 1000 epochs as this
lies around midway between the three models (400, 1200,
1400 epoch models).

In fairness there is little to choose between any of these
models, since the measures are very close for all identified con-
figurations, and selection of any one of them would make little
difference in a practical application. However, the example
does show that the metrics do measure different characteristics
of the model and the user should be aware of the strengths and
limitations of each option. The metrics should not be applied
‘‘blindly’’ without some form of deeper understanding of their
application and interpretation. It would be wrong to focus on
any one metric and, as Jakeman et al. (2006) note; a wide range
of performance indicators should be examined.
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Fig. 2. Error measures for different ANN models.
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5. The HydroTest web site

The HydroTest web site is available at http://www.hydro
test.org.uk. Following an initial registration page, the user is
directed towards the site’s home page which introduces the
site and provides links to the five main areas: Details (which
provides the user with information about the statistics and
how the site operates), References (a list of appropriate refer-
ences), Benchmarks (discussion on the four example outputs
and download access to the example datasets in text format),
Analysis (the analysis pages themselves) and a discussion fo-
rum. In this section the Analysis pages and process are
discussed.

The first step of the ’’analysis process’’ (Fig. 3) involves the
user selecting and uploading their data for analysis (note that
the system only stores these data temporarily; they are deleted
from the system once the analysis is complete). The user should
have two sets of data for processing: a set of observed (i.e. ac-
tual) data and a set of modelled (i.e. forecast or predicted) data.
On the user’s system these data can be stored in either one text
file (tab delimited or comma separated with observed data in
the first column, modelled in the second column) or in two sep-
arate text files (one file containing a single column of observed
data and the other file containing a single column of modelled
data). The files should not contain any non-numeric values; for
example, column titles at the head of the text files, as these will
invalidate the calculations.

The user uses the ‘‘Browse’’ buttons to select the file(s) on
their own computer and, if the data are contained in a single
file, the user selects the appropriate radio button to indicate
how the data are delimited. The web site will assume that if
only one data file is selected (which must be in the observed
input box) that this file will contain both sets of data in two
columns. The user then selects ‘‘Upload’’ to load the data
into the system for analysis. The Analysis Step 2 screen is
then displayed (Fig. 4).

Step 2 of the process allows the user to set a number of
parameters before the analysis takes place (although the de-
fault values set on this page can be left as they are). First, if
the dataset contains any missing values represented by a spe-
cific code number, this value should be entered here (the de-
fault is �999). Second, the user should select how many
decimal places the results will be displayed to (the default
is four).

If the user wishes the statistics to be calculated on a subset
of the data (i.e. only assessing data that fall within a certain
range) they should click the checkbox and enter the lower
and upper bounds in the boxes below. This will limit the anal-
ysis such that metrics are only calculated, and the two datasets
are only compared, when the observed data point falls within
this boundary. The modelled data point can be outside this
range and the calculation will still be performed provided
the observed value is acceptable (i.e. not missing). Values
must be strictly less than the lower bound and strictly greater
than the upper bound for the data point to be excluded from
the calculation (i.e. the data point will be included in the anal-
ysis if it is equal to the lower or upper bound).

The final two fields (free parameters and data points)
should be completed if the user wishes the AIC and BIC sta-
tistics to be calculated (the user is requested to enter the num-
ber of free parameters in the model and the number of data
points used in calibrating the modeldboth are required for
calculating AIC and BIC). Clicking ‘‘Calculate’’ performs
the analysis and leads to the final results screen (Fig. 5).
Fig. 3. The Analysis Step 1 screen.

http://www.hydrotest.org.uk
http://www.hydrotest.org.uk
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Fig. 4. The Analysis Step 2 screen.
The results are presented in the format shown in Fig. 5
(note, part of this screen has been scrolled out of view so
that some of the results can be seen). This screen
shows the total number of data points the system analysed
in the files (the number of rows read) and, for reference,
the missing code identifier and the name(s) of the file(s)
analysed. The initial set of output statistics provides de-
scriptive measures of the observed dataset (mean, maxi-
mum, variance, etc.) and the number of missing values
encountered in the file. If the user selected a range of
data for analysis, the number of observed data points en-
countered outside this range is also noted. These statistics
are then followed by the equivalent statistics for the mod-
elled dataset.

The following section of the screen presents all the calcu-
lated statistics discussed in Section 2. Finally, the user can
download a copy of these results as a text file by clicking on
the appropriate link at the bottom of the page.

6. Conclusions

This paper has introduced the HydroTest web siteda site
which provides a consistent collection of evaluation metrics
and example datasets for modellers to use in subsequent as-
sessment exercises. The discussion has highlighted the im-
portance of not relying on individual measures of
performance to evaluate data series. It is suggested that
hydrological modellers should report a minimum set of CE,
RSqr and IoAd statistics in addition to the provision of other
more specific data dependent measures (such as RMSE,
MSR, etc.). This will facilitate subsequent comparisons to
be made between different catchments and studies. Future
developments for the site include the implementation of
a data plotting facility for time series and scatter diagrams;
the added functionality of analysing multiple files simulta-
neously; the continued development and implementation of
new statistics (such as variations to existing metrics dis-
cussed in this paper); and the monitoring of the site’s perfor-
mance and its promotion as a standardised evaluation
toolbox.

There remains an open invitation to users to:

� Provide any comments and improvements/corrections to
the site;
� Identify any missing statistics that could be incorporated

into the site;
� Develop and submit additional hydrological error mea-

sures that may enable more suitable cross-study compari-
sons than exist already;
� Develop and submit additional hydrological error mea-

sures for the example datasets that are provided on the
web site.
� Develop and submit further hydrological datasets for in-

clusion on the web site as a ’’benchmark series’’.
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Fig. 5. The results screen.
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