
cCopyright by Mark Christopher Astley, 1999

CUSTOMIZATION AND COMPOSITION OF DISTRIBUTED OBJECTS:POLICY MANAGEMENT IN DISTRIBUTED SOFTWARE ARCHITECTURES
BYMARK CHRISTOPHER ASTLEYB.S., University of Alaska, Fairbanks, 1993M.S., University of Illinois at Urbana-Champaign, 1996

THESISSubmitted in partial ful�llment of the requirementsfor the degree of Doctor of Philosophy in Computer Sciencein the Graduate College of theUniversity of Illinois at Urbana-Champaign,1999
Urbana, Illinois

Abstract
Research in software architecture has emphasized compositional development, where the com-putational aspects of a system are modularly separated from communication and coordinationaspects. Typically, software architectures are factored into a set of components, which en-capsulate computation, and connectors, which encapsulate interactions. In terms of design,development and debugging, this separation has several important advantages. In particular,by separating application code from the protocols used for interaction, software componentsmay be independently developed and tested. Moreover, as requirements change, existing archi-tectural elements may be modularly replaced by new elements with appropriate properties.A fundamental problem with these abstractions is their interaction with \cross-cutting"architectural features such as heterogeneity, availability, and adaptability. Availability, forexample, requires protocols that manipulate both communication and resources. Controllingarchitectural resources, however, requires access to the internal resource usage patterns of com-ponents and connectors. Unfortunately, current architectural abstractions have inexible inter-faces which obscure these patterns. This loss of information forces the implementation of suchfeatures to be hard-coded within architectural elements, eliminating many advantages of themodular approach.In this thesis, we propose a model for distributed software architectures that exposes resourceaccess in a modular fashion. Our model extends current architectural abstractions by providinga meta-architecture for customization. This meta-architecture augments the functional interfaceof architectural elements with an operational interface for controlling resources. We also developa formal semantics which provides a foundation for reasoning about composition in the model.iii

As an instantiation of the model, we describe an architecture description language calledthe Distributed Connection Language. dcl allows the speci�cation of distributed architectureswhich incorporate traditional elements (i.e. components and connectors) together with newelements, called policies, which specify resource constraints. We provide a Java-based imple-mentation of dcl to demonstrate that the increased modularity of the approach does not entailprohibitive performance tradeo�s.

iv

For Rufus the Cat, wherever ye may be...

v

AcknowledgementsAs a single balloon must stand for a lifetime of thinking about balloons, so eachcitizen expressed, in the attitude he chose, a complex of attitudes. One man mightconsider that the balloon had to do with the notion sullied, as in the sentence,The big balloon sullied the otherwise clear and radiant Manhattan sky. That is, theballoon was, in each man's view, an imposture, something inferior to the sky thathad formerly been there, something interposed between the people and their \sky."But in fact it was January, the sky was dark and ugly; it was not a sky you couldlook up into, lying on your back in the street, with pleasure, unless pleasure, foryou, proceeded from having been threatened, from having been misused. And to theunderside of the balloon was a pleasure to look up into, we had seen to that, mutedgrays and browns for the most part, contrasted with walnut and soft, forgottenyellows. And so, while this man was thinking sullied, still there was an admixtureof pleasurable cognition in his thinking, struggling with the original perception.{ Donald Barthelme, \The Balloon", Unspeakable Practices, Unnatural Acts1There are many people to thank for transforming an otherwise \sullying" experience intoan \admixture of pleasurable cognition". First and foremost, I would like to thank my brotherScott and my parents for their continued support throughout the years. I would also like tothank Suzanne (Chicken Gruel Woman) for her love and support during the many ups anddowns of graduate school.My thesis committee - Gul Agha, Mehdi Harandi, Geneva Belford, Ralph Johnson, andCarolyn Talcott - have provided invaluable advice and comments on the work you see here. Iwould especially like to thank my advisor, Gul Agha, for providing encouragement throughoutthe years. Carolyn Talcott also deserves special mention for her help in developing the formal1I am indebted to Dr. Joseph Dupras (a.k.a. Doctor Doom) in the English Department at the University ofAlaska - Fairbanks for helping me track down this reference.
vi

semantics in Chapter 4. Many of the results described here are a natural evolution of herfoundational work. Needless to say, any remaining faults are solely my responsibility.I would also like to thank the other members of the Open System Laboratory, both pastand present, for their input and contributions. The \old gang", Dan (I'm o� co�ee now)Sturman, Brian (Professor) Nielsen, Shangping Ren, Nalini Venkatasubramanian, RajendraPanwar, Wooyoung Kim and Joonkyoo Yoo2, all deserve special mention for providing commentson early versions of this work. The \new gang", Thomas (Boot to the head) Clausen, Prasannaa(Mmmm, meat) Thati, James Waldby, Carlos Varela, Nadeem Jamali, and Reza Ziaei, deserveequal mention for providing comments and suggestions on early thesis drafts. The members ofOSL also deserve credit for making the Actor Foundry project the success that it is.Last but not least, I would like to thank Helena Mitasova, Bill Brown, and the other �ne folksat the U.S. Army Construction Engineering Research Laboratory for their support throughoutmy graduate career.

2Sadly, Joon passed away in 1998. vii

Table of Contents
Chapter1 Introduction : 11.1 Introduction . 11.2 Related Work . 51.2.1 Architecture Description Languages and Software Buses 51.2.2 Modular Con�guration of Distributed Systems 111.2.3 Reection and Language-Based Support 122 An Architectural Model for Distributed Software : : : : : : : : : : : : : : : : : 142.1 Actors . 162.2 Meta-Level Customization . 172.2.1 Basic Actor Model . 212.2.2 Model Extensions . 232.3 Actor Groups . 272.3.1 Overlap Admission . 302.3.2 Customization Admission . 312.4 Summary . 323 The Distributed Connection Language : 343.1 Modules . 363.2 Protocols . 393.3 Policies . 413.4 Example: CORBA-like Architecture . 443.4.1 Customizing Server Connections . 453.4.2 Controlling Server Resources . 473.5 Example: High-Availability Server . 483.6 Implementation . 543.6.1 Actor Implementation . 543.6.2 Meta-Architecture . 583.6.3 Group Support . 603.7 Summary . 644 Formal Semantics : 664.1 Preliminaries . 684.2 A Rewriting Semantics for Actors . 72viii

4.2.1 Basic Computation Steps . 774.2.2 Traditional Actor Semantics . 784.2.3 Meta Architecture . 804.3 A Semantics for Software Architectures . 834.3.1 Actor Operations . 854.3.2 Meta Actor Operations . 884.3.3 Group Operations . 884.4 Interaction Semantics . 904.4.1 Paths and Interaction Steps . 904.4.2 Composability . 944.5 Summary . 965 Conclusion : 98Bibliography : 101Vita : 106

ix

List of Figures1.1 Fault-tolerant Server: The server is made fault-tolerant by three actions:1) each server interaction is duplicated at the backup, 2) a state snapshot isperiodically sent to the backup, and 3) the resources of the server and backupare separated to allow for independent failure. 32.1 Actor Model: Actors are concurrent objects that interact via asynchronousmessages. 162.2 Actor Signal Processing: An actor requests a message send by generatinga transmit signal. The system handles the signal by sending the message andgenerating a continue noti�cation. 182.3 Actor Customization: A meta-actor customizes a base-actor by interceptingsignals. The meta-actor generates a noti�cation after each signal has been pro-cessed. 192.4 A Meta-Level Stack: Multiple customizations are composed on a single actorby building a meta-level stack. Messages are redirected (and annotated with\rcv") to the bottom actor in the stack and may be relayed up the stack to theappropriate target. 202.5 Basic Actor Model Events and Synchronization: The basic actor opera-tions are factored into signal-noti�cation pairs. As indicated by the arrows inthe diagram on the right, the transmit and create signals block the caller untila continue or newActor noti�cation is received, respectively. An actor blockedon ready may be resumed by a deliver or a signal from a base-actor. 222.6 Basic Actor Model Event Behavior: Each signal has a default behaviorcorresponding to the actor semantics of the associated operation. 232.7 Meta-Level Implementation of Encryption: The Encrypt meta-actor in-tercepts transmit signals and encrypts outgoing messages. The Decrypt policyactor intercepts messages targeted for the receiver (via the rcv method) and, ifnecessary, decrypts an incoming message before delivering it. 242.8 Meta-Level Implementation of Replication: An instance of Replicatoris installed on the actor to be replicated. An instance of Backup receives statesnapshots from the Replicator so that it can assume the role of the replicatedactor if a failure occurs. 252.9 Replication of a Meta-Level Stack: In this case, the actor to be replicatedconsists of many actors organized into a meta-level stack. One solution is tochange the semantics of ready so that state snapshots capture the entire stateof the meta-level stack. 26x

2.10 Actor Groups: Actors groups provide an encapsulated namespace. Actor cre-ation and message passing is restricted within the group. Only managers mayparticipate in external interactions. 272.11 Modeling Architectures with Actor Groups: Actor groups are used tomodel components and connectors. Traditional architectural connection is achievedby groups which provide endpoints for communication and coordination. Archi-tectural policies are enforced by groups which provide meta-level customizationof other groups. 292.12 Overlap of Meta-Level Stacks: The overlap admission of a base actor ispropagated to each actor in its meta-level stack. This ensures that the admittedactor may communicate locally. 302.13 Customization Admission: The receiving manager (i.e. group A) createsa new meta-actor in the requesting group. The creating manager speci�es thebehavior of the new meta-actor, as well as the address of the local actor to becustomized (some of this information may be contained in the install request).The new meta-actor has initial group equal to that of the requester (i.e. groupB). The membership of the new meta-actor includes both groups. 323.1 Module Syntax: A module de�nes local state, an initialization section, and aset of request rules. An accept rule is used to process connection requests. Aninstall rule is used to allow the customization of internal actors. Methods areused for coordination and synchronization. The syntax rule� denotes the Kleeneclosure of a statement rule. 373.2 Protocol Syntax: A protocol de�nes local state, an initialization section, anda set of request rules. Actors created within a protocol are assigned to a roleat the time of creation. The connect keyword is used to submit a connectionrequest to an external module. 393.3 Policy Syntax: A policy de�nes a local state, an initialization section, and aset of methods. The install keyword is used to install policy actors on modulesor protocols. 433.4 A CORBA-like Client-Server Architecture: Left: The RequestBrokerforwards connection requests to the DBConnector instance associated with theserver. Right: The RequestBroker speci�cation de�nes rules for registeringservers and accepting connection requests. 453.5 Server and Connector Speci�cation: The server creates a protocol for con-nections, and registers the protocol with the request broker. The connectionprotocol returns a skeleton to the server and processes connection requests fromclients. 463.6 Encryption Policy: The Encryption policy coordinates the installation ofEncrypt and Decrypt meta-actors. Once installed, all interactions betweenclients and the server are encrypted. 473.7 Load Balance Policy: Instances of LoadBalance are installed on the server bythe RoundRobin policy. Once installed, each create request is forwarded to thepolicy in order to determine where to create the new actor. 48
xi

3.8 A Bug-Tracking Database: An HTTP interface module provides access to adatabase storing bug reports. A network-to-database connector translates HTTPrequests into document requests at the database. 493.9 Bug Database Speci�cation: The database and HTTP interface are speci�edas dcl modules. The Network/Database connector is speci�ed by the HTTP DBprotocol. For the sake of brevity, we omit the speci�cation for the database.Note that all we require from the database is an accept rule for accepting theDatabaseClient actor created in HTTP DB. 513.10 Cluster Deployment: On the left: proposed changes to create a high-availabilityserver. On the right: architectural changes to support the new server. 523.11 SequenceRequestsPolicy: The Sequencer policy actor (top right) captures andsequences new requests. The Receiver policy actor (bottom right) ensures thatrequests are processed in the order of their sequencing. A separate BcastActorforwards copies of sequenced requests (not shown). 533.12 DCL Mapping: dcl speci�cations are mapped onto group manager actors. . . 543.13 Foundry Architecture: The ActorManager provides basic actor functional-ity for all actors on a Foundry node. The RequestHandler, NameService, andTransportLayer are used to facilitate o�-node services. 553.14 \Hello World!" in the Foundry: The hello method in HelloActor printsthe string \Hello \, creates an instance of WorldActor, invokes the worldmethod.The worldmethod in WorldActor prints the string \World!". A call is a methodinvocation with RPC semantics. A send is an asynchronous method invocation. . 563.15 Foundry Performance: Message passing was sampled over 10000 iterations.Actor creation was sampled over 5000 iterations. Scheduling results were sampledover 10 iterations of Fibonacci(15). 573.16 Meta-Actor Implementation: Left: New meta-actors are installed in a threestep process. Right: Messages can be rerouted at the manager because all actorsin a meta-level stack must reside on the same node. 593.17 Policy Installation: Policies are installed in three stages: (1) the installationrequest is received and propagates down the group creation tree; (2) a meta-actor is installed on each member of the group; and (3) an acknowledgment isgenerated at the leaves of the creation tree to indicate the completion of theinstallation. 623.18 Meta-Level Performance: Event framework overhead reects the time re-quired to pass events from base-actors to meta-actors. Installation overheadreects the extra time required to install a meta-actor or a new actor. 644.1 Term Constructors: Operations used to build terms in the rewriting seman-tics. 744.2 Relations: Relations used to manipulate actor con�gurations. 754.3 Basic Actor Transitions: The block relation for the traditional formulation ofactor semantics. 784.4 Meta Actor Transitions: The block relation for an actor semantics whichsupport meta-level customization. 814.5 Group Transitions: The block relation for an actor semantics with group support. 85xii

Chapter 1
Introduction
1.1 IntroductionThe term \middleware" has been used to describe cross-platform integration tools that supporthigh-level distributed services such as remote interactions and fault-tolerance. In particular, ithas been observed that, while distributed software may require complex interaction mechanisms,the implementation of these mechanisms need not be tied to the implementation of applica-tions [53]. By separating application code from the protocols used for interaction, softwarecomponents may be independently developed and tested. Moreover, as requirements change,existing architectural elements may be modularly replaced by new elements with appropriateproperties.The design methodology behind middleware is formalized by the notion of a software archi-tecture. Software architecture factors a system into a collection of components, which encapsu-late computation, and a collection of connectors, which describe how components are integratedinto the architecture [50]. Such architectures are often described formally in terms of an ar-chitecture description language (ADL). An ADL provides linguistic abstractions that capturecomponents and connectors, and support formal mechanisms for reasoning about composition.Recent ADL research has provided new insights in the areas of speci�cation [7], veri�cation [9]and prototyping [37]. Moreover, commercial middleware solutions such as the Common ObjectRequest Broker Architecture (CORBA) [45] and Java's Remote Method Invocation (RMI) [58]1

embrace many aspects of the ADL approach. CORBA, for example, abstracts over the low-levelremote procedure call (RPC) protocols required to link distributed objects. On the one hand,this allows designers to build distributed applications without regard for the speci�c low-levelprotocols in use. On the other hand, software architects may change these protocols (e.g. bycreating new stub generation mechanisms) without changing application code.Current ADLs emphasize the modular speci�cation of coordination and communication.While this emphasis has demonstratable advantages for system development, a fundamentalproblem is loss of information engendered by ADL abstraction boundaries. This problem isparticularly apparent when we consider the design of distributed software architectures. Specif-ically, distributed architectures introduce new concerns in system development:� Reliability: Computer networks are inherently faulty and insecure. As a result, dis-tributed applications may be exposed to intermittent loss of connectivity or to maliciousattacks. Similarly, node failure is more probable in a multi-node con�guration. 1 Thus,distributed applications may require replication or other forms of fault-tolerance in orderto tolerate transient failures.� Heterogeneity: Distributed applications may be deployed on heterogeneous hardware;di�erent hardware may require di�erent implementation techniques for application com-ponents. Moreover, component distribution may be a run-time rather than compile-timeproperty; application components (e.g. Java applets) may need to adapt to di�erenthardware at run-time.Design constraints such as reliability and heterogeneity require a model of resources aswell as a coherent interface for manipulating communication and coordination. For example,consider a critical server within a distributed application. We might increase the fault-toleranceof the server by adding a backup component. In order to utilize this approach, we must ensure1The fact that multi-node con�gurations are more prone to failure than uniprocessor con�gurations can beseen by a simple probability argument: let p be the probability that a particular node will fail independently.Then 1� p is the probability that the node will not fail. If there are N nodes, the probability that none of thenodes will fail is at most (1� p)N . Since (1� p)N < (1 � p) (because p < 1) we see that node failure is morelikely in a multi-node con�guration. 2

Node
Component
Resources

Interactions

Physical

Server

State Snapshot

Backup Server

1

2

3

Figure 1.1: Fault-tolerant Server: The server is made fault-tolerant by three actions:1) each server interaction is duplicated at the backup, 2) a state snapshot is periodicallysent to the backup, and 3) the resources of the server and backup are separated to allow forindependent failure.that interactions and state snapshots are periodically recorded at the backup (see Figure 1.1).Moreover, we must ensure that resources associated with the server and backup are separatedso that each may fail independently. However, without a modular mechanism for managingresources, we must implement such a policy by intermingling application and fault-tolerancecode. This approach hinders development as new bugs may be introduced, and componentscannot be tested independently. Thus, from a software engineering perspective, we desiremodular mechanisms for extracting information such as state snapshots or resource placement,and allowing policies to be expressed separately as manipulations of these attributes.In this thesis, we introduce new abstractions that capture architectural resources, and pro-vide techniques for specifying policies over these resources. In e�ect, we augment the abstrac-tion boundaries of current ADLs in order to support critical policies required in a distributedsetting. Three main contributions characterize the approach: an architectural model for dis-tributed software, a speci�cation language and implementation, and a formal semantics.
3

Our architectural model is based on the Actor [2] model of computation. In particular,we view elements of a software architecture as encapsulated collections of actors, called actorgroups. Through actor groups we realize the requirements necessary for a exible model ofdistributed architectures: while internal actors are protected by the abstraction boundary pro-vided by groups, composition mechanisms are provided that allow connections to be formedbetween groups. We impose a meta-architecture on actors to expose resources that are uti-lized by groups. The introduction of a meta-architecture provides a transparent, compositionalmechanism for customizing the resource utilization of the actors within a group.We develop the Distributed Connection Language as an Actor-based ADL that instantiatesour architectural model. Linguistically, a dcl speci�cation is rule based and reactive, specifyingchanges to an architecture in response to run-time interactions. dcl provides a compositionalapproach for architectural development: rather than hard-code customization and resourcemanagement within components and connectors, new abstractions called policies are used tomodularly enforce such constraints.While dcl allows for exible system development, dcl abstractions have limited use if theycan not be mapped to e�cient implementations. In particular, a key performance issue is theoverhead associated with modular composition versus hard-coded customization. Thus, as partof the development of dcl, we provide a reference implementation together with performanceimprovements that reduce overhead to less than 10%.Finally, we provide a formal semantics for our architectural model. The purpose of thissemantics is to provide a foundation for addressing composability issues in software architec-tures. In particular, we wish to provide formal techniques for determining whether or not theconstraints de�ned by speci�c architectural elements are correctly enforced within the system.Through our semantics, we are able to de�ne \weak" conditions for composability.The remainder of this thesis is organized as follows. In the next section, we describe relatedwork in software architecture and distributed systems. We then develop a model of distributedsoftware architectures based on actors and their meta-level customization. Next, we describedcl, a high-level speci�cation language for distributed architectures. We describe the mappingof dcl speci�cations onto our architectural abstractions, as well as the performance character-4

istics of the approach. Finally, we conclude with a formal semantics of the model, as well asthe derivation of composability conditions.1.2 Related WorkThe results developed in this thesis draw on related research in software architecture, reectivemodels, and more general research in distributed systems.1.2.1 Architecture Description Languages and Software BusesThe predominant approach for specifying software architecture is by way of an architecturedescription language (ADL). Such a language provides abstractions that represent componentsand their interfaces, as well as separate mechanisms for connecting interfaces. An architec-tural speci�cation is codi�ed in terms of linguistic abstractions that de�ne instantiations ofcomponents and connectors, and invoke binding operations to link interfaces. A similarly moti-vated approach is that of a software bus. A software bus provides a speci�cation language thatsupports component descriptions but abstracts away most interconnection issues. Instead, thedesigner indicates which components should be connected to one another and the software busautomatically instantiates the appropriate connection mechanisms. Both approaches generallyagree on component speci�cation: a component is modeled as a discrete segment of code witha well-de�ned interface. Typically, interfaces are represented as function entry points and areinvoked using traditional mechanisms such as procedure call or message passing. Moreover,composition is modeled uniformly in terms of hierarchical speci�cations of components that arerepresented as collections of sub-components.While models of components are somewhat standard, the key contribution of recent work ismodular connection mechanisms. In particular, these mechanisms are necessary for abstractingover component interconnection issues such as code heterogeneity, synchronization constraints,and fault-tolerance and security requirements. The manner in which connection mechanismsare handled marks the primary di�erence between ADLs and software buses. In an ADL,connection policies are represented explicitly by objects. On the other hand, in a software5

bus connection policies are represented implicitly as a feature included in the bus on a per-application basis; i.e. the set of components and their component interconnections is handledby a customized software bus instantiated explicitly for a particular application. These di�erentchoices for representing connection policies reect di�erent approaches for handling binding andcustomization issues, and have important implications in terms of how architectures may becustomized dynamically. We describe representative ADLs and software buses and contrasttheir features in the remainder of this section.1.2.1.1 UniConUniCon [50] is a high-level speci�cation language that directs the compilation of an applica-tion by consulting the architectural speci�cations of pre-de�ned components and connectors.According to Shaw, a UniCon component \roughly corresponds to a compilation unit of con-ventional programming languages." A component speci�cation consists of an interface andan implementation. An interface de�nes functions provided by the component as well as con-straints that apply to the component's placement in an architecture. In particular, a componentinterface de�nes a set of players which represents the visible semantic elements through whichcomponents interact. A component implementation may be either composite, in which case itis de�ned in terms of a set of sub-components, or primitive, in which case it is de�ned by anexecutable object. In a composite component, interface players may be players provided by asub-component.A UniCon connector, on the other hand, is used to glue component interfaces together. Aconnector consists of a protocol and an implementation. A protocol is de�ned in terms of acollection of roles that designate the set of requirements for each participant in the connection.In e�ect, a role is a type speci�cation that is used to determine if a component may participateas the given role in the protocol: the type speci�cation of a component interface is a guaranteethat the component adheres to a particular form of interaction. The implementation of aconnector speci�es the mechanisms used to carry out the interactions de�ned by the protocol.Currently, only primitive implementations are allowed. That is, composite connectors may notbe speci�ed. 6

The designers of UniCon have placed heavy emphasis on the implementation side of architec-tural speci�cation. That is, component and connector speci�cations contain many detailed at-tributes that facilitate their use in speci�c contexts. As a result, UniCon speci�cations are at themercy of low-level implementation concerns and it is di�cult to abstract away a model of archi-tectural structure. For example, ProcedureCall and RemoteProcedureCall are two instancesof connectors. In order to use the ProcedureCall connector, a player must de�ne a RoutineDefor RoutineCall attribute. On the other hand, in order to use the RemoteProcedureCall con-nector, a player must de�ne an RPCDef or RPCCall attribute. However, the pattern of inter-actions is the same for either procedure call or RPC, only the context di�ers. Thus, it wouldseem logical that an ADL would abstract away these distinctions rather than embed them incomponent speci�cations.1.2.1.2 RapideRapide [36, 37, 38] is an object-oriented language designed for event-based prototyping of archi-tectures of distributed systems. Rapide speci�cations are designed to allow system architects totest and verify architectures before implementation decisions are made. A Rapide architectureconsists of a set of module speci�cations called interfaces. The behavior of the architecture isde�ned by a set of connection rules that represent direct communication between interfaces.The set of formal constraints for an architecture de�nes the permissible patterns of commu-nication that may occur between interfaces. An interface de�nes a set of features that is anabstract description of the behavior of a module that conforms to the interface. Speci�cally, aninterface de�nes behavior provided by a module as well as behavior required by the architecturethat uses the module. Thus, in Rapide, no explicit components are present in an architecturalspeci�cation. Rather, interfaces are surrogates for the actual modules used in an executableinstantiation. The idea is to represent a type of behavior for simulation purposes: the actualchoice of component is delayed until the architecture is implemented.Rapide represents connections between modules in terms of event patterns among inter-faces. The policies themselves are a combination of the connection rules and formal constraintsfor an architecture. Connection rules in Rapide represent direct links between elements of in-7

terfaces: events generated by one module are received at all modules which are connected bythe connection rules. Connection rules may also be speci�ed as patterns, which allows for therepresentation of dynamic interactions (i.e. where the set of participants may not be �xed atrun-time).While connection rules may be viewed as generators of event patterns, formal constraintsrestrict these patterns according to relationships between events. Formal constraints may eitherbe placed in interfaces, in which case they may be speci�ed in terms of abstract module behaviorand restrict the local event patterns generated or received by the interface; or they may be placedin an architecture, in which case they restrict event patterns in the architecture as a whole.The formal constraints speci�ed in an interface provide a \contract" describing the module'scontext in the architecture. This represents the simplest form of connection policy betweentwo modules: that implied by their respective local constraints. These local connection policiesmay be augmented with additional constraints which de�ne global properties.The formal constraints speci�able in Rapide are motivated by the desire to ensure ap-propriate architecture-wide behavior, such as atomicity requirements or deadlock prevention.However, these architecture-wide constraints lack modularity and may easily interfere with oneanother. Thus, Rapide speci�cations are mainly useful as a design tool but do not provide astraightforward mechanism for mapping an architectural speci�cation into an explicit implemen-tation. In particular, while hierarchical re�nement is well supported and interfaces correspondto actual components in an implementation, connection mechanisms are not encapsulated andtherefore do not represent manipulatable elements in a realization of the architecture.1.2.1.3 GenVocaThe GenVoca [16] system grew out of two separate environments for supporting the developmentof large hierarchically structured systems. Architectures for these systems are built from pre-de�ned system components with static interfaces. Components are organized into realms whereimplementations may vary but all components within a particular realm must implement thesame interface. The interface shared by all components in a realm is speci�ed in terms of a set ofoperations and parameters. Operations may be invoked by other components in an architecture8

and are used to access the services of the component. Parameters are place holders for othercomponents and are used locally to obtain services from elsewhere in an architecture.Connection policies in GenVoca are handled in a fashion similar to that of software buses.Speci�cally, components are organized into an architecture by composition, which is the processof resolving parameters in a component with instances of sub-components. Connection poli-cies as separate, �rst-class entities do not exist. Rather, the process of composition matchesinterfaces according to type and the appropriate interaction mechanisms are automatically in-stantiated to handle the connection. A typical architecture is developed as a series of re�nementsstarting with a high-level component which has several parameters. These parameters are �lledwith appropriate instantiations of sub-components (i.e. instances which satisfy the type ofinterface de�ned by the parameters), and the process continues until no further re�nementsare possible. These composition mechanisms have been used as the basis for domain-speci�csoftware system generators [15, 14].The designers of GenVoca treat architectural speci�cation in a domain of systems wherearchitectural structure is relatively �xed and a rich space of components is available. As aresult, the need for new interconnection mechanisms can only be satis�ed by introducing newrealms with new interfaces. Moreover, the notion of adapting a component to new contextsis not addressed. Rather, the designers envision a system in which components will be moreintelligent and able to automatically adapt to future contexts. Pursuing this goal is the currentresearch thrust of the project.1.2.1.4 ABLEThe ABLE project at Carnegie Mellon has pursued software architecture from several di�erentperspectives, culminating in the Wright [6, 7, 8, 9] architecture speci�cation language and theACME [24] architecture description interchange language. The Wright language embodies amore formal approach to architecture speci�cation. In particular, behavioral aspects of anarchitecture are described by an extension of the language used in Communicating SequentialProcesses (CSP) [26]. 9

AWright component is speci�ed by an interface and a computation. An interface describes a�xed set of ports through which the component may participate in interactions. A computationdescribes what the component actually does. This speci�cation is represented in terms ofCSP events received at interface ports. Each port speci�cation also de�nes a behavior whichrepresents the behavior of the component relative to that particular port. For example, a simple�lter component would de�ne an input port with the behavior of receiving data, an output portwith the behavior of sending data, and a computation with the behavior of computing an outputbased on the input. Each of these speci�cations is described in terms of CSP code fragments.A Wright connector de�nes an interaction pattern between a set of ports. A connectorspeci�cation consists of a set of roles, which describe the behavior of each participant in theconnection, and glue which describes how the participants are linked to de�ne an interaction.A role represents the behavior expected by an interface port which assumes the role. Whena connection is created, a behavior check is made to ensure that the behavior speci�cation ofa port satis�es the behavior speci�cation of a role. This is done by proving a relaxed form ofequivalence between the associated CSP code fragments. The glue of a connector is a completebehavioral speci�cation of how events from one port are translated into events on another port.Finally, a Wright con�guration speci�es a complete architecture in terms of a set of com-ponents and connectors to link their interactions. An important goal is to provide an explicitformal representation for all aspects of an architecture. Thus, the uniform model of compu-tation provided by CSP is used as the notation for all architectural elements. As a result,architectures exhibit synchronous behavior. As noted in an early criticism of CSP [34], em-bedding synchronization constructs in communication constructs severely limits the ability tomaximize concurrent resources.2 As a result, a CSP based model may not be desirable formodeling the dynamic and highly asynchronous behavior of distributed systems.2This is only half the story in a long-standing debate between proponents of synchronous and asynchronouscommunication. I only mention this criticism because it relates directly to the modeling of distributed systems(cf. [22, 63]).
10

1.2.1.5 Polylith and AsterPolylith [27, 28, 47] and Aster [31, 30] are independently developed but similar paradigms whichdescribe architectures in terms of a set of components, a set of connections, and a customizedcommunication backbone, called a software bus, which all components use for interaction. Asoftware bus encapsulates all the protocols necessary to manage interactions for a particular ap-plication and automatically invokes the appropriate protocols when components communicate.Binding components over a software bus consists of linking component interfaces directly. Thesoftware bus automatically determines a protocol to use for each interaction based on the prop-erties of components. Customizing a software bus consists of modifying the implementation ofprotocols from which the bus is constructed.Implicit connection mechanisms, such as software buses, have many desirable attributes. Forexample, architectural speci�cation is greatly simpli�ed as only connections between compo-nents need be indicated, rather than an explicit connection policy for each pair of components.Moreover, software buses are an appropriate abstraction for handling vertical integration [31]issues such as heterogeneity, availability and security. However, it is not clear how softwarebuses can incorporate the dynamic interaction requirements of components. Speci�cally, it isnot obvious how software buses may be made receptive to exible communication topologies andper-interaction customization. A general problem is that software buses lack the �ne-grainedmodular representation of object-based connectors. Therefore, it is not readily apparent howthey may be customized for dynamic application-speci�c needs.1.2.2 Modular Con�guration of Distributed SystemsThe extent to which heterogeneity is the norm rather than the exception in distributed systemshas resulted in an emphasis on modular and customizable abstractions for building applicationsin these environments. Two approaches have been explored in contemporary work which di�ermainly in the granularity of modularity and customization which is supported. Interactionspeci�c or component based approaches emphasize customizable connections between individualcomponents, while application based approaches specify customizations on a system-wide basis.11

Customization of component interactions has been explored in the x-Kernel [29], Maud [4],and more recently in Horus [61]. The x-Kernel and Horus utilize protocol stacks to supportcustomization. Each layer in the stack supports a static interface for interaction with thelayers above and below it. The interface in these systems is fairly elaborate. Maud supportsmeta-level customization of protocols for fault-tolerance. In comparison to the protocol stackapproach, reection enables Maud to use a simple but exible interface.Application-oriented approaches, such as tool-kits, support a small set of protocols for inter-connecting application components. For example, in transaction languages such as Avalon [20],the concept of nested transactions is used to structure distributed systems. Tool-kits, althoughlacking generality, are well suited to applications requiring only the protocols they provide.More recently, customization has been applied at the operating system level in the form ofmicro-kernels [1]. In an object-oriented system such as Choices [19], frameworks may be cus-tomized for a particular application. However, once customized, the characteristics may notchange dynamically. In a similar manner, the x-Kernel allows customization of the messagepassing implementation. However, the modi�cations a�ect all components in the system.1.2.3 Reection and Language-Based SupportA �nal category in which concepts related to architectural con�guration have been addressed isat the level of programming languages. Factoring out orthogonal application features such assynchronization constraints has been speci�ed in approaches such as Synchronizers [23] and RT-Synchronizers [48, 49]. Similarly, modular speci�cation of protocols for distributed interactionshas been speci�ed in terms of Communicators [53, 54]. A typical feature of these approachesis the introduction of separate language constructs that specify, for example, the coordinationrequirements between a group of objects.A key problem with a strict language based approach is that new language constructs mayhave to be introduced in order to accommodate new architectures and applications. As Kiczalespoints out [33], the di�culty is that component implementation mechanisms are closed. That is,application speci�c client knowledge can not be utilized to yield e�cient interaction mechanisms.Rather, interactions must adhere to mechanisms �xed in the implementations of particular12

components. Reection in an object based system allows independent customization of eachobject. Reection has been used to address many issues in concurrent systems. For example, thescheduling problem of the Time Warp algorithm for parallel discrete event simulation is modeledby means of reection in [63]. Reection has also been used explicitly to support parallel andconcurrent language constructs [39]. Similarly, interconnection issues have been addressedreectively in order to support exible transaction models [13, 12]. Reective frameworks forthe Actor languages MERING IV and Rosette have been proposed in [21] and [60], respectively.In MERING IV, programs may access meta-instances to modify an object or meta-classes tochange a class de�nition. In Rosette, the meta-level is described in terms of three components:a container, which represents the acquaintances and script; a processor, which acts as thescheduler for the actor; and a mailbox, which handles message reception.

13

Chapter 2
An Architectural Model forDistributed Software
We use the concept of architectural context as the basis for modeling distributed software archi-tectures. The architectural context of a component consists of the resources it utilizes, and itsconnections with other components. Following Shaw and Garlan [51], we encapsulate compu-tation within architectural components. In contrast, however, we de�ne connectors as softwareelements which specify architectural context. Thus, we allow connectors to manage resourcesas well as manipulate connections between components. Connectors which manage resourcesmay be used to capture more abstract architectural constraints such as replication and loadmanagement.Three key features characterize our model:� Flexible Components and Connectors: We provide an extensible model which al-lows the speci�cation of multi-faceted elements within a uniform computing environment.In particular, we are able to capture common software abstractions such as sequential ormulti-threaded execution; local, distributed or shared resources; and synchronous or asyn-chronous interactions. Moreover, the uniform nature of the model provides a groundedtheoretical framework for reasoning about architectural interactions.

14

� Encapsulation: Abstraction boundaries are enforced by providing for component- andconnector-based access control. In particular, internal resources are protected by a well-de�ned external interface. By enforcing encapsulation, we allow a compositional approachto software development: components and connectors may be independently developedand later incorporated into executable systems.� Composition Mechanisms and Reasoning: Composition mechanisms are providedfor integrating components and connectors while respecting encapsulation properties.Connectors which manipulate interactions are used to build connections between appli-cation components. Connectors which manage resources are used to enforce architecturalconstraints such as fault-tolerance, load management, and security. Moreover, our com-position mechanisms provide a basis for reasoning about composition properties such asinterface compliance and non-interference between resource management policies.We use Actors [2] as a basis for modeling distributed software architectures. Actors providea general and exible model of concurrency. As an atomic unit of computation, actors maybe used to build typical architectural elements including procedural, functional, and object-oriented components. Moreover, actor interactions may be used to model standard distributedcoordination mechanisms such as remote procedure call (RPC), transactions, and other formsof synchronization [3, 53, 23]. Similarly, modern sequential languages are readily extended withthe actor primitives (cf. [46, 59]).We capture architectural context by incorporating a meta-architecture into the actor model.In particular, actor computation is represented in terms of low-level service requests which havea default system behavior. By allowing meta-actors to intercept these requests, we provide amechanism for architectural customization. Speci�cally, the resource utilization of actors (i.e.patterns of service requests) may be controlled by a meta-actor which provides an alternativebehavior for handling each request.We represent components and connectors as collections of actors called actor groups. Anactor group represents an encapsulation boundary which protects internal actors from exter-nal interactions: actors within a group may only exchange messages with other actors in the15

incoming
messages

Xi Xi+1

msg Y

mail queue

ready

send create

Figure 2.1: Actor Model: Actors are concurrent objects that interact via asynchronousmessages.same group. Composition operators are used to build connections between groups. Similarly,composition operators may be used to install meta-level customizations on group actors.2.1 ActorsConceptually, an actor encapsulates a state, a thread of control, and a set of procedures whichmanipulate the state. Actors coordinate by asynchronously sending messages to one another.Each actor has a unique mail address and a mail bu�er to receive messages. Actors computeby serially processing messages queued in their mail bu�ers. An actor blocks if its mail bu�eris empty.While it is processing a message, there are three basic actions which an actor may performthat a�ect the computational environment (see Figure 2.1):� send messages asynchronously to other actors;� create actors with speci�ed behaviors; and� become ready to process the next message.
16

Communication is point-to-point and is assumed to be weakly fair: executing a send even-tually causes the message to be bu�ered in the mail queue of the recipient although messagesmay arrive in an order di�erent from the one in which they were sent. The create primitivecreates a new actor with a speci�ed behavior. Initially, only the creating actor knows the nameof the new actor. However, actor names are �rst class entities which may be communicated inmessages. Thus, coordination patterns between actors may be dynamic. The ready primitive isused to indicate that the signaling actor is ready to process the next message in its mail queue.Upon invoking ready, the calling actor either begins processing the next available message, orblocks until a new message arrives.In this thesis, we model actors as concurrent objects. That is, an actor consists of a privatelocal state, a set of methods, and a globally unique name. Message passing is viewed as the asyn-chronous invocation of methods. We view the send and create operations as explicit requests,while the ready operation is implicit at the end of a method. That is, actors do not explicitlyindicate that they are ready to receive the next message. Rather, the system automaticallyinvokes ready when an actor method completes.2.2 Meta-Level CustomizationIn order to capture architectural context, we view actor computation as an abstraction overlow-level system interactions. Speci�cally, we de�ne an actor to be composed of three attributes:a behavior, a local state, and an event queue. An event is a pair, (t; p), where t gives the typeof the event, and p is an ordered list giving the parameters of the event. The type of an eventis a constant chosen from a �xed set (i.e. there are a �xed number of event types). Actorcomputation is de�ned in terms of the processing of events; an actor computation step consistsof removing an event from the event queue, changing the local state, and generating one ormore new events.Under this model, actors do not directly interact with one another. Instead, actors generatesignal events which request the \system" to perform a particular action. In response to asignal, the system may service the request and generate a noti�cation event which alerts the17

 asd;

A {

}

B {

 nwe q;
 asd 0 asd;

}

 asd;

A {

}

B {
 asd 0 asd;
 nwe q;
}

}
 nwe q;

(continue,{})

 asd;

A {

}

B {
 asd 0 asd;

(transmit,{msg})

Event Queue

Behavior State

msg

SYSSYSSYS

Figure 2.2: Actor Signal Processing: An actor requests a message send by generatinga transmit signal. The system handles the signal by sending the message and generating acontinue noti�cation.actor that its request has been processed. For example, an actor wishing to send a message maygenerate a \transmit" signal, (transmit; fmsgg), where msg gives the message to send. Thesystem handles the signal by sending the message and generating a \continue" noti�cation,(continue; fg) (see Figure 2.2). On the receiving end, the system transforms the message intoa \deliver" event which is eventually placed in the event queue of the appropriate actor.By de�nition, signals represent resource requests and, therefore, always block the signalingactor until the resource has been granted or denied. An actor resumes processing when its eventqueue contains a noti�cation corresponding to the signaled event. In particular, the desirednoti�cation is removed from the queue and processed as the next event. All other events arequeued while the actor is blocked or processing another event.Abstracting actor computation in terms of events decouples actor behavior from the ser-vicing of requests. In particular, actors need not be speci�cally aware of the manner in whichrequests are serviced so long as event processing semantics are preserved. This independence
18

 asd;

A {

}

 nwe q;

A {

B {
 asd 0 asd;

}

}

}

A {

B {

 nwe q;

 nwe q;
}

 asd 0 asd;

 asd;

 asd;

 asd;

A {

}

B {

}

B {

}

 asd 0 asd;

 asd;

A {

}

B {
 asd 0 asd;
 nwe q;
}

 asd 0 asd;

 asd;

A {

}

B {
 asd 0 asd;
 nwe q;
}

 nwe q;

 asd;

A {

}

B {
 asd 0 asd;
 nwe q;
}

Meta Actor

 asd;

A {

}

B {
 asd 0 asd;
 nwe q;
}

Base Actor

(transmit,{msg})

msg

(transmit,{msg}) (continue,{})

(continue,{})

SYS SYS

Figure 2.3: Actor Customization: A meta-actor customizes a base-actor by interceptingsignals. The meta-actor generates a noti�cation after each signal has been processed.may be exploited to customize actor behavior. Speci�cally, we may transparently replace systembehavior with equivalent mechanisms for servicing actor requests.A meta-actor is an actor capable of processing signals generated by other actors. We usemeta-actors as a mechanism for customizing actor behavior. For example, we may customizeactor message passing by installing a meta-actor capable of handling transmit signals (seeFigure 2.3). An actor customized in this fashion is referred to as the base actor relative toits meta-actor. Once installed, a meta-actor assumes responsibility for processing all signalsgenerated by its base actor, as well as generating noti�cations when necessary.Using the concept of meta-actors, a meta-level architecture is de�ned formally in terms ofsix attributes:� Events: The set of events is �nite and is divided into two non-overlapping subsets: signalsand noti�cations.
19

1

A2 msg

A

2

n

A

A

Path

Meta
Actor

Signal/Notification

Actor

Meta
Actor

An A2rcv(,msg)

SYSFigure 2.4: A Meta-Level Stack: Multiple customizations are composed on a single actorby building a meta-level stack. Messages are redirected (and annotated with \rcv") to thebottom actor in the stack and may be relayed up the stack to the appropriate target.� Blocking Relation: A relation, b � signals � events, de�nes the synchronization prop-erties of signals. Speci�cally, if (s; e) 2 b, then an actor blocked after generating signal smay be resumed upon receiving event e.� Installation by Creation: Meta-actors may be installed only at their creation time.That is, an existing actor may not be used as a meta-actor unless created as such.� Propagation: A signal generated by an actor is sent to its meta-actor or to the system. Anoti�cation generated by an actor is always sent to its base-actor, if it has one. Otherwise,the sending actor is considered \stuck" and may not process any further events.� One-to-One Installation: Each base-actor may be customized by at most one meta-actor. Conversely, each meta-actor may customize at most one base-actor.� Message Delegation: All messages targeted to base-actors are redirected to their meta-actors. 20

The set of events �xes the mechanism by which requests may be made and serviced withinthe model, while the blocking relation de�nes the synchronization properties of signals. Inparticular, the blocking relation speci�es which events may be used to resume a blocked actor.Note that any event may be used to resume an actor (i.e. the set of resuming events is notlimited to the set of noti�cations).We insist on a one-to-one relationship between base-actors and their meta-actors in orderto provide the most primitive model of customization.1 However, multiple customizations maybe applied to a single actor by building a meta-level stack (see Figure 2.4). That is, because ameta-actor is itself an actor, we may customize it by installing another meta-actor. Moreover,such customizations are transparent: a meta-actor need not be aware that it customizes (or iscustomized by) another meta-actor. Messages received by an actor in a meta-level stack arealways delegated to the top of the stack so that a meta-actor always controls the delivery ofmessages to its base-actor. In particular, message delivery is handled by sending an appropriatenoti�cation to a base-actor containing the message to be delivered. We insist on \installationby creation" as a further simpli�cation of the model.Note that this model of meta-level customization is parameterized by the choice of eventsand the synchronization properties of signals. In the next section, we provide an instantiationof the model which captures the basic actor operations (i.e. send, create, and ready). Inspeci�c application areas, however, it may be desirable to instantiate the model with morespeci�c events, or di�erent synchronization properties. In Section 2.2.2, we consider otherinstantiations of the model.2.2.1 Basic Actor ModelWe factor each of the basic actor operations into a signal-noti�cation pair (see Figures 2.5and 2.6). While the transmit and create signals are handled in a straightforward fashion,the ready signal has a slightly di�erent semantics. In particular, a meta-actor blocked on a1Many-to-one relationships require that we de�ne synchronization mechanisms among all the meta-actorscustomizing a particular base-actor. Fixing a particular synchronization paradigm is counterproductive to theexibility we are trying to provide. Note, however, that many-to-one relationships may be simulated by providingan external \coordinator" actor which coordinates the behavior of individual meta-actors.21

Operation Signal Notificationsend transmit(msg) continue()create create(beh) newActor(a)ready ready() deliver(msg)
transmit complete

create newActor

ready deliverFigure 2.5: Basic Actor Model Events and Synchronization: The basic actor oper-ations are factored into signal-noti�cation pairs. As indicated by the arrows in the diagramon the right, the transmit and create signals block the caller until a continue or newActornoti�cation is received, respectively. An actor blocked on readymay be resumed by a deliveror a signal from a base-actor.ready may be resumed either by receiving a new message (i.e. a deliver noti�cation) or byreceiving a signal sent by its base-actor. This structure is necessary to avoid excessive meta-level interdependence. Speci�cally, if a meta-actor blocked on ready can only be resumed bya deliver, then the meta-actor can not process any requests from its base actor until it hasreceived a new message from the system. Such a model is unnecessarily restrictive and prohibitsmany common architectural abstractions2.As an example of how we may customize actors under this model, consider the encryptionof messages between a pair of actors. Figure 2.7 gives pseudo-code for a pair of meta-actorswhich may be installed on each endpoint. The Encrypt behavior intercepts outgoing messagesby de�ning a transmit method. Within transmit, a message is encrypted before it is sentto its target. Note the use of continue to alert the base-actor that the transmit request hasbeen serviced. The Decrypt behavior intercepts incoming messages by de�ning a rcv method.Recall that messages targeted for a base-actor are annotated with rcv and redirected to the2An example of such an abstraction is a source actor: an actor which sends messages but never receives any.If such an actor is customized by a meta-actor which blocks on ready then, under the more restrictive semantics,the source actor may be blocked inde�nitely.
22

Actor TransitionsEvent Behaviortransmit(msg) Submit a message for transmission and block until a con-tinue is received. The argument msg is a message structurewhich encapsulates the destination, method to invoke, andarguments of the message. The default system behavior isto send the message and send a continue noti�cation to thesignaling actor.Signals ready() Request the next available message for delivery. The defaultsystem behavior is to get the next available message and de-liver it to the actor by generating a deliver noti�cation.create(beh) Request the creation of a new actor and block until a newAc-tor is received. The argument beh indicates the behavior ofthe new actor to create. The default system behavior is tocreate the new actor and deliver its address to the signalingactor via a newActor noti�cation.continue() Resume an actor blocked on a transmit signal.Notifications deliver(msg) Deliver a message to an actor. The argumentmsg is a messagestructure indicating the method and arguments to invoke onthe resumed actor.newActor(a) Return the address of a newly created actor to an actorblocked on a create signal. The argument a indicates theaddress of the newly created actor.Figure 2.6: Basic Actor Model Event Behavior: Each signal has a default behaviorcorresponding to the actor semantics of the associated operation.top of the meta-level stack. Within the rcv method, the message is decrypted and deliveredby way of a deliver noti�cation3.2.2.2 Model ExtensionsAn advantage of our model is that it is easily parameterized for speci�c application areas. Forexample, suppose we wish to design architectural policies for fault-tolerant systems. Speci�cally,suppose we desire the ability to make redundant backups of actors so that we may fail-over3For ordering purposes, it might be necessary to wait for a ready signal before delivering a new message tothe base-actor. In this example, however, it is not necessary to order incoming messages (actor message passingis assumed asynchronous), hence we may deliver new messages without waiting for a ready.
23

actor Encrypt(actor receiver) f// Encrypt outgoing messages if they// are targeted to the receivermethod transmit(Msg msg) factor target = msg.dest;if (target == receiver)target encrypt(msg);elsetarget msg;continue();gg

actor Decrypt() f// Decrypt incoming messages targeted for// base actor (if necessary)method rcv(Msg msg) fif (encrypted(msg))deliver(decrypt(msg));elsedeliver(msg);gg
Figure 2.7: Meta-Level Implementation of Encryption: The Encryptmeta-actor inter-cepts transmit signals and encrypts outgoing messages. The Decrypt policy actor interceptsmessages targeted for the receiver (via the rcvmethod) and, if necessary, decrypts an incomingmessage before delivering it.when a fault occurs. To support this behavior, we re-parameterize (relative to Figure 2.6) thecreate, newActor and ready events as follows4:� create(beh, s, a): Request the creation of a new actor and block until a newActoris received. The argument beh indicates the behavior of the new actor to create. Theargument s gives the initial state of the new actor. The argument a gives the desiredaddress (i.e. actor name) of the new actor. If no speci�c address is required, then a maybe set to the special symbol nil. The default system behavior is to attempt to create thenew actor and return the resulting address in a newActor noti�cation.� newActor(a): Resumes an actor blocked on a create signal. If the creation was suc-cessful, then a contains the address of the new actor. Otherwise, a contains the specialsymbol nil.4Note that actor semantics are slightly altered under the new behavior of the create signal. That is, actorcreation may not always succeed.

24

� ready(s): Request the next available message for delivery. The argument s gives thecurrent, consistent state of the requesting actor. The default system behavior is to getthe next available message and deliver it to the actor.actor Replicator(actor backup) fint processed = 0;int count = 0;boolean waiting = false;Queue mailQ;// Copy incoming messages to backupmethod rcv(Msg m) f// Send a stamped message to the backupbackup rcvMsg(m, count++);// Queue until our base actor is readyif (waiting) fwaiting = false;deliver(m);g else mailQ.enqueue(m);g// Forward state to backup and// deliver next messagemethod ready(State s) fbackup rcvState(s, processed++);if (!mailQ.empty())deliver(mailQ.dequeue());else waiting=true;gg

actor Backup() fint count;State last;PriorityQueue unprocessed;// Receive new unprocessed messagemethod rcvMsg(Msg m, int seq) funprocessed.enqueue(m, seq);g// Receive new statemethod rcvState(State s, int seq) flast = s;Remove all message in "unprocessed"with sequence number less than seqgg
Figure 2.8: Meta-Level Implementation of Replication: An instance of Replicator isinstalled on the actor to be replicated. An instance of Backup receives state snapshots fromthe Replicator so that it can assume the role of the replicated actor if a failure occurs.Using this re-parameterized model, we may de�ne a simple replication scheme based onthe primary-backup protocol [18]. We implement primary-backup by de�ning a Replicatoractor, which is installed on the actor to be replicated, and a Backup actor, which receives statesnapshots captured by the Replicator (see Figure 2.8). The Backup records state snapshotsso that it may assume the role of the replicated actor if a failure occurs.25

We capture incoming messages in the Replicator actor by de�ning a rcv method. Uponreceiving a new message, the Replicator sends a sequenced copy to the backup and eitherdelivers the message to its base-actor, or queues the message for later delivery. The copies sentto the backup are received by the rcvMsg method and are sequenced to preserve their receptionorder at the Replicator. The ready method in the Replicator copies the current state ofthe replicated actor to the Backup. State snapshots are received by the rcvState methodand are sequenced so that the Backup can determine which messages to discard from the localunprocessed queue. For the sake of brevity, we have omitted failure detection and fail-overcode. However, these additions may be made in a straightforward fashion.
Actor

Meta
Actor

Meta

Replicator

Actor

A2

A0

A1

A0A2 A1ready(,(,))

Figure 2.9: Replication of a Meta-Level Stack: In this case, the actor to be replicatedconsists of many actors organized into a meta-level stack. One solution is to change thesemantics of ready so that state snapshots capture the entire state of the meta-level stack.The example described above works well for simple meta-level customization. However,for more complicated scenarios it is necessary to make additional assumptions. For example,suppose the actor to replicate consists of several actors organized into a meta-level stack (seeFigure 2.9). In this case, we need to capture the state of each actor in the stack. We may26

resolve this issue by implementing a solution similar to that described in [53]. Speci�cally,we require that each meta-actor adhere to the policy of constructing its state by incorporatinga representation of the state of the actors beneath it. Although this is a slightly less generalsolution as each meta-actor must now pay attention to the state of the actors beneath it,it allows meta-actors the exibility to determine what aspects of state are critical and whataspects are transient.2.3 Actor GroupsWe use encapsulated collections of actors, called actor groups, to represent the building blocks ofdistributed architectures. The purpose of an actor group is to isolate the behavior and resourcesof architectural elements behind clearly de�ned abstraction boundaries. We use collections,rather than individual actors, to allow for more exible architectural structures. Speci�cally,while an individual actor may be used to model sequential computation, a collection of ac-tors may be used to capture more expressive behavior such as multi-threaded components ordistributed structures.
Encapsulated Interaction

ManagerCreate Actor Create Group

Figure 2.10: Actor Groups: Actors groups provide an encapsulated namespace. Actorcreation and message passing is restricted within the group. Only managers may participatein external interactions.Formally, an actor group is de�ned in terms of three attributes (see Figure 2.10):� Membership: The collection of actors contained within a group is called the membershipof the group. Each actor in the system is a member of at least one group. Moreover,27

actors may be members of multiple groups. That is, memberships may overlap. Thegroup in which an actor is created is designated as the actor's initial group. The initialgroup of a new actor is the same as its creator.� Manager: A single actor within each group is designated as the group manager. Byconvention, we refer to the name of a group as the actor name of its manager. A groupmanager has special privileges and is the only actor allowed to modify a group's member-ship, or create new external groups. However, group managers are subject to membershiprestrictions. Speci�cally, a group manager may only be a member of its initial group.� Namespace Encapsulation: Actors may only interact with other actors in a commongroup. That is, actors in disjoint groups may not interact. Group managers have specialprivileges which allow them to receive messages from any other actor in a system, regard-less of group membership. In particular, group managers may always interact with oneanother.The membership of a group de�nes the computational behavior of a particular component ofan architecture. Namespace encapsulation de�nes the abstraction boundary which protectsinternal computation from outside interference. In particular, actors within a group may notreceive messages from external actors.We view groups as representing the components and connectors of a software architecture(see Figure 2.11). For example, a group that represents a component encapsulates actors thatperform computation, together with a set of actors for interacting with other groups (i.e. aninterface). Similarly, groups that represent connectors encapsulate actors that are used as theendpoints for communication and coordination. However, a novel feature of our approach isthe use of connectors as mechanisms for enforcing architectural policies. In this case, a groupencapsulates actors that serve as meta-level customizations for actors in an external group. Weseparate meta-actors into separate groups to isolate components from the policies which governthem. In Chapter 4, we use this separation as a basis for deriving compatibility requirementsbetween architectural structures. 28

Component Traditional Connector

Connectors Providing Meta-Level CustomizationFigure 2.11: Modeling Architectures with Actor Groups: Actor groups are usedto model components and connectors. Traditional architectural connection is achieved bygroups which provide endpoints for communication and coordination. Architectural policiesare enforced by groups which provide meta-level customization of other groups.To model groups, we associate membership and initial group attributes with each actor. Themembership attribute records the groups that an actor belongs to. The initial group attributerecords the group that the actor was created in. Namespace encapsulation implies that twoactors may only communicate if their membership attributes overlap5. Similarly, membershipproperties imply that the initial group attribute of a new actor is identical to the initial groupattribute of its creator.Group managers are the only actors allowed to relax the encapsulation properties of groups.Typically, encapsulation is weakened for one of two reasons: to allow local actors to communi-cate with actors in other groups; or to allow local actors to be customized by meta-level actorsin other groups. Actors may belong to more than one group; group managers use admissionoperations to create such overlaps and establish the communication and customization rela-tionships described above. For example, an overlap admission is used to build communicationrelationships. Similarly, a customization admission is used to build customization relationships.We describe admission in greater detail in the sections below.5Because group membership is a dynamic property, it is possible that the sender and receiver of a messagewill be a member of a common group after the message has been sent. To avoid this ambiguity, we verify groupmembership at the time a message is sent. This constraint is formalized in Chapter 4.
29

2.3.1 Overlap AdmissionAn overlap admission allows a group manager to change its membership by adding an externalactor. In terms of actor attributes, an overlap simply adds the admitting group to the mem-bership attribute of the external actor. Once admitted, an actor may communicate with anyother actor in the group.Overlap admission allows otherwise disjoint groups to build conduits for interaction. Typ-ically, a group manager will form an overlap by sending a request message to the manager ofan external group. The contents of the message contain the actor(s) to be admitted, as wellas any other parameters required to evaluate the request (e.g. keys for authentication). Oncethe admission has completed, the requesting manager may receive a noti�cation indicatingthat the admission was successful. Note that, although the groups overlap, their encapsulationproperties are still preserved. In particular, while it is possible for local actor addresses to beshared between the groups, only the overlapping actors may communicate with members ofboth groups. That is, non-overlapped actors are restricted from communicating directly.
Meta-Level Stack

Admit

Propagate

Manager

Change Membership

Figure 2.12: Overlap of Meta-Level Stacks: The overlap admission of a base actor ispropagated to each actor in its meta-level stack. This ensures that the admitted actor maycommunicate locally. 30

While achieving overlap is a simple process for basic actors, note that an admitted actormay be customized by a meta-level stack. In this case, achieving overlap is a slightly morecomplicated procedure (see Figure 2.12). In particular, the meta-level stack of the admittedactor must also be admitted. This is necessary in order to allow the admitted actor to commu-nicate with local actors. Speci�cally, if the admitted actor attempts to send a message usingtransmit, the message will actually be sent by the top actor in the meta-level stack. If themembership of this actor does not overlap with the membership of the destination, then thesend will fail. To handle this case, the overlap admission is propagated up the meta-level stackbefore completing at the manager.2.3.2 Customization AdmissionThe process of installing a meta-actor on a local group actor is called a customization admission.Recall that, because we wish to isolate components and policies, a meta-actor installed on alocal actor must reside in a separate group. Moreover, the \installation by creation" propertyof the meta-architecture implies that the admitting group must create a new actor within anexternal group. Thus, the actor being admitted is the new meta-actor which was created in anexternal group by the installing manager. Although somewhat unorthodox, this behavior doesnot violate encapsulation properties: regardless of how the admission is performed, the newmeta-actor is required to be a member of both groups once admission completes.Customization admission allows actors of one group to serve as resource managers for actorsof another group. We describe this relationship as enforcement of a policy (i.e. the collectionof resource managers) over an architectural component (i.e. the collection of actors beingcustomized). Typically, a group manager will install a customization by sending a requestmessage to the manager of the group to be customized. The contents of the message containa reference to the requesting manager, the actor behavior to be installed, as well as any otherparameters required to evaluate the request. The receiving manager responds by creatingand installing each of the requested meta-level behaviors (see Figure 2.13). The initial groupattribute of each new meta-actor is set to the group of the requesting manager. The membership31

Group A Group B

Initial Group: B
Membership: A,B

Managers

Install Request

Create

Base Actor Meta ActorFigure 2.13: Customization Admission: The receiving manager (i.e. group A) createsa new meta-actor in the requesting group. The creating manager speci�es the behavior ofthe new meta-actor, as well as the address of the local actor to be customized (some of thisinformation may be contained in the install request). The new meta-actor has initial groupequal to that of the requester (i.e. group B). The membership of the new meta-actor includesboth groups.attribute of each new meta-actor contains both the requesting and receiving group. The newmeta-actors begin receiving base-level events once installation completes.2.4 SummaryIn this chapter, we provided an abstract description of our model. Through actor groups werealize the requirements necessary for a exible model of distributed architectures. While inter-nal actors are protected by the abstraction boundary provided by groups, managers may relaxstrict encapsulation in order to build connections with other architectural elements. Moreover,the introduction of a meta-architecture provides a transparent, compositional mechanism forcustomizing the architectural context of groups.Admission operators provide composition mechanisms for distributed architectures. Ad-mission by overlap is motivated by the need for forming connections between architecturalstructures. For example, a pipe and �lter architecture may consist of actor groups representing�lters with an additional group representing the pipe. Admission by overlap is used to connect�lters to appropriate endpoints of pipes. Similarly, admission by customization is used to mod-32

ify the architectural context of groups. In the pipe and �lter example, it may be necessary toimpose ow control over the pipe to compensate for di�erent �ltering rates. Flow control canbe implemented by installing a separate group which uses meta-actors to customize messagepassing behavior of the pipe group. Admission by customization would be used to create andinstall each member of this group.The use of both admission by overlap and admission by customization allows us to capturetraditional architectural relationships (i.e. connectivity), as well as a new form of relationshipthat de�nes the customization of architectural contexts. In the next chapter, we consider aninstantiation of our model in terms of the Distributed Connection Language (dcl), an archi-tecture description language for distributed systems. dcl provides a concrete tool for buildingdistributed software architectures, and provides a platform for reasoning about the applicabilityand performance of our approach.

33

Chapter 3
The Distributed ConnectionLanguage
The Distributed Connection Language (dcl) is an architecture description language for speci-fying distributed software architectures. An architectural unit in dcl is a linguistic abstractionover actor groups as de�ned in Chapter 2. The syntax of dcl is used to de�ne the initialmembers of a group and the conditions under which admissions are performed. In particular,a basic speci�cation in dcl consists of three types of structures:� Module: A module de�nes a computational unit within an architecture. Actors withina module de�ne the behavior of the computation. Interactions between modules arehandled by exchanging messages through protocol actors, which are provided by protocolconnections.� Protocol: A protocol de�nes an interaction mechanism between modules. Internally,protocols consist of a collection of actors which are assigned to \roles." Protocol actorsare \submitted" to modules when a protocol is used to build a connection.� Policy: A policy de�nes a constraint over the manner in which a module or protocolinvokes system services. Speci�cally, each actor within a policy is installed as a meta-level customization of an actor within a module or protocol.34

In ADL terminology, a module is a component, while protocols and policies are connec-tors. Traditionally, components and connectors have a limited number of connection pointsand architectures are static structures �xed at speci�cation time. In contrast, dcl abstrac-tions are strictly dynamic: modules and protocols are rule-based, and dcl architectures arerecon�gurable at run-time. Note that no generality is lost by restricting dcl to dynamic mech-anisms. In particular, static architectural con�gurations may be viewed as an abstraction overthe \bootstrapping" phase of a purely dynamic architecture1.Syntactically, the architectural elements of dcl (i.e. modules, protocols and policies) arespeci�ed by an \id" and a body. Element ids are used as type identi�ers when new instancesof the element are instantiated. The body of an element comprises two sections:� Local State: Local state consists of a �xed set of local variables with simple types(such as integer, string, or array), or references to local actors and/or external modules,protocols, or policies. Elements of the local state are always passed by value when theyare used in interactions with actors or external dcl elements. Within an actor or dclspeci�cation, the special value self always refers to the name of the appropriate entity.An initialization section may be de�ned to initialize the local state when the elementis instantiated. Note that an element may not participate in any interactions until itsinitialization code has completed.� Request Rules: Request rules de�ne the control interface of a dcl element. In general,a rule consists of a rule type, a caller id (i.e. a type speci�cation for the sender of theevent which triggers the rule), place holders for parameters, a boolean condition, and arule body. An accept rule is a special rule de�ned within a module to accept a connectionrequest from an external protocol. An install rule may be de�ned within a module orprotocol and is used to allow policies to customize the internal actors of a module. Amethod is a general rule which may be de�ned within any dcl element. Methods are usedfor coordination among dcl elements.1Static architectures also have the bene�t of allowing compile-time type checking. However, we do not focuson compilation issues in this thesis. 35

Rules are matched in order of appearance. Only the �rst matched rule is invoked. If norule is matched by a request, then the request is ignored2. Rule bodies are strictly declarative.Within a rule body, two actions are possible: local state may be assigned, or messages may besent to other entities. Local state de�nitions consist of a type and a variable name. Variablesare assigned in the usual fashion (e.g. var-name := val). New actors, modules, protocols, orpolicies may be instantiated and assigned to local variables using the syntax:var-name := new type-name (args)If type-name is an actor type, then the actor is created locally. Otherwise, type-name refers toa module, protocol, or policy and the new entity is created externally. Var-name is set to thename of the new entity after it has been created. That is var-name holds a value which maybe used as a target for interactions.The language by which actors are speci�ed and the parameterization of the meta-levelarchitecture are independent of dcl syntax. Note that many choices are possible for specifyingactors [53, 35, 46]. For our purposes, we assume the existence of a separate language forspecifying actors, together with a suitable instantiation of the meta-level architecture. Wedescribe the syntax and semantics of dcl in the remainder of this chapter. Several examplearchitectures are presented to drive the discussion. We conclude with a description of theimplementation of dcl and a characterization of the performance aspects of the approach.3.1 ModulesAmodule encapsulates a collection of actors (calledmodule actors) which implement a particularcomputational behavior. As with actors, each module instance has a unique name that is usedto interact with the module. Module names are the only externally visible references in amodule. While the actors within a module form a closed name space, any entity (internal or2The decision to ignore unmatched requests is arbitrary and perhaps inappropriate in some cases where itmight be useful to generate an exception message, for example, which is sent to the requester in response to anunmatched request. 36

otherwise) may use a module name as a target for interactions. Typically, module names arepassed to external protocols or policies in order to initiate connections.module ::= module id flocal-state[init(args) f mod-action� g]accept-rule�install-rule�method�gaccept-rule ::= accept proto-id (args) if condition fmod-action�ginstall-rule ::= install policy-id (args) if condition fmod-action�gmethod ::= [local] meth-name (args) if condition fmod-action�gmod-action ::= local-state-assignmentj var-name meth-name (args)j var-name := new actor-type (args)Figure 3.1: Module Syntax: A module de�nes local state, an initialization section, anda set of request rules. An accept rule is used to process connection requests. An install ruleis used to allow the customization of internal actors. Methods are used for coordination andsynchronization. The syntax rule� denotes the Kleene closure of a statement rule.Figure 3.1 gives an abstract syntax for modules. As described above, local state consists ofvariables with primitive types or references to dcl entities. The init method is optional andspeci�es initialization code to be executed when the module is instantiated. The remainder ofthe syntax is de�ned as follows:� accept proto-id (args) if condition fmod-action� gDe�nes an accept rule. An accept rule matches a request if it originates from a protocolof type proto-id with parameters matching the type signature of args, and condition is37

satis�ed. Condition is a boolean expression evaluated over the local state of the moduleand args. If an accept rule is matched then args is bound to the request parametersand the rule body is evaluated. If args contains a reference to a protocol actor which is amember of the sending protocol, then this actor is automatically admitted to the module'sname space before the body is evaluated (see Section 3.2).� install policy-id (args) if condition fmod-action� gDe�nes an install rule. An install rule matches a request if it originates from a policyof type policy-id with parameters matching the type signature of args, and condition issatis�ed. Condition is a boolean expression evaluated over the local state of the moduleand args. If an install rule is matched then args is bound to the request parameters andthe rule body is evaluated. A matched rule also results in the installation of a policy actoron each actor in the module. We describe this process in more detail in Section 3.3.� [local] meth-name (args) if condition fmod-action� gDe�nes a method. A method is matched if a request speci�es the target meth-name withparameters matching the type signature of args, and condition is satis�ed. Condition isa boolean expression evaluated over the local state of the module and args. We enforcethe additional constraint that the request must originate from either a local actor or anexternal module or protocol. If the keyword local is present, then the rule only matchesrequests sent by internal actors. If a method rule is matched, then args is bound to theparameters of the message and the rule body is evaluated.� var-name msg-name (args)Creates an interaction. An interaction causes a message to be sent if var-name refersto a local actor, or invokes a method if var-name refers to a protocol or policy. Msg-name identi�es the method to invoke on the target and args parameterizes the message.Interactions always occur asynchronously (i.e. the caller is not blocked).Accept and install rules modify the name space of a module in order to form new connectionsor enforce architectural policies. In the case of an accept rule, one or more protocol actors are38

admitted as endpoints for a connection to another module. In the case of an install rule, severalpolicy actors are admitted as meta-level customizations of internal module actors. We describeprotocol and policy actors installation in more detail below.3.2 Protocolsprotocol ::= protocol id [role role-name�] flocal-state[init(args) f proto-action� g]install-rule�method�ginstall-rule ::= install policy-id (args) if condition fproto-action�gmethod ::= [local] meth-name (args) if condition fproto-action�gproto-action ::= local-state-assignmentj var-name meth-name (args)j actor-name := new actor-type (args)as role-namej connect (args) to mod-refFigure 3.2: Protocol Syntax: A protocol de�nes local state, an initialization section, anda set of request rules. Actors created within a protocol are assigned to a role at the time ofcreation. The connect keyword is used to submit a connection request to an external module.A protocol encapsulates a collection of actors (called protocol actors) which govern theinteractions between a set of modules. A protocol connection is created by admitting one ormore protocol actors to the name space of each connected module. Protocol actors admitted inthis fashion become members of both name spaces, and may communicate with actors in eitherspace.
39

Syntactically, protocols are similar to modules except that a protocol de�nition must alsoinclude a �xed number of named \roles". Roles are meant to indicate the organization of aprotocol. For example, a UNIX-like pipe protocol would have a source role, where interactionsoriginate, and a sink role where interactions are delivered. Moreover, a special syntax is usedto ensure that each actor created by a protocol is associated with one of the roles declared inthe protocol speci�cation (see Figure 3.2). The connect action is provided to submit connectionrequests. Protocol syntax which di�ers from that of modules is de�ned as follows:� actor-name := new actor-type (args) as role-nameInstantiates a new actor and assigns its reference to a local state variable. The type ofthe new actor is actor-type and args is passed as the set of initialization parameters whenthe new actor is created. After instantiation, the new actor is associated with the rolerole-name. Note that this is the only mechanism for instantiating protocol actors fromwithin protocol speci�cations. Moreover, role assignments are permanent. Any actorscreated by a protocol actor are assigned to the role of their creator.� connect (args) to mod-refSubmits a connection request to the external module mod-ref with parameters args. Con-nection requests are always submitted asynchronously. As described in Section 3.1, ifthe connection is accepted, then any protocol actor which is passed as a parameter isautomatically admitted to the accepting module. Protocol actors may be admitted tomultiple modules.As with modules, policies may also be installed on protocols. A protocol accepts a policyby de�ning an install rule. In the case of protocols, however, policies are installed on individualroles rather than the protocol as a whole. This is done so that customizations may be isolatedto speci�c endpoints of a protocol. We describe the installation process in more detail in thenext section.
40

3.3 PoliciesAn architectural policy de�nes a constraint over the manner in which a collection of actorsinvoke system services. For example, a load balancing policy might constrain the invocation ofthe create operation: each call to create may �rst require that a policy manager determineon which physical node the new actor should be created before servicing the request.A dcl policy encapsulates a collection of actors (called policy actors) and de�nes a set ofrules for installing these actors as meta-level customizations (see Figure 3.3). In particular,policy actors are installed by invoking the install clauses of module or protocol speci�cations.The installation process admits policy actors as meta-level customizations of internal actors.Moreover, multiple policies may be installed on a single module or protocol. In this case, policyactors are \stacked" in the order of installation. The result is the composition of the behaviorof each of the policies.A key challenge in applying a policy is to allow dynamic customization while respecting theintegrity of module and protocol encapsulation boundaries. In particular, the internal compo-sition of a module or protocol is not visible to external entities. To overcome this di�culty,policies are installed as either contexts or roles:� Context: A policy applied to a module is called a context customization. In this formof customization, a single meta-actor type is instantiated and installed on each member ofthe module. Note that context customizations are only applied to actors created withinthe module. That is, admitted actors are not customized by context.� Role: A policy applied to a protocol is called a role customization. In this form ofcustomization, a uniform meta-actor type is instantiated and installed on each memberof a role de�ned by a particular protocol.As with modules and protocols, a policy de�nes a local state, an initialization section, and aset of methods. Although actors may be instantiated within policy methods, only the installkeyword may be used to create actors which are used to customize module or protocol actors.The syntax of the install command is as follows:41

install actor-type (actor-args) on pol-target(rule-args)where actor-type names the behavior of a policy actor, actor-args parameterizes the behaviorof each created actor, rule-args parameterizes the install request, and pol-target represents themodule reference or protocol role where the policy will be installed. The installation takesplace only if the module or protocol represented by pol-target de�nes an install rule capable ofaccepting the request. For each actor a in pol-target, installation proceeds as follows:1. A policy actor m of type actor-type is created with initial parameters actor-args.2. Actor m is admitted to the namespace of pol-target.3. Actor m is installed as the meta-actor for a.Installations are performed asynchronously. However, installations are serialized so that eachpolicy actor is installed in a consistent fashion.3 A policy may be installed simultaneouslyas a context and a role. Moreover, a policy is not restricted to a single module or protocol.For example, a load balancing policy might be applied to every module or protocol in anarchitecture. This is accomplished by multiple install commands, each with a di�erent target.Because policy actors are installed in an encapsulated, but dynamically changing environ-ment, we impose three additional constraints in order to ensure consistency:� Actor Creation: Policy actors used for customization may be created only by instal-lation. In particular, a create signal generated by a policy meta-actor is treated as ifthe signal came from the bottommost module or protocol actor in the meta-level stack.Moreover, the new actor is always admitted to the module or protocol represented by thebottommost actor.� Admission: Any policy installed on a module or protocol role is automatically installedon any actor created after the initial installation. The installation is performed in thesame order it was processed by the initial installation request, and each policy actorinstalled is parameterized using the same arguments as the initial installation.3For example, the case where two separate policies are installed simultaneously on the same module will eithercorrespond to the case where the �rst policy is installed in its entirety followed by the second, or vice versa.42

policy ::= policy id flocal-state[init(args) f pol-action� g]method�gmethod ::= [local] meth-name (args) fpol-action�gpol-action ::= local-state-assignmentj var-name meth-name (args)j install actor-type (args) on pol-targetpol-target ::= mod-refj proto-ref <role-name>Figure 3.3: Policy Syntax: A policy de�nes a local state, an initialization section, and aset of methods. The install keyword is used to install policy actors on modules or protocols.� Multiple Customizations: Multiple policies are enforced over a single module or pro-tocol by using multiple instantiations of the install command. Installations are handledin the order they are processed by the install rule at the target module or protocol. Therun-time ensures that each actor in the target has a consistent meta-level stack consistentwith the installation order of policies.By associating creation events with the bottommost actor in a meta-level stack, we removeany ambiguity that may result when a create request is handled by a policy actor on behalfof its base actor4. The restriction on admission ensures that each actor within a module orprotocol role has an identical meta-level stack. Recall that actor creation is handled as a specialcase of admission, so that any actor created by a module or protocol role will also be subject toany installed policies. Finally, the restriction on multiple customizations provides a mechanismfor asserting several policies over a single module or protocol.4Without this restriction, it may be ambiguous as to which entity a new actor should be associated with: theunderlying module, or the installed policy. 43

3.4 Example: CORBA-like ArchitectureCORBA architectures are based on the client-server model. Speci�cally, servers are accessedthrough a request broker which facilitates connections between clients and registered servers.For example, suppose a client wishes to connect to a database server. The client �rst sends arequest to the request broker. Assuming the database is registered, the request broker respondsby creating a communication endpoint and delivering it to the client. Typically, this endpointconsists of a \stub" which implements the client end of the remote procedure call (RPC) protocol.Once the client receives the endpoint, it may make requests to the database.With dcl, CORBA-like architectures may be modeled in a straightforward fashion. For ex-ample, we can model the client-server architecture described above by de�ning a RequestBrokermodule, a DBServer module and an associated DBConnector protocol. A connection is createdwith the server in three stages (see Figure 3.4): (1) the client requests a connection from therequest broker, which (2) forwards the request to the connection protocol, which (3) respondsby submitting a stub to the client, thus allowing interactions with the server. Figure 3.5 givesthe code for the server and connector. For simplicity, we have omitted any error handling codesuch as code to verify that a connection has been accepted. This could be done by de�ning amethod in the protocol which is invoked by a module upon accepting a connection.Upon creation, the DBServer module initializes its local state, creates a new instance ofthe DBConnector protocol, and sends a connectSkeleton message to request a skeleton fromthe new protocol. The accept rule de�ned by the server accepts the skeleton and forwards itsaddress to the appropriate local actors which will handle incoming requests. All client requestswill be routed through the DBConnector and delivered to the server through the skeleton.After the skeleton has been received, the server registers with the request broker by sending aregisterService message.Clients request connections by invoking the connectClient method in RequestBroker.The RequestBroker forwards the request by looking up the appropriate protocol and sendinga requestStub request. In the DBConnector protocol, the requestStub method creates a newstub actor, and issues a connect with the client module. After the client accepts the stub,44

protocol
Client

module

DBServer
module

RequestBroker
module

DBConnector

Stub
Actor Actor

Skeleton

1 2

3

module RequestBroker fhashtable servers;protocol link;method registerService(string name,protocol link) fservers.put(name, link);gmethod connectClient(module client,string service) flink := servers.get(service);link requestStub(client);ggFigure 3.4: A CORBA-like Client-Server Architecture: Left: The RequestBrokerforwards connection requests to the DBConnector instance associated with the server. Right:The RequestBroker speci�cation de�nes rules for registering servers and accepting connectionrequests.interactions between the client and server modules will be routed through the client's stub,then to the server's skeleton, and �nally to the server's internal actors. Note that all clientstubs are assigned the client role, while the server's skeleton is assigned the server role.3.4.1 Customizing Server ConnectionsCORBA architectures may be customized by changing the implementation of the request bro-ker, or providing alternate implementations of connectors. This approach complicates systemdevelopment as modifying existing components may introduce new bugs or architectural in-compatibilities.dcl policies o�er a simpler approach. For example, suppose we wish to encrypt interactionsbetween the client and database. We can enforce this property by de�ning an Encryptionpolicy which is applied to the DBConnector protocol. In particular, we may use the Encrypt andDecrypt meta-actors de�ned in Section 2.2.1, where we slightly modify the Decrypt behaviorso that it is instantiated with the address of its creator. When an instance of Decrypt iscreated, it forwards its name to its creator by calling the setServer method (the purpose45

module DBServer fboolean connected = false;module broker;protocol connector;init(module rBroker) fCreate internal resources;// Save reference to request brokerbroker := rBroker;// Create connection, request skeletonconnector := new DBConnector();connector connectSkeleton(self);g// Only accept one skeletonaccept DBConnector(actor skeleton)if !connected fForward skeleton to local actors;// Register server with request brokerbroker registerService("database",connector);connected := true;gg

protocol DBConnector roles client,server factor skeleton = null;actor newClient;// Connect skeleton to serverconnectSkeleton(module server)if skeleton = null fskeleton := new DBSkeleton()as server;connect(skeleton) to server;g// Connect stub, alert skeletonrequestStub(module requester) if true fnewClient := new DBStub(skeleton)as client;skeleton addClient(newClient);connect(newClient) to requester;gg
Figure 3.5: Server and Connector Speci�cation: The server creates a protocol forconnections, and registers the protocol with the request broker. The connection protocolreturns a skeleton to the server and processes connection requests from clients.for this behavior is to establish an appropriate receiver for the Encrypt behavior). We installinstances of Encrypt on client stubs, and instances of Decrypt on server skeletons. Note that theEncryption policy may only be installed if the an install rule has been de�ned in DBConnector.Thus, a rule of the form: install Encryption() if true fgmust be added to DBConnector before the installation will be permitted. More complicated rulesmay be speci�ed to model speci�c behavior. For example, policies may be required to presenta \signature" or other form of authorization before the installation is allowed. This conditioncould be enforced with an appropriate rule argument and corresponding rule condition.The Encryption policy is given in Figure 3.6. Typically, such policies will be installed byan external entity which �rst creates an instance of the policy and then calls an appropriate46

Messages

Client
module

DBConnector
protocol

DBServer

Client
Role

Server
Role

module

Encrypted

transmit(msg) deliver(msg)

policy
Encryption

policy Encryption fprotocol target;// Install Decrypt on \server" rolemethod apply(protocol T) if true ftarget := T;install Decrypt(self) ontarget<server>;g// Install Encrypt on \client" rolemethod setServer(actor S) if true finstall Encrypt(S) on target<client>();ggFigure 3.6: Encryption Policy: The Encryption policy coordinates the installation ofEncrypt and Decrypt meta-actors. Once installed, all interactions between clients and theserver are encrypted.policy method to initiate the installation. In the case of Encryption, the apply method isused to install the policy in two steps. First, a Decrypt policy actor is installed on the serverrole of the protocol. Because installation is asynchronous, we need to ensure that Decrypt hasbeen installed before we begin encrypting client messages. The Decrypt policy actor calls thesetServer method to alert the policy that it may safely install the Encrypt policy actor onclients. Note that the installation rules de�ned in the previous section ensure that any newactors admitted to the client role will automatically be customized by an Encrypt policy actor.3.4.2 Controlling Server ResourcesWhile it is possible to customize interactions in CORBA (albeit with some di�culty), it isnot possible to customize the resource usage of CORBA clients without modifying the clientsthemselves. However, in a CORBA-like architecture speci�ed in dcl, we may make such cus-tomizations by applying policies to modules. For example, suppose that the server executes ona cluster of workstations. Suppose further that we wish to load balance the server's resources toincrease performance. We might enforce such a constraint by load balancing the actors createdby the server. That is, we control the initial placement of each actor in the server.47

actor LoadBalance factorclass nextType;policy mgr;method init(policy m) fmgr := m;gmethod create(actorclass type, string host) fnextType = type;mgr requestMachine(self);gmethod rcvMachine(string newHost) fnewAddress(create(nextType, newHost));gg

policy RoundRobin fstring hosts[] = f a list of hosts g;int nextHost = 0;int numHosts = hosts.length;method installLoadBalance(module mod) finstall LoadBalance(self) on mod();gmethod requestMachine(actor caller) fcaller rcvMachine(hosts[nextHost]);nextHost = (nextHost + 1) % numHosts;gg
Figure 3.7: Load Balance Policy: Instances of LoadBalance are installed on the serverby the RoundRobin policy. Once installed, each create request is forwarded to the policy inorder to determine where to create the new actor.Figure 3.7 gives the speci�cation of a LoadBalance meta-actor, and a RoundRobin policy.For this example, we assume that the create meta-level signal is parameterized with bothan actor behavior, and the name of the host where the new actor should be created. TheRoundRobin policy installs an instance of LoadBalance on every actor in the server. TheLoadBalance meta-actor intercepts create requests and forwards them to the requestMachinemethod in RoundRobin. This method determines where the new actor should be created andsends the location back to the requesting actor. Once the new location has been received, thenew actor is created and a reference is returned to the requesting base actor.As with the encryption example above, we require an \install" rule de�ned within theDBServer module. However, once installed, the RoundRobin policy is completely transparentto the internal server actors.3.5 Example: High-Availability ServerIn the previous section, we described the customization of a CORBA-like architecture de�nedin dcl. As a more complicated example, consider a bug-tracking database. We attach an48

��
��
��

��
��
�� DB

��
��
��
�� DatabaseClient

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

���
���
���
���

(2)

(3)

(4) (4)

Bug-Tracking HTTP
InterfaceDatabase

Database Module HTTP Module

Network/Database Connector

HTTP_DB Protocol

(1)

TcpServer

HttpStream

HttpClient

Figure 3.8: A Bug-Tracking Database: An HTTP interface module provides access toa database storing bug reports. A network-to-database connector translates HTTP requestsinto document requests at the database.HTTP front end to the database in order to make bug-tracking information available via theweb (e.g. using a web browser). The architecture of this system may be de�ned in terms ofthree components:� Bug Database: The bug database stores bug reports. Clients use the get method torequest a particular bug report, and the put method to insert a new bug report or makea modi�cation to an existing report.� HTTP Interface: The HTTP interface is used to make the database accessible to remoteclients. In particular, the interface listens for new TCP/IP connections on port 80 (i.e.HTTP), and creates an appropriate link to the database for each new connection.� Network to Database Link: The HTTP interface and database are linked by a pro-tocol which translates HTTP requests into appropriate invocations of get and put on thedatabase.The dcl speci�cation for this application consists of a Database module, an HTTP module,and an HTTP DB protocol (see Figures 3.8 and 3.9). The HTTP DB protocol is initialized with areference to the Database module, while the HTTP module is initialized with a reference to theHTTP DB protocol.During initialization, the HTTP module creates a TcpServer actor to listen for new connec-tions. Upon receiving a connection request, the TcpServer actor creates a HttpStream actor to49

handle the new connection (stages (1) and (2) in Figure 3.8). The address of the HttpStreamactor is forwarded to the handleNewConnection method de�ned in the HTTP module (the newactor is bound to the newStream parameter). This method links to the new connection to thedatabase by calling the addConnection method in HTTP DB. Note the use of the local keywordto protect handleNewConnection from non-local requests.The init method of HTTP DB creates a DatabaseClient actor to serve as a communicationendpoint for the DB module. The connect statement in init ensures that the DB module receivesthe endpoint during protocol initialization.The addConnection method builds a new connection to the database each time it is called.In particular, a new HttpClient actor is created to serve as a communication endpoint for theHTTP module (stage (3) in Figure 3.8). The connect statement in addConnection submits theHttpClient actor to the HTTP module. The accept method in HTTP handles the �nal stage ofthe connection by sending the address of the appropriate HttpStream actor to the admittedHttpClient actor. Once connected, the DatabaseClient and HttpClient actors coordinateto translate HTTP requests into database requests, and vice versa (stage (4) in Figure 3.8).This architecture is designed to be deployed on a single server. However, if the bug databaseholds critical information, it may be necessary to increase the availability properties of thesystem. In particular, suppose we have access to a cluster of three workstations. We mayconsider two modi�cations to this architecture in order to increase availability (see Figure 3.10):� Replicated Database: Replicated copies of the database may be maintained in orderto resist transient failures as well as provide more rapid access to clients.� Load Balance Connections: In order to increase throughput, we may want to selec-tively route incoming connections so that they are balanced across the available hardware.We implement this modi�ed architecture using the BalanceConnections and SequenceRequestspolicies (see Figure 3.115). We designate one of the replicas as the \leader" and install the5We omit the description of the BalanceConnections policy. This policy simply installs the Rerouter actoron the \leader" HTTP module. 50

module HTTP factor tcpServer;queue NC;protocol dbConnector;// Initialize Moduleinit(Protocol C) fdbConnector = C;NC = new Queue();// Create actor for HTTP connectionstcpServer = new TcpServer(80, self);g// Called by tcpServer to add new connectionlocal handleNewConnection(Actor newStream)if true f// Save actor for new connectionNC.enqueue(newStream);// Create new protocol linkdbConnector <- addConnection(self);g// Accept a new HTTP DB connectionaccept HTTP DB(Actor httpClient)if !NC.empty() f// Send address of local streamhttpClient <-setStreamActor(NC.dequeue());gg

protocol HTTP DB role HttpEndpoint, DBEndpoint fActor HttpActor, DBActor;Module dataBase;// Build initial connection to DBinit(Module DB) fdataBase = DB;DBActor = new DatabaseClient()as DBEndpoint;connect(DBActor) to dataBase;g// Build new connection to database.addConnection(Module caller) if true f// Create client endpoint for connectionHttpActor = new HttpClient(DBActor)as HttpEndpoint;// Submit endpoint to HTTPconnect(HttpActor) to caller;gg
Figure 3.9: Bug Database Speci�cation: The database and HTTP interface are speci�edas dcl modules. The Network/Database connector is speci�ed by the HTTP DB protocol. Forthe sake of brevity, we omit the speci�cation for the database. Note that all we require fromthe database is an accept rule for accepting the DatabaseClient actor created in HTTP DB.BalanceConnections policy on the HTTP module at that replica6. The SequenceRequestspolicy is installed collectively on each of the HTTP DB protocols.The BalanceConnections policy uses a Rerouter actor to customize the message passingbehavior of the TcpServer actor inside the HTTP module. In particular, the Rerouter interceptshandleNewConnection messages, and determines whether they should be handled locally orforwarded to another HTTP module. In the latter case, the connection is forwarded by sending a6Ideally, the leader should be a separate module residing on a router. For simplicity, however, we arbitrarilychoose one member of the cluster. 51

N/D HTTP

DB N/D HTTP

HTTPN/D

Database Replicated
Over Workstation Cluster

Queries
Load Balance

Manage State
Consistency

DB

DB

��
��
��
��

��
��
��
��

��
��
��
��

Sequence
Requests

Reroute
Connections

��
��
��
��

���
���
���

���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��
��

"leader"

BcastActor

HttpClient

DatabaseClient

Rerouter

Receiver

TcpServer

Sequencer

SequenceRequests Policy BalanceConnections Policy

HTTP_DB

HTTPDB

Figure 3.10: Cluster Deployment: On the left: proposed changes to create a high-availability server. On the right: architectural changes to support the new server.\Moved Temporarily" reply to the HTTP caller. At present, the Rerouter actor uses a simpleround-robin scheme to allocate requests.The SequenceRequests policy maintains the consistency of the replicas by ensuring that allrequests are processed in the same order at each replica. This is done by installing a Sequenceractor on each member of the HttpEndpoint role, and a corresponding Receiver actor on eachmember of the DBEndpoint role. The Sequencer actor intercepts request messages and invokesthe receiveRequest policy method to assign a sequence number to the request. The requestis then forwarded to each Receiver actor, which delivers requests according to their sequencenumber. Replica consistency is guaranteed because requests are serialized at each Receiver.In particular, all requests will be processed in the same order at each replica.As in the previous example, we must add appropriate install rules to the HTTP and HTTP DBspeci�cations before our policies may be installed. For example, we might add the simple rule:install SequenceRequests() if true f gto the HTTP DB speci�cation. 52

policy SequenceRequests fint seqNum;Set receivers;Actor caster;Actor target;// Install policy on each protocolinit(Protocol C1, Protocol C2, Protocol C3) fseqNum = 0;receivers = new Set();caster = new BcastActor();// Sequencer sequences new requests// Receiver delivers requests in orderinstall Sequencer(self) on C1<HttpEndpoint>();install Sequencer(self) on C2<HttpEndpoint>();install Sequencer(self) on C3<HttpEndpoint>();install Receiver(self) on C1<DBEndpoint>();install Receiver(self) on C2<DBEndpoint>();install Receiver(self) on C3<DBEndpoint>();g// Register new database receiverlocal registerReceiver(Actor who) if true freceivers.addElement(who);g// Sequence request, broadcast clientslocal receiveRequest(HttpRequest req, Actor R)if true f// Forward request to intended receiver,// broadcast to other DB clients,// and increment sequence numberR <- request(req, seqNum);caster <- sendCopy(req, seqNum,receivers - R);seqNum++;gg

actor Sequencer fpolicy ourMgr;// Save reference to our policy mgrinit(Policy M) f ourMgr = M; g// Intercept message sendsmethod transmit(Msg msg) fif (msg.method == "newRequest")// If request, then send to be sequencedourMgr <- receiveRequest(msg.arg[0],msg.dest);else// Otherwise, send to destinationmsg.dest <- msg;continue();ggactor Receiver fpolicy ourMgr;int seqNum = 0;PriorityQueue sequenced = new PriorityQueue();Queue pending = new Queue();// Save mgr reference and register with mgrinit(Policy M) fourMgr = M;M <- registerReceiver(self);g// Intercept messages intended for basemethod rcv(Msg msg) fIf request then store in sequencedOtherwise store in pendingg// Determine next msg to deliver to basemethod ready() fIf sequenced message seqMsg available then:deliver(seqMsg); seqNum++;Otherwise, deliver any pending messagesg// Schedule sequenced deliver of request copymethod copy(HttpRequest req, int seq) fChange \sender" of request to selfAdd request to sequencedggFigure 3.11: SequenceRequests Policy: The Sequencer policy actor (top right) capturesand sequences new requests. The Receiver policy actor (bottom right) ensures that requestsare processed in the order of their sequencing. A separate BcastActor forwards copies ofsequenced requests (not shown). 53

module client {

 accept proto...

 .

 .

 }

}

Manager

Internal

Group

Group Actors

Figure 3.12: DCL Mapping: dcl speci�cations are mapped onto group manager actors.3.6 ImplementationWe implement dcl abstractions by mapping them to actor groups as de�ned in Section 2.3.In particular, a unique group manager actor encapsulates the semantics of the dcl abstractionassociated with the group (see Figure 3.12). The group manager actor de�nes methods corre-sponding to the init, accept, install, and method rules of the corresponding speci�cation. Thesemethods are invoked when the corresponding rules are invoked in the speci�cation.The implementation provides a group support API (see below) which allows managers toperform various group operations. For example, an \admit" method requires the admission ofa new actor to a group. To support this behavior, the group support API provides methodsfor changing actor membership privileges. Similarly, the connect and install commandsare mapped to protocols within the API. Orthogonal to the API itself, the group supportimplementation is also responsible for ensuring that group membership privileges are enforced(two actors may only interact if they are a member of a common group).3.6.1 Actor ImplementationThe Actor Foundry [46] (henceforth, the Foundry) is a Java-based programming environmentfor developing actor programs. Speci�cally, the Foundry is structured as a collection of Javaclass libraries in which actors are modeled as Java objects. Java was used as the implementa-tion language due to its embedded support for concurrency, networked-based applications, andheterogeneous execution environments. While there is an inherent performance degradationassociated with Java implementations (due to byte-code interpretation), the Foundry is struc-54

Implementation
Actor

Implementation

Service

Actor

Transport
Layer

Request
Handler

Actor
Manager

Name

Scheduler

Service Service

Figure 3.13: Foundry Architecture: The ActorManager provides basic actor functionalityfor all actors on a Foundry node. The RequestHandler, NameService, and TransportLayer areused to facilitate o�-node services.tured so that critical elements may be replaced with more e�cient C-based implementations.The performance results presented in this section are based on a combined Java/C Foundryimplementation.An instance of the Foundry consists of a collection of nodes, each of which resides on aseparate machine. A Foundry node is composed of a hierarchy of functional units for supportingvarious aspects of actor computation (see Figure 3.13). The Actor Manager manages all theactors on the local node. In particular, the manager provides access to message passing andactor creation services. A Service is a module which extends the basic functionality of themanager. That is, rather than require monolithic managers which encapsulate all possiblefunctionality, services may be used as a modular way to extend the capabilities of the manager.The Request Handler facilitates node-to-node network communication by utilizing the NameService and Transport Layer. The name service provides support for a globally unique namingsystem, while the transport layer facilitates low-level network communication. Finally, the
55

package osl.examples.helloworld;import osl.manager.*;public class HelloActor extends Actor fpublic void hello() throws RemoteCodeException fActorName other = null;call(stdout, "print", "Hello ");other = create(WorldActor.class);send(other, "world");gg
package osl.examples.helloworld;import osl.manager.*;public class WorldActor extends Actor fpublic void world() fsend(stdout, "println", "World!");ggFigure 3.14: \Hello World!" in the Foundry: The hello method in HelloActor printsthe string \Hello \, creates an instance of WorldActor, invokes the world method. The worldmethod in WorldActor prints the string \World!". A call is a method invocation with RPCsemantics. A send is an asynchronous method invocation.Scheduler is responsible for scheduling all threads associated with a node (including actors)7.Note that the Actor Manager abstracts over the node distribution of the Foundry. That is,actor programs may be developed independent of a speci�c con�guration of the Foundry.Each actor is an instance of the Actor class: the state and methods of the actor are the stateand methods of an instance of this class (see Figure 3.14). Such objects are \active" in thesense that a private thread of control is used to invoke local methods. The Actor class providesprimitives for message passing and dynamic creation of new actors. Applications are developedby extending the Actor class to de�ne application actors.Message passing is modeled as asynchronous method invocation. In addition, the Foundryprovides support for actor migration, exception handling, and synchronous forms of commu-nication such as remote procedure call. Each actor is managed by an instance of the ActorImplementation class, which provides a local mail queue and schedules the invocation of localmethods in response to messages. Moreover, the Actor Implementation class de�nes the basic7Originally, the inclusion of a scheduling module was necessary because of a de�ciency in some Java imple-mentations. In particular, the Java speci�cation does not require a fair thread scheduler. As a result, manyJava implementations include schedulers which are patently unfair, making actor programming di�cult. Afterseveral iterations, we were able to develop a separate, fair scheduling module which performs nearly as fast asthe default Java schedulers (less than 1% overhead). However, while more recent Java implementations supportfair scheduling, we have retained the scheduling module as it provides a mechanism for experimenting with otherscheduling paradigms (e.g. real-time). 56

Operation Local RemoteMessage Passing 360 �sec/msg 13.4 ms/msgActor Creation 26.5 ms/create 50.5 ms/createScheduling < 1% N/AFigure 3.15: Foundry Performance: Message passing was sampled over 10000 iterations.Actor creation was sampled over 5000 iterations. Scheduling results were sampled over 10iterations of Fibonacci(15).implementation of actor services, such as message passing. Thus, the semantics of low-levelactor behavior may be modi�ed without changing existing actor code: a customized implemen-tation of Actor Implementation may be used to provide the new behavior.Figure 3.15 summarizes the performance of key aspects of the Foundry. The timing resultswere obtained from two Foundry nodes, each running on Sparc Ultra-2 workstations connectedby 10baseT ethernet. The message passing results were obtained by timing an asynchronoussend of 10000 messages both locally, and between local and remote nodes. Similarly, the actorcreation results were obtained by timing the creation of 5000 actors locally and remotely. Thescheduling results were obtained using an actor implementation of the Fibonacci function.Fibonacci is a useful indicator of scheduling e�ciency because of the large number of actorscreated and the large volume of messages sent8. The scheduling results indicate the overheadof computing Fibonnacci(15) using the Foundry scheduler versus the default Java scheduler.Ten iterations were used to compute the resulting overhead.As a distributed object toolkit, the Foundry compares favorably with other Java-basedtoolkits. For example, Javasoft's Remote Method Invocation toolkit [32] experiences a latencyof approximately 5 ms for both local and remote interactions. By way of contrast, the RPCimplementation in the foundry experiences latencies of 1:3 ms in the local case, and 28:7 ms inthe remote case. The local case is much faster because all communication is isolated within asingle Foundry node, whereas RMI makes an external call to the network libraries. In the remote8Speci�cally, these two factors force a large number of context switches within the scheduler.57

case, the Foundry is slower because of its heavily layered architecture. Whereas RMI makesa direct call to the network, the Foundry must route messages through the request handler,name service and transport layer. The result is a classic modularity/performance trade-o�: theperformance of the Foundry may be increased signi�cantly by collapsing the architecture into asingle network layer; however, doing so complicates the modular replacement of elements of thearchitecture in order to experiment with di�erent implementations. As the Foundry is intendedto be a research tool, we choose modularity in favor of performance.A similar performance trade-o� exists with respect to actor semantics. Speci�cally, actorsemantics states that actors may communicate only by way of message passing. A practicalconsequence is that actors can not share state: such state may be used as a hidden channel forcommunication. As a result, all message arguments must be copied when delivering messagesbetween actors on a local node. If actor semantics were relaxed (e.g. allowing shared state),then the performance of local message passing would be increased twofold. This results in localmessage passing performance which is comparable to a pure C implementation.3.6.2 Meta-ArchitectureTo support meta-level customization, we have implemented a meta-architecture API whichextends the basic actor APIs in the Foundry. The meta-architecture API is implemented bythe class MetaActorImpl which is a subclass of Actor Implementation. Thus, a meta-actor isan instance of the Actor class which is managed by an instance of MetaActorImpl.In addition to supporting the default actor methods (e.g. send, create), the MetaActorImplclass provides methods for creating and installing new meta-actors. Moreover, MetaActorImplprovides a default method behavior for each signal de�ned in the model. Currently, the im-plementation captures the most basic instantiation of the model. Thus, MetaActorImpl de�nesdefault behaviors for the transmit, create and ready signals. A meta-actor may provide cus-tom behavior by overriding one or more of these methods. Similarly, MetaActorImpl providesmethods for generating the basic noti�cations: continue, newActor, and deliver. Thesemethods may be invoked in response to base-actor signals. Note, however, that noti�cation58

Base
Actor

Actor
Meta

Actor
Meta

New
Meta-Actor

Installing
Actor

Install
Request

Forward
Request

Create New
Meta-Actor

Request
Complete

3

2

1

msg

msg

�����
�����
�����
�����

�����
�����
�����
�����

Base
Actor

Actor
Meta

Actor
Meta

A1

A2

An

An

A2

Actor Manager

A2

Incoming Message

Reroute at Manager

Figure 3.16: Meta-Actor Implementation: Left: New meta-actors are installed in athree step process. Right: Messages can be rerouted at the manager because all actors in ameta-level stack must reside on the same node.generating methods are �xed (\�nal", in Java terms) and may not be customized. Similarly,the installation process is �xed by the implementation of MetaActorImpl.Meta-actors are installed in a three step process (see Figure 3.16). In the �rst step, theinstalling actor sends a request to the target base actor and blocks until the installation com-pletes. If the target actor already has a meta-actor installed, then the request is forwarded tothe top actor in the meta-level stack. Thus, any actor in a meta-level may be used as a targetfor customization. The top actor in the stack creates the new meta-actor9 and informs the re-questing actor that the installation has completed. The actor which creates the new meta-actorwill only perform the creation in between the processing of messages. This ensures that themeta-level stack is in a consistent state when the new customization is installed. Furthermore,we constrain the creation of new meta-actors so that they reside within the same Foundry nodeas their base actor. Note that this implies that all actors within a meta-level stack will resideon the same node. This constraint yields a more e�cient implementation due to the large num-ber of interactions between base and meta-actors. Once the installation completes, subsequentsignals are automatically forwarded to the new meta-actor.9Recall from Section 2.2 that actor creation is the only mechanism for installing meta-level customizations.59

Although meta-level message redirection could also be handled within MetaActorImpl, weuse a customized implementation of Actor Manager to provide a more e�cient solution. Inparticular, because all actors within a meta-level stack are located within the same node, wemay make stack routing decisions the moment a new message arrives at the manager10. Thisresults in a signi�cant performance improvement over a trivial implementation where messagesare rerouted within the stack itself.3.6.3 Group SupportThe group support API is an extension of the meta-architecture API which provides supportfor group operations and encapsulation. Moreover, the group support API customizes certainaspects of the meta-architecture. For example, the group support API enforces the constraintthat base and meta-actors must reside in di�erent initial groups. We encapsulate group opera-tions within the GroupActorImpl class, which extendsMetaActorImpl. Note that the operationsprovided by the group support API are only accessible to group managers.Group encapsulation is implemented by assigning capabilities [57] to each actor in the system.Capabilities are putatively unforgeable \access keys" used to verify that an actor has su�cientprivilege to execute a particular operation. In our implementation, capabilities are formed froma source key consisting of a group part and a member part. The group part of the source keyis the same for each actor in a group, while the member part is unique to each actor. Thegroup part is unique to each group and is \secret". The member part of the source key maybe determined from an actor's address. An encryption function is used to build a capabilityfrom the two parts of the source key. Note that when an actor creates a new actor, it passesthe group part of its initial group to the new actor. This allows the new actor to generate acapability for its initial group (and hence send messages to other actors in the same group).We use capabilities to allow actors within a common group to communicate with one another.In particular, each message sent by an actor is tagged with all the capabilities possessed by the10This isn't quite true since an installation may be taking place at the time a new message arrives at a node.Thus, it may still be necessary to handle message routing within the meta-level stack itself. However, this is arare occurrence in practice. 60

actor. When the message is received, a capability check is performed to determine whether ornot the sender had su�cient privilege to send the message. The capability check proceeds asfollows:1. Let as be the member part of a source key determined from the sender's address. Let mbe the message received. For each group, g, which the receiver is a member of:(a) Build a capability, c, using as and the group part of g.(b) If m contains a tag which is equal to c, then admit the message.2. If no matching capability was found then reject the message.If the check succeeds, then the message is delivered, otherwise it is rejected and sent back tothe sender. Note that a capability check is not performed if the receiver is a group manager.The group support API de�nes three operations for supporting groups: group creation,admission, and policy installation. Group creation allows a manager to create a new externalgroup. A unique group part is created in order to build capabilities for the new group. Thecreating manager is passed the address of the new group manager once the creation completes.The admission operation admits a new actor by sending the secret group part of the sourcekey of the manager's group. Once an actor obtains the group part of a source key, it maygenerate a capability which allows it to communicate with any other actor in the group. Notethat capabilities are internal to the GroupActorImpl class. Thus, there is no danger of groupsecrets leaking to underlying user actors and being propagated to arbitrary locations.Policy installation is a more complicated process involving a creation tree traversal (seeFigure 3.17). The GroupActorImpl associated with each group member maintains a record ofall the actors created by the member. Because the group manager is the �rst actor created inany group, we may build a tree of all the actors created in a group starting from the manager.We call this tree a creation tree. The creation tree for a dcl module consists of the creationtree rooted at the group manager. For a protocol, we associate a separate creation tree for eachrole. The creation tree for a role consists of the group manager and all the subsequent sub-trees61

��������������

��������

�������� ��������������

Stage 1

Stage 3

Stage 2

Policy

Module or Protocol Role

Creation Tree

Figure 3.17: Policy Installation: Policies are installed in three stages: (1) the installationrequest is received and propagates down the group creation tree; (2) a meta-actor is installedon each member of the group; and (3) an acknowledgment is generated at the leaves of thecreation tree to indicate the completion of the installation.formed by the members of the role. In this case, the manager not only records the address ofthe actors it creates, but also the roles they are associated with.A policy installation proceeds in three stages over the creation tree of the target. In the�rst stage, the requesting group sends an install request together with the secret group part ofits source key. The installation request is then distributed by traversing the creation tree. Inthe second stage, a new meta-actor is installed on each actor in the creation tree (except forthe manager). Note that this operation involves creating an actor in another group. However,because the secret group key was passed as part of the installation request, each new meta-actormay be properly added to the requester's group (i.e. it may create an appropriate capabilityfor its initial group). In the third stage, the leaves of the creation tree send an acknowledgmentto the manager indicating that the installation has completed.Because the leaves of a creation tree may not be known to a group manager, it may bedi�cult for the manager to determine when the installation has completed. To circumvent thisissue, we use a weighted reference counting algorithm similar to those used in some distributedgarbage collection schemes (cf. [17] and [62]). The algorithm proceeds by tagging each instal-lation request with a ratio 0 < pq � 1. The initial request sent by the manager is tagged with62

the value 1=n where n indicates the number of children below the manager in the creation tree.Each intermediate node tags the request with the value x=m where x is the value it receivedfrom its parent, and m is the number of children below it in the creation tree. When a leafcompletes its installation, it sends the value it received back to the group manager. The groupmanager keeps a running total of all the values it has received. When this total reaches 1:0,the installation is complete.A primitive implementation of the installation process described above would block at eachstage of the installation. For our implementation, however, we are able to use a slightly moreoptimistic approach. In particular, we �rst associate a \version number" with each actor ina creation tree. The version number is constructed so that actors with structurally identicalmeta-level stacks will have identical version numbers. We then tag each installation requestmessage with a logical time stamp and enforce the constraint that installation requests must behandled in tagged order. Similarly, we add the version number of each actor to every message itsends. We then enforce the constraint that an actor may only process a message if the versionnumber in the message is less than the current version of the actor.The combination of logical time stamps and version tagging allows the concurrent processingof installation requests. In particular, the addition of logical time stamps results in a First-In-First-Out (FIFO) multi-cast [25] over the actors in a creation tree. As a result, we canguarantee that each installation request is processed in the same order at each group actor.This eliminates the possibility of meta-actors being installed in the wrong order at di�erentactors within a group. The use of version numbers in messages ensures that actor computationwill be causally consistent with policy installation. That is, it will not be possible for an actorto process a message until it is in a state consistent with the state of the sender at the time themessage was sent.
63

Operation OverheadEvent Framework 8%/levelInstallation 120%/levelFigure 3.18: Meta-Level Performance: Event framework overhead reects the time re-quired to pass events from base-actors to meta-actors. Installation overhead reects the extratime required to install a meta-actor or a new actor.3.7 SummaryIn this chapter, we have provided an instantiation of the model described in Chapter 2. Inparticular, we have described a language for building architectures within the model, as well asan implementation which maps speci�cations into executable systems.dcl provides a compositional approach for architectural development: rather than hard-code customization and resource management within protocols and modules, policies are usedto modularly enforce such constraints. While this approach allows exible system development,such mechanisms have limited use if they can not be mapped to e�cient implementations. Inparticular, a key performance issue is the overhead associated with modular composition versushard-coding customizations. In terms of dcl, this overhead is characterized by the cost ofperforming meta-level installation, and the cost of the event framework which translates baseactor operations into events at meta-actors.Figure 3.18 summarizes the performance of the event framework and meta-level installation.Event framework overhead was determined by timing the sending of 5000 messages betweentwo actors. The �rst timing was performed without any meta-actors installed. The secondtest was performed with a meta-actor installed on each endpoint. The meta-actor installed onthe sender rede�ned the transmit event and simply forwarded the message it received. Themeta-actor installed on the receiver rede�ned the rcv method and simply delivered the messageit received. The same test was performed for a meta-level stack of depths two and three oneach endpoint. The result shows minimal overhead in the case of a meta-level stack of depthone. Overhead increases linearly with the depth of the stack.64

As in the case of raw Foundry performance, the event framework overhead is signi�cantlylower if we relax actor semantics and allow actors to share references to common state. Inparticular, with current actor semantics, the arguments of each event must be copied whenmoving an event from a base actor to its meta-actor. Because of the unique status of meta-actors, it could be argued that event state need not be copied. In this case, it is necessaryto copy message arguments only when a message moves from one meta-level stack to another.In the current implementation, we provide a macro which allows the selection of copying ornon-copying behavior.Installation overhead was calculated by measuring the e�ect of a simple policy when in-stalled on a Fibonacci module. We use the actor implementation of Fibonacci because of thelarge number of actors it creates. Recall that an appropriate meta-level stack is automaticallyinstalled each time a new actor is created within a module. Thus, Fibonacci is a useful indicatorof installation overhead because of the number of times this installation must be performed.Overhead was computed by comparing the execution time of Fibonacci(15) on an uncustomizedinstance of the module, to the execution time of a customized version of the module. The policyused to customize the module consisted of a simple meta-actor which intercepted create signalsand simply forwarded them to the system.As indicated in Figure 3.18, installation overhead is the major weakness of our approach.However, the overhead associated with installation is only a factor in applications in whichactor creation is \bunched"; that is, in applications where many new actors are created rapidly.We argue that this is an implementation issue rather than a fault in the model. Speci�cally, thecurrent implementation represents a meta-level stack literally in terms of a collection of sepa-rate actors. A more e�cient approach would be to encapsulate meta-level state and behaviorwithin a single actor11. This encapsulation would eliminate much of the extra synchronizationnecessary to create and install individual actors in a stack. Similarly, the performance of theevent framework would be drastically improved as events would not have to be transmitted viamessage passing.11Of course, other modi�cations would be necessary to allow the actor to be associated with multiple addresses,one for each meta-actor. 65

Chapter 4
Formal Semantics
In this chapter, we provide a formal semantics for the model described in Chapter 2. Thesemantics provides a basis for reasoning about composition. Speci�cally, we describe two typesof composition:� Composition of Interactions: This form of composition is characterized by messagepassing between overlapping groups: given two groups a and b, the composition is char-acterized by the messages which are sent from an actor with initial group a, and receivedby an actor with initial group b, and vice versa.� Composition of Customizations: This form of composition is characterized by thesignals and noti�cations sent between base and meta-actors.Using a formal model for composition, we characterize \architectural compatibility". Thatis, we de�ne the conditions under which dcl protocols may be used to interconnect a collectionof dcl modules. Similarly, we de�ne conditions under which a dcl policy will conict withunderlying behavior of modules or protocols it customizes.We develop our semantics as an extension of Abstract Actor Structures (AAS) [55], a con-current rewriting [40] formulation of actor semantics. While concurrent rewriting establishesthe basic properties of the semantics, we use the notion of interaction semantics [56] to de�necomposability properties. The semantics is developed in three stages.66

In the �rst stage, we develop a semantics for local actor computation. As with AAS, weabstract over a particular linguistic representation of actor behavior: actors are representedabstractly as states and behavior types. In accordance with the model described in Chapter 2,we provide a �ne-grained interpretation of actor behavior: actor computation is represented asa series of atomic event processing steps. In response to an event, an actor performs some local(i.e. non-visible) computation and generates a new event. This approach should be comparedto the \super-steps" of AAS where the processing of a single message may result in severalnew actors and messages. In practice, our approach is nearly equivalent to an interpretation ofAAS where certain messages may restrict further processing until a particular reply message isreceived (i.e. blocking on signals, waiting for noti�cations). Using the �ne-grained approach,we introduce a basic set of rules that allows us to recover the traditional semantics for actors.In the second stage of development, we extend traditional actor semantics to support meta-level customization. To accomplish this, we derive a new event-processing mechanism andintroduce rules that allow actors to process events generated by other actors. This approachallows a meta-actor to intercept the service requests made by a base actor. Once the meta-levelsemantics has been de�ned, we add support for group operations required by our model. Notethat group operations imply additional constraints on meta-level semantics. However, we derivemeta-level semantics separately to illustrate their utility independent of the actor group model.Finally, in the third stage of development we de�ne an interaction semantics based oninteractions between actor groups. Using this semantics, we establish compatibility conditionsthat de�ne the composability of groups. This semantics provides a de�nition of composabilitybased on group-to-group interactions.The following notation is used in this chapter. The expression f : D!R represents a totalfunction f with domain D and range R. The expression f : D �!R represents a partial functionwith the same domain and range. The expression Pn[S] indicates the set of all subsets s of Swith jsj � n. The expression P![S] indicates the set of all �nite subsets of S.
67

4.1 PreliminariesConcurrent rewriting is a formal model that allows one to reason about concurrent systems interms of state transitions. A key strength of concurrent rewriting is its ability to represent manymodels of concurrency within a common framework. In addition to actors, for example, othermodels such as CCS [42] and �-calculus [43, 44] may be captured within the concurrent rewritingframework (see [41]). Although we make no such comparisons here, the generality of concurrentrewriting may allow the translation of important techniques between di�erent formalisms. Inparticular, it may be seen that the notion of compatibility de�ned in Wright [10] (based onCCS) is equivalent to our notion of interaction compatibility. We provide a brief summary ofconcurrent rewriting below. A more complete description may be found in [40].A rewriting logic theory is composed of a signature, (�; E), together with rewrite theoryrules. The signature de�nes the algebraic portion of a theory. In particular, the set � de�nesthe function symbols of the theory, while the set E consists of �-equations. A �-algebra is a setV where each f 2 � of n arguments is associated with a function f : V n ! V . The symbol T�denotes the �-algebra of ground �-terms (i.e. 0-ary functions in �). Similarly, the symbol T�;Edenotes the �-algebra of equivalence classes of ground �-terms modulo (i.e. equivalent withrespect to) the equations E. It is often convenient to use variables as place holders in rewritingexpressions. For such expressions, if X denotes a countable set of variables, then the symbolsT�(X) and T�;E(X) denote, respectively, the �-algebra of �-terms with variables in X, andthe �-algebra of equivalence classes of �-terms with variables in X modulo the equations E.Similarly, given a term t 2 T�(fx1; :::; xng) and terms u1; :::; un, we write t(u1=x1; :::; un=xn) todenote the term obtained from t by simultaneously substituting each ui for each xi. Finally,for a term t, the symbol [t] denotes the E-equivalence class of t.Given a signature, (�; E), the rewrite rules of a theory are represented by a pair (L;R)where L is a set of labels, and R is a set of 3-tuples with R � L� T�;E(X)� T�;E(X). A ruleinstance, (r; [t]; [t0]), is interpreted as a labeled sequent and denoted as r : [t] �! [t0]. Sequentsde�ne the sentences of rewriting logic. Moreover, the \interesting" derivations in a particulartheory will include one or mode applications of labeled sequents.68

A rewrite theory, then, consists of a 4-tuple R = (�; E; L;R). The theory R is said to entailthe sequent [t] �! [t0] if and only if [t] �! [t0] may be inferred from the �nite application ofthe following rules of deduction. The rules of deduction establish a rewrite theory as a logicand are de�ned as follows:� Reexivity: For each [t] 2 T�;E(X), [t] �! [t]� Congruence: For each f 2 � of n 2 N arguments,[t1] �! [t01] ::: [tn] �! [t0n][f(t1; :::; tn)] �! [f(t01; :::; t0n)]� Replacement: For each rule r : [t(x1; :::; xn)] �! [t0(x1; :::; xn)] in R,[w1] �! [w01] ::: [wn] �! [w0n][t(�w=�x)] �! [t0(�w0=�x)]� Transitivity: [t1] �! [t2] [t2] �! [t3][t1] �! [t3]In less formal terms, a rewriting logic may be characterized by a set of sorts, a set ofoperations, a set of equational rules, and a set of rewrite rules. Sorts, operations and equationalrules establish the algebraic portion of the logic. In particular, sorts are used to categorizeterms in the logic, while operations are used to build well-formed terms. Equational rulesde�ne equivalence classes of terms in the logic. Similarly, rewrite rules de�ne relations formatching and replacing terms.In [55], the traditional operational semantics of actors (cf. [5]) has been reformulated interms of rewriting logic. Actor con�gurations in this theory are represented by elements of thefollowing sorts:� A - The sort of actor names.� V - The sort of values.� S - The sort of actor states.� F - The sort of actor fragments. 69

� C - The sort of con�gurations.A typical term in this semantics is represented as:h(s1)a1 ; :::; (sn)an ; ai � vi; :::; aj � vjiwhere (si)ai speci�es an actor in state si with address ai, and aj � vj speci�es a message withdestination aj and contents vj . Unlike the operational semantics, the rewriting formulationabstracts over the individual behavior of actors. Instead, actor behavior is captured abstractlyin terms of a delivery function, Deliv, and execution functions, Ex and #new. Similarly,properties of a con�guration such as \enabled sets" (i.e. those actors enabled for deliveryor execution) are captured by an \enabled for delivery" relation, End, and an \enabled forexecution" set, Enex. Finally, the name space of actor terms may be controlled by a restrictionoperator, dap; :::; aq , which, if applied to a fragment, restricts the external visibility of internalnames to the set ap; :::; aq.The resulting semantics is greatly simpli�ed by abstracting away low-level actor behavior.In particular, actor semantics may be characterized by just four rewrite rules1:� Execute: e(a; s) : (s)a) Ex((s)a)(~a)dfagif Enex(a; s) and ~a is a list of #new(a; s) distinct actor names disjoint from a and acq(s).� Deliver: d(a; s; v) : f(s)a; a� vg) Deliv(a; s; v)if End(a; s; v)� In: i(F; a� v) : hF i) hfF; a� vgiif a 2 recep(F)� Out: o(F;R; a� v) : hfF; a � vgdRi) hF dR [(acq(v) \ recep(F))iif a 62 recep(F)where Execute de�nes an execution step, Deliver de�nes a message delivery step, and In andOut de�ne interactions with the external environment. The expression Ex((s)a)(~a)dfag de�nesthe fragment resulting from an actor computation step. In general, this fragment has the form:(s0)a; (s1)a1 ; :::; (sn)an ; ai � vi; :::; aj � vjdfag1Technically, we also require several hygiene conditions. These are normally expressed as axioms over partic-ular relations (including Ex and Deliv), and constitute the equational rules for the semantics.70

where actor a is in the new state s0, the actors with addresses a1 through an represent new actors(thus the restriction that a and acq(s) be disjoint from the set fa1; :::; ang), and ai�vi throughaj � vj represent messages sent by a during the computation step. Similarly, the expressionDeliv(a; s; v) in the deliver rule results in a new fragment of the form (s0)a reecting the factthat an actor's state may change while consuming a message. Finally, the \in" and \out" rulesprovide a mechanism for interacting with the external environment. This feature has long beenpresent in actor semantics and reects the view that actor con�gurations are open systems inwhich interaction patterns may not be determined solely by the behavior of internal actors.The rewriting formulation of actor semantics is more abstract than the traditional opera-tional semantics. In particular, rewrite rules de�ne actor computation in terms of \super steps".That is, a single execution step may result in several new actors and several new messages. Byway of contrast, the operational semantics is a �ne-grained representation of actors: each in-dividual actor operation is reected in the semantics, from individual lambda term evaluation,through actor creation and message passing. However, we may carry this level of abstractionone step further and abstract over internal actor computation altogether. This is the approachtaken in interaction semantics.Talcott has developed an interaction semantics for actors in [56]. This semantics is similarto the rewriting formulation of actors, except that only three transitions are de�ned:� Silent: h i : C =) C 0 if � : C =) C 0where � : C =) C 0 represents an internal transition (i.e. actor execution or messagedelivery).� In: in(a� v) : C =) C; a� v if a 2 recep(C).� Out: out(a� v) : C; a� vdR =) CdR [Xif a 62 recep(C), and X = acq(v) � (recep(C) [extern(C)).Because internal transitions are captured solely by the silent transition, the interactions of in-terest in this model are those with the external environment. This view of actor computationhas been used to derive correspondence conditions between actor con�gurations [52]. For ex-ample, a con�guration that represents an implementation may be shown to be a re�nement ofa con�guration which represents a speci�cation.71

Our goal in developing a rewriting semantics with an interaction component is to leveragethe exibility of interaction semantics in order to show that one con�guration is \interactioncompatible" with another con�guration. For example, we wish to show that the interaction se-mantics of con�gurations representing modules are preserved under composition with con�gura-tions representing protocols. In our case, however, the boundary for interactions is representedby groups rather than con�gurations.4.2 A Rewriting Semantics for ActorsTo develop a semantics for actors we �rst start with an abstract description of actor compu-tation. In particular, we model actor computations as an alternating sequence of internal (i.e.non-visible) computation steps followed by external (i.e. visible) computation steps. Intuitively,this model corresponds to an operating system view of an actor: an actor performs some inter-nal computation de�ned by its behavior, but may periodically request a service (e.g. messagepassing, new actor creation) which only the operating system can provide. Service requests aremodeled by events. An actor is blocked (i.e. unable to process other events) until its request ishandled. This corresponds to the interpretation that an actor can not use a resource until thatresource has been granted or denied. An event generated by an actor is called a signal, while anevent received by an actor is called a noti�cation. Thus, a signal indicates a request for service,whereas a noti�cation indicates that a request has been handled in a particular fashion. Eachsignal is associated with one or more noti�cations that indicate the outcome of a request.In deriving a rewriting semantics for actors, we follow the conventions used in [55]. Inparticular, terms derived from our equational axioms and rewrite rules are considered to bewell-formed only if certain constraints are met. For example, to introduce an operation f suchthat f(x1; :::; xn) is well-formed and of sort Y just if each xi is of sort Xi, and the condition�(x1; :::; xn) holds, we write:f(; :::;) : X1 � :::�Xn �! Yf(x1; :::; xn) : Y if �(x1; :::; xn) 72

Moreover, we adopt the convention that only \fair" rewrite derivations are considered in thesemantics. The construction of such derivations captures the usual notion of fairness in anactor system (i.e. observational fairness) and is rather complex to de�ne. We do not derivefair rewrites here. Rather, we refer the reader to the construction given in [55]. Note thatthe rewrite systems de�ned in this thesis are somewhat more restrictive than the usual actorsemantics. That is, the \interesting" paths in our semantics are a subset of the fair paths in atraditional actor system. Thus, our semantics causes no inconsistencies with the constructionof fair paths provided in [55].The following sorts are used in the semantics:� V - Communicable values� A - Addresses with & 2 A and A � V� S - States� B - Behavior types with B � V� E - Finite set of events with ?2 E� P - Processing states with P = f?; !g� F - Fragments� C - Con�gurationsThe sort V represents the set of all values that may be communicated among actors. A is acountable set which we use for naming actors. The special name & represents the address ofthe \system" actor and is always included in the set of names for an actor system. Note thatactor addresses are communicable values. Elements of B are used as a convenience to type actorbehaviors, while elements of S are used to represent actor states. Note that elements of B arealso communicable values. The sort E represents the set of all actor events. The special symbol? is de�ned as the \null" event and is always included in the set of events for an actor system.The sort P de�nes the two processing states of an actor. The symbol ? denotes a \ready" actor,while the symbol ! denotes a \running" actor. Finally, instances of sorts F and C representactor fragments and actor con�gurations, respectively.Actors are modeled as 6-tuples, (p; a; b; s; l; t), with attributes:73

(; j� : [] � : [] � : []) : (P� A � B � S� E � A) ��! FDenotes an actor. The actor p (a ; b j� : [s] � : [l] � : [t]) is in processing statep, with address a, behavior b, state s, last event generated l, and transitionmap t. If p =?, then the actor is considered to be \ready", otherwise the actoris \running". By convention, the vertical separator, j, will always be used toseparate the �xed attributes (on the left) from the run-time attributes (on theright) of an actor.J (; ;) : (A � A � E � V) �! FDenotes an event message. In the event message r J (s; e; v) the address r isthe receiver, s is the sender, e is the event, and v is the contents.� : F Denotes the empty fragment.; : (F � F) ��! FDenotes fragment composition which is associative, commutative and has iden-tity �. Moreover, F1 ; F2 2 F if recep(F1) \ recep(F2) = ;.[] df g : F �P![A] ��! FDenotes a restriction of a fragment. Moreover, [F] df a1; :::; an g 2 F iffa1; :::; ang � recep(F).h i : F ��! CDenotes a con�guration.Figure 4.1: Term Constructors: Operations used to build terms in the rewriting semantics.� p 2 P { A processing state.� a 2 A n f&g { An address.� b 2 B { A behavior.� s 2 S { A state.� l 2 E { The last event generated by an actor.� t 2 A { The transition map for an actor.The behavior and address of an actor are �xed when it is created. The state, last eventgenerated, processing state, and transition map are run-time attributes determined by theevents processed by the actor. For example, the transition map for an actor indicates the nameof the actor which will process its signals. The value of this attribute may be changed at run-74

block � ((E n f?g)� (E n f?g))Represents the blocking relation. If (e1; e2) 2 block , then an actor generatingevent e1 may only be resumed by an event of type e2.nextEvent : (S� B) ��! (E � V)Gives the next event and value generated by a running actor with a particularstate and behavior.nextState : (S� B � E � V) ��!SGives the state of an actor after receiving an event.newInstance : (B � V) ��!SGives the state of a new actor created with a particular behavior and \initial"argument.recep : F�!P![A]Gives the set of receptionists contained in a fragment.acq : (S[V) �!P![A]Gives the set of acquaintances contained in a state or value.extern : F�!P![A]Gives the set of external actors referenced in a fragment.b : �A ���!1�1 A � �! �S[V [F ���!1�1 S[V [F�Lifts a renaming function (i.e. a bijection � : A �! A) to states, values andfragments such that � and b� agree on actor names.Figure 4.2: Relations: Relations used to manipulate actor con�gurations.time if the actor is customized by a meta-actor. A con�guration of actors is constructed usingthe operations and relations given in Figures 4.1 and 4.2.The recep, extern and acq relations are used to de�ne several important hygiene conditionsover actor con�gurations, and establish the equational portion of the semantics. recep gives theset of receptionists for an actor fragment and is de�ned inductively as follows2:recep(p (a ; b j� : [s] � : [l] � : [t])) = fagrecep(r J (s; e; v)) = ;recep(�) = ;recep(F1; F2) = recep(F1) [recep(F2)recep([F] df a1; :::; an g) = fa1; :::; ang2Henceforth, we assume that expressions such as recep(F1; F2) are well de�ned only in the case that F1; F2 2 F.75

acq gives the set of acquaintances encoded within a state or value. Because we do not wishto �x a particular representation for states or values, we simply assume that acq is well de�nedon S[V with the additional constraint that acq(a) = fag for all a 2 A .extern gives the set of external actors referenced in a fragment and is de�ned inductively asfollows:extern(p (a ; b j� : [s] � : [l] � : [t])) = (acq(s) [ftg) n fagextern(r J (s; e; v)) = acq(v) [fr; sgextern(�) = ;extern(F1; F2) = (extern(F1) [extern(F2)) n recep(F1; F2)extern([F] df a1; :::; an g) = extern(F)A key feature of actor con�gurations is that their semantics do not depend on a particularchoice of actor addresses. This attribute is formalized by the notion of a renaming bijection,� : A �! A , where we require �(&) = &. The relation b extends a renaming function to states,values and fragments according to the following axioms:b�(a) = �(a) 8 a 2 Ab�(s) 2 S 8 s 2 Sb�(v) 2 V 8 v 2 Vb�(p (a ; b j� : [s] � : [l] � : [t])) = p (b�(a) ; b j� : [b�(s)] � : [l] � : [b�(t)])b�(r J (s; e; v)) = b�(r) J (b�(s); e; b�(v))b�(�) = �b�(F1; F2) = b�(F1); b�(F2)b�([F] df a1; :::; an g) = [b�(F)] df b�(a1); :::; b�(an) g\�0 � �1 = b�0 � b�1Finally, several \restriction" axioms are necessary in order to allow fragments to be manip-ulated around the restriction operator:F = [F] df recep(F) g 8 F 2 F[[F0] dfR0 g ; F1] dfR g = [F0 ; F1] dfR g if (recep(F0) nR0) \ extern(F1) = ;[F] dfR g = [b�(F)] dfR g if �(x) = x 8 x 2 R [extern(F)More speci�c hygiene conditions are required for certain rewrite rules. We de�ne theseextraneous conditions as they arise.
76

4.2.1 Basic Computation StepsActor computation based on event processing is similar to a restricted form of the usual message-based semantics for actors. In particular, by �xing the sort of events, E , and de�ning the relationblock , actor computation over a particular con�guration, hF i, may be de�ned using two rules:[request]! � a ; b j� : [s] � : [l] � : �a0�� �! ? �a ; b j� : [s] � : [e] � : �a0�� ; a0 J (a; e; v)if nextEvent(s; b) = (e; v)[compute]? � a ; b j� : [s] � : [l] � : �a0�� ; a J (a0; e; v) �! ! � a ; b j� : �s0� � : [l] � : �a0��if (l; e) 2 block andnextState(s; b; e; v) = s0The request rule transforms a running actor into a ready actor and an event pair. ThenextEvent function determines the next signal generated by an actor based on its behaviorand current state. The transition map of an actor determines where the new signal should beprocessed. After generating a signal, an actor is blocked until an appropriate noti�cation eventis received.The compute rule allows a blocked actor to become active by processing a noti�cation event.The nextState function determines the new state of an actor after it has processed a noti�cation.Thus, the compute rule abstracts over the internal computation performed by an actor uponreceiving a particular noti�cation. Note that the block relation de�nes the set of noti�cationevents which may be received and processed after an actor generates a particular signal event.Moreover, note that an actor will be \stuck" if it generates a signal e such that there does notexist (x; y) 2 block with x = e.We impose two hygiene conditions over the nextEvent and nextState functions3:nextEvent(s; b) = (e; v) =) acq(v) � acq(s)nextState(s; b; e; v) = s0 =) acq(s0) � acq(s) [acq(v)3These conditions correspond to the \execution axioms" de�ned in [55].77

The �rst constraint states that an event generated by an actor may not contain an address thatwas not stored in the state of the actor when the event was generated. The second constraintstates that the addresses stored in an actor's state are a function of its state history and theevents it receives. Speci�cally, an actor may only accumulate addresses by receiving events.It is interesting to note that, using the two rules above, we may de�ne a simple, �xedcon�guration of actors. In this context, the sort of events, E , is interpreted as the \types" ofmessages which may be exchanged between actors. The transition map for each actor �xesthe communication topology of the con�guration. Using event processing as a basis, it may bepossible to derive other interesting models besides actors.4.2.2 Traditional Actor SemanticsWe recover the traditional semantics for actors by �xing the sort of events, E , as:E = ftransmit; create; ready; complete;newActor;deliver;?g
newActorcreate

deliverready

completetransmit

Figure 4.3: Basic Actor Transitions: The block relation for the traditional formulationof actor semantics.The block relation is de�ned as shown in Figure 4.3. We also introduce the message operation,: C : (A � A � V) ! F, where a : a0 C v represents a message sent with contents v tothe actor with address a from the actor with address a04. We add the following axiomaticconstraints for actor messages:4Strictly speaking, the basic actor semantics does not require that messages be annotated with the address ofthe sender. However, we require this information for our derivation of interaction semantics later in the chapter.78

recep(a : a0 C v) = ;extern(a : a0 C v) = acq(v) [fa; a0gb�(a : a0 C v) = b�(a) : b�(a0) C b�(v)The normal operations provided by an actor con�guration (e.g. message passing, actorcreation) are de�ned by the following rules:[send]& J (a; transmit; fa0; vg) �! a J (&; complete; fg) ; a0 : a C v[create]A ; & J (a; create; fb0; vg) �! [A ; a J (&;newActor; fa0g) ; A0 ; & J (a0; ready; fg)] df a gif A = ? (a ; b j� : [s] � : [create] � : [&]) andA0 = ? (a0 ; b0 j� : [s0] � : [ready] � : [&]) andnewInstance(b0; v) = s0 anda0 62 acq(s) [fag [acq(v)[ready]& J (a; ready; fg) ; a : a0 C v �! a J (&;deliver; fvg)[in]hF i �! hF ; a : a0 C vi if a 2 recep(F)[out]h[F ; a : a0 C v] dfR gi �! h[F] dfR [(acq(v) \ recep(F)) giif a 62 recep(F)Under this rule set, signals are modeled as requests handled by a \system actor" denotedwith the address &. Similarly, noti�cations are sent from & to indicate that a particular requesthas been handled. The send rule transforms a transmit signal into a message and a completenoti�cation indicating that the send has been processed. The create rule transforms a createsignal into a new actor and a newActor noti�cation. The restriction on the right side of therule ensures that fragment composition respects actor name propagation: external actors mayonly learn of new actors by receiving messages. Note that the new actor has a fresh address.79

Also, the transition map is updated so that the new actor may generate events. The readyrule consumes a ready signal and transforms an incoming message into a deliver noti�cation.Finally, the in and out rules allow interactions with the external environment.Under this semantics, we assume that actor signals may only be handled by &. Moreover,the system actor may resume only those actors which block on a transmit, create, or ready.That is, an actor generating any other event will be \stuck". The create rewrite guaranteesthat these constraints are enforced over dynamically created actors (i.e. those created as aresult of the create rewrite). To ensure that an initial con�guration of actors is well formed,we de�ne the well-formed relation, wf , inductively over elements of F as follows:
wf (F) = 8>>>>>><>>>>>>:wf (F1) ^ wf (F2) if F = F1 ; F2wf (F1) if F = [F1] dfR gfalse if F = p (a ; b j� : [s] � : [l] � : [t]) ^ t 6= &false if F = r J (s; e; v) ^ r 6= & ^ s 6= &true otherwiseWe may then restate the con�guration operation as follows:h i : F ��! C� De�nes a con�guration where hF i 2 C if wf (F).4.2.3 Meta ArchitectureWe de�ne a meta architecture for actors using the constraints given in Section 2.2. Speci�cally,a meta-actor is an actor which is capable of processing signals and generating noti�cations forother actors. Under this de�nition, a meta-actor may customize the behavior of a particularsystem service. For example, a meta-actor may intercept transmit events generated by anotheractor in order to customize message passing. Actors which have their events intercepted in thisfashion are called base actors.We formalize meta-level customization as follows. We add the install signal to the sort ofevents and de�ne the block relation as shown in Figure 4.4. We also introduce two new sorts:the sort of signals, Sig � E , and the sort of noti�cations, Not � E , with:Sig = ftransmit; create; ready; installg80

newActorcreate

deliverready

install

completetransmit

Figure 4.4: Meta Actor Transitions: The block relation for an actor semantics whichsupport meta-level customization.Not = fcomplete;newActor;delivergActor computation is slightly modi�ed to allow meta-level customization. Speci�cally, wemust route the events generated by meta-actors so that signals and noti�cations are handledcorrectly. Moreover, in the case where a meta-actor is blocked on a ready, we still want toallow the meta-actor to process any signals generated by its base actor. We enable meta-actorcomputation by replacing the request rule with two sub-rules which handle signals and noti-�cations separately:[request-meta]! (a ; b j� : [s] � : [l] � : [t]) �! ? (a ; b j� : [s] � : [e] � : [t]) ; t J (a; e; v)if nextEvent(s; b) = (e; v) ande 2 Sig[request-base]! (a0 ; b0 j� : [s0] � : [l0] � : [t0]) ; p (a ; b j� : [s] � : [l] � : [a0]) �!? (a0 ; b0 j� : [s0] � : [l0] � : [t0]) ; p (a ; b j� : [s] � : [l] � : [a0]) ; a J (a0; e; v)if nextEvent(s0; b0) = (e; v) ande 2 NotThe request rules correctly route events depending on whether they are signals or noti�cations.Note that, in the case of a meta-actor sending a noti�cation, the \last event generated" attribute81

is not set to the noti�cation generated. Thus, after sending a noti�cation, a meta-actor blockson whatever signal it was previously blocked on before receiving the request from its base actor.By the construction of block , this signal will always be ready. This slightly unusual formulationof the rules has the pleasant side-e�ect of allowing a meta-actor to return to its previous blockedcontext without requiring extra bookkeeping in the rewrite terms.We introduce the install, redirect and propagate rules to handle meta-actor installationand message redirection, respectively:[install]A ; A0 ; & J (a; install; fa0; b; vg) ; & J (a0; ready; fg) �![A ; A0� ; A00 ; a J (&;newActor; fa00g) ; a00 J (a0; ready; fg)] df a; a0 gwhere A = ? (a ; ba j� : [sa] � : [install] � : [ta]) andA0 = ? (a0 ; ba0 j� : [sa0] � : [ready] � : [&]) andA0� = ? (a0 ; ba0 j� : [sa0] � : [ready] � : [a00]) andA00 = ? (a00 ; b j� : [s] � : [ready] � : [&]) andnewInstance(b; v) = s[redirect]p (a ; b j� : [s] � : [l] � : [t]) ; a : a0 C v �! p (a ; b j� : [s] � : [l] � : [t]) ; a : a0 C (rcv; a; v)if t 6= & andv 6= (rcv; x; y)[propagate]p (a ; b j� : [s] � : [l] � : [t]) ; a : a0 C (rcv; a�; v) �!p (a ; b j� : [s] � : [l] � : [t]) ; t : a0 C (rcv; a�; v)if t 6= &The install rule creates a new meta-actor and installs it on a particular base actor5. Theinstallation is only performed when the base actor is blocked on a ready signal. Moreover,the structure of the rule implies that an actor may never install a meta-actor on itself. Duringan install, the transition map is updated so that all events generated by the base actor areintercepted by the new meta-actor. The redirect rule constructs a rcv message out of amessage targeted to a base actor. A rcv message is propagated to the appropriate meta-actor5The restriction on the right side of the rule serves the same purpose as the restriction on the create rule.Namely, it ensures that fragment compositions are well-formed.82

by the propagate rule. The second parameter in a rcv message gives the name of the originaltarget of the message.As noted in Section 2.2, our meta-level model is parameterized by the choice of events andthe structure of the block relation. Alternative parameterizations, such as that described inSection 2.2.2, may be speci�ed by rede�ning the block relation and the actor rules given above.4.3 A Semantics for Software ArchitecturesIn Section 2.3, we de�ned an actor group as an encapsulated collection of actors with specialoperations for allowing interactions between groups. In this section, we extend the rewritingsemantics with support for group operations.A rewriting semantics with group support adds three properties to an actor con�guration:� Group Membership: Each actor has a modi�able group membership which indicatesthe groups an actor belongs to. The group an actor is created in is called the actor'sinitial group. A new actor has the same initial group as its creator. Note that groupmembership is monotonic. That is, once admitted, an actor is never removed from agroup.� Encapsulated Interactions: Actors may interact only with other actors in a commongroup. Encapsulation properties are enforced at the time a message is sent. That is, atransmit will not be transformed into a message unless the sender and receiver are amember of a common group.� Managers: Groups are instantiated with a single member actor called the group manager.Managers are exempt from the interaction restrictions applied to regular actors. Moreover,managers are the only actors that can alter group membership, create new external groups,or install customizations on internal actors.While groups are normally isolated from one another, there are three mechanisms for allowinginteractions between groups: 83

� Manager Interactions: A group manager may receive a message from any other actorin the system (including other group managers). Managers coordinate admission andmeta-actor installation.� Admission: A group manager can admit an actor to its group by changing the actor'sgroup membership. Once admitted, the actor can communicate with any actor in theadmitting group.� Meta Actor Installation: A group manager can customize a group member by in-stalling a new meta-actor. The new meta-actor is created as a member of an externalgroup. Thereafter, the new meta-actor will intercept any signals generated by the baseactor. A meta-actor inherits the group membership of the actor it customizes.We support groups in our semantics by adding group membership attributes to actors.Speci�cally, we model actors as 9-tuples, (p; a; b; s; l; t; i; g; r), with attributes:� p 2 P A processing state.� a 2 A n f&g An address.� b 2 B A behavior.� s 2 S A state.� l 2 E The last event generated by an actor.� t 2 A The transition map for an actor.� i 2 A The initial group of an actor.� g 2 P![A] The group membership of an actor.� r 2 A The base map of an actor.Actors are represented by terms of the form:p (a ; b ; i ; r j� : [s] � : [l] � : [t] : [g])where the initial group and base map, i and r respectively, are �xed attributes of an actor,whereas group membership, g, is a run-time attribute. Each group is referred to by the nameof its manager. The initial group, i, gives the group an actor was created in. In particular, anactor is a group manager if a = i. We use this information to determine group membership ofactors created at run-time. Group membership, g, gives the groups to which an actor belongs.84

The base map, r, indicates if this actor is a meta-actor in a meta-level stack. Speci�cally, anactor is a base actor if a = r. Otherwise, the actor is a meta-actor with r giving the name ofthe base actor in the stack. The base map is used to determine the group membership of a newactor created by a meta-actor.

admit

install

createGroup

transmit complete

newActorcreate

ready deliver

Figure 4.5: Group Transitions: The block relation for an actor semantics with groupsupport.We add two new signals to the semantics, createGroup and admit, and de�ne the blockrelation as shown in Figure 4.5. Although signals can be generated by any actor, the install,createGroup and admit signals will be processed by the system only if they originate frommanagers. We also enforce the constraint that managers may never be created as meta-actors.Similarly, managers may not be customized by meta-actors. Thus, block need not include linksfrom ready to install, createGroup and admit.4.3.1 Actor OperationsThe rules governing basic actor operations are slightly altered to support group operations. Inparticular, only the send and create rules must be changed:
85

[send-in]A ; A0 ; & J (a; transmit; fa0; vg) �! A ; A0 ; a J (&; complete; fg) ; a0 C vif A = pa (a ; ba ; ia ; ra j� : [sa] � : [la] � : [ta] : [ga]) andA0 = pa0 (a0 ; ba0 ; ia0 ; ra0 j� : [sa0] � : [la0] � : [ta0] : [ga0]) and((ga \ ga0 6= ;) _ (a0 = ia0))[send-out]hF ; A ; & J (a; transmit; fa0; vg)i �! hF ; A ; a J (&; complete; fg) ; a0 C viif A = pa (a ; ba ; a ; ra j� : [sa] � : [la] � : [ta] : [ga]) anda0 62 recep(F)[create-base]A ; & J (a; create; fb0; vg) �! [A ; a J (&;newActor; fa0g) ; A0 ; & J (a0; ready; fg)] df a gif A = ? (a ; b ; i ; a j� : [s] � : [create] � : [&] : [g]) andA0 = ? (a0 ; b0 ; i ; a0 j� : [s0] � : [ready] � : [&] : [fig]) andnewInstance(b0; v) = s0 anda0 62 acq(s) [fag [acq(v)[create-meta]Ab ; A ; & J (a; create; fb0; vg) �![Ab ; A ; a J (&;newActor; fa0g) ; A0 ; & J (a0; ready; fg)] df a; ab gif Ab = pb (ab ; bb ; ib ; ab j� : [sb] � : [lb] � : [tb] : [gb]) andA = ? (a ; b ; i ; ab j� : [s] � : [create] � : [&] : [g]) andA0 = ? (a0 ; b0 ; ib ; a0 j� : [s0] � : [ready] � : [&] : [fibg]) andnewInstance(b0; v) = s0 anda0 62 acq(s) [fag [acq(v)The send rule is divided into two cases depending on whether or not the target actor is amember of the con�guration. The send-in rule enforces the constraint that actors within acon�guration may exchange messages only if they are a member of a common group. Note thatgroup membership is an additive property (i.e. actors may never be removed from their groups),thus encapsulation need be enforced only within the send rule. The condition ga\ga0 6= ; holdsif the sender and receiver are a member of a common group. The condition a0 = ia0 holds if thereceiver is a group manager. Thus, the send is allowed if either both actors are a member of acommon group, or if the receiver is a group manager. The send-out rule allows a manager tosend a message to a target outside the con�guration (see the in rule below).
86

The create rule is subdivided into two cases depending on whether or not the creator is ameta-actor. We make this division to preserve the constraint that the new actor has the sameinitial group as the base actor in the meta-level stack of the creator. We enforce this constraintto avoid ambiguity in the case of an actor which is customized by a meta-actor. In particular,when a meta-actor generates a create request, it may be doing so on its own behalf or onbehalf of its base actor. Thus there are two valid choices for the initial group of the new actor:the initial group of the meta-actor, or the initial group of the base actor.The create-base rule handles the case where an uncustomized actor performs the create.In this case, the new actor is added to the same initial group as the creator. The create-metarule handles the case where a meta-actor performs the create. In this case, the new actor isadded to the initial group of the base actor, ab. As with any create, the address of the new actoris returned to the creator, and the resulting term is restricted to preserve subsequent fragmentcompositions.Only the in rule needs to be changed for handling external interactions:[in]hF i �! hF ; a C viif F = [F 0 ; M] dfR g andM = p (a ; b ; a ; a j� : [s] � : [l] � : [t] : [g]) anda 2 recep(F)The in rule is altered so that external messages are admitted only if they are targeted toa group manager which has been exported as a receptionist (i.e. group managers are the onlyvalid receptionists for a con�guration). Note that it is necessary to alter the in rule because themore general rule normally associated with actor semantics would allow group encapsulationto be violated6.6Speci�cally, an external message might be targeted to a non-manager actor.
87

4.3.2 Meta Actor OperationsMeta-actor installation is slightly modi�ed under group semantics while the redirect rule isunchanged:[install]A ; A0 ; & J (a; install; fa0; b00; v; g00g) ; & J (a0; ready; fg) �![A ; A0� ; A00 ; a J (&;newActor; fa00g) ; a00 J (a0; ready; fg)] df a; a0 gwhere A = ? (a ; b ; a ; a j� : [s] � : [install] � : [&] : [g]) andA0 = ? (a0 ; b0 ; a ; ab j� : [s0] � : [ready] � : [&] : [g0]) andA0� = ? (a0 ; b0 ; a ; ab j� : [s0] � : [ready] � : [a00] : [g0]) andA00 = ? (a00 ; b00 ; g00 ; ab j� : [s00] � : [ready] � : [&] : [g0 [fg00g]) anda 6= g00The install rule enforces the following constraints: 1) only group managers may requestinstallation; 2) installation may be performed only on an actor in the requester's group; and3) group managers may not be customized. The parameter g00 indicates the group where thenew actor should be added. Note that the new actor is created in a group di�erent from therequesting manager. This is the only case in which a group manager may a�ect the membershipof an external group7. Note also that the new meta-actor inherits the group membership of itsbase actor. This is necessary so that any messages sent by the meta-actor on behalf of its baseactor may be properly delivered.4.3.3 Group OperationsFinally, we require three new rules which allow group managers to admit actors and create newexternal groups:7We have structured the rule this way because we view installation as a more sensitive encapsulation propertythan membership. That is, we sacri�ce membership encapsulation in favor of allowing managers ultimate controlof customization of internal actors.
88

[admit-top]A ; A0 ; & J (a;admit; fa0g) �! A ; A0� ; a J (&; complete; fg)where A = ? (a ; b ; a ; a j� : [s] � : [admit] � : [&] : [g]) andA0 = p0 (a0 ; b0 ; i0 ; r0 j� : [s0] � : [l0] � : [&] : [g0]) andA0� = p0 (a0 ; b0 ; i0 ; r0 j� : [s0] � : [l0] � : [&] : [g0 [fag])[admit-base]A ; A0 ; & J (a;admit; fa0g) �! A ; A0� ; & J (a;admit; ft0g)where A = ? (a ; b ; a ; a j� : [s] � : [admit] � : [&] : [g]) andA0 = p0 (a0 ; b0 ; i0 ; r0 j� : [s0] � : [l0] � : [t0] : [g0]) andA0� = p0 (a0 ; b0 ; i0 ; r0 j� : [s0] � : [l0] � : [t0] : [g0 [fag]) andt0 6= &[create-group]A ; & J (a; createGroup; fb0; vg) �! [A ; A0 ; a J (&;newActor; fa0g) ; & J (a0; ready; fg)] df a gwhere A = ? (a ; b ; a ; a j� : [s] � : [createGroup] � : [&] : [g]) andA0 = ? (a0 ; b0 ; a0 ; a0 j� : [s0] � : [ready] � : [&] : [fa0g]) andnewInstance(b0; v) = s0 anda0 62 acq(s) [fag [acq(v)The \admit" rules (admit-top and admit-base) allow group managers to change groupmembership by admitting other actors in the con�guration. Note that actors external to thecon�guration can never be admitted to a group. We require two admit rules because, byde�nition, meta-actors inherit the group membership of their base actors. Thus, if a base actoris admitted, then the membership of its meta-actor must also be changed. The admit-toprule handles the default case where a top-level actor is admitted to a group. The admit-baserule handles the case where a customized actor is admitted to a group. In this case, the actoris admitted and the admit request is rewritten so that the meta-actor is also admitted. Thecreate-group rule allows the creation of new groups. Groups are created by specifying abehavior for the manager of the group. Group creation is the only mechanism for creatinggroup managers. Thus, all groups have only a single manager8.8Because managers are intended for coordinating connections between groups (e.g. by admitting externalactors), the need for multiple managers in a single group is an implementation rather than semantic concern.That is, we may require multiple managers to allow a more e�cient implementation (e.g. multi-threaded),although the behavior of these managers is semantically equivalent to a single manager.
89

4.4 Interaction SemanticsThe semantics given in the previous section describes the underlying behavior of actor con�g-urations, but provides little insight into more abstract group relationships. In particular, it isnot apparent if we can determine the \compatibility" of the groups selected for a particulararchitecture. In saying that a collection of groups is \compatible", we imply that the followingquestions can be answered:� Given actor groups g1 and g2:{ Do the messages sent by actors in g1 to actors in g2 correspond to the messagesexpected by the actors in g2 (and vice versa)?{ Do the actors in g1 which customize (i.e. are meta-actors for) the actors in g2preserve the semantics of the actors they customize? That is, are signals handledcorrectly and are appropriate noti�cations generated?These conditions provide a natural analog to compatibility requirements we might expectfrom the structures introduced in Chapter 3. In particular, because modules, protocols andpolicies are mapped directly onto actor groups, we may use compatibility conditions to infer,for example, whether or not a particular protocol is an appropriate connector for a pair ofmodules. Similarly, we can infer whether or not a policy correctly customizes a protocol roleor module.To provide these compatibility conditions, we derive an interaction semantics based on thegroup semantics of the previous section. This semantics is based on the notion of computationpaths entailed by a particular con�guration. We summarize the de�nitions of paths here, amore complete de�nition may be found in [55].4.4.1 Paths and Interaction StepsThe initial model construction (see [41]) of a rewrite system, (�; E; L;R) yields a set of �nitecomputations, P . Each such computation may be viewed as a sequence of transitions whereeach element of the sequence is a term, and each transition represents the application of a rule.90

The initial model construction also provides an equivalence relation, �, on computations in P .By construction, � satis�es (�; E), as well as certain categorical and functoriality constraints.More importantly, � also satis�es \exchange" laws of the form:�1 : [w1]! [w01] ::: �n : [wn]! [w0n]r(��) = r(�[w]); t0(��) = t(��); r(�[w0])for each rule r : [t(�x)]! [t0(�x)]. This rule allows the \serialization" of concurrent computationsand may be used to atten a concurrent computation into a sequence of atomic rewrite steps.Following [55], we de�ne a computation path, p : @ ! P , as an in�nite sequence derived fromP such that adjacent computations are sequentially composable9. We use Path[P] to denotethe set of all such paths over P . The expression pdi denotes the sequential composition of the�rst i segments of the path p (i.e. p(0); p(1); :::; p(i)). Finally, we de�ne path equivalence bylifting the equivalence relation, �, to paths as follows:De�nition 1 (Path Equivalence) For p; p0 2 Path[P], p � p0 if for all i, there exist k; csuch that: pdi; c � p0d(i+ k)and for all i0, there exist k0; c0 such that:p0di0; c0 � pd(i0 + k0)Our goal in de�ning an interaction semantics is to isolate the external, group-to-groupinteractions entailed by a particular actor con�guration. To this end, we introduce the partialcon�guration operator: h i [] f g : F � (P![A] �P![A])�P![A] �! Cwhere hAi [b] fmg 2 C if:� recep(A) \ (b� [m) = ; where b� = fbij(bi; ai) 2 bg;� if (b; a1); (b; a2) 2 b, then a1 = a2; and9As in the previous section, we restrict ourselves to the fair paths derived from a particular rewrite theory.91

� if (b1; a); (b2; a) 2 b, then b1 = b2.The term A represents an actor fragment which may or may not satisfy wf (i.e. may notbe well formed). The relation b is referred to as the base relation for the con�guration, whilethe set m is referred to as the member set.The con�guration M = hAi [b] fmg is partial in the sense that it may not include all theactors referred to by elements of the fragment A. The member set, m, is interpreted as theset of external members of the con�guration. That is, an address a is included in m if theactor it represents is a member of a group in A, but is not contained in A itself. Similarly,the base relation, b, is interpreted as the set of external base actors of the con�guration. Anelement of the base set, (bi; ai) 2 b, indicates a base actor with address bi with meta-actor ai.The constraints de�ned above restrict the base relation so that base actors have at most onemeta-actor, and vice versa.We use the members relation, members : F �! P![A], and the meta-set relation, metaSet :F �! P![A], to refer to particular addresses referenced in a fragment. In particular, themembers relation gives the set of actors contained within a fragment. The meta-set relation isde�ned as: metaSet(A) = ft j p (a ; b ; i ; ab j� : [s] � : [l] � : [t] : [g]) 2 Agwhere A 2 F. That is, the meta-set relation gives the address of every actor which customizesan actor in A.Finally, we de�ne the set of interaction steps as a collection of concurrent rewrites overpartial con�gurations. In the following de�nitions, we use g to denote the set of concurrentrewrites de�ned in the previous sections, excluding install, admit, in and out. The set ofinteraction steps is de�ned as follows:[silent()]hAi [b] fmg =)
A0� [b] fmg if A g�! A092

[emit-1(a,a',e,v)]
A ; a0 J (a; e; v)� [b] fmg =) hAi [b] fmgif a0 62 members(A)[emit-2(a,a',v)]
A ; a : a0 C v� [b] fmg =) hAi [b] fmgif a 62 members(A)[consume-1(a,a',e,v)]hAi [b] fmg =)
A ; a J (a0; e; v)� [b] fmgif a 2 members(A) and(a0; a) 2 b or a0 2 metaSet(A) n f&g[consume-2(a,a',v)]hAi [b] fmg =)
A ; a : a0 C v� [b] fmgif a 2 members(A) anda0 2m[admit(a')]
F ; A ; & J (a;admit; fa0g)� [b] fmg =) hF ; A ; a J (&; complete;)i [b]�m [fa0g	if A = ? (a ; b ; a ; a j� : [s] � : [admit] � : [&] : [g]) anda0 62 members(F ; A)[install-1(a'')]hF ; A ; A0 ; & J (a; install; fa0; b00; v; gg)i [b] fmg =)hF ; A ; A0� ; a J (&;newActor; fa00g)i [b] fm [fa00ggwhere A = ? (a ; b ; a ; a j� : [s] � : [install] � : [&] : [ga]) andA0 = ? (a0 ; b0 ; a ; a0b j� : [s0] � : [ready] � : [&] : [g0]) andA0� = ? (a0 ; b0 ; a ; a0b j� : [s0] � : [ready] � : [a00] : [g0]) andg 62 members(F ; A) anda00 62 members(F ; A ; A0)[install-2(a,ab,gb)]hF ; Ami [b] fmg =) hF ; Am ; ? (a ; b ; am ; gb j� : [s] � : [ready] � : [&] : [g])i [b [fabg] fm [fabggif gb; a 62 members(A) andAm = pm (am ; bm ; am ; am j� : [sm] � : [lm] � : [&] : [gm]) andam 2 gWe use the symbol Ig to denote the set of interaction steps: silent, emit-1, emit-2,consume-1, consume-2, admit, install-1, and install-2. Let range over Ig.
93

De�nition 2 (Computation Paths) A computation path, �, is an in�nite sequence of in-teraction steps with �(i) = i : hAii [bi] fmig) hA0ii [b0i] fm0ig such that Ai+1 � A0i fori 2 @. Note that for each computation path, �, there exists a path p 2 Path[P] such thatif �(i) = i : hAii [bi] fmig) hA0ii [b0i] fm0ig, then pdi � Ai. As a slight abuse of nota-tion, we use the expression Path(hAi [b] fmg) to denote the set of computation paths withsource hAi [b] fmg. Given a computation path, �, we de�ne the function members i such thatmembers i(�) = members(Ai) if �(i) = i : hAii [bi] fmig) hA0ii [b0i] fm0ig.The computation paths entailed by a partial con�guration may be viewed as a collection of\simulations" which describe the behavior of the con�guration in response to various stimuli(e.g. interactions with external actors). Moreover, these paths de�ne the expected behaviorof an external stimulus for each particular scenario. In e�ect, we have derived a compositionpredicate for a partial con�guration. We formalize this notion in the next section.4.4.2 ComposabilityWe derive composability criteria by giving an interaction semantics to partial con�gurations.This semantics is given by the following de�nitions:De�nition 3 (Interaction Sequences and Paths) Let I1g = ff j f : @ ! Igg be the set ofall interaction sequences, and let � range over I1g . An interaction path is a 4-tuple, (A; b;m; �)where hAi [b] fmg 2 C , and � 2 I1g .De�nition 4 (Sequence Dual) Given an interaction sequence �, the dual of �, D(�), is theinteraction sequence � 0 de�ned as follows:� If �(i) = emit-1(a,a',e,v), then � 0(i) = consume-1(a',a,e,v).� If �(i) = emit-2(a,a',v), then � 0(i) = consume-2(a',a,v).� If �(i) = consume-1(a,a',e,v), then � 0(i) = emit-1(a',a,e,v).� If �(i) = consume-2(a,a',v), then � 0(i) = emit-2(a',a,v).� Otherwise � 0(i) = silent().De�nition 5 (Interaction Semantics) The interaction semantics of a partial con�guration,I(hAi [b] fmg), is the set of interaction paths abstracted from its fair computation paths:I(hAi [b] fmg) = ftc(�) j � 2 Path(hAi [b] fmg)gwhere tc(�) = (A; b;m; �) such that if �(i) = i : hAii [bi] fmig) hA0ii [b0i] fm0ig, then �(i) = i.
94

De�nition 6 (Interaction Equivalence) Two partial con�gurations are interaction equiva-lent, ��, just if they have the same interaction semantics:hA1i [b1] fm1g �� hA2i [b2] fm2g , I(hA1i [b1] fm1g) = I(hA2i [b2] fm2g)In considering whether two partial con�gurations are composable, we are only concernedwith those interactions which involve participants in both con�gurations. We de�ne the con-�guration image of one con�guration relative to another as follows:De�nition 7 (Con�guration Image) Given two partial con�gurations, hA1i [b1] fm1g andhA2i [b2] fm2g, the con�guration image, cimagehA1i[b1]fm1g(hA2i [b2] fm2g), of hA1i [b1] fm1g onhA2i [b2] fm2g is de�ned as:cimagehA1i[b1]fm1g(hA2i [b2] fm2g) = fimhA2i[b2]fm2g(�) j � 2 I(hA1i [b1] fm1g)gwhere imhA2i[b2]fm2g(�) = �0 such that �0 is the subset of interaction steps in � which referto an actor contained in one of the states entailed by I(hA2i [b2] fm2g). In particular, if � =(A1; b1;m1; �1), then �0 = (A1; b1;m1; � 01) where:� If �1(i) = emit-1(a,a',e,v) and a0 2 members j(��) for some �� 2 I(hA2i [b2] fm2g),then � 01(i) = �(i).� If �1(i) = emit-2(a,a',v) and a 2 members j(��) for some �� 2 I(hA2i [b2] fm2g), then� 01(i) = �(i).� If �1(i) = consume-1(a,a',e,v) and a0 2 membersj(��) for some �� 2 I(hA2i [b2] fm2g),then � 01(i) = �(i).� If �1(i) = consume-2(a,a',v) and a0 2 membersj(��) for some �� 2 I(hA2i [b2] fm2g),then � 01(i) = �(i).� Otherwise, � 01(i) = silent().We de�ne con�guration compatibility, by considering the image of one con�guration onanother:De�nition 8 (Con�guration Compatibility) The partial con�guration hA1i [b1] fm1g is com-patible with the partial con�guration hA2i [b2] fm2g, denoted as:hA1i [b1] fm1g �) hA2i [b2] fm2gif for all � 2 cimagehA1i[b1]fm1g(hA2i [b2] fm2g) with � = (A1; b1;m1; �1), there exists �0 2I(hA2i [b2] fm2g) with �0 = (A2; b2;m2; �2) such that �1 � D(�2).95

Finally, we de�ne con�guration composability as two partial con�gurations which are mu-tually compatible:De�nition 9 (Con�guration Composability) Two partial con�gurations, hA1i [b1] fm1g andhA2i [b2] fm2g, are composable, with new partial con�guration:hA1 ; A2i [(b1 [b2) n L] f(m1 [m2) n Lgwhere L = members(A1) [members(A2), just if members(A1) \members(A2) = ; and:hA1i [b1] fm1g �) hA2i [b2] fm2g ^ hA2i [b2] fm2g �) hA1i [b1] fm1g4.5 SummaryIn this chapter, we have provided a formal semantics for the model described in Chapter 2. We�rst described a general actor semantics based on concurrent rewriting. This semantics wasre�ned and specialized �rst to actors which may be customized by meta-actors, and then to ameta-architecture with actor group constraints. Finally, we provided an interaction semanticswhich considers only the interactions between partial con�gurations of actors.We used our interaction semantics as basis for addressing composability issues in softwarearchitectures. Speci�cally, we provided a de�nition of composability based on whether or nottwo con�gurations are \compatible". Compatibility, in this case, refers to a correspondencebetween external interactions in each con�guration.Although our de�nition of composability is stronger than the usual de�nition associatedwith actor con�gurations (cf. [5]), relative to software architecture our de�nition is weak in thesense that it only ensures a correspondence between interactions in two partial con�gurations.Speci�cally, while our de�nition of composability guarantees that every \desirable" interactionpattern has a correspondence, we also guarantee that every \undesirable" pattern also has acorrespondence. Thus, even if two partial con�gurations do not interact correctly (i.e. one orthe other enters an undesirable state), they may still be composable.In many ways, this de�nition is very similar to bisimilarity as de�ned in CCS [42] and �-calculus [43, 44]. In particular, it may be feasible to derive similar algebraic structures using96

partial con�gurations and composability. Moreover, it may be possible within this algebrato de�ne stronger composability conditions. Such a de�nition would ensure that only the\desirable" interactions have a correspondence. We leave these issues as topics for futurework.

97

Chapter 5
Conclusion
In this thesis, we have presented a new model for specifying software architectures. Whiletraditional architectural styles may be speci�ed within our model, we place particular emphasison styles associated with distributed applications. Typically, distributed applications requirearchitectural policies which enforce availability, dependability and other high-level constraints.Such policies are often called \cross-cutting" because their implementations may require accessto internal component resources. Traditionally, these policies were implemented by hard-codingsolutions within architectural elements, signi�cantly reducing modularity.A naive solution to this problem would be to arbitrarily expose component resources. How-ever, this approach damages modularity in the same fashion as hard-coded implementations.In contrast, we augment our model with a meta-architecture which exposes resource utilizationpatterns. This meta-architecture preserves modularity by way of two key properties: trans-parency, and composability. The meta-architecture is transparent in the sense that base-levelobjects (i.e. architectural components) need not be aware that they are customized. Similarly,meta-level objects have limited access to the objects they customize: they may only respond torequests for resources. The meta-architecture is composable in the sense that a meta-object it-self may be customized by another meta-object. As a result, multiple policies may be separatelydeveloped (as separate objects) and later composed on architectural elements.Although we have based our model on a simplistic view of actor resources (i.e. thoseassociated with the send, create and ready operations), we have illustrated that the model98

(and semantics) may be parameterized in order to address more speci�c issues. For example,an appropriate choice of events and rules may be used to address placement and load balancingissues, failure and recover, program visualization [11], or even real-time constraints [49].To demonstrate the utility of the model, we have de�ned the Distributed Connection Lan-guage (dcl): an Actor-based architecture description language. dcl speci�cations may be usedto de�ne the initial con�guration and dynamic restructuring of a distributed software architec-ture. In particular, dcl speci�cations may be used to de�ne connections between architecturalelements, as well as enforce high-level policies over collections of elements. The computationalbehavior of the architecture is de�ned by individual actors.To demonstrate that the model may be implemented e�ciently, we have described themapping of dcl to the Actor Foundry, a Java-based actor programming environment. A keyconcern is the overhead entailed by the modularity of the system. Our performance tests showthat dcl may be implemented with minimal overhead (less than 10%). Nonetheless, certainapplications may require tighter performance bounds. To this end, we have provided alternativeimplementations which sacri�ce certain assumptions associated with actor semantics for thesake of e�ciency. Subsequent performance measurements indicate that overhead is reduced bya factor of two (i.e. less than 5%). Still other performance improvements are possible.While speci�cation and implementation are important issues, it is perhaps more importantto derive tools which verify properties over speci�cations. Several properties are of interest.Does the interface of a component match the interface of the connector to which it is attached?Does the connector which attaches a pair of components implement the correct policy? Canone component be viewed as a re�nement of another component? As a basis for answering suchquestions, we have developed a rewriting semantics for our model. Moreover, we have extendedthe semantics to the notion of a partial con�guration, and have derived composability conditionswhich are based on the matching of interactions between partial con�gurations. A substantialchallenge for future work is to translate this \weak" condition for composability into a strongerpredicate which captures the properties mentioned above (i.e. interface matching, adherenceto speci�cations, etc). 99

We believe that cross-cutting issues are a signi�cant obstacle in the development of high-levelmechanisms for architectural design and speci�cation. In particular, current techniques rely onfunctional interfaces which obscure too much of the underlying system behavior. Moreover, suchinterfaces tend to be static, making it di�cult to model today's dynamic systems. We believethat the techniques described in this thesis make a signi�cant contribution towards exiblearchitectural interfaces. In particular, the notion of a modularity preserving meta-architecturea�ords the protection of current abstraction boundaries while allowing the graceful speci�cationof cross-cutting system features. Nonetheless, signi�cant work remains to be done with respectto analysis and veri�cation tools. We view such tools as an evolutionary extension of theformalisms we have described in this work.

100

Bibliography[1] M. Acceta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and M. Young. Mach:A new kernel foundation for unix development. In USENIX 1986 Summer ConferenceProceedings, June 1986.[2] G. Agha. Actors: A Model of Concurrent Computation. MIT Press, 1986.[3] G. Agha, S. Fr�lund, W. Kim, R. Panwar, A. Patterson, and D. Sturman. Abstractionand modularity mechanisms for concurrent computing. IEEE Parallel and DistributedTechnology, May 1993.[4] G. Agha, S. Fr�lund, R. Panwar, and D. C. Sturman. A linguistic framework for dynamiccomposition of dependability protocols. In Dependable Computing for Critical ApplicationsIII, IFIP Transactions, volume VIII of Dependable Computing and Fault-Tolerant Systems.Elsevier Science Publisher, 1993.[5] G. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. A foundation for actor computation.Journal of Functional Programming, 7:1{72, 1997.[6] R. Allen. Formalism and informalism in software architectural style: a case study. InProceedings of the First International Workshop on Architectures for Software Systems,April 1995.[7] R. Allen and D. Garlan. Formalizing architectural connection. In International Conferenceon Software Engineering (ICSE '94), pages 71{80. IEEE Computer Society, 1994.[8] R. Allen and D. Garlan. A case study in architectural modeling: The AEGIS system.In Proceedings of Eighth International Conference on Software Speci�cation and Design(IWSSD-8), March 1996.[9] R. Allen and D. Garlan. The wright architectural speci�cation language. Technical report,Carnegie Mellon University, School of Computer Science, Pittsburgh, PA 15213, September1996. Technical Report CMU-CS-96-TBD.[10] R. Allen and D. Garlan. A formal basis for architectural connection. ACM Transactionson Software Engineering and Methodology, July 1997.[11] M. Astley. Online event-based visualization for distributed systems. Master's thesis, Uni-versity of Illinois at Urbana-Champaign, May 1996.
101

[12] R. Barga and C. Pu. A practical and modular method to implement extended transactionmodels. In Proceedings of the 21st Very Large Data Base Conference, Zurich, Switzerland,1995.[13] R. Barga and C. Pu. Reection on a legacy transaction processing monitor. In ProceedingsReection '96, San Francisco, CA, USA, April 1996.[14] D. Batory. Intelligent components and software generators. Technical report, Universityof Texas at Austin, Austin, TX, February 1997. Technical Report 97-06, Department ofComputer Science.[15] D. Batory, S. Dasari, B. Geraci, V. Singhal, M. Sirkin, and J. Thomas. The GenVocamodel of software-system generation. IEEE Software, September 1994.[16] D. Batory and S. O'Malley. The design and implementation of hierarchical software systemswith reusable components. ACM Transactions on Software Engineering and Methodology,1(4):355{398, October 1992.[17] D. I. Bevan. Distributed garbage collection using reference counting. In PARLE: ParallelArchitectures and Languages Europe (Volume 2). 1987. Lecture Notes in Computer Science259.[18] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg. The primary-backup approach.In S. Mullender, editor, Distributed Systems, chapter 8, pages 199{216. ACM Press, NewYork, NY, 1994.[19] R. Campbell, N. Islam, D. Raila, and P. Madany. Designing and Implementing Choices: AnObject-Oriented System in C++. Communications of the ACM, pages 117{126, September1993.[20] J. L. Eppinger, L. B. Mummert, and A. Z. Spector, editors. CAMELOT AND AVALON:A Distributed Transaction Facility. Morgan Kaufmann Publishers, Inc., 1991.[21] J. Ferber and J.-P. Briot. Design of a concurrent language for distributed arti�cial in-telligence. In Proceedings of the International Conference on Fifth Generation ComputerSystems, volume 2, pages 755{762. Institute for New Generation Computer Technology,1988.[22] S. Fr�lund. Inheritance of synchronization constraints in concurrent object-oriented pro-gramming languages. In Proceedings of ECOOP 1992. Springer Verlag, 1992. LNCS 615.[23] S. Fr�lund. Coordinating Distributed Objects: An Actor-Based Approach to Synchroniza-tion. MIT Press, 1996.[24] D. Garlan, R. T. Monroe, and D. Wile. Acme: An architecture description interchangelanguage. In Proceedings of CASCON'97, pages 169{183, Toronto, Ontario, November1997.[25] V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and related problems. In S. Mul-lender, editor, Distributed Systems, chapter 5, pages 97{146. ACM Press, New York, NY,1994. 102

[26] C. Hoare. Communicating sequential processes. Communications of the ACM, 21(8):666{677, August 1978.[27] C. Hofmeister, J. Atlee, and J. Purtilo. Writing distributed programs in Polylith. Technicalreport, Univeristy of Maryland, December 1990. Tech Report CS-TR-2575.[28] C. R. Hofmeister and J. M. Purtilo. Dynamic recon�guration of distributed programs.In Proceedings 11th International Conference on Distributed Computing Systems, pages560{571, 1991. Also appears as Tech Report CS-TR-3119, CS Department, University ofMaryland.[29] N. C. Hutchinson and L. L. Peterson. The x-kernel: An architecture for implementingnetwork protocols. IEEE Transactions on Software Engineering, 17(1):64{75, January1991.[30] V. Issarny and C. Bidan. Aster: A Corba-based software interconnection system supportingdistributed system customization. In Proceedings International Conference on Con�gurableDistributed Systems, Annapolis, MD, May 1996.[31] V. Issarny and C. Bidan. Aster: A framework for sound customization of distributedruntime systems. In Proceedings of the International Conference on Distributed ComputingSystems, Hong Kong, May 1996.[32] Javasoft. Java Remote Method Invocation. Available athttp://java.sun.com:80/products/jdk/rmi.[33] G. Kiczales. Towards a new model of abstraction in software engineering. In ProceedingsInternational Workshop on Reection and Meta-Level Architecture, Tama-City, Tokyo,November 1992.[34] R. B. Kieburtz and A. Silberschatz. Comments on \communicating sequential processes".ACM Transactions on Programming Languages and Systems, 1(2), October 1979.[35] W. Kim. THAL: An Actor System for E�cient and Scalable Concurrent Computing. PhDthesis, University of Illinois at Urbana-Champaign, May 1997.[36] D. C. Luckham. Rapide: A language and toolset for simulation of distributed systems bypartial orderings of events. In DIMACS Partial Order Methods Workshop IV, PrincetonUniversity, July 1996.[37] D. C. Luckham, J. J. Kenney, L. M. Augustin, J. Vera, D. Bryan, and W. Mann. Speci�-cation and analysis of system architecture using Rapide. IEEE Transactions on SoftwareEngineering, 21(4):336{355, 1995. Special Issue on Software Architecture.[38] D. C. Luckham and J. Vera. An event-based architecture de�nition language. IEEETransactions on Software Engineering, 21(9):717{734, September 1995.[39] H. Masuhara, S. Matsuoka, and A. Yonezawa. Implementing parallel language constructsusing a reective object-oriented language. In Proceeding Reection '96, San Francisco,CA, USA, April 1996. 103

[40] J. Meseguer. Research Directions in Concurrent Object-Oriented Programming, chapter ALogical Theory of Concurrent Objects and Its Realization in the Maude Language, pages314{390. MIT Press, Cambridge, Mass., 1993.[41] J. Meseguer. Rewriting logic as a semantic framework for concurrency: a progress report.In Proceedings Seventh International Conference on Concurrency Theory (Concur '96),Pisa, Italy, August 1996.[42] R. Milner. Communication and Concurrency. Prentice Hall, 1989.[43] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, i. Information andComputation, 100(1):1{40, September 1992.[44] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, ii. Information andComputation, 100(1):41{77, September 1992.[45] Object Management Group. CORBA services: Common object services speci�cationversion 2. Technical report, Object Management Group, June 1997. Available athttp://www.omg.org/corba.[46] Open Systems Lab. The actor foundry: A java-based actor programming environment.Available for download at http://www-osl.cs.uiuc.edu/foundry.[47] J. M. Purtilo. The Polylith software bus. ACM Transactions on Programming Languagesand Systems, 16(1):151{174, 1994.[48] S. Ren and G. A. Agha. RTsynchronizers: Language support for real-time speci�cationsin distributed systems. In ACM SIGPLAN Workshop on Languages, Compilers and Toolsfor Real-Time Systems, June 1995.[49] S. Ren, G. A. Agha, and M. Saito. A modular approach for programming distributedreal-time systems. Journal of Parallel and Distributed Computing, 36:4{12, 1996.[50] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young, and G. Zelesnik. Abstractionsfor software architecture and tools to support them. IEEE Transactions on SoftwareEngineering, April 1995.[51] M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging Discipline.Prentice Hall, New Jersey, 1996.[52] S. Smith and C. Talcott. Modular reasoning for actor speci�cation diagrams. In ProceedingsFormal Methods in Object-Oriented Distributed Systems (FMOODS '99), Florence, Italy,1999. Kluwer Academic Publishers.[53] D. C. Sturman. Modular Speci�cation of Interaction Policies in Distributed Computing.PhD thesis, University of Illinois at Urbana-Champaign, May 1996.[54] D. C. Sturman and G. Agha. A protocol description language for customizing failuresemantics. In Proceedings of the 13th Symposium on Reliable Distributed Systems. IEEEComputer Society Press, October 1994. 104

[55] C. Talcott. An actor rewriting theory. In Workshop on Rewriting Logic, volume 4 ofElectronic Notes in Theoretical Computer Science, 1996.[56] C. Talcott. Interaction semantics for components of distributed systems. In First IFIPworkshop on Formal Methods for Open Object-based Distributed Systems (FMOODS '96),Paris, France, March 1996.[57] A. S. Tanenbaum, R. van Renesse, H. van Staveren, G. J. Sharp, S. J. Mullender, J. Jansen,and G. van Rossum. Experiences with the Amoeba distributed operating system. Commun.ACM, 33(12), Dec. 1990.[58] The Java Team. RMI speci�cation. Available at http://www.javasoft.com.[59] C. Tomlinson, P. Cannata, G. Meredith, and D. Woelk. The extensible services switch inCarnot. IEEE Parallel and Distributed Technology, 1(2):16{20, May 1993.[60] C. Tomlinson and V. Singh. Inheritance and Synchronization with Enabled-Sets. In OOP-SLA Proceedings, 1989.[61] R. van Renesse, K. P. Birman, R. Friedman, M. Hayden, and D. A. Karr. A framework forprotocol composition in horus. In Proceedings of the Fourteenth Annual ACM Symposiumon Principles of Distributed Computing, August 1995.[62] P. Watson and I. Watson. An e�cient garbage collection scheme for parallel computerarchitectures. In A. J. N. J. W. de Bakker and P. C. Treleaven, editors, Proceedings of theConference on Parallel Architectures and Languages Europe (PARLE). Volume II: ParallelLanguages, volume 259 of LNCS, pages 432{443, Eindhoven, The Netherlands, June 1987.Springer Verlag.[63] A. Yonezawa, editor. ABCL An Object-Oriented Concurrent System, chapter Reectionin an Object-Oriented Concurrent Language, pages 45{70. MIT Press, Cambridge, Mass.,1990.

105

Vita
Mark Christopher Astley was born on November 16, 1970 in Phoenix, Arizona. He attendedprimary and secondary school in Colorado Springs, Colorado. He graduated from Liberty HighSchool in 1989.In the fall of 1989, Mark enrolled in the Computer Science program at the University ofAlaska - Fairbanks. While at the University of Alaska, Mark pursued a dual degree Honorscurriculum in Computer Science and Mathematics. He also participated in a Department ofEnergy summer research program during the summers of 1991 and 1992 at the Jet PropulsionLaboratory in Pasadena, California; and was one of the �rst student researchers at the ArcticRegion Supercomputing Center at the University of Alaska - Fairbanks. Mark graduated MagnaCum Laude with Honors and received a Bachelor of Science in Computer Science, and a Bachelorof Science in Mathematics, in May 1993.In the fall of 1993, Mark enrolled in the Ph.D. program in the Department of ComputerScience at the University of Illinois at Urbana-Champaign. While at the University of Illinois,Mark served as a Research Assistant in the Solid Modeling Lab under the direction of Dr.Yong Se Kim, at the United States Army's Construction Engineering Research Lab (USA-CERL) under the direction of Dr. Helena Mitasova, and in the Open Systems Lab under thedirection of Dr. Gul Agha. In May, 1996 Mark received a Master of Science degree from theDepartment of Computer Science. Since the receipt of his Masters, Mark has continued hiswork in the Open Systems Lab, and has also served as a Teaching Assistant in the Departmentof Computer Science. During the summer of 1997, Mark served as a Summer Intern at IBM'sT. J. Watson Research Center in Hawthorne, New York.106

Upon completion of his Ph.D., Mark will be employed as a Research Sta� Member at IBM'sT. J. Watson Research Center in Hawthorne, New York.

107

