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Abstract

In this paper we describe a number of issues which are central to the design of a software architec-
ture for a distributed, generic, virtual reality system. These include support for diverse and demand-
ing applications, the management of time to provide high-quality interaction with tightly controlled
closed-loop feedback, and the need for continuity of the experience presented to the user. These
issues are being addressed in the design of a generic VR system called AVIARY.

1 Introduction

An interesting feature of VR is that it is not based on any fundamentally new technology. Input devices
based on direct interaction, such as the light pen, joystick and mouse have been around for a long
time. Similarly, displays capable of rendering 3D scenes have also existed for many years, and indeed
these things have been routinely coupled in CAD packages, flight and military simulators, and computer
graphics research laboratories.

What makes VR a radical approach to HCI is not the technology (although evolutionary progress has
eased the task) but its application. It is a subtly new way of using established technology and techniques,
but with dramatic implications for HCI.
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The new feature that VR brings to the HCI scene is the removal of the computer as an object of perception,
allowing the user to interact directly with the generated environment. Whilst technically similar to flight
simulation, this is psychologically radically different as we are no longer looking into a window, but are
actually in the environment. Although in its infancy, the potential for solving some of the thornier HCI
problems, such as natural interaction with 3D objects, is clear.

Exciting though this all is, we are not there yet. Although the potential has been demonstrated, we are
far from having a mature technology capable of dealing with the large scale use of VR for significant
applications, with any degree of richness. Some issues are implementation-specific, others – to a far
greater degree than in previous interfaces – belong to the realm of psychology and perception.

If we stand back and consider what is necessary to bridge the gap between the existing state of the art
and a future mature technology, we begin to see the range of issues that is raised, and the nature of some
of the interesting problems that must be addressed.

In the Advanced Interfaces Group at the University of Manchester we have been attempting to clarify
and address this area. We are currently implementing a software kernel in a newly established laboratory
to take our ideas further, as documented elsewhere [1, 2].

In this paper we wish to raise some problems that we consider important, and which will need to be
addressed if VR is to progress. Two particular threads can be distinguished: the importance of addressing
the human perceptual mechanisms, and the new perspective that VR brings to existing implementation
issues.

1.1 Engaging perceptual mechanisms

In our everyday existence we cope with, and filter out, tremendous amounts of information almost
effortlessly and with very little conscious thought. Indeed, if the same information, in all its detail, were
to be presented in a form that we had to think about consciously, then we would be overwhelmed quite
easily. Spatial awareness, pattern recognition, information filtering, coordination of multiple information
streams, are things we take for granted. Rather than look for a solution in AI, part of the VR thesis is that
information presented in a suitable way can be processed far more effectively and directly by people.

Traditional interfaces are suited to, and have largely relied on, human cognitive abilities with relatively
low bandwidths between operator and machine. Interfaces that engage perceptual skills have potentially
far higher bandwidth. Used in this way the machine marshalls and presents information, a task to which
it is generally well-suited, and the operator’s perceptual mechanisms filter and abstract behaviour of
interest – a task to which they are well-suited. This information is then processed cognitively and acted
upon. VR offers a means of engaging these perceptual skills far more directly and effectively than is
generally offered by traditional screen based interfaces.

One of the primary goals of VR research, then, must be to discover how to engage human perception
most effectively. The technological priorities may not be the obvious ones. For example, players soon
adapt to quite unsophisticatedgraphics in some video games, and become deeply engaged in the scenario,
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provided certain levels of cues and interactions exist. Conversely, even good photo-realistic images fail
to retain attention if there is little that can be done with them, or if the interaction lags are substantial.

The quality of an interface in these terms is notoriously difficult to quantify, or even to describe to others.
Research can therefore all too easily become focussed on measurable issues such as frames per second,
or number of primitives in the scene, which may ultimately be of only secondary importance.

For example, one issue that we would regard as central to the success of large scale VR systems is that of
coherency. We believe it is of great importance that some degree of consistency between different virtual
worlds and applications can be maintained if users are to develop skills for inhabiting environments
and navigating between them. Total consistency is neither practical or necessary, but what degree of
coherency is required for users to perceptually orient themselves in the complex environment?

Engaging human perceptual skills and perceptual coherency are, we believe, keys to the success of VR.

1.2 A new solution space for old problems

A second feature that seems generally characteristic of VR issues is presented here in the form of an
observation. Many of the problems involved in the implementation of a VR system are those of well-
studied areas of computer science. This is most clearly true with computer graphics, parallel processing,
discrete event simulation, multimedia and HCI. Whilst problems in these areas have been extensively
studied, and certain tasks are known to be difficult, VR brings a sufficient perspective shift to allow us to
seek new solutions to these problems. In this way the subtly different requirements of VR may help us
to see beyond some of our current computational preoccupations. One example would be the emphasis
on photo-realism in many areas of computer graphics.

VR also provides an opportunity to bring together techniques which have been developed for specialised
applications, but have not as yet been integrated in a more general environment. Examples include
different strategies for model culling and rendering, and synchronisation of simulation and interaction.
These examples are discussed later in this paper.

With this background, we will now present some of the central issues with which we are concerned.
These arise from our desire to construct a VR ‘operating system’ as a base for real applications. They
range over the abstract and the concrete but are all real issues that we must address.

2 Generic or specific support – can they be reconciled for VR?

The goal of our research is the design of a generic VR system capable of supporting a diverse range of
large-scale applications within a single, coherent environment.

The need for a general approach is highlighted by considering the wide range of disparate applications
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which may benefit from the integration of VR-style interfaces. Three-dimensional CAD packages, for
example, may exploit novel VR input techniques for model building. Scientific visualization systems
may be greatly enhanced by allowing the user to explore and manipulate complex data representations
‘from within’. Other applications, such as air traffic control systems, or surgical training simulators,
require a mix of 3D viewing capabilities coupled with unobtrusive means of interacting with real-time
environments.

A particularly interesting task, which has always faced the vendors of support environments, is that of
providing a system flexible enough to cope with a range of diverse applications, and yet allowing some
regularity and efficiency. Unix could be said to have been quite successful in this respect, and there is
much of relevance to VR in operating systems concepts. This is clearly an active and pertinent issue in
the future of VR.

For a future, mature, general purpose VR system it will not be sufficient merely to provide a single
world and an object-oriented environment, requiring users to tailor the class hierarchies for their own
applications. Whilst this approach is useful in smaller systems, for more ambitious environments it is
rather limited and difficult to manage. The diversity of applications for which VR seems appropriate
suggests that a variety of world models are required [1]. It is not possible to provide all features within
a single world, not only due to the contradictions that would ensue, but also because of the perform-
ance implications of such an approach. This is an interesting challenge to reconcile with the need for
coherency of experience in the system as a whole.

2.1 The distinction between application and system

In considering a generic large scale environment of the future, one detailed issue that is raised is the
distinction between the system and its applications. Exactly where does the boundary between applic-
ation and system lie? This is much more clearly an issue if we consider a system with multiple active
applications within a single virtual world. There is a direct analogy with operating system/application
interfaces which have evolved over the last few decades.

Separating what is application, from what is virtual world is not simply an academic exercise, as clear
distinctions will be needed if the users’ conceptual model of a complex system is also to be clear. In
practice elegant distinctions of this kind tend to be compromised for all sorts of reasons, but there is
no reason why a clean conceptual model should not be devised to which the system as a whole should
aspire.

3 Perceptual consistency and display performance

Maintaining the illusion of a perceptually consistent world places quite stringent demands upon its im-
plementation. Unless a system can respond rapidly and without distracting artifacts, the advantages
of immersive environments may be unattainable. This area is complex, because consistency does not
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necessarily imply, for example, real-time behaviour for all tasks. More important is the creation of an
environment in which the user remains comfortable and well oriented. In some cases this may demand
real-time response, but in others it may be more important to maintain a sense of continuity [3]. We are
used to dealing with a real world in which some actions may take a finite time to complete. Thus, when
calling a lift, we do not necessarily expect that the lift will arrive instantaneously. On the other hand, the
movement of objects attached directly to our hands, or the performance of head tracking, must occur in
real-time if we are to maintain the illusion of reality.

Thus, a key issue for any immersive VR system is that of the ‘closed loop’ feedback time for tracking
the user’s movements – for both head and limbs [4]. Most low-cost VR systems are woefully inadequate
in this respect, which is the primary reason that many VR demonstrations portray very simple models.
Rapid feedback during navigation is central to the tight coupling of users’ actions to the system’s re-
sponse. There are actually two separate factors which affect the closed loop response time: the rate at
which pictures can be animated, and the rate at which inputs from the human participants can be decoded
and acted upon.

Fast animation. The simplest way to characterise the speed of animation is to count the number of
frames per second required to create the illusion of continuous smooth motion, as users move
through a world, or objects in the world move and change. This varies between individuals, but
is generally at least 20. In practice, frame rates of less than 60 Hz may produce ghosting effects,
whereby an observer sees multiple images of objects due to discrete changes in their positions. A
classic example of this is to watch the telegraph poles in some of Silicon Graphics’ simulations of
driving a vehicle around a landscape. At less than 20 Hz the scenes appear as a series of separate
frames, and the illusion of smooth motion is lost. At faster rates, such as 30 Hz, the frames merge
to provide a smooth sequence, but the telegraph poles appear to be duplicated! Only at rates
approaching 60 Hz does the motion appear completely smooth.

Sensor tracking. It is essential that inputs can be processed sufficiently rapidly to avoid delays between
actions by users and the system responding accordingly. In slow systems it is possible to get com-
pletely out of synchronisation, so that the displayed image of a user’s waving hand, for example,
is completely out of phase with its true position. We will return to this point again in section 4.

Some researchers take the view that solving these problems is only a question of building faster hardware.
However, if we are to build portable VR systems which work well with a range of applications, and
on equipment which is cost effective – which means cheap, if VR is to be widely used – then we
must examine the problem from a more fundamental viewpoint. We also need to take account of the
characteristics of ‘real’ applications, which are often quite complex – support of these must be a central
goal of our research.

3.1 Animation rates for high-performance workstations

To understand better the issue of scene complexity and its effect on animation, we have considered the
rendering speeds of current high-performance 3D workstations, such as the Silicon Graphics VGXT and

5



Reality Engine [5], and the Evans and Sutherland Freedom Graphics Series for Sun workstations [6]. The
usual way manufacturers quote rendering performance is in terms of some number of notional triangles,
quadrilaterals (or triangle or quadrilateral strips), with various shading options (flat, Gouraud, Phong
etc.). Impressive rates, in the order of 1 million or more triangles per second can be achieved in theory.
But for real applications, with all of the constraints which apply when designing and writing code – and
here we exempt very special cases such as military simulators – rates in the order of 10% to 20% of the
peak performance are more realistic. If we assume a speed of 200,000 triangles per second (i.e. 20%),
and a minimum required frame rate of 20 Hz, then we must limit our model to at most 10,000 triangles.

Generous though this may sound, in many applications it is inadequate. In one application we are study-
ing, 3D CAD models contain as many as 50,000 primitives [7]. These primitives include shapes such
as planes, boxes, cylinders, spheres, and cones. Some of these generate many polygons, taking us well
beyond the 10,000 triangle limit for a 20 Hz display rate. Unfortunately, although alternative algorithms
exist for direct rendering of primitives such as quadrics (e.g. ray-casting), these are not supported in
current display hardware, so that everything must be reduced to polygons. Curved surfaces, and even
mathematically simple shapes such as spheres, eat up polygons at an alarming rate, dramatically reducing
the complexity of models which can be displayed at adequate frame rates.

3.2 Adaptive rendering

One approach to this problem is to use adaptive rendering techniques, so that only those parts of the
model within the field of view are rendered, and only those close to the observer are shown in detail.
However, solutions to this are frequently specific to particular applications and to particular hardware
platforms [8]. This issue is closely related to the problem of hidden surface removal, and experience
with this suggests that the use of application knowledge is a major factor in solving it effectively. For
example:

• In an architectural walk-through, we can use knowledge of a building’s layout to cull parts of the
model which are known not to be visible from the current viewing position. Thus, if we know that
the walls are solid, we need only display objects visible within the room, and perhaps a further
subset visible through open doors or windows [9].

• In flight simulators it is common to employ a pre-processing step, based on binary space partition
(BSP) trees and backface culling, in order to determine in a view-independent way those objects
which are potentially visible from different viewpoints. Then, at runtime, only the subset of
potentially visible objects requires processing, selected according to the real viewpoint [10, 11].
Additionally, levels of detail – usually applied as texture maps – can be made dependent on the
distance of the observer from each surface. Mipmaps offer one way to introduce greater detail as
the observer moves closer to a surface [12, 8].

• With finite element models, we can use connectivity information in the element data structures to
quickly determine a subset of potentially visible element faces.
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In each of these cases, we can use application-specific knowledge to provide an efficient solution, but
these solutions cannot necessarily be applied in other situations. For example, in the case of an airport
or terrain model, only a small part of the model will change between frames. This may not be the
case for other applications, and the BSP pre-processing step is very time-consuming for models of any
complexity. A general VR system must attempt to provide a framework for solving this problem in a
flexible manner.

3.3 The influence of perceptual issues on rendering

Any solution which involves the selective display of information must strive to maintain a perceptu-
ally smooth transition between levels of detail. Objects which pop on and off a display can be highly
distracting. Picture complexity is often viewpoint-dependent, so that turning one’s head can produce
very sudden changes in the quantity of data to be processed graphically. The characteristics of different
hardware platforms may vary widely in this respect. If displays cannot deliver the required performance
then methods are required which degrade gracefully. Even if display performance continues to improve
dramatically, a solution for this problem will still be needed for the low-cost end of the market.

Factors other than mere speed are also important here. Many displays can draw 3D vectors faster
than filled polygons, suggesting that during manipulation, or navigation, a wireframe mode may be
used. Unfortunately, switching modes in this way can be unsettling for the user, and a wireframe view
often results in considerable clutter for models of any complexity. Extensive testing will be required to
establish the most effective ways of culling a model to achieve acceptable frame rates allied to consistent
data presentation. Research into such techniques has been pursued for many years in the flight simulator
market, but its application to a much wider range of tasks is still needed.

It is worth observing that it is not obvious what cues require optimising in order to create a convincing
world. Anyone who has played a video game in an arcade will know that fast system response is a key
element in engaging the player, and this can overcome limitations in the way information is presented.
However, in other areas more faithful rendering of the scene may be required, an example being a
surgical training system. It is clear that the quantity of information which can be displayed depends on
the speed of the display system, but the choice of what to display will be application-dependent, and not
necessarily based solely on distance from the observer.

4 Temporal consistency

The issues of frame rates and device input lag are examples of a more fundamental problem which a
general-purpose VR system must solve, namely, the provision of a consistent framework for managing
time in an environment where the goal is, at least, to effectively simulate real-time processing.

The determination of input sensor locations, the simulation of virtual world events and the generation of
visual and other sensory representations all require finite amounts of time. As a result, input handling,
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simulation and rendering all occur within effectively different time-frames. This creates two problems:
the skew in action and observation can be perceptually disturbing to the user [13], and the lack of a
global frame of reference may impair the integrity of the world simulation.

One method which is currently used to tackle the cognitive skew problem is to use predictive algorithms
to calculate the location and motion of input sensors at some small temporal offset in the future in order
to bring sensor time in-step with simulation or rendering completion time [14]. This has been shown to
be more acceptable to the human perceptual system, although the shortfalls of this method can become
apparent when the user is drawn to the temporal discrepancies (by hand-clapping in the real and virtual
world, for example). The only completely effective solution to this problem is to keep accumulated
latencies below the minimum which can be perceived (around 25 msec for interactive tasks [15]), and
this should become less of an issue as VR technologies improve.

The rational handling of time within a simulated environment is a more difficult issue. It is a problem
which has been addressed many times in the computing field, in the context of electronic circuit sim-
ulations, event profiling in distributed systems, physical modelling, and so on. In many respects, the
problem of temporal management in a VR system is more demanding, as solutions must be found in
real-time. As a result, many of the computationally expensive solutions which are applied in other areas
are inappropriate. However, some aspects of VR modelling may allow certain degrees of freedom with
respect to event synchronisation, unlike related disciplines such as electronic simulation, which must
adhere to strict rules of causality. Identifying where in the system such tolerances are allowed is an
interesting research area.

A closely related issue is the maintenance of deterministic behaviour. Virtual interactions should behave
consistently, whether they are carried out in real time, in slow motion, or on a platform incapable of
the fine grained simulation of a more powerful system. The problems of synchronism may also have
a fundamental effect on the meaning of user interactions. An example of this is a command such as
‘delete this’, where the command is uttered into a speech recognition system and the ‘this’ is indicated
by pointing or touching an object in the virtual world.

The principles of synchronisation, latencies, and local time frames within a VR system must therefore
be understood in order to devise coherent methodologies for time management which can deliver a
conceptually consistent behaviour to the system users. Some groundwork in this area has already been
undertaken in the multimedia field, in which time-augmented Petri nets are used to assess synchronisation
problems in the delivery of multimedia presentations [16].

Many existing VR systems are somewhat restrictive in their support for temporal management, and
simply coordinate events with respect to some specific aspect of the VR platform, such as frame delivery
rates. We believe a better approach is to consider time as a completely independent resource, effectively
using a time server to manage coordination, synchronisation and the rate of flow of time itself within the
virtual world. This is a more general solution, since it allows greater flexibility in the handling of virtual
time (allowing multiple rates of flow within the system, for example), and separates world behaviour
from specific performance-related metrics imposed by the underlying hardware.
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5 The AVIARY system

AVIARY is the generic VR support environment being developed by our group in Manchester [1, 2].
This system will allow us to explore many of the design issues addressed within this paper. The AVIARY
system supports:

A hierarchical world model constructed using object-oriented methods. This permits the tailoring of
new worlds by software re-use, and also provides a framework for the design of consistent tech-
niques for interaction and presentation across a range of applications.

Multiple, concurrently active applications with well-defined interfaces to the virtual world manager,
and between applications.

Platform independence. A prototype version of the system has been developed and executes on a
64-processor, transputer-based parallel machine, or alternatively on one or more networked Sun
workstations. Ports to other platforms are currently in progress (see below).

Distributed processing. AVIARY was designed from the outset to operate in parallel and distributed
environments. We believe the exploitation of concurrency to be an important research issue for a
number of reasons. Firstly, virtual environments are inherently concurrent in nature, requiring the
simultaneous processing of many different input, output, simulation and sensory rendering tasks.
Secondly, such an approach allows us to tackle large-scale applications which would be considered
unmanageable on uniprocessor systems. Another important factor is that the implementation issues
of distributed synchronisation are closely tied to the problems of temporal management within
virtual worlds; a research area which we are already addressing.

Distributed graphics processing. The need for high-performance means that dedicated graphics hard-
ware is required. In order to minimise communication in a distributed environment we use re-
tained mode graphics, with picture information held in a local display list (or structure) store. For
example, the prototype AVIARY system uses PHIGS [17] for the graphics. This allows small
changes, such as altering a viewpoint, to be communicated very efficiently, but runs counter to the
direct mode graphics used by many workstations. To maintain platform independence, an internal
graphics protocol is employed so that the system is not dependent on a specific graphics system.

We are currently establishing a new VR laboratory, equipped with high-performance workstations and
a complement of VR input and output devices including head-mounted display, 3D input sensors, audio
I/O, and speech recognition hardware. We are fortunate in having access to a 64-processor Kendall
Square Research KSR1 – a parallel, virtual shared-memory computer [18]. This machine has 2 gigabytes
of memory, an inter-processor communication speed of 1 gigabyte per second, and a theoretical peak
computation rate of 2.4 gigaflops. This raw power will allow us to explore computationally demanding
applications such as scientific simulation and visualization, and medical imaging. Work in these areas
is already progressing on our KSR1. The AVIARY environment will enable us to use the KSR1 for
simulation and virtual world modelling, with input processing and rendering tasks being off-loaded to
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specialised equipment in the VR laboratory. The system as a whole will permit us to further develop the
AVIARY prototype in its support for a range of ‘real world’ applications.

A low-cost, high-performance graphics subsystem is being designed and built by some of our engin-
eering colleagues [1]. This is intended to provide a cost-effective method for driving several headsets,
permitting experiments with multiple users. It will also provide an opportunity to test the behaviour of
AVIARY with with lower performance displays than the dedicated graphics workstations.

6 Conclusions

In this paper we have tried to show that building a generic VR system, which can support a broad range of
applications, requires much more than software and hardware technology. Even today’s most expensive
displays are quite limited in the amount of information they can portray, at frame rates fast enough to
create the illusion of a ‘realistic’, continuous world.

One of the major strengths of immersive environments is their capacity to engage their users’ perceptual
skills in solving problems. This involves a complex set of issues: it is the way that users perceive their
environment which should determine the crucial performance measures for an implementation, and we
should not blindly assume that just building faster hardware will provide the solutions to the problems.
In any case, for many users ultra-fast hardware is simply too expensive.

Human beings are remarkably adaptable. An attraction of virtual environments is that we can suspend
the ‘real’ world. Not only can we change our size – from the galactic to the microscopic – we can alter
time, so that events move faster or slower. In effect, we can create slow-motion worlds, and replay
events, so that we can study them in detail, and we can speed up time, as when carrying out simulations
of phenomena such as the weather. The concept of time within a VR system is central to managing these
problems, providing a framework for resolving the different time-bases involved in tracking user inputs,
synchronising displayed images, and interfacing to simulations of various phenomena.

From a computer science perspective, the inherently concurrent nature of virtual worlds, and the issues
of synchronisation and management of time, make parallel and distributed solutions to these problems
an interesting topic for research.
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