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Abstract

This paper deals with full-frame estimation of optical
flow in a generalized imaging system by exploiting prob-
abilistic subspace constraints on the flow. We deal with
the extended motion of the imaging system through an en-
vironment that we assume to have some degree of statisti-
cal regularity. For example, in autonomous ground vehicles
the structure of the environment around the vehicle is far
from arbitrary. We exploit this regularity to predict the per-
ceived optical flow due to platform motion. The subspace
constraints hold not only for perspective cameras, but in
fact for a very general class of imaging systems, including
catadioptic and multiple-view systems. Using minimal as-
sumptions about the imaging geometry, we derive a proba-
bilistic subspace constraint that captures the statistical reg-
ularity of the scene geometry relative to an imaging sys-
tem. We propose an extension to probabilistic PCA (Tipping
and Bishop, 1999) as a way to learn this subspace from a
large amount of recorded imagery, and demonstrate its use
in conjunction with a sparse optical flow algorithm. To deal
with the sparseness of the input flow, we use a generative
model to estimate the full-dimensionality subspace using
only the observed flow measurements. Additionally, to iden-
tify and cope with image regions that violate the subspace
constraints, such as moving objects or gross flow estima-
tion errors, we employ a per-pixel Gaussian mixture outlier
process. We demonstrate results of finding the optical flow
subspaces and employing them to estimate full-frame flow
and to recover camera motion, for a variety of imaging sys-
tems in several different environments.

1. Introduction

This paper deals with estimation of full-frame optical
flow from sparse flow measurements in a generalized imag-
ing system, in the case where the imaging system is mov-

ing through an environment with some degree of statistical
regularity. We automatically and robustly find the linear
subspace of the flow, and use the subspace constraints at
runtime to find outlying optical flow vectors in new frames
and predict unobserved flow. We then use the projection of
sparse flow onto the subspace to recover the motion of the
imaging system through the environment.

We are interested in approximate monocular visual
odometry as a replacement for more costly or limited meth-
ods of obtaining incremental platform motion. Laser scan-
ners, or LIDAR, with which one can perform laser scan
matching, tend to be heavy, expensive, and require much
power. Wheel odometry, while very accuracte indoors, is
unreliable due to wheel slippage in outdoor environments.
All but the most costly Intertial Measurement Units (IMU)
quickly accumulate velocity errors, and therefore must be
fused with absolute position or velocity measurements.

Geometric stereo visual odometry, as described by
Matthies [15], relies on finding image features that match
between frames, and then finding the camera motion that
best explains the movements of the features between frames
and cameras in a stereo head. Most current systems employ
fast transform solving in a RANSAC harness, followed by
optimization of pose using in-lying features, for example
in [17, 16, 1]. Nistér et al. report errors of about 12 m
over a 360 m course [17]. Others have used a ground plane
assumption to compute monocular visual odometry, for ex-
ample [19, 4].

These geometric methods, while extremely accurate, as-
sume perspective cameras for which lens distortion can be
modelled. Additionally, they are computationally demand-
ing, making them challenging to implement on low-power
systems.

In contrast, we recover egomotion directly from sparse
optical flow using subspace constraints of the flow that hold
for a very general class of imaging systems, while simul-
taneously identifying outliers in the sparse flow. The sub-
space constraints hold under the assumption of regularity
of scene depth, as is typically the case for robots operating
outdoors and in urban streets.
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Optical flow estimation in general suffers from the aper-
ature problem. Because each neighborhood of pixels can
potentially have a different motion in the image, optical
flow is typically computed on small windows (e.g. [14])
thoughout the image, but without global constraints can-
not be evaulated in regions with ambiguous texture. Global
smoothness constraints (e.g. [9]) are designed to propagate
flow to these ambiguous regions, but such constraints make
strong assumptions about the scene and the imaging system.

More recent work in computing optical flow has applied
global constraints that arise from the optics of the imag-
ing system and the structure of the scene. These usually
assume a perspective camera, and model motion in the im-
age as an affine or perspective transformation, for exam-
ple [2, 11]. Some of these methods can apply differing mo-
tion to separate regions of the image, for example [12, 3].
Irani exploits linear subspace constraints that hold over sev-
eral frames [10]. Others use PCA to find the linear subspace
automatically, e.g. [6], but still require optical flow to be
computed over entire frames.

2. Generalized imaging system and subspace

In this section we describe the class of imaging systems
with which we are concerned, and show that the optical flow
therein lies near a linear subspace, constant for all incre-
mental platform motion. We also show how to recover the
platform motion from the optical flow.

2.1. Collection of local cameras

We deal with a generalized imaging system where each
pixel neighborhood can be approximated by local projective
camera, which measures both intensity and an optical flow
vector for that single pixel. Grossberg and Nayar [7] de-
rive a generalized imaging model based on “ray pixels”, or
raxels. They suggest a ray surface that ensures the function
mapping rays to pixels is smooth. In order to compute lo-
cal optical flow, we actually only require the mapping from
pixels to rays to be piece-wise smooth, as discontinuities are
discarded as outliers.

2.2. Linearity of the subspace

In this generalized imaging model, the mapping from
platform motion to optical flow is linear when scene depth
for each local camera is constant. Irani shows that for in-
cremental motion over several frames, the optical flow lies
in a linear subspace for arbitrary structure and camera mo-
tion [10]. This subspace approximation holds for a few
frames and depends on the scene structure. Our goal is
slightly different, in that we aim to recover a subspace for
optical flow that can be assumed constant over the entire
camera trajectory. The main idea is to exploit the regularity

of scene depth with respect to the camera, which actually
holds in many applications.

We now show that for every pixel the local optical flow
tj is linear in the incremental platform motion δ, i.e.,

tj(δ, Z) ≈ Hδ

where Z is the scene depth and H is a 2×6 matrix defining
the linear subspace in which the flow t lives. To do this,
consider the flow induced by the incremental motion δj of
a local camera. Using the incremental rotation approxima-
tion, we have [10, 13]

tj(δ, Z) ∆=
[
u̇j

v̇j

]
≈ f 1

Z

[
τx
j

τy
j

]
+ f

[
φy

j

−φx
j

]
(1)

where f is the focal length, and τx
j , τy

j , ϑx
j , and ϑy

j are the
components of the incremental translation and rotation of
the local camera.

The key point is that, while Eq. 1 depends on scene
depth, we can write it as the multiplication of a typi-
cal flow associated with the expected inverse depth µj =
E {1/Z}P (Zj), and a multiplicative component (1 + nj)
with expected value 1.0 due to deviations from the typical
scene depth:[
u̇j

v̇j

]
≈
[
fµj 0 0 0 f 0

0 fµj 0 −f 0 0

] [
τj
φj

]
(1+nj)

The incremental motion δj of the local camera is in turn a
function of the incremental motion of the base frame, which
can be approximated by a 6× 6 linear mapping Fj :

δj
∆=
[
τj
φj

]
= fj(δ) ≈ Fjδ

Hence, concatenating

tj(δ, Z) ∆=
[
u̇j

v̇j

]
≈
[
fµj 0 0 0 f 0

0 fµj 0 −f 0 0

]
Fjδ = Hjδ

The optical flow in a generalized imaging system is thus in
a linear subspace, with dimensionality equal to the degrees-
of-freedom of the platform motion. This linear subspace is
constant for constant depth and optics.

Although it may seem at first to be quite a limiting as-
sumption, we in fact can often approximate inverse depth
as a constant. This assumption works well when there is
considerable regularity of depth relative to the robot in the
environment. First, the relative depth to the ground plane is
always a constant for planar motion. Additionally, locations
above the ground plane are also approximately at constant
depth in hallways and urban canyons. Because our method
detects and ignores outliers, points that violate the regular-
ity do not significantly affect results.
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2.3. Recovering egomotion

Because the mapping from incremental motion to optical
flow is linear, we can easily learn this mapping to recover
egomotion from the optical flow.

Given the subspace coordinates xi ∈ Rq of each ith

frame of optical flow, i.e. the projection of the optical flow
onto the q-dimensional flow subspace, there is an unknown
linear mapping from the subspace coordinates to the plat-
form motion. To learn this mapping, we find the matrix
Mx ∈ Rq×q and the vector Mc ∈ Rq that satisfy

Mxxi +Mc = δi, (2)

for every frame i, where δi ∈ Rq is the known incremental
motion of the platform in the ith frame. To find Mx andMc,
we rearrange this equation into q linear systems, each of the
form Ay = b:x

T
1 1

...
xT

m 1

 [Mk
x Mk

c

]T =

δ
k
1
...
δk
m

 ,

where Mk
x is the kth row of Mx, Mk

c is the kth element of
Mc, and δk

i is the kth element of the known platform mo-
tion for frame i. Thus each linear system specifies the map-
ping from the subspace coordinates to one of the platform
degrees-of-freedom. For each frame, we find the subspace
coordinates xi from the sparse flow by iterating (8) and (9),
which corresponds to the E-step of the EM algorithm we
develop in Section 3.4.

We found it necessary to solve these systems using a ro-
bust method, such as iteratively-reweighted least squares,
as there were frames in our data sequences where either the
optical flow or the ground truth were completely incorrect.

After training by learning Mx and Mc, we can estimate
the egomotion for new frames of sparse flow simply by find-
ing the subspace coordinates, again by iterating (8) and (9),
and then evaluating (2) to obtain the egomotion δ. The prob-
ability of each flow vector being an inlier, from (9) is 〈zi〉.
Estimating egomotion is very effecient, as normally only
a few iterations are required for the estimate of xi to con-
verge.

3. Finding the flow subspace
We present an extension of probabilistic PCA [18] to ro-

bustly find the principal subspace. The robustness of this
principal subspace method is not limited to the traditional
case where entire samples are discarded as outliers. Instead,
we can find dimensions (i.e. per-pixel flow vectors) of each
sample that are not consistent with the values of the other
dimensions.

De la Torre and Black [5] also developed an “intra-
sample” robust PCA method, in which they minimize an

energy function that weights each pixel with a per-image-
pixel analog outlier process. We instead present a genera-
tive model for intra-sample robust PCA, which models each
pixel as a Gaussian mixture model of either the expected
value on the subspace, or zero-mean noise.

The idea of exploiting patterns in optical flow using PCA
has arisen in other contexts. Fleet et al., for example used
PCA to learn a parametrized model of optical flow on im-
ages containing deforming bodies, including human mo-
tion. They used this model to predict optical flow and also
to classify movements in the subspace [6].

3.1. Training data

Given a training video sequence, we compute a down-
sampled optical flow field over each pair of frames. To do
so we divide the images into a grid of 20 × 20 pixel cells,
then track the strongest Harris corner [8] in each cell us-
ing the Lucas-Kanade algorithm [14]. We employ a weak
threshold on corner response to prevent tracking textureless
regions.

Each pair of frames yields an observation vector ti, filled
with the concatenated horizontal and vertical optical flow
components. For flow fields of size w × h, the length of
each observation vector is d = 2wh.

Because the flow field is in fact sparse, there is also a set
Si of the “seen” indices of ti, where optical flow is avail-
able. Indices not in Si are missing, and we save computa-
tion by ignoring them in calculations, as described below.

3.2. Generative model

In a generative model for the optic flow, each vector is
either an inlier correlated to the other optic flow vectors in
the frame, or an outlier of zero-mean Gaussian noise:

tij =

{
Wjxi + µj + εv , zv

ij

εf , zf
ij

, (3)

where εv ∼ N (0, σv) and εf ∼ N (0, σf )

where tij is the jth optic flow component from the ith frame.
zv
ij and zf

ij are mutually exclusive binary variables indicat-
ing whether the optic flow component is an inlier or outlier
(v for valid and f for false). εv and εf are zero-mean Gaus-
sian random variables modelling the expected noise for in-
liers, which should be relatively small, and the expected
noise for outliers, which should be relatively large.

We model inliers as arising from linear combinations of
the basis flows, W , with the latent coefficients, x. As with
PCA, we also center the data before finding basis flows, so
we include the mean, µ. As with PPCA, we estimate the
variance σ2

v of the inlier noise, which will measure how well
the model explains the training data.

The key observations we make about this model are:
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1. The model is similar to PCA: if all vectors were inliers,
the the basis flows would span the principal subspace,
as shown in [18].

2. When conditioned on the basis flows and latent coef-
ficients, each observation vector is drawn from a mix-
ture model of two spherical normal distributions.

3. Although the flow vectors of each frame are correlated
through the basis flows, all flow components are mutu-
ally independent when conditioned on the basis flows
and latent variables.

3.3. Maximum likelihood formulation

As we observed above, when given W , µ, and x, each
tij is conditionally independent. This assumption allows
us to solve for the basis flows and latent variables even in
the presence of missing data and outliers. The conditional
distribution over a single component of a single flow vector
is the mixture model

tij |xizijθ ∼ N
(
tij ; t̄ij , σ2

v

)zv
ij N

(
tij ; 0, σ2

f

)zf
ij , (4)

where t̄ij = Wjxi + µj , θ =
{
W,µ, σ2

v , σ
2
f , πv, πf

}
, and

πv and πf = 1− πv are the mixing coefficients of the mix-
ture models. We note that there is in fact a different mixture
model for every flow vector and component, but that they
are related through the parameters θ.

As with PPCA, there is a standard Gaussian prior on x:

x ∼ N (0, Iq×q) . (5)

As with a traditional Gaussian mixture model, p
(
zv
ij

)
=

πv and p
(
zf
ij

)
= πf .

We are now ready to formulate the maximum likelihood
problem. We wish to obtain a ML solution over the joint
distribution of the entire model,

p (θxz|t) ∝ p (θ)
∏

i

p (xi)
∏
j∈Si

L (tij |xizijθ) p (zij) . (6)

Note the product over j ∈ Si, by which we only consider
vectors in the training data that were “seen”, and ignore
those that were missing. We can ignore these missing val-
ues because of the conditional independence between flow
vectors, and doing so significantly saves computation.

3.4. EM algorithm

The complete log-likelihood of (6), using the distribu-
tions above is

L (θxz|t) =
∑

i

logN (xi; 0, 1) +
∑
j∈Si

zv
ij

(
log πv + logN

(
tij ; t̄ij , σ2

v

))
+ zf

ij

(
log πf + logN

(
tij ; 0, σ2

f

))
. (7)

Finding the expectation of this log-likelihood with respect
to both x and z simultaneously would be intractable, but
we can instead first find the expectation with respect to x,
and then with respect to z, comprising a generalized EM
algorithm. We thus obtain update equations by taking the
derivatives of (7) w.r.t. the parameters, and solving for each
parameter:

µj =

∑
i∈Sj

〈
zv
ij

〉−1 ∑
i∈Sj

〈
zv
ij

〉
(tij −Wjxi)

σ2
v =

 ∑
i, j∈Si

〈
zv
ij

〉−1

∑
i, j∈Si

〈
zv
ij

〉 (
y2

ij − 2yijWj 〈xi〉+ tr
(〈
xix

T
i

〉
WT

j Wj

))

Wj =
∑
i∈Sj

〈
zv
ij

〉
σ−2

v 〈xi〉T yij

∑
i∈Sj

〈
zv
ij

〉
σ−2

v

〈
xix

T
i

〉−1

,

where yij = tij − µj . Si is as above, while Sj is the set of
frame indices whose jth flow component was not missing.

For the purposes of our experiments, we constrain σ2
f =

10, but this outlier variance could easily be estimated online
as well.

We find the expectation 〈xi〉 with respect to its poste-
rior p (x|tzθ) ∝ p (t|xzθ) p (x) with Bayes’ law and the
distributions (4) and (5). Combining the distributions over
each tij into a multivariate distribution over ti with diago-
nal covariance Λ−1

i simplifies finding the distribution over
xi. Following, p (x|tzθ) has mean and covariance

〈xi〉 =
(
WT

SiΛiWSi + Iq×q

)−1
WT

SiΛiyi, (8)〈
xix

T
i

〉
=
(
WT

Si
ΛiWSi

+ Iq×q

)−1
+ 〈xi〉 〈xi〉T ,

where Λi = σ−2
v Iq×qzi.

The expectation
〈
zv
ij

〉
is easier, as it is the simply the

proportion of probability of the flow component belonging
to the inlier distribution:

〈
zv
ij

〉
=

N
(
tij ; t̂ij , σ2

v

)
N
(
tij ; t̂ij , σ2

v

)
+N

(
tij ; 0, σ2

f

) , (9)

where t̂ij = W
(
WTW

)−1 (
WTW + σ2

vIq
)
〈xi〉.

4. Experiments
In this section, we present experiments that illustrate the

linear flow subspace for several imaging systems, show the
robustity of our method to outliers, illustrate estimation of
full-frame flow, and recover platform motion.
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(a) Typical frame (1920× 480)

(b) Basis flow 1

(c) Basis flow 2

Figure 1: Basis flows spanning flow subspace for the 3-
camera outdoor driving sequence.

4.1. The flow subspace

Figure 1 shows the basis flows spanning the linear op-
tical flow subspace for the 3-camera outdoor driving se-
quence. The vehicle had 2 degrees-of-freedom, arising from
its steering rate and speed, and thus we constrained search
to a 2-dimensional flow subspace. While the vehicle did
pitch and roll slightly due to suspension movement, but this
motion is small and erratic, so we do not wish to model
it. We observe that the first basis flow approximately corre-
sponds to the vehicle rotating, while the second basis flow
approximately corresponds to driving forwards. Also, the
basis flows capture the depth regularity of the sequence, as
in the second basis flow, the flow vectors lower in the image,
which correspond to points on the ground plane closer to
the camera, displace more than the points higher in the im-
age, which correspond to more distant points. On the other
hand, in the first basis flow, corresponding to rotation, the
flow vectors have approximately equal magnitude in each
camera.

Figure 2 shows basis flows for a catadioptic system in
which the camera partially looks into a mirror, and partially
looks past the mirror. Additionally, the lower-left corner
of the frame is occupied by the plate to which the camera
and mirror are rigidly attached, so this corner contains no
optical flow. The basis flows found by our method clearly
reflect these three image regions with differing optics.

Figure 3 illustrates the importance of robustness to out-
liers when finding the flow subspace. We found basis flows

(a) Typical “ad-hoc catadioptic” frame

(b) Basis flow 1 (c) Basis flow 2

Figure 2: Typical frame (640× 480) and basis flows for ad-
hoc catadioptic system. The basis flows clearly show the
differing optical properties of the imaging system. Optical
flow is useful both in the mirror and in the view past the
mirror. In the lower-left part of the image, however, the
camera sees only the plate on which it is mounted, which
moves with the camera and thus has no optical flow.

in a training sequence in which people walked in front of the
camera, creating out-lying optical flow. This sequence was
recorded with a standard projective camera in pure rotation,
so the flow vectors should be paralell, but the people walk-
ing in the scene negatively impact the results of standard
non-robust PPCA. Our method, which is robust to individ-
ual outlying optical flow vectors within frames of optical
flow, correctly ignores the inconsistent motion and yields
parallel optical flow vectors in the basis flows.

4.2. Full-frame flow

The multi-camera outdoor driving data set consists of
tiled images, and flow fields between frames are quite
sparse and contain errors, as shown in Figure 4a. Our
method estimates the latent variables for a pair of frames
using the observed sparse optical flow vectors, while iden-
tifying out-lying flow vectors, and then reconstructs full-
frame optical flow, shown in Figure 4b, using the estimated
latent variables and the basis flows. Figure 5 shows similar
results for the “ad-hoc catadioptic system”.

In frames containing moving objects, gross sparse flow
estimation errors, or structure that is unusually close to or
unusually far from the camera, robustness of our method to
outliers is very important. Figure 6 shows the inliers and
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Figure 6: Detection of outliers in the sparse optical flow in a frame from the 3-camera outdoor driving sequence. Colored
lines are sparse optical flow, ranging from green when p (inlier) = 1, to red when p (inlier) = 0. Sparse flow vectors that are
inconsistent with the linear flow subspace have low inlier probability. Vectors on the moving pickup truck, in the textureless
regions of the road, and on the very close and very far structure of the wall are labelled as outliers.

(a) Typical frame (640 × 480) showing outly-
ing sparse flow vectors (in red) found by our
method.

(b) One of the two basis flows found
by standard PPCA.

(c) The same basis flow found by our
method.

Figure 3: Comparison of basis flows found by standard
PPCA and by our method, a) for a yawing and pitching cam-
era, with outlying flow vectors caused by people walking in
front of the camera while it was moving. b) In the basis
flow found by standard PPCA, the vectors are not parallel,
as they should be for this dataset. c) In the same basis flow
found by our robust method, the vectors are properly much
closer to parallel. This figure only shows the second of two
basis sets for this sequence.

outliers that are present in a typical frame. Green vectors
are inliers, while red vectors are outliers. In the portion

(a) Raw sparse optical flow.

(b) Full-frame estimated optical flow.

Figure 4: Typical raw sparse optical flow field from the
multi-camera outdoor driving dataset, and the correspond-
ing full-frame flow estimated by our method.

(a) Raw sparse optical flow (b) Estimated full-frame flow

Figure 5: Typical raw sparse optical flow field from the ad-
hoc catadioptic system dataset, and the corresponding full-
frame flow estimated by our method.

of the image from the left-facing camera, the vectors on the
moving pickup truck are labelled as outliers. In the forward-
facing camera, the vectors from poor feature tracks on the
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Figure 7: The calculated trajectory by this monocular visual
odometry method, and by laser scan matching. In the upper
left corner the trajectory should be parallel before and after
the u-turn, as visual odometry correctly estimates. Neither
method successfully closes the loop.

textureless portion of the road are mostly ignored. In the
right-facing camera, the structure of the wall that is very
close and very far from the camera is ignored, while the
vectors on the structure near the average distance are la-
beled as inliers. Note that our method actually computes
the probability of a flow vector being an inlier, as indicated
on the figure by colors between green and red.

4.3. Ego-motion estimation

We obtained platform motion using laser scan matching
for a single-camera outdoor sequence. We used the motion
found by laser scan matching as training data to learn the
linear transformation from subspace coordinates to motion,
as described in Section 2.3. Figure 7 shows the trajectory of
the platform as obtained from laser scan matching and from
optical flow. In the upper left corner the trajectory should
be parallel before and after the u-turn, as visual odometry
correctly estimates, although neither method successfully
closes the loop. We explain why this discrepancy likely oc-
curs in Section 5.

Task Computation time

Compute sparse flow 19.1 ms

Estimate full-frame flow 6.8 ms

Estimate ego-motion 0.2 ms

Allowable for real-time (30 fps) 33.0 ms

Table 1: Execution time of our prototype code, per frame,
on 1920× 480 frames, and 45× 13 flow fields.

5. Discussion
We chose to train the supervised learning of egomotion

estimation using laser scan matching, a common method for
obtaining platform motion in the abscence of stereo visual
odometry. We were surprised to see that ego-motion esti-
mated from optical flow actually appeared to be more ac-
curate than the “ground truth” that supervised the learning
of ego-motion estimation, as described in the U-turn in the
upper-right corner of Figure 7. We believe that the fact we
enforce a linear subspace explains this result. We can see,
that laser scan matching sometimes over-estimated turns,
and sometimes under-estimated them. This is most likely
due to pitching and rolling of the platform, which would
change the viewpoint of the laser, and to moving objects.

During training, the method of supervised learning in
Section 2.3, is constrained to a linear model, and thus would
average the over- and under- estimation of turns by scan
matching, leaving only the bias with respect to turning one
direction or the other, which the trajectory results show is
close to zero.

At runtime, visual odometry is robust to small pitching
and rolling when estimating the latent variables, and is fairly
robust to moving objects. We used the iterative closest point
(ICP) algorithm to laser scan matching, which is sometimes
robust to fast-moving objects, but cannot be robust against
changes in viewpoint caused by pitching and rolling.

An on-line implementation of this method constitutes fu-
ture work. Estimation of optical flow at runtime is effecient,
requiring only a few iterations of projection onto the basis
flows, and estimating the probability of each vector belong-
ing to one of two Gaussian distributions.

An informal evaulation of execution time, in Table 1, re-
veals that our prototype code, with sparse flow extraction
in C++ and full-frame flow and ego-motion estimation in
MATLAB, is faster than real-time.

We showed earlier that we can label moving objects in
the scene, as they constitute outliers. In fact, we are deter-
mining the probability of each vector belonging to the dom-
inant image motion, or to zero-mean noise. In future work,
we wish to show that we can also track multiple moving
objects by incorporating methods from the motion tracking
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community. Black and Anandan, for example, use robust
statistics to fit image regions to different motion models [3].
The linear subspace found by our method could serve as
such a motion model, allowing estimation of separate sub-
space coordinates for each image region.
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