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Abstract

Research in software architecture has emphasized compositional development, where the com-
putational aspects of a system are modularly separated from communication and coordination
aspects. Typically, software architectures are factored into a set of components, which en-
capsulate computation, and connectors, which encapsulate interactions. In terms of design,
development and debugging, this separation has several important advantages. In particular,
by separating application code from the protocols used for interaction, software components
may be independently developed and tested. Moreover, as requirements change, existing archi-
tectural elements may be modularly replaced by new elements with appropriate properties.

A fundamental problem with these abstractions is their interaction with “cross-cutting”
architectural features such as heterogeneity, availability, and adaptability. Availability, for
example, requires protocols that manipulate both communication and resources. Controlling
architectural resources, however, requires access to the internal resource usage patterns of com-
ponents and connectors. Unfortunately, current architectural abstractions have inflexible inter-
faces which obscure these patterns. This loss of information forces the implementation of such
features to be hard-coded within architectural elements, eliminating many advantages of the
modular approach.

In this thesis, we propose a model for distributed software architectures that exposes resource
access in a modular fashion. Our model extends current architectural abstractions by providing
a meta-architecture for customization. This meta-architecture augments the functional interface
of architectural elements with an operational interface for controlling resources. We also develop

a formal semantics which provides a foundation for reasoning about composition in the model.
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As an instantiation of the model, we describe an architecture description language called
the Distributed Connection Language. DCL allows the specification of distributed architectures
which incorporate traditional elements (i.e. components and connectors) together with new
elements, called policies, which specify resource constraints. We provide a Java-based imple-
mentation of DCL to demonstrate that the increased modularity of the approach does not entail

prohibitive performance tradeoffs.
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Chapter 1

Introduction

1.1 Introduction

The term “middleware” has been used to describe cross-platform integration tools that support
high-level distributed services such as remote interactions and fault-tolerance. In particular, it
has been observed that, while distributed software may require complex interaction mechanisms,
the implementation of these mechanisms need not be tied to the implementation of applica-
tions [53]. By separating application code from the protocols used for interaction, software
components may be independently developed and tested. Moreover, as requirements change,
existing architectural elements may be modularly replaced by new elements with appropriate
properties.

The design methodology behind middleware is formalized by the notion of a software archi-
tecture. Software architecture factors a system into a collection of components, which encapsu-
late computation, and a collection of connectors, which describe how components are integrated
into the architecture [50]. Such architectures are often described formally in terms of an ar-
chitecture description language (ADL). An ADL provides linguistic abstractions that capture
components and connectors, and support formal mechanisms for reasoning about composition.
Recent ADL research has provided new insights in the areas of specification [7], verification [9]
and prototyping [37]. Moreover, commercial middleware solutions such as the Common Object

Request Broker Architecture (CORBA) [45] and Java’s Remote Method Invocation (RMI) [58]



embrace many aspects of the ADL approach. CORBA, for example, abstracts over the low-level
remote procedure call (RPC) protocols required to link distributed objects. On the one hand,
this allows designers to build distributed applications without regard for the specific low-level
protocols in use. On the other hand, software architects may change these protocols (e.g. by
creating new stub generation mechanisms) without changing application code.

Current ADLs emphasize the modular specification of coordination and communication.
While this emphasis has demonstratable advantages for system development, a fundamental
problem is loss of information engendered by ADL abstraction boundaries. This problem is
particularly apparent when we consider the design of distributed software architectures. Specif-

ically, distributed architectures introduce new concerns in system development:

e Reliability: Computer networks are inherently faulty and insecure. As a result, dis-
tributed applications may be exposed to intermittent loss of connectivity or to malicious
attacks. Similarly, node failure is more probable in a multi-node configuration. ! Thus,
distributed applications may require replication or other forms of fault-tolerance in order

to tolerate transient failures.

e Heterogeneity: Distributed applications may be deployed on heterogeneous hardware;
different hardware may require different implementation techniques for application com-
ponents. Moreover, component distribution may be a run-time rather than compile-time
property; application components (e.g. Java applets) may need to adapt to different

hardware at run-time.

Design constraints such as reliability and heterogeneity require a model of resources as
well as a coherent interface for manipulating communication and coordination. For example,
consider a critical server within a distributed application. We might increase the fault-tolerance

of the server by adding a backup component. In order to utilize this approach, we must ensure

'The fact that multi-node configurations are more prone to failure than uniprocessor configurations can be
seen by a simple probability argument: let p be the probability that a particular node will fail independently.
Then 1 — p is the probability that the node will not fail. If there are N nodes, the probability that none of the
nodes will fail is at most (1 —p)". Since (1 —p)" < (1 — p) (because p < 1) we see that node failure is more
likely in a multi-node configuration.
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Figure 1.1: Fault-tolerant Server: The server is made fault-tolerant by three actions:
1) each server interaction is duplicated at the backup, 2) a state snapshot is periodically
sent to the backup, and 3) the resources of the server and backup are separated to allow for
independent failure.

that interactions and state snapshots are periodically recorded at the backup (see Figure 1.1).
Moreover, we must ensure that resources associated with the server and backup are separated
so that each may fail independently. However, without a modular mechanism for managing
resources, we must implement such a policy by intermingling application and fault-tolerance
code. This approach hinders development as new bugs may be introduced, and components
cannot be tested independently. Thus, from a software engineering perspective, we desire
modular mechanisms for extracting information such as state snapshots or resource placement,
and allowing policies to be expressed separately as manipulations of these attributes.

In this thesis, we introduce new abstractions that capture architectural resources, and pro-
vide techniques for specifying policies over these resources. In effect, we augment the abstrac-
tion boundaries of current ADLs in order to support critical policies required in a distributed
setting. Three main contributions characterize the approach: an architectural model for dis-

tributed software, a specification language and implementation, and a formal semantics.



Our architectural model is based on the Actor [2] model of computation. In particular,
we view elements of a software architecture as encapsulated collections of actors, called actor
groups. Through actor groups we realize the requirements necessary for a flexible model of
distributed architectures: while internal actors are protected by the abstraction boundary pro-
vided by groups, composition mechanisms are provided that allow connections to be formed
between groups. We impose a meta-architecture on actors to expose resources that are uti-
lized by groups. The introduction of a meta-architecture provides a transparent, compositional
mechanism for customizing the resource utilization of the actors within a group.

We develop the Distributed Connection Language as an Actor-based ADL that instantiates
our architectural model. Linguistically, a DCL specification is rule based and reactive, specifying
changes to an architecture in response to run-time interactions. DCL provides a compositional
approach for architectural development: rather than hard-code customization and resource
management within components and connectors, new abstractions called policies are used to
modularly enforce such constraints.

While DcL allows for flexible system development, DCL abstractions have limited use if they
can not be mapped to efficient implementations. In particular, a key performance issue is the
overhead associated with modular composition versus hard-coded customization. Thus, as part
of the development of DCL, we provide a reference implementation together with performance
improvements that reduce overhead to less than 10%.

Finally, we provide a formal semantics for our architectural model. The purpose of this
semantics is to provide a foundation for addressing composability issues in software architec-
tures. In particular, we wish to provide formal techniques for determining whether or not the
constraints defined by specific architectural elements are correctly enforced within the system.

“weak” conditions for composability.

Through our semantics, we are able to define

The remainder of this thesis is organized as follows. In the next section, we describe related
work in software architecture and distributed systems. We then develop a model of distributed
software architectures based on actors and their meta-level customization. Next, we describe

DCL, a high-level specification language for distributed architectures. We describe the mapping

of DCL specifications onto our architectural abstractions, as well as the performance character-



istics of the approach. Finally, we conclude with a formal semantics of the model, as well as

the derivation of composability conditions.

1.2 Related Work

The results developed in this thesis draw on related research in software architecture, reflective

models, and more general research in distributed systems.

1.2.1 Architecture Description Languages and Software Buses

The predominant approach for specifying software architecture is by way of an architecture
description language (ADL). Such a language provides abstractions that represent components
and their interfaces, as well as separate mechanisms for connecting interfaces. An architec-
tural specification is codified in terms of linguistic abstractions that define instantiations of
components and connectors, and invoke binding operations to link interfaces. A similarly moti-
vated approach is that of a software bus. A software bus provides a specification language that
supports component descriptions but abstracts away most interconnection issues. Instead, the
designer indicates which components should be connected to one another and the software bus
automatically instantiates the appropriate connection mechanisms. Both approaches generally
agree on component specification: a component is modeled as a discrete segment of code with
a well-defined interface. Typically, interfaces are represented as function entry points and are
invoked using traditional mechanisms such as procedure call or message passing. Moreover,
composition is modeled uniformly in terms of hierarchical specifications of components that are
represented as collections of sub-components.

While models of components are somewhat standard, the key contribution of recent work is
modular connection mechanisms. In particular, these mechanisms are necessary for abstracting
over component interconnection issues such as code heterogeneity, synchronization constraints,
and fault-tolerance and security requirements. The manner in which connection mechanisms
are handled marks the primary difference between ADLs and software buses. In an ADL,

connection policies are represented explicitly by objects. On the other hand, in a software



bus connection policies are represented implicitly as a feature included in the bus on a per-
application basis; i.e. the set of components and their component interconnections is handled
by a customized software bus instantiated explicitly for a particular application. These different
choices for representing connection policies reflect different approaches for handling binding and
customization issues, and have important implications in terms of how architectures may be
customized dynamically. We describe representative ADLs and software buses and contrast

their features in the remainder of this section.

1.2.1.1 UniCon

UniCon [50] is a high-level specification language that directs the compilation of an applica-
tion by consulting the architectural specifications of pre-defined components and connectors.
According to Shaw, a UniCon component “roughly corresponds to a compilation unit of con-
ventional programming languages.” A component specification consists of an interface and
an implementation. An interface defines functions provided by the component as well as con-
straints that apply to the component’s placement in an architecture. In particular, a component
interface defines a set of players which represents the visible semantic elements through which
components interact. A component implementation may be either composite, in which case it
is defined in terms of a set of sub-components, or primitive, in which case it is defined by an
executable object. In a composite component, interface players may be players provided by a
sub-component.

A UniCon connector, on the other hand, is used to glue component interfaces together. A
connector consists of a protocol and an implementation. A protocol is defined in terms of a
collection of roles that designate the set of requirements for each participant in the connection.
In effect, a role is a type specification that is used to determine if a component may participate
as the given role in the protocol: the type specification of a component interface is a guarantee
that the component adheres to a particular form of interaction. The implementation of a
connector specifies the mechanisms used to carry out the interactions defined by the protocol.
Currently, only primitive implementations are allowed. That is, composite connectors may not

be specified.



The designers of UniCon have placed heavy emphasis on the implementation side of architec-
tural specification. That is, component and connector specifications contain many detailed at-
tributes that facilitate their use in specific contexts. As a result, UniCon specifications are at the
mercy of low-level implementation concerns and it is difficult to abstract away a model of archi-
tectural structure. For example, ProcedureCall and RemoteProcedureCall are two instances
of connectors. In order to use the ProcedureCall connector, a player must define a RoutineDef
or RoutineCall attribute. On the other hand, in order to use the RemoteProcedureCall con-
nector, a player must define an RPCDef or RPCCall attribute. However, the pattern of inter-
actions is the same for either procedure call or RPC, only the context differs. Thus, it would
seem logical that an ADL would abstract away these distinctions rather than embed them in

component specifications.

1.2.1.2 Rapide

Rapide [36, 37, 38] is an object-oriented language designed for event-based prototyping of archi-
tectures of distributed systems. Rapide specifications are designed to allow system architects to
test and verify architectures before implementation decisions are made. A Rapide architecture
consists of a set of module specifications called interfaces. The behavior of the architecture is
defined by a set of connection rules that represent direct communication between interfaces.
The set of formal constraints for an architecture defines the permissible patterns of commu-
nication that may occur between interfaces. An interface defines a set of features that is an
abstract description of the behavior of a module that conforms to the interface. Specifically, an
interface defines behavior provided by a module as well as behavior required by the architecture
that uses the module. Thus, in Rapide, no explicit components are present in an architectural
specification. Rather, interfaces are surrogates for the actual modules used in an executable
instantiation. The idea is to represent a type of behavior for simulation purposes: the actual
choice of component is delayed until the architecture is implemented.

Rapide represents connections between modules in terms of event patterns among inter-
faces. The policies themselves are a combination of the connection rules and formal constraints

for an architecture. Connection rules in Rapide represent direct links between elements of in-



terfaces: events generated by one module are received at all modules which are connected by
the connection rules. Connection rules may also be specified as patterns, which allows for the
representation of dynamic interactions (i.e. where the set of participants may not be fixed at
run-time).

While connection rules may be viewed as generators of event patterns, formal constraints
restrict these patterns according to relationships between events. Formal constraints may either
be placed in interfaces, in which case they may be specified in terms of abstract module behavior
and restrict the local event patterns generated or received by the interface; or they may be placed
in an architecture, in which case they restrict event patterns in the architecture as a whole.
The formal constraints specified in an interface provide a “contract” describing the module’s
context in the architecture. This represents the simplest form of connection policy between
two modules: that implied by their respective local constraints. These local connection policies
may be augmented with additional constraints which define global properties.

The formal constraints specifiable in Rapide are motivated by the desire to ensure ap-
propriate architecture-wide behavior, such as atomicity requirements or deadlock prevention.
However, these architecture-wide constraints lack modularity and may easily interfere with one
another. Thus, Rapide specifications are mainly useful as a design tool but do not provide a
straightforward mechanism for mapping an architectural specification into an explicit implemen-
tation. In particular, while hierarchical refinement is well supported and interfaces correspond
to actual components in an implementation, connection mechanisms are not encapsulated and

therefore do not represent manipulatable elements in a realization of the architecture.

1.2.1.3 GenVoca

The GenVoca [16] system grew out of two separate environments for supporting the development
of large hierarchically structured systems. Architectures for these systems are built from pre-
defined system components with static interfaces. Components are organized into realms where
implementations may vary but all components within a particular realm must implement the
same interface. The interface shared by all components in a realm is specified in terms of a set of

operations and parameters. Operations may be invoked by other components in an architecture



and are used to access the services of the component. Parameters are place holders for other
components and are used locally to obtain services from elsewhere in an architecture.

Connection policies in GenVoca are handled in a fashion similar to that of software buses.
Specifically, components are organized into an architecture by composition, which is the process
of resolving parameters in a component with instances of sub-components. Connection poli-
cies as separate, first-class entities do not exist. Rather, the process of composition matches
interfaces according to type and the appropriate interaction mechanisms are automatically in-
stantiated to handle the connection. A typical architecture is developed as a series of refinements
starting with a high-level component which has several parameters. These parameters are filled
with appropriate instantiations of sub-components (i.e. instances which satisfy the type of
interface defined by the parameters), and the process continues until no further refinements
are possible. These composition mechanisms have been used as the basis for domain-specific
software system generators [15, 14].

The designers of GenVoca treat architectural specification in a domain of systems where
architectural structure is relatively fixed and a rich space of components is available. As a
result, the need for new interconnection mechanisms can only be satisfied by introducing new
realms with new interfaces. Moreover, the notion of adapting a component to new contexts
is not addressed. Rather, the designers envision a system in which components will be more
intelligent and able to automatically adapt to future contexts. Pursuing this goal is the current

research thrust of the project.

1.2.1.4 ABLE

The ABLE project at Carnegie Mellon has pursued software architecture from several different
perspectives, culminating in the Wright [6, 7, 8, 9] architecture specification language and the
ACME [24] architecture description interchange language. The Wright language embodies a
more formal approach to architecture specification. In particular, behavioral aspects of an
architecture are described by an extension of the language used in Communicating Sequential

Processes (CSP) [26].



A Wright component is specified by an interface and a computation. An interface describes a
fixed set of ports through which the component may participate in interactions. A computation
describes what the component actually does. This specification is represented in terms of
CSP events received at interface ports. Each port specification also defines a behavior which
represents the behavior of the component relative to that particular port. For example, a simple
filter component would define an input port with the behavior of receiving data, an output port
with the behavior of sending data, and a computation with the behavior of computing an output
based on the input. Each of these specifications is described in terms of CSP code fragments.

A Wright connector defines an interaction pattern between a set of ports. A connector
specification consists of a set of roles, which describe the behavior of each participant in the
connection, and glue which describes how the participants are linked to define an interaction.
A role represents the behavior expected by an interface port which assumes the role. When
a connection is created, a behavior check is made to ensure that the behavior specification of
a port satisfies the behavior specification of a role. This is done by proving a relaxed form of
equivalence between the associated CSP code fragments. The glue of a connector is a complete
behavioral specification of how events from one port are translated into events on another port.

Finally, a Wright configuration specifies a complete architecture in terms of a set of com-
ponents and connectors to link their interactions. An important goal is to provide an explicit
formal representation for all aspects of an architecture. Thus, the uniform model of compu-
tation provided by CSP is used as the notation for all architectural elements. As a result,
architectures exhibit synchronous behavior. As noted in an early criticism of CSP [34], em-
bedding synchronization constructs in communication constructs severely limits the ability to
maximize concurrent resources.” As a result, a CSP based model may not be desirable for

modeling the dynamic and highly asynchronous behavior of distributed systems.

2This is only half the story in a long-standing debate between proponents of synchronous and asynchronous
communication. I only mention this criticism because it relates directly to the modeling of distributed systems

(cf. 22, 63)).
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1.2.1.5 Polylith and Aster

Polylith [27, 28, 47] and Aster [31, 30] are independently developed but similar paradigms which
describe architectures in terms of a set of components, a set of connections, and a customized
communication backbone, called a software bus, which all components use for interaction. A
software bus encapsulates all the protocols necessary to manage interactions for a particular ap-
plication and automatically invokes the appropriate protocols when components communicate.
Binding components over a software bus consists of linking component interfaces directly. The
software bus automatically determines a protocol to use for each interaction based on the prop-
erties of components. Customizing a software bus consists of modifying the implementation of
protocols from which the bus is constructed.

Implicit connection mechanisms, such as software buses, have many desirable attributes. For
example, architectural specification is greatly simplified as only connections between compo-
nents need be indicated, rather than an explicit connection policy for each pair of components.
Moreover, software buses are an appropriate abstraction for handling vertical integration [31]
issues such as heterogeneity, availability and security. However, it is not clear how software
buses can incorporate the dynamic interaction requirements of components. Specifically, it is
not obvious how software buses may be made receptive to flexible communication topologies and
per-interaction customization. A general problem is that software buses lack the fine-grained
modular representation of object-based connectors. Therefore, it is not readily apparent how

they may be customized for dynamic application-specific needs.

1.2.2 Modular Configuration of Distributed Systems

The extent to which heterogeneity is the norm rather than the exception in distributed systems
has resulted in an emphasis on modular and customizable abstractions for building applications
in these environments. T'wo approaches have been explored in contemporary work which differ
mainly in the granularity of modularity and customization which is supported. Interaction
specific or component based approaches emphasize customizable connections between individual

components, while application based approaches specify customizations on a system-wide basis.
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Customization of component interactions has been explored in the x-Kernel [29], MAUD [4],
and more recently in Horus [61]. The x-Kernel and Horus utilize protocol stacks to support
customization. KEach layer in the stack supports a static interface for interaction with the
layers above and below it. The interface in these systems is fairly elaborate. MAUD supports
meta-level customization of protocols for fault-tolerance. In comparison to the protocol stack
approach, reflection enables MAUD to use a simple but flexible interface.

Application-oriented approaches, such as tool-kits, support a small set of protocols for inter-
connecting application components. For example, in transaction languages such as Avalon [20],
the concept of nested transactions is used to structure distributed systems. Tool-kits, although
lacking generality, are well suited to applications requiring only the protocols they provide.
More recently, customization has been applied at the operating system level in the form of
micro-kernels [1]. In an object-oriented system such as Choices [19], frameworks may be cus-
tomized for a particular application. However, once customized, the characteristics may not
change dynamically. In a similar manner, the x-Kernel allows customization of the message

passing implementation. However, the modifications affect all components in the system.

1.2.3 Reflection and Language-Based Support

A final category in which concepts related to architectural configuration have been addressed is
at the level of programming languages. Factoring out orthogonal application features such as
synchronization constraints has been specified in approaches such as Synchronizers [23] and RT-
Synchronizers [48, 49]. Similarly, modular specification of protocols for distributed interactions
has been specified in terms of Communicators [53, 54]. A typical feature of these approaches
is the introduction of separate language constructs that specify, for example, the coordination
requirements between a group of objects.

A key problem with a strict language based approach is that new language constructs may
have to be introduced in order to accommodate new architectures and applications. As Kiczales
points out [33], the difficulty is that component implementation mechanisms are closed. That is,
application specific client knowledge can not be utilized to yield efficient interaction mechanisms.

Rather, interactions must adhere to mechanisms fixed in the implementations of particular
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components. Reflection in an object based system allows independent customization of each
object. Reflection has been used to address many issues in concurrent systems. For example, the
scheduling problem of the Time Warp algorithm for parallel discrete event simulation is modeled
by means of reflection in [63]. Reflection has also been used explicitly to support parallel and
concurrent language constructs [39]. Similarly, interconnection issues have been addressed
reflectively in order to support flexible transaction models [13, 12]. Reflective frameworks for
the Actor languages MERING IV and Rosette have been proposed in [21] and [60], respectively.
In MERING IV, programs may access meta-instances to modify an object or meta-classes to
change a class definition. In Rosette, the meta-level is described in terms of three components:
a container, which represents the acquaintances and script; a processor, which acts as the

scheduler for the actor; and a mailbox, which handles message reception.
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Chapter 2

An Architectural Model for

Distributed Software

We use the concept of architectural context as the basis for modeling distributed software archi-
tectures. The architectural context of a component consists of the resources it utilizes, and its
connections with other components. Following Shaw and Garlan [51], we encapsulate compu-
tation within architectural components. In contrast, however, we define connectors as software
elements which specify architectural context. Thus, we allow connectors to manage resources
as well as manipulate connections between components. Connectors which manage resources
may be used to capture more abstract architectural constraints such as replication and load
management.

Three key features characterize our model:

e Flexible Components and Connectors: We provide an extensible model which al-
lows the specification of multi-faceted elements within a uniform computing environment.
In particular, we are able to capture common software abstractions such as sequential or
multi-threaded execution; local, distributed or shared resources; and synchronous or asyn-
chronous interactions. Moreover, the uniform nature of the model provides a grounded

theoretical framework for reasoning about architectural interactions.

14



e Encapsulation: Abstraction boundaries are enforced by providing for component- and
connector-based access control. In particular, internal resources are protected by a well-
defined external interface. By enforcing encapsulation, we allow a compositional approach
to software development: components and connectors may be independently developed

and later incorporated into executable systems.

e Composition Mechanisms and Reasoning: Composition mechanisms are provided
for integrating components and connectors while respecting encapsulation properties.
Connectors which manipulate interactions are used to build connections between appli-
cation components. Connectors which manage resources are used to enforce architectural
constraints such as fault-tolerance, load management, and security. Moreover, our com-
position mechanisms provide a basis for reasoning about composition properties such as

interface compliance and non-interference between resource management policies.

We use Actors [2] as a basis for modeling distributed software architectures. Actors provide
a general and flexible model of concurrency. As an atomic unit of computation, actors may
be used to build typical architectural elements including procedural, functional, and object-
oriented components. Moreover, actor interactions may be used to model standard distributed
coordination mechanisms such as remote procedure call (RPC), transactions, and other forms
of synchronization [3, 53, 23]. Similarly, modern sequential languages are readily extended with
the actor primitives (cf. [46, 59]).

We capture architectural context by incorporating a meta-architecture into the actor model.
In particular, actor computation is represented in terms of low-level service requests which have
a default system behavior. By allowing meta-actors to intercept these requests, we provide a
mechanism for architectural customization. Specifically, the resource utilization of actors (i.e.
patterns of service requests) may be controlled by a meta-actor which provides an alternative
behavior for handling each request.

We represent components and connectors as collections of actors called actor groups. An
actor group represents an encapsulation boundary which protects internal actors from exter-

nal interactions: actors within a group may only exchange messages with other actors in the
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Figure 2.1: Actor Model: Actors are concurrent objects that interact via asynchronous
messages.

same group. Composition operators are used to build connections between groups. Similarly,

composition operators may be used to install meta-level customizations on group actors.

2.1 Actors

Conceptually, an actor encapsulates a state, a thread of control, and a set of procedures which
manipulate the state. Actors coordinate by asynchronously sending messages to one another.
Each actor has a unique mail address and a mail buffer to receive messages. Actors compute
by serially processing messages queued in their mail buffers. An actor blocks if its mail buffer
is empty.

While it is processing a message, there are three basic actions which an actor may perform

that affect the computational environment (see Figure 2.1):

e send messages asynchronously to other actors;
e create actors with specified behaviors; and

e become ready to process the next message.
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Communication is point-to-point and is assumed to be weakly fair: executing a send even-
tually causes the message to be buffered in the mail queue of the recipient although messages
may arrive in an order different from the one in which they were sent. The create primitive
creates a new actor with a specified behavior. Initially, only the creating actor knows the name
of the new actor. However, actor names are first class entities which may be communicated in
messages. Thus, coordination patterns between actors may be dynamic. The ready primitive is
used to indicate that the signaling actor is ready to process the next message in its mail queue.
Upon invoking ready, the calling actor either begins processing the next available message, or
blocks until a new message arrives.

In this thesis, we model actors as concurrent objects. That is, an actor consists of a private
local state, a set of methods, and a globally unique name. Message passing is viewed as the asyn-
chronous invocation of methods. We view the send and create operations as explicit requests,
while the ready operation is implicit at the end of a method. That is, actors do not explicitly
indicate that they are ready to receive the next message. Rather, the system automatically

invokes ready when an actor method completes.

2.2 Meta-Level Customization

In order to capture architectural context, we view actor computation as an abstraction over
low-level system interactions. Specifically, we define an actor to be composed of three attributes:
a behavior, a local state, and an event queue. An event is a pair, (¢,p), where t gives the type
of the event, and p is an ordered list giving the parameters of the event. The type of an event
is a constant chosen from a fixed set (i.e. there are a fixed number of event types). Actor
computation is defined in terms of the processing of events; an actor computation step consists
of removing an event from the event queue, changing the local state, and generating one or
more new events.

Under this model, actors do not directly interact with one another. Instead, actors generate
signal events which request the “system” to perform a particular action. In response to a

signal, the system may service the request and generate a notification event which alerts the
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Figure 2.2: Actor Signal Processing: An actor requests a message send by generating
a transmit signal. The system handles the signal by sending the message and generating a
continue notification.

actor that its request has been processed. For example, an actor wishing to send a message may
generate a “transmit” signal, (transmit, {msg}), where msg gives the message to send. The
system handles the signal by sending the message and generating a “continue” notification,
(continue, {}) (see Figure 2.2). On the receiving end, the system transforms the message into
a “deliver” event which is eventually placed in the event queue of the appropriate actor.

By definition, signals represent resource requests and, therefore, always block the signaling
actor until the resource has been granted or denied. An actor resumes processing when its event
queue contains a notification corresponding to the signaled event. In particular, the desired
notification is removed from the queue and processed as the next event. All other events are
queued while the actor is blocked or processing another event.

Abstracting actor computation in terms of events decouples actor behavior from the ser-
vicing of requests. In particular, actors need not be specifically aware of the manner in which

requests are serviced so long as event processing semantics are preserved. This independence
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Figure 2.3: Actor Customization: A meta-actor customizes a base-actor by intercepting
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may be exploited to customize actor behavior. Specifically, we may transparently replace system
behavior with equivalent mechanisms for servicing actor requests.

A meta-actor is an actor capable of processing signals generated by other actors. We use
meta-actors as a mechanism for customizing actor behavior. For example, we may customize
actor message passing by installing a meta-actor capable of handling transmit signals (see
Figure 2.3). An actor customized in this fashion is referred to as the base actor relative to
its meta-actor. Once installed, a meta-actor assumes responsibility for processing all signals
generated by its base actor, as well as generating notifications when necessary.

Using the concept of meta-actors, a meta-level architecture is defined formally in terms of

six attributes:

e Events: The set of events is finite and is divided into two non-overlapping subsets: signals

and notifications.
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Figure 2.4: A Meta-Level Stack: Multiple customizations are composed on a single actor
by building a meta-level stack. Messages are redirected (and annotated with “rcv”) to the
bottom actor in the stack and may be relayed up the stack to the appropriate target.

e Blocking Relation: A relation, b C signals x events, defines the synchronization prop-
erties of signals. Specifically, if (s,e) € b, then an actor blocked after generating signal s

may be resumed upon receiving event e.

e Installation by Creation: Meta-actors may be installed only at their creation time.

That is, an existing actor may not be used as a meta-actor unless created as such.

e Propagation: A signal generated by an actor is sent to its meta-actor or to the system. A
notification generated by an actor is always sent to its base-actor, if it has one. Otherwise,

the sending actor is considered “stuck” and may not process any further events.

e One-to-One Installation: Each base-actor may be customized by at most one meta-

actor. Conversely, each meta-actor may customize at most one base-actor.

e Message Delegation: All messages targeted to base-actors are redirected to their meta-

actors.
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The set of events fixes the mechanism by which requests may be made and serviced within
the model, while the blocking relation defines the synchronization properties of signals. In
particular, the blocking relation specifies which events may be used to resume a blocked actor.
Note that any event may be used to resume an actor (i.e. the set of resuming events is not
limited to the set of notifications).

We insist on a one-to-one relationship between base-actors and their meta-actors in order
to provide the most primitive model of customization.! However, multiple customizations may
be applied to a single actor by building a meta-level stack (see Figure 2.4). That is, because a
meta-actor is itself an actor, we may customize it by installing another meta-actor. Moreover,
such customizations are transparent: a meta-actor need not be aware that it customizes (or is
customized by) another meta-actor. Messages received by an actor in a meta-level stack are
always delegated to the top of the stack so that a meta-actor always controls the delivery of
messages to its base-actor. In particular, message delivery is handled by sending an appropriate
notification to a base-actor containing the message to be delivered. We insist on “installation
by creation” as a further simplification of the model.

Note that this model of meta-level customization is parameterized by the choice of events
and the synchronization properties of signals. In the next section, we provide an instantiation
of the model which captures the basic actor operations (i.e. send, create, and ready). In
specific application areas, however, it may be desirable to instantiate the model with more
specific events, or different synchronization properties. In Section 2.2.2, we consider other

instantiations of the model.

2.2.1 Basic Actor Model

We factor each of the basic actor operations into a signal-notification pair (see Figures 2.5
and 2.6). While the transmit and create signals are handled in a straightforward fashion,

the ready signal has a slightly different semantics. In particular, a meta-actor blocked on a

"Many-to-one relationships require that we define synchronization mechanisms among all the meta-actors
customizing a particular base-actor. Fixing a particular synchronization paradigm is counterproductive to the
flexibility we are trying to provide. Note, however, that many-to-one relationships may be simulated by providing
an external “coordinator” actor which coordinates the behavior of individual meta-actors.
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ready ready () deliver(msg)
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Figure 2.5: Basic Actor Model Events and Synchronization: The basic actor oper-
ations are factored into signal-notification pairs. As indicated by the arrows in the diagram
on the right, the transmit and create signals block the caller until a continue or newActor
notification is received, respectively. An actor blocked on ready may be resumed by a deliver
or a signal from a base-actor.

ready may be resumed either by receiving a new message (i.e. a deliver notification) or by
receiving a signal sent by its base-actor. This structure is necessary to avoid excessive meta-
level interdependence. Specifically, if a meta-actor blocked on ready can only be resumed by
a deliver, then the meta-actor can not process any requests from its base actor until it has
received a new message from the system. Such a model is unnecessarily restrictive and prohibits
many common architectural abstractions?.

As an example of how we may customize actors under this model, consider the encryption
of messages between a pair of actors. Figure 2.7 gives pseudo-code for a pair of meta-actors
which may be installed on each endpoint. The Encrypt behavior intercepts outgoing messages
by defining a transmit method. Within transmit, a message is encrypted before it is sent
to its target. Note the use of continue to alert the base-actor that the transmit request has

been serviced. The Decrypt behavior intercepts incoming messages by defining a rcv method.

Recall that messages targeted for a base-actor are annotated with rcv and redirected to the

2An example of such an abstraction is a source actor: an actor which sends messages but never receives any.
If such an actor is customized by a meta-actor which blocks on ready then, under the more restrictive semantics,
the source actor may be blocked indefinitely.
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AcTOR TRANSITIONS

EVENT BEHAVIOR

transmit(msg) | Submit a message for transmission and block until a con-
tinue is received. The argument msg is a message structure
which encapsulates the destination, method to invoke, and
arguments of the message. The default system behavior is
to send the message and send a continue notification to the
signaling actor.

SIGNALS ready() Request the next available message for delivery. The default
system behavior is to get the next available message and de-
liver it to the actor by generating a deliver notification.

create(beh) Request the creation of a new actor and block until a newAc-
tor is received. The argument beh indicates the behavior of
the new actor to create. The default system behavior is to
create the new actor and deliver its address to the signaling
actor via a newActor notification.

continue() Resume an actor blocked on a transmit signal.

NOTIFICATIONS | deliver(msg) Deliver a message to an actor. The argument msg is a message
structure indicating the method and arguments to invoke on
the resumed actor.

newActor(a) Return the address of a newly created actor to an actor
blocked on a create signal. The argument a indicates the
address of the newly created actor.

Figure 2.6: Basic Actor Model Event Behavior: Each signal has a default behavior
corresponding to the actor semantics of the associated operation.

top of the meta-level stack. Within the rcv method, the message is decrypted and delivered

by way of a deliver notification®.

2.2.2 Model Extensions

An advantage of our model is that it is easily parameterized for specific application areas. For
example, suppose we wish to design architectural policies for fault-tolerant systems. Specifically,

suppose we desire the ability to make redundant backups of actors so that we may fail-over

3For ordering purposes, it might be necessary to wait for a ready signal before delivering a new message to
the base-actor. In this example, however, it is not necessary to order incoming messages (actor message passing
is assumed asynchronous), hence we may deliver new messages without waiting for a ready.
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actor Encrypt(actor receiver) { actor Decrypt() {

// Encrypt outgoing messages if they // Decrypt incoming messages targeted for
// are targeted to the receiver // base actor (if necessary)
method transmit(Msg msg) { method rcv(Msg msg) {
actor target = msg.dest; if (encrypted(msg))
if (target == receiver) deliver(decrypt(msg));
target « encrypt(msg); else
else deliver(msg);
target < msg; }
continue(); }

¥
}

Figure 2.7: Meta-Level Implementation of Encryption: The Encrypt meta-actor inter-
cepts transmit signals and encrypts outgoing messages. The Decrypt policy actor intercepts
messages targeted for the receiver (via the rcv method) and, if necessary, decrypts an incoming
message before delivering it.

when a fault occurs. To support this behavior, we re-parameterize (relative to Figure 2.6) the

create, newActor and ready events as follows?:

e create(beh, s, a): Request the creation of a new actor and block until a newActor
is received. The argument beh indicates the behavior of the new actor to create. The
argument s gives the initial state of the new actor. The argument a gives the desired
address (i.e. actor name) of the new actor. If no specific address is required, then a may
be set to the special symbol nil. The default system behavior is to attempt to create the

new actor and return the resulting address in a newActor notification.

e newActor(a): Resumes an actor blocked on a create signal. If the creation was suc-
cessful, then a contains the address of the new actor. Otherwise, a contains the special

symbol nil.

“Note that actor semantics are slightly altered under the new behavior of the create signal. That is, actor
creation may not always succeed.
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e ready(s): Request the next available message for delivery. The argument s gives the
current, consistent state of the requesting actor. The default system behavior is to get

the next available message and deliver it to the actor.

actor Replicator(actor backup) { actor Backup() {
int processed = 0; int count;
int count = 0; State last;

lean waiting = false; .
boolea ) g = false, PriorityQueue unprocessed;
Queue mailQ;

// Receive new unprocessed message

Copy incoming messages to backu
// Copy & g P method rcvMsg(Msg m, int seq) {

method rcv(Msg m) {

// Send a stamped message to the backup unprocessed.enqueue(m, seq);
backup ¢ rcvMsg(m, count++); }
// Queue until our base actor is ready // Receive new state
if (vaiting) { method rcvState(State s, int seq) {
waiting = false; last — s-
deliver(m); -7
1 else Remove all message in "unprocessed”
mailQ.enqueue(m); with sequence number less than seq
} }
// Forward state to backup and }

// deliver next message
method ready(State s) {
backup + rcvState(s, processed++);
if ('mailQ.empty())
deliver(mailQ.dequeue());
else
waiting=true;

Figure 2.8: Meta-Level Implementation of Replication: An instance of Replicator is
installed on the actor to be replicated. An instance of Backup receives state snapshots from
the Replicator so that it can assume the role of the replicated actor if a failure occurs.

Using this re-parameterized model, we may define a simple replication scheme based on
the primary-backup protocol [18]. We implement primary-backup by defining a Replicator
actor, which is installed on the actor to be replicated, and a Backup actor, which receives state
snapshots captured by the Replicator (see Figure 2.8). The Backup records state snapshots

so that it may assume the role of the replicated actor if a failure occurs.
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We capture incoming messages in the Replicator actor by defining a rcv method. Upon
receiving a new message, the Replicator sends a sequenced copy to the backup and either
delivers the message to its base-actor, or queues the message for later delivery. The copies sent
to the backup are received by the rcvMsg method and are sequenced to preserve their reception
order at the Replicator. The ready method in the Replicator copies the current state of
the replicated actor to the Backup. State snapshots are received by the rcvState method
and are sequenced so that the Backup can determine which messages to discard from the local
unprocessed queue. For the sake of brevity, we have omitted failure detection and fail-over

code. However, these additions may be made in a straightforward fashion.

ready(A,,( Ay, Ag))

Replicator

Figure 2.9: Replication of a Meta-Level Stack: In this case, the actor to be replicated
consists of many actors organized into a meta-level stack. One solution is to change the
semantics of ready so that state snapshots capture the entire state of the meta-level stack.

The example described above works well for simple meta-level customization. However,
for more complicated scenarios it is necessary to make additional assumptions. For example,
suppose the actor to replicate consists of several actors organized into a meta-level stack (see

Figure 2.9). In this case, we need to capture the state of each actor in the stack. We may
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resolve this issue by implementing a solution similar to that described in [53]. Specifically,
we require that each meta-actor adhere to the policy of constructing its state by incorporating
a representation of the state of the actors beneath it. Although this is a slightly less general
solution as each meta-actor must now pay attention to the state of the actors beneath it,
it allows meta-actors the flexibility to determine what aspects of state are critical and what

aspects are transient.

2.3 Actor Groups

We use encapsulated collections of actors, called actor groups, to represent the building blocks of
distributed architectures. The purpose of an actor group is to isolate the behavior and resources
of architectural elements behind clearly defined abstraction boundaries. We use collections,
rather than individual actors, to allow for more flexible architectural structures. Specifically,
while an individual actor may be used to model sequential computation, a collection of ac-
tors may be used to capture more expressive behavior such as multi-threaded components or

distributed structures.

Create Actor Manager Create Group

Encapsulated Interaction

Figure 2.10: Actor Groups: Actors groups provide an encapsulated namespace. Actor
creation and message passing is restricted within the group. Only managers may participate
in external interactions.

Formally, an actor group is defined in terms of three attributes (see Figure 2.10):

e Membership: The collection of actors contained within a group is called the membership

of the group. Each actor in the system is a member of at least one group. Moreover,
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actors may be members of multiple groups. That is, memberships may overlap. The
group in which an actor is created is designated as the actor’s initial group. The initial

group of a new actor is the same as its creator.

e Manager: A single actor within each group is designated as the group manager. By
convention, we refer to the name of a group as the actor name of its manager. A group
manager has special privileges and is the only actor allowed to modify a group’s member-
ship, or create new external groups. However, group managers are subject to membership

restrictions. Specifically, a group manager may only be a member of its initial group.

e Namespace Encapsulation: Actors may only interact with other actors in a common
group. That is, actors in disjoint groups may not interact. Group managers have special
privileges which allow them to receive messages from any other actor in a system, regard-
less of group membership. In particular, group managers may always interact with one

another.

The membership of a group defines the computational behavior of a particular component of
an architecture. Namespace encapsulation defines the abstraction boundary which protects
internal computation from outside interference. In particular, actors within a group may not
receive messages from external actors.

We view groups as representing the components and connectors of a software architecture
(see Figure 2.11). For example, a group that represents a component encapsulates actors that
perform computation, together with a set of actors for interacting with other groups (i.e. an
interface). Similarly, groups that represent connectors encapsulate actors that are used as the
endpoints for communication and coordination. However, a novel feature of our approach is
the use of connectors as mechanisms for enforcing architectural policies. In this case, a group
encapsulates actors that serve as meta-level customizations for actors in an external group. We
separate meta-actors into separate groups to isolate components from the policies which govern
them. In Chapter 4, we use this separation as a basis for deriving compatibility requirements

between architectural structures.
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Figure 2.11: Modeling Architectures with Actor Groups: Actor groups are used
to model components and connectors. Traditional architectural connection is achieved by
groups which provide endpoints for communication and coordination. Architectural policies
are enforced by groups which provide meta-level customization of other groups.

To model groups, we associate membership and initial group attributes with each actor. The
membership attribute records the groups that an actor belongs to. The initial group attribute
records the group that the actor was created in. Namespace encapsulation implies that two
actors may only communicate if their membership attributes overlap®. Similarly, membership
properties imply that the initial group attribute of a new actor is identical to the initial group
attribute of its creator.

Group managers are the only actors allowed to relax the encapsulation properties of groups.
Typically, encapsulation is weakened for one of two reasons: to allow local actors to communi-
cate with actors in other groups; or to allow local actors to be customized by meta-level actors
in other groups. Actors may belong to more than one group; group managers use admission
operations to create such overlaps and establish the communication and customization rela-
tionships described above. For example, an overlap admission is used to build communication
relationships. Similarly, a customization admission is used to build customization relationships.

We describe admission in greater detail in the sections below.

"Because group membership is a dynamic property, it is possible that the sender and receiver of a message
will be a member of a common group after the message has been sent. To avoid this ambiguity, we verify group
membership at the time a message is sent. This constraint is formalized in Chapter 4.
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2.3.1 Overlap Admission

An overlap admission allows a group manager to change its membership by adding an external
actor. In terms of actor attributes, an overlap simply adds the admitting group to the mem-
bership attribute of the external actor. Once admitted, an actor may communicate with any
other actor in the group.

Overlap admission allows otherwise disjoint groups to build conduits for interaction. Typ-
ically, a group manager will form an overlap by sending a request message to the manager of
an external group. The contents of the message contain the actor(s) to be admitted, as well
as any other parameters required to evaluate the request (e.g. keys for authentication). Once
the admission has completed, the requesting manager may receive a notification indicating
that the admission was successful. Note that, although the groups overlap, their encapsulation
properties are still preserved. In particular, while it is possible for local actor addresses to be
shared between the groups, only the overlapping actors may communicate with members of

both groups. That is, non-overlapped actors are restricted from communicating directly.

Change Membership .- .

’
e \ :
Al
N e
@ —+— Meta-Level Stack

Manager

Figure 2.12: Overlap of Meta-Level Stacks: The overlap admission of a base actor is
propagated to each actor in its meta-level stack. This ensures that the admitted actor may
communicate locally.
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While achieving overlap is a simple process for basic actors, note that an admitted actor
may be customized by a meta-level stack. In this case, achieving overlap is a slightly more
complicated procedure (see Figure 2.12). In particular, the meta-level stack of the admitted
actor must also be admitted. This is necessary in order to allow the admitted actor to commu-
nicate with local actors. Specifically, if the admitted actor attempts to send a message using
transmit, the message will actually be sent by the top actor in the meta-level stack. If the
membership of this actor does not overlap with the membership of the destination, then the
send will fail. To handle this case, the overlap admission is propagated up the meta-level stack

before completing at the manager.

2.3.2 Customization Admission

The process of installing a meta-actor on a local group actor is called a customization admission.
Recall that, because we wish to isolate components and policies, a meta-actor installed on a
local actor must reside in a separate group. Moreover, the “installation by creation” property
of the meta-architecture implies that the admitting group must create a new actor within an
external group. Thus, the actor being admitted is the new meta-actor which was created in an
external group by the installing manager. Although somewhat unorthodox, this behavior does
not violate encapsulation properties: regardless of how the admission is performed, the new
meta-actor is required to be a member of both groups once admission completes.
Customization admission allows actors of one group to serve as resource managers for actors
of another group. We describe this relationship as enforcement of a policy (i.e. the collection
of resource managers) over an architectural component (i.e. the collection of actors being
customized). Typically, a group manager will install a customization by sending a request
message to the manager of the group to be customized. The contents of the message contain
a reference to the requesting manager, the actor behavior to be installed, as well as any other
parameters required to evaluate the request. The receiving manager responds by creating
and installing each of the requested meta-level behaviors (see Figure 2.13). The initial group

attribute of each new meta-actor is set to the group of the requesting manager. The membership
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Figure 2.13: Customization Admission: The receiving manager (i.e. group A) creates
a new meta-actor in the requesting group. The creating manager specifies the behavior of
the new meta-actor, as well as the address of the local actor to be customized (some of this
information may be contained in the install request). The new meta-actor has initial group
equal to that of the requester (i.e. group B). The membership of the new meta-actor includes
both groups.

attribute of each new meta-actor contains both the requesting and receiving group. The new

meta-actors begin receiving base-level events once installation completes.

2.4 Summary

In this chapter, we provided an abstract description of our model. Through actor groups we
realize the requirements necessary for a flexible model of distributed architectures. While inter-
nal actors are protected by the abstraction boundary provided by groups, managers may relax
strict encapsulation in order to build connections with other architectural elements. Moreover,
the introduction of a meta-architecture provides a transparent, compositional mechanism for
customizing the architectural context of groups.

Admission operators provide composition mechanisms for distributed architectures. Ad-
mission by overlap is motivated by the need for forming connections between architectural
structures. For example, a pipe and filter architecture may consist of actor groups representing
filters with an additional group representing the pipe. Admission by overlap is used to connect

filters to appropriate endpoints of pipes. Similarly, admission by customization is used to mod-
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ify the architectural context of groups. In the pipe and filter example, it may be necessary to
impose flow control over the pipe to compensate for different filtering rates. Flow control can
be implemented by installing a separate group which uses meta-actors to customize message
passing behavior of the pipe group. Admission by customization would be used to create and
install each member of this group.

The use of both admission by overlap and admission by customization allows us to capture
traditional architectural relationships (i.e. connectivity), as well as a new form of relationship
that defines the customization of architectural contexts. In the next chapter, we consider an
instantiation of our model in terms of the Distributed Connection Language (DCL), an archi-
tecture description language for distributed systems. DCL provides a concrete tool for building
distributed software architectures, and provides a platform for reasoning about the applicability

and performance of our approach.
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Chapter 3

The Distributed Connection

Language

The Distributed Connection Language (DCL) is an architecture description language for speci-
fying distributed software architectures. An architectural unit in DCL is a linguistic abstraction
over actor groups as defined in Chapter 2. The syntax of DCL is used to define the initial
members of a group and the conditions under which admissions are performed. In particular,

a basic specification in DCL consists of three types of structures:

e Module: A module defines a computational unit within an architecture. Actors within
a module define the behavior of the computation. Interactions between modules are
handled by exchanging messages through protocol actors, which are provided by protocol

connections.

e Protocol: A protocol defines an interaction mechanism between modules. Internally,
protocols consist of a collection of actors which are assigned to “roles.” Protocol actors

are “submitted” to modules when a protocol is used to build a connection.

e Policy: A policy defines a constraint over the manner in which a module or protocol
invokes system services. Specifically, each actor within a policy is installed as a meta-

level customization of an actor within a module or protocol.
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In ADL terminology, a module is a component, while protocols and policies are connec-
tors. Traditionally, components and connectors have a limited number of connection points
and architectures are static structures fixed at specification time. In contrast, DCL abstrac-
tions are strictly dynamic: modules and protocols are rule-based, and DCL architectures are
reconfigurable at run-time. Note that no generality is lost by restricting DCL to dynamic mech-
anisms. In particular, static architectural configurations may be viewed as an abstraction over
the “bootstrapping” phase of a purely dynamic architecture!.

Syntactically, the architectural elements of DCL (i.e. modules, protocols and policies) are
specified by an “id” and a body. Element ids are used as type identifiers when new instances

of the element are instantiated. The body of an element comprises two sections:

e Local State: Local state consists of a fixed set of local variables with simple types
(such as integer, string, or array), or references to local actors and/or external modules,
protocols, or policies. Elements of the local state are always passed by value when they
are used in interactions with actors or external DCL elements. Within an actor or bCL
specification, the special value self always refers to the name of the appropriate entity.
An initialization section may be defined to initialize the local state when the element
is instantiated. Note that an element may not participate in any interactions until its

initialization code has completed.

e Request Rules: Request rules define the control interface of a DCL element. In general,
a rule consists of a rule type, a caller id (i.e. a type specification for the sender of the
event which triggers the rule), place holders for parameters, a boolean condition, and a
rule body. An accept rule is a special rule defined within a module to accept a connection
request from an external protocol. An install rule may be defined within a module or
protocol and is used to allow policies to customize the internal actors of a module. A
method is a general rule which may be defined within any DCL element. Methods are used

for coordination among DCL elements.

!Static architectures also have the benefit of allowing compile-time type checking. However, we do not focus
on compilation issues in this thesis.
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Rules are matched in order of appearance. Only the first matched rule is invoked. If no
rule is matched by a request, then the request is ignored?. Rule bodies are strictly declarative.
Within a rule body, two actions are possible: local state may be assigned, or messages may be
sent to other entities. Local state definitions consist of a type and a variable name. Variables
are assigned in the usual fashion (e.g. wvar-name := wval). New actors, modules, protocols, or

policies may be instantiated and assigned to local variables using the syntax:

var-name := new type-name (args)

If type-name is an actor type, then the actor is created locally. Otherwise, type-name refers to
a module, protocol, or policy and the new entity is created externally. Var-name is set to the
name of the new entity after it has been created. That is var-name holds a value which may
be used as a target for interactions.

The language by which actors are specified and the parameterization of the meta-level
architecture are independent of DCL syntax. Note that many choices are possible for specifying
actors [53, 35, 46]. For our purposes, we assume the existence of a separate language for
specifying actors, together with a suitable instantiation of the meta-level architecture. We
describe the syntax and semantics of DCL in the remainder of this chapter. Several example
architectures are presented to drive the discussion. We conclude with a description of the

implementation of DCL and a characterization of the performance aspects of the approach.

3.1 Modules

A module encapsulates a collection of actors (called module actors) which implement a particular
computational behavior. As with actors, each module instance has a unique name that is used
to interact with the module. Module names are the only externally visible references in a

module. While the actors within a module form a closed name space, any entity (internal or

2The decision to ignore unmatched requests is arbitrary and perhaps inappropriate in some cases where it
might be useful to generate an exception message, for example, which is sent to the requester in response to an
unmatched request.
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otherwise) may use a module name as a target for interactions. Typically, module names are

passed to external protocols or policies in order to initiate connections.

module ::= module id {
local-state
[ init(args) { mod-action® } ]
accept-rule*
install-rule*
method*

}

accept-rule ::= accept proto-id (args) if condition {
mod-action®
}

install-rule ::= install policy-id (args) if condition {
mod-action®
}

method = [ local | meth-name (args) if condition {
mod-action®
}

mod-action ::= local-state-assignment
| war-name < meth-name (args)
| war-name := new actor-type (args)

Figure 3.1: Module Syntax: A module defines local state, an initialization section, and
a set of request rules. An accept rule is used to process connection requests. An install rule
is used to allow the customization of internal actors. Methods are used for coordination and
synchronization. The syntax rule* denotes the Kleene closure of a statement rule.

Figure 3.1 gives an abstract syntax for modules. As described above, local state consists of
variables with primitive types or references to DCL entities. The init method is optional and
specifies initialization code to be executed when the module is instantiated. The remainder of

the syntax is defined as follows:

e | accept proto-id (args) if condition {mod-action* }‘

Defines an accept rule. An accept rule matches a request if it originates from a protocol

of type proto-id with parameters matching the type signature of args, and condition is
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satisfied. Condition is a boolean expression evaluated over the local state of the module
and args. If an accept rule is matched then args is bound to the request parameters
and the rule body is evaluated. If args contains a reference to a protocol actor which is a
member of the sending protocol, then this actor is automatically admitted to the module’s

name space before the body is evaluated (see Section 3.2).

e |install policy-id (args) if condition {mod-action* }‘

Defines an install rule. An install rule matches a request if it originates from a policy
of type policy-id with parameters matching the type signature of args, and condition is
satisfied. Condition is a boolean expression evaluated over the local state of the module
and args. If an install rule is matched then args is bound to the request parameters and
the rule body is evaluated. A matched rule also results in the installation of a policy actor

on each actor in the module. We describe this process in more detail in Section 3.3.

o ‘[Iocal] meth-name (args) if condition {mod-action* }‘

Defines a method. A method is matched if a request specifies the target meth-name with
parameters matching the type signature of args, and condition is satisfied. Condition is
a boolean expression evaluated over the local state of the module and args. We enforce
the additional constraint that the request must originate from either a local actor or an
external module or protocol. If the keyword local is present, then the rule only matches
requests sent by internal actors. If a method rule is matched, then args is bound to the

parameters of the message and the rule body is evaluated.

e |var-name < msg-name (args)‘

Creates an interaction. An interaction causes a message to be sent if var-name refers
to a local actor, or invokes a method if var-name refers to a protocol or policy. Msg-
name identifies the method to invoke on the target and args parameterizes the message.

Interactions always occur asynchronously (i.e. the caller is not blocked).

Accept and install rules modify the name space of a module in order to form new connections

or enforce architectural policies. In the case of an accept rule, one or more protocol actors are
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admitted as endpoints for a connection to another module. In the case of an install rule, several
policy actors are admitted as meta-level customizations of internal module actors. We describe

protocol and policy actors installation in more detail below.

3.2 Protocols

protocol ::= protocol id | role role-name* | {
local-state
[ init(args) { proto-action* }]
install-rule*
method*

}

install-rule  ::= install policy-id (args) if condition {
proto-action®
}

method := [ local | meth-name (args) if condition {
proto-action®
}

proto-action ::= local-state-assignment
| war-name < meth-name (args)
| actor-name := new actor-type (args)
as role-name
|  connect (args) to mod-ref

Figure 3.2: Protocol Syntax: A protocol defines local state, an initialization section, and
a set of request rules. Actors created within a protocol are assigned to a role at the time of
creation. The connect keyword is used to submit a connection request to an external module.

A protocol encapsulates a collection of actors (called protocol actors) which govern the
interactions between a set of modules. A protocol connection is created by admitting one or
more protocol actors to the name space of each connected module. Protocol actors admitted in
this fashion become members of both name spaces, and may communicate with actors in either

space.
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Syntactically, protocols are similar to modules except that a protocol definition must also

include a fixed number of named “roles”. Roles are meant to indicate the organization of a

protocol. For example, a UNIX-like pipe protocol would have a source role, where interactions

originate, and a sink role where interactions are delivered. Moreover, a special syntax is used

to ensure that each actor created by a protocol is associated with one of the roles declared in

the protocol specification (see Figure 3.2). The connect action is provided to submit connection

requests. Protocol syntax which differs from that of modules is defined as follows:

actor-name := new actor-type (args) as role-name

Instantiates a new actor and assigns its reference to a local state variable. The type of
the new actor is actor-type and args is passed as the set of initialization parameters when
the new actor is created. After instantiation, the new actor is associated with the role
role-name. Note that this is the only mechanism for instantiating protocol actors from
within protocol specifications. Moreover, role assignments are permanent. Any actors

created by a protocol actor are assigned to the role of their creator.

‘connect (args) to mod—ref‘

Submits a connection request to the external module mod-ref with parameters args. Con-
nection requests are always submitted asynchronously. As described in Section 3.1, if
the connection is accepted, then any protocol actor which is passed as a parameter is
automatically admitted to the accepting module. Protocol actors may be admitted to

multiple modules.

As with modules, policies may also be installed on protocols. A protocol accepts a policy

by defining an install rule. In the case of protocols, however, policies are installed on individual

roles rather than the protocol as a whole. This is done so that customizations may be isolated

to specific endpoints of a protocol. We describe the installation process in more detail in the

next section.
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3.3 Policies

An architectural policy defines a constraint over the manner in which a collection of actors
invoke system services. For example, a load balancing policy might constrain the invocation of
the create operation: each call to create may first require that a policy manager determine
on which physical node the new actor should be created before servicing the request.

A DcCL policy encapsulates a collection of actors (called policy actors) and defines a set of
rules for installing these actors as meta-level customizations (see Figure 3.3). In particular,
policy actors are installed by invoking the install clauses of module or protocol specifications.
The installation process admits policy actors as meta-level customizations of internal actors.
Moreover, multiple policies may be installed on a single module or protocol. In this case, policy
actors are “stacked” in the order of installation. The result is the composition of the behavior
of each of the policies.

A key challenge in applying a policy is to allow dynamic customization while respecting the
integrity of module and protocol encapsulation boundaries. In particular, the internal compo-
sition of a module or protocol is not visible to external entities. To overcome this difficulty,

policies are installed as either contexts or roles:

e Context: A policy applied to a module is called a context customization. In this form
of customization, a single meta-actor type is instantiated and installed on each member of
the module. Note that context customizations are only applied to actors created within

the module. That is, admitted actors are not customized by context.

e Role: A policy applied to a protocol is called a role customization. In this form of
customization, a uniform meta-actor type is instantiated and installed on each member

of a role defined by a particular protocol.

As with modules and protocols, a policy defines a local state, an initialization section, and a
set of methods. Although actors may be instantiated within policy methods, only the install
keyword may be used to create actors which are used to customize module or protocol actors.

The syntax of the install command is as follows:

41



install actor-type (actor-args) on pol-target(rule-args)

where actor-type names the behavior of a policy actor, actor-args parameterizes the behavior
of each created actor, rule-args parameterizes the install request, and pol-target represents the
module reference or protocol role where the policy will be installed. The installation takes
place only if the module or protocol represented by pol-target defines an install rule capable of

accepting the request. For each actor a in pol-target, installation proceeds as follows:
1. A policy actor m of type actor-type is created with initial parameters actor-args.
2. Actor m is admitted to the namespace of pol-target.
3. Actor m is installed as the meta-actor for a.

Installations are performed asynchronously. However, installations are serialized so that each

3 A policy may be installed simultaneously

policy actor is installed in a consistent fashion.
as a context and a role. Moreover, a policy is not restricted to a single module or protocol.
For example, a load balancing policy might be applied to every module or protocol in an
architecture. This is accomplished by multiple install commands, each with a different target.

Because policy actors are installed in an encapsulated, but dynamically changing environ-

ment, we impose three additional constraints in order to ensure consistency:

e Actor Creation: Policy actors used for customization may be created only by instal-
lation. In particular, a create signal generated by a policy meta-actor is treated as if
the signal came from the bottommost module or protocol actor in the meta-level stack.
Moreover, the new actor is always admitted to the module or protocol represented by the

bottommost actor.

e Admission: Any policy installed on a module or protocol role is automatically installed
on any actor created after the initial installation. The installation is performed in the
same order it was processed by the initial installation request, and each policy actor

installed is parameterized using the same arguments as the initial installation.

3For example, the case where two separate policies are installed simultaneously on the same module will either
correspond to the case where the first policy is installed in its entirety followed by the second, or vice versa.
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policy ::= policy id {
local-state
[ init(args) { pol-action® } |
method*

}

method ::= [ local | meth-name (args) {
pol-action®
}

pol-action ::= local-state-assignment
| war-name < meth-name (args)
| install actor-type (args) on pol-target

pol-target  ::= mod-ref
| proto-ref <role-name>

Figure 3.3: Policy Syntax: A policy defines a local state, an initialization section, and a
set of methods. The install keyword is used to install policy actors on modules or protocols.

e Multiple Customizations: Multiple policies are enforced over a single module or pro-
tocol by using multiple instantiations of the install command. Installations are handled
in the order they are processed by the install rule at the target module or protocol. The
run-time ensures that each actor in the target has a consistent meta-level stack consistent

with the installation order of policies.

By associating creation events with the bottommost actor in a meta-level stack, we remove
any ambiguity that may result when a create request is handled by a policy actor on behalf
of its base actor®. The restriction on admission ensures that each actor within a module or
protocol role has an identical meta-level stack. Recall that actor creation is handled as a special
case of admission, so that any actor created by a module or protocol role will also be subject to
any installed policies. Finally, the restriction on multiple customizations provides a mechanism

for asserting several policies over a single module or protocol.

*Without this restriction, it may be ambiguous as to which entity a new actor should be associated with: the
underlying module, or the installed policy.
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3.4 Example: CORBA-like Architecture

CORBA architectures are based on the client-server model. Specifically, servers are accessed
through a request broker which facilitates connections between clients and registered servers.
For example, suppose a client wishes to connect to a database server. The client first sends a
request to the request broker. Assuming the database is registered, the request broker responds
by creating a communication endpoint and delivering it to the client. Typically, this endpoint
consists of a “stub” which implements the client end of the remote procedure call (RPC) protocol.
Once the client receives the endpoint, it may make requests to the database.

With pcr, CORBA-like architectures may be modeled in a straightforward fashion. For ex-
ample, we can model the client-server architecture described above by defining a RequestBroker
module, a DBServer module and an associated DBConnector protocol. A connection is created
with the server in three stages (see Figure 3.4): (1) the client requests a connection from the
request broker, which (2) forwards the request to the connection protocol, which (3) responds
by submitting a stub to the client, thus allowing interactions with the server. Figure 3.5 gives
the code for the server and connector. For simplicity, we have omitted any error handling code
such as code to verify that a connection has been accepted. This could be done by defining a
method in the protocol which is invoked by a module upon accepting a connection.

Upon creation, the DBServer module initializes its local state, creates a new instance of
the DBConnector protocol, and sends a connectSkeleton message to request a skeleton from
the new protocol. The accept rule defined by the server accepts the skeleton and forwards its
address to the appropriate local actors which will handle incoming requests. All client requests
will be routed through the DBConnector and delivered to the server through the skeleton.
After the skeleton has been received, the server registers with the request broker by sending a
registerService message.

Clients request connections by invoking the connectClient method in RequestBroker.
The RequestBroker forwards the request by looking up the appropriate protocol and sending
a requestStub request. In the DBConnector protocol, the requestStub method creates a new

stub actor, and issues a connect with the client module. After the client accepts the stub,
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module RequestBroker {

hashtable servers;

Stub Skeleton protocol 1ink;
Actor @ Actor i i .
| method registerService(string name,
J---——-=—== rotocol link
Client /:* ________ DBConnector DBServer b ) {
module @ [ protocol module servers.put(name, 1ink);
. A }
@ @ method connectClient(module client,
ST string service) {
A link := servers.get(service);
Req;&;s;gll;;)ker link < requestStub(client);

}

Figure 3.4: A CORBA-like Client-Server Architecture: Left: The RequestBroker
forwards connection requests to the DBConnector instance associated with the server. Right:
The RequestBroker specification defines rules for registering servers and accepting connection
requests.

interactions between the client and server modules will be routed through the client’s stub,
then to the server’s skeleton, and finally to the server’s internal actors. Note that all client

stubs are assigned the client role, while the server’s skeleton is assigned the server role.

3.4.1 Customizing Server Connections

CORBA architectures may be customized by changing the implementation of the request bro-
ker, or providing alternate implementations of connectors. This approach complicates system
development as modifying existing components may introduce new bugs or architectural in-
compatibilities.

DCL policies offer a simpler approach. For example, suppose we wish to encrypt interactions
between the client and database. We can enforce this property by defining an Encryption
policy which is applied to the DBConnector protocol. In particular, we may use the Encrypt and
Decrypt meta-actors defined in Section 2.2.1, where we slightly modify the Decrypt behavior
so that it is instantiated with the address of its creator. When an instance of Decrypt is

created, it forwards its name to its creator by calling the setServer method (the purpose
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module DBServer { protocol DBConnector roles client,server {
boolean connected = false; actor skeleton = null;
module broker; actor newClient;

protocol connector; // Connect skeleton to server

init(module rBroker) { connectSkeleton(module server)
Create internal resources, if skeleton = null {
// Save reference to request broker skeleton := new DBSkeleton()
as server;

broker := rBroker;
connect(skeleton) to server;

// Create connection, request skeleton )
connector := new DBConnector();
connector ¢ connectSkeleton(self); // Connect stub, alert skeleton
} requestStub(module requester) if true {
newClient := new DBStub(skeleton)
// Only accept one skeleton .
as client;

accept DBConnector(actor skeleton)
if 1connected {
Forward skeleton to local actors; )

skeleton < addClient(newClient);
connect(newClient) to requester;

// Register server with request broker
broker « registerSerVice("database“,

connector);
connected := true;

}

Figure 3.5: Server and Connector Specification: The server creates a protocol for
connections, and registers the protocol with the request broker. The connection protocol
returns a skeleton to the server and processes connection requests from clients.

for this behavior is to establish an appropriate receiver for the Encrypt behavior). We install
instances of Encrypt on client stubs, and instances of Decrypt on server skeletons. Note that the
Encryption policy may only be installed if the an install rule has been defined in DBConnector.

Thus, a rule of the form:
install Encryption() if true {}

must be added to DBConnector before the installation will be permitted. More complicated rules
may be specified to model specific behavior. For example, policies may be required to present
a “signature” or other form of authorization before the installation is allowed. This condition
could be enforced with an appropriate rule argument and corresponding rule condition.

The Encryption policy is given in Figure 3.6. Typically, such policies will be installed by

an external entity which first creates an instance of the policy and then calls an appropriate
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policy Encryption {

Client Server
Role Role protocol target;
// Install Decrypt on “server” role
Client DBConnector DBServer method apply(protocol T) if true {
module @ protocol 2 module target (= T;

install Decrypt(self) on
deliver(msg) target <server>;

}

// Install Encrypt on “client” role
method setServer(actor S) if true {
install Encrypt(S) on target<client>();

transmit(msg)

Encrypted }
Messages }

Figure 3.6: Encryption Policy: The Encryption policy coordinates the installation of
Encrypt and Decrypt meta-actors. Once installed, all interactions between clients and the

server are encrypted.

policy method to initiate the installation. In the case of Encryption, the apply method is
used to install the policy in two steps. First, a Decrypt policy actor is installed on the server
role of the protocol. Because installation is asynchronous, we need to ensure that Decrypt has
been installed before we begin encrypting client messages. The Decrypt policy actor calls the
setServer method to alert the policy that it may safely install the Encrypt policy actor on
clients. Note that the installation rules defined in the previous section ensure that any new

actors admitted to the client role will automatically be customized by an Encrypt policy actor.

3.4.2 Controlling Server Resources

While it is possible to customize interactions in CORBA (albeit with some difficulty), it is
not possible to customize the resource usage of CORBA clients without modifying the clients
themselves. However, in a CORBA-like architecture specified in DCL, we may make such cus-
tomizations by applying policies to modules. For example, suppose that the server executes on
a cluster of workstations. Suppose further that we wish to load balance the server’s resources to
increase performance. We might enforce such a constraint by load balancing the actors created

by the server. That is, we control the initial placement of each actor in the server.
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actor LoadBalance { policy RoundRobin {

actorclass nextType; string hosts[] = { a list of hosts };
policy mgr; int nextHost = 0;

. int Hosts = hosts.1 th;
method init(policy m) { Nt numposts osts.Length,

mgr (= m; method installLoadBalance(module mod) {
} install LoadBalance(self) on mod();
method create(actorclass type, string host) { }

nextType = type; method requestMachine(actor caller) {

mgr < requestMachine(self); caller ¢ rcvMachine(hosts[nextHost]);
} nextHost = (nextHost + 1) % numHosts;
method rcvMachine(string newHost) { ) }

newAddress(create(nextType, newHost));

}
}

Figure 3.7: Load Balance Policy: Instances of LoadBalance are installed on the server
by the RoundRobin policy. Once installed, each create request is forwarded to the policy in
order to determine where to create the new actor.

Figure 3.7 gives the specification of a LoadBalance meta-actor, and a RoundRobin policy.
For this example, we assume that the create meta-level signal is parameterized with both
an actor behavior, and the name of the host where the new actor should be created. The
RoundRobin policy installs an instance of LoadBalance on every actor in the server. The
LoadBalance meta-actor intercepts create requests and forwards them to the requestMachine
method in RoundRobin. This method determines where the new actor should be created and
sends the location back to the requesting actor. Once the new location has been received, the
new actor is created and a reference is returned to the requesting base actor.

As with the encryption example above, we require an “install” rule defined within the
DBServer module. However, once installed, the RoundRobin policy is completely transparent

to the internal server actors.

3.5 Example: High-Availability Server

In the previous section, we described the customization of a CORBA-like architecture defined

in DOL. As a more complicated example, consider a bug-tracking database. We attach an
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Figure 3.8: A Bug-Tracking Database: An HTTP interface module provides access to
a database storing bug reports. A network-to-database connector translates HTTP requests
into document requests at the database.

HTTP front end to the database in order to make bug-tracking information available via the
web (e.g. using a web browser). The architecture of this system may be defined in terms of

three components:

e Bug Database: The bug database stores bug reports. Clients use the get method to
request a particular bug report, and the put method to insert a new bug report or make

a modification to an existing report.

e HTTP Interface: The HTTP interface is used to make the database accessible to remote
clients. In particular, the interface listens for new TCP/IP connections on port 80 (i.e.

HTTP), and creates an appropriate link to the database for each new connection.

e Network to Database Link: The HTTP interface and database are linked by a pro-
tocol which translates HT'TP requests into appropriate invocations of get and put on the

database.

The DCL specification for this application consists of a Database module, an HTTP module,
and an HTTP_DB protocol (see Figures 3.8 and 3.9). The HTTP_DB protocol is initialized with a
reference to the Database module, while the HTTP module is initialized with a reference to the
HTTP_DB protocol.

During initialization, the HTTP module creates a TcpServer actor to listen for new connec-

tions. Upon receiving a connection request, the TcpServer actor creates a HttpStream actor to
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handle the new connection (stages (1) and (2) in Figure 3.8). The address of the HttpStream
actor is forwarded to the handleNewConnection method defined in the HTTP module (the new
actor is bound to the newStream parameter). This method links to the new connection to the
database by calling the addConnection method in HTTP_DB. Note the use of the local keyword
to protect handleNewConnection from non-local requests.

The init method of HTTP DB creates a DatabaseClient actor to serve as a communication
endpoint for the DB module. The connect statement in init ensures that the DB module receives
the endpoint during protocol initialization.

The addConnection method builds a new connection to the database each time it is called.
In particular, a new HttpClient actor is created to serve as a communication endpoint for the
HTTP module (stage (3) in Figure 3.8). The connect statement in addConnection submits the
HttpClient actor to the HTTP module. The accept method in HTTP handles the final stage of
the connection by sending the address of the appropriate HttpStream actor to the admitted
HttpClient actor. Once connected, the DatabaseClient and HttpClient actors coordinate
to translate HTTP requests into database requests, and vice versa (stage (4) in Figure 3.8).

This architecture is designed to be deployed on a single server. However, if the bug database
holds critical information, it may be necessary to increase the availability properties of the
system. In particular, suppose we have access to a cluster of three workstations. We may

consider two modifications to this architecture in order to increase availability (see Figure 3.10):

e Replicated Database: Replicated copies of the database may be maintained in order

to resist transient failures as well as provide more rapid access to clients.

e Load Balance Connections: In order to increase throughput, we may want to selec-

tively route incoming connections so that they are balanced across the available hardware.

We implement this modified architecture using the BalanceConnections and SequenceRequests

policies (see Figure 3.11°). We designate one of the replicas as the “leader” and install the

"We omit the description of the BalanceConnections policy. This policy simply installs the Rerouter actor
on the “leader” HTTP module.
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module HTTP { protocol HTTP DB role HttpEndpoint, DBEndpoint {

actor tcpServer; Actor HttpActor, DBActor;

queue NC; Module dataBase;

protocol dbConnector; // Build initial connection to DB

// Initialize Module init(Module DB) {

init(Protocol C) { dataBase = DB;
dbConnector = C; DBActor = new DatabaseClient()
NC = new Queue(); as DBEndpoint;
// Create actor for HTTP connections connect(DBActor) to dataBase;
tcpServer = new TcpServer(80, self); }

} // Build new connection to database.

// Called by tcpServer to add new connection addConnection(Module caller) if true {

local handleNewConnection(Actor newStream) // Create client endpoint for connection
if true { HttpActor = new HttpClient(DBActor)

// Save actor for new connection as HttpEndpoint;

NC.enqueue(newStream);
// Submit endpoint to HTTP

// Create new protocol link
connect(HttpActor) to caller;

dbConnector <- addConnection(self);
} }
// Accept a new HTTP_DB connection }
accept HTTP_DB(Actor httpClient)

if INC.empty() {

// Send address of local stream

httpClient <-

setStreamActor(NC.dequeue());

}
}

Figure 3.9: Bug Database Specification: The database and HTTP interface are specified
as DCL modules. The Network/Database connector is specified by the HTTP_DB protocol. For
the sake of brevity, we omit the specification for the database. Note that all we require from
the database is an accept rule for accepting the DatabaseClient actor created in HTTP_DB.

BalanceConnections policy on the HTTP module at that replica®. The SequenceRequests

policy is installed collectively on each of the HTTP_DB protocols.

The BalanceConnections policy uses a Rerouter actor to customize the message passing
behavior of the TcpServer actor inside the HTTP module. In particular, the Rerouter intercepts
handleNewConnection messages, and determines whether they should be handled locally or

forwarded to another HTTP module. In the latter case, the connection is forwarded by sending a

S1deally, the leader should be a separate module residing on a router. For simplicity, however, we arbitrarily
choose one member of the cluster.

ol



HTTP

DatabaseClient

HttpClient

®

@ v |1@C @
7N/7D7 T N B O Receiver
@ B Q @ B “"\_‘ @ Sequencer

N YO

I O

O

Manage State

TcpServer
Consistency

BcastActor
juj 'HTTP
Load Balance

Queries
o i e [ —

Database Replicated
Over Workstation Cluster

Rerouter

"l eader" 3
! ¥
k3
L]
Reroute
Connections

BalanceConnections Policy

Sequence
Requests

SequenceRequests Policy

Figure 3.10: Cluster Deployment: On the left: proposed changes to create a high-
availability server. On the right: architectural changes to support the new server.

“Moved Temporarily” reply to the HT'TP caller. At present, the Rerouter actor uses a simple
round-robin scheme to allocate requests.

The SequenceRequests policy maintains the consistency of the replicas by ensuring that all
requests are processed in the same order at each replica. This is done by installing a Sequencer
actor on each member of the HttpEndpoint role, and a corresponding Receiver actor on each
member of the DBEndpoint role. The Sequencer actor intercepts request messages and invokes
the receiveRequest policy method to assign a sequence number to the request. The request
is then forwarded to each Receiver actor, which delivers requests according to their sequence
number. Replica consistency is guaranteed because requests are serialized at each Receiver.
In particular, all requests will be processed in the same order at each replica.

As in the previous example, we must add appropriate install rules to the HTTP and HTTP_DB

specifications before our policies may be installed. For example, we might add the simple rule:

install SequenceRequests() if true { }

to the HTTP_DB specification.
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policy SequenceRequests {
int seqNum;
Set receivers;
Actor caster;
Actor target;

// Install policy on each protocol
init(Protocol C1, Protocol C2, Protocol C3) {
segNum = 0;
receivers = new Set();
caster = new BcastActor();

// Sequencer sequences new requests
// Receiver delivers requests in order

install Sequencer(self) on C1<HttpEndpoint>();
install Sequencer(self) on C2<HttpEndpoint>();
install Sequencer(self) on C3<HttpEndpoint>();

install Receiver(self) on C1<DBEndpoint>();
install Receiver(self) on C2<DBEndpoint>();
install Receiver(self) on C3<DBEndpoint>();

}

// Register new database receiver
local registerReceiver(Actor who) if true {
receivers.addElement(who);

// Sequence request, broadcast clients
local receiveRequest(HttpRequest req, Actor R)
if true {
// Forward request to intended receiver,
// broadcast to other DB clients,
// and increment sequence number
R <- request(req, seqNum);
caster <- sendCopy(req, seqNum,
receivers - R);
seqNum++;

actor Sequencer {

policy ourMgr;
// Save reference to our policy mgr
init(Policy M) { ourMgr = V; }
// Intercept message sends
method transmit(Msg msg) {
if (nsg.method == "newRequest")
// If request, then send to be sequenced
ourMgr <- receiveRequest(msg.arg[0],
msg.dest);
else
// Otherwise, send to destination
msg.dest <- msg;
continue();

}

actor Receiver {

policy ourMgr;
int seqNum = O;
PriorityQueue sequenced = new PriorityQueue();
Queue pending = new Queue();
// Save mgr reference and register with mgr
init(Policy M) {

ourMgr = M;

M <- registerReceiver(self);

}

// Intercept messages intended for base
method rcv(Msg msg) {
If request then store in sequenced
Otherwise store in pending
}
// Determine next msg to deliver to base
method ready() {
If sequenced message seqMsg available then:
deliver(seqMsg); seqNum++;
Otherwise, deliver any pending messages

}

// Schedule sequenced deliver of request copy
method copy(HttpRequest req, int seq) {
Change “sender” of request to self
Add request to sequenced

}

Figure 3.11: SequenceRequests Policy: The Sequencer policy actor (top right) captures
and sequences new requests. The Receiver policy actor (bottom right) ensures that requests
are processed in the order of their sequencing. A separate BcastActor forwards copies of

sequenced requests (not shown).
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Figure 3.12: DCL Mapping: DCL specifications are mapped onto group manager actors.

3.6 Implementation

We implement DCL abstractions by mapping them to actor groups as defined in Section 2.3.
In particular, a unique group manager actor encapsulates the semantics of the DCL abstraction
associated with the group (see Figure 3.12). The group manager actor defines methods corre-
sponding to the init, accept, install, and method rules of the corresponding specification. These
methods are invoked when the corresponding rules are invoked in the specification.

The implementation provides a group support API (see below) which allows managers to
perform various group operations. For example, an “admit” method requires the admission of
a new actor to a group. To support this behavior, the group support API provides methods
for changing actor membership privileges. Similarly, the connect and install commands
are mapped to protocols within the API. Orthogonal to the API itself, the group support
implementation is also responsible for ensuring that group membership privileges are enforced

(two actors may only interact if they are a member of a common group).

3.6.1 Actor Implementation

The Actor Foundry [46] (henceforth, the Foundry) is a Java-based programming environment
for developing actor programs. Specifically, the Foundry is structured as a collection of Java
class libraries in which actors are modeled as Java objects. Java was used as the implementa-
tion language due to its embedded support for concurrency, networked-based applications, and
heterogeneous execution environments. While there is an inherent performance degradation

associated with Java implementations (due to byte-code interpretation), the Foundry is struc-
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Figure 3.13: Foundry Architecture: The ActorManager provides basic actor functionality
for all actors on a Foundry node. The RequestHandler, NameService, and TransportLayer are
used to facilitate off-node services.

tured so that critical elements may be replaced with more efficient C-based implementations.
The performance results presented in this section are based on a combined Java/C Foundry
implementation.

An instance of the Foundry consists of a collection of nodes, each of which resides on a
separate machine. A Foundry node is composed of a hierarchy of functional units for supporting
various aspects of actor computation (see Figure 3.13). The Actor Manager manages all the
actors on the local node. In particular, the manager provides access to message passing and
actor creation services. A Service is a module which extends the basic functionality of the
manager. That is, rather than require monolithic managers which encapsulate all possible
functionality, services may be used as a modular way to extend the capabilities of the manager.
The Request Handler facilitates node-to-node network communication by utilizing the Name
Service and Transport Layer. The name service provides support for a globally unique naming

system, while the transport layer facilitates low-level network communication. Finally, the
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package osl.examples.helloworld; package osl.examples.helloworld;

import osl.manager.*; import osl.manager.*;
public class HelloActor extends Actor { public class WorldActor extends Actor {
public void hello() throws RemoteCodeException { public void world() {
ActorName other = null; send(stdout, "println”, "World!");
call(stdout, "print”, "Hello "); }
other = create(WorldActor.class); }
send(other, "world");
}
}

Figure 3.14: “Hello World!” in the Foundry: The hello method in HelloActor prints
the string “Hello “, creates an instance of WorldActor, invokes the world method. The world
method in WorldActor prints the string “World!”. A call is a method invocation with RPC
semantics. A send is an asynchronous method invocation.

Scheduler is responsible for scheduling all threads associated with a node (including actors)”.
Note that the Actor Manager abstracts over the node distribution of the Foundry. That is,
actor programs may be developed independent of a specific configuration of the Foundry.

Each actor is an instance of the Actor class: the state and methods of the actor are the state
and methods of an instance of this class (see Figure 3.14). Such objects are “active” in the
sense that a private thread of control is used to invoke local methods. The Actor class provides
primitives for message passing and dynamic creation of new actors. Applications are developed
by extending the Actor class to define application actors.

Message passing is modeled as asynchronous method invocation. In addition, the Foundry
provides support for actor migration, exception handling, and synchronous forms of commu-
nication such as remote procedure call. Each actor is managed by an instance of the Actor
Implementation class, which provides a local mail queue and schedules the invocation of local

methods in response to messages. Moreover, the Actor Implementation class defines the basic

"Originally, the inclusion of a scheduling module was necessary because of a deficiency in some Java imple-
mentations. In particular, the Java specification does not require a fair thread scheduler. As a result, many
Java implementations include schedulers which are patently unfair, making actor programming difficult. After
several iterations, we were able to develop a separate, fair scheduling module which performs nearly as fast as
the default Java schedulers (less than 1% overhead). However, while more recent Java implementations support
fair scheduling, we have retained the scheduling module as it provides a mechanism for experimenting with other
scheduling paradigms (e.g. real-time).
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Operation Local Remote

Message Passing | 360 psec/msg | 13.4 ms/msg

Actor Creation | 26.5 ms/create | 50.5 ms/create

Scheduling < 1% N/A

Figure 3.15: Foundry Performance: Message passing was sampled over 10000 iterations.
Actor creation was sampled over 5000 iterations. Scheduling results were sampled over 10
iterations of Fibonacci(15).

implementation of actor services, such as message passing. Thus, the semantics of low-level
actor behavior may be modified without changing existing actor code: a customized implemen-
tation of Actor Implementation may be used to provide the new behavior.

Figure 3.15 summarizes the performance of key aspects of the Foundry. The timing results
were obtained from two Foundry nodes, each running on Sparc Ultra-2 workstations connected
by 10baseT ethernet. The message passing results were obtained by timing an asynchronous
send of 10000 messages both locally, and between local and remote nodes. Similarly, the actor
creation results were obtained by timing the creation of 5000 actors locally and remotely. The
scheduling results were obtained using an actor implementation of the Fibonacci function.
Fibonacci is a useful indicator of scheduling efficiency because of the large number of actors
created and the large volume of messages sent®. The scheduling results indicate the overhead
of computing Fibonnacci(15) using the Foundry scheduler versus the default Java scheduler.
Ten iterations were used to compute the resulting overhead.

As a distributed object toolkit, the Foundry compares favorably with other Java-based
toolkits. For example, Javasoft’s Remote Method Invocation toolkit [32] experiences a latency
of approximately 5 ms for both local and remote interactions. By way of contrast, the RPC
implementation in the foundry experiences latencies of 1.3 ms in the local case, and 28.7 ms in
the remote case. The local case is much faster because all communication is isolated within a

single Foundry node, whereas RMI makes an external call to the network libraries. In the remote

8Specifically, these two factors force a large number of context switches within the scheduler.
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case, the Foundry is slower because of its heavily layered architecture. Whereas RMI makes
a direct call to the network, the Foundry must route messages through the request handler,
name service and transport layer. The result is a classic modularity /performance trade-off: the
performance of the Foundry may be increased significantly by collapsing the architecture into a
single network layer; however, doing so complicates the modular replacement of elements of the
architecture in order to experiment with different implementations. As the Foundry is intended
to be a research tool, we choose modularity in favor of performance.

A similar performance trade-off exists with respect to actor semantics. Specifically, actor
semantics states that actors may communicate only by way of message passing. A practical
consequence is that actors can not share state: such state may be used as a hidden channel for
communication. As a result, all message arguments must be copied when delivering messages
between actors on a local node. If actor semantics were relaxed (e.g. allowing shared state),
then the performance of local message passing would be increased twofold. This results in local

message passing performance which is comparable to a pure C implementation.

3.6.2 Meta-Architecture

To support meta-level customization, we have implemented a meta-architecture API which
extends the basic actor APIs in the Foundry. The meta-architecture API is implemented by
the class MetaActorImpl which is a subclass of Actor Implementation. Thus, a meta-actor is
an instance of the Actor class which is managed by an instance of MetaActorImpl.

In addition to supporting the default actor methods (e.g. send, create), the MetaActorImpl
class provides methods for creating and installing new meta-actors. Moreover, MetaActorImpl
provides a default method behavior for each signal defined in the model. Currently, the im-
plementation captures the most basic instantiation of the model. Thus, MetaActorImpl defines
default behaviors for the transmit, create and ready signals. A meta-actor may provide cus-
tom behavior by overriding one or more of these methods. Similarly, MetaActorImpl provides
methods for generating the basic notifications: continue, newActor, and deliver. These

methods may be invoked in response to base-actor signals. Note, however, that notification
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generating methods are fixed (“final”, in Java terms) and may not be customized. Similarly,
the installation process is fixed by the implementation of MetaActorImpl.

Meta-actors are installed in a three step process (see Figure 3.16). In the first step, the
installing actor sends a request to the target base actor and blocks until the installation com-
pletes. If the target actor already has a meta-actor installed, then the request is forwarded to
the top actor in the meta-level stack. Thus, any actor in a meta-level may be used as a target
for customization. The top actor in the stack creates the new meta-actor? and informs the re-
questing actor that the installation has completed. The actor which creates the new meta-actor
will only perform the creation in between the processing of messages. This ensures that the
meta-level stack is in a consistent state when the new customization is installed. Furthermore,
we constrain the creation of new meta-actors so that they reside within the same Foundry node
as their base actor. Note that this implies that all actors within a meta-level stack will reside
on the same node. This constraint yields a more efficient implementation due to the large num-
ber of interactions between base and meta-actors. Once the installation completes, subsequent

signals are automatically forwarded to the new meta-actor.

“Recall from Section 2.2 that actor creation is the only mechanism for installing meta-level customizations.
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Although meta-level message redirection could also be handled within MetaActorImpl, we
use a customized implementation of Actor Manager to provide a more efficient solution. In
particular, because all actors within a meta-level stack are located within the same node, we
may make stack routing decisions the moment a new message arrives at the manager'?. This
results in a significant performance improvement over a trivial implementation where messages

are rerouted within the stack itself.

3.6.3 Group Support

The group support API is an extension of the meta-architecture API which provides support
for group operations and encapsulation. Moreover, the group support API customizes certain
aspects of the meta-architecture. For example, the group support API enforces the constraint
that base and meta-actors must reside in different initial groups. We encapsulate group opera-
tions within the GroupActorImpl class, which extends MetaActorlmpl. Note that the operations
provided by the group support API are only accessible to group managers.

Group encapsulation is implemented by assigning capabilities [57] to each actor in the system.
Capabilities are putatively unforgeable “access keys” used to verify that an actor has sufficient
privilege to execute a particular operation. In our implementation, capabilities are formed from
a source key consisting of a group part and a member part. The group part of the source key
is the same for each actor in a group, while the member part is unique to each actor. The
group part is unique to each group and is “secret”. The member part of the source key may
be determined from an actor’s address. An encryption function is used to build a capability
from the two parts of the source key. Note that when an actor creates a new actor, it passes
the group part of its initial group to the new actor. This allows the new actor to generate a
capability for its initial group (and hence send messages to other actors in the same group).

We use capabilities to allow actors within a common group to communicate with one another.

In particular, each message sent by an actor is tagged with all the capabilities possessed by the

10This isn’t quite true since an installation may be taking place at the time a new message arrives at a node.
Thus, it may still be necessary to handle message routing within the meta-level stack itself. However, this is a
rare occurrence in practice.
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actor. When the message is received, a capability check is performed to determine whether or
not the sender had sufficient privilege to send the message. The capability check proceeds as

follows:

1. Let as be the member part of a source key determined from the sender’s address. Let m

be the message received. For each group, g, which the receiver is a member of:

(a) Build a capability, ¢, using as and the group part of g.

(b) If m contains a tag which is equal to ¢, then admit the message.

2. If no matching capability was found then reject the message.

If the check succeeds, then the message is delivered, otherwise it is rejected and sent back to
the sender. Note that a capability check is not performed if the receiver is a group manager.

The group support API defines three operations for supporting groups: group creation,
admission, and policy installation. Group creation allows a manager to create a new external
group. A unique group part is created in order to build capabilities for the new group. The
creating manager is passed the address of the new group manager once the creation completes.
The admission operation admits a new actor by sending the secret group part of the source
key of the manager’s group. Once an actor obtains the group part of a source key, it may
generate a capability which allows it to communicate with any other actor in the group. Note
that capabilities are internal to the GroupActorImpl class. Thus, there is no danger of group
secrets leaking to underlying user actors and being propagated to arbitrary locations.

Policy installation is a more complicated process involving a creation tree traversal (see
Figure 3.17). The GroupActorImpl associated with each group member maintains a record of
all the actors created by the member. Because the group manager is the first actor created in
any group, we may build a tree of all the actors created in a group starting from the manager.
We call this tree a creation tree. The creation tree for a DCL module consists of the creation
tree rooted at the group manager. For a protocol, we associate a separate creation tree for each

role. The creation tree for a role consists of the group manager and all the subsequent sub-trees

61



Module or Protocol Role

Creation Tree

y

= e

- - - Stage1

<« ==~ Stage2

<4—— Stage3

Policy

Figure 3.17: Policy Installation: Policies are installed in three stages: (1) the installation
request is received and propagates down the group creation tree; (2) a meta-actor is installed
on each member of the group; and (3) an acknowledgment is generated at the leaves of the
creation tree to indicate the completion of the installation.

formed by the members of the role. In this case, the manager not only records the address of
the actors it creates, but also the roles they are associated with.

A policy installation proceeds in three stages over the creation tree of the target. In the
first stage, the requesting group sends an install request together with the secret group part of
its source key. The installation request is then distributed by traversing the creation tree. In
the second stage, a new meta-actor is installed on each actor in the creation tree (except for
the manager). Note that this operation involves creating an actor in another group. However,
because the secret group key was passed as part of the installation request, each new meta-actor
may be properly added to the requester’s group (i.e. it may create an appropriate capability
for its initial group). In the third stage, the leaves of the creation tree send an acknowledgment
to the manager indicating that the installation has completed.

Because the leaves of a creation tree may not be known to a group manager, it may be
difficult for the manager to determine when the installation has completed. To circumvent this
issue, we use a weighted reference counting algorithm similar to those used in some distributed
garbage collection schemes (¢f. [17] and [62]). The algorithm proceeds by tagging each instal-

lation request with a ratio 0 < % < 1. The initial request sent by the manager is tagged with
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the value 1/n where n indicates the number of children below the manager in the creation tree.
Each intermediate node tags the request with the value z/m where z is the value it received
from its parent, and m is the number of children below it in the creation tree. When a leaf
completes its installation, it sends the value it received back to the group manager. The group
manager keeps a running total of all the values it has received. When this total reaches 1.0,
the installation is complete.

A primitive implementation of the installation process described above would block at each
stage of the installation. For our implementation, however, we are able to use a slightly more
optimistic approach. In particular, we first associate a “version number” with each actor in
a creation tree. The version number is constructed so that actors with structurally identical
meta-level stacks will have identical version numbers. We then tag each installation request
message with a logical time stamp and enforce the constraint that installation requests must be
handled in tagged order. Similarly, we add the version number of each actor to every message it
sends. We then enforce the constraint that an actor may only process a message if the version
number in the message is less than the current version of the actor.

The combination of logical time stamps and version tagging allows the concurrent processing
of installation requests. In particular, the addition of logical time stamps results in a First-
In-First-Out (FIFO) multi-cast [25] over the actors in a creation tree. As a result, we can
guarantee that each installation request is processed in the same order at each group actor.
This eliminates the possibility of meta-actors being installed in the wrong order at different
actors within a group. The use of version numbers in messages ensures that actor computation
will be causally consistent with policy installation. That is, it will not be possible for an actor
to process a message until it is in a state consistent with the state of the sender at the time the

message was sent.
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Operation Overhead

Event Framework | 8%/level

Installation 120%/level

Figure 3.18: Meta-Level Performance: Event framework overhead reflects the time re-
quired to pass events from base-actors to meta-actors. Installation overhead reflects the extra
time required to install a meta-actor or a new actor.

3.7 Summary

In this chapter, we have provided an instantiation of the model described in Chapter 2. In
particular, we have described a language for building architectures within the model, as well as
an implementation which maps specifications into executable systems.

DCL provides a compositional approach for architectural development: rather than hard-
code customization and resource management within protocols and modules, policies are used
to modularly enforce such constraints. While this approach allows flexible system development,
such mechanisms have limited use if they can not be mapped to efficient implementations. In
particular, a key performance issue is the overhead associated with modular composition versus
hard-coding customizations. In terms of DCL, this overhead is characterized by the cost of
performing meta-level installation, and the cost of the event framework which translates base
actor operations into events at meta-actors.

Figure 3.18 summarizes the performance of the event framework and meta-level installation.
Event framework overhead was determined by timing the sending of 5000 messages between
two actors. The first timing was performed without any meta-actors installed. The second
test was performed with a meta-actor installed on each endpoint. The meta-actor installed on
the sender redefined the transmit event and simply forwarded the message it received. The
meta-actor installed on the receiver redefined the rcv method and simply delivered the message
it received. The same test was performed for a meta-level stack of depths two and three on
each endpoint. The result shows minimal overhead in the case of a meta-level stack of depth

one. Overhead increases linearly with the depth of the stack.
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As in the case of raw Foundry performance, the event framework overhead is significantly
lower if we relax actor semantics and allow actors to share references to common state. In
particular, with current actor semantics, the arguments of each event must be copied when
moving an event from a base actor to its meta-actor. Because of the unique status of meta-
actors, it could be argued that event state need not be copied. In this case, it is necessary
to copy message arguments only when a message moves from one meta-level stack to another.
In the current implementation, we provide a macro which allows the selection of copying or
non-copying behavior.

Installation overhead was calculated by measuring the effect of a simple policy when in-
stalled on a Fibonacci module. We use the actor implementation of Fibonacci because of the
large number of actors it creates. Recall that an appropriate meta-level stack is automatically
installed each time a new actor is created within a module. Thus, Fibonacci is a useful indicator
of installation overhead because of the number of times this installation must be performed.
Overhead was computed by comparing the execution time of F'ibonacci(15) on an uncustomized
instance of the module, to the execution time of a customized version of the module. The policy
used to customize the module consisted of a simple meta-actor which intercepted create signals
and simply forwarded them to the system.

As indicated in Figure 3.18, installation overhead is the major weakness of our approach.
However, the overhead associated with installation is only a factor in applications in which
actor creation is “bunched”; that is, in applications where many new actors are created rapidly.
We argue that this is an implementation issue rather than a fault in the model. Specifically, the
current implementation represents a meta-level stack literally in terms of a collection of sepa-
rate actors. A more efficient approach would be to encapsulate meta-level state and behavior
within a single actor!'!. This encapsulation would eliminate much of the extra synchronization
necessary to create and install individual actors in a stack. Similarly, the performance of the
event framework would be drastically improved as events would not have to be transmitted via

message passing.

1 Of course, other modifications would be necessary to allow the actor to be associated with multiple addresses,
one for each meta-actor.
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Chapter 4

Formal Semantics

In this chapter, we provide a formal semantics for the model described in Chapter 2. The
semantics provides a basis for reasoning about composition. Specifically, we describe two types

of composition:

e Composition of Interactions: This form of composition is characterized by message
passing between overlapping groups: given two groups a and b, the composition is char-
acterized by the messages which are sent from an actor with initial group a, and received

by an actor with initial group b, and vice versa.

e Composition of Customizations: This form of composition is characterized by the

signals and notifications sent between base and meta-actors.

Using a formal model for composition, we characterize “architectural compatibility”. That
is, we define the conditions under which DCL protocols may be used to interconnect a collection
of DCL modules. Similarly, we define conditions under which a DCL policy will conflict with
underlying behavior of modules or protocols it customizes.

We develop our semantics as an extension of Abstract Actor Structures (AAS) [55], a con-
current rewriting [40] formulation of actor semantics. While concurrent rewriting establishes
the basic properties of the semantics, we use the notion of interaction semantics [56] to define

composability properties. The semantics is developed in three stages.
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In the first stage, we develop a semantics for local actor computation. As with AAS, we
abstract over a particular linguistic representation of actor behavior: actors are represented
abstractly as states and behavior types. In accordance with the model described in Chapter 2,
we provide a fine-grained interpretation of actor behavior: actor computation is represented as
a series of atomic event processing steps. In response to an event, an actor performs some local
(i.e. non-visible) computation and generates a new event. This approach should be compared
to the “super-steps” of AAS where the processing of a single message may result in several
new actors and messages. In practice, our approach is nearly equivalent to an interpretation of
AAS where certain messages may restrict further processing until a particular reply message is
received (i.e. blocking on signals, waiting for notifications). Using the fine-grained approach,
we introduce a basic set of rules that allows us to recover the traditional semantics for actors.

In the second stage of development, we extend traditional actor semantics to support meta-
level customization. To accomplish this, we derive a new event-processing mechanism and
introduce rules that allow actors to process events generated by other actors. This approach
allows a meta-actor to intercept the service requests made by a base actor. Once the meta-level
semantics has been defined, we add support for group operations required by our model. Note
that group operations imply additional constraints on meta-level semantics. However, we derive
meta-level semantics separately to illustrate their utility independent of the actor group model.

Finally, in the third stage of development we define an interaction semantics based on
interactions between actor groups. Using this semantics, we establish compatibility conditions
that define the composability of groups. This semantics provides a definition of composability
based on group-to-group interactions.

The following notation is used in this chapter. The expression f : D — R represents a total
function f with domain D and range R. The expression f : D = R represents a partial function
with the same domain and range. The expression P, [S] indicates the set of all subsets s of S

with |s| < n. The expression P, [S] indicates the set of all finite subsets of S.
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4.1 Preliminaries

Concurrent rewriting is a formal model that allows one to reason about concurrent systems in
terms of state transitions. A key strength of concurrent rewriting is its ability to represent many
models of concurrency within a common framework. In addition to actors, for example, other
models such as CCS [42] and w-calculus [43, 44] may be captured within the concurrent rewriting
framework (see [41]). Although we make no such comparisons here, the generality of concurrent
rewriting may allow the translation of important techniques between different formalisms. In
particular, it may be seen that the notion of compatibility defined in Wright [10] (based on
CCS) is equivalent to our notion of interaction compatibility. We provide a brief summary of
concurrent rewriting below. A more complete description may be found in [40].

A rewriting logic theory is composed of a signature, (X, E), together with rewrite theory
rules. The signature defines the algebraic portion of a theory. In particular, the set 3 defines
the function symbols of the theory, while the set E consists of ¥-equations. A 3-algebra is a set
V where each f € ¥ of n arguments is associated with a function f : V™ — V. The symbol Ty
denotes the Y-algebra of ground X-terms (i.e. 0-ary functions in ¥). Similarly, the symbol Ty, g
denotes the Y-algebra of equivalence classes of ground Y-terms modulo (i.e. equivalent with
respect to) the equations E. It is often convenient to use variables as place holders in rewriting
expressions. For such expressions, if X denotes a countable set of variables, then the symbols
T5(X) and Ty p(X) denote, respectively, the Y-algebra of ¥-terms with variables in X, and
the X-algebra of equivalence classes of Y-terms with variables in X modulo the equations F.
Similarly, given a term ¢ € 1%, ({z1, ..., 2, }) and terms uq, ..., up, we write t(uy /21, ..., up/xy) to
denote the term obtained from ¢ by simultaneously substituting each w; for each z;. Finally,
for a term ¢, the symbol [t] denotes the E-equivalence class of ¢.

Given a signature, (X, F), the rewrite rules of a theory are represented by a pair (L, R)
where L is a set of labels, and R is a set of 3-tuples with R C L x Tx, g(X) x Tx g(X). A rule
instance, (r,[t],[t']), is interpreted as a labeled sequent and denoted as r : [t] — [t']. Sequents
define the sentences of rewriting logic. Moreover, the “interesting” derivations in a particular

theory will include one or mode applications of labeled sequents.
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A rewrite theory, then, consists of a 4-tuple R = (X, E, L, R). The theory R is said to entail
the sequent [t] — [t'] if and only if [t] — [#'] may be inferred from the finite application of

the following rules of deduction. The rules of deduction establish a rewrite theory as a logic

and are defined as follows:

e Reflexivity: For each [t] € Ty, p(X),
[t] — [{]

e Congruence: For each f € ¥ of n € N arguments,

[t1] — [t'1] - [tn] — [t'n]
[f(t1, o tn)] — [f(#1, s t'0)]

/

e Replacement: For each rule r : [t(z1,...,25)] — [t'(21,...,2,)] in R,

[wi] — [w'1] ... [wp] — [wy]

[t(w/z)] — [t'(w' /)]

e Transitivity:

[t1] — [ta] [ta] — [t3]
[t1] — [ts]

In less formal terms, a rewriting logic may be characterized by a set of sorts, a set of
operations, a set of equational rules, and a set of rewrite rules. Sorts, operations and equational
rules establish the algebraic portion of the logic. In particular, sorts are used to categorize
terms in the logic, while operations are used to build well-formed terms. Equational rules
define equivalence classes of terms in the logic. Similarly, rewrite rules define relations for
matching and replacing terms.

In [55], the traditional operational semantics of actors (¢f. [5]) has been reformulated in

terms of rewriting logic. Actor configurations in this theory are represented by elements of the
following sorts:

e A - The sort of actor names.

e V - The sort of values.

e S - The sort of actor states.

e F - The sort of actor fragments.
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e C - The sort of configurations.

A typical term in this semantics is represented as:

((81)a,s - (8n) g, » @i <05 .y aj < wj)

where (s;), specifies an actor in state s; with address a;, and a; < v; specifies a message with

a;
destination a; and contents v;. Unlike the operational semantics, the rewriting formulation
abstracts over the individual behavior of actors. Instead, actor behavior is captured abstractly
in terms of a delivery function, Deliv, and execution functions, Ex and #new. Similarly,
properties of a configuration such as “enabled sets” (i.e. those actors enabled for delivery
or execution) are captured by an “enabled for delivery” relation, Eng, and an “enabled for
execution” set, En.,. Finally, the name space of actor terms may be controlled by a restriction
operator, [ap,...,aq, which, if applied to a fragment, restricts the external visibility of internal
names to the set a,, ..., a,.

The resulting semantics is greatly simplified by abstracting away low-level actor behavior.

In particular, actor semantics may be characterized by just four rewrite rules':

e Execute: e(a,s) : (s), = Fz((s),)(d)[{a}
if Engg(a,s) and @ is a list of #new(a, s) distinct actor names disjoint from a and acq(s).

e Deliver: d(a,s,v) : {(s),,a <v} = Deliv(a,s,v)
if Eng(a,s,v)

e In: i(Fa<v): (F)= {F,a<v})
if a € recep(F)

e Out: o F,R,a<v): ({F,a<v}[R) = (FIRU (acq(v) Nrecep(F)))
if a & recep(F)

where Execute defines an execution step, Deliver defines a message delivery step, and In and

Out define interactions with the external environment. The expression Ez((s),)(d)[{a} defines
the fragment resulting from an actor computation step. In general, this fragment has the form:

("), (81) gy 5 (8n)q, > @i Qi o <vj[{a}

'Technically, we also require several hygiene conditions. These are normally expressed as axioms over partic-
ular relations (including Ez and Deliv), and constitute the equational rules for the semantics.
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where actor a is in the new state s’, the actors with addresses a; through a,, represent new actors
(thus the restriction that a and acq(s) be disjoint from the set {ay,...,a,}), and a; <v; through
aj < v; represent messages sent by a during the computation step. Similarly, the expression
Deliv(a, s,v) in the deliver rule results in a new fragment of the form (s'), reflecting the fact
that an actor’s state may change while consuming a message. Finally, the “in” and “out” rules
provide a mechanism for interacting with the external environment. This feature has long been
present in actor semantics and reflects the view that actor configurations are open systems in
which interaction patterns may not be determined solely by the behavior of internal actors.

The rewriting formulation of actor semantics is more abstract than the traditional opera-
tional semantics. In particular, rewrite rules define actor computation in terms of “super steps”.
That is, a single execution step may result in several new actors and several new messages. By
way of contrast, the operational semantics is a fine-grained representation of actors: each in-
dividual actor operation is reflected in the semantics, from individual lambda term evaluation,
through actor creation and message passing. However, we may carry this level of abstraction
one step further and abstract over internal actor computation altogether. This is the approach
taken in interaction semantics.

Talcott has developed an interaction semantics for actors in [56]. This semantics is similar

to the rewriting formulation of actors, except that only three transitions are defined:

e Silent: (): C =C"ifr:C = ('
where 7 : C = (' represents an internal transition (i.e. actor execution or message
delivery).

e In: in(a<v): C = C,a<v if a € recep(C).

e Out: out(a <v):C,a<v[R= C[RUX
if a € recep(C), and X = acq(v) — (recep(C) U extern(C)).

Because internal transitions are captured solely by the silent transition, the interactions of in-
terest in this model are those with the external environment. This view of actor computation
has been used to derive correspondence conditions between actor configurations [52]. For ex-
ample, a configuration that represents an implementation may be shown to be a refinement of

a configuration which represents a specification.
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Our goal in developing a rewriting semantics with an interaction component is to leverage
the flexibility of interaction semantics in order to show that one configuration is “interaction
compatible” with another configuration. For example, we wish to show that the interaction se-
mantics of configurations representing modules are preserved under composition with configura-
tions representing protocols. In our case, however, the boundary for interactions is represented

by groups rather than configurations.

4.2 A Rewriting Semantics for Actors

To develop a semantics for actors we first start with an abstract description of actor compu-
tation. In particular, we model actor computations as an alternating sequence of internal (i.e.
non-visible) computation steps followed by external (i.e. visible) computation steps. Intuitively,
this model corresponds to an operating system view of an actor: an actor performs some inter-
nal computation defined by its behavior, but may periodically request a service (e.g. message
passing, new actor creation) which only the operating system can provide. Service requests are
modeled by events. An actor is blocked (i.e. unable to process other events) until its request is
handled. This corresponds to the interpretation that an actor can not use a resource until that
resource has been granted or denied. An event generated by an actor is called a signal, while an
event received by an actor is called a notification. Thus, a signal indicates a request for service,
whereas a notification indicates that a request has been handled in a particular fashion. Each
signal is associated with one or more notifications that indicate the outcome of a request.

In deriving a rewriting semantics for actors, we follow the conventions used in [55]. In
particular, terms derived from our equational axioms and rewrite rules are considered to be
well-formed only if certain constraints are met. For example, to introduce an operation f such
that f(x1,....,z,) is well-formed and of sort Y just if each x; is of sort X;, and the condition

¢(x1, ..., ) holds, we write:

f ) Xix..xX, —Y

f(mla 77"TL) (Y if (,ZS(.’L‘l, 77:TL)
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Moreover, we adopt the convention that only “fair” rewrite derivations are considered in the
semantics. The construction of such derivations captures the usual notion of fairness in an
actor system (i.e. observational fairness) and is rather complex to define. We do not derive
fair rewrites here. Rather, we refer the reader to the construction given in [55]. Note that
the rewrite systems defined in this thesis are somewhat more restrictive than the usual actor
semantics. That is, the “interesting” paths in our semantics are a subset of the fair paths in a
traditional actor system. Thus, our semantics causes no inconsistencies with the construction
of fair paths provided in [55].

The following sorts are used in the semantics:

e V - Communicable values

A - Addresses with ¢ € A and A CV

S - States

e B - Behavior types with B C V

E - Finite set of events with —€ E

IP - Processing states with P = {71}

I - Fragments

C - Configurations

The sort V represents the set of all values that may be communicated among actors. A is a
countable set which we use for naming actors. The special name ¢ represents the address of
the “system” actor and is always included in the set of names for an actor system. Note that
actor addresses are communicable values. Elements of B are used as a convenience to type actor
behaviors, while elements of S are used to represent actor states. Note that elements of B are
also communicable values. The sort E represents the set of all actor events. The special symbol
— is defined as the “null” event and is always included in the set of events for an actor system.
The sort P defines the two processing states of an actor. The symbol 7 denotes a “ready” actor,
while the symbol ! denotes a “running” actor. Finally, instances of sorts F and C represent
actor fragments and actor configurations, respectively.

Actors are modeled as 6-tuples, (p,a,b, s,l,t), with attributes:
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Ay oA []):(PxAxBxSxEXxA) =5 F
Denotes an actor. The actor p(a, blo:[s] A:[l] 7:[t]) is in processing state
p, with address a, behavior b, state s, last event generated [, and transition
map t. If p =7, then the actor is considered to be “ready”, otherwise the actor
is “running”. By convention, the vertical separator, |, will always be used to
separate the fixed attributes (on the left) from the run-time attributes (on the
right) of an actor.

4, ) (AXAXExV) —F

Denotes an event message. In the event message r <« (s,e,v) the address r is
the receiver, s is the sender, e is the event, and v is the contents.

Denotes the empty fragment.

L, (FxF) F
Denotes fragment composition which is associative, commutative and has iden-
tity o. Moreover, Fy, Fy € F if recep(Fy) N recep(Fy) = (.

[LIH{_}: Fx Py[A] =5 F
Denotes a restriction of a fragment. Moreover, [F'|[{ai,...,a,} € F if
{a1,...,;an} C recep(F).

():F>C
Denotes a configuration.

Figure 4.1: Term Constructors: Operations used to build terms in the rewriting semantics.

e pc P A processing state.

a € A\ {¢} — An address.

b € B — A behavior.

s €S - A state.

I € E The last event generated by an actor.

t € A The transition map for an actor.

The behavior and address of an actor are fixed when it is created. The state, last event
generated, processing state, and transition map are run-time attributes determined by the
events processed by the actor. For example, the transition map for an actor indicates the name

of the actor which will process its signals. The value of this attribute may be changed at run-
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block  (E\ {=}) x (E\{=}))
Represents the blocking relation. If (e, eq) € block, then an actor generating
event e; may only be resumed by an event of type es.

nextEvent : (S x B) — (E x V)

Gives the next event and value generated by a running actor with a particular
state and behavior.

nextState : (Sx B x E x V) =8

Gives the state of an actor after receiving an event.

newlnstance : (B x V) =8

Gives the state of a new actor created with a particular behavior and “initial”
argument.

recep : F—— P ,[A]
Gives the set of receptionists contained in a fragment.
acqg : (SUV) — P, [A]
Gives the set of acquaintances contained in a state or value.

extern : F—— P [A]

Gives the set of external actors referenced in a fragment.

-~ (A - A) . (SUVU]F - SUVU]F)
Lifts a renaming function (i.e. a bijection p : A—— A) to states, values and
fragments such that p and p agree on actor names.

Figure 4.2: Relations: Relations used to manipulate actor configurations.

time if the actor is customized by a meta-actor. A configuration of actors is constructed using
the operations and relations given in Figures 4.1 and 4.2.

The recep, extern and acq relations are used to define several important hygiene conditions
over actor configurations, and establish the equational portion of the semantics. recep gives the

set of receptionists for an actor fragment and is defined inductively as follows?:

a}

recep(p(a, blo:[s] A:[l] 7: [t])
recep(r < (s, e, v)

) {

) 0
recep () 0

)

)

= recep(Fy) U recep(Fy)
= {a‘la"'aa‘n}

recep (Fy, Fy
recep([F'] [{ a1,...,an }

?Henceforth, we assume that expressions such as recep (F1, F») are well defined only in the case that Fy, F € F.
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acq gives the set of acquaintances encoded within a state or value. Because we do not wish
to fix a particular representation for states or values, we simply assume that acq is well defined
on SUV with the additional constraint that acg(a) = {a} for all a € A.

extern gives the set of external actors referenced in a fragment and is defined inductively as

follows:

eatern(p (a, blo: [s] A: [l] 7 H; — (acq(s) U{t}) \ {a}

extern(r 4 (s,e,v acq(v) U{r,s}

)

)
extern(o) = 0

) (

)

extern(Fy, Fy
extern([F'] [{a1,...,an }

extern(Fy) U extern(Fy)) \ recep(F, Fy)
= extern(F)

A key feature of actor configurations is that their semantics do not depend on a particular
choice of actor addresses. This attribute is formalized by the notion of a renaming bijection,
p: A—— A, where we require p(s) = ¢. The relation ~ extends a renaming function to states,

values and fragments according to the following axioms:

pla) = pla)VaeA
p(s) € S VseS
plv) € V VoveV
Ao (a,blo [ A: [ 7: 1) = p(ala),blo: [Fs)] Azl 7: W)
B 4(5,6,0) = 2(r) < ((5), e, 7))

plo) = o

p(F1, Fo) = p(F1), p(F2)

AR Haresan ) = )] (plan). oo an)
PoOpP1L = pPoOopP1

Finally, several “restriction” axioms are necessary in order to allow fragments to be manip-

ulated around the restriction operator:

F = [F][{recep(F)}VFeF
[[Fo][{Ro}, FA]l[{R} [Fo, Fi][{ R} if (recep(Fy) \ Ro) N extern(Fy) =0
[FI{R} = [p(F)][{R}ifp(z) =2V x € RU extern(F)

More specific hygiene conditions are required for certain rewrite rules. We define these

extraneous conditions as they arise.
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4.2.1 Basic Computation Steps

Actor computation based on event processing is similar to a restricted form of the usual message-
based semantics for actors. In particular, by fixing the sort of events, E, and defining the relation

block, actor computation over a particular configuration, (F'), may be defined using two rules:

[request]
a,blo:[s]A:[l]7:[d]) — ?(a,blo:[s]X:[e]T:[d]), d «(a,e0)

if nextEvent(s,b) = (e,v)
[compute]
?(a,blo:[s]A:[l]7:[d]),a«(d,e,v) — 1(a,blo:[] A:[l]7:[d])

if (I,e) € block and
nextState (s, b,e,v) =s'

The request rule transforms a running actor into a ready actor and an event pair. The
nextBEvent function determines the next signal generated by an actor based on its behavior
and current state. The transition map of an actor determines where the new signal should be
processed. After generating a signal, an actor is blocked until an appropriate notification event
is received.

The compute rule allows a blocked actor to become active by processing a notification event.
The nextState function determines the new state of an actor after it has processed a notification.
Thus, the compute rule abstracts over the internal computation performed by an actor upon
receiving a particular notification. Note that the block relation defines the set of notification
events which may be received and processed after an actor generates a particular signal event.
Moreover, note that an actor will be “stuck” if it generates a signal e such that there does not
exist (z,y) € block with z = e.

We impose two hygiene conditions over the neztEvent and nextState functions®:

nextEvent(s,b) = (e,v) = acq(v) C acq(s)
nextState(s,b,e,v) =s' = acq(s') C acq(s) U acq(v)

3These conditions correspond to the “execution axioms” defined in [55].
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The first constraint states that an event generated by an actor may not contain an address that
was not stored in the state of the actor when the event was generated. The second constraint
states that the addresses stored in an actor’s state are a function of its state history and the
events it receives. Specifically, an actor may only accumulate addresses by receiving events.

It is interesting to note that, using the two rules above, we may define a simple, fixed
configuration of actors. In this context, the sort of events, E, is interpreted as the “types” of
messages which may be exchanged between actors. The transition map for each actor fixes
the communication topology of the configuration. Using event processing as a basis, it may be

possible to derive other interesting models besides actors.

4.2.2 Traditional Actor Semantics

We recover the traditional semantics for actors by fixing the sort of events, E, as:

E = {transmit, create, ready, complete, newActor, deliver, —}

transmit »| complete
create » newActor
ready > deliver

Figure 4.3: Basic Actor Transitions: The block relation for the traditional formulation
of actor semantics.

The block relation is defined as shown in Figure 4.3. We also introduce the message operation,

< _: (AxAxV) = F where a : ' < v represents a message sent with contents v to

4

the actor with address a from the actor with address a'*. We add the following axiomatic

constraints for actor messages:

Strictly speaking, the basic actor semantics does not require that messages be annotated with the address of
the sender. However, we require this information for our derivation of interaction semantics later in the chapter.
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recep(a:a’ <v) = 0
extern(a:a' <v) = acq(v)U{a,d'}
pla:d <qv) = pla): pla’) < p(v)

The normal operations provided by an actor configuration (e.g. message passing, actor

creation) are defined by the following rules:

[send]
¢ 4 (a,transmit, {a’,v}) — a 4 (s,complete,{}), d :a v

[create]
A, ¢ 4 (a,create, {V/,v}) — [A, a4 (s,newActor,{a'}), A", ¢ 4 (d',ready,{})][{a}

if A =7(a,blo:[s] A:[create] 7:[¢]) and
A =7(d b |o:[s'] A:[ready] T :[¢]) and
newlnstance(b',v) = s' and

a & acq(s) U{a} U acq(v)
[ready]
¢ 4 (a,ready,{}),a:d <v — a < (s, deliver,{v})

[in]
(F) — (F,a:d <)

if a € recep(F)
[out]
(F,a:d" qu][{R}) — ([F][{RU(acq(v) N recep(F)) })

if a ¢ recep(F)

Under this rule set, signals are modeled as requests handled by a “system actor” denoted
with the address ¢. Similarly, notifications are sent from ¢ to indicate that a particular request
has been handled. The send rule transforms a transmit signal into a message and a complete
notification indicating that the send has been processed. The create rule transforms a create
signal into a new actor and a newActor notification. The restriction on the right side of the
rule ensures that fragment composition respects actor name propagation: external actors may

only learn of new actors by receiving messages. Note that the new actor has a fresh address.
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Also, the transition map is updated so that the new actor may generate events. The ready
rule consumes a ready signal and transforms an incoming message into a deliver notification.
Finally, the in and out rules allow interactions with the external environment.

Under this semantics, we assume that actor signals may only be handled by ¢. Moreover,
the system actor may resume only those actors which block on a transmit, create, or ready.
That is, an actor generating any other event will be “stuck”. The create rewrite guarantees
that these constraints are enforced over dynamically created actors (i.e. those created as a
result of the create rewrite). To ensure that an initial configuration of actors is well formed,

we define the well-formed relation, wf, inductively over elements of F as follows:

(wf (F1) A wf(Fy) if F=F, F
wf (F) it F = [} [{R)
wf (F) = | false iftF=p(a,blo:[s]X:[l]T:[t])ANt#<
false ifF=r4(s,e,v) Ar £cNs#g
| true otherwise

We may then restate the configuration operation as follows:

():F-5C
e Defines a configuration where (F') € C if wf (F').

4.2.3 Meta Architecture

We define a meta architecture for actors using the constraints given in Section 2.2. Specifically,
a meta-actor is an actor which is capable of processing signals and generating notifications for
other actors. Under this definition, a meta-actor may customize the behavior of a particular
system service. For example, a meta-actor may intercept transmit events generated by another
actor in order to customize message passing. Actors which have their events intercepted in this
fashion are called base actors.

We formalize meta-level customization as follows. We add the install signal to the sort of
events and define the block relation as shown in Figure 4.4. We also introduce two new sorts:

the sort of signals, Sig C [E, and the sort of notifications, Not C E, with:

Sig = {transmit, create, ready, install}
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transmit »| complete

create » newActor

ready

deliver

\,

install

Figure 4.4: Meta Actor Transitions: The block relation for an actor semantics which
support meta-level customization.

Not = {complete, newActor, deliver}

Actor computation is slightly modified to allow meta-level customization. Specifically, we
must route the events generated by meta-actors so that signals and notifications are handled
correctly. Moreover, in the case where a meta-actor is blocked on a ready, we still want to
allow the meta-actor to process any signals generated by its base actor. We enable meta-actor
computation by replacing the request rule with two sub-rules which handle signals and noti-

fications separately:

[request-meta]
"a,blo:[s]A:[l]T:[t]) — ?(a,blo:[s]A:[e]T:[t]),t 4 (a,ev)

if nextEvent(s,b) = (e,v) and
e € Sig

[request-base]
Ma, 0o [$TA: '] 7:[t]),p(a,blo:[s]\:[l] T:[d]) —
Ta Vo [T E]), p(a,blo[s] A [l]) T:[d]), a 4 (d,e,v)

if nextEvent(s',b') = (e,v) and
e € Not

The request rules correctly route events depending on whether they are signals or notifications.

Note that, in the case of a meta-actor sending a notification, the “last event generated” attribute
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is not set to the notification generated. Thus, after sending a notification, a meta-actor blocks
on whatever signal it was previously blocked on before receiving the request from its base actor.
By the construction of block, this signal will always be ready. This slightly unusual formulation
of the rules has the pleasant side-effect of allowing a meta-actor to return to its previous blocked
context without requiring extra bookkeeping in the rewrite terms.

We introduce the install, redirect and propagate rules to handle meta-actor installation

and message redirection, respectively:

[install]

A, A", ¢ 4 (a,install, {a’,b,v}), ¢ € (a',ready,{}) —
[A, A, A", a < (s, newActor, {a"}), o < (', ready, {})] [{a,a'}

where A =7(a,by|o:[se] X:[install] 7:[t,]) and
A =71(d by |o:[sg] A:[ready] 7: [¢]) and
Al =7(d by |o:[sg] X:[ready] 7:[a"]) and
A" =7(d",blo:[s] A:[ready] T : [¢]) and
newlnstance(b,v) = s
[redirect]

pla,blo:[s]X:[l]7:]t]),a:a"<v — p(a,blo:[s]A:[l]]T:[t]), a:d < (rev,a,v)

[propagate]
pla,blo:[s]A:[l] 7:[t]),a:d < (rev,a*,v) —
pla,blo:[s]A:[l]7:]t]),t:d < (rev,a*,v)

if ¢t #¢

The install rule creates a new meta-actor and installs it on a particular base actor®. The
installation is only performed when the base actor is blocked on a ready signal. Moreover,
the structure of the rule implies that an actor may never install a meta-actor on itself. During
an install, the transition map is updated so that all events generated by the base actor are
intercepted by the new meta-actor. The redirect rule constructs a rcv message out of a

message targeted to a base actor. A rcv message is propagated to the appropriate meta-actor

"The restriction on the right side of the rule serves the same purpose as the restriction on the create rule.
Namely, it ensures that fragment compositions are well-formed.
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by the propagate rule. The second parameter in a rcv message gives the name of the original
target of the message.

As noted in Section 2.2, our meta-level model is parameterized by the choice of events and
the structure of the block relation. Alternative parameterizations, such as that described in

Section 2.2.2, may be specified by redefining the block relation and the actor rules given above.

4.3 A Semantics for Software Architectures

In Section 2.3, we defined an actor group as an encapsulated collection of actors with special
operations for allowing interactions between groups. In this section, we extend the rewriting
semantics with support for group operations.

A rewriting semantics with group support adds three properties to an actor configuration:

e Group Membership: Each actor has a modifiable group membership which indicates
the groups an actor belongs to. The group an actor is created in is called the actor’s
initial group. A new actor has the same initial group as its creator. Note that group

membership is monotonic. That is, once admitted, an actor is never removed from a

group.

e Encapsulated Interactions: Actors may interact only with other actors in a common
group. Encapsulation properties are enforced at the time a message is sent. That is, a
transmit will not be transformed into a message unless the sender and receiver are a

member of a common group.

e Managers: Groups are instantiated with a single member actor called the group manager.
Managers are exempt from the interaction restrictions applied to regular actors. Moreover,
managers are the only actors that can alter group membership, create new external groups,

or install customizations on internal actors.

While groups are normally isolated from one another, there are three mechanisms for allowing

interactions between groups:
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e Manager Interactions: A group manager may receive a message from any other actor
in the system (including other group managers). Managers coordinate admission and

meta-actor installation.

e Admission: A group manager can admit an actor to its group by changing the actor’s
group membership. Once admitted, the actor can communicate with any actor in the

admitting group.

e Meta Actor Installation: A group manager can customize a group member by in-
stalling a new meta-actor. The new meta-actor is created as a member of an external
group. Thereafter, the new meta-actor will intercept any signals generated by the base

actor. A meta-actor inherits the group membership of the actor it customizes.

We support groups in our semantics by adding group membership attributes to actors.

Specifically, we model actors as 9-tuples, (p,a,b,s,l,t,i,g,r), with attributes:

e pclP A processing state.

e acA\{s} An address.

e HeDB A behavior.

e s€S A state.

e [€E The last event generated by an actor.
e tEA The transition map for an actor.

e €A The initial group of an actor.

e geP,[A] The group membership of an actor.
e rclA The base map of an actor.

Actors are represented by terms of the form:

pla,byi,r|lo:[s]X:[l] 7:[t]v:]g])

where the initial group and base map, ¢ and r respectively, are fixed attributes of an actor,
whereas group membership, g, is a run-time attribute. Each group is referred to by the name
of its manager. The initial group, 4, gives the group an actor was created in. In particular, an
actor is a group manager if ¢ = 7. We use this information to determine group membership of

actors created at run-time. Group membership, g, gives the groups to which an actor belongs.
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The base map, r, indicates if this actor is a meta-actor in a meta-level stack. Specifically, an
actor is a base actor if a = r. Otherwise, the actor is a meta-actor with r giving the name of
the base actor in the stack. The base map is used to determine the group membership of a new

actor created by a meta-actor.

transmit / complete
create » newActor
» deliver

install

createGroup

Figure 4.5: Group Transitions: The block relation for an actor semantics with group
support.

We add two new signals to the semantics, createGroup and admit, and define the block
relation as shown in Figure 4.5. Although signals can be generated by any actor, the install,
createGroup and admit signals will be processed by the system only if they originate from
managers. We also enforce the constraint that managers may never be created as meta-actors.
Similarly, managers may not be customized by meta-actors. Thus, block need not include links

from ready to install, createGroup and admit.

4.3.1 Actor Operations

The rules governing basic actor operations are slightly altered to support group operations. In

particular, only the send and create rules must be changed:
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[send-in]

A, A ¢ 4 (a,transmit, {a',v}) — A, A", a € (s,complete,{}), a’ < v

if A =pa(a,by,ia,ra|lo:[sa] X:[la] 7:[ta] v :19a)) and
A" =py (a’a by, ta s Tar ‘U : [Sa’} A [la’] T: [ta’} v [Qa’D and
((9a Ngar # D) V (0’ =iy))
[send-out]
(F, A, s 4 (a,transmit, {a',v})) — (F, A, a 4 (s,complete, {}), a’ < v)
it A =po(a,by,a,rq|o:[sq] X:i[la] 7:[ta] v:]9a]) and
a ¢ recep(F)
[create-base]

A, ¢ 4 (a,create, {V',v}) — [A, a 4 (s,newActor,{a'}), A", ¢ 4 (a',ready,{})][{a}

if A =7(a,b,i,alo:[s] A:[create] 7: [¢] v :[g]) and
A =(d b i, d o [s'] A [ready] 7 : [¢] v: [{i}]) and
newlnstance(b',v) =5 and

a & acq(s) U{a} U acq(v)
[create-meta]
Ay, A, ¢ 4 (a,create, {V',v}) —
[Ay. A, a 4 (s,newActor,{da'}), A, ¢ « (d/,ready,{})] [{a,ap }

if Ay =pp(ap, by, ip, aplo:[sp] X [lp] 7 [t] v : [gb)) and
A =7(a,b,i,ay|o:[s] X:[create] 7: [¢] v :[g]) and

A =1(d b iy, d o [s'] A [ready] T [¢] v: [{ip}]) and

newlnstance(b',v) = s' and

a & acq(s) U{a} Uacqg(v)

The send rule is divided into two cases depending on whether or not the target actor is a
member of the configuration. The send-in rule enforces the constraint that actors within a
configuration may exchange messages only if they are a member of a common group. Note that
group membership is an additive property (i.e. actors may never be removed from their groups),
thus encapsulation need be enforced only within the send rule. The condition g, Ng, #  holds
if the sender and receiver are a member of a common group. The condition a’ = 4, holds if the
receiver is a group manager. Thus, the send is allowed if either both actors are a member of a
common group, or if the receiver is a group manager. The send-out rule allows a manager to

send a message to a target outside the configuration (see the in rule below).
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The create rule is subdivided into two cases depending on whether or not the creator is a
meta-actor. We make this division to preserve the constraint that the new actor has the same
initial group as the base actor in the meta-level stack of the creator. We enforce this constraint
to avoid ambiguity in the case of an actor which is customized by a meta-actor. In particular,
when a meta-actor generates a create request, it may be doing so on its own behalf or on
behalf of its base actor. Thus there are two valid choices for the initial group of the new actor:
the initial group of the meta-actor, or the initial group of the base actor.

The create-base rule handles the case where an uncustomized actor performs the create.
In this case, the new actor is added to the same initial group as the creator. The create-meta
rule handles the case where a meta-actor performs the create. In this case, the new actor is
added to the initial group of the base actor, a;. As with any create, the address of the new actor
is returned to the creator, and the resulting term is restricted to preserve subsequent fragment
compositions.

Only the in rule needs to be changed for handling external interactions:

[in]
(F) — (F,a<v)

if F =[F',M][{R} and
M =p(a,b,a,alo:[s]X:[l]7:[t]v:][g]) and
a € recep(F)

The in rule is altered so that external messages are admitted only if they are targeted to
a group manager which has been exported as a receptionist (i.e. group managers are the only
valid receptionists for a configuration). Note that it is necessary to alter the in rule because the
more general rule normally associated with actor semantics would allow group encapsulation

to be violated®.

Specifically, an external message might be targeted to a non-manager actor.
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4.3.2 Meta Actor Operations

Meta-actor installation is slightly modified under group semantics while the redirect rule is

unchanged:

[install]

A, A", ¢ 4 (a,install, {d’,b",v,¢"}), ¢ 4 (d',ready,{}) —
[A, A, A", a < (s, newActor, {a"}), o’ < (', ready, {})] [{a,a’}

where A =7?(a,b,a,alo:[s] \:[install] 7:[q] v:[g]) and
A =7(d" b a, a0 [s'] A [ready] 7: [¢] v : [g']) and
A =7(d ¥, a, ap|o:[s'] X [ready] 7: [a"] v : [¢']) and
A" =12(a" b 9" aylo: [s"] A [ready] 7 i [c] v : g’ U{g"}]) and
a #4g"

The install rule enforces the following constraints: 1) only group managers may request
installation; 2) installation may be performed only on an actor in the requester’s group; and
3) group managers may not be customized. The parameter g” indicates the group where the
new actor should be added. Note that the new actor is created in a group different from the
requesting manager. This is the only case in which a group manager may affect the membership
of an external group”. Note also that the new meta-actor inherits the group membership of its
base actor. This is necessary so that any messages sent by the meta-actor on behalf of its base

actor may be properly delivered.

4.3.3 Group Operations

Finally, we require three new rules which allow group managers to admit actors and create new

external groups:

"We have structured the rule this way because we view installation as a more sensitive encapsulation property
than membership. That is, we sacrifice membership encapsulation in favor of allowing managers ultimate control
of customization of internal actors.
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[admit-top]
A, A", ¢ 4 (a,admit, {a'}) — A, A,, a 4 (s,complete, {})

where A =7(a,b,a,a \ o:[s] A: [admit] 7 : [¢] v:[g]) and
A (@ Vo A ) Ty fg]) and
Ay =p (d Vi o [STA ] 7 o]y s [g' Ud{a}])

[admit-base]
A, A ¢ 4 (a,admit, {d'}) — A, A, <4 (a,admit, {t'})

where A =7(a,b,a, a\a [s] A: [admit] 7 : [¢] v : [g]) and
A =g (Y e [ A )T ] s [g) and
A =p (¥, o [$) A ) e [#] v: (g Uda})) and
t #£g

[create-group]
A, ¢ 4 (a,createGroup, {b',v}) — [A, A", a 4 (¢,newActor,{d'}), ¢ « (d¢’,ready,{})]|[{a}

where A =7(a,b,a,a | o :[s] A: [createGroup] 7: [¢] v:]g]) and
A =1(d b, d,d o[ A ready] 7:[¢] v:[{d'}]) and
newlnstance(b',v) = s and

a & acq(s) U {a} U acq(v)

The “admit” rules (admit-top and admit-base) allow group managers to change group
membership by admitting other actors in the configuration. Note that actors external to the
configuration can never be admitted to a group. We require two admit rules because, by
definition, meta-actors inherit the group membership of their base actors. Thus, if a base actor
is admitted, then the membership of its meta-actor must also be changed. The admit-top
rule handles the default case where a top-level actor is admitted to a group. The admit-base
rule handles the case where a customized actor is admitted to a group. In this case, the actor
is admitted and the admit request is rewritten so that the meta-actor is also admitted. The
create-group rule allows the creation of new groups. Groups are created by specifying a
behavior for the manager of the group. Group creation is the only mechanism for creating

group managers. Thus, all groups have only a single manager®.

8Because managers are intended for coordinating connections between groups (e.g. by admitting external
actors), the need for multiple managers in a single group is an implementation rather than semantic concern.
That is, we may require multiple managers to allow a more efficient implementation (e.g. multi-threaded),
although the behavior of these managers is semantically equivalent to a single manager.
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4.4 Interaction Semantics

The semantics given in the previous section describes the underlying behavior of actor config-
urations, but provides little insight into more abstract group relationships. In particular, it is
not apparent if we can determine the “compatibility” of the groups selected for a particular
architecture. In saying that a collection of groups is “compatible”, we imply that the following

questions can be answered:

e Given actor groups g; and go:

— Do the messages sent by actors in g; to actors in gy correspond to the messages

expected by the actors in gy (and vice versa)?

— Do the actors in g; which customize (i.e. are meta-actors for) the actors in g9
preserve the semantics of the actors they customize? That is, are signals handled

correctly and are appropriate notifications generated?

These conditions provide a natural analog to compatibility requirements we might expect
from the structures introduced in Chapter 3. In particular, because modules, protocols and
policies are mapped directly onto actor groups, we may use compatibility conditions to infer,
for example, whether or not a particular protocol is an appropriate connector for a pair of
modules. Similarly, we can infer whether or not a policy correctly customizes a protocol role
or module.

To provide these compatibility conditions, we derive an interaction semantics based on the
group semantics of the previous section. This semantics is based on the notion of computation
paths entailed by a particular configuration. We summarize the definitions of paths here, a

more complete definition may be found in [55].

4.4.1 Paths and Interaction Steps

The initial model construction (see [41]) of a rewrite system, (X, E, L, R) yields a set of finite
computations, P. Each such computation may be viewed as a sequence of transitions where

each element of the sequence is a term, and each transition represents the application of a rule.
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The initial model construction also provides an equivalence relation, ~, on computations in P.
By construction, ~ satisfies (X, E), as well as certain categorical and functoriality constraints.

More importantly, ~ also satisfies “exchange” laws of the form:

oy [w] = [}1)'1] e Q] =& [wé]
@) = r(w):#(@) = ta)r(w)

for each rule 7 : [¢(z)] — [t'(z)]. This rule allows the “serialization” of concurrent computations

and may be used to flatten a concurrent computation into a sequence of atomic rewrite steps.

Following [55], we define a computation path, p : X — P, as an infinite sequence derived from
P such that adjacent computations are sequentially composable’. We use Path[P] to denote
the set of all such paths over P. The expression p[i denotes the sequential composition of the
first i segments of the path p (i.e. p(0);p(1);...;p(i)). Finally, we define path equivalence by

lifting the equivalence relation, ~, to paths as follows:

Definition 1 (Path Equivalence) For p,p’ € Path[P], p ~ p' if for all i, there exist k,c
such that:

plize ~ p'[(i+Fk)
and for all i, there exist k',c' such that:

p'li'sd ~ p[('+ k)

Our goal in defining an interaction semantics is to isolate the external, group-to-group
interactions entailed by a particular actor configuration. To this end, we introduce the partial

configuration operator:

O LH : F x (Pu[A] X Pu[A]) x PylA] — C
where (A) [b] {m} € C if:
e recep(A) N (b* Um) = where b* = {b;|(b;, a;) € b};

e if (b,a1), (b,as) € b, then a; = a9; and

9As in the previous section, we restrict ourselves to the fair paths derived from a particular rewrite theory.
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o if (bl,a), (bg,a) € b, then by = bs.

The term A represents an actor fragment which may or may not satisfy wf (i.e. may not
be well formed). The relation b is referred to as the base relation for the configuration, while
the set m is referred to as the member set.

The configuration M = (A) [b] {m} is partial in the sense that it may not include all the
actors referred to by elements of the fragment A. The member set, m, is interpreted as the
set of external members of the configuration. That is, an address a is included in m if the
actor it represents is a member of a group in A, but is not contained in A itself. Similarly,
the base relation, b, is interpreted as the set of external base actors of the configuration. An
element of the base set, (b;,a;) € b, indicates a base actor with address b; with meta-actor a;.
The constraints defined above restrict the base relation so that base actors have at most one
meta-actor, and vice versa.

We use the members relation, members : F — P, [A], and the meta-set relation, metaSet :
F — P,[A], to refer to particular addresses referenced in a fragment. In particular, the
members relation gives the set of actors contained within a fragment. The meta-set relation is

defined as:

metaSet(A) ={t | p(a,b,i,ap|o:[s] N:[l] 7:[t] v:[g]) € A}

where A € F. That is, the meta-set relation gives the address of every actor which customizes
an actor in A.

Finally, we define the set of interaction steps as a collection of concurrent rewrites over
partial configurations. In the following definitions, we use g to denote the set of concurrent
rewrites defined in the previous sections, excluding install, admit, in and out. The set of

interaction steps is defined as follows:

[silent ()]
(4) [p]{m} = (A') [b] {m}

ifA -2 A
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[emit-1(a,a’,e,v)]

<A, a < (a,e,v)> [b]{m} = (A)[b]{m}

if o' & members(A)
[emit-2(a,a’,v)]

(A, a:d <o) p]{m} = (A)[b] {m}

if a & members(A)
[consume-1(a,a’,e,v)]

(AY[b]{m} = (A, a < (d',e,v)) [b] {m}

if a € members(A) and
(a',a) € b or a' € metaSet(A) \ {s}

[consume-2(a,a’,v)]

(A)[b] {m} = (A, a:d <v)[b]{m}

if a € members(A) and

a em

[admit (a’)]
(F, A, ¢ «(a,admit,{a'})) o] {m} = (F, A, a < (c,complete,)) [b] {m U {a'}}

if A =7(a,b,a,alo:[s]X:[admit] 7:[¢] v:]g]) and
a’ & members(F , A)
[install-1(a’’)]
(F,A, A", ¢ 4 (a,install, {d',b",v,g})) [b] {m} =
(F,A, A, a 4(s,newActor, {a"})) [b] {m U {a"}}

where A =7(a,b,a,alo:[s] A:[install] 7:[s] v : [g4]) and
A = 7(dV, a, o [9] A [ready] 71 [o] 7 ¢ g)  and
4, =7(a ¥, a |0 [¢] A: [ready] 7: [a"] v: [¢/]) and
g & members(F , A) and
a” & members(F, A, A"

[install-2(a,ap,gp)]
(F, Ap)[b]{m} = (F, An.,?(a,b,am,glo:[s] X:[ready] 7:[s] v:[g])) [bU{ap}] {m U {ap}}

if gy,a & members(A) and
A =pm(am, by amy am o [sp] Al 71 [s] v [gm]) and
ay €9

We use the symbol Z, to denote the set of interaction steps: silent, emit-1, emit-2,

consume-1, consume-2, admit, install-1, and install-2. Let vy range over Z,.
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Definition 2 (Computation Paths) A computation path, 7, is an infinite sequence of in-
teraction steps with w(i) = ~v; = (Ai)[bi]{mi} = (A}) [b]]{m]} such that Ay, ~ A} for
i € N. Note that for each computation path, m, there exists a path p € Path[P] such that
if w(i) = v« (Ai) [bi]{m;} = (AL [B)]{m!}, then p[i ~ A;,. As a slight abuse of nota-
tion, we use the expression Path((A)[b]{m}) to denote the set of computation paths with
source (A)[b]{m}. Given a computation path, w, we define the function members; such that
members;(m) = members(A;) if w(7) = v : (As) [bi] {mi} = (A)) [b]] {m]}.

The computation paths entailed by a partial configuration may be viewed as a collection of
“simulations” which describe the behavior of the configuration in response to various stimuli
(e.g. interactions with external actors). Moreover, these paths define the expected behavior

of an external stimulus for each particular scenario. In effect, we have derived a composition

predicate for a partial configuration. We formalize this notion in the next section.

4.4.2 Composability

We derive composability criteria by giving an interaction semantics to partial configurations.

This semantics is given by the following definitions:

Definition 3 (Interaction Sequences and Paths) Let 72° = {f | f : X — Z,} be the set of
all interaction sequences, and let ¢ range over I°. An interaction path is a 4-tuple, (A,b,m,()

where (A) [b]{m} € C, and ( € Z°.

Definition 4 (Sequence Dual) Given an interaction sequence (, the dual of (, D(C), is the
interaction sequence (' defined as follows:

o If (i) = emit-1(a,a’,e,v), then ('(1) = consume-1(a’,a,e,v).
o If((i) = emit-2(a,a’,v), then {'(i) = consume-2(a’,a,v).
e If((i) = consume-1(a,a’,e,v), then ('(i) = emit-1(a’,a,e,v).
e If((i) = consume-2(a,a’,v), then ('(i) = emit-2(a’, a,v).

e Otherwise ('(i) = silent ().

Definition 5 (Interaction Semantics) The interaction semantics of a partial configuration,
I((A) [b] {m}), is the set of interaction paths abstracted from its fair computation paths:

[({A) [ {m}) = {te(r) | m € Path((A) [b] {m})}

where tc(m) = (A,b,m, ) such that if w(i) = v; : (A;) [bi] {m;} = (AL) [bi]{m}}, then {(i) = ;.
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Definition 6 (Interaction Equivalence) Two partial configurations are interaction equiva-
L . . . . .
lent, ~, just if they have the same interaction semantics:

(A1) 1] {ma} ~ (Ag) [b2){ma} & T((A1) [b1]{mi1}) = I({A2) [b2] {m2})

In considering whether two partial configurations are composable, we are only concerned
with those interactions which involve participants in both configurations. We define the con-

figuration image of one configuration relative to another as follows:

Definition 7 (Configuration Image) Given two partial configurations, (A1) [bi]{mi} and

(A2) [ba] {ma}, the configuration image, cimage .y, qm,}((A2) [b2] {ma}), of (A1) [b1] {m1} on
(Ag) [b2] {ma} is defined as:

cimage 4,y oy y ((A2) [b2] {mz}) = {im )y () | 70 € T((AL) [b0] {rmu 1))

where 1M A,)(by]{ms} (T) = 7' such that ' is the subset of interaction steps in m which refer
to an actor contained in one of the states entailed by 1((Asg) [ba] {m2}). In particular, if 7 =
(A1,b1,m1,(1), then ' = (A, by, mq, (}) where:

o If (i(i) = emit-1(a,a’,e,v) and a' € members;(n*) for some ©* € T({A2) [ba] {ma}),

then (1 (i) = ¢(7).

o If (i(i) = emit-2(a,a’,v) and a € members;(n*) for some ©* € 1((A2) [b2] {m2}), then

C1(i) = ¢(4).

o If(i(i) = consume-1(a,a’,e,v) and a’ € members;(n*) for some n* € I((Az) [b2] {ma}),

then ¢} (i) = C(i).

o If (1(i) = consume-2(a,a’,v) and o' € members;(n*) for some ©* € T({A2) [ba] {m2}),

then C1(0) = ().
e Otherwise, (](i) = silent ().

We define configuration compatibility, by considering the image of one configuration on

another:

Definition 8 (Configuration Compatibility) The partial configuration (A1) [b1] {m.} is com-
patible with the partial configuration (As) [bo] {ms}, denoted as:

(A1) [b1] {m1} = (Ag) [ba] {mna}

if for all ™ € cimage 4,)p,){m,}((A2) [b2] {m2}) with m = (A1,b1,m1, (1), there exists 7' €
H((AQ) [bQ] {7772}) with 71" = (AQ, bg,mg, CQ) such that Cl ~ D(Cg)
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Finally, we define configuration composability as two partial configurations which are mu-

tually compatible:

Definition 9 (Configuration Composability) Two partial configurations, (A1) [b1]{m1} and
(Ag) [bo] {msa}, are composable, with new partial configuration:

(A1, A2) [(b1 Uba) \ L] {(m1 Umay) \ L}

where L = members(A1) U members(As), just if members(Ay) N members(As) = 0 and:

(A1) [b1]{ma} = (A2) [ba] {ma} A (Ag) [bo] {ma} = (A1) [b1] {1}

4.5 Summary

In this chapter, we have provided a formal semantics for the model described in Chapter 2. We
first described a general actor semantics based on concurrent rewriting. This semantics was
refined and specialized first to actors which may be customized by meta-actors, and then to a
meta-architecture with actor group constraints. Finally, we provided an interaction semantics
which considers only the interactions between partial configurations of actors.

We used our interaction semantics as basis for addressing composability issues in software
architectures. Specifically, we provided a definition of composability based on whether or not
two configurations are “compatible”. Compatibility, in this case, refers to a correspondence
between external interactions in each configuration.

Although our definition of composability is stronger than the usual definition associated
with actor configurations (c¢f. [5]), relative to software architecture our definition is weak in the
sense that it only ensures a correspondence between interactions in two partial configurations.
Specifically, while our definition of composability guarantees that every “desirable” interaction
pattern has a correspondence, we also guarantee that every “undesirable” pattern also has a
correspondence. Thus, even if two partial configurations do not interact correctly (i.e. one or
the other enters an undesirable state), they may still be composable.

In many ways, this definition is very similar to bisimilarity as defined in CCS [42] and =-

calculus [43, 44]. In particular, it may be feasible to derive similar algebraic structures using
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partial configurations and composability. Moreover, it may be possible within this algebra
to define stronger composability conditions. Such a definition would ensure that only the
“desirable” interactions have a correspondence. We leave these issues as topics for future

work.
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Chapter 5

Conclusion

In this thesis, we have presented a new model for specifying software architectures. While
traditional architectural styles may be specified within our model, we place particular emphasis
on styles associated with distributed applications. Typically, distributed applications require
architectural policies which enforce availability, dependability and other high-level constraints.
Such policies are often called “cross-cutting” because their implementations may require access
to internal component resources. Traditionally, these policies were implemented by hard-coding
solutions within architectural elements, significantly reducing modularity.

A naive solution to this problem would be to arbitrarily expose component resources. How-
ever, this approach damages modularity in the same fashion as hard-coded implementations.
In contrast, we augment our model with a meta-architecture which exposes resource utilization
patterns. This meta-architecture preserves modularity by way of two key properties: trans-
parency, and composability. The meta-architecture is transparent in the sense that base-level
objects (i.e. architectural components) need not be aware that they are customized. Similarly,
meta-level objects have limited access to the objects they customize: they may only respond to
requests for resources. The meta-architecture is composable in the sense that a meta-object it-
self may be customized by another meta-object. As a result, multiple policies may be separately
developed (as separate objects) and later composed on architectural elements.

Although we have based our model on a simplistic view of actor resources (i.e. those

associated with the send, create and ready operations), we have illustrated that the model
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(and semantics) may be parameterized in order to address more specific issues. For example,
an appropriate choice of events and rules may be used to address placement and load balancing
issues, failure and recover, program visualization [11], or even real-time constraints [49].

To demonstrate the utility of the model, we have defined the Distributed Connection Lan-
guage (DCL): an Actor-based architecture description language. DCL specifications may be used
to define the initial configuration and dynamic restructuring of a distributed software architec-
ture. In particular, DCL specifications may be used to define connections between architectural
elements, as well as enforce high-level policies over collections of elements. The computational
behavior of the architecture is defined by individual actors.

To demonstrate that the model may be implemented efficiently, we have described the
mapping of DCL to the Actor Foundry, a Java-based actor programming environment. A key
concern is the overhead entailed by the modularity of the system. Our performance tests show
that DCL may be implemented with minimal overhead (less than 10%). Nonetheless, certain
applications may require tighter performance bounds. To this end, we have provided alternative
implementations which sacrifice certain assumptions associated with actor semantics for the
sake of efficiency. Subsequent performance measurements indicate that overhead is reduced by
a factor of two (i.e. less than 5%). Still other performance improvements are possible.

While specification and implementation are important issues, it is perhaps more important
to derive tools which verify properties over specifications. Several properties are of interest.
Does the interface of a component match the interface of the connector to which it is attached?
Does the connector which attaches a pair of components implement the correct policy? Can
one component be viewed as a refinement of another component? As a basis for answering such
questions, we have developed a rewriting semantics for our model. Moreover, we have extended
the semantics to the notion of a partial configuration, and have derived composability conditions
which are based on the matching of interactions between partial configurations. A substantial

“weak” condition for composability into a stronger

challenge for future work is to translate this
predicate which captures the properties mentioned above (i.e. interface matching, adherence

to specifications, etc).
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We believe that cross-cutting issues are a significant obstacle in the development of high-level
mechanisms for architectural design and specification. In particular, current techniques rely on
functional interfaces which obscure too much of the underlying system behavior. Moreover, such
interfaces tend to be static, making it difficult to model today’s dynamic systems. We believe
that the techniques described in this thesis make a significant contribution towards flexible
architectural interfaces. In particular, the notion of a modularity preserving meta-architecture
affords the protection of current abstraction boundaries while allowing the graceful specification
of cross-cutting system features. Nonetheless, significant work remains to be done with respect
to analysis and verification tools. We view such tools as an evolutionary extension of the

formalisms we have described in this work.
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