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On testing a priori hypotheses about

quantitative and qualitative trends�

Willi Hager

Abstract

Tests for quantitative trends are performed rather frequently in experimental psy-
chology. Most often, a single test for the presumed trend or a few tests for some
easily interpretable trends (of lower order) are carried out. It is argued that these
procedures are susceptible to leading to inappropriate decisions on whether the data
can be appropriately described by a particular trend if they are not accompanied by
further tests concerning the deviations from this trend. The wide-spread F test for
a particular trend is, in general, not sensitive to the two most important features of
quantitative trends, that is a speci�c strict rank order among parameters and the
strict dependency of the di�erences between the values of the dependent variable
on the respective di�erences between the values of the independent variable. Some
testing strategies are proposed which take these central features into account and
which mainly demand further conventional tests in addition to the one referring to
the presumed or predicted trend. These strategies demand the tests to be linked
in a certain way to enable test-based inferences about the presence or absence of
quantitative trends.

For qualitative trends, comparable problems are identi�ed and proposals on how
to solve them are presented. Because of its versatility, the method of planned
contrasts is suggested in order to appropriately test a priori hypotheses on qual-
itative trends which have been derived from psychological hypotheses as predictions.

Keywords: Quantitative and qualitative trends, statistical testing strategies

Zusammenfassung

In der psychologischen Forschung werden Tests auf quantitative Trends vergleichs-
weise h�au�g angewendet. Dabei wird entweder nur auf einen (vermuteten oder
vorhergesagten) Trend getestet oder auf einige wenige, aber selten auf alle m�ogli-
chen Trends. Diese Verfahrensweise kann aber unter nicht einmal \pathologischen"
Umst�anden leicht zu falschen Entscheidungen hinsichtlich des Vorliegens eines be-
stimmten Trends f�uhren. Der Grund daf�ur liegt darin, da� der �ublicherweise einge-
setzte F -Test insensitiv f�ur die beiden de�nierenden Aspekte quantitativer Trends
ist, n�amlich eine bestimmte Rangordnung der Parameter und genau angebbare Dif-
ferenzen zwischen den Parametern, die eine Funktion der Werte der quantitativen
unabh�angigen Variablen darstellen. Im Falle der Pr�ufung vorgegebener Hypothesen
kann dieses Problem dadurch vermieden werden, da� man sowohl auf den vorherge-
sagten Trend als auch auf das Fehlen der Abweichungen von diesem Trend testet.

Vergleichbare Probleme ergeben sich bei der Vorhersage und Pr�ufung qualitativer
(etwa monotoner oder bitoner) Trends, wie sie sehr h�au�g aus psychologischen
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Hypothesen als Vorhersagen ableitbar sind. Auch hier wird eine Vorgehensweise auf
der Basis der Methode der a priori geplanten Kontraste zur Pr�ufung entsprechender
Trendhypothesen vorgeschlagen, die neben ihrer vielseitigen Verwendbarkeit noch
weitere Vorteile auf sich vereinigt.

Schl�usselw�orter: Quantitative und qualitative Trends, statistische Teststrategien

1 Introduction

Usually, it depends on one of two prerequisites whether tests for quantitative trends are
applied or not. First, the independent variable is quantitative, and second, the indepen-
dent variable is quantitative and a particular quantitative trend hypothesis is to be tested
(see Keppel, 1973, p. 114). In the �rst case, the experimenter does not proceed from
certain expectations, he or she just looks for the best functional description of his or her
data. In the second case, however, the data are examined as to their compatibility with
predictions derived from a certain theory or substantive (i.e., psychological) hypothesis.
Under these circumstances, it is always possible to specify the exact relations between the
independent variable and the values of the dependent variable in advance. Although this
article deals exclusively with the case of testing theories and (psychological) hypotheses
by means of predictions derived from them, the considerations presented here will prove
their importance for other cases, too.

The distinction between substantive or psychological hypotheses and statistical hy-
potheses is often either blurred or not taken into account in empirical psychological
literature as well as in some textbooks. Psychological hypotheses refer to psychological
constructs such as 'aggression,' 'self-esteem,' or 'imagery' and they 'treat the phenomena
of nature and man' (Clark, 1963, p. 457). In contrast, 'statistical hypotheses concern the
behavior of observable random variables' (Clark, 1963, pp. 456-457) such as 'population
variances,' 'population means,' 'population correlations,' and 'distribution functions.'
Most often, psychological hypotheses are examined using statistical hypotheses which
are only loosely related to them. This is the case, for instance, when the psychological
hypothesis enables the prediction of a certain rank order of parameters across several ex-
perimental conditions and the well known F test is applied, testing against the hypothesis
that not all parameters (population means �k) are equal or homogeneous.

Some authors call for a closer connection between the psychological hypothesis and the
statistical hypothesis or hypotheses. They speci�cally demand that statistical hypotheses
should be derived from the psychological one, 'even in a rather loose sense of derive' (cf.
Hager, 1987, 1992; Meehl, 1967; Wampold, Davis & Good, 1992; Westermann & Hager,
1986). Hager (1992, pp. 54-68) has argued that this derivation should preserve the
psychological hypothesis' empirical content as it is understood by Popper (1981, 1992).
To this aim, he has proposed two additional criteria of derivation, namely appropriateness
and exhaustiveness.

'Appropriateness' means that the derived statistical hypothesis has to conform with
the direction of the relation claimed in the psychological hypothesis, and 'exhaustiveness'
means that a prediction has to encompass any relation or aspect of the psychological
hypothesis which can be expressed by statistical concepts (see Hager, 1987, 1992, and
Hager & Hasselhorn, 1995, for further details). If a statistical hypothesis is connected to
a psychological hypothesis by a derivation and if it meets with the two criteria just men-
tioned, it is called a statistical prediction (SP for short). This linkage between two kinds
of hypotheses by a derivation together with two criteria seems necessary and su�cient to
ensure an unambiguous separation of those results which are in complete accordance with
the psychological hypothesis from those that contradict it. Such a partition of possible re-
sults conforms to demands formulated by Fisher (e.g., 1966) as well as by Popper (1980).
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It is, however, very often the case in empirical psychological literature that this basic
principle, advocated independently by a statistician and by a philosopher, is violated, as
the analyses by Hager (1992), by Hager and Westermann (1983) and by Westermann and
Hager (1986) show.

A statistical prediction is a special statistical hypothesis which is not necessarily
equivalent to the null or the alternative hypothesis of a (wide-spread and/or single)
statistical test. A null hypothesis (H0) is any statistical hypothesis which comprises one
of the signs '=', '�', or '�' and which is testable by a given statistical test. It's opposite
is an alternative hypothesis (H1), which usually is complementary to the H0 and against
which the test is performed. Furthermore an H1 usually refers to the relations '6=', '>'
or '<'. This distinction is made in most textbooks for psychologists (see Hays, 1988;
Howell, 1992; Kirk, 1982; Wilcox, 1987; Winer, Brown & Michels, 1991) and su�ces
for the purposes of this article. If the statistical prediction is not eqivalent to a single
testable H0 or H1, there are basically two options: either to perform a less well suited
test and interpret the 'apparent' empirical relations among the sample statistics, or to
apply more than one test. The more tests that are performed the greater the cumulation
of statistical error probabilities, but the greater information gained in general. Besides,
the cumulation can be adjusted for, but the possible adjustments will not be considered
in any detail (see, among many others, Hochberg & Tamhane, 1987; Kirk, 1982, 1994;
Miller, 1981; Westermann & Hager, 1986).

Choosing the �rst option means that either one or both of the principles of appropri-
ateness and exhaustiveness with respect to the particular statistical prediction is violated
by the statistical hypotheses actually tested, and/or that the decisions made are mainly
data-based. Data-based decisions rely on statistical tests and on subsequent di�erential
interpretations of data patterns. If - for example - the signi�cance of an overall F test is
taken as the basis for interpreting the rank order of sample means as being the same as
of the population means, this is a data-based decision not covered by the test performed.
If the F test is performed on a comparison with more than one degree of freedom, it
does not refer to distances �kk0 among the means, but to a quadratic function of these
distances, which are squared, summed up, and averaged for the purposes of the F test.
Besides, more individual decisions are made than are covered by the nominal signi�cance
level � of the F test (Ramsey, 1980), as the increase in the conditional probabilities �
and/or � depends on the number of decisions actually made rather than on the number
of tests performed. The 'correct' test-based interpretation of a signi�cant F value only
permits saying that there are at least two population means di�erent from one another.
The numerous techniques of multiple comparisons can be said to have been developed
to replace mainly data-based statements with test-based propositions, controlling for the
cumulation of the error probability �. In contrast, test-based decisions are based on tests
only and they are not modi�ed, 'corrected,' or augmented by additional interpretations
of the data patterns. These considerations should not be taken as an argument against
careful data inspections, which always should be done. The present article deals with
some testing strategies, the application of which enable making test-based decisions and
avoiding data-based decisions.

If, on the other hand, the statistical hypotheses actually tested turn out to be only
loosely linked to the psychological hypothesis of interest or to the statistical prediction
derived from it, the probability of false decisions concerning the psychological hypoth-
esis can be enhanced substantially, or in more general terms: the probability of false
'truths' can be enhanced greatly. I will cite no examples from current empirical litera-
ture to demonstrate this, but rather deal with some textbook presentations; empirical
researchers should not be expected to act in a more sophisticated manner than textbook
authors. To lower the probability of false 'truths' it is important to apply the criteria of
adequateness and exhaustiveness when deriving testable statistical hypotheses from the
statistical prediction or when decomposing it into testable partial hypotheses. Several of
the subsequent considerations will focus on this demand.
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If psychologists describe relations among variables by means of mathematical func-
tions they aim for a greater degree of exactness or precision than is possible when using
less precise methods of description. This goal of exactness, however, may be rendered
unattainable by choosing tests which are not exact enough: One is working with a very
precise and seemingly exact scienti�c terminology and hypotheses, but because of inap-
propriate statistical procedures the hypotheses actually tested do not re
ect the quan-
ti�cation or the functionality to a su�cient degree. This lack of correspondence between
the quantitative hypothesis to be tested and the one actually tested will be examined
subsequently. It will also be argued that certain tests of qualitative trend hypotheses can
result in analoguous problems.

By calling a trend hypothesis a statistical prediction, it is meant that hypotheses of
this kind can occur in empirical research, that is, may serve as the target hypothesis to
be tested. I shall not deal with psychological hypotheses leading to a particular statisti-
cal trend prediction, but intend to discuss some trend hypotheses and their relation to
some commonly administered tests. Thus, the main question I seek to answer is: Given
a particular (quantitative or qualitative) trend hypothesis, which of some well-known sta-
tistical tests is best suited to test it, whereby 'best suited' does not refer to statistical
assumptions, but to features of trends. This question will be discussed from the per-
spective of the method of planned or focussed contrasts (among expectations of normally
distributed random variables or population means � since '... it is to the experimenter's
advantage to specify a select, limited number of contrasts in advance' (Kirk, 1982, p.
106). The usual parametric assumptions are taken for granted throughout, equal n's in a
one-way layout are assumed, and the quantitative variable X (values x1 through xK) is
equidistant. Despite these restrictions, the general considerations are applicable to other
parameters, tests, and layouts than those addressed herein (see, for example, Marascuilo
& Mc Sweeney, 1977). Furthermore, it is assumed that appropriate power analyses for
controlling both conditional error probabilities (� and �) takes place (see Cohen, 1988;
Hager, 1987, 1995). No reference will be made to more robust alternatives to the tests
considered (see, e.g., Wilcox, 1987) and to the various procedures of ordering and selec-
tion which seem to be more appropriate for data analyses after data collection (see, e.g.,
Dykstra, Robertson & Wright, 1986; Lovie, 1986; Robertson, Wright & Dykstra, 1988,
and Wilcox, 1987, chap. 12). These techniques, however, may be applied in addition to
the tests considered here, but the examination of psychological hypotheses formulated
in advance should be separated carefully from additional data analyses which could also
be interesting. Testing psychological hypotheses means that the kind of trend can and
most importantly should be predicted prior to data collection. Since the testing strategies
proposed subsequently mainly consist in suggestions of how to link certain well-known
tests no reference will be made to particular computer programs for data analyses.

2 Quantitative Trends, Trend Tests, And Testing

Strategies

Since the identi�cation of the main features of quantitative trends is lacking in standard
textbooks on statistics and experimental design for psychologists (cf., for example, Cohen
& Cohen, 1983; Edwards, 1985; Kirk, 1982; Maxwell & Delaney, 1990; Myers & Well,
1991; Wilcox, 1987; Winer et al., 1991), these will be delineated for linear trends as they
are the kind of quantitative trends most often of (primary) interest. For brevity's sake,
the generalizations to other trends will not be considered here; they are straightforward,
although de�nitions and formulas are more complex than for a linear function.
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2.1 Main features of linear trends and the standard test on lin-

earity

An example for a quantitative psychological hypothesis is given by Myers and Well (1991,
p. 204): 'The experimenters ... believe that the magnitude of conditioned responses
should vary directly with the magnitude of the test stimulus; this implies that ... [the
galvanic skin response] scores should increase as a function of the height of the rectangle
of light.' If we translate the rather unprecise formulation 'increase as a function' into
'increase as a linear function', we get a quantitative psychological hypothesis from which
the prediction of a quantitative linear trend can be derived. Speaking of quantitative
trends means that the values of the dependent variable (Y ) and the values of the quan-
titative independent variable (X) are related by a function which is linear, in the case
of linear trends. Therefore, a (positive) linear trend has two characteristics: �rst, the
complete speci�cation of a strictly increasing rank order for all K population means of
Y parallel to a corresponding increase in the values of X ; and second, speci�cation of
distances or di�erences �kk0 between any two means �k and �k0 (k0 = k�1) in functional
dependence on the corresponding distances between two values xk and xk0 of X (k de-
noting a particular experimental condition; the values of X increase with indices). These
components lead to the following de�nition, expressed as a statistical hypothesis (SH)
about population means �k:
SH-(strictly linear trend, positive) = SH-lin:

[(�k < �k0 ) ^ (�kk0 = g > 0)] for all k; k0 with k = k0 � 1; k = 1; : : : ;K � 1; (1)

with '^' symbolizing a logical conjunction and 'g' being a real valued constant in func-
tional dependence on the corresponding distances among values of the independent vari-
able X . The minimum number of experimental conditions necessary to detect a linear
(and a quadratic) trend is K = 3, since, in addition to the rank order of means, two
di�erences or distances have to be compared as to their compatibility with the functional
rule. Graphic representations of quantitative trends will not be given here, since they can
be found in many textbooks (see, e.g., Edwards, 1985, p. 146; Keppel & Zedeck, 1989,
p. 492; Maxwell & Delaney, 1990, p. 222; Meddis, 1973, p. 85; Myers & Well, 1991, p.
212; Winer et al., 1991, p. 199).

Although it seems possible to develop tests directly aiming at the two main features
of linear or other quantitative trends, statistical hypotheses usually refer to these trends
less directly. Most, if not all textbooks dealing with the analysis of quantitative trends
address the method of orthogonal polynomials through which it is possible to split the
sum of squares between the K experimental conditions (SSbet) into K � 1 orthogonal
trend components, each associated with a single degree of freedom (df = 1) and with a
single sum of squares. They then present two kinds of tests, one for the predicted trend
or the trend of main interest and another one for the deviations from this trend. The sum
of squares associated with the trend of interest, SSlin in our example, is submitted to
an F test. Usually, two possibilities for testing for deviations are discussed. One consists
of adding the sums of squares of the deviations from the trend of interest to form SSdev
with df = K � 2 and to perform a single F test on these deviations. The other consists
of performing K � 2 separate F tests on each trend component (df = 1).

If the author is mainly interested how the form of relationship between X and Y can
best be approximated, she or he will employ the latter procedure in order to know which
trend components are needed for an adequate description of the data (see, e.g., Hays,
1988, pp. 709-710; Myers & Well, 1991, pp. 211-216; Winer et al., 1991, pp. 203-204).
If he or she is only interested in the the questions whether there are any deviations from
predictions, usually only one F test is performed covering all deviations simultaneuously
(cf. Edwards, 1985, p. 147).

Although these tests were addressed in all textbooks I reviewed their meaning was not
explicitly covered. The impression is often given that testing for deviations is optional or
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less important than testing for the trend of interest. Keppel and Sau
ey (1980, p. 311),
for example, focus on the expected trend and state: 'Since the obtained ... (Flin) ratio
exceeds ... [the] critical value, we reject the null hypothesis and conclude that linear trend
is present in ... [the] data.' Myers and Well (1991, p. 207) state with respect to their
example: '... a signi�cant linear trend would support the hypothesis that the magnitude
of a conditioned response tends to increase as the magnitude of the stimulus increases.'
(This interpretation also holds true for a statistically signi�cant qualitative trend, since
the functional dependence is not addressed.) Other textbook authors perform both (or
more) tests and interpret the results in a 'test-oriented' manner, that is, by stating that
both the linear and the other trend components are 'statistically signi�cant' (see, e.g.,
A.L. Edwards & L.K. Edwards, 1994, p. 51; Howell, 1992, p. 374; Myers, 1972, p. 388).
What is typically disregarded, however, is the important implication of this statement:
The signi�cance of the quadratic component and/or of other higher-order components
indicates a deviation from homogeneity in the di�erences among means, or even an
inversion of ranks. Both of these patterns are not consistent with strict linearity; a point
which is rarely unequivocally addressed (e.g., by Lee, 1975, p. 310, as an exception).
To show this, let us consider the following example taken from Winer et al. (1991, pp.
203-205).

The authors deal with K = 6 experimental conditions, the treatment totals being Tk
= 100; 110; 120; 180; 190; 210 (Case 1). The linear component is Clin = 850, SSlin =
1032.14, MSerror = 18.52, and F = 55.73, signi�cant at � = .01, as we would expect
for the data given. Now let us consider set of �ctitious data: T 0k = 100; 100; 100; 100;
100; 210 (Case 2), for which the linear contrast is Clin = 550, SSlin = 432.14, and F =
23.33, signi�cant at � = .01. The same results hold for another set of �ctitious treatment
totals: T 00k = 100; 0; 0; 0; 0; 210 (Case 3), though this would not necessarily be expected.
In still another case we have: T 000k = 100; 100; 100; 100; 250; 210 (Case 4), for which
Clin = 1200, SSlin = 2057.14, and F = 110.08, signi�cant at � = .01. (Inspection of
data in the latter three cases would certainly lead to some caution when interpreting the
signi�cances, but exactly this is the kind of data-based 'correction' of test results I seek
to avoid.)

The examples illustrate two points: First, the signi�cance of the linear trend com-
ponent may not be as meaningful as one might expect. Second, the tests aims at the
H1:

P
(ck;lin � �k)

2 > 0, which should be interpreted as the conventional H1 of the F
test: H1 : �k 6= �k0 for at least one pair of means with k 6= k0 (instead of k0 = k � 1), as
especially Case 4 shows. This hypothesis is far less precise than is necessary when dealing
with quantitative trends as de�ned above, because there usually is a good chance for the
respective test to be signi�cant if at least two means di�er, the most likely candidates
for this being the two means at the extremes (experimental conditions x1 and xK).

But data-based 'corrections' are not necessary, since the information required for the
appropriate interpretation of the test results is contained in the test(s) for deviations from
linearity. In Case 1, the example taken from Winer et al., the F test for deviations comes
out insigni�cant (F = 1.03; Winer et al., 1991, p. 205), which means that the deviations
from linearity are small as judged by conventional tests of signi�cance. One can say
that tests of signi�cance introduce a probabilistic element into the exact de�nitions of
quantitative trends. In Case 2, we compute SSdev = 1108.33 and F = 14.96, signi�cant
at � = .01. For Case 3, we get SSdev = 3376.19 and F = 45.57, also signi�cant at � =
.01; and for Case 4: SSdev = 1133.33 and F = 15.30, again signi�cant at � = .01. The
additional examples show that there may be a (rather weak) linear component, but there
also are substantial deviations from linearity.

As argued above, deviations from linearity mean that there are di�erent distances �kk0

and/or rank inversions for the means and both kinds of deviations are not in accordance
with the de�nition of linearity. But if there are no such deviations (Case 1), there are
no rank inversions, although the distances �kk0 may vary within the limits of chance as
de�ned by the tests applied and their probabilistic side conditions such as sample size
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n; �; �, and so on, as is the case for the original data of Winer et al. (1991). Thus,
it is vital for any analysis of quantitative trends to test both the trend component of
interest and the deviations from it for signi�cance. The necessity for considering the
deviations becomes even more apparent when dealing with an odd number of experimental
conditions since the linear trend coe�cient for the middle position [(K�1)=2+1] always
is clin;[(K�1)=2+1] = 0. Thus the mean at this position may be of any size without a�ecting
the magnitude of the linear component.

Returning to the case of strict hypothesis testing, one may consider the subsequent
testing strategy as a possibility to avoid the interpretational di�culties addressed above.

2.2 A testing strategy for hypotheses on quantitative trends

Let us assume that a psychological theory or hypothesis or some prior experiments lead to
the (statistical) prediction of an exclusively positive linear relation between two variables
X and Y (SP � lin): Translating the de�nition of strict positive linearity given in (1) into
testable statistical (partial) hypotheses results in:
SP-lin: �

(H1;lin(t) :  lin =
X

ck;lin � �k > 0) ^ (H0;dev(F ) :

K�1X
q0=2

 2
q0(dev) = 0)

�
(2)

where ' ' denotes a population contrast, ck;lin are the orthogonal polynomials, 'q' stands
for any non-linear contrast (q0 = 2; : : : ;K � 1), and t refers to a (one-sided) t test on
a directional statistical hypothesis, expressing a positive linear relation. In the case of
predicting a negative linear trend the H1;lin(t) should of course be:  lin < 0, and if
the researcher predicts more than one trend, further tests referring to the additional
components must also be planned (see for an example Myers & Well, 1991, p. 216).

The presentation in (2), however, mixes two aspects. The SP-lin is decomposed into
two statistical hypotheses, one about a contrast (with df = 1) and one about a comparison
(df � 1) consisting of one or more contrasts. But in order to make a decision concerning
the SP-lin a decision rule has to be de�ned: A strict decision rule states that the statistical
prediction SP-lin is only to be accepted if both partial hypotheses can be accepted.1

According to this rule the two statististical partial hypotheses derived from it have to be
connected conjunctively (^) (see Morgenstern, 1980, for an analogous procedure). Using
a lenient decision rule leads to linking the partial hypotheses derived from the SP-lin
by the disjunctive operator (_), and it results in accepting the SP-lin if at least one of
the derived hypotheses is accepted. Such a disjunctive linkage of both hypotheses would
not ful�ll the criterion of exhaustiveness. Although it is sometimes possible to apply the
lenient decision rule even with quantitative predictions, this case will not be considered
at present. But the choice of a decision rule has important consequences with respect to
the psychological hypothesis.

1Despite many statisticians' strict refusal to even consider 'accepting' an H0, this kind of decision
must be possible or admitted when examining substantive or psychological hypotheses via the statistical
hypotheses derived from them. Bredenkamp (1972, 1980) has repeatedly presented the reasons why null
hypotheses must be 'acceptable:' Usually, but not always, a null hypothesis contradicts a substantive or
psychological proposition. If null hypotheses cannot be accepted, no decision against this proposition
is possible, as is necessary from a falsi�cationist point of view (but see below). If a null hypothesis is
retained we act as if it holds (see Cook & Campbell, 1979, pp. 44-45), whereby 'acting as if' encompasses
decisions on psychological hypotheses. And if power a priori is great enough that the probability of a
wrong retention of a null hypothesis is controlled there seems to be no convincing reason why researchers
cannot decide to accept or to retain a null hypothesis, although R.A. Fisher (e.g., 1966) always repudiated
the notion of deciding about statistical hypotheses and especially of 'accepting' null hypotheses. Despite
of this many null hypotheses have been retained or accepted in empirical psychological literature, and
retention of a null hypothesis is the expected result for any test of model �tting. Decisions, however, are
not proofs, neither of the null nor of the alternative hypothesis: both of them cannot be proved in the
sense of showing them as being 'true' (see Gigerenzer, 1993; Hager, 1992, and Serlin & Lapsley, 1993,
for further thoughts and literature on this problem).
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Since psychological hypotheses do not contain any information concerning decision
rules, as far as this author knows, these rules have to be chosen on other grounds, when-
ever more than one statistical test is necessary for an exhaustive examination of a par-
ticular psychological hypothesis. With respect to psychological hypotheses the following
relations holds in general, other things being equal: The stricter the decision rule, the
more severe the test of the psychological hypothesis, that is, the higher the probability
that it is 'not con�rmed' if it indeed is false; see Popper (1980, pp. 119-123; 1981, pp.
388-391) for a de�nition of 'severe'. The more lenient the decision rule, the less severe
the test, that is, the higher the probability that the psychological hypothesis is called
'con�rmed' if it indeed holds true. These and further relations will not be discussed here
(see Hager, 1992; Westermann, 1988; Westermann & Hager, 1983, 1986). For brevity's
sake the aspect of mere decomposition of a statistical prediction and choosing a decision
rule to link the partial hypotheses will not be dealt with in any depth in the remainder
of the text.

To perform an F test on the linear trend component violates the criterion of ap-
propriateness, since a directional relation between the dependent and the independent
variable is predicted. Failing to perform a test concerning the deviations from linearity,
the predicted trend, violates the criterion of exhaustiveness, since a signi�cant linear
component does not exclude the existence of other trends, whereas the psychological hy-
pothesis claims them to be absent. Another case, although rarely encountered, consists
of predicting a linear trend without specifying its direction. The hypothesis to be tested
in this instance is H1;lin :  lin 6= 0, which can be tested by a two-sided t or a (one-sided)
F test. This does not a�ect the null hypothesis of no deviations.

Looking upon trend tests from the regression analysis point of view (see Bredenkamp,
1980; Cohen & Cohen, 1983; Keppel & Zedeck, 1989, pp. 496-499), the hypotheses just
handled can also be expressed using correlations:

SP � lin :
�
(H1;lin : �lin > 0) ^

�
H0;dev : �

2 � �2lin = 0
��
; (3)

where � denotes the simple (population) correlation coe�cient referring to the predicted
trend and �2 the squared multiple correlation (in the populations) containing all trend
components.

There is another version of this procedure called Testing Strategy 1 (TS 1) that
leads to the same results as the two versions just considered. It rests on the fact that
a functional relation enables the prediction of population means ��k using the general
formula given, for example, by Keppel (1973, pp. 128-130) and by Myers and Well (1991,
pp. 207-215). These predicted values are then compared to the actual values �k; the
values ��k and �k can, of course, be estimated from the sample data (this procedure
is discussed by Myers & Well, 1991, pp. 205-208). The application of the prediction
equation should however be preceded by testing if the predicted trend component is of
su�cient magnitude, since even insigni�cant trend components can be used for prediction.
The degree of deviation from the predicted (linear) trend is then determined by using the
di�erence �k��

�
k. Subsequently the null hypothesis that these deviations simultaneously

equal null is tested by an F test against the alternative that there is a deviation from
null in at least one experimental condition. The statistical prediction of linearity, SP-lin,
then, can be accepted if the following conjunction of partial hypotheses holds, which is
equivalent to the two former expressions:

SP � lin :
h
(H1;lin :  lin > 0) ^ (H0;dev(F ) :

X
(�k � ��k)

2
i
: (4)

Before presenting two further testing strategies the possible patterns of results for Testing
Strategy TS 1 and their interpretations will be addressed.
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W. Hager: Trend hypotheses 9

2.3 Possible patterns of results for Testing Strategy TS 1

Assuming a linear trend is predicted once again, Testing Strategy TS 1 can lead to the
following patterns of decisions, each one supplemented with its appropriate test-based
interpretation ('AH ' means 'acceptance of hypothesis H ... or retention in cases of null-
hypotheses', necessary minimum power assumed):

1) AH0;lin ^AH0;dev : All population means are homogeneous; there is no trend. The
SP-lin is rejected.

2) AH1;lin ^AH0;dev : Not all population means are homogeneous and the data are
exhaustively describable by means of a strictly linear trend. The SP-lin is accepted.

3) AH0;lin ^AH1;dev : Not all population means are homogeneous and the data can be
described exclusively by higher-order trends. The SP-lin again is rejected.

4) AH1;lin ^AH1;dev : Not all population means are equal, and in order to describe
the data exhaustively, both linear and non-linear trend components have to be
considered. Although this pattern of results does not lead to accepting the SP-lin,
it is in accordance with the less precise (psychological) hypothesis and prediction
that there is at least one trend in the data (SP-trend).

But it cannot even from the predicted pattern of results be inferred that the distances
�kk0 are 'large'. The only interpretation possible is that they are homogeneous or (about)
equal and that they have the predicted algebraic sign. Considered alone, the test for
linearity, if signi�cant, does not even allow for this inference: It only tells us that at least
the largest distance is 'large', but it tells us nothing about (the necessary) homogeneity
of all distances nor of their algebraic signs.

2.4 Two further testing strategies

From the hypothesis testing point of view the decomposition of the SP-lin given in (2),
(3), and (4) (Testing Strategy TS1) is adequate and exhaustive, meaning that any (sta-
tistical) information needed to decide on the statistical prediction and the corresponding
psychological hypothesis is contained in the two tests. But often questions arise which
should and can, in addition to strict hypothesis testing, be taken into consideration when
decomposing statistical predictions such as the SP-lin. Usually, these additional ques-
tions �rst refer to the type of trend possibly responsible for the deviations (if such occur)
and second to the experimental conditions in which deviations occur. To answer these
questions in a test-based manner, more than the two tests from Testing Strategy TS 1 are
necessary, which means there will be a greater cumulation of the statistical error prob-
abilities � and/or �. But this is the usual price you have to pay for more information.
This possible disadvantage, however, can be compensated for by enlarging sample size
(power analysis; see Cohen, 1988; Hager, 1992).

In the �rst case the global hypothesis of no deviations from the predictions should be
decomposed inK�2 partial hypotheses, each concerning one trend component (maximum
number of partial hypotheses: K � 1), or, alternatively, in as many partial hypotheses
as refer to meaningfully interpretable trend components plus a further partial hypothesis
referring to all higher-order components (see, e.g., Keppel, 1973, pp. 127-128, and Myers
& Well, 1991, p. 216, on this point).

Thus, given a particular prediction (linear in our case) and further questions concern-
ing the type of possible deviations from linearity, the SP-lin should be decomposed into
directly testable partial hypotheses, leading to Testing Strategy TS 2, which is closely
related to Expression (2):

SP � lin :

�
(H1;lin(t) :  lin > 0) ^ (H0;qua :  qua = 0) ^
(H0;cub :  cub = 0) ^ : : : ^ (H0;trend(K�2) :  trend(K�2) = 0)

�
(5)
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W. Hager: Trend hypotheses 10

The tests concerning the derived null hypotheses can be performed as two-sided t
or as (one-sided) F tests, in which case the trend contrasts have to be squared. If a
study consists of more than three experimental conditions the tests for the strategies, TS
1 and TS 2, are based on di�erent numerator degrees of freedom, that is, on di�erent
probabilistic testing conditions, and can entail di�erent decisions (see, e.g., Kirk, 1982,
p. 156; Maxwell & Delaney, 1990, p. 226). For this reason, these two procedures should
be di�erentiated and are considered as di�erent strategies.

In the case of deviations from the predictions, neither Testing Strategy TS 1 nor
Testing Strategy TS 2 makes a test-based identi�cation of the corresponding experimental
conditions where these deviations arise possible. If the experimenter wants to obtain this
information in addition to testing a priori hypotheses, Testing Strategy TS 3, which is
more closely related to Expression (3), is preferable. According to this strategy, the test
of the predicted trend component is followed by a separate statistical hypothesis for each
experimental condition, postulating that there is no deviation from the prediction:

H0;k : �k � ��k = 0; k = 1; : : : ;K: (6)

The rationale underlying the preceding decompositions calls for combining the tests with
the strict decision rule: 'Only in case of the acceptance of H1;lin and of retention of all
KH0;k (su�cient power provided) should strict linearity be inferred.' This results in the
following decomposition of the SP-lin, leading to K + 1 partial hypotheses:

SP � lin : [(H1;lin(t) :  lin > 0) ^ (H0;k : �k � ��k = 0 for all k)] (7)

As a consequence of this decision rule, a strictly (positive) linear trend should not be
inferred if one or more of the alternatives H1;k is accepted. Although this �nding con-
tradicts the prediction, the particular tests planned allow for the identi�cation of the
experimental conditions in which the deviations from the predicted trend occur. The
researcher should then try to �nd out possible reasons for the deviations in these experi-
mental conditions. A possible application of this strategy is addressed by Keppel (1973,
pp. 90-91). Testing Strategy TS 3 may lead to an overall decision concerning the SP-lin
di�erent from the overall decisions made using Testing Strategies TS 1 and TS 2, since
the one-sample t tests rest on probabilistic testing conditions di�erent from those of the
other tests.

The testing strategies proposed in the preceding paragraphs can also be applied if
two or more quantitative hypotheses which aim at the same phenomenon, but postulate
di�erent functional rules are to be tested in one experiment (see Hager, 1993). Moreover,
they can be are generalized to other designs than the one chosen here (see Hager, 1992).

Further testing strategies which systematically aim at the two central features of
quantitative trends can be constructed quite easily but will not be considered here, and
nor will those methods of estimating parameters from the data which lead to F tests with
reduced numerator degrees of freedom be dealt with (e.g. Kirk, 1982, pp. 159-161). In
addition, Cohen and Cohen (1983, pp. 242-252), Lee (1975, pp. 307-313), Maxwell and
Delaney (1990, chap. 6) and Winer et al. (1991, pp. 234-236) discuss various models for
trend analysis, especially with respect to determining MSerror.

If a functional rule can be used to predict means, their rank order and the distances
between them, it also enables the prediction of the magnitude of variances, correlations,
and so on from a psychological hypothesis. Although these values, exactly predicted
from theory or hypothesis, can be used as e�ect sizes in power analysis or sample size
determination, they cannot eliminate the arbitrariness inherent in specifying e�ect sizes
prior to experimentation, as is sometimes claimed (cf. Cohen, 1988). This arbitrariness
is introduced once more when specifying the e�ect sizes for deviations from predictions.
These e�ect sizes are also necessary, but cannot be predicted from psychological theory;
instead, they must be chosen primarily, if not exclusively according to methodological or
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Table 1: Decomposition of a statistical prediction concerning a linear trend (SP-lin) into
testable a priori hypotheses

Additional question Decomposition and decision rule

None H1;lin ^H0;dev

Identifying trends deviating from pre-
diction

H1;lin ^ H0;qua ^ H0;cub ^ : : : ^

H0;trend(K�1)
a

Identifying experimental conditions de-
viating from prediction

H1;lin ^H0;1 ^H0;2 ^ : : : ^H0;K

Notes. a A more parsimonious decomposition is adressed in the text. '^' sym-
bolizes the conjunctive linkage of the partial hypotheses and implies the strict
decision rule. H1;lin denotes the (directional or bidirectional) alternative hy-
pothesis about the predicted trend (lin is for linear tend, but can be substituted
by any other predicted trend); if more trends have been predicted, each of them
should be associated with a separate statistical hypothesis of the type of the
H1;lin: H0;dev stands for all trend components except the predicted (linear) one;
H0;qua; H0;cub and so on refer to the K� 2 separate null hypotheses comparing
predicted and actual means for each of K experimental conditions. See text
for further information.

other considerations, such as the availability of subjects. Arbitrariness cannot be banned
from statistics (see Gigerenzer, 1993; Hager, 1992).

The hypotheses and the proposed decompositions of the statistical predictions have
been summarized in Table 1. It should be stressed, by the way, that I only consider
statistical hypotheses and tests that are necessary and adequate with respect to given
psychological hypotheses formulated in advance (and with respect to certain additional
questions). This focus should not prevent the researcher from additionally performing
those tests which she or he thinks appropriate to gain additional information not (directly)
connected to the psychological hypothesis that is to be examined (see above).
Some testing strategies for qualitative trends will be addressed next.

3 Qualitative Trends And Trend Tests

In contrast to quantitative trends, there is no mathematical function underlying qual-
itative trend hypotheses. These are usually derived from qualitiative psychological hy-
potheses addressing qualitative independent variables, whose levels are either categorical
or can be rank ordered, but they can also be formulated or derived when the indepen-
dent variable is a quantitative. In some instances it seems appropriate to disregard the
quantitative nature of the dependent variable or the possibility of assigning numerical
values to it, because it is doubtful, for example, if these are psychologically meaningful.
When studying hypotheses about the e�ects of, say, imagery (Paivio, 1986) it is possible
to describe word lists, for example, according to their mean imagery values, as computed
from respective norms. But since these mean values usually are interpreted as ranks in-
dicating di�erent levels of imagery without specifying any distances, this variable is most
often considered to be qualitative. The subsequent considerations refer to qualitative
hypotheses about qualitative trends.
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3.1 Monotonic trend as an example of a qualitative trend

As far as theory or hypothesis testing is concerned, it can be said that most of the the-
ories and hypotheses in psychology refer to qualitative relations and lead to predictions
concerning qualitative trends (see the overview by Hager, 1992). The type of qualitative
trend most often encountered is the monotonic trend, which can be predicted when con-
sidering psychological hypotheses like 'The higher the degree of imagery the better the
retrieval' (Paivio, 1986) and when considering hypotheses concerning the e�ectiveness of
di�erent cognitive programs or therapies to a, say, comparison group without any inter-
vention. This type of trend will be the focus of interest in the following sections of this
article, as it is generally not addressed by text book authors (but see Bortz, 1993, pp.
259-260). No graphic representations of qualitative trends will be given here, as these
graphs can be misleading because the distances between any two levels of the qualitative
independent variable cannot be de�ned. Choosing equal distances leads to graphs which
do not di�er from graphs of linear trends, while choosing arbitrary distances leads to
arbitrary graphic representations. Both of these procedures are neither correct nor incor-
rect, but they are just arbitrary, and the impression the graphs give depends mainly upon
these arbitrary choices. In some empirical papers which I deliberately do not cite here,
equal distances have been chosen for the graphical representations leading to straight
lines. This led the authors to claim that the trend was 'linear' although the independent
variable was qualitative instead of quantitative. Myers and Well (1991, pp. 568-569)
state: '... according to the Yerkes-Dodson law, we would expect a quadratic relation be-
tween measures of performance and motivation' (italics added). Since motivation usually
is considered a qualitative variable the relation to be expected is qualitative (inverted
U-shaped or bitonic).

The most important implication of the lack of a functional rule connecting indepen-
dent and dependent variable is that the relative magnitude of di�erences or distances
�jj0 , [referred to as �kk0 in the SP-lin above] between population means can neither
be expressed as a function of the values of the independent variable nor can they be
predicted from theory. Thus, the only predictions possible refer to the rank order of
the parameters chosen. To speak of strict monotonicity means that there is a strictly
increasing order of all ranks assigned to the parameters. Expressing this de�nition in the
format of a statistical hypothesis (SH) referring to population means �j , we get:

SH-(strictly increasing monotonic trend) = SH-mon: �1 < �2 < : : : < �J : (8)

The minimum number of experimental conditions is J = 2 in this case, since a minimum
of two ranks have to be assessed or compared. Let's call this minimum number a 'testing
instance,' since a psychological hypothesis is testable when this minimum number is
accounted for in the experiment. As soon as the experimenter decides to study more
than this minimum number, more than one testing instance can be de�ned, and these
testing instances can be linked either conjunctively or disjunctively (whereby the tests
referring to one testing instance should always be conjunctively connected to ful�ll the
criterion of exhaustiveness). As argued above, a conjunctive linkage represents a strict
decision rule and leads to more severe tests of the psychological hypothesis, while the
disjunctive connection implies (more) lenient decision rules and leads to more lenient or
less severe tests.

Based on these considerations, the de�nition for monotonicity of a trend can be com-
bined with several decision rules. The strictest decision rule demands that all empirical
meansMj must follow the predicted order without exception and the di�erences between
them must be statistically signi�cant in order to accept the SH-mon in (8). The latter de-
mand means that if, for example, the adjacent means Mj = 20 and Mj+1 = 21, referring
to the mean number of words correctly reproduced (n = 16;MSerror = 25), do not di�er
signi�cantly, they are not considered di�erent, and then should be assigned equal ranks.
This demand of statistical signi�cance between any two adjacent means is analoguous to
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the two-sample situation (J = 2), in which two means are only considered di�erent if
the di�erence is statistically signi�cant; any signi�cant di�erence, however, implies that
di�erent ranks are assigned to the means. Although this demand may not seem cogent,
it will be taken here as an additional criterion. Combining the statistical hypothesis in
(9) with this strict decision rule results in the following expression SP-mon1:

SP-mon1: �j < �j0 for all j; j
0 with j = j0 � 1; j = 1; : : : ; J � 1: (9)

The following examples refer to various more lenient or less strict decision rules which
rely on the disjunctive connection and di�erent numbers of testing instances (pairs of
means) to be considered. One more lenient decision rule demands an increasing rank
order not among all adjacent means (j = j0 � 1), but for at least two adjacent means.
Combining this decision rule with the SH-mon results in the SP-mon2, for which the
number of pairs is J � 1:

SP-mon2: �j < �j0 for at least one pair j; j
0 with j = j0 � 1; j = 1; : : : ; J � 1: (10)

The most lenient decision rule allows the consideration of all possible
�
J
2

�
pairs of means

to �nd at least one pair of means which conforms with the hypothesis, leading to the

SP-mon3: �j < �j0 for at least one pair j; j
0 with j 6= j0; j = 1; : : : ; J � 1: (11)

The lenient decision rules just applied do not address the question of how to handle rank
inversions, which can occur with those pairs of means which are not in accordance with
the predictions. If one or more, but not all pairs are judged to be di�erent according
to predictions, the remainder of the pairs can consist of homogeneous means (�j = �j0 ;
equality of ranks) and/or of pairs of means with inverted rank orders (�j > �j0 ; inversion
of ranks). This point will be discussed further below. For the time being it su�ces to
keep the possibility of rank inversions in mind.

The next question is, which of the hypotheses discussed so far are tested by using
some tests proposed in the literature which, by the way, are only rarely addressed in
standard textbooks (for an exception, see Bortz, 1993).

3.2 Some testing strategies aiming at monotonic trends

A variety of testing strategies come in question when considering statistical hypotheses
about monotonic trends. The application of a global F test of analysis of variance, fol-
lowed by a di�erential and data-based interpretation seems to be the most widespread.
As has been argued above, this procedure is problematic, however, as the di�erential
interpretation is not in accordance with the acceptance of the H1 of the global F test
and besides, an uncontrollable in
ation of statistical error probabilities will occur. Thus
the probability of a wrong decision in favor of strict monotonicity can be signi�cantly
increased, exceeding the pre-chosen � by a substantial amount. Furthermore, this man-
ner of testing a particular qualitative trend hypothesis does not ful�ll the criteria of
appropriateness (directional di�erences have been predicted, but the test refers to non-
directional di�erences) and exhaustiveness (directional di�erences between all or at least
some means, but the F test can also come out signi�cant, if a large di�erence is associated
with an inversion of rank order).

Another procedure, which is sometimes recommended, is to perform an F test for
the hypothesis about the quantitative trend that is formulated to match the qualitative
trend of interest: In place of the hypothesis of a strictly monotonic trend the test refers
to the respective linear component through the orthogonal polynomials (see, e.g., Levin
& Marascuilo, 1972, pp. 372-373). However, as has been stated above, the test can
turn out statistically signi�cant even if one or more rank inversions occur and since it
may remain insigni�cant even if the rank order of means meets the prediction, but the
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di�erences among the means are inhomogeneous. The latter case is in accordance to the
(qualitative) trend hypothesis of interest, the former is not. Thus, the interpretation of
the results is ambiguous with respect to the hypothesis of strict monotonicity. But what
would the consequences be if Testing Strategy TS 1, outlined above, is applied?

Applying Testing Strategy TS 1, the SH-mon is decomposed into the testable conjunc-
tion of hypotheses 'H1;lin ^H0;dev' from Expression (2). If both hypotheses are accepted
the trend is strictly monotonic by implication, although it is not possible to infer that
all distances are large enough to reach statistical signi�cance if tested separately as has
been chosen as an additional criterion above. If, on the other hand, the two tests lead
to accepting one of the conjunctions of hypotheses 'H0;lin ^H0;dev ' or 'H0;lin ^H1;dev',
respectively, it can be concluded that there is no monotonic trend. Yet if the pattern
of decisions is 'AH1;lin ^ AH1;dev' the 'presence' or 'absence' of a strictly monotonic
trend cannot be inferred unambiguously and test-based, since deviations from linearity
(AH1;dev) can be caused either by unequal distances among increasing or decreasing
ranks or by rank inversions across the J means. Unequal distances again are compatible
with strict monotonicity, whereas inverted ranks are not. Additionally, it remains unclear
again whether the demand is ful�lled that adjacent means di�er signi�canctly for each
pair of means. Overall, the interpretation of the outcomes of the respective tests are
ambiguous with respect to strict monotonicity. Thus, Smith and Macdonald (1983, p. 3)
conclude with respect to the procedure just outlined that these tests may be 'optimal,'
'when the true state of the world is a linear trend. When the intervals between successive
... (�j) are not equal or are not known (and this is very commonly the case in psychology)
the linear trend procedure is suspect and alternatives need to be examined.'

The method of orthogonal contrasts, whether to be used following a signi�cant F
test or instead of it, is covered in all textbooks and is in frequent use. Therefore, the
question arises whether a 'satisfactory' testing strategy can be devised for hypotheses
about orthogonal contrasts, enabling a test-based decision about a strictly monotonic
trend. Without going into the details it can be stated that a strict rank order across J
means cannot be established without supplementing test-based propositions to a large
degree with data-based ones (see Hager, 1992, pp. 365-368, for the details). For this
reason, further alternatives to the quantitative trend tests described up to point are in
demand. Another procedure consists of applying modi�ed (quantitative) trend tests.
The modi�cation mainly concerns the choice of a set of 'optimum' contrast coe�cients
according to the proposals made by Abelson and Tukey (1963; see for an application
Bortz, 1993, pp. 259-260). For comprehensive and comparative surveys of these and
further tests see Berenson (1982) and Smith and Macdonald (1983). According to Barlow,
Bartholomew, Bremner and Brunk (1972, p. 118, p. 194), Berenson (1982, p. 270), and
Le (1987, p. 173), the hypotheses (H0 and H�

1 ) tested against each other by these and
related tests are:

H0 :�1 = �2 = : : : = �J (12)

H�
1 :�1 � �2 � : : : � �J with at least one strict inequality.

The alternativeH�
1 refers to a weak ordering of parameters, that is, to a weakly monotonic

trend. But because of the way in which the respective test statistics are de�ned the
alternative hypothesis, as it is given in (12), may not have been stated appropriately and
should be replaced by the following one:

H1 : �j < �j0 for at least one pair of population means with j < j0: (13)

This formulation of the hypothesis takes the fact that the test results may turn up
signi�cant when only a single rank order of all

�
J
2

�
pairs of means is in agreement with

the expectation (j < j0) more adequately into account. The alternative hypothesis in
expression (12), on the other hand, may suggest that this rank order always concerns
adjacent means (j = j0 � 1). Furthermore, it appears that the tests mentioned above
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do not even test against the alternative of a weakly monotonic trend, but rather against
a more general (and less speci�c) class of alternatives which allow for rank inversions,
thus putting the usefulness of talking of 'monotonic' relations in question (see Berenson,
1982). This has been shown for the non-parametric trend test devised by Jonckheere
(1954) in some detail by Hager (1995, pp. 171-174) and by Bortz (1993, p. 260) for the
test proposed by Johnson and Mehrotra (1971). These tests, therefore, re
ect a rather
weak (implicit) decision rule which among other things allows for rank inversions. This
fact causes many researchers to add data-based decisions to their test results.

The numerous procedures of ordering and selection (see above) and several multi-
stage procedures combining the parametric F test with a rank correlation (Chassan,
1960; Green & Nimmo-Smith, 1982; Macdonald & Smith, 1983) seem to test analoguous
statistical hypotheses. At least, the statistical hypothesis of a strictly monotonic trend
is addressed in neither case, as Macdonald and Smith (1983, p. 25) have pointed out,
raising the question of further alternative procedures once again.

Only one of presumably various possibilities is described here, in which the testing
of hypotheses about qualitative trends is interpreted as a problem of testing hypotheses
by means of planned a priori or focussed contrasts, the manner usually advocated when
examining hypotheses formulated in advance (see, among others, Kirk, 1982; Marascuilo
& Levin, 1983, p. 337; Thompson, 1994), but rarely applied in psychological research
practice. As to my own experience, one of the reasons for this may be that many reviewers
demand overall tests which may be followed by a multiple comparison procedure. But
Winer et al. (1991, p. 146) clearly state: 'A procedure which is appropriate for a series
of planned ... [contrasts] is simply to carry out a series of t tests, where t is appropriately
de�ned for the experimental design used' ['comparisons' replaced by 'contrasts']. But
this method seems to be suspect to many researchers who rely on overall tests even if
particular contrast hypotheses can be formulated in advance. Maybe a series of t tests is
too simple a procedure to be 'scienti�c', even if there is good reason to perform them?

3.3 Testing strategies for monotonic and other qualitative trends

The psychological hypothesis to be examined may state that 'the amount of retrieval
(dependent variable) increases with increasing values of imagery (the independent vari-
able).' To test this hypothesis J > 2 levels of imagery and an observable dependent
variable such as 'number of words correctly remembered' are chosen. Omitting the psy-
chological prediction referring to the observable dependent variable and the design chosen,
the statistical prediction is derived from the hypothesis in an adequate and exhaustive
manner. This prediction refers to statistical concepts exclusively, and since the discus-
sion is restricted to (population) means the resulting statistical prediction states a strictly
monotonic trend among the J means. This prediction has been called SP-mon in (9).
Since this statistical prediction cannot be tested appropriately and exhaustively by a
single test, it is then decomposed into testable partial hypotheses about focussed pair
contrasts. These partial hypotheses can be tested in a way that enables unambiguous
(as far as test results are concerned) and test-based decisions concerning the statistical
prediction and that avoids any inconsistencies stemming mainly from data-based infer-
ences. 'To avoid inconsistencies' simply means: Ranks are only called 'di�erent,' if there
are 'signi�cant di�erences' among the means according to the usual statistical criteria
and tests applied, whereby 'usual tests' refers to any two-sample test, whether it is a t
test or a multiple comparison procedure on pair contrasts, each with only one degree of
freedom. Such rankings are test-based. The SP-mon has already been presented above,
but is given here again:

SP-mon1: �j < �j0 for all j; j
0 with j = j0 � 1; j = 1; : : : ; J � 1: (9)

This formulation of the statistical prediction suggests a decomposition into Q = J � 1
partial hypotheses H1;q for adjacent means, conjunctively combined:
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SP-mon1:

Q=J�1\
q=1

H1;q : (�j < �j0 )q for q = 1; : : : ; Q = J � 1 and for j = j0 � 1: (14)

The Q = J � 1 directional partial hypotheses can be tested by one-sided t tests. If
all Q tests come out according to predictions then a strict monotonic trend (without
rank equalities and without rank inversions) can be inferred, at least within the limits of
statistical error: The predicted ranks can unequivocally be assigned to the (empirical)
means, symbolizing a 'signi�cant' distance for each pair of means without, however,
knowing the sizes of the distances. But this particular information is not necessary in
respect to the psychological hypothesis, although it should be computed from the data at
hand. Under the strict decision rule applied it is not necessary to consider all possible

�
J
2

�
pair contrasts: If at least one partial prediction, each referring to one testing instance,
does not show up, the SP-mon1 should be rejected, and this decision cannot be modi�ed
by showing that there are signi�cant di�erences between non-adjacent means.

The more experimental conditions that have been chosen, the greater the cumulation
of error probabilities, but also the more severe the test of the psychological hypothesis,
all other things being equal. The cumulation can be compensated for by an adequate
adjustment, for example, by the Dunn-Bonferroni method or an improved version of it
(see, e.g., Kirk, 1982, pp. 106-111; Westermann & Hager, 1986; Winer et al., 1991, pp.
158-166).

If the SH-mon in (8) is connected with a lenient decision rule the acceptance of at
least one partial alternative out of J � 1 partial hypotheses (H1;q) su�ces to accept the
respective SP-mon2 (j = j0 � 1; j = 1; : : : ; J � 1). The decomposition is the same as
before, but the decision rule is di�erent. This means that the SP-mon2 is more easily
accepted than the SP-mon1, but the test of the respective psychological hypothesis is less
strict than with the SP-mon1. An even more lenient decision rule gives leave to 'look for'
the one necessary conforming result among all

�
J
2

�
possible pairs of means which leads to

the SP-mon3. If tested according to this prediction the psychological hypothesis has an
even less severe test to survive than if tested by the SP-mon22.

In the derivation and testing of the SP-mon2 or the SP-mon3 the problem of possible
rank inversions has not been discussed. There are basically two options concerning rank
inversions. First, they are accepted if they occur when testing the SP-mon2 or the SP-
mon3. Second, they are or at least a maximum number of them is exluded a priori by
a corresponding extension of the decision rule. In this instance additional tests should
be planned referring to these inversions. Let us return to the SP-mon2 and extend its
decision rule to handle possible rank inversions; this extension leads to the SP-mon4,
which deliberately allows for a maximum of Rmax rank inversions a priori, suggesting
the following decomposition:2

666664

 
Q=J�1S
q=1

H1;q : (�j < �j0)q for q = 1; : : : ; Q and j = j0 � 1

!
^

�
RminS
r=1

H1;r : (�j < �j0)r for j = j0 � 1 and Rmin = Q�Rmax

�

3
777775 (15)

The total number of tests to be considered and planned is T = Q+Rmin. The retention
of one or more of the H0;q : (�j � �j0 )q implies that either '�j = �j0 ' is true (indicating
equality of ranks), or that '�j > �j0 ' holds, indicating a rank inversion. In order to enable

2Various lenient decision rules can also be considered when testing hypotheses about quantitative
trends if more experimental conditions than the minimum number are examined, that is, if more than
one testing instance can be de�ned. These testing instances can again be linked either conjunctively or
disjunctively. The details cannot be considered here because of limited space (see Hager, 1992).
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Table 2: Testing a statistical prediction concerning a monotonic trend (SP-mon) which is
decomposed into testable a priori hypotheses based on the method of planned contrasts

Prediction Decomposition Number of
pairs (tests)

Kind of decision rule

SP-mon1 �j < �j0 for all
j; j0; j = j0 � 1

J � 1
(J � 1)

strictest possible; no
rank equalities or in-
versions accepted

SP-mon2 �j < �j0 for at least
one pair j; j0; j = j0�1

J � 1
(J � 1)

more lenient; rank in-
versions permitted

SP-mon3 �j < �j0 for at least
one pair j; j0; j < j0

J(J + 1)=2
[J(J + 1)=2]

most lenient; rank in-
versions permitted

SP-mon4a �j < �j0 for at least
one pair j; j0; j < j0

and further hypotheses
to exclude rank inver-
sions (see text)

J(J + 1)=2
(see text)

lenient; maximum
number of rank inver-
sions tolerated

Notes.a Various similar kinds of predictions di�er with respect to the number of
pairs or testing instances considered. See text for further details.

a test-based di�erentiation of the two possibilities, the tests on the corresponding partial
null hypotheses H0;r : (�j � �j0 )r should be performed for these pairs of means. If more
than Rmin of these tests come out signi�cant, the SP-mon4 should be rejected. This
testing strategy is in accordance to the proposals made by Sha�er (1972, 1974).

The decision rule applied in the SP-mon4 is more lenient than the one in the SP-
mon1, but stricter than the one in the SP-mon3. Because of di�erent numbers of pairs
it is di�cult to say whether the decision rule of the SP-mon4 is stricter than the rule
of the SP-mon2, but since the SP-mon2 allows for J � 2 rank inversions at most, the
SP-mon4 will most probably lead to a more severe test of the psychological hypothesis.
Further decision rules or criteria concerning the maximum number of rank inversions
and/or the number of pairs of means to be considered can be additionally de�ned, but
will not discussed here. The recommendations are summarized in Table 2.

3.4 Some further thoughts on qualitative trends

Analogous procedures can be devised for comparable qualitative psychological hypothe-
ses. The details need not be speci�ed here (see Hager, 1992; Hager & Hasselhorn, 1995).
Nor will details on testing statistical predictions concerning bitonic or tritonic trends be
presented here. A hypothesis like the Yerkes-Dodson law addressed above postulates to
a bitonic trend. If one chooses J = 5 experimental conditions (degrees of motivation) the
respective prediction may take the following form, where the �'s refer to some measure
of performance:

SP-biton: �1 < �2 < �3 > �4 > �5: (16)

These and other qualitative trends can also be tested using the method of planned con-
trasts, since the predictions always refer to certain rank orders, but not to any sizes
of distances among means. Moreover, the method can additionally be used to achieve
appropriate and exhaustive tests of other statistical predictions encountered in research
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practice (see the examples in Hager, 1995) such as:

SP: �1 = �2 < �3 = �4 < �5; (17)

or for a two-factorial design with equal n's per cell:

SP: �11 > �12 > �21 > �22: (18)

The examples considered here should su�ce to demonstrate the versatility of the method
of planned or focussed contrasts which can (and should) be applied in a multitude of
di�erent empirical situations where researchers wish to test psychological hypotheses by
means of statistical ones. It leads to easy interpretations, which are exclusively test-based
and need not be 'corrected' by data-based inferences. The cumulation of error proba-
bilities can be compensated for by adjustments referring to the tests one has actually
planned to perform or actually performed; adjustments do not refer to a �xed set of
potentially relevant partial hypotheses as called for in numerous techniques of multiple
comparisons. Furthermore, power analysis for them can be based on wide-spread tables
like those presented by Cohen (1988). The versatility of the method o�ers the addi-
tional advantage that many empirical tests of psychological hypotheses can be handled
successfully by applying a single statistical method, if the researcher derives her or his
predictions carefully, appropriately, and exhaustively. In addition, this derivation should
take into account the general postulate in choosing statistical tests: 'We generally prefer
to carry out the minimum number of signi�cance tests required to evaluate our theory'
(Myers & Well, 1991, p. 216). With respect to this demand the criterion of exhaustive-
ness has been de�ned to assure that the tests indeed 'required' or necessary with respect
to the statements (or empirical content) of the theory or hypotheses are carried out as
well. In the parametric case considered here the tests refer to the same de�nition of a
'di�erence or distance among means,' whereas the more widely used F tests use a squared
function of all distances among the means, this detail being responsible for the fact that
several well-known techniques of multiple comparisons when applied after a signi�cant
F , do not necessarily lead to decisions in agreement with the overall result (see, e.g.,
Betz & Levin, 1982; Gabriel, 1969). As a consequence, the method of focussed contrasts
employed without a preceding overall test is often (but not always; see the overview by
Thompson, 1994) recommended, since the respective tests 'usually result in increased
power and greater clarity of substantive interpretation,' as Rosnow and Rosenthal (1989,
p. 1281) state.

Another consideration refers to power analysis for planned contrasts to test statistical
predictions concerning monotonic (or other qualitative) trends. Power analysis enables
the determination of the sample size necessary to detect population e�ect sizes with
pre-chosen error probabilities. In the t test situation, the e�ect size � is the standard-
ized di�erence among two population means, the values of which have to be selected
for each hypothesis on a pair contrast. Some authors (e.g., Bredenkamp, 1984) argue
that specifying these values for each adjacent pair of population means implicitly leads
to an upgrading of a monotonic trend to a strictly linear trend. This belief may lead
to the recommendation that the monotonic trend may and should be statistically han-
dled as linear trend (see above). Bredenkamp's argument, however, overlooks the fact
that predicted e�ect sizes �kk0 for a quantitative trend refer to exact values which are
functionally dependent on the values of the quantitative independent variable. If at least
one of these exact values is (substantially) larger than predicted the strict de�nition of
linearity is violated. On the other hand, when dealing with qualitative trends e�ect sizes
such as �jj0 are minimum values, which cannot be predicted, but are chosen according
to methodological or economic reasons (see above). If one or more population values �jj0

are larger than prespeci�ed, this would not disagree with the prediction of a particular
qualitative trend as long as the other values are still large enough. Referring to the sam-
ples, the empirical e�ects �jj0 for pairs of means must be large enough to reach statistical
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signi�cance which, in turn, allows assignment of di�erent ranks to the means. Thus, the
choice of some minimum values for �jj0 should not be interpreted as upgrading a mono-
tonic trend, especially as this interpretation would violate the criterion of exhaustiveness:
The statistical hypothesis then actually tested comprises more information than can be
derived from the original psychological hypothesis referring to a qualitative variable and
trend (see above).

Considering J � 1 or J(J � 1)=2 pair contrasts will always lead to contrasts which,
considered as a whole, are not orthogonal to one another. Although Hays (1988, p.
415) demands that planned contrasts or comparisons have to be orthogonal, many other
textbook authors do not share this opinion as 'after all, contrasts are tested because they
are of psychological import, not because they are independent of each other. ... in many
and perhaps most cases the contrasts of interest will not be orthogonal' (Myers, 1972,
p. 362; see also Thompson, 1994; Winer et al., 1991). In addition, pair contrasts do not
contain the complete information inherent in the sums of squares between in an analysis
of variance on the same means. But as long as the only (statistical) information needed
for examining a psychological hypothesis in a valid manner consists in knowing whether
the means are in the predicted order or not, there is no need for further information. But
if there is any interest in further information not (directly) related to the examination of
the psychological hypothesis each additional test may be performed which is thought to
deliver insightful information. But these additional tests should be separated from those
which directly refer to the psychological hypothesis of interest.

4 Recommendations Summarized

Since basically there are only two situations which di�er with respect to the psychological
hypotheses considered, the recommendations can easily be summarized.

First: If the independent variable is quantitative and if the psychological hypothesis refers
to a quantitative relation, one of the testing strategies proposed for quantitative
trends should be applied, which usually consist of one test for the predicted trend
and one or more further tests for the deviations from predictions. Both tests have
to come out according to predictions to be able to accept the statistical prediction
of a certain quantitative trend. More than two tests result, if there are more than
one predicted trend and/or if there are additional questions. The testing strategies
should be chosen or adapted with respect to these (or other) additional questions
(see Table 1).

Second: If the quantitative nature of the independent variable is disregarded of or if
the independent variable is qualitative, its levels can either be assigned ranks (as
is the case with 'imagery') or di�erent codes (categorical variable, as is the case
with gender). In both instances, however, psychological hypotheses can refer to
various kinds of qualitative trends. In this instance one of the testing strategies
discussed for qualitative trends should be applied. The choice between the testing
strategies should also the various decision rules take into account. The decision
rule bears consequences with respect to di�erent conceptualizations of qualitative
trends: strict ordering, weak ordering, ordering with or without rank inversions,
and so on. The more lenient the decision rule, the less strict the demands on the
hypothesized trend will be (see Table 2).

Each testing strategy proposed in this article consists in decompositions of statistical
predictions into more than one testable hypothesis. These decompositions, however, are
neither necessary nor advisable if a statistical prediction is equivalent to a testable null
or alternative hypothesis of an available test, but this case seems to occur only rarely
when examining psychological hypotheses (Hager, 1992; Westermann & Hager, 1986).
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5 Some Final Remarks

All other things being equal predictions of a, say, linear trend have a greater empirical
content (as understood by Popper, 1980) than predictions of a trend that is 'only' mono-
tonic, because linearity implies not only a particular rank order for parameter values but
also precisely speci�able distances among them, whereas (strict) monotonicity only refers
to the rank order without specifying any distances. From this perspective, the preference
for quantitative trends is compatible with Popper's demand to focus on the theories and
hypotheses with the greatest empirical content possible (Popper, 1980). Whether this
demand is adequate for the domains of psychology has already been questioned elsewhere
(Hager & Westermann, 1986). And Popper himself has pointed out, too, that conceptual-
izing theories which are more and more precise and more likely to be falsi�ed empirically
are not conducive to scienti�c progress (Popper, 1981, p. 244).

The repeated reference to Popper as a philosopher whose methodology is continuing
a matter of debate should not be interpreted as meaning that the testing strategies dis-
cussed in the present paper serve the better falsi�cation of substantive statements. My
focus is on the examination of psychological hypotheses and whether the empirical data �t
them or not. If a hypothesis is valid or 'true' the probability that it is 'con�rmed' should
be high, and if it is not valid or 'false' the probability that it is 'discon�rmed' should
be high. The lower the validity of the study, in the sense used by Cook and Campbell
(1979), and the poorer the correspondence between predictions derived from the hypoth-
esis and the statistical methods and tests applied, i.e., the lower the hypothesis validity
(cf. Wampold et al., 1991), the lower the probabilities of correct decisions concerning the
psychological hypothesis will be, all other things being equal. Furthermore, the probabil-
ities of correct decisions will be lowered if the derivation of (psychological and statistical)
predictions do not take the empirical content of the hypothesis into full account, that
is, if the predictions and statistical partial hypotheses are not derived appropriately and
exhaustively. Since adequate explanations and descriptions of psychological phenomena
can only be achieved through hypotheses and theories which have passed valid empirical
tests successfully, there is no good reason to continually try to falsify these hypotheses, as
strict falsi�cationists would demand. The better and more general rule demands to plan
and execute experiments in a way that gives hypotheses a good chance to be 'con�rmed'
if they are 'true' and that leads to a high probability of 'discon�rming' them if they are
'false'. Overall, it can be said that correct decisions are more likely the higher the validity
of the experiment (see also Westermann, 1988). Considerations like these also seem valid
in the realm of 'applied' psychology: More is gained if one knows that an intervention
program is e�ective than if one knows that it is not. Since intervention research, as one
possible example, can also be designed as examining psychological hypotheses referring
to e�ectiveness (see Hager, 1995), there is no great di�erence between testing hypothesis
about phenomena in basic psychology and testing hypotheses in 'applied' or technological
psychology, though hypotheses serve di�erent aims in both realms and their theoretical
background may be quite di�erent. In both instances, however, predictions can and
should be derived from them which refer to the same statistical constructs and which
can be submitted to the same statistical testing strategies and tests. If the psychological
hypotheses are precise, the same holds for the predictions, and if they are imprecise, also
the predictions are less precise.
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