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ABSTRACT 
 
Evaluations of the state-of-the-art of both academic face 
recognition algorithms and commercial systems have 
shown that performance of most current technologies 
degrades due to the variations of illumination. We 
propose a novel technique for face recognition under 
generic illumination in this paper, namely, calibrating an 
input face image to an image under canonical illumination, 
named as face de-lighting, to reduce the negative effect of 
non-ideal illumination in the original image. The 
canonical illumination is defined as an illumination 
environment in which light is constant in every direction. 
Inspired by the low dimension effect of light on 
Lambertian surface and the compact representation of the 
canonical illumination in spherical frequency space (only 
the DC component needed), face de-lighting is achieved 
with spherical harmonics. Experiments show the 
effectiveness of the proposed method in both lighting 
estimation and face recognition. 

1. INTRODUCTION 

Much progress in face recognition has been made in 
the past few years. However, face recognition remains a 
difficult, unsolved problem in general. The performance 
of almost all current face recognition systems is heavily 
subject to the variations in the imaging conditions [1]. 
Illumination variation is one of the obstacles. 

There have been many works dealing with 
illumination variation in face recognition. Low-
dimensional lighting of face is the main cue. Eigenfaces 
[2] and Fisherfaces [3] [4] apply statistical learning to get 
the empirical low dimensional space of the face. These 
methods have demonstrated their easy implementation 
and accuracy. However, they perform well enough under 
the similar imaging conditions to those of the training 
images only. 

Recently, an approach called generative method has 
been proposed in which a set of images of an object under 
varying illumination conditions is generated from a small 
number of training images of the object, assuming the 
Lambertian model. These methods aim at recovering the 

intrinsic feature of the face: shape and/or albedo. Based 
on whether the “face class” information is used or not, 
these approaches are categorized into two kinds:  generic 
method and classed based method.  

The former methods use no information about “face 
class”. Therefore they can be applied in other objects than 
face in theory. Intrinsic images [5] and Illumination Cone 
[6] are instances of the generic methods except that 
Illumination Cone uses prior knowledge about the 
common shape of faces to resolve the three parameters of 
the GBR ambiguity. The disadvantage is that the generic 
methods usually need several images to work, which is 
not satisfied by many face recognition systems. 

The class based methods use the prior knowledge of 
the common face model [7, 8, 9, 10] and usually need 
only a single face image. The prior knowledge is obtained 
with a boosting step or some other constrains. Sim’s 
Statistical SFS [7] learn the statistics of n(x) and e(x,s) for 
each pixel of face images from the bootstrap set. Quotient 
image [8] assumes all faces have same shape and the 
shape information is learned from a training set. Zhao’s 
SSFS exploits the symmetry of face explicitly and assume 
all faces share similar common shape [9]. Based on 
constant albedo assumption, Atick [10] uses PCA to solve 
the parameters of the Eigen-head approximation of a real 
3D head. A 3D morphable model imposes class 
constrains is reported in [11].  

Many of these methods assume simple light model. 
However, the natural illumination in the real world is 
highly complex, consisting of reflected light from every 
direction as well as distributed and localized primary light 
sources [12]. Basri [13] and Ramamoorthi [14] have got 
the analytic nine dimensional lighting space of a convex 
Lambertian surface expressed in terms of spherical 
harmonic. With the discovery that the effect of 
illumination on diffuse object is low dimension with 
analytic analysis, it won’t be more difficult to deal with 
generic illumination than to deal with simple light source 
model. Recent face recognition algorithms such as Linear 
Subspace [13] and Harmonic Examplars [15] can 
recognize face images under arbitrary lighting conditions.  

In this paper, we propose an algorithm for 
recognizing face under arbitrary lighting by face de-



lighting based on the model proposed by Basri [13] and 
Ramamoorthi [14]. The problem of face de-lighting is 
stated as follows: given a face image under poor 
unknown illumination, calibrate it to a new image under 
the pre-defined canonical illumination. Then face 
recognition is achieved by matching the canonical form 
of the gallery images and the probes. Canonical 
illumination is defined as an illumination environment in 
which light is constant in every direction and it can be 
represented compactly with the DC component only in 
frequency domain. Differing form Wen’s REM 
Relighting [16], we apply the method in face recognition 
rather than in computer graphics. In our work the feature 
points are automatically localized instead of manually 
labeled and the canonical illumination is virtual 
illumination that has only DC component.  

The remainder of this paper is organized as follows. 
We introduce the proposed face de-lighting method with 
spherical harmonics in section 2; Section 3 shows the 
experimental results about the de-lighting and face 
recognition; Section 4 concludes our paper and discusses 
the future work. 

2. FACE DE-LIGHTING WITH SPHERICAL 
HARMONICS 

The reflection equation is a rotational convolution and it’s 
natural to analysis it in space-frequency domain. It has 
shown in [13] and [14] that the BRDF of Lambertian 
surface is a low-pass filter. The lower nine spherical 
harmonics is approximate enough for its irradiance 
environment map, that is,  
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where are the normalization factors and A  are 
spherical harmonics coefficients of the diffuse reflection 
function. The analytic form of A  and more details of 
deriving the space-frequency reflection equation are 
given in [13, 14]. 

lΛ l

l

Since the irradiance E  is dominated by low 
frequency components of lighting, we need estimate only 
the lower nine spherical harmonic coefficients of 
lighting L .  ( )20 ≤≤ llm

We define the canonical illumination as an 
illumination environment in which light is constant in 
every direction. It can be represented compactly using the 
DC spherical harmonics component only. After the 
original illumination is estimated, face de-lighting 
become simple in space-frequency domain with 

illumination ratio technology. The details will be 
introduced in section 2.2. In order to analyze with the 
spherical harmonics, the information of the surface 
normal or the geometric shape of the face is needed. This 
information is obtained by aligning the 2D image with a 
3D generic mesh. The alignment is given in section 2.1. 

2.1. Face alignment 

Human faces can be assumed rationally have similar 3D 
shapes. This has always been used in many algorithms [8, 
9, 16]. A generic 3D model of face is used in our 
implementation. Given a 2D image, to create the 
correspondence between the vertices of the mesh and the 
2D image, we first create correspondence between the 
feature points on the mesh and the 2D image. Then the 
rest of the vertices on the mesh and the 2D image are 
aligned with image warping technique.  

The feature points on the 2D image are marked 
automatically in the process of face detection. Our face 
detection method, named Face Center-of-Gravity 
Template [17], is based on some observations on the 
configure relationship between major face organs. The 
eyes are localized by growing a region window from the 
approximate center of the detected face and checking its 
characteristics. After eyes are located, we attempt to 
combine the ASM’s (Active Shape Model) local texture 
models and AAM’s (Active Appearance Model) global 
appearance models for sparse facial feature 
correspondence [18]. To integrate the local profile and 
global appearance constraints, the subspace 
reconstruction residual of the global texture is exploited 
to evaluate the fitting degree of the current model to the 
novel image.  

The normal map of the 3D Mesh and the feature 
points on a face image is shown in Figure 1. Some results 
of our feature points locating under different 
illuminations are shown in Figure 5 in section 3. 

   
(a)     (b)  (c) 

Figure 1: The generic mesh and feature points: (a) the generic 
mesh; (b) the feature points of a face; (c) the warped mesh for 
the face in b). 

2.2. Face de-lighting 

In order to get a new image under canonical illumination, 
we first need to estimate the lighting condition of the 
original image.  



Given an input image I (a column vector of n  
elements, n  is the number of pixels in the image) of an 
object with constant albedo ρ , let E  (a 
column vector of n  elements, 0 ) denote 
the harmonic irradiance image and E  is a n  matrix of 

, then by solving the least squares problem 
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we get the illumination coefficients vector scaled with the 
albedo Lρ , which approximate the illumination.  

In fact, this approximation will still be exact when the 
albedo contains no low frequency components (order 

 ), except for the zero order, DC component41 ≤≤ l 1. 
Though the albedo of face does not strictly satisfy this 
constrain, we find that we obtain good results in practice. 
Wen [16] has justified numerically that the low-frequency 
components of texture map of faces are small except the 
DC component. This can also be verified by vision that 
most regions of the face are skin with almost the same 
albedo. 

 Once we have estimated the lighting condition of the 
original image, de-lighting it to the canonical illumination 
is just forward by rendering the face with the virtual 
illumination of . 00L

For any given point P at position (  on the face, 
suppose its normal is (

), yx

),φθ , and ),( yxρ  is its reflectance 
coefficient, then the intensities at P in the original image 
and the canonical image are respectively: 
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Given the original image, the canonical image is: 
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Ramamoorthi [19] shows that only 5 or 6 coefficients 
can be stably recovered given only one image. As we 
need only the new image under canonical illumination, 
this does not affect us. 

3. EXPERIMENTAL RESULTS 

In the real world, illumination usually consists of an 
ambient light with perhaps one or more point sources. To 
obtain representative images of such cases, CMU-PIE 

database [20] includes face images both with the ambient 
lights on and off. To verify the results of lighting 
estimation and the effect of de-lighting on recognition 
under different illuminations, we select 22 frontal images 
captured with the ambient lights on and 21 images 
captured with the ambient lights off for each person in 
CMU-PIE database. There are 68 persons in CMU-PIE 
database. An example of the images of one person is 
illustrated in Figure 2 (we have masked the images for 
face recognition). For more details of the CMU-PIE 
database, please refer to [20]. 

       

       

        
                                       (a) 

       

       

        
                                       (b) 
Figure 2: The images of one person under different 
illuminations in CMU-PIE database: (a) images with ambient 
lighting off, flash no. ranging from 2-22, top to down, left to 
right; (b) images with ambient on, flash no. ranging from 2-22, 
top to down, left to right, the last image is captured with no 
flash (flash no is 1). 

3.1. The experimental results of lighting estimation  

The results of lighting estimation of the 43 illuminations 
are given in Figure 3. In order to eliminate the effect of 
different average abledos of different persons, the last 
eight illumination coefficients are divided by the DC 
coefficient.  

The standard deviations of the coefficients are very 
small, which indicates that our light estimation is very 
stable. The physical meanings of the nine illumination 
coefficients are very explicit. The DC coefficient 
represents the average lighting energy. The lighting 
environments with ambient illumination on have larger 
energy than those with ambient illumination off. 
Therefore the mean coefficient in Figure 3(c) is smaller 
than the corresponding coefficient in Figure 3(a). L  
denotes the direction of the primary light in x-axis. For 

11

                                                 
1 The spherical harmonic coefficients of a product of irradiance 
and albedo, as in the basis functions Ylm, are determined by a 
Clebsch-Gordan expansion of the product of spherical 
harmonics. To ensure that orders 0,1 and 2 of the image 
correspond to irradiance coefficients scaled by the DC term of 
the albedo, assuming the only relevant irradiance coefficients 
are orders 0,1 and 2, we require orders 1-4 of the albedo vanish. 



We have also shown the additive of light. The 
difference between the estimated light with ambient light 
on and the sum of corresponding light and the ambient 
light are shown in Figure 4. The differences are very 
small (the average DC coefficient is 89.33213).  

example,  of Flash No.2 and Flash No.17 have the 
similar absent value but different sign, which indicates 
that they are opposite in x-axis direction. L  and  
denotes the direction of the primary light in z-axis and y-
axis respectively.  
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Figure 4: The difference between the flash with ambient light 
on and the sum flash and ambient light. 

 

3.2. The experimental results of face de-lighting  

The results of de-lighting on both synthesized face 
images and real face images in CMU-PIE database are 
given in this subsection. 

The synthesized faces are rendered using Debevec’s 
Facial Reflectance Field Demo [21], which can be 
downloaded freely at http://www.debevec.org/FaceDemo/. 
Figure 5 has shown some of the results. The top row are 
the four original images rendered under an outdoor 
illumination map and the other four images under an 
indoor environment map, each by rotating the 
environment map 90 degrees. The images in the bottom 
row are the respective de-lit images. Though the 
variations in lighting are large between the original 
images, the de-lit images are almost the same.  

 

       

        
Figure 5: Face de-lighting for synthesized face images 
 

We also test our method on real face images in 
CMU-PIE database. The de-lit images of images in 
Figure 2 are given in Figure 6. The results of some 
images in Figure 6(a) are not as good as those in Figure 5 
and Figure 6(b), because the lighting condition is point 
light source rather than natural illumination. Fortunately, 
such cases are only existed with strictly controlled 
situations and they are rare in the real world. We will see 
that even in these extreme cases, the de-lit images achieve 
better results in both human vision and machine 
recognition. 

Figure 3: The results of lighting estimation of PIE Face 
Database. (a) and (b) are the mean and the standard deviation of 
the coefficients of lighting with ambient light off. (c) and (d) are 
those of lighting with ambient light on. 
 
 

http://www.debevec.org/FaceDemo/
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                               (b) 

Figure 6: The de-lit images of images in CMU-PIE database. 

3.3. The experimental results of face recognition  

We verify the effect of de-lighting on face recognition in 
this subsection. The simplest normalized correlation is 
exploited as the similarity between two images. Face 
recognition is achieved by finding a nearest neighbor 
based on the image similarity.  

The images are divided into 4 subsets according to 
the greater of the longitudinal and latitudinal angles of the 
flash direction from the camera axis—Subset 1(f06~f09, 
f11, f12, f20), Subset 2(f05, f10, f13, f14, f19, f21), 
Subset 3(f04, f15, f18, f22), and Subset 4(f02, f03, f16, 
f17).  

The experimental results are illustrated in Table 1. 
The images in set a are images with ambient lights off as 
in Figure 2(a) and Figure 6(a) and the images in set b are 
images with ambient lights on as in Figure 2(b) and 
Figure 6(b). The numeral in the blank is the number of 
the flash. 

We can see that the recognition rates are higher after 
de-lighting in all the cases. The best case is the gallery is 
the b(11) after de-lighting, in which is recognition is 
perfect for all the four subsets. The experimental results 
are promising when the lighting models of the gallery and 
probe are the same (all are with ambient lights on or all 
are with ambient lights off). But for the case of 
recognition of images in set a with gallery images in set b, 
the results are not so good. There are probably several 
reasons. One is the automatically feature points extraction. 
The feature points labeling is not all correct therefore the 
information of the shape of the faces are not correct.  The 
labeling results are good enough for lighting estimation 
but it’s bad for delighting in the case of extreme lighting 

conditions. The other reason is the limited dynamic range 
in the digitized images. There are some artifacts in the de-
lit images if the pixel intensity in the original image is too 
low or saturation. Wen [16] used constrained texture 
synthesis [22] to alleviate the low dynamic range, which 
can also be applied for our purpose. Because our purpose 
is face recognition, maybe some simpler methods can also 
work. There are some variations about dressing such as 
glasses between image set a and set b. Considering all 
these reasons, if we applied the more robust face 
recognition techniques such as LDA, the performance of 
the system is expected to be better. 

Table 1: Recognition rate comparisons of before delighting 
and after delighting on CMU-PIE database  

Performance of Subset No. 
(%) gallery probe de-light

1 2 3 4 
No 96 58 24 9 a Yes 100 100 97 73 
No 63 37 24 11 a(11) 

b Yes 88 70 55 40 
No 71 35 20 7 a Yes 79 75 67 45 
No 100 97 85 45 b(11) 

b Yes 100 100 100 100
No 24 26 26 16 a Yes 65 56 55 43 
No 74 83 94 80 b(1) 

b Yes 96 100 100 100

4. CONCLUSIONS 

Though simple lighting models are assumed in many 
vision systems, the natural illumination in the real world 
is very complex. This complexity brings us some 
advantages rather than troubles in dealing with lighting 
variation. The quality of the images under natural 
illumination is generally better than that of images under 
strictly controlled point light source. With the discovery 
that the effect of illumination on diffuse object is low 
dimension with analytic analysis, it won’t be more 
difficult to deal with natural illumination than to deal with 
simple light source models.  

Based on these observations, we propose a technique 
for face de-lighting under generic illumination, namely, 
calibrating the input face image to an image under 
canonical illumination, to reduce the negative effect of 
poor illumination in the original image. Inspired by the 
low dimension effect of illumination map of Lambertian 
surface and the compact representation of the canonical 
illumination in spherical frequency space analysis, face 
de-lighting is achieved with spherical harmonics by only 
remaining the DC component. Experimental results show 
that the proposed method is effective on both lighting 



estimation and face recognition. Experiments on larger 
face databases are ongoing. 

The results of face recognition are still not practical 
enough in the case of extreme illumination. Some more 
robust face de-lighting based on the lighting estimation is 
our next task. 
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