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Abstract. We present a new method to prove existence and uniform à-priori
estimates for Gibbs measures associated with classical particle systems in con-
tinuum. The method is based on the choice of appropriate Lyapunov func-
tionals and on the corresponding exponential bounds for the local Gibbs spec-
i�cation.
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1. Introduction

The paper is devoted to mathematical aspects of the equilibrium statistical me-
chanics of classical particle systems in continuum. Our goal is to establish a new
analytic method for proving existence and à-priori bounds for the corresponding
Gibbs measures � 2 G. The main advantage of this method is its simplicity. Besides
some elementary constructions from (in�nite dimensional) analysis and probabil-
ity, no advanced tools are needed. To illustrate the key ideas, we �rst concentrate
on the standard case of a (non-translation invariant, possibly discontinuous) pair
interaction V (x; y) assigned to particles in Euclidean space Rd, d � 1. Afterwards,
we demonstrate how to remove technical assumptions such as �nite range of the
interaction or spatial regularity of the intensity measure and how to handle the case
of multibody interactions. As will be pointed out below, some of these generaliza-
tions are far beyond the reach of previously available techniques. Furthermore, our
method straightforwardly extends to marked Gibbs measures or to the con�gura-
tion spaces over manifolds, which will be elaborated in more detail in subsequent
papers.

An initial step in studying Gibbs measures is always the existence problem. How-
ever, for most of in�nite particle systems with non-compact phase spaces, existence
turns out to be far from evident. Our situation becomes even more complicated,
since the Gibbs measures to be constructed are supported by the space � of locally
�nite sets (i.e., con�gurations) 
 over Rd, which by itself is an in�nite dimen-
sional manifold. Note that we are only considering simple con�gurations 
 2 �
(i.e., those with at most one particle at each point x 2 Rd), which is justi�ed
by the applications in physics. Let us recall that for classical continuous systems
there are two commonly accepted, but essentially di¤erent approaches employing
respectively Ruelle�s superstability estimates [42, 43, 26] and Dobrushin�s existence
criterion [7, 8, 3, 24] (see the comments in Subsection 2.4). Instead of inductive
or combinatorial techniques typical in those approaches, we shall basically use the
analysis and geometry on the con�guration space � that were developed in [1, 2].
This yields not only a direct way of constructing the corresponding Gibbs states,
but also a lot of easily computable bounds for them in terms of the interaction
parameters.

Before going into further details, let us mention the important notion of tem-
peredness that naturally arises in all systems of unbounded spins. It is common
knowledge that any detailed study of Gibbs measures is impossible without assum-
ing any prior information about their properties. A practicable compromise is to
con�ne ourselves to a proper subset Gt of so-called tempered Gibbs measures with
controlled growth. The de�nition of temperedness we suggest below (cf. (2.65),
(2.66)) is more general than those in the existing literature.

Our key idea is to prove exponential integrability of a certain Lyapunov func-
tional, which is given by the energy H(
�k) of a con�guration 
 restricted to a
small cube �k := Qgk � Rd of edge length g > 0, see Lemma 3.1. An impor-
tant issue here is the weak dependence of the corresponding bound (3.1) on the
boundary values � 2 � , �xed outside Qgk. Using the consistency property of the
local Gibbs speci�cation, in Lemma 3.3 we then extend the above estimate to large
volumes � � Rd constructed by means of the partition Rd =

`
k2Zd Qgk: For the

kernels of the Gibbs speci�cations ��(
j�), this implies the necessary tightness to
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prove that Gt 6= ? (cf. Theorem 2.8). Since the bounds obtained for ��(
j�) are
asymptotically uniform as � % Rd and hold for �-almost all � 2 � , by the DLR
equation we immediately get a similar bound for all � 2 Gt (cf. Theorem 2.9).
At this point there is a principal di¤erence in comparison with Dobrushin�s ap-
proach, which just ensures the existence of some tempered Gibbs states � without
any information about the whole set Gt. The same scheme works for interactions
of in�nite range, for which we should control the weak dependence, contractivity,
and compactness properties of the speci�cation �� in suitable weighted seminorms
over � (see Subsection 4.3). In contrast to Ruelle�s approach, there is no reason
to decompose into n-particle con�gurations located in bounded domains � and to
analyze the associated correlation functions. Actually, the class of measures Gt we
construct and study below includes all � having Ruelle�s support, cf. Remark 4.9.
For the precise links to Dobrushin�s and Ruelle�s techniques see Subsections 2.4 and
4.5, 4.6, respectively.

The paper is organized as follows. In Section 2 we �x the standard framework for
Gibbs measures on con�guration spaces and present our main results. In Subsection
2.1 we shortly recall a few basic facts about the Poisson measure �z� on � to be
used later on. The local Gibbs speci�cation � = f��(d
j�)g and the corresponding
Gibbs measures � 2 G as solutions to the DLR equation are de�ned in Subsection
2.2. In Subsection 2.3 we give precise conditions on the interaction and relate them
to Ruelle�s superstability. Next, in Subsection 2.4 we introduce the set of tempered
con�gurations 
 2 � t and the set of tempered Gibbs measures � 2 Gt obeying
�(� t) = 1: Then, we formulate our main Theorems 2.8 and 2.9 on existence and
à-priori estimates for � 2 Gt. Comments, which in particular compare these results
with previous ones obtained by other methods, conclude this section.

In Section 3 we prove our main Theorems 2.8 (existence) and 2.9 (à-priori
bounds). In Subsection 3.1 we prepare the key technical Lemmas 3.1 and 3.3 about
the integrability properties of the speci�cation kernels ��(d
j�). Thereafter, in
Subsection 3.2 we give the complete proofs of Theorems 2.8 and 2.9, which as
mentioned before turn out to be quite elementary.

In Section 4 we extend our initial model in several core directions. A natural
question how singularity of the potential V (x; y) on the diagonal may improve
the regularity properties of the corresponding � 2 Gt, is addressed in Subsection
4.1. Possible re�nements of Theorems 2.8 and 2.9 in the case of strong superstable
interactions are outlined in Subsection 4.2. It is worth noting that in most examples
of physical interest, the interaction is usually strongly superstable. In Subsection
4.3 we modify our method to the particle systems with multibody interactions. The
new situation when the intensity measure � is no longer translation invariant on
Rd is treated in Subsection 4.4. Subsequently, in Subsection 4.5 we obtain precise
information on support properties of all tempered Gibbs measures � 2 Gt. In
Subsection 4.6 we take a closer look at the correlation functional k� and point out
further relations to Ruelle�s approach.

Finally, in Section 5 we demonstrate how to handle interactions of in�nite range.
A principal di¢ culty here is to identify the limit points ��(d
j�) as �% Rd as solu-
tions of the DLR equation. To this end we implement an alternative way, based on
the (almost) continuity of the Gibbs speci�cation in certain spaces of tempered con-
�gurations, see Proposition 5.2. The proof works for physically relevant potentials
(e.g., for the Lennard-Jones potential) with a singularity at the diagonal.
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Finally, we emphasize that our methods appear to be quite universal and ap-
plicable to di¤erent classes of models: classical or quantum, on a lattice, on an
in�nite graph, or in the continuum. In this respect let us mention here some recent
papers, where appropriate modi�cations of our technique were �rstly implemented
to quantum anharmonic crystals [25, 34, 35] and to classical spin systems on graphs
[23]. Therefore, we hope that the present work will contribute to make the theory
of Gibbs measures more accessible to a wider audience, in particular, for all spe-
cialists being interested in applications of in�nite dimensional analysis to problems
of mathematical physics.

2. Description of the Model and Main Result

In this section we recall the standard setting of classical statistical mechanics
and present the main theorems obtained in the paper.

2.1. Preliminaries on con�guration spaces. We consider a mechanical system
of identical particles that interact via a pair potential V (x; y) obeying certain sta-
bility properties to be speci�ed below. Any such particle is entirely described by
a point (its position) x = (x(i))di=1 in the phase space Rd, d 2 N. This space is
equipped with the Euclidean distance j � j and the Borel �-algebra B(Rd) generated
by the family O(Rd) of its open subsets. By Oc(Rd) and Bc(Rd) we denote the sys-
tems of all bounded elements (i.e., those with compact closures) inO(Rd) and B(Rd),
respectively. So, Oc(Rd) contains all open balls Br(y) :=

�
x 2 Rdj jx� yj < r

	
with center y 2 Rd and radius r > 0:
For a subset � � Rd, let �c, ��, ��, and @� := ��n�� denote its complement,

interior, closure, and topological boundary, respectively. Subsets constituted by
points k = (k(i))di=1 of the integer lattice Zd � Rd will be denoted by K. For
shorthand we write K b Zd if the set K is nonvoid and �nite, i.e., its cardinality
obeys 0 < jKj <1. A sequence of �N 2 Bc(Rd) (or KN b Zd) indexed by N 2 N
is called order generating if it is ordered by inclusion and exhausts the whole Rd
(respectively, Zd). Furthermore, � % Rd (or K % Zd) means the limit taken
along any unspeci�ed sequence of this type. Finally, we abbreviate R+ := [0;1),
�R := R [ f+1g, Z+ := f0; 1; 2; : : :g, and �Z+ := Z+ [ f+1g.
The con�guration space � := �Rd over Rd consists of all locally �nite subsets,

i.e.,

(2.1) � :=
�

 � Rd

�� j
�j <1; 8� 2 Bc(Rd)
	
;

where j
�j is the number of points in the restriction 
� := 
 \ �: The elements

 2 � are called simple con�gurations. For technical reason we shall also need the
larger space of multiple con�gurations

(2.2) �� := f(
; n) j 
 2 � ; n : 
 ! Ng :
A multiple con�guration (
; n) can be interpreted as follows: 
 2 � is the support
set describing positions of particles in Rd, whereas n(x) is the number of particles
at each point x 2 
. If there is no confusion, the notation 
 2 �� will be understood
as (
; n) 2 �� . The total number of particles in 
� := 
 \ � is then given by
j
�j :=

P
x2
� n(x). Each 
 2 � (respectively, 
 2 �� ) can be identi�ed with the

�Z+-valued counting measure
P
x2
 �x (respectively,

P
x2
 n(x)�x), where �x is the

Dirac distribution with mass at point x. Here and elsewhere, all sums over the
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empty index set are set to be zero. In particular, 
 = ? corresponds to the zero
measure on Rd. In this sense we have a natural embedding

� � �� � M(Rd),
where M(Rd) denotes the linear space of all signed Radon measures on Rd. The
spaces � and �� will be equipped with the vague topology inherited from M(Rd).
Below we summarize the basic properties of this topology which will be essential
for our considerations.

By de�nition, Ov(M) is the coarsest topology onM(Rd) with respect to which
each of the following maps is continuous

(2.3) M(Rd) 3 � ! hf; �i :=
Z
Rd
f(x)�(dx); f 2 C0(Rd);

where C0(Rd) denotes the set of all continuous functions f : Rd ! R with compact
support. It is well known that M(Rd) is a Polish (i.e., a separable completely
metrizable) space in the vague topology Ov(M). An example of such metrization
to be consistent with Ov(M) is given by

(2.4) �v(�; �
0) :=

1X
k=1

1

2k
jhfk; �i � hfk; �0ij

1 + jhfk; �i � hfk; �0ij
; �; �0 2M(Rd);

where (fk)k2N � C0(Rd) is a proper measure determining class for M(Rd), see
15.7.7 in [16]. By Ov(� ) and Ov(�� ) we denote the induced topologies on � and
�� , respectively. Since �� is a vaguely closed subset of M(Rd), the metric space
(�� ; �v) will be Polish as well, see 15.7.4 in [16] or 3.2.4 in [17]. The latter property
obviously fails for (� ; �v). Nevertheless, it can be shown that � is a dense G�-set in
(�� ; �v), and hence by the Alexandrov�Hausdor¤ theorem there exists some other
metrization of (� ;Ov(� )) making it a Polish space, see [22, 47]. A large class of
the appropriate metrics (indeed stronger than �v) was constructed in [22] (whose
explicit form, however, is not relevant for our purposes).

An intrinsic description of the topology Ov(� ) can be given by a subbase of open
sets

(2.5) f
 2 � j j
�j = n; 
@� = ?g ; � 2 Bc(Rd); n 2 Z+:
The sequential convergence in (� ;Ov(� )) is then characterized as follows:


(N)
v! 
 as N !1, i¤

j
(N)� j ! j
�j for all � 2 Bc(Rd) with j
@�j = 0:(2.6)

Note that (2.6) implies the usual convergence of points in the con�gurations being
restricted to any domain � 2 Bc(Rd) such that 
 \ @� = ?. More precisely, the
number of particles in � stabilizes, i.e., j
(N)� j = j
�j for large enough N � N(�),

and there are appropriate enumerations fxjgj
�jj=1 = 
� and fx
(N)
j gj
�jj=1 = 
(N) such

that

(2.7) lim
N!1

x
(N)
j = xj for all 1 � j � j
�j:

This can easily be seen by analyzing the limits hf (M)
j ; 
(N)i ! xj as M;N ! 1,

where ff (M)
j g is a system of functions from C0(Rd) such that 1B1=2M (xj) � f

(M)
j �

1B1=M (xj). In the case 
 \ @� 6= ? one should be more careful. So, for an open
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� 2 Bc(Rd) we can only say that j
(N)� j � j
�j as N !1, whereas for each j > j
�j
there may occur sequences x(N)j 2 
(N)� having accumulation points outside �, see
e.g. page 212 of [45]. In particular, the cut-o¤ operator 
 7! 
� and the counting
map 
 7! j
�j are vaguely continuous at some 
 2 � i¤ 
@� = ?, cf. Subsection
5.4.

By B(� ) we denote the associated Borel �-algebra, which also coincides with
the smallest �-algebra generated by the cylinder sets

(2.8) f
 2 � j j
�j = ng ; � 2 Bc(Rd); n 2 Z+:
Similarly, for a �xed � 2 B(Rd), we de�ne B�(� ) (� B(� )) as the smallest �-algebra
generated by the sets

(2.9) f
 2 � j j
�0 j = ng ; �0 2 Bc(Rd); �0 � �; n 2 Z+:
Obviously, B(� ) = B(�� ) \ � , where B(�� ) is the �-algebra of Borel sets in �� . The
family of all probability measures � on (� ;B(� )) (also called simple point processes
[16, 17]) will be denoted by P(� ):
Let (� s)s2Rd be the group of translations in Rd, i.e., � sx := s+ x for all x 2 Rd.

The corresponding transformation on the con�gurations 
 2 � is given by � s
 :=P
x2
 �s+x; it is vaguely continuous and hence measurable. A measure � 2 P(� )

is called translation invariant if � � ��1s = � for all s 2 Rd:
Next, we introduce some commonly used spaces of �nite con�gurations. The

space of con�gurations located in � 2 Bc(Rd) is de�ned as the disjoint union

(2.10) �� :=
n

 2 �

���
Rdn� = ?o =G
n2Z+

�
(n)
�

of the n-particle subsets

(2.11) �
(n)
� := f
 2 �� j j
j = ng :

In a standard way, each �� is equipped with the topology Ov(��) induced from
Ov(� ) under the natural projection
(2.12) � 3 
 7�! P�
 := 
� 2 ��
and with the corresponding Borel �-algebra B(��) := B(� )\��. A subbase of the
topology Ov(��) consists of the open sets
(2.13) f
 2 � j j
�0 j = n; 
@�0 = ?g ;
indexed by all possible n 2 Z+ and �0 2 Bc(Rd) with ��0 � �. There is obvious
relations

B(��) = P�(B�(� )) = B(� ) \ ��;
which shows that B�(� ) and B(��) are �-isomorphic. An important observation is
that each (��;B(��)) will be a standard Borel space (see Section A.5 of [26]). In
other words, B(��) coincides with the Borel �-algebra generated by some separable
and complete metric on ��. An example of such metrization of �� (inducing a
topology stronger than Ov(��)) can be found in Section 3.1 of [27].
For all �;�0 2 Bc(Rd) with �0 � �; the maps

�� 3 
� 7�! P�0;�
� := 
�0 2 ��0
are continuous as well. This yields a �localized�description of � as the projective
limit of the spaces (��)�2Bc(Rd) as � % Rd. Below we shall use a corresponding
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version of Kolmogorov�s theorem for projective limit spaces (cf. Theorem V.3.2 in
[33]), according to which any probability measure � 2 P(� ) is uniquely determined
by the family of its �nite volume projections �� := � � P�1� 2 P(��), � 2 Bc(Rd).
As a measure determining class for P(� ) one can take the family FCb(� ) of all
cylinder functions F : � ! R allowing the representation
(2.14) F (
) := g(< f1; 
 > : : : < fM ; 
 >); 
 2 � ;
with some f1; : : : ; fM 2 C0(Rd); g 2 Cb(RM ), and M 2 N: Such functions are
B0(� )-measurable, where

B0(� ) :=
[

�2Bc(Rd)
B(��)

denotes the algebra of all local Borel sets. We also shall need the subset of con�g-
urations �nite in all of Rd

(2.15) �0 :=
[

�2Bc(Rd)
�� =

G
n2Z+

�
(n)
0 ;

where, similarly to (2.11),

�
(n)
0 := f
 2 �0 j j
j = ng =

[
�2Bc(Rd)

�
(n)
� ; �

(0)
0 := ?:

For more details on topological structure of the above con�guration spaces see
e.g. [1, 20, 22, 26, 30, 31].
In statistical physics, the state of an ideal gas is described by a Poisson random

point �eld �z� on � . We next recall the well-known explicit construction of �z� (see
e.g. Section 2.1 in [1] or Section 2.4 in [10]). To this end we �x a chemical activity
parameter z > 0 and an intensity measure � � 0 on the underlying phase space
Rd. As usual, one assumes that � is a nonatomic Radon measure on

�
Rd;B(Rd)

�
,

i.e.,

�(Rd) =1; �(�) <1 for all � 2 Bc(Rd),
and �(fxg) = 0 for all x 2 Rd:

For convenience, we also suppose a kind of spatial regularity

(2.16) sup
y2Rd

� [Br(y)] <1

to be hold for some (and hence for all) �nite r > 0. Obviously, (2.16) is ful�lled for
any translation invariant measure on Rd (in particular, for the Lebesgue measure
dx). A possible way to omit this technical condition will be discussed in Subsection
4.4. For each � 2 Bc(Rd), the corresponding �-Poisson measure �z� := ��z� (or
the Lebesgue-Poisson measure �z if �(dx) = dx) is de�ned on (��;B(��)) by the
identity Z

��

F (
�)d�z�(
�)

= F (?) +
X
n2N

zn

n!

Z
�n
F (fx1; : : : ; xng)d�(x1) : : :d�(xn);(2.17)

which holds for all bounded measurable functions F 2 L1(��): Taking into account
that ��z�(��) = ez�(�), on (��;B(��)) we then introduce the probability measures
(2.18) ��z� := e�z�(�)��z�:
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Note that the family
�
��z�j� 2 Bc(Rd)

	
is consistent, which means

��
0

z� = ��z� � P�1�0;� whenever �0 � �:

By Kolmogorov�s theorem (cf. Theorem V.3.2 in [33]), the Poisson measure �z� is
the unique probability measure on (� ;B(� )) such that
(2.19) ��z� = �z� � P�1� for all � 2 Bc(Rd):
Furthermore, �z� is equivalently de�ned as the unique probability measure on
(� ;B(� )) such that, for any collection of disjoint domains (�j)Nj=1 � Bc(Rd), the
random variables j
�j j are mutually independent and distributed by the Poissonian
law with parameters z�(�j), i.e.,

(2.20) �z�

�n

 2 �

��� j
�j j = n
o�

=
zn�n(�j)

n!
e�z�(�j); n 2 Z+:

Another analytic characterization of �z� is through its Laplace transform, see e.g.
[11], Z

�

exphf; 
id�z�(
) := exp
�Z

Rd

�
ef(x) � 1

�
zd�(x)

�
; f 2 C0(Rd):

2.2. Gibbsian formalism. Now we de�ne Gibbs reconstructions of the �free�mea-
sure �z�. Let there be given a pair interaction potential which is a symmetric
measurable function

(2.21) V : Rd � Rd ! �R; V (x; y) = V (y; x) for all x; y 2 Rd.
We stress that neither translation invariance nor continuity of V need to be assumed
(in particular, V may be a hard-core or a potential singular everywhere). For
simplicity, we here impose the following technical restriction on the potential.

(FR): Finite range: There exists R 2 (0;1) such that
(2.22) V (x; y) = 0 if jx� yj � R:

The case of long-range interactions with R =1 requires a more detailed analysis,
which will be performed in Section 5.

The Hamiltonian (or energy functional) H : �0 ! �R is given on �nite con�gu-
rations 
 2 �0 by

(2.23) H(
) :=
X

fx;yg�


V (x; y) 2 �R;

where the sum runs over all (unordered) pairs of distinct points x; y 2 
. By
convention, this functional vanishes at the empty and one-point con�gurations, i.e.,

(2.24) H(?) = 0; H(fxg) = 0 for all x 2 Rd:
Respectively, for each � 2 Bc(Rd) and 
; � 2 � ,

(2.25) W�(
�j�) :=
X

x2
�; y2��c

V (x; y)

is the interaction energy between 
� 2 �� and ��c := � \ �c, which is well-
de�ned because of Assumption (FR) Combining (2.23) and (2.25), we introduce
the conditional Hamiltonians H�(�j�) : �� ! �R by

(2.26) H�(
�j�) := H(
�) +W�(
�j�):
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For �xed inverse temperature � := 1=T > 0, the local Gibbs state with boundary
condition � is de�ned by

(2.27) ��(d
�j�) := [Z�(�)]
�1
exp f��H�(
�j�)g�z�(d
�)

provided the corresponding partition function (cf. (2.17) and (2.24))

Z�(�) : =

Z
��

exp f��H�(
�j�)gd�z�(
�)

= 1 +
X
n�1

zn

n!

Z
�n
exp f��H�(fx1; : : : ; xngj�)gd�(x1) : : :d�(xn)(2.28)

is �nite. In the case Z�(�) = +1 we respectively set ��(d
�j�) = 0: From (2.28)
we see that we always have

(2.29) Z�(�) = [��(f?�gj�)]
�1 � 1;

which will be repeatedly used in the subsequent estimates.

The local speci�cation � = f��g�2Bc(Rd) is a family of stochastic kernels
(2.30) B(� )� � 3 (B; �) 7! ��(Bj�) 2 [0; 1]
given by

(2.31) ��(Bj�) := ��(B�;�j�); B�;� := f
� 2 �� j 
� [ ��c 2 B g 2 B(��):
By construction (cf. Proposition 6.3 in [38] or Proposition 2.6 in [39]), the family
(2.31) obeys the consistency property, which means that for all B 2 B(� ) and � 2 �

(2.32)
Z
�

��(Bj
)��(d
j�) = ��(Bj�); � � �:

In Subsection 3 we shall impose some natural conditions on V to guarantee that
Z�(�) <1 (cf. (2.60)); then each speci�cation kernel ��(d
j�) will be a probability
distribution on (� ;B(� )) :
Given F 2 L1(� ) and � 2 P(� ); let us de�ne ��F 2 L1(� ) and ��� 2 P(� )

by

(��F )(�) : =

Z
�

F (
)��(d
j�); � 2 � ;(2.33)

(���)(B) : =

Z
�

��(Bj
)�(d
); B 2 B(
);(2.34)

which are obviously related by the duality h��F; �i = hF; ���i. Here and elsewhere,
we use the following shorthand for expectations

(2.35) hF; �i := � (F ) :=

Z



Fd�:

De�nition 2.1. A probability measure � 2 P(� ) is called a grand canonical Gibbs
measure (or state) with pair potential V , activity z, and intensity � if it satis�es
the Dobrushin-Lanford-Ruelle (DLR) equilibrium equation

(2.36) (���)(B) :=

Z
�

��(Bj
)�(d
) = �(B)

for all � 2 Bc(Rd) and B 2 B(
). For �xed inverse temperature �, the associated
set of all Gibbs states will be denoted by G.
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Remark 2.2. By (2.32) a measure � is Gibbs i¤ it solves the DLR equation (2.36)
just for some order generating sequence �N % Rd (e.g., for the cubes [�N;N ]d or
balls BN (0)). Equation (2.36) can be rewritten in the dual form

(2.37) h��F; �i :=
Z
�

Z
�

F (
)��(d
j�)�(d�) =
Z



F (
)d�(
) = hF; �i;

which has to hold for all F 2 L1(� ): Furthermore, it would su¢ ce to check (2.37)
on all cylinder functions F 2 FCb(� ) as de�ned in (2.14), which constitute a
measure determining class for P(� ):

We recall that the standard sources on the DLR approach in statistical mechanics
are the monographs [12, 38].

2.3. Assumptions on the interaction and superstability. It is instructive to
get started with the following simplest but physically realistic model, which then
will be enriched step by step. An advantage of this model is that it allows a direct
control of attraction-repulsion e¤ects. Namely, throughout this section we impose
the next two conditions on the interaction potential.

(LB): Lower boundedness: There exist M � 0 and r1; r2 2 [0; R]; r1 � r2;
such that

inf
x;y2Rd

V (x; y) � �M and(2.38)

V (x; y) � 0 if jx� yj � r1 or jx� yj � r2:(2.39)

(RC): Repulsion condition : There exists � > 0 such that

(2.40) inf
x;y: jx�yj��

V (x; y) =: A� > 2Mm�;

where

(2.41) m� := m�(d; r1; r2) := vdd
d=2
�
(r2=� + 3=2)

d � (r1=� � 3=2)d
�

and vd := �d=2

�(d=2+1) is the volume of a unit ball in R
d:

Remark 2.3. The role of the parameter m� will become clear from (2.49) below;

note from (2.41) that m� = O
�
��d
�
as � ! 0. The relation A� > 2Mm� is

essential for proving Lemma 3.3, where it enters via (3.9). An obvious example
that ful�lls (2.40), with an arbitrary large but �xed M > 0, is any potential V
obeying the following asymptotic behavior

(2.42) lim
jx�yj!0

V (x; y)

jx� yjd ! +1; and hence lim
�!0

A�

�d
! +1:

In particular, this includes the class of so-called Dobrushin-Fisher-Ruelle (DFR)
potentials which are characterized by the following growth at the diagonal: for
some {; C > 0

(2.43) V (x; y) � Cjx� yj�(d+{) as jx� yj ! 0:

The trivial situation when V (x; y) = 0 for all x; y 2 Rd is described by the choice of
r1 = r2 and A =M = 0 and thus formally does not �t (2.40); the existence of � 2 G
for any nonnegative V is shown in Remark 3.4. Merely speaking, Condition (RC)
means that the repulsive part V + := maxfV; 0g of the pair interaction dominates
the attractive one V � := minfV; 0g. In the case of translation invariant potentials
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(i.e., when V (� sx; � sy) = V (x; y) for all x; y; s 2 Rd), a similar assumption was �rst
employed in [37]. For a better control of V in (2.39), one may use a �nite system
of intervals (r(n)1 ; r

(n)
2 ) such that V (x; y) is nonnegative for jx � yj outside each of

them. Furthermore, proceeding in the spirit of [8], it is possible to re�ne the global
bounds (2.38) and (2.40) by certain integral conditions on V + and V �.

To analyze the consequences of the above assumptions, let us consider a partition
of the phase space Rd =

F
k2Zd Qgk by the cubes

(2.44) Qgk :=
n
x = (x(i))di=1 2 Rd

��� g �k(i) � 1=2� � x(i) < g
�
k(i) + 1=2

�o
:

These cubes have edge length g > 0 and are centered at the points gk; k 2 Zd.
Recall that �Qgk and �Qgk denote respectively the interior and closure of Qgk in�
Rd; j � j

�
. For k 2 Zd and 
 2 � , we then de�ne

(2.45) �k := �Qgk
; 
k := 
 \Qgk; �
k := 
 \ �Qgk:

In what follows, we pick the parameter g := �=
p
d with some � > 0 satisfying

Assumption (RC). By construction

(2.46) diam(Qgk) := sup
x;y2Qgk

jx� yj = �;

which implies that V (x; y) � A for all x; y 2 
k. Here and below we shall often
drop � in the notation for the corresponding constants A, m in (2.40).

Technically we need to control only those pairs fx; yg � 
 for which V (x; y) < 0:
It is clear that V (x; y) may be negative for some x 2 
k and y 2 
j whenever

j 2 @�g k := fk0 6= k j #1 < jk0 � kj < #2g ;(2.47)

#1 := (r1=� � 1)
p
d; #2 := (r2=� + 1)

p
d.(2.48)

The total number of such �neighbor�cubes Qgj can be roughly estimated by

(2.49) j@�g kj � m�(r1; r2);

which is the same constant as in (2.41). Note that to each index set K b Zd there
corresponds the �cubic�domain

(2.50) �K :=
G
k2K

Qgk 2 Bc(Rd);

the family of all such domains will be denoted by Qc(Rd). On the other hand, for
a given volume � 2 Bc(Rd), we can construct its �minimal� covering

(2.51) �g :=
G
k2K�

Qgk 2 Qc(Rd) with K� :=
�
k 2 Zdj � \Qgk 6= ?

	
;

where jK�j is the number of cubes Qgk having nonvoid intersection with �.
The �rst claim of Lemma 2.4 says that under the above assumptions the inter-

action is superstable in the usual sense of Ruelle [43] (this gives a positive answer
to a question posed on page 146 of [37]). The second claim (playing a crucial role
in our approach) establishes a lower bound on the local Hamiltonians H�(
j�) in
terms of the boundary condition ��c , which has to be valid in small volumes �.
For any � 2 Bc(Rd) we denote its �interaction� neighborhood
(2.52) @R� :=

�
y 2 Rd j dist(y;�) � R

	
2 Bc(Rd);
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so that for all x 2 � and y =2 UR(�) we have V (x; y) = 0.

Lemma 2.4. (i) For any partition of Rd by the cubes (2.44) with edge length g > 0,
there exist Dg; Eg > 0 such that for all 
 2 �0 the following holds:

(2.53) (SS): Ruelle�s Superstability: H(
) � Dg

X
k2Zd

j
kj2 � Egj
j:

(ii) Let � 2 Bc(Rd) be such that diam(�) � �; then for all 
; � 2 �

(2.54) H�(
�j�) �
A

2

�
j
�j2 � j
�j

�
�M j
�j � j��c\@R�j:

In particular, for any " 2 (0; 1]

(2.55) H�(
�) �
A

2
(1� ")j
�j2 �

A

8"
:

Proof. (i) Note that it su¢ ces to check (2.53) just for g := �=
p
d. Because of the

elementary inequality

(2.56)
KX
k=1

j
kj2 �
 

KX
k=1

j
kj
!2

� K

KX
k=1

j
kj2; K 2 N;

this would readily imply (SS) for all g > 0, but with their own constantsDg and Eg.
By (2.38), (2.40), (2.49), and (2.51) we see that for each 
 2 �� with � 2 Bc(Rd)

H(
) =
X
k2K�

X
fx;yg�
k

V (x; y) +
X

fk;jg�K�

X
x2
k; y2
j

V (x; y)

� A
X
k2K�

�
j
kj
2

�
� M

2

X
k2K�

X
j2@�g k\K�

j
kj � j
j j

� 1

2
(A�Mm)

X
k2K�

j
kj2 �
A

2
j
j:(2.57)

For the value of g chosen as above, this yields the claim (i) with Dg := (A�Mm)=2
and Eg := �A=2:
(ii) The proof of (2.54) is similar, see also Lemma 1 in [37]. Indeed, by (2.38),

(2.40), and (2.52) we have for any � � Rd with diam(�) � �

H�(
�j�) � A

�
j
�j
2

�
+
X
x2
�
y2��c

V (x; y)

� A

2

�
j
�j2 � j
�j

�
�M j
�j � j��c\@R�j:

Finally, (2.55) follows from (2.54) by Young�s inequality. �

Remark 2.5. (i) Let us consider � :=
F
k2KQgk 2 Qc(Rd) being a �nite union

of partition cubes, cf. (2.50). Note that diam(�) � gjKj1=d. Using (2.56) with
K := jKj, we can continue (2.53) with Bg := gdDg as

(2.58) (GSS): H(
�) � Bg
1

[diam(�)]
d
j
�j2 � Egj
�j;
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which means we have superstability in the sense of Ginibre (see page 29 of [14]).

(ii) The superstability (SS) implies the usual stability property,

(2.59) (S): H(
) � �Ej
j for all 
 2 �0;

which is necessary for a rigorous description of thermodynamics of in�nite particle
systems. As was calculated in (2.57), a possible choice here is E = A=2.

It is well known (see e.g. Section 3.2 of [42]) that the stability of the interac-
tion (2.59) implies that the partition function (2.28) is �nite for all � 2 � . More
explicitly, we have the following bound in terms of the interaction parameters

Z�(�) �
1X
n=0

zn

n!
�(�)n exp

�
n�

�
A

2
+M j��c\@R�j

��
= exp

�
z�(�) exp

�
�

�
A

2
+M j��c\@R�j

���
:(2.60)

Therefore, each ��(d
�j�) (and hence, ��(d
j�)) is well de�ned as a probability
measure on �� (respectively, on � ); see the discussion in Subsection 2.2. Further-
more, the following exponential integrability property of ��(d
�j�) will be strongly
used below. For �; � � 0, let us de�ne

(2.61) �0 3 
 7! �(
) := �H(
) + �j
j2;

which will play the role of Lyapunov functional in establishing stability properties
of our model. According to Hypotheses (2.40) and (2.46),

�(
) � 0 for any 
 2 �k; k 2 Zd:

Lemma 2.6. Let the parameters � 2 [0; �] and � � 0 obey the relation

(2.62) �A+ 2� � �(A�Mm):

In particular, one may choose here either � = 0 and � = �(A �Mm)=2 or � = 0
and � = � (1�Mm=A) : Then, for any k 2 Zd, � 2 � and for all sets � 2 Bc(Rd)
containing Qgk,it holds

(2.63)
Z
��

exp f�(
k)g��(d
j�) � 	(�; �) <1:
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Proof. Calculations similar to those in (2.57) and (2.60) show thatZ
��

exp f�(
k)g��(d
�j�) �
Z
��

exp f�(
k)� �H�(
�j�)gd�z�(
�)

�
Z
��

exp

8<:�H(
k) + �j
kj2 � � X
j2K�

H(
j)

+
1

2
�M

X
k2K�

X
j2@�g k\K�

j
ij � j
j j+ �M j
�j � j��c\@R�j

9=;d�z�(
�)
�

Z
��

exp

�
1

2
[� (� � �)A+ 2�+ �Mm] � j
kj2

+
1

2
� (�A+Mm)

X
j2K�

j
j j2 +
�
(� � �)A

2
+ �M j��c\@R�j

�
� j
�j

9=;d�z�(
�)
� exp

�
z�(�) exp

�
�

�
A

2
+M j��c\@R�j

���
:(2.64)

�

Remark 2.7. As is seen from the proof of Lemma 2.6, straightforward arguments
lead to the upper bound C(�; �), which is exponentially growing as �% Rd: This
is surely not optimal for our purposes. Proceeding more subtle, in Lemma 3.3 we
shall prove that the integral in (2.63) can be estimated uniformly in �.

2.4. Main theorems and comments. The paper contains two main results, The-
orems 2.8 and 2.9 below, describing the set Gt of tempered (or physically relevant)
Gibbs measures. Possible improvements of these theorems will be discussed in
Sections 4 and 5 below.
A starting point in any theory of unbounded spin systems is the proper notion

of temperedness. In the present context, it is natural to introduce the following
subsets of tempered con�gurations

� t :=
\
�>0

�� =
\
�>0

~��;

�� :=

�

 2 �

���� j
j� := sup
k2Zd

�
j
kj2 expf��jkjg

�1=2
<1

�
;

~�� :=

8><>:
 2 �
������� jj
jj� :=

24X
k2Zd

j
kj2 expf��jkjg

351=2 <1
9>=>; :(2.65)

From (2.8) it is clear that all these sets are measurable, i.e., ��; ~��;� t 2 B(� ).
Furthermore, ~�� � �� � ~��0 whenever 0 < � < �0. Respectively, the subset Gt of
tempered Gibbs states is de�ned to consist of those � 2 G which are supported by
� t, i.e.,

(2.66) Gt := G \ Pt(� ), where Pt(� ) :=
�
� 2 P(� )

�� �(� t) = 1	 :
Note that j
j� and jj
jj� extend to the seminorms on the linear space M(Rd) of
all signed Radon measures on Rd: Furthermore, the sets �� and � t themselves do
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not depend on the choice of the parameter g > 0, which is the edge length of the
partition cubes Qgk.
As is commonly accepted in mathematical physics, con�gurations (or respec-

tively, measures) with controlled growth are called tempered. It is worth noting
that our notion of temperedness is more general than those used in earlier papers.
In particular, Gt contains the class of so-called Ruelle type �superstable� Gibbs
states � 2 Gst which are characterized by the support condition (see Equation 5.10
in [43])

(2.67) sup
K2N

8<:K�d
X
jkj�K

j
kj2
9=; =: C(
) <1 for all 
 2 � (�� a:e:):

We begin by proving the existence of tempered Gibbs measures.

Theorem 2.8. Under Hypotheses (FR), (LB) and (RC), the set of tempered Gibbs
measures is not empty, i.e., Gt 6= ?, at all positive values of the temperature � and
activity z.

Next we establish an exponential moment estimate similar to (2.63), which holds
for all tempered Gibbs measures.

Theorem 2.9. There exists a positive constant 	 such that uniformly for all � 2 Gt
and all �; � � 0 related by (2.62)

(2.68) sup
k2Zd

Z



exp
�
�H(
k) + �j
kj2

	
�(d
) � 	 :

An explicitly computable value of 	 , which depends on the inverse temperature
� and parameters of the model only, will be given by (3.18). The proof of the above
assertions strongly exploits the regularity properties of the speci�cation � = f��g.
Because of independent interest, we separately state them as Propositions 2.10 and
2.11 below.
On the space of all probability measures P(� ) let us introduce the topology of

local setwise convergence (see e.g. Section 4.1 of [12]). This topology, which we
denote by Tloc, is de�ned as the coarsest topology making the maps � 7! �(B)
continuous for all sets B from the algebra B0(� ) := [j�j<1B(��). Equivalently,
Tloc is the coarsest topology such that � 7! �(F ) is continuous for all bounded
B0(� )-measurable functions F : � ! R. The reader is, however, warned that
the topology Tloc is not metrizable (see page 57 in [12]), so that the notions of
convergence and sequential convergence in Tloc do not coincide.

Proposition 2.10. Gt is a compact set in the topology Tloc.

Proposition 2.11. The speci�cation � = f��g is compact in the following sense:
for each � 2 � t, the family f��K(d
�K j�)gKbZd de�ned by (2.36), (2.50) is rela-
tively Tloc-compact. Furthermore, all its limit points for K % Zd belong to Gt.

Remark 2.12. (i) Let us give some historical comments. The existence problem for
Gibbs measures goes back to the pioneering works of R. Dobrushin [7, 8] and D.
Ruelle [42, 43]. It is well known that Stability Condition (S) allows to construct
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� 2 Gt at small values of the inverse temperature � and activity z. This can be
done either by the method of cluster expansions or by the contraction method for
the Kirkwood-Salsburg equation (see respectively Sections 4.4 and 4.2 of [42]). In
order to solve the DLR equation at all values of �; z > 0, one has to impose much
stronger assumptions, typically given by Ruelle�s Superstability Condition (SS)
(see [14, 40] and Theorem 5.5 of [43]). The famous Ruelle approach then applies,
which is based on certain à-priori bounds on correlation functions of the Gibbs
measures. In turn, these fundamental bounds are derived from the superstability
properties of the interaction. An alternative way is given by Dobrushin�s approach
and relies on the reduction to the associated lattice system and the subsequent
use of the general Dobrushin existence criterion for Gibbs �elds on Zd. Since the
original papers [7, 8], the latter approach has been further developed in [3, 24, 37]
(see Section 3 for more details). The drawback to this method is that it does not
give enough information about the support of � 2 G, see Remark 3.2 (i).
(ii) For the simplest model, that is, the one we deal with in this section, the

existence result of Theorem 2.8 can be obtained (at least for translation invariant
V �s of the DFR type) within either of the Ruelle or Dobrushin approaches. Our
main aim here is thus not to improve the known existence results (which especially
will be done in Sections 4 and 5 as well as in the forthcoming paper [23], but rather
to present a new elementary technique of getting both the existence and à-priori
bounds for � 2 Gt. As an immediate outcome of our approach, in Theorem 2.9
(cf. also Theorem 4.8) we obtain the description of the set of all tempered Gibbs
measures � 2 Gt, which seems to be entirely new in the literature. Among others,
such integrability properties of � 2 Gt are important in studying the associated
equilibrium stochastic dynamics via the theory of Dirichlet forms, see [2]. Further
equivalent characterizations of the set Gt are given by Theorem 4.8.

(iii) To the best of our knowledge, the statement of Propositions 2.10 and 2.11
about the compactness of the set Gt and the speci�cation � = f��g, respectively,
were not yet available for continuous systems. This opens a direct way of construct-
ing � 2 Gt as limit points of the speci�cation kernels ��(d
j�) for � % Rd; and
thus allows to avoid the highly nontrivial analysis of their correlations functions,
cf. (4.57). Furthermore, Proposition 2.11 says that such limit points exist for each
boundary condition � 2 � t, while the previous methods mainly dealt with � = ?.
We call (2.68) the à-priori bound, since it can be proven simultaneously with the
fact of existence of � 2 Gt and independently from their (non-)uniqueness. In doing
so, we are interested not just in the mere �niteness of the constants appearing in
the estimates, but in handy expressions that can be readily evaluated in terms of
the model parameters. For possible generalizations of these results see Subsection
4.2.
(iv) In the paper we do not touch the uniqueness problem for � 2 Gt. In the

appropriated classes of tempered Gibbs measures, the uniqueness can be studied by
means of Ruelle�s as well as Dobrushin�s approaches mentioned above (see [43] resp.
[3, 37]). The latter approach relies on the Dobrushin-Pechersky uniqueness criterion
for unbounded spin systems (cf. Theorem 1 in [9]); its re�nements and consequences
(including the decay of correlations) will be discussed in the forthcoming paper [19].

3. Existence and à-priori Bounds for � 2 Gt
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3.1. Moment estimates for local Gibbs measures. This subsection plays a
key role in carrying out our strategy. Here we establish the integrability properties
of the kernels ��(d
j�) needed later for proving Theorems 2.8 and 2.9. For the
matter of clarity, all the constants appearing in Lemmas 3.1 and 3.3 below will be
given explicitly.

Recall that the Lyapunov function �(
) was introduced in (2.61). Our aim is to
show that the left-hand side in (2.64) can be estimated uniformly in volume (which
cannot be seen directly from the de�nition of ��(d
�j�), cf. Remark 2.7). To
this end we shall perform an inductive scheme based on the consistency property
(2.32). A starting point is the following trivial bound for the �one-point�kernels
�k(d
kj�) := �Qgk

(d
Qgk
j�) subject to the �xed boundary condition � 2 � .

Lemma 3.1. There exists a universal constant � > 0 such that for all k 2 Zd;
� 2 � and �; � � 0 being the same as in Lemma 2.6

(3.1)
Z
�k

exp
�
�H(
k) + �j
kj2

	
�k(d
kj�) � exp

8<:� + 12�M X
j2@�g k

j�j j2
9=; :

Proof. Repeating the estimate (2.64) for � := Qgk, we get by means of the Cauchy
inequality thatZ

�k

exp f�(
k)g�k(d
kj�) �
Z
�k

exp f�(
k)� �Hk(
kj�)gd�z�(
k)

�
Z
�k

exp

8<:
�
�� A

2
(� � �)

�
j
kj2 +

24A
2
(� � �) + �M

X
j2@�g k

j�j j

35 j
kj
9=;d�z�(
k)

�
Z
�k

exp

��
�� A

2
(� � �) + 1

2
�Mm

�
j
kj2 +

A

2
(� � �) j
kj

�
d�z�(
k)

� exp

8<:12�M X
j2@�g k

j�j j2
9=; :

(3.2)

In view of (2.16), (2.62), and (2.64) the claim holds with

� := sup
k
log

Z
�k

exp

�
A

2
�j
kj

�
d�z�(
k)

= z exp

�
A

2
�

�
sup
k
�(Qgk) <1:(3.3)

�

Remark 3.2. (i) A subsequent application of Jensen�s inequality to both sides in
(3.1) yields the following �Dobrushin-type� estimate (cf. Equation 4.9 in [8])

(3.4)
Z
�k

�(
k)�k(d
kj�) � � +
�M

2

X
j2@�g k

j�j j2 � � +
�M

2�

X
j2@�g k

�(�j):

Crucial in Dobrushin�s method is the weak dependence on boundary conditions
� 2 � , which analytically means that �Mm=2� < 1. This can be always achieved
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by a proper choice of �, as is ensured by Assumption (RC). By considering a
lattice counterpart of our continuous model (as it was done in [3, 8, 24, 37]), we
then have the possibility to employ here the general Dobrushin existence criterion
for Gibbs random �elds (Theorem 1 in [7]). However, the later scheme is rather
cumbersome and leads to the theory of Gibbs measures on a larger space of multiple
con�gurations �� � � , see [3, 24, 27, 37]. Such technical extension to �� contradicts
the physical intuition and leaves open the initial question about the existence of
� 2 Gt supported by � t.
(ii) Although the exponential bound (3.1) is stronger than Dobrushin�s bound

(3.4), actually it is derived much more easily in view of the additive structure of
the Hamiltonian H(
) and the multiplication rule for exponents (see the proof of
Lemma 3.1). Direct veri�cation of Dobrushin bounds like (3.4) for particular models
is a delicate technical problem, which usually requires additional assumptions on
the interaction (ferromagneticity, translation invariance etc.).

(iii) Another principle di¤erence from the previous schemes is that the function
�(
k) constructed in (2.68) is a combination of the local energy H(
k) and the
stabilizing term j
kj2. This not only greatly simpli�es all calculations, but also
provides optimal estimates on � 2 Gt as well. Unlike Dobrushin�s criterion, com-
pactness of the function �(
k) is not relevant for our existence result; actually in
the proof of Theorem 2.8 we exploit only that �(
k) % 1 as j
kj % 1. For
translation invariant ferromagnets on a lattice, the exponential bound (3.1) with
a standard choice of �(xk) := �jxkj, � > 0; was �rst proved in [4], whereas the
validity of Dobrushin�s criterion was directly checked in [44]. For continuous par-
ticle systems in Rd, Dobrushin bounds like (3.4) with �(
k) := expf�j
kj�g or
�(
k) := j
kj�, � � 1, were established in [3, 8, 13, 24, 37]. First attempts to
consider compact functions like �(
k) := expf�H(
k)g can be found in Section 5.2
of [27]. To some extent, one can see here a certain analogy with the lattice case,
whereby instead of the single spins xk 2 Rd one has to control �collective�variables
j
kj, i.e., the number of particles in the partition cubes Qgk, k 2 Zd:

Consider now arbitrary large cubic domains �K :=
F
k2KQgk 2 Qc(Rd) indexed

by K b Zd. Note that �K % Rd as K % Zd. Using the �one-point�estimate (3.1)
and the consistency property (2.32), our next step will be to get similar moment
estimates for all speci�cation kernels �K(d
j�) := ��K(d
j�).

Lemma 3.3. Under the assumptions of Lemma 3.1, there exists a �nite 	 > 0
such that uniformly for all k 2 Zd, � 2 � t, and �; � � 0 related by (2.62)

(3.5) lim sup
K%Zd

Z
�

exp
�
�H(
k) + �j
kj2

	
�K(d
j�) � 	 :

Therefore, for each � > 0 one �nds a certain �� > 0 such that

(3.6) lim sup
K%Zd

Z
�

exp
�
��jj
jj2�

	
�K(d
j�) � 	 ;

where the seminorm jj
jj� was de�ned in (2.65).

Proof. For a �xed � 2 � t let us consider the quantities

(3.7) nk(Kj�) := log
�Z

�

exp f�(
k)g�K(d
j�)
�
; k 2 Zd,
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which are nonnegative and �nite by Lemma 3.1. In particular,

nk(Kj�) := �(�k) if k =2 K:

A natural idea is to establish global bounds on the whole sequence (nk(Kj�))k2Zd ,
which then imply the required estimates on each of its components.
Let us set

(3.8) # := (r2=� + 1)
p
d

so that jk� jj � # for all j 2 @�g k, cf. (2.47) and (2.48). Without loss of generality,
we may assume by (2.40) and (2.62) that

(3.9) �Mme�# + �"A < 2�+ �A = � (A�Mm) ;

which can be always achieved by choosing small enough �; " > 0 such that

e�# < (1� ")
�

A

Mm
� 1
�
:

Let us start from (3.1) written for all speci�cation kernels �k(d
kj
) with boundary
conditions 
 2 �

(3.10)
Z
�

exp f��(�k)g�k(d�kj
) � exp

8<:� + 12�M X
j2@�g k

j
j j2
9=; :

Integrating both sides of (3.10) with respect to �K(d
j�) and taking into account
the consistency property (2.32), we arrive at the following estimate for each k 2 K

nk(Kj�) � � +
�M

2

X
j2Kc\@�g k

j�j j2

+ log

8<:
Z
�

exp

0@�M
2

X
j2K\@�g k

j
j j2
1A�K(d
j�)

9=;
� �" +

�M

2

X
j2Kc\@�g k

j�j j2

+
�M

2�+ �(1� ")A
X

j2K\@�g k

nj(Kj�);(3.11)

where � is the same as in (3.3) and

(3.12) �" := � +
��AMm

8" [2�+ �(1� ")A] :

Note that the terms nj(Kj�) enter into the right-hand side of (3.12) via the bound,
cf. (2.55),

(3.13) j
j j2 �
1

2�+ �(1� ")A

�
2�(
j) +

�A

4"

�
; " 2 (0; 1]:

Here we have used the multiple Hölder inequality

(3.14) �

�YK

j=1
f
sj
j

�
�
YK

j=1
�sj (fj); �(fj) :=

Z
fjd�;
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valid for any probability measure �, measurable functions fj � 0, and num-
bers sj � 0 such that

PK
j=1 sj � 1: In our context, fj := exp

�
�(
j)

	
, sj :=

�M [2�+ �(1� ")A]�1 < 1=m, and K := jK \ @�g kj � m.
Now let us consider any domain K b Zd containing a �xed point k0 2 Zd. After

taking the upper bound in (3.11) with the weights expf��jk � k0jg, we get

sup
k2K

[nk(Kj�) expf��jk0 � kjg]

� �" +
�M

2
sup
k2K

X
j2Kc\@�g k

j�j j2 expf� [jj � kj � jj � k0j]g

+
�M

2�+ �(1� ")A supk2K

X
j2K\@�g k

nj(Kj�) expf� [jj � kj � jj � k0j]g

and hence

nk0(Kj�) � sup
k2K

[nk(Kj�) expf��jk0 � kjg]

�
�
1� �Mm

2�+ �(1� ")Ae
�#

��1 �
�" +

�M

2
me�(#+jk0j)jj�Kc jj2�

�
:(3.15)

Since for � 2 � t the seminorm jj�Kc jj� tends to zero as K % Zd, we obtain for each
k0 2 Zd

lim sup
K%Zd

sup
k2K

[nk(Kj�) expf��jk0 � kjg]

� �"

�
1� �Mm

2�+ �(1� ")Ae
�#

��1
(3.16)

and thus, by letting �! 0,

(3.17) lim sup
K%Zd

nk0(Kj�) � �"
�
1� �Mm

2�+ �(1� ")A

��1
:

Substituting " = �(A � 2Mm)=(2�A) (which is just one of possible choices for "
�tting (3.9)) into the right-hand side in (3.17) under the constraint (3.9), we get
the following bound

lim sup
K%Zd

Z
�

exp f�(
k)g�K(d
j�)

� exp

�
A

A� 2Mm

�
� +

�A2

4(A� 2Mm)

��
=: 	 ;(3.18)

which completes the proof of (3.5). In the particular case � = 0 we have from (3.17)
that for each � � �0 := �(A�Mm)=2

lim sup
K%Zd

Z
�

exp
�
�j
kj2

	
�K(d
j�)

� exp

�
�
A�Mm

A� 2Mm

�
= exp

�
ze�A=2

A�Mm

A� 2Mm
sup
k
�(Qgk)

�
=: 	0:(3.19)
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Finally, setting

�� := �(A�Mm)

242X
k2Zd

expf��jkjg

35�1 ;
by the Hölder inequality (3.14) we see that the left-hand side of (3.6) also does not
exceed the same 	0 as in (3.19). �

3.2. Proof of the main theorems. Here we prove our main Theorems 2.8 and 2.9.
Rather than reducing to the lattice case and then applying the general Dobrushin
criterion (see Remark 3.2 (i)), we give a direct construction of the corresponding
Gibbs states using the exponential moment bounds established in Lemma 3.3. To
some extent our strategy is inspired by the paper of J. Bellissard and R.Høegh-
Krohn [4] which, however, was dealing with a much di¤erent (and simpler) model
of classical ferromagnets on Zd. The main idea is to show that the uniform bounds
(3.5) and (3.6) for ��(d
j�), along with the compactness argument in the Tloc-
topology on P(� ), readily imply the existence of certain � 2 Gt being the limit
points of ��(d
j�) as � % Rd. As compared with the weak convergence topology
on P(� ) standardly used in Dobrushin�s approach, an advantage of the local setwise
convergence topology Tloc is that no continuity assumptions on V are needed at
all. Furthermore, this way we also obtain the à-priori estimates (2.63) to be valid
uniformly for all tempered Gibbs measures � 2 Gt. Note that the latter information
cannot be extracted from Dobrushin�s criterion alone, which just provides existence
of at least one � 2 Gt.
Proof of Theorem 2.8 (also including Proposition 2.11). Let us �x a bound-

ary condition � 2 � t and an order generating sequence KN % Zd as N ! 1.
Taking into account (3.6), for each � > 0 one �nds a corresponding C�(�) such that
uniformly for all domains �N := �KN

2 Qc(Rd)

(3.20)
Z
�

jj
jj2���N (d
j�) � C�(�):

It would su¢ ce to show that the family of speci�cation kernels f��N (d
j�)gN2N is
locally equicontinuous in the following sense: for all � 2 Qc(Rd) and each sequence
fBngn2N � B�(� ) with Bn # ?

(3.21) lim
n!1

lim sup
N!1

��N (Bnj�) = 0:

In other words, for any � > 0 one �nds N("); n(") 2 N such that ��N (Bn� j�) < �
for all N > N("). By Propositions 4.9 and 4.15 in [12] combined with Theorem
V.3.2 in [33], any locally equicontinuous net in P(� ) has at least one Tloc-cluster
point; furthermore, each of the cluster points can be obtained as a limit of a certain
subsequence. Thus, there exists a limit point � := limM!1 ��NM (d
j�) 2 P(� )
taken along some subsequence �NM

% Rd, so that for all local sets B 2 B0(� )

(3.22)
Z
�

��(Bj
)��NM (d
j�) = ��NM (Bj�)! �(B) as M !1:

Note that in the left hand-side in (3.22) we have used the consistency property
(2.32) valid for all �NM

� �. As the interaction has �nite range, the function

 7! ��(Bj
) is bounded and B0(� )-measurable. Thus, for each � 2 Bc(Rd) we
can pass to the limit in the left hand-side in (3.22) and check that this � solves the
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DLR equation (2.36). By B. Levi�s monotone convergence theorem we conclude
from (3.20) that for all � > 0Z

�

jj
jj2��(d
) = lim
K!1

lim
L!1

X
jkj�K

expf��jkjg
Z
�

�
j
kj2 ^ L

	
�(d
)

= lim
K!1

lim
L!1

lim
M!1

X
jkj�K

expf��jkjg
Z
�

�
j
kj2 ^ L

	
��NM (d
j�) � C�(�);

which implies that � is supported by � t.

So, it remains to check the local equicontinuity (3.21). We adapt the arguments
used for proving Theorem 4.12 and Corollary 4.13 in [12] to the con�guration space
� . Fix � 2 Qc(Rd), and let fBngn2N be a sequence of sets from B�(� ) such that
Bn # ? as n!1: Consider the following subsets from B0(� )

�R;T :=
n

 2 �

��� j
@R(�)j � T
o
; T > 0;

where, cf. (2.52),

@R(�) :=
�
x 2 Rd j dist(x;�) � R

	
2 Bc(Rd)

and R > 0 is the interaction radius in Assumption (FR). For each � 2 � t and
�N � � we have by (2.27), (2.31), and (2.32)

��N (Bnj�) � ��N (Bn \ [�R;T ]cj�)

+

Z
�

Z
��

�Bn\�R;T (�� [ 
�c) exp f��H�(��j
)g�z�(d��)��N (d
j�):(3.23)

Chebyshev�s inequality applied to (3.20) ensures that for each � > 0 there exists
T (�; �) > 0 such that

(3.24) ��N ([�R;T ]
cj�) � � for all T � T (�; �) and N 2 N.

On the other hand, for all 
 2 �Z
��

�Bn\�R;T (�� [ 
�c) exp f��H�(��j
)g�z�(d��)

�
Z
��

�Bn\�R;T (�� [ 
�c) exp
�
�M j�� [ 
�c j2

	
�z�(d��)

� exp
�
�MT 2

	
�z�(Bn) � � as soon as n � n(�):(3.25)

Plugging (3.24) and (3.25) back into (3.23), we get the required equicontinuity of
the family f��N (d
j�)gN2N. �
Proof of Theorem 2.9. Consider an arbitrary � 2 Gt. With the help of (2.36),

(3.20), and Fatou�s lemma we see that for any k 2 Zd and K > 0Z
� t

exp f�(
k) ^Kg�(d
)

= lim
K%Zd

Z
� t

Z
� t

fexp�(
k) ^Kg��K(d
j�)�(d�)

�
Z
� t

"
lim sup
K%Zd

Z
� t

exp f�(
k) ^Kg��K(d
j�)
#
�(d�) � 	 ;(3.26)
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where the constant 	 was computed in (3.5) and (3.18). By B. Levi�s theorem we
further conclude from (3.26) thatZ

��

exp f�(
k)g�(d
)

= lim sup
K!1

Z
��

exp f�(
k) ^Kg�(d
) � 	 ;(3.27)

which yields the desired estimate (2.68). �

Proof of Proposition 2.10. The line of reasoning is similar to that imple-
mented in the proof of Theorem 2.8. More precisely, one can show that the uniform
bound

sup
�2Gt

Z
�

jj
jj2��(d
) <1;

implies the local equicontinuity of the family Gt in P(� ). To this end we repeat
the estimates (3.23)�(3.25) with ��(d
j�) replaced by any � 2 Gt: Thus, every net
in Gt has a subnet with a limit in Gt, which is equivalent to the compactness of Gt
in the topology Tloc. �

Remark 3.4. (i) Suppose we know nothing else about the interaction potential but
that V (x; y) � 0 for all x; y 2 Rd. Without assuming (RC) we cannot guarantee
that the exponential moments in (3.4) and (3.7) are �nite, so that the previous
proof of the existence result formally does not work. To show how to overcome this
problem let us start from the obvious estimateZ

�k

exp f�j
kjg�k(d
kj�) �
Z
�k

exp f�j
kjg jd�z�(
k) � 	(�);

which holds for any � > 0 with constant C(�) := exp
�
ze� supk �(Qgk)

	
being

the same for all � 2 � and k 2 Zd. Repeating the proof of Lemma 3.3 with
�(
k) := �j
kj and M = 0; we get that

(3.28) sup
k2KbZd

Z
�

exp f�j
kjg�K(d
j�) � 	(�);

and hence by Hölder�s inequality

(3.29) sup
�2� t

lim sup
K%Zd

Z
�

jj
jj2n� �K(d
j�) =: C�(n) <1; n 2 N:

The last bound enables us to mimic the proof of Theorem 2.8 and so check that
the family f��(d
j�)j � 2 Qc(Rd)g has a Tloc-limit point � 2 Gt. Furthermore,
replacing (3.5) by (3.28) in the proof of Theorem 2.9, we show that all � 2 Gt must
obey the à-priori bound

(3.30) sup
k2Zd

Z



exp f�j
kjg�(dx) � C(�):

In contrast to the superstable case, here one cannot expect the similar estimate
with exp

�
�j
kj2

	
because this function is not integrable with respect to the Poisson

measure �z�.
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(ii) Instead of the consistency property (2.32), in proving Lemmas 3.1 and 3.3
one can use the so-called Ruelle equation (cf. (5.12) in [43])Z




F (
)��(d
j�)(3.31)

=

Z
��c

Z
��

F (
� [ ��n� [ ��c) exp
n
��H�(
�j��n� [ ��c)

o
�z�(d
�)�(d�);

valid for all � � � b Rd, � 2 � , and F 2 L1(� ). Since (2.32) and (3.31) are
known to be equivalent, they lead to the same estimates (3.5) and (3.27)

4. Further Extensions

Here we outline possible improvements of Theorems 2.8 and 2.9. So, we ex-
tend our initial model in several directions including: essentially singular poten-
tials (Subsection 4.1), strong superstable interactions (Subsection 4.2), multibody
Hamiltonians (Subsection 4.3), and general intensities (4.4). The later case, when
the underlying measure � is no longer translation invariant in Rd, has not yet been
treated in the literature. In Subsection 4.5, for the corresponding Gibbs measures
we discuss equivalent characterizations of temperedness in terms of their support
sets, local densities, and integrability properties. Finally, in Subsection 4.6 we point
out some relations to Ruelle�s approach.

4.1. Regularity of � 2 Gt due to singular potentials. Of special interest in
physical applications is the case when

(4.1) V (x; y) � v(jx� yj) for all x; y 2 Rd,

with a majorizing function v : R+ ! R such that limt!+0 v(t) = +1: Theorem 2.9
then says that all Gibbs measures � 2 Gt, which are initially supported by the set
� t de�ned by (2.65), à-posteori must obey the much stronger integrability property

(4.2) sup
k2Zd

Z
�

exp

8<:12� X
fx;yg�
k

v(jx� yj)

9=;�(d
) � 	 :

From a technical point of view the possibility of such a regularization relies on the
following fact: for any boundary condition � 2 � , the right-hand sides in the basic
estimates (3.1) and (3.15) do not depend on the values of V (x; y) taken at points
x; y 2 �. A typical assumption here is that (similarly to (2.43)) for some C;{ > 0

(4.3) v(x) � Cjxj�(d+{) as jxj ! 0:

Then according to (4.2) one �nds a certain # > 0 such that

(4.4) sup
�2Gt

sup
k2Zd

Z
�

exp

8<:# X
fx;yg�
k

jx� yj�(d+{)
9=;�(d
) <1:
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4.2. Strong superstable interactions. The so-called strong superstable interac-
tions may be viewed as a re�ned version of the classical superstability property
introduced by D. Ruelle. All such stability conditions are formulated directly in
terms of the Hamiltonian H(
), 
 2 �0; so that the particular structure of the
potential V (x; y) becomes no longer relevant. Below we demonstrate that an ap-
propriate abstract setting (including the so-called �-superstability de�ned by (4.21),
(4.22)) is best suited to carry on the general strategy of getting the moment esti-
mates described in Section 3. Furthermore, we indicate typical classes of the pair
potentials V (x; y) to which all this apply.

Let us replace the both Assumptions (LB) and (RC) on the behavior of V (x; y)
from Subsection 2.3 by the following one:

(SSS): Strong Superstability: For a given P > 2 and a certain partition
Rd =

F
k2Zd Qgk with g > 0; cf. (2.44), there exist positive D;E such that

(4.5) H(
) � D
X
k2Zd

j
kjP � Ej
j for all 
 2 �0:

Since j
kjP � j
kj2 for any 
k 2 �k, it is obvious that (SSS) is stronger than
Ruelle�s superstability (SS) resulting in particular from Assumption (RC), see
Lemma 2.4. Actually, (4.5) implies (2.53) with an arbitrary large constant in the
front of j
kj2. From the proof of the same lemma, it is clear that (4.5) should hold
at once for all g > 0, but with proper Dg; Eg > 0. According to (4.5), the pair
potential V is semibounded below, i.e.,

(4.6) inf
x;y2Rd
x6=y

V (x; y) := inf
fx;yg�Rd

H(fx; yg) =: �M � 2
�
2P�1D � E

�
;

which agrees with the initial Assumption (LB). The same is true for the energy in
every partition cube Qgk, i.e.,

(4.7) inf

k2�k

H(
k) =: �C � �D
1

1�P E
P

P�1 :

We still keep the �nite range Assumption (FR) from Subsection 2.2. Then, for
x 2 Qgk and y 2 Qgj , the interaction V (x; y) is zero unless

(4.8) j 2 @gk :=
n
k0 2 Zd

��� jk � k0j < pd (1 +R=�)o :
Similarly to (2.47) and (2.49), the number of such neighbor cubes Qgj (having the
diagonal � := g

p
d) does not exceed

(4.9) j@gkj � m := vdd
d=2(R=� + 3=2)d:

Remark 4.1. In its explicit form the notion of strong superstability was �rst intro-
duced in [32], although some arguments leading to better analysis of stability could
be already found in the earlier contributions [6, 8, 36, 42]. The most recent refer-
ence is [41], which contains a historical survey and account of su¢ cient conditions
for (SSS) in terms of the potentials V . So, Theorem 2.3 there presents one of the
best-understood examples of the strong superstable interactions. Namely, let V be-
have like V (x; y) � cjx� yj�d(1+{) as jx� yj ! 0 (cf. (2.43) and (4.3)), so that the
classical Dobrushin�Fisher�Ruelle criterion (Proposition 1.4 in [43]) applies. Then
V is not only superstable with an arbitrary large Dg > 0, but also ful�lls (SSS)
with P = 2 + {: This result naturally extends to the interactions of in�nite range,
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see Section 5. Actually, most of the stable potentials used in statistical physics turn
out to be strong superstable.

Supposing (FR) and (SSS), we can get a substantial re�nement of the previous
results. So, it is natural to consider all � 2 Gt supported by

� t :=

�

 2 �

���� 8� > 0 : j
jP� := sup
k2Zd

�
j
kjP expf��jkjg

�
<1

�

=

8<:
 2 �
������ 8� > 0 : jj
jjP� :=

X
k2Zd

j
kjP expf��jkjg <1

9=; :(4.10)

So far, it is clear that either of the representations (2.65) and (4.10) describes the
same subset of tempered con�gurations � t. Fixing the parameters

(4.11) 0 � � < � and 0 � � < (� � �)D;
let us de�ne the Lyapunov functional

(4.12) �k 3 
k ! �(
k) := �H(
k) + �j
kjP � ��C;
where C 2 R is the same as in (4.7). A starting point is the following modi�cation
of the exponential bound (3.1)�(3.3) in Lemma 3.1Z

�k

exp f�(
k)g�k(d
kj�)

�
Z
�k

exp

8<:[�� (� � �)D] j
kjP +
24(� � �)E + �M X

j2@gk
j�j j

35 j
kj
9=;d�z�(
k)

� exp

8<:�� + � X
j2@gk

j�j jP
9=; ;(4.13)

holding for any

0 < � <
1

m
min f�D + �; (� � �)D � �g

and the corresponding

�� := m�
2

2�P (�M)
P

P�2 + z exp f�Eg sup
k
�(Qgk):

In deriving (4.13) we have used Young�s inequality in the form

(4.14) st � {
�
sP + tP

�
+ {

2
2�P for any {; s; t > 0:

Picking next any 0 < � < �D + �� �m and noting that by (4.5) and (4.12)

(4.15) j�j jP �
1

�+ �D � �

h
�(�j) + �

1
1�P (�E)

P
P�1

i
;

we then follow step by step the arguments used in proving Lemma 3.3 and Theorems
2.8, 2.9. As �(
k) may take negative values, instead of nk(Kj�) de�ned by (3.7) we
have to consider the quantities

0 � ~nk(Kj�) = nk(Kj�) + �C :

= log

�Z
�

exp f�(
k) + �Cg�K(d
j�)
�
; k 2 Zd:
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By (4.13), (4.15) and the consistency property (2.32) we have the following relation

~nk(Kj�) � �� + �C +
�

�+ �D � �
X

j2K\@gk
~nj(Kj�)

+�
X

j2Kc\@gk
j�j jP +

�m

�+ �D � �

h
�

1
1�P (�E)

P
P�1 � �C

i
; k 2 K:

Herefrom, continuing similarly to (3.15)�(3.17), we conclude that for each k0 2 K
and a �xed but small enough � > 0

~nk0(Kj�) �
�
1� �m

�+ �D � � e
�#

��1
�
�
�" + �

1
1�P (�E)

P
P�1

�m

�+ �D � � + �C
�
1� �m

�+ �D � �

�
+ �me�(#+jk0j)jj�Kc jjP�

�
:

Finally, by letting �& 0, we get the estimate

lim sup
jKj%Zd

Z
�

exp
�
�H(
k) + �j
kjP

	
�K(d
j�)

� exp

(�
1� �m

�+ �D � �

��1 h
�" + �

1
1�P (�E)

P
P�1

i)
=: 	�;�;(4.16)

which is uniform for all k 2 Zd and � 2 � t. The latter allows us to construct � 2 Gt
by applying the compactness argument in (P(� ); Tloc). A further sequel of (4.16)
is the à-priori bound

(4.17) sup
k2Zd

Z



exp
�
�H(
k) + �j
kjP

	
�(d
) � inf

�;�
	�;� := 	

to be ful�lled by all � 2 Gt. This leads to the following conclusion.

Theorem 4.2. Under Assumptions (FR) and (SSS), the set Gt is nonvoid and
all its elements obey the bound (4.17).

Remark 4.3. (i) In the proof of (4.13) we used only the �local�version of Assumption
(SSS) in the elementary cubes Qgk, that is

(4.18) (LSS) H(
k) � Dj
kjP � Ej
kj for all 
 2 �k; k 2 Zd:
For P > 2, the concrete values of D;E > 0 are not relevant for the existence
result. Nevertheless, it can be easily shown that (2.22) and (4.18) imply the �global�
condition (4.5) with new constants ~D 2 (0; D) and ~E > 0, where ~D can be chosen
arbitrarily close to D.

(ii) To run the above scheme for P = 2 we have to assume that D > Mm, where
D > 0 is the maximal possible constant in (4.18) and M := � infR2d V: For the
same g > 0; this yields Ruelle�s superstability (2.53) with any Dg 2 (0; D �Mm).
Obviously,

inf

k2�k

H(
k) =: �C � �
E2

4D
:

Respectively, we de�ne

�(
k) := �H(
k) + �j
kj2 � ��
E2

4D
;
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where the parameters �; � > 0 meet the constraint

(4.19) �+ �D � � (D �Mm=2) :

The basic estimates (3.1) and (3.5) then hold with
(4.20)

� := z exp f�Eg sup
k
�(Qgk), 	 := exp

�
D

D �Mm

�
� +

�E2

2(D �Mm)

��
:

The most general setup that completely includes all previous considerations can
be given as follows. Suppose there exist constants C;D;E;M � 0 and a function

� : �0 ! R+ with lim inf
j
j!1

�(
)

j
j = +1;

such that, for all 
k 2 �k and �j 2 �j with k 6= j,

H(
k) � D�(
k)� Ej
kj � � C;(4.21)

W (
kj�j) :=
X

x2
k; y2�j

W (x; y) � �M
2

�
�(
k) + �(�j)

�
:(4.22)

In addition, let D > Mm with the parameter m as de�ned in (4.9). Note that the
standard superstability (or strong superstability) analyzed before is reduced to the
particular choice of �(
k) = j
kj2 (or �(
k) = j
kjP with P > 2). In this regard
the interactions obeying (4.21), (4.22) may be called �-superstable. The de�nition
of temperedness is naturally modi�ed as follows: the set Gt now consists of those
� 2 G which are carried by

� t :=

�

 2 �

���� 8� > 0 : sup
k2Zd

[�(
k) expf��jkjg] <1
�

=

8<:
 2 �
������ 8� > 0 :

X
k2Zd

�(
k) expf��jkjg <1

9=; :(4.23)

Respectively, our main statements will concern the Lyapunov functional

(4.24) �0 3 
 ! �(
) := �jH(
)j+ ��(
);

where � 2 [0; �] and � � 0 are related by (4.19), i.e.,

�+ �D � � (D �Mm=2) :

Going through the proof of Lemma 3.1 and making use of (4.21)�(4.24), we obtain
the exponential bound

(4.25)
Z
�k

exp�(
k)�k(d
kj�) � exp

8<:� + 12�M X
j2@gk

�(�j)

9=; ;

where the constant � is the same as in (4.20). In turn, (4.25) implies that the set
Gt is nonvoid and that all its elements obey

(4.26) sup
�2Gt

sup
k2Zd

Z



exp f�H(
k) + ��(
k)g�(dx) <1:
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4.3. Multibody interactions. This case is technically more di¢ cult and thus less
studied in the literature. Here we brie�y outline how to modify our method; for
details see [23] in preparation.

Let us be given a �nite family of potential functions Vn(x1; : : : xn), 2 � n � N 2
N, describing the interaction between each n-tuple of the particles fx1; : : : xng � Rd.
Every potential Vn : Rnd ! �R is a bounded below, symmetric function of �nite
range, i.e., there exist some M;R � 0 such that for all n � N

inf
(x1;:::xn)2Rnd

Vn(x1; : : : xn) � �M;

Vn(x1; : : : xn) = 0 if diamfx1; : : : xng � R:(4.27)

For � 2 Bc(Rd) and � 2 � , the local Hamiltonians H�(�j�) : �� ! �R are de�ned by

H�(
�j�) := H(
�) +W�(
�j�);
where respectively

H(
�) : =

NX
n=2

X
fx1;:::xng�
�

Vn(x1; : : : xn);

W�(
�j�) : =
NX
n=2

n�1X
p=1

X
fx1;:::;;xpg�
�

fyp+1;:::;;yng���c

Vn(x1; : : : xp; yp+1; :::; ; yn):

Not trying to be optimal, for all N � 2 the energies in the elementary cubes
� := Qgk; k 2 Zd, can be roughly estimated by

H(
k) � �M
NX
n=2

�
j
kj
n

�
� �M j
kjN

N jX
n=2

1

n!
� �M j
kjN ;(4.28)

Wk(
kj�) � �M
NX
n=2

n�1X
p=1

�
j
kj
p

��
j�@gkj
n� p

�
(4.29)

� �M
NX
n=2

1

n!

n�1X
p=1

n!

p!(n� p)! j
kj
pj�@gkj

n�p

� �M
NX
n=2

1

n!

�
j
kj+ j�@gkj

�n
� �M(m+ 1)N�1

24j
kjN + X
j2@gk

j�j jN
35 ;

where m is the same as in (4.9). To make our method work it would su¢ ce to
impose the (local) strong superstability (4.18) of order equal to the interaction
rank (i.e., P = N) and with a large enough D > DN , that is

(4.30) H(
k) � Dj
kjN � Ej
kj for all 
 2 �k; k 2 Zd:
As is seen from (4.29) and Remark 4.3 (ii), one may choose DN := 6MmN�1 for
N > 2 and respectively DN :=Mm for N = 2. This yields existence of � 2 Gt and
the à-priori bound (4.17) for all �; � obeying

�D + � � � (D �DN=2) :

In view of (4.28), a possible way of getting (4.30) is to assume (SSS) of order
Pn0 > N just for one �stabilizing�potential Vn0 with some index n0 � N . Su¢ cient
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conditions for such superstability can be found e.g. in Lemma 4 of [3], Remark 2.1
of [28] or Theorem 2.1 of [46]. To this end, a typical behavior of the stabilizing
potential should be

(4.31) Vn0(x1; : : : xn) � C [diamfx1; : : : xng]�d(1+{) for some { � N � 1:
In a similar way one can consider systems with an in�nite group of many-body po-
tentials (i.e., N =1), which analytically gives rise to the property of �-superstability
(4.21) with �(
) := exp f�j
jg, � > 0: Stability of the whole system can be achieved
by employing an in�nite sequence of stabilizing potentials fVnmgm�1 that behave
like (4.31) with {m > nm � 1 or just by one of them having an exponential singu-
larity at the diagonal like Vn0(x1; : : : xn) � C exp (��diamfx1; : : : xng) :

4.4. General intensity measures. Here we place us again in the setting of Sec-
tion 2, but a principal di¤erence is that the spatial regularity condition (2.16) will
be dropped. Instead we suppose that the Radon intensity measure � is tempered
in the following sense:

(4.32)
Z
Rd
e��0jxjd�(x) <1 for some �0 > 0:

Keeping the former Assumptions (FR), (LB) and substituting (RC) by the stronger
one

(4.33) A > Mm
�
1 + e�0#

�
with # > 0 being the same as in (3.8), we claim the existence of Gibbs measures
� 2 Gt supported respectively by � t :=

T
�>�0

��: Again, we de�ne �(
) :=
�H(
) + �j
j2 under the constraint
(4.34) �Mme�0# < �A+ 2� � �(A�Mm):

Fixing an arbitrary � 2 � t, we start with the exponential bound similar to that in
Lemma 3.1

(4.35)
Z
�k

exp f�(
k)g�k(d
kj�) � exp

8<:�k + 12�M X
j2@�g k

j�j j2
9=; ;

but this time with the constant

�k := z exp f�A=2g�(Qgk)
essentially depending on k 2 Zd. Nevertheless, for � > �0 the following quantity

�� := sup
k2Zd

f�k exp(��jkj)g

is �nite by assumption (4.32). Let � > �0 and " > 0 be related by

(4.36) �Mm
�
1 + e�#

�
< 2�+ �(1� ")A:

De�ning the moments nk(Kj�) by (3.7) and mimicking the proof of Lemma 3.3, we
get for each � 2 � t and k 2 K

0 � nk(Kj�) � �k +�" +
�M

2

X
j2Kc\@�g k

j�j j2

+
�M

2�+ �(1� ")A
X

j2K\@�g k

nj(Kj�)
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with an extra constant

(4.37) �" :=
��AMm

8" [2�+ �(1� ")A] :

Herefrom

sup
k2K

fnk(Kj�) exp(��jkj)g

�
�
1� �Mm

2�+ �(1� ")Ae
�#

��1 �
�� +�" +

�M

2
me�#jj�Kc jj2�

�
:(4.38)

Since for � 2 � t the seminorm jj�Kc jj� tends to zero as K % Zd, we obtain for each
k 2 Zd

lim sup
K%Zd

�
exp(��jkj)

Z
�

�(
k)�K(d
j�)
�

�
�
1� �Mm

2�+ �(1� ")Ae
�#

��1
[�� +�"] :(4.39)

As in the proof of Theorem 2.8, this yields the existence of Gibbs limit points
� := limN!1 ��N (d
j�) obeying for each � > �0

(4.40) sup
k2Zd

�
exp(��jkj)

Z
�

�
�H(
k) + �j
kj2

�
�(d
)

�
<1

and hence belonging to Gt. Furthermore, the proof of Theorem 2.9 shows that all
� 2 Gt must ful�l the same bound (4.40) allowing at most exponential growth of
their moments. Because of the absence of spatial regularity for �(dx), the resulting
estimates are not expected to be invariant under translations in the phase space
Rd. Furthermore, the uniform integrability condition

ess sup
x2Rd

Z
Rd

���e��V (x;y) � 1��� �(dy) <1
fails. These are the principal reasons why the situation discussed above does not
�t into the framework of Ruelle�s superstability method and was not yet covered
in the literature. Nevertheless, such spatial irregularity is natural if one considers
disordered particle systems with random intensities �(dx; !) depending on some
external random �eld ! 2 
 , what we plan to do elsewhere.

4.5. Support properties of � 2 Gt. There are a few important consequences
from the à-priori bounds (2.68) and (4.26). Recall that the set of tempered Gibbs
measures was introduced by means of the rather moderate restrictions (2.65), (2.66).
We now show that all � 2 Gt indeed are carried by a much smaller universal subset
� s, which is known (for P = 2 and � = 0) as the Lanford�Lebowitz�Presutti support
(see De�nition 3.2 of [29] in the lattice case and respectively De�nition 5.2.1 of [27]
for con�guration spaces).

Let us �x some partition of the phase space Rd by the elementary cubes Qgk;
k 2 Zd. For b > 0 we de�ne
(4.41)
� (b) :=

�

 2 � j 9K
 2 Z+ : �jH(
k)j+ �j
kjP � b log(1 + jkj) if jkj � K


	
;

which is a Borel subset in � .
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Proposition 4.4. For given P � 2 and �; � � 0; let us consider those � 2 P(� )
which ful�ll

(4.42) sup
k2Zd

Z
�

exp
�
�jH(
k)j+ �j
kjP

	
�(d
) =: 	(�) <1:

Then, simultaneously for all such measures (and hence by Theorems 2.9 and 4.2,
for all � 2 Gt), one has �[� (b)] = 1 as soon as b > d.

Proof. We proceed similarly to the proof of Lemma 3.1 in [29]. Without loss of
generality we may assume that at least one of parameters �; � is positive, otherwise
the result is trivial. The complement of � (b) in (4.41) can be written as

(4.43) [� (b)]c =
\

K2N

[
jkj�K

[�k(b)]
c;

where
�k(b) :=

�

 2 �

�� �jH(
k)j+ �j
kjP � b log(1 + jkj)
	
:

By Chebyshev�s inequality and the estimate (4.42)

(4.44) � ([�k(b)]
c) � 	(�) � (1 + jkj)�b;

and therefore by (4.43) and (4.44)

(4.45) � ([� (b)]c) � 	(�) lim
K!1

X
jkj�K

(1 + jkj)�b:

Taking b > dmakes the series in (4.45) convergent, which yields the result � ([� (b)]c) =
0. �

Corollary 4.5. Under the conditions of Theorems 2.9 and 4.2, all � 2 Gt are
carried by the subset

(4.46) � s :=

�

 2 �

���� sup
k2Zd

h�
jH(
k)j+ j
kjP

�
� (log(1 + jkj))�1

i
<1

�
:

Next, we claim that for any Gibbs measure � 2 Gt its �nite volume projections
�� := � � P�1� ; �k := � � P�1Qk

; k 2 � 2 Bc(Rd);

satisfy a certain Ruelle-type bound (cf. Proposition 5.2 in [43]).

Proposition 4.6. Under Assumptions (FR) and (SSS), each � 2 Gt is locally
absolutely continuous with respect to the �-Poisson measure �z�: The corresponding
Radon�Nikodym derivatives obey the following estimate for �z�-almost all 
� 2 ��

��;�(
�) : =
d��(
�)

d�z�(
�)

� exp

(
��H(
�)� �

X
k2K�

j
kjP +G�j
�j
)
� (C�)j
�j(4.47)

with any � 2 (0; �); � 2 (0; (� � �)D) and proper G� := G�(�; �); C� > 0 being
the same for all such �: In particular, for all 
k 2 �k, k 2 Zd, and some G > 0

(4.48) ��;k(
k) :=
d�k(
k)

d�z�(
k)
� exp

�
��H(
k)� �j
kjP +Gj
kj

	
:
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Proof. From the DLR equations (2.36) it is easy to see that the Radon�Nikodym
derivatives (of course, if such exist) should have the following representation for all

 2 �� (mod�z�)

��;�(
�) = exp f��H(
�)g
Z
�

[1=Z�(�)] exp f��W�(
�j��c)g�(d�)

� exp f��H(
�)g
Z
�

exp

8<:�� X
x2
�; y2��c

V (x; y)

9=;�(d�):(4.49)

So, the only thing needed to check is the validity of the upper bound (4.47), which
in turn implies ��;� 2 L1(�z�) and hence ��(d
�)� �z�(d
�): It is obvious that
��;�(?�) =��(?�) � 1, so below we may assume that j
�j � 1. The integral in
the last line in (4.49) can be estimated by means of the Hölder inequality (3.14)
and the exponential bound (4.17)Z

�

exp

8<:�� X
x2
�; y2��c

V (x; y)

9=;�(d�)

�
Z
�

exp

8>><>>:�M
X
k2K�

j2@gk\K�c

j
kj � j�j j

9>>=>>;�(d�)

� exp

(
1

4�0
(�Mm)

2 jK�j
X
k2K�

j
kj2
)Z

�

exp

8>><>>:
�0

mjK�j
X
k2K�;

j2@gk\K�c

j�j j2

9>>=>>;�(d�)

� 	 exp

(
1

4�0
(�Mm)

2 jK�j
X
k2K�

j
kj2
)
;(4.50)

where we put � = 0, �x some �0 2 (0; �D) and took the corresponding 	 := 	(�0)
from (4.17). Thus, for j
�j � 1

(4.51) ��;�(
�) � exp
(
��H(
�) +

1

4�0
(�Mm)

2 jK�j
X
k2K�

j
kj2 + log	(�0)
)
;

which together with the strong superstability (4.5) and Young�s inequality (4.14)
yields the required bound on ��;�. �

Remark 4.7. In the situation of Section 2, a bound similar to (4.48) can be proved
for P = 2. In general, the constants G�; C� in (4.47) may depend on the geometry
of �. If � := �N := [�N;N ]d, the best control we could get here is that the G�N
behave like O

�
Ndp=(p�2)� as N !1:

The next assertion summarizes di¤erent types of regularity for the Gibbs mea-
sures � 2 G as solutions of the DLR equation (2.36). In this respect let us recall
the famous result of D. Ruelle, see Corollary 5.3 in [43], where several equivalent
descriptions of the superstable Gibbs states � 2 Gst (via their support, correla-
tion functions, and local densities) are given. Of course, any pair of the properties
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(i)�(vi) listed below need not to be equivalent for a general probability measure
� 2 P(� ).

Theorem 4.8. Under the hypotheses of Theorem 4.2, the following are equivalent
for any � 2 G:
(i) � is supported by the set � t, cf. (2.65);
(ii) � is supported by the smaller subset � s � � t, cf. (4.46);
(iii) � satis�es the a-priori bound (4.17) with some � = 0 and some � 2 (0; �D);
(iv) � satis�es the a-priori bound (4.17) for all � 2 (0; �) and � 2 (0; (� � �)D);
(v) �Qgk

� �z� for each k 2 Zd, with the densities ��;k obeying the estimate (4.48)
with some � = 0 and some � 2 (0; �D);
(vi) �� � �z� for all � 2 Bc(Rd), with the densities ��;� obeying the estimate
(4.47) for all � 2 (0; �) and � 2 (0; (� � �)D).

Proof. Recall that (i))(iv) follows by Theorem 2.9, (iv))(ii) by Proposition 4.4,
and (i))(vi) by Proposition 4.6. The remaining implications (ii))(i), (iv))(iii),
and (vi))(v))(iii))(i) are obvious. �
4.6. Bounds on correlation functions. Assuming (FR) and (SSS), let us pick
some � 2 Gt and consider its �nite volume projections ��, � 2 Bc(Rd). Corre-
sponding to the n-particle decomposition �� =

F
n2Z+ �

(n)
� , we have the induced

representation �� =
P
n2Z+ �

(n)
� with

(4.52) d�
(n)
� (fx1; :::; xng) =

zn

n!
�
(n)
�;�(fx1; :::; xng)d�


n
sym(x1; :::; xn):

According to (4.47), the system of densities �(n)�;� : �
(n)
� ! R+; n 2 Z+, ful�lls the

local Ruelle bound

(4.53) �
(n)
�;�(fx1; :::; xng) � (C�)

n; fx1; :::; xng 2 � (n)� (mod�z�):

In much the same way as in Subsection 4.5, one can derive estimates on the
correlation functional k� : �0 ! R+ of � 2 Gt (for its de�nition see [16, 43]). For
�z�-almost all 
 2 �0 it can be written in the form

(4.54) k�(
) =

Z
�

exp f��H(
)� �W (
j�)g�(d�);

where, cf. (2.25),

(4.55) W (
j�) :=
X

x2
; y2�
V (x; y); 
 2 �0; � 2 � ;

stands for the interaction energy between a pair of con�gurations, 
 and �, in the
whole Rd. Obviously, k�(?) = 1: By analogy with (4.49)�(4.51), we get for each
� 2 Bc(Rd) and for all nonempty 
� 2 �� (mod�z�)

k�(
�) � exp
(
��H(
�) +

1

4�0
(�Mm)

2 jK�j
X
k2K�

j
kj2 + log	(�0)
)

� exp

8<:��H(
�)� � X
k2Zd

j
kjP +G�j
�j)

9=; � (C�)j
�j;(4.56)
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with any � 2 (0; �); � 2 (0; (� � �)D) and some G� := G�(�; �); C� > 0. Thus,

(4.57) k(n)� (fx1; :::; xng) � (C�)n for fx1; :::; xng � �;

where the family k(n)� := k� �� (n)
0
; n 2 Z+, are the well-known correlation func-

tions of statistical physics (see Section 4.1 of [42]). An estimate with P = 2
similar to (4.56) was obtained in Equation 4.29 of [2]. Suppose we could show that
sup�2Bc(Rd) C� < 1, then this would be the global Ruelle bound, cf. Proposition
2.6 in [43]. Note that the correlation functional k� and the local densities ��;� are
related for �z� � a:e: 
 2 �� by the duality

k�(
�) =

Z
��

��;�(
� [ ��)�z�(d��);

��;�(
�) =

Z
��

(�1)j��jk�(
� [ ��)�z�(d��);(4.58)

cf. e.g. Propositions 4.2 and 4.3 in [20]. This, in particular, means that the
estimates (4.47) and (4.56) are equivalent. Any correlation functional k : �0 ! R+
satisfying the local Ruelle bound (4.56) is admissible in the sense that there exists a
unique measure � satisfying (4.53) and k� = k. For a general discussion of di¤erent
à-priori bounds for measures on con�guration spaces see [21].

Remark 4.9. (i) Using the properties of the so-called K-transform (see [20]), one
can show that Lemma 3.3 implies the following bound on the second correlation
functions k(2)�;�(fx; yg) of the local Gibbs measures ��(d
�j�) in the domains � 2
Qc(Rd)

lim sup
�%Rd

ZZ
Qgk�Qgk

jV (x; y)jk(2)�;�(fx; yg)dxdy � � <1;

which holds uniformly in � 2 � t and k 2 Zd.
(ii) It is still an open question whether Gt = Gst. Nevertheless, it is clear that

any translation invariant measure � 2 P(� ) obeying the exponential bound (4.42),
satis�es for �-almost all 
 2 �

(4.59) sup
K2N

8<:K�d
X
jkj�K

exp

24� X
fx;yg�
k

V (x; y) + �j
kj2)

359=; � 	(
);

which is much stronger than the original Ruelle support condition (2.67). The claim
immediately follows from the multidimensional ergodic theorem (cf. e.g. Theo-
rem 14.A8 in [12]) applied to the stationary family of random variables �k(
) :=
H(
k) + �j
kj2; k 2 Zd; de�ned on the probability space (� ;B(� ); �):

5. Interactions of Infinite Range

Here we demonstrate how to handle the interactions of in�nite range, when the
technical Assumption (FR) from the previous sections is dropped. It is commonly
recognized that a principal di¢ culty, when compared to the �nite range case, is to
identify the limit points � := lim�%Rd ��(d
j�) with solutions of the DLR equation.
Recall that in Ruelle�s approach this problem is solved by establishing global bounds
on the �nite volume correlation functionals (with empty boundary condition). Here
we would like to suggest an alternative method that will be based on the (almost)
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continuity of Gibbs speci�cation in certain spaces of tempered con�gurations. To be
more speci�c, below we focus on the important class of the so-called DFR potentials.

5.1. DFR potentials. Let us consider a symmetric pair potential (without hard
core) V : R2d ! �R, which is �nite and continuous everywhere outside the diagonal
D := f(x; y) 2 R2djx = yg. We suppose that V is of DFR type, i.e., there exist
constants 0 < r < R; 0 < � � {, and C1; C2; C3 > 0 such that

(5.1) V (x; y) � C1jx� yj�(d+{); if jx� yj < r;

and

(5.2) jV (x; y)j �
�
C2jx� yj�(d+�); if jx� yj > R;
C3; if jx� yj 2 [r;R]:

A typical example (with d = � = 3, { = 9), which is especially important in atomic
and molecular physics, is given by the Lennard-Jones potential

(5.3) V (x; y) :=
a

jx� yj12 �
b

jx� yj6 ; x; y 2 R3; a; b > 0:

Furthermore, we assume that the intensity � is locally absolutely continuous with
respect to the Lebesgue measure dx on Rd, i.e.,

(5.4) �(dx) = �(x)dx with a density 0 � � 2 L1loc(Rd;dx):

As usual, L1loc(Rd;dx) stands for the space of locally integrable functions on Rd.
Then the corresponding Poisson measure �z� obeys the following property, which
will be relevant for constructing the Gibbs states. Let A 2 B(Rd) be negligible
for the Lebesgue measure dx. As is seen from (2.17), the set of con�gurations not
touching A has full probability, i.e.,

(5.5) �z� (f
 2 � j 
 � Ac g) = 1:

As before, let us pick any partition Rd =
F
k2Zd Qgk by the cubes (2.44) of edge

length g 2 (0; 1]. Without loss of generality we may assume that g < r=
p
d, which

guarantees that V (x; y) � 0 whenever x; y 2 Qgk. By Theorem 2.3 in [41] the
corresponding interaction H(
) obeys the strong superstability (SSS), cf. (4.5).
More precisely, there exists a constant D > 0 (independent of g) such that

(5.6) H(
) �
X
k2Zd

Dgj
kjP � Egj
j; 
 2 �0;

with P := 2 + {=d > 2, Dg := D=gP and a proper Eg > 0: On the other hand,
from (5.1) and (5.2) one may �nd some K;L > 0 (also independent of g) such that
for all k; j 2 Zd and x 2 Qgk; y 2 Qgj the following bounds hold

(5.7)
V (x; y) � �Kgjk � jj�(d+�); if jk � jj � 1;
jV (x; y)j � Lgjk � jj�(d+�); if jk � jj � r=g +

p
d;

with Kg := g�(d+�)K and Lg := g�(d+�)L:
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5.2. Spaces of tempered con�gurations. Next we have to introduce the ap-
propriate notion of temperedness, which will essentially depend on the decay rate
of the pair interaction. By analogy with (2.65) and (2.66), we de�ne the subset of
tempered con�gurations

� t : =
[

0<�<�
��;

�� : =

�

 2 �

���� j
j� := sup
k2Zd

h
j
kjP (1 + jkj)

��)
i1=P

<1
�

(5.8)

and respectively the subset of tempered Gibbs measures

Gt : =
[

0<�<�
G�;

G� : = f� 2 G j �(��) = 1g :(5.9)

Furthermore, for � > 0 we set

(5.10) m� :=
X

k2Zdnf0g

1

jkjd+� <1:

The only di¤erence with the previous scheme is that the exponential weights expf��jkjg
should be replaced everywhere by the polynomials (1 + jkj)��. Clearly, this involves
stronger restrictions imposed on the support of � 2 Gt. In what follows, instead of
j
j� we actually shall consider an equivalent seminorm j
j�;� constructed by means
of the weights (1 + �jkj)�� with small enough � 2 (0; 1):
By straightforward arguments one can check that, for each volume � 2 Bc(Rd)

and boundary condition � 2 � t, the speci�cation kernels ��(d
�j�) are well de�ned
by (2.25)�(2.31) as probability measures on � t. To this end we observe that the
corresponding local Hamiltonians are bounded below by

H�(
�j�) �
X
k2Zd

Dgj
�;kjP � Cg;�j
�j

241 + X
j2Zd

j��c;j j (1 + jjj)�(d+�)
35

� �Cg;�j
�j �
�
1 +m���j��c jP�

�
;(5.11)

where the constant Cg;� > 0 can be chosen to be the same for all � 2 �� and
0 < � < � (whereby for � 2 Qc(Rd) there is even the better estimate (5.32)).
Another candidate for the space of tempered con�gurations might be

~� t :=
[

0<�<�
~��;(5.12)

~�� :=

8><>:
 2 �
������� jj
jj� :=

24X
k2Zd

j
kjP (1 + jkj)
�(d+�)

351=P <1
9>=>; ; � > 0:

Note that we have a strict inclusion � t � ~� t. Furthermore, �� � ~��0 as soon as
�0 > �, whereby

(5.13) jj
jjP�0 � m�0��j
jP� for all 
 2 ��:

The inverse inclusion ~�� � ��0 only holds if �0 > �+ d. However, the set ~� t � � t
turns out to be too large for a good control of all � 2 G supported by it (insofar
as the estimates (5.23)�(5.25) fail for � 2 ~� t). In particular, for the same proofs to
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be performed in ~� t we should require that � > d, which does not include the basic
example of the Lennard-Jones potential (5.3).
Our aim is to study the integrability properties of the Lyapunov functional (iden-

tical to that in (4.12))

(5.14) �(
k) := �H(
k) + �j
kjP � 0;
depending on the parameters � 2 [0; �) and � 2 [0; (� � �)Dg). Note that (5.6)
implies the superstability estimate in each partition cube Qgk

(5.15) �(
k) � (�Dg + �� �) j
kjP � �
1

1�P (�Eg)
P

P�1 ;

valid with any � 2 (0; � + �Dg). For � 2 � t, k 2 Zd, and � := �K 2 Qc(Rd) with
K b Zd, let us de�ne the quantities (the same as in (3.7))

(5.16) nk(Kj�) := log
�Z

�

exp f�(
k)g�K(d
j�)
�
;

which are nonnegative and �nite by (5.11) and (5.32). By the arguments similar to
(4.13)�(4.14) we get the following modi�cation of Lemma 3.1

(5.17)
Z
�k

exp f�(
k)g�k(d
kj�) � exp
n
�� + �

X
j 6=k

jk � jj�(d+�)j�j jP
o
;

with any

0 < � <
1

m�
min f�Dg + �; (� � �)Dg � �g

and the corresponding

(5.18) �" := m�"
2

2�P (�Kg)
P

P�2 + z exp f�Egg sup
k
�(Qgk):

Choose �; " > 0 small enough such that

(5.19) � + "m� < �Dg + �:

Plugging (5.15) into the right-hand side of (5.17) and going through the proof of
Lemma 3.3, we further obtain for each k 2 K

nk(Kj�) � �";� + "
X

j2Kc
jk � jj�(d+�)j�j jP

+
"

�Dg + �� �
X

j2Knfkg
jk � jj�(d+�)nj(Kj�)(5.20)

with

(5.21) �";� := �" + "m�
�

1
1�P (�Eg)

P
P�1

�Dg + �� �
:

Suppose for a moment that supk2Zd �(�k) <1; which by (2.64) implies supk2Zd nk(Kj�) <
1. For simplicity one may take here � = ?. For any such � we immediately see
from (5.20) that

sup
jKj<1

sup
k2K

Z
�

exp f�(
k)g�K(d
j�)

� exp
(�
1� "m�

�Dg + �� �

��1�
�";� + "m� sup

k2Zd
j�kjP

�)
=: 	(�) <1:(5.22)

As will be shown in Subsection 5.3, the uniform bound (5.22) su¢ ces to establish
the existence of � 2 Gt.
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A more delicate situation occurs in proving the à-priori estimates for all � 2 Gt.
To this end we should consider any � 2 � t with possibly supk2Zd �(�k) = +1.
For each k0 2 K and � 2 ��0 with some �0 2 (0; �), we have the following bound
implied by (5.20)

nk0(Kj�) � sup
k2K

�
nk(Kj�)(1 + �jk0 � kj)��

�
�

�
1� "m���(1 + �)

�

�Dg + �� �

��1 �
�";� + "m����

��(1 + jk0j)�j�Kc jP�
�
:(5.23)

Here we pick �rst any � 2 (�0; �), � 2 (0; �+ �Dg) and then the corresponding

0 < " < "� :=
�Dg + �� �
m���(1 + �)�

:

An important observation from the de�nition (5.8) is that limK%Z j�Kc j� = 0 when-
ever � 2 ��0 with �0 < �. This yields a modi�cation of Lemma 3.3 saying that for
all � � � (1 +m�)

�1 and k 2 Zd

lim sup
K%Zd

Z
�

exp
�
�H(
k) + �j
kjP

	
�K(d
j�) � 	�;(5.24)

lim sup
K%Zd

Z
�

exp
�
�jj
jj2�

	
�K(d
j�) � 	�;(5.25)

where

(5.26) 	� := exp

(�
1� "m���(1 + �)

�

�Dg + �� �

��1
�";�

)
<1:

Applying the DLR equation to (5.24), see the proof of Theorem 2.9, we get the
à-priori bound

(5.27) sup
k2Zd

Z
�

exp
�
�H(
k) + �j
kjP

	
�(dx) � 	�;

valid for all � 2 G�0 with �0 2 (0; �): By Corollary 4.5 any probability measure
on � obeying (5.27) is supported by the universal subset � s �

T
0<�<� �� � � t,

which means that indeed

Gt :=
[

0<�<�
G� =

\
0<�<�

G�;

and hence (5.27) holds uniformly for all � 2 Gt. It remains to check that the set
Gt is nonvoid, which will be done in the next subsection.

5.3. Proof of existence. The proof follows the same pattern as that of Theorem
2.8, whereby we should more carefully take into account the topological properties
of the con�guration spaces. A key idea is to use, along with the topology Tloc of
local setwise convergence on P(� ), also the topology of weak convergence on P(~��),
� 2 (0; �). This clari�es why for the interaction potential V (x; y) having in�nite
range we have to assume its continuity at x 6= y. Below we point out only those
issues which have to be modi�ed.
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For a given � 2 ��0 � ~�� and 0 < �0 < � < �, we start with the uniform bound,
cf. (5.25),

(5.28) lim sup
�%Rd

�2Qc(Rd)

Z
�

exp
�
�jj
jj2�

	
��(d
j�) � 	�(�); � 2 (�0; �):

In particular, this is surely the case if � = ?. Let us �rst show that (5.28) implies
the local equicontinuity of the family f��(d
j�)j � 2 Qc(Rd)g � P(� ). Let � 2
Qc(Rd); fBngN2N � B�(� ); and Bn # ? as n!1: Set

(5.29) �T := f
 2 ��0 j jj
jj� � T g 2 B(� ); T > 0:

Then by Chebyshev�s inequality applied to (5.28)

(5.30) lim sup
�%Rd

�2Qc(Rd)

��([�T ]
cj�)! 0 as T !1:

Similarly to (3.23), for each � 2 Qc(Rd) we have

��(Bnj�) � ��(Bn \ [�T ]cj�)(5.31)

+

Z
�

Z
��

�Bn\�T (�� [ 
�c) exp f��H�(��j
)g�z�(d��)��(d
j�):

Note that by (5.6) and (5.7)

H�(��j
) �
X
k2Zd

Dgj��;kjP �

2664Egj��j+Kg

X
k;j2Zd
k 6=j

jk � jj�(d+�)j��;kj � j
�c;j j

3775
� �j��j �

�
Eg +Kg2

� sup
k2K�

(1 + jkj)� jj
�c jjP�
�
;(5.32)

and hence

(5.33) H�(��j
) � �C�;T > �1 for all �� [ 
�c 2 �T :

Putting (5.30)�(5.33) together, we get

��(Bnj�) � ��([��;T ]
cj�) + exp f�C�;T g�z�(Bn);

where, uniformly for all � 2 Qc(Rd), the right hand-side can be made arbitrarily
small by choosing large enough T > 0 and n � n(T ):

The equicontinuity just proved implies the existence of a limit point

(5.34) � := lim
N!1

��N (d
j�) 2 P(� )

in the topology of local setwise convergence. As the interaction has in�nite range,
this convergence alone is not enough to insure that � will be a Gibbs measure. On
the other hand, in (5.28) one could try to employ Prokhorov�s criterion on weak
convergence of measures on Polish spaces, see e.g. Theorem 6.1 in [5]. However,
this argument does not apply directly since the level sets (5.29) are not relatively
compact in the topology Ov(� ). One more principal di¢ culty when dealing with
the vague topology is that the local Hamiltonians H�(
�j�) are not continuous
functions of 
; � 2 � .
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To overcome these problems, some additional analysis is needed. Let us consider

�� :=
�

 2 �

�� 
 \ @Qgk = ?; 8k 2 Zd
	
2 B(� );

��� :=
�

 2 �

�� 
� \ @Qgk = ?; 8k 2 Zd
	
2 B(��); � 2 Bc(Rd),(5.35)

which are the subsets of con�gurations not touching the sites of the partition cubes
Qgk: As is seen from (2.27) and (2.31), for each � 2 � t the probability kernel
��(d
j�) is actually carried by a smaller subset of all 
 = 
� [ ��c with 
� 2 ���:
Here we crucially used the same property of the Lebesgue-Poisson measure �z�, cf.
(5.5). In particular, ��(���j�) = 1 for each � � �. The setwise convergence (5.34)
then implies

(5.36) �(���) = lim
N!1

��N (
���j�) = 1 for all � 2 Bc(Rd);

and hence

(5.37) �(�� ) = �

 \
K2N

���K

!
= lim
K!1

�(���K
) = 1 as �K % Rd.

Next, we densely include each ~�� into a larger space of tempered multiple con-
�gurations

(5.38) ��� :=

8<:
 2 ��
������ jj
jj� :=

X
k2Zd

h
j
kjP (1 + jkj)

�(d+�))
i
<1

9=; :

Let �v be any metric which is consistent with the vague topology on �� , see e.g.
(2.4). Then ��� becomes a Polish space with respect to the metric

(5.39) �v;�(
; �) := �v(
; �) + ��(
; �); 
; � 2 ���;
where

(5.40) ��(
; �) :=
hX

k2Zd
jh
;  ki � h�;  kijP (1 + jkj)

�(d+�)
i1=P

:

The additional pseudometric �� is de�ned by means of a collection of functions
f kgk2Zd � C0(Rd) such that  k : Rd ! [0; 1];  0(x) = 1 if jxj � g

p
d,  0(x) = 0

if jxj � 2g
p
d, and  k(x) =  0(x+ gk) for all x 2 Rd. Obviously,

(5.41) jj
jj� � ��(
;?) � Cg;�jj
jj�; 
 2 ���;
with some constant Cg;� > 0: The completeness of the metric �v;� is checked
directly. As a countable dense set in ~�� one can take the set of �nite con�gurationsP
x2
 n(x)�x supported by all possible 
 2 �0 with atoms x 2 Q and multiplicities

n(x) 2 N. Respectively, the space ~�� will be equipped by the metric �v;� induced
by (5.39).

An important issue (based on Proposition 3.2.6 of [17]) is that the embeddings
(~��; ��;�) ,! (���0 ; ��;�0) are compact for � < �0; therefore the level sets (5.24) are
relatively compact in ���0 . This enables us to apply Prokhorov�s criterion (see e.g.
15.4.4 in [16]) to the family f��N (d
j�)gN2N obeying the moment bound (5.28).
Thus, for a given � 2 ��0 and � 2 (�0; �), there exists a limit measure on the Polish
space (���; �v;�)

(5.42) ~� := lim
M!1

��NM (d
j�) 2 P(���);
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such that for all bounded continuous functions F 2 Cb(���)

(5.43) lim
M!1

Z
��

F (
)��NM (d
j�) =
Z
���

F (
)~�(d
):

Now we show that the above measures (5.34) and (5.42) coincide and hence
� is supported by simple con�gurations 
 2 � t. As we already know, for any
� 2 Bc(Rd) and for all bounded local functions G 2 L1(��);

(5.44) lim
N!1

Z
�

G(
)��N (d
j�) =
Z
�

G(
)�(d
):

Note that Cb(���) and L1(��) both include the measure determining class FCb(� )
of all cylinder functions having the form (2.14). Thus, by comparing (5.43) and
(5.44) we immediately obtain that

� = ~� 2
\

�2(�0;�)
P(~��):

Since the set ~�� is dense in (���; ��;�) and hence any bounded, uniformly continuous
function F : (~��; ��;�) ! R uniquely extends to an element from Cb(���), we get
that � = limM!1 ��NM (d
j�) in the weak topology on each ~��; � 2 (�0; �):

Furthermore, applying Fatou�s lemma to the continuous functions ~�� 3 
 !
exp jh
;  kijP , we conclude from (5.24) and (5.41) that for all �0 2 (0; �m�1

 ] and
k 2 ZdZ

�

exp
�
�0j
kjP

	
�(d
) �

Z
�

exp
�
�0jh
;  kijP j

	
�(d
)

= lim
N!1

Z
�

exp
�
�0jh
;  kijP j

	
��N (d
j�)

� sup
j2Zd

lim
N!1

Z
�

exp
�
�j j jP j

	
��N (d
j�) � 	�:(5.45)

By Corollary 4.5 any � 2 P(� ) obeying (5.45) must be supported by the setT
0<�<� �� � � t.
To guarantee that the limit point � is Gibbs, we need to establish a proper

continuity of the speci�cation ��. For every � 2 (0; �), � := �K 2 Qc(Rd) and
F 2 Cb(~��), let us consider the following map, cf. (2.33),

(5.46) ~�� 3 � ! ��F (�) :=

Z
�

F (
)��(d
j�):

We claim that ��F is continuous in the metric �v;� at every point �0 2 ��� :=
~��\�� ; for the proof of this fact see Proposition 5.2 below. In particular, the set of
discontinuities of the function ��F is of zero measure �, which by the portmanteau
theorem (see Theorem 2.1 in [5] or 1.4.2 in [16]) allows us to substitute ��F for F
in (5.43). In account of (2.32), we thus can take the limitZ

~��

(��F )(
)�(d
) = lim
M!1

Z
~��

(��F )(
)��NM (d
j�)

= lim
M!1

Z
~��

F (
)��NM (d
j�) =
Z
~��

F (
)�(d
);(5.47)
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for all � 2 Bc(Rd) and F 2 Cb(~��): This shows that � satis�es the DLR equation
(2.37) and hence completes the proof. �

Remark 5.1. (i) Note that in the de�nition (5.38)�(5.40) of (���; �v;�) we cannot
put  k := 1 �Qgk

and respectively

��(
; �) :=
hX

k2Zd
(j�
kj � j��kj)

P
(1 + jkj)�(d+�)

i1=P
:

The reason is that the counting maps � 3 
 ! j�
kj := j
 \ �Qgkj are not vaguely
continuous (as pointed out in Subsection 2.1) and thus the corresponding metric
�v;� would not be complete.

(ii) The optimal choice of the weights w�(k; j) (typically, expf��jk � jjg or
(1 + jk � jj)�(d+�)) determining the set of tempered con�gurations 
 2 � t strongly
depends on the decay of V (x; y) as jx � yj ! 1. More restrictive conditions on
V (like the exponential decay or �nite range) allow us to consider the larger set
� t, cf. (2.65). Another property of the weights w�(k; j), which was essential in
the above proofs (more precisely, in (3.15)), is that log

�
w�1� (k; j)

�
should be a

metric on Zd. For the latter reason, the weights decaying too quickly (e.g., such as
expf��jk � jj2g) are not permitted.

5.4. Almost continuity of the speci�cation. In the above proof we have cru-
cially used the so-called almost Feller continuity of the speci�cation � = f��g,
which is the contents of Proposition 5.2. Somewhat surprisingly, it turns out that
such regularity of the stochastic kernels ��(d
j�) holds true, even though the po-
tential V (x; y) itself may be singular at the diagonal.

Proposition 5.2. For each F 2 Cb(~��), � 2 (0; �), and � 2 Qc(Rd), the map
(~��; �v;�) 3 � ! ��F (�) de�ned by (5.46) is continuous at every point � 2���.

Proof. Recall that

��F (�) = [Z�(�)]
�1
Z
��

F (
� [ ��c) exp f��H�(
�j�)gd�z�(
�);

Z�(�) :=

Z
��

exp f��H�(
�j�)gd�z�(
�):(5.48)

With the help of Lebesgue�s dominated theorem, the claim will follow from the
almost continuity property of the functionals

(~��; �v;�) 3 � ! F (
� [ ��c);

(~��; �v;�) 3 � !W�(
�j�) :=
X
x2
�

X
y2��c

V (x; y);(5.49)

where we �xed an arbitrary 
� 2 ��. Indeed, let a sequence f�(N)gN2N � ~��
converge to some � 2 ���, then by (5.41) supN2N jj�(N)jj� < 1: From (5.7) we see
that for � := �K;� := �L 2 Qc(Rd) with K;L b Zd and large enough L � K
(such that dist(K;Lc) � r=g +

p
d)

jW�(
�j�)�W�(
�j�(N))j � jW�(
�j��)�W�(
�j�
(N)
� )j

+Lgj
�j
X
k2K

X
j2Lc

jk � jj�(d+�)
h
j�j j+ j�

(N)
j j

i
:(5.50)
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The second term in the right hand-side in (5.50) becomes arbitrary small as L % Zd
due to the obvious estimate

X
k2K

X
j2Lc

jk � jj�(d+�)
h
j�j j+ j�

(N)
j j

i
� C(K)
[dist(K;Lc)]d+��a

h
jj�jjP� + jj�(N)jjP�

i
;

(5.51)

with
C(K) := 2�

X
k2K

(1 + jkj)� ;

which is uniform in N 2 N: Let us examine the �rst term

jW�(
�j��)�W�(
�j�
(N)
� )j �

X
x2
�

�������
X

y2��n�

V (x; y)�
X

y(N)2�(N)

�n�

V (x; y)

������� :
Recall that by construction � \ (@� [ @�) = ?: Since �(N) ! � vaguely, starting
from some N0 2 N the numbers of particles restricted to the domain �n� should
coincide, i.e., j��n�j = j�(N)�n�j = n 2 N0. Furthermore, by (2.6) one can choose
proper enumerations fyjgnj=1 = ��n� and fy

(N)
j gnj=1 = �

(N)
�n� such that

(5.52)
���y(N)j � yj

���! 0; for all 1 � j � n:

In particular, we observe that for any 
� 2��

lim
N!1

dist(
�; �
(N)
�n�) = dist(
�; ��n�) > 0:

Due to the continuity of the potential V (x; y) for x 6= y, this yields the required
convergence in (5.50)

lim
N!1

W (
�j�
(N)
� ) =W (
�j��):

Similarly one proves that limN!1 F (
� [ �
(N)
�c ) = F (
� [ ��c) for each F 2

Cb(~��) and 
� 2 ���. Since the function F is continuous, it would su¢ ce to
check that �v;�(�

(N) ; �) ! 0 implies �v;�(
� [ �
(N)
�c ; 
� [ ��c) ! 0. Consider any

f 2 C0(Rd) with suppf � � 2 Qc(Rd). As discussed above (cf. (5.52)), the cut-o¤
operator � 7! ��n� is continuous in the vague topology Ov(� ) at each point � 2�� .
Thus

hf; 
� [ �
(N)
�c i = hf; 
�i+ hf; �

(N)
�c i

! hf; 
�i+ hf; ��ci = hf; 
� [ ��ci;

which means that �v(
�[�
(N)
�c ; 
�[��c)! 0: It remains to show that also ��(
�[

�
(N)
�c ; 
� [ ��c)! 0: Indeed, by de�nition (5.40)

�P� (
� [ �
(N)
�c ; 
� [ ��c) = �P� (�

(N) ; �)

+
X

k: supp k\�6=?
jh�(N)�c ;  ki � h��c ;  kij

P (1 + jkj)�(d+�)

�
X

k: supp k\�6=?
jh�(N);  ki � h�;  kijP (1 + jkj)

�(d+�)
;(5.53)

where both series in the right-hand side are �nite and tend to zero due to the vague
convergence �(N) ! �.
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On the other hand, we have the following upper bound

jF (
� [ �
(N)
�c )j exp

n
��H�(
�j�(N))

o
� jjF jjCb(~��) exp

8<:�j
�j
0@Eg +Kg

X
k2K

X
j2Kc

jk � jj�(d+�)j�j j

1A9=;
� jjF jjCb(~��) exp

�
�j
�j �

�
Eg + C(K)Kgjj�jjP�

�	
;(5.54)

which is integrable with respect to �z�(d
�). Thus, we can apply Lebesgue�s dom-
inated convergence theorem, which yields the required continuity of the integral in
(5.48). Convergence of the partition functions Z�(�

(N)) � 1 is established in the
same way. �
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