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Abstract 
This paper investigates wireless sensor network 
spatial resolution as a measurement of Quality of 
Service (QoS).   We seek to control the network in 
such a way that sensors participate equally in the 
network while conserving energy and maintaining the 
desired spatial resolution.   This work provides an 
analytic solution of a sensor network QoS control 
strategy demonstrated recently through simulation.  
General conclusions about the selection of 
parameters to control network performance, 
specifically the mean and variance of the QoS are 
presented.  We show that there is a tradeoff between 
the static and dynamic QoS performance, as well as 
energy usage and conclude by presenting the several 
potential applications that are enabled by ability to 
control both the mean and variance of network QoS. 
 
I. Introduction 
 

Wireless sensor networks are rapidly increasing in 
size and complexity due to recent advances in radio 
frequency, computing and sensing technologies.  
These technologies are posed to enable applications 
utilizing hundreds or thousands of sensor nodes.  
Many of these applications will require the deployed 
network to operate autonomously, in remote or 
inaccessible environments, precluding maintenance 
and requiring the network to robustly compensate for 
node failure or addition.  Examples include aircraft 
systems, remote applications, and hazardous area 
monitoring. 

These types of applications favor system 
architectures that utilize many low cost, redundant 
sensing nodes so that the system can tolerate 
expected sensor losses over the fielded lifetime.  The 
system decision to utilize many low cost rather than 
fewer higher cost sensing nodes typically results in 
nodes with significant reliability and energy 
constraints.  In addition, the sheer number of the 
sensors may strain the bandwidth and computing 
resources of the network with redundant information 
resulting in sub-optimal performance.   These 

systems benefit from control strategies in which the 
base station (or clusterhead) can dynamically adjust 
the number of active sensors to optimize the required 
system figures of merit at any given time.   

Energy conservation, ad-hoc configuration, and 
information routing for these networks is an active 
area of research.  However, this paper was motivated 
by recent work [1] that proposes to define wireless 
sensor network Quality of Service (QoS) in terms of 
how many of the deployed sensors are active.  This 
measure is intuitively applicable to the class of 
problems described, where the expectation is that the 
number of sensors deployed exceeds the minimum 
number required for system functionality. 

This definition of QoS requires some extensions if 
we are to use it as a criteria to support the goal of 
controlling the network in such a way that sensors 
participate equally in the network while conserving 
energy and maintaining spatial resolution.  In 
particular, in this paper we propose adding an 
additional diversity measure which allows 
comparison of control strategies based upon how 
often any given node becomes active.  Minimization 
of turn-time will be important in networks that 
require some level of node latency control.  A low 
turn-time also ensures that spatial resolution is 
maintained and the sensor nodes are not trapped in 
inactive states for long periods of time. 

This paper presents an analytic solution for a 
control strategy demonstrated recently through 
simulation [2].  Our analytic solution allows one to 
draw general conclusions about the selection of 
parameters to control network performance, which 
are then verified by simulation.  We show that this 
strategy allows a tradeoff between the static and 
dynamic QoS performance, as well as energy usage, 
that can be used to tailor the network for the specific 
application.  We also show that the protocol handles 
the dynamic addition and reduction of sensors 
robustly.  We conclude by presenting several 
applications that are enabled by this strategy’s ability 
to control both the mean and variance of the network 
QoS. 
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The remainder of this paper is organized as 
follows:  Section II presents the control architecture 
investigated in this paper and discusses previous 
results.  Section III presents an analysis of this 
architecture using Markov processes.  A direct 
formulation of the problem is presented first, 
followed by a formulation that significantly reduces 
the dimensionality of the problem.  Section IV 
presents the key results of using this analysis, and 
simulation.  We conclude in Section V with proposed 
extensions to this work. 
 
II. Sensor Automaton and Control 
Strategies 
 

This work was motivated by two recently 
presented QoS control strategies.  Again, we consider 
QoS as being defined in terms of average spatial 
resolution or equivalently the number of sensors 
active in a randomly deployed network.   Specifically 
we consider the Gur strategy proposed in [1,3] and 
the ACK strategy proposed in [2].  Both of these 
strategies control QoS for a single-hop cluster.  In 
addition, both strategies have sensors that use finite 
state automata.   We will briefly discuss both 
strategies to give the reader an appreciation for the 
differences and similarities of these techniques.  This 
will be followed by a detailed analysis of the ACK 
strategy. 

In the following description we will denote the 
number of sensor nodes by N, and the number of 
possible node automaton states by G.  We distinguish 
between the state of each automata and the state of 
the entire network by using the terms automata state 
and system state. 

In both techniques one sensor is active as the 
clusterhead node.  This sensor receives information 
from all other sensors in the network.  It is assumed 
that all sensors have sufficient transmission strength 
to cover the entire area (i.e. cluster).  These 
techniques are applicable to a wide range of networks 
including band limited applications suitable for low-
cost monitoring (e.g. environmental), as well as high 
bandwidth applications (e.g. target tracking).  This 
makes this technique compatible with various 
communication protocols including low cost 
ALOHA, and carrier sense multiple access (CSMA) 
methods. 
 
A. Gur Game 
 

In the Gur strategy the remaining sensors are in 
either a STANDBY or ON state as shown in Fig. 1.  
Sensors in the ON state are active in sending data to 
the clusterhead and counted to determine the network 

QoS.  Sensors in the STANDBY state do not send 
data. 

REWARD 

-3 -2 -1 1 2 3 

PUNISHMENT 

STANDBY ON 

Figure 1.  Gur game automaton. 
 
Sensors move from one state to another based on 

being rewarded for their behavior (ON or 
STANDBY).  Each sensor determines whether to 
reward or punish itself based upon a threshold, R, 
between 0 and 1 received from the clusterhead.  Each 
node locally generates a random number, between 0 
and 1, and rewards itself if this number is less than R, 
otherwise the node punishes itself.  The value of R is 
calculated once each epoch by the clusterhead and 
broadcasted to all sensors, including those in the 
STANDBY state. 

The threshold R is calculated from a function 
whose domain is the QoS calculated above and 
whose range is 0 to 1.  [1,3] have shown that for this 
architecture the mean of the resulting QoS will tend 
to the maximum of this reward function for a very 
broad class of functions, allowing control of the 
network QoS.  However, expressions for second and 
higher order statistics for this technique have not 
been calculated.    

The Gur control strategy has two parameters that 
can be used to control the network performance, the 
number of automata states, and the particular form of 
the reward function.  [1,3] have shown that 3 ON and 
3 STANDBY states provide adequate control.  We 
are unaware of work on selection of the reward 
function to optimize the dynamics (e.g. settling time, 
stability, and variance) of the QoS. 

 

 
B.  ACK Automaton. 

 
The ACK protocol was developed as an 

alternative to the Gur game [2].  In this technique, 
rather than automata states being ON or STANDBY 
they are in varying states of being ON.  This is 
accomplished by assigning a transmit probability Ti 
to each of the automata states.  During each epoch, 
each sensor independently generates a random 

 



number between 0 and 1. If this number is less than 
Ti, the node transmits, otherwise it is silent.  The 
clusterhead acknowledges each transmitting sensor 
individually and provides a single bit of coupling 
information indicating whether the current QoS is 
greater than the desired value, Q0.  Sensors 
transition between states based on this single bit of 
information.  They punish themselves if the QoS is 
greater than the desired value by transitioning toward 
the left in Fig. 2.  Conversely they reward themselves 
by moving right if the QoS is less than or equal to the 
desired value.  Note that in this technique sensors that 
do not transmit can be in a very low power state since 
they do not need to listen for control information 
from the clusterhead. 

desired value.  Note that in this technique sensors that 
do not transmit can be in a very low power state since 
they do not need to listen for control information 
from the clusterhead. 

 
Figure 2.  ACK feedback automaton 

 
C. Comparison of Strategies 
 

Comparison of these two techniques shows some 
similarity.  They both rely on automata to provide the 
QoS control, and both use a global network parameter 
to provide coupling between the automata.  They 
both also provide parameters that can be used to 
control the static and dynamic performance of the 
network.  In the case of the Gur game these consist of 
the size of the automata, and the selection of the 
reward function.  Although it is possible to determine 
network performance for particular selections of the 
reward function, variational methods to determine an 
optimal function have not been developed.  In the 
ACK protocol the performance is determined by a 
finite set of continuous parameters, the automata state 
transmit probabilities Ti.  Table 1 summarizes the 
parameters that can be varied for these methods. 

 Review of the previous work on these techniques 
[2] indicates several benefits to the ACK strategy: 
 
• Network lifetime is extended versus the Gur 

strategy, Fig 3. 
• A-priori knowledge of the sensor lifetime or 

specific reward function is not required. 
 

Limitations of the Gur strategy include: 
 
• The number of ON sensors is limited to 50% of 

the available sensors due to the structure of the 
Gur automata 

• All sensors must receive control information 
each epoch.  This is a significant energy penalty 
since receiver energy costs are often nearly 
equivalent to transmit energy costs.  
 

Table 1: Comparison of degrees of control 
parameters for the GUR and ACK strategies. 
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Figure 3:  QoS performance vs. epoch for the 
ACK and Gur strategies.  Network life is 
extended more than 5x using the ACK 
scheme[3] 

 
The ACK technique admits analysis, which along 

with the benefits discussed motivated the analytic 
work in this paper.  This analysis begins to develop 
the tools needed to determine control parameter 
values that provide desired  network performance. 
 
III. Analysis of ACK Strategy 
 

As noted each of the N sensor nodes is modeled as 
a finite state automaton (Fig. 2).  Each automata state 
is assigned a transmit probability, Ti, where i is the 
index of the automata state that can take on values 

0
0

100 50 150
epoch 

 



from 1 to G. Therefore, in any epoch a sensor node in 
automata state i has probability Ti  of transmitting. 

 
A.  State Transition Rules 
 

The N sensors in the network receive an 
acknowledgement (ACK) when they transmit. This 
single bit of information provides the only coupling 
of the global network state to the individual automata 
state. In the proposed QoS control strategy transitions 
between automata states are controlled by the 
following rules: 

 
Rule 1: A transmitting node goes to the next higher 
automata state if QoS≤Q0. If a transmitting node is 
already in the highest automata state, it remains in the 
highest state. 
Rule 2: A transmitting node goes to the next lower 
automata state if  QoS>Q0.  If a transmitting node is 
already in the lowest automata state, it remains in the 
lowest state. 
Rule 3: Non-transmitting nodes do not change 
automata states. 
 

These rules along with the automata structure 
allow modeling the network as a Markov process for 
which steady state and dynamic solution techniques 
are well known[4,5]. Note that the transition 
probabilities are functions of the global network 
parameter Q0 which prevents modeling each node 
independently of the others. 

Figure 4:  State enumeration, top is direct 
method, bottom is condensed method. The 
example shown is for 5 nodes, each with 3 
automaton states. 
 
B. Direct Markov Modeling of System 
 

The assignment of the Markov states for this 
formulation is shown in the top half of Fig. 4.  The 
states are enumerated by N transmit digits and N 
automata state digits.  The transmit digits will always 

be binary digits, while the base of the automata state 
digits will be equal to G, the number of automata 
states.  This assignment results in 2NGN  states.  
Examination of this state assignment shows that 
every combination of automata state and network 
state can be represented.  For example, Fig. 4 shows 
the case when we have five nodes (N=5) and 3 
automaton states (G=3).  In the specific network state 
shown nodes 3 and 4 are transmitting, and the other 
nodes are not.  In addition we see that nodes 1 and 5 
are in automaton state 3, nodes 2 and 3 are in 
automaton state 1, and node 4 is in automaton state 2.   

This state enumeration provides knowledge of the 
network QoS (the sum of the Transmit Digits) as well 
as the automaton state of each node.  It is 
straightforward to calculate the probability of 
transitioning from any state, to any other state using 
the following rules.  We use Sj to designate the 
current network state (i.e. the combination of the 
transmit digits and the automaton digits) and Si to 
designate the next state of the system.  Using this 
notation the Markov state transition probabilities 
between any two states can be calculated using the 
following two step process: 
 
Step 1:  Determine which transitions have non-zero 
probabilities. 
 
i.  If a node’s transmit digit is 0, then it remains in its 
current automaton state, since it will not receive any 
ACK information from the BASE.  Any network 
state transition for which this is not true has 0 
probability. 

N Transmit Digits N Automata State Digits ii.  If a node’s transmit digit is 1, the automaton state 
for that node is increased by 1 if the sum of the 
transmit digits in state Si≤Q0 (reward), and decreased 
by 1 if Si>Q0 (punish).  Exceptions to this rule occur 
at the end states (i.e. when the automaton state is 
either 1 or G).  If a node is in the 1 state and is 
punished, it remains in the 1 state.  Similarly if a 
node is in automaton state G and is rewarded it 
remains in state G.  Any network state transition for 
which this rule is not followed has 0 probability. 
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Step 2:  Determine the transition probabilities for the 
non-zero cases. 
 
i.  The transition probability between Sj and Si is a 
product consisting of N terms, one for each node.  To 
determine the term corresponding to a node first 
identify for state Si, the automaton state, k for that 
node, and the transmit state for that node.  If the 
transmit state for a node is 1, then choose the transmit 
probability, Tk for the product term for that node.  If 

 



the transmit state for a node is 0, choose 1-Tk for the 
product term.   

The results for the mean and variance of QoS for 
this case are shown in Fig. 6.  In the top figure the 
height of the surface is the expected value of QoS. 
We have highlighted that region for which |E(QoS)-

The results for the mean and variance of QoS for 
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Q0|<0.01 by setting the surface height to 0 in this case 
(as indicated by the arrow).   We also plot the 
variance of QoS as a function of T1 and T2 along this 
highlighted region, in the lower half of Fig. 6.   

Q0|<0.01 by setting the surface height to 0 in this case 
(as indicated by the arrow).   We also plot the 
variance of QoS as a function of T1 and T2 along this 
highlighted region, in the lower half of Fig. 6.   

re 5:  Network states Si and Sj, for N=5, 
, Q0=3 
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o illustrate the calculation of transitional 
abilities consider the example of Fig. 5 where we 
me Q0=3. In this case, the transition from Sj to Si 
be a reward transition, since the QoS of Sj is 2 
h is less than or equal to Q0.  We also apply step 
d determine that the transition probability is not 

e then form the expression for the transition 
ability between states Sj and Si which we denote 
: 
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e network being in any state Si, which we denote 
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ach Si is known we can then determine the 
ability distribution function for the random 
ble QoS by weighting each value of QoS by the 
of the state probabilities for all states with that 
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Figure 6:  Results for N=2 G=2, Q0=1 

 
Observations from Fig. 6 are: 
 
1. When T1=T2=0.5 the expected value is exactly 1, 
and the variance is exactly 0.5.  In this case, G really 
is reduced from 2 to 1 since the probability of 
transmit does not depend on the automaton state of 
that node.  In this case we have a Bernoulli process 
[2] and we may write the mean and variance as: 

he analysis above is valid when Q0<N, and when 
e Ti>0, in which case the process is completely 

dic and therefore has limiting state probabilities 
and can be solved analytically for the probability 
ity function (pdf) of QoS for each value of N and 
Knowledge of the pdf allows the calculation of 
statistical moment for QoS.  Results for N=2, 
 and Q0=1 are given in (2), where we use a 
alizing factor, D, to simplify the expression. 
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Knowledge of the pdf allows the calculation of 
statistical moment for QoS.  Results for N=2, 
 and Q0=1 are given in (2), where we use a 
alizing factor, D, to simplify the expression. 
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This result is consistent with Fig. 6. 
 
2.  Along the curve for which E(QoS)=Q0=1 the 
minimum variance occurs when T2=1, 
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variance is 0.5  Results will be presented later in this 
paper showing additional control of the variance as 
we increase G. 
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Although we now have an analytic solution for the 
network, its usefulness is limited.  It suffers from the 
curse of dimensionality, since the number of states 



grows as 2NGN.  Even for a simple network consisting 
of two nodes with two automata states we must solve 
a set of sixteen linear equations. 

+
iS =The event that the network transitions to 

network state Si. 
  In equation (4) the P(Si) are unknowns.  The 

remaining conditional probabilities, ’s, are 
known given the transition rules presented earlier.  It 
is convenient to define an activity measure between 
automaton states to facilitate writing an analytic 
expression for the ’s.  We define:  

)/( ji SSP +

)/( ji SSP +

C.  Reducing Analytic Complexity 
 

This rapid state growth in the formulation above 
provides motivation for reformulating the problem in 
a way that significantly reduces the number of states. 
Our approach is to rewrite the system equations in 
terms of conditional probabilities.  In the previous 
formulation we noted that there are GN distinct 
automaton states in the Markov process.  However, 
due to symmetry, network states with the equal 
numbers of nodes in each automaton state will have 
the same limiting state probabilities and can be 
represented as a single state.  This results in 

 
Ak(Si,Sj) = The number of nodes in the k’th digit of 
the state vector Sj that must transmit in order for 
the network to transition to state Si. 

 
The domain of Ak(Si,Sj) is defined to be those 

ordered pairs of states, (Si,Sj) which are consistent 
with the state transition rules presented earlier, and 
for which i≠j.  Those transitions that do not obey 
these rules have 0 probability of occurrence, and we 
treat the case of i=j as a special case. The domain of 
Ak can be further divided into pairs representing 
reward, and punish transitions.  We designate these 
subdomains as Dr, Dp respectively. Due to the hard 
limiting of rewarding and punishing at the G’th and 
1’st automaton  states we leave Ak(Si,Sj) undefined 
when k=G for reward states and k=1 for punish 
states.  We provide an example showing Si, Sj, and Ak 
for a reward transition in Fig. 7, for a network with 6 
automata states.  As discussed above Ak is not defined 
for k=6 in this case. 
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unique automaton states (see Fig. 4).  A comparison 
of the dimensionality for the two formulations is 
shown in Table 2, and provides motivation for 
condensing the states. 
  
Table 2:  Comparison of Markov states for 
the direct and condensed formulations 

 

 Markov States 
N G 

Direct Condensed
2 2 16 3 
3 3 216 10 
4 3 1296 15 
7 3 2.8E3 36 
8 3 1.67E6 45 

20 3 3.6E15 231 

k=        1      2       3       4       5       6 

  Sj =      2       1       2     4       1       0 

Si=      1       1       3     

Ak=      1       1       2    We represent these state probabilities by P(Si) 
where the subscript takes on C values.  These state 
probabilities obey the following equation: Figure 7:  Example
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where: 
Si=The event that the network is in automaton 
state  i.  We order the G digits of this network 
state from 1 to G, with the G’th digit containing 
the number of network nodes in the highest 
reward state, G-1 the next highest reward state, 
down to 1, which is the lowest, most punished 
state.  The bottom half of Fig. 4 illustrates the case 
of 5 nodes, with 2 in the lowest state, 1 in the 
second state, and 2 in the highest state. 
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define the following notation for the Bernoulli pdf 
and cumulative distribution function (cdf): 

(6-8) are explained by reference to the activity 
measure, Ak.  Consider the reward case (7), 
(i.e. ).  We wish to determine the 
conditional probability of transition from state S

r
ji DSS ∈),(

k
jS

(b

j to 
Si.  For this transition to occur, we require a specific 
number of the total number of sensors in each of the 
G automaton states to transmit.  The number required 
to transmit in the k’th automaton state is Ak(Si,Sj).  
Since the total number of sensors in the k’th 
automaton is , the probability that Ak(Si,Sj) of them 
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= the probability of w or fewer successes in n 
independent Bernoulli trials with success 
probability p.  If w<0 we define B(w;n,p)=0. 

For a given Si, the number of sensors transmitting 
in each automaton state is only a function of the 
number of sensors in that state. This independence 
allows determination of the total probability of 
transition as the product of the individual 
probabilities, which is represented by the product 
term of (7).  A special case occurs at automaton state 
G for the reward case and state 1 for the punish case.  
The number of sensors transmitting in these limiting 
(i.e. k=1 or G) states is not unique for all transitions, 
which is why Ak is left undefined for these cases.  In 
the case of a reward transition the number 
transmitting in the G’th automaton state, plus the sum 
of the sensors transmitting in the other states must be 
less than or equal to Q0.  The probability of this 
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In addition we define: 

m
iS = the value of the m’th digit of the state Si.   

 
Referring to the lower half of Fig. 4, we see: 

1.  Digits can range in value from 0 to N.  
2.  There are G digits in each network state Si,. 
3.  The value of  m can range from 1 to G. 

4.  ∑  for each value of i NS
G

m

m
i =
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We now formulate the conditional probabilities as: 
 
If (  (punish case): p

ji DSS ∈),

In the case where i=j we require that only sensors 
in the limiting states can transmit.  The first term in 
(8) accounts for the punish case, where only sensors 
in state 1 are allowed to transmit.  The second term 
accounts for the reward case, where only sensors in 
state G are allowed to transmit. 
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We now have a set of C linear equations for the C 
unknown P(Si)’s.  These determine the    P(Si)’s to a 
multiplicative constant [4].  We add the additional 
constraint that the state probabilities must sum to 1, 
i.e.  

If (reward case):  rDSS ∈),( ji
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We now derive the probability density function for 
QoS given these P(Si)’s.  This pdf can then be used to 
calculate desired QoS statistics, in particular the 
mean and variance. 

 
If i=j (special case): 

G  
)8(),;0(),;(

),;0()},;(1{)/(

1

0

2
1

1
0

m

G
m
iG

G
i

m
m

m
iiji

TSbTSQB

TSbTSQBSSP

∏

∏
−

=

+

×+

×−=

1m=

 

E.  Calculation of the Probability Distribution 
Function for QoS 

 
Given the P(Si) we may write the pdf of QoS as a 

sum of conditional probabilities as follows: 
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We now define: 
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= the probability that x of the nodes in 
automaton state k of network state Si are 
transmitting. 

            
The f defined above are independent of each other 
and can each be viewed as the pdf of a random 
variable x.  The sum of these random variables for a 
given network state is the QoS for that network state.  
The pdf of the sum of independent random variables 
is the convolution of their pdf’s [2].  Therefore the 
pdf of QoS may be written as the discrete convolution 

 of these independent pdf’s giving: 

and can each be viewed as the pdf of a random 
variable x.  The sum of these random variables for a 
given network state is the QoS for that network state.  
The pdf of the sum of independent random variables 
is the convolution of their pdf’s [2].  Therefore the 
pdf of QoS may be written as the discrete convolution 

 of these independent pdf’s giving: ( )∗( )∗
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Given we can determine the pdf of QoS, any 

statistical moment can be calculated, in particular the 
mean and variance.  

Given we can determine the pdf of QoS, any 
statistical moment can be calculated, in particular the 
mean and variance.  

  
IV. Key Results IV. Key Results 
  

Investigations of our analysis have yielded several 
key results. 

Investigations of our analysis have yielded several 
key results. 

  
Result 1. The mean and variance of QoS can be 
controlled by selection of the transmit probabilities. 
Result 1. The mean and variance of QoS can be 
controlled by selection of the transmit probabilities. 

  
An example is shown in Fig. 8 for the case when 

N=5, G=3, Q0=3.  In this example we have set T3=1 
and allowed T2 and T1 to vary. In the left hand plot 
we have highlighted the region for which |E(QoS)-
Q0|<0.03 in black.  There are actually two curves for 
which this condition holds, the first is the easily seen 
funnel shaped curve, the second one is a narrow strip 
that occurs when T1 approaches 0 (as indicated by the 
arrow). Note that the funnel mouth widens as T2 
approaches 1.  This feature allows control of the 
variance while maintaining a mean near the control 
point.  We illustrate this in the right hand side of Fig. 
8, where we fix T2 at 0.8, and keep T3=1.0, while we 
vary T1  to control the variance.  By allowing T1 to 
vary from 0 to 0.45 we can choose a variance 
between 0 and 1.2.  This ability to control the 
variance while keeping the mean relatively constant 
was observed in all cases analyzed.  In the case of 
G=3 the range over which the variance can be 
controlled can be set by appropriate selection of T2, 
and the operating point for the variance controlled by 

s tuning the network 
tion.  Wider ranges of 

mean and variance control are possible as we 
increase the network size, N, and the number of 
automaton states, G. 

An example is shown in Fig. 8 for the case when 
N=5, G=3, Q0=3.  In this example we have set T3=1 
and allowed T2 and T1 to vary. In the left hand plot 
we have highlighted the region for which |E(QoS)-
Q0|<0.03 in black.  There are actually two curves for 
which this condition holds, the first is the easily seen 
funnel shaped curve, the second one is a narrow strip 
that occurs when T1 approaches 0 (as indicated by the 
arrow). Note that the funnel mouth widens as T2 
approaches 1.  This feature allows control of the 
variance while maintaining a mean near the control 
point.  We illustrate this in the right hand side of Fig. 
8, where we fix T2 at 0.8, and keep T3=1.0, while we 
vary T1  to control the variance.  By allowing T1 to 
vary from 0 to 0.45 we can choose a variance 
between 0 and 1.2.  This ability to control the 
variance while keeping the mean relatively constant 
was observed in all cases analyzed.  In the case of 
G=3 the range over which the variance can be 
controlled can be set by appropriate selection of T2, 
and the operating point for the variance controlled by 

selecting T1.  This allows tuning the network 
performance to the application.  Wider ranges of 
mean and variance control are possible as we 
increase the network size, N, and the number of 
automaton states, G. 
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Figure 8.  Mean and variance as a function of 
the transmit probabilities. 
 
Result 2. There is a tradeoff between variance and 
network diversity.  
 

We define diversity loosely as equality of 
participation among sensors. We will develop this 
concept by briefly revisiting our analysis, followed 
by the introduction of a more formal diversity 
measure we name turn time. 

One of the results of condensing the number of 
Markov states is that we lose individual node 
information, while retaining network level 
information.  Thus, our solution allows calculation of 
all statistics for the QoS, but does not allow us to 
determine the specific performance of any individual 
node.  The result is that systems designed using the 
QoS analysis alone may behave in undesired ways. 

This is illustrated by using the example of N=5, 
G=3, and Q0=3 presented in Fig. 8.  Let’s assume our 
task is to design the system with the minimum 
variance in the QoS, while maintaining the mean 
close to Q0=3.  Using Fig. 8, we decide to select 
T1=0, T2=0.8, and T3=1.0.  For this selection we see 
that the mean is 3.0 and the variance is 0.  We met 
our goals perfectly!  The issue is that the network has 
a low diversity.  For this particular selection of Ti’s 
we can analyze the solution in closed form and see 
that in this case 3 of the nodes will eventually reach 
the highest automaton state and 2 will eventually 
reach the lowest automaton state.  Once the network 
reaches this configuration no additional automaton 
state transitions will occur thus each sensor is 
trapped into its final state and some will not 
transmit.  The specific sensors trapped in this lowest 
state will depend upon the starting state of the 
network, and how it evolves based on the stochastic 
rules presented earlier.  Note that this trapping 
behavior occurs anytime we set the lowest 

 



automaton’s transmit probability to 0.  The problem 
arises should one of the transmitting nodes fail, thus 
causing the QoS to drop to 2 without possibility of 
achieving Q0 subsequently.  (Note that our original 
analysis specifically excluded this case, although it is 
valid for values arbitrarily close to 0). 
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N=4 Q0=3 T1=0.1 T2=0.5 T3=1 T4=1 

E(QoS)=3.06   Var(QoS)=0.16 

 

 
Frequency 
(Counts) The discussion above begs the question of how to 

trade off variance for diversity in this QoS control 
strategy.  We propose introducing a metric for 
diversity measure, turn time, defined as the time, 
measured in network epochs, that it takes a sensor in 
the network to transition from the lowest automaton 
state to the highest automaton state. Turn time being 
a random variable can be described by its statistics.  
However, the condensed problem formulation trades 
off dimensionality for granularity, and cannot 
distinguish individual sensor performance.  Therefore 
simulation of the network is used to obtain turn time 
statistics. 

Figure 9:  Turn time for N=4, Q0=3, T1=0.1, 
T2=0.5, T3=1, T4=1 
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Fig. 9 and Fig. 10 illustrate the tradeoff between 
variance and turn time.  The two cases are identical 
except for the value of T1 which is 0.1 in Fig. 9, and 
0.01 in Fig. 10.  Both cases maintain the mean of 
QoS near the desired control point of Q0=3.  The 
variance in Fig. 9 is ~10 times greater than that in 
Fig. 10, but is still relatively small (~5% of the 
mean).  However, the two networks have widely 
different turn times.  Note that the scale on Fig. 10 is 
multiplied by 105.  The simulation for Fig. 10 was 
run with 106 epochs, and still only had a total of 6 
turns in the entire simulation.  The network of Fig. 10 
would respond extremely slowly to sensor failures.   

Frequency 
(Counts) 

Figure 10:  Turn time for N=4, Q0=3, T1=0.01, 
T2=0.5, T3=1, T4=1 

We conclude discussion of this result by 
reiterating that trapping states can be used to 
minimize variance, but produce low diversity.  An 
additional example of this is shown in Fig. 11, where 
we show the mean and variance of QoS as a function 
of the number of sensor nodes.  This system was 
simulated using T1=0.001, T2=0.5, T3=1.0 and T4=1.0, 
and Q0=35.  The system QoS tracks the number of 
deployed sensors until N=Q0 at which point the 
system controls the mean at Q0, with very little 
variance.  This demonstrates the ability of this control 
method to robustly respond to the addition or loss of 
sensors, since the expected value of Q is maintained 
close to the desired value Q0=35 over a wide range of 
N. 

40
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However, as demonstrated, a system such as Fig. 
11 has slow response to sensor losses since the value 
T1 is very small.  It may be possible to extend this 
algorithm to use time varying values of the transition 
probabilities.  For example, we may set T1=0.001 as 
in Fig. 11, but allow it to vary to a higher value (e.g. 
0.1) periodically (e.g. every 50 epochs).   This is a 
subject of future work. 
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tolerate a larger range of variance.  This is one means 
of performing built in test (BIT) in energy 
constrained systems without having to individually 
talk to each sensor.  This technique has both energy 
and bandwidth conservation benefits.  Fig. 12 shows 
an example for this application with T1=0.01, T2=0.5 
and T3=1, note that this case differs from the Fig. 11 
case in that T1 is ten times larger, and there is one less 
automaton state (i.e. G=3 versus G=4).  These 
changes cause a larger range in the variance, which 
varies from from approximately 0 to 40, as the 
number of sensor nodes varies from 0 to 300.  Notice 
that the desired QoS is 35, so only a small fraction of 
sensors are active in any epoch when N is large, and 
yet we are able to infer N, the number of deployed 
sensors from the measured variance!  We could use 
this information to send a request for replacement 
sensors, or for modifying our value of Q0, to prolong 
the network lifetime, with some reduction in 
performance.   
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T1=0.01 T2=0.5 T3=1.0 

Figure 12:  Inferring sensor count from 
Var(QoS) 
 
V.  Conclusions and Future Work 
 

The results to date are promising for use of the 
ACK control method in a wide variety of sensor 
network applications.  The control algorithm requires 
very little processing at both the sensor nodes and the 
clusterheads.  A timer and the ability to generate a 
random number are the major function requirements 
for implementing this protocol. This allows this 
technique to be implemented in low cost networks.  
In addition, this method performs well in terms of 
energy conservation, since only the active sensors 
need to communicate with the base. 

We see these characteristics as beneficial in 
systems that require dynamic control of the number 
of active sensors while minimizing energy usage.  
Examples include target tracking systems, structural 

health monitoring systems and remote sensing 
systems where the number of active sensors may 
need to be increased or decreased based upon events 
(e.g. target acquisition, structural load exceedance, 
rapid temperature increase). 

The high degree of control over the mean and 
variance of QoS with this method motivates future 
work on evolving the analysis to provide tools for 
network optimization.  Solutions of the transient 
behavior of this technique are also ripe for analysis, 
and will be needed in order to optimize the system 
performance.  Further work on using variance for 
health monitoring is also intriguing. 
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