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exible class of nonparametric regression methods(Hastie and Tibshirani (1990)), which assume that the conditional mean function canbe represented as E(Y jZ1; : : : ; ZD) = m1(Z1) + : : :+mD(ZD):1



Because they allow multidimensional smoothing to reduce to a sequence of one-dimensional smoothing steps (Stone (1985), Opsomer (1996)), they allow analysis ofmultidimensional problems which would be arduous or even impossible to approachwith \full-dimensional" nonparametric methods. They also maintain the ease of inter-pretation of univariate nonparametric smooths, since the estimates of the componentfunctions can be plotted separately. The additive model is particularly useful in caseswhere the model underlying the data can be assumed to be (approximately) additivein the covariates.An interesting special case of the additive model is the semiparametric additivemodel (SAM in what follows), where some of the additive component functions areparametric terms while the remaining ones are unspeci�ed and are estimated non-parametrically. Such a model can be written asE(Y jX1; : : : ;XP ; Z1; : : : ; ZD) = PXp=1�pXp + DXd=1md(Zd): (1)Such semiparametric additive model might occur, for instance, when the main interestof a study is to precisely quantify the e�ect of a number of covariates X1; : : : ;XPon the dependent variable Y , but the relationship is observed in the presence of\nuisance" covariates Z1; : : : ; ZD. The use of parametric terms for the Xp, if properlyspeci�ed, allows for easily interpretable inference about its e�ect on Y , while bymodelling the md(Zd) nonparametrically, one avoids the potential introduction ofbias in the estimated relationship between the Xp and Y . This problem can beparticularly severe when the Xp and Zd are correlated. Another case would be whenthe researcher is fairly con�dent about the shape of the relationship between theXp and Y , but not about that of the other covariates. By modeling some terms bythe appropriate parametric model, the risk of over�tting the model is reduced bydecreasing the overall \degrees of freedom" of the �t (Hastie and Tibshirani (1990)).A common example of the latter case is when the Xp are dummy (0/1) variables, sothat nonparametric regression would be meaningless.Since SAM is a special case of the additive model, it is highly desirable to be ableto compute estimates of the former with the same method as the latter, i.e., with theback�tting algorithm of Buja et al. (1989). If D = 1, back�tting is unnecessary, sincean equivalent, non-iterative solution exists for the estimators of a SAM (see Section2.1 below). This is no longer the case for higher-dimensional models.2



For D = 1, the SAM, often called the partially linear model in this case, hasbeen previously studied by several authors. Early results by Heckman (1986) for thebalanced analysis of covariance case indicated that a penalized likelihood approach(equivalent to back�tting) indeed resulted in a pn-consistent estimator for the vec-tor (�1; : : : ; �P ). Rice (1986) showed that this result does not hold in general. Inthe case of kernel regression, Speckman (1988) also showed that when the \typical"rates of convergence are used for the nonparametric terms, pn-consistency cannotbe achieved. The latter author therefore suggests an alternative estimator whichachieves this rate, but is no longer equivalent to a back�tting estimator. The asymp-totic properties of that alternative estimator are further studied by Gao (1995) andLinton (1995). The latter author also proposes a plug-in bandwidth selection method.A drawback of that estimator is that it does not easily generalize to the case D > 1.Recently, Carroll et al. (1997) studied generalized partially linear single-index mod-els, a class of models that include the partially linear model as a special case. Theestimator the propose is also di�erent from the back�tting estimator and does notgeneralize easily to the case D > 1.In this article, we show that the reason for the lack of pn-consistency of back-�tting estimators is due to the wrong choice of bandwidth, and that, by selectinga more appropriate bandwidth, the optimal convergence rate can be achieved with-out adjustments to the estimator itself. This same result was found by Carroll et al.(1997) for their estimator. We also show that traditional bandwidth selection methodssuch as cross-validation and plug-in are unable to estimate this optimal bandwidth,though for unrelated reasons. A di�erent approach is therefore necessary to select thebandwidth. We propose a bandwidth selection method based on the Empirical BiasBandwidth Selection (EBBS) method of Ruppert (1997), which is used in conjunctionwith back�tting to estimate the parameters in SAM.Asymptotics suggest that the bandwidth that is optimal for estimating the �i'swill be smaller than the bandwidth optimal for estimating m, and this is what wefound in our �nite-sample study. In the simple case where P = D = 1, asymptoticsshow that the bias of �̂ caused by bias in m̂ depends on the covariance between Xand m00(Z), and this e�ect was also found in the simulations.In Section 2, the theoretical properties of the SAM estimator are studied, bothwhen the nonparametric model term is univariate (Section 2.1) and multivariate (Sec-tion 2.2). Section 3 describes the proposed bandwidth selection method, and Section3



4 reports on a simulation experiment. All proofs are in the Appendix.2 Asymptotic Properties2.1 A Simple CaseWe �rst study the case where the Zi are univariate, so that the model under consid-eration is Yi =XTi � +m(Zi) + "i;with X i = (Xi1; : : : ;XiP )T , � = (�1; : : : ; �P )T and where the errors "i are iid withmean 0 and variance �2. This is the partially linear model studied by Speckman(1988). The back�tting estimators for � and m = (m(Z1); : : : ;m(Zn))T are equiva-lent to �̂ = (XT (I � S)X)�1XT (I � S)Ym̂ = S(Y �XT �̂);with X = [X1 : : :Xn]T , Y = (Y1; : : : ; Yn)T and similarly for Z, and S the smoothermatrix for estimating E(�jZ) by back�tting. We will only consider local linear regres-sion as the smoothing method in what follows. Generalization to local polynomialsof higher degree is straightforward (see Opsomer and Ruppert (1997)).The rows of the smoother matrix correspond to the smoother vectors sTz evaluatedat the observation points, z = Z1; : : : ; Zn. For local linear regression, we write S =[sZ1 � � � sZn ]T , where sTz = eT1 (ZTzW zZz)�1ZTzW zwith eT1 = (1; 0), W z = diagf 1hK(Z1�zh ); : : : ; 1hK(Zn�zh )g for some kernel function Kand Zz = 2664 1 (Z1 � z)... ...1 (Zn � z) 3775 :One often overlooked fact about this type of models is that in general, the estima-tors are not well-de�ned when one of the parametric terms is taken to be an intercept(Xip is a constant for all i, for some variable p). In that case, (XT (I � S)X) issingular, since it contains a column of zeroes. This is true for any smoothing methodwhich preserves constants, including local linear regression. Simple solutions to this4



problem are to center the smoothers, i.e., replace S by S� = (I � 11=n)S, and/orcenter all variables around their sample means. The former is a common adjustmentfor additive models, and it is in general necessary to ensure uniqueness of the solu-tions of the back�tting algorithm (Opsomer and Ruppert (1997)). For simplicity, wewill assume here that the covariates in the model have been centered.The moments of K are written as �r(K) = R urK(u)du. We make the followingassumptions:(AS.I) The kernel K is bounded and continuous and has compact support. Also,�j(K) � R ujK(u)du = 0 for all odd j and �2(K) 6= 0.(AS.II) The density fZ(z) is bounded and continuous and has compact support.Also, fZ(z) > 0 for all z 2 supp(fZ).(AS.III) As n!1, h! 0 and nh!1.(AS.IV) The second derivative of m exists and is bounded and continuous.These assumptions are standard for local linear regression (see Ruppert and Wand(1994)). Under these assumptions, we prove in the Appendix:Theorem 2.1 The conditional bias and variance of �̂ can be approximated by:E(�̂ � �jX;Z) = ��2(K)2 h2E(var(X ijZi))�1cov(X i;m00(Zi)) + op(h2)and var(�̂jX;Z) = �2n E(var(X ijZi))�1 +Op  h2n + 1n2h!Theorem 2.1 shows that for the \usual" n�1=5 rate for the bandwidth, the estimateof � is not pn-consistent, since the bias is Op(n�2=5). This is the same result foundby Speckman (1988). It can be remedied by selecting a di�erent bandwidth rate, asthe following corollary makes more precise:Corollary 2.1 If h / nr for �1 < r < �1=4, thenpn(�̂ � �)) N �0; �2E(var(X ijZi))�1� :5



Corollary 2.1 shows that for the right choice of bandwidths, the back�tting estima-tor of � achieves the semiparametric e�ciency bound and is in that sense equivalentto the estimator proposed by Speckman (1988).Compared to the equivalent expressions from OLS regression, we can see that thee�ect of the nonparametrically modelled covariate Zi on var(�̂) is to replace var(X i)by E(var(X ijZi)) in the denominator. WhenX i and Zi are independent, the asymp-totic variance of �̂ is therefore the same as when the model is fully parametric.Another way to interpret this result is that var(�̂) for the SAM estimator is asymp-totically the same as that found when one uses OLS to regress Yi on (X i�E(X ijZi))without Zi in the model, which makes sense since Zi and (X i�E(X ijZi)) are uncor-related.Theorem 2.1 shows that the e�ect of the correlation between X i and Zi on theasymptotic bias is through the terms cov(X i;m00(Zi)) and E(var(X ijZi)). The formerterm also depends on the curvature of m through its second derivative. This biasdisappears when X i and Zi are independent.These asymptotic results are not directly useful to develop a \traditional" plug-in bandwidth selection method as in Gasser et al. (1991), Ruppert et al. (1995) orOpsomer and Ruppert (1998), because of the lack of explicit expressions for thebandwidth-dependent terms in the Mean Squared Error.In the case of cross-validation, the di�culties involved in selecting a bandwidthappropriate for �̂ are even more fundamental. The cross-validation function is de�nedas CV(h) = 1n nXi=1(Yi � �̂(�i)X i � m̂(�i)(Zi))2;where the superscripts (�i) denote the ith leave-one-out estimators. In this quantity,the slowest converging estimator is m̂(�i), so that as n!1, its behavior will domi-nate that of �̂(�i). While this method might therefore be appropriate for estimatingm, it does not provide satisfactory bandwidth choice for �.2.2 Extension to General Back�tting EstimatorsConsider model (1) with P;D > 1, to be estimated by back�tting with local linearregression. Since there are now several nonparametric terms, the model is not iden-ti�able unless restrictions are placed on the functions md. A common assumptionis that E(md(Zdi)) = 0 for d = 1; : : : ;D, which is achieved by using the centering6



adjustment for the smoother matrices (described in Section 2.1) and by explicitlyincluding an intercept term in the model:E(Y jX1; : : : ;XP ; Z1; : : : ; ZD) = � + PXp=1�pXp + DXd=1md(Zd): (2)While it is not strictly required, we will again assume that the expectation of theparametric terms is zero, i.e. that E(Xpi) = 0 for p = 1; : : : ; P , so that E(Yi) = �. Inpractice, this implies replacing the covariates Xpi by Xpi � �Xp and estimating � by�Y . To simplify the notation, we assume here that both the Xpi and Yi are centeredaround 0 and ignore � in the discussion that follows.Let S�d; d = 1; : : : ;D represent centered local linear smoother matrices with cor-responding bandwidths hd. The estimators for the SAM are de�ned as the solutionsof the back�tting algorithm on the following set of equations( �̂ = (XTX)�1XT (Y �PDk=1 m̂k)m̂d = S�d(Y �X�̂ �Pk 6=d m̂k); d = 1; : : : ;D;where m̂d = (m̂d(Zd1); : : : ; m̂d(Zd1)T . Alternatively, we can de�ne the SAM estima-tors non-iteratively as follows. LetW d represent the additive model smoother for ad-ditive component function md, i.e. the matrix which maps Y to m̂d. Explicit expres-sions when D = 2 are given in Hastie and Tibshirani (1990), and recursive expressionsfor higher-dimensional models can be found in Opsomer (1996). LetWM = PDd=1W drepresent the additive model smoother corresponding to mM = m1+ : : :+mD. Then,�̂ = (XT (I �WM )X)�1XT (I �WM )Y ;m̂M = WM(Y �X�̂):These expressions are equivalent to the solutions of the back�tting algorithm, whenthat solution is unique. Direct computation of the estimators is rarely performedwith these equations, since back�tting is much more e�cient. They allow the theorydeveloped in Opsomer (1996) to be used to �nd explicit expressions for the asymptoticbias and variance of �̂. Since these expressions would be recursive as well as verycomplicated, and could not be used to develop a bandwidth selection method, weonly derive the asymptotic convergence rates, showing that the leading terms in thissetting generalize those of Section 2.1. In addition to assumption (AS.I), we need:(AS.II0) The density fZ(z) is bounded and continuous and has compact support.Also, fZ(z) > 0 for all z 2 supp(fZ).7



(AS.III0) As n!1, hd ! 0 and nhd !1 for d = 1; : : : ;D.(AS.IV0) The second derivatives of md; d = 1; : : : ;D exist and are bounded andcontinuous.Theorem 2.2 The leading terms of the conditional bias and variance are of the fol-lowing orders:E(�̂ � �jX;Z) = Op( DXd=1h2d) and var(�̂jX;Z) = Op( 1n);so that if hd / nr for some �1 < r < �1=4, d = 1; : : : ;D, then �̂ is pn-consistent.The proof of Theorem 2.2 is in the Appendix. Theorem 2.2 shows that the SAMestimator achieves the semiparametric e�ciency bound for anyD. Using the approachin Opsomer (1996) and this theorem, it is possible to derive the conditional biasand variance for the nonparametric terms md, d = 1; : : : ;D and show that theirconvergence rates are the same as in the fully nonparametric additive model.3 Implementing a Bandwidth Selection MethodWe develop a bandwidth selection method for estimating the parameters �1; : : : ; �Pin the general model (2). The optimal choice for the bandwidth parameters is takento be the minimizer of MSE(cT �̂jX;Z), for a given vector of coe�cients c. Thespeci�cation of c is needed to reduce the criterion for optimality of the bandwidth toa one-dimensional quantity. Possible choices for c are c = ep = (0; : : : ; 0; 1; 0; : : : ; 0)T ,if one primarily interested in estimating �p accurately, or c = �X = ( �X1; : : : ; �XP )T ,if prediction for the overall parametric portion of the model is considered most im-portant. Similarly, to predict Y n+1, the next Y , one would use c = Xn+1, the nextX. The bandwidth selection method is based on the Empirical Bias Bandwidth Se-lection (EBBS) method of Ruppert (1997). There are two important advantages tothis approach here:1. No asymptotic approximation to the variance of cT �̂ is required. Instead, theexact variance expression is used with only �2, the variance of �, to be estimatedfrom the data. This is especially important for estimation of �, since unlike the8



case where m is estimated, the leading term for the variance in Theorem 2.1does not depend on h. The dependence of the bandwidth on h occurs only inthe remainder terms. (Actually, there is one asymptotic approximation usedto speed computation of the exact variance. At one place in the algorithm, weassume that WM is symmetric, though, in fact, this smoother matrix is onlyapproximately symmetric.)2. The bias-bandwidth function is estimated directly from the data using as amodel the polynomial form predicted by the asymptotic theory in Section 2.This is similar in principle to the approach of Fan and Gijbels (1995).Although EBBS requires several recalculations of the SAM estimates and poten-tially involves a D-dimensional numerical minimization, the overall computationalburden can be signi�cantly decreased by the use of two simpli�cations.First, the back�tting algorithm is sped up by computing the local linear �ts ona grid and them interpolating them to the Z-values in the data. See Opsomer andRuppert (1998) for discussion. Second, to avoid a D-dimensional minimization, welet the bandwidth hd for estimating md in the back�tting algorithm be of the formhd = bsdwhere sd is the sample standard deviation of Zd and b is a univariate smoothing pa-rameter that we call the \bandwidth factor." We choose b by minimizing an estimateof the mean square error (MSE) of cT �̂. Since the main interest in the procedureis the minimization of the MSE for �̂, not that for the m̂d, this restriction on thebandwidths is not likely to result in a signi�cant increase in MSE while it dramati-cally reduces the computational burden, especially for models with high-dimensionalnonparametric components.Here is how EBBS is implemented. Let B = fb(1); : : : ; b(N)g be a grid of possiblevalues of b. Typically N is between 10 and 20 and the values in B are equally spacedon the log scale, i.e., \log-spaced." For each b(j) 2 B, we compute �̂ and m̂M , whichwe call �̂(j) and m̂M(�; j). We then estimate �2 by�̂2(j) = n�1 nXi=1�Yi �XTi �̂(j)� m̂M(Z i; j)�2: (3)Next, Var(�̂(j)) = �2�(j) with�(j) = fXT (I �WM)Xg�1fXT (I �WM )(I �WM )TXgfXT (I �WM )Xg�1;9



where the dependence of �(j) on b(j) is through WM . The smoother matrix WMis not actually computed. Rather, the product WMX is found by smoothing eachcolumn of X against Z1; : : : ; ZD by back�tting. Also, we use the approximation(WM )TX �WMX which is justi�ed by the near symmetry of W d for each d.To estimate the bias of cT �̂ at b(j), we make use of the approximationE(cT �̂) = cT� + TXt=1 atb(j)1+t + o(b1+T (j)) as b(j)! 0; (4)where the at are constants. Although an asymptotic expression could be found foreach at and estimates of the quantities in this expression could be estimated, we prefernot to use such a \plug-in" approach. Rather, at each b(j), at, t = 1; : : : ; T are directlyestimated by �tting the \data" f(b(k); cT �̂(k)) : k = j � k1; : : : ; j + k2g. Here k1, k2,and T are tuning parameters that must be chosen by the user such that k1 + k2 � Tsince we will estimate T + 1 parameters using k1 + k2 \data" points. A rather largesimulation experiment reported in the next section shows that the performance ofEBBS is insensitive to the choice of tuning parameters, at least within the range ofvalues in the experimental region. We recommendN = 18, k1 = 1, k2 = 2, and T = 1as reasonable values within that region.The estimates of a1; : : : ; aT at b(j), ât(j); t = 1; : : : ; T , are found by minimizingj+k2Xk=j�k1fcT �̂ � TXt=0 at(j)b(j)1+tg2:over at(j); j = 0; : : : ; T . The extra parameter, a0(j), represents cT� (see (4)) butâ0(j) is not actually used as an estimate of cT�.Then the bias of cT �̂ when b(j) is the bandwidth is estimated byPTt=1 ât(j)b(j)1+t.Thus dMSE(b(j)) = � TXt=1(ât(j)b1+t(j)�2 + �̂2(j)�(j);for j = k1; : : : ;M�k2. The �nal bandwidth factor b̂ is the value of b(j) that minimizesdMSE(b(j)) over fb(k1+1); : : : ; b(N�k2)g. In Ruppert (1997), the �rst local minimizerof the estimated MSE is used, rather than the global minimizer. A disadvantage ofusing the global minimizer is that very large bandwidths might be selected since thebias model (4) breaks down at large bandwidths. However, this problem did not occurin our experiment and we found the global minimizer superior to the local minimizer.10



As an alternative to estimating �2 with the current trial bandwidth as in (3), onecould use residuals using a bandwidth optimized for estimation of �2 as in Opsomerand Ruppert (1998). One could also adjust the divisor n in (3) to correct for thebias due to estimation of � and m. However, these re�nements would increase thecomputational cost and do not seem necessary if, as here, �2 is merely a nuisanceparameter.4 Simulations4.1 A study of the EBBS tuning parametersEBBS has tuning parameters N , T , k1, and k2. To �nd good values for these param-eters, we performed a Monte Carlo experiment. In the experiment we used N , T , k1,and V as factors. Here we de�ne V = k1 + k2 � T as the excess number of \data"points over the number of parameters. Data were generated according to the modelYi = PXp=1 �pXip + 2 sin(fZi) + �i; i = 1; : : : ; n (5)where the �i where N(0; �2). The Zi were equally spaced on [0, 1] and Xip = �Zi +(1 � �)Uip where the Uij where iid Unif(0; 1). We consider only estimation of the�rst component of � so that c= (1; 0; : : :). Although the Zi are equally-spaced ratherthan random, the theory in Section 2 is the same as if they were iid Unif(0; 1). Wechose them equally-spaced in this simulation study so that the minimum possiblebandwidth did not depend on the sampleTo study a wide variety of sampling situations, f , n, �, P , and � were varied asfactors, which we will call the \data factors" to distinguish them fromN , T , k1, and Vwhich we will calling \EBBS factors." The levels of all factors are shown in Table 1.Each data factor was put at two widely spaced levels to represent rather di�erentconditions. For the factor f we chose values 3 and 6, because with f = 6 there isa large covariance between X and m00(Z) while for f = 3 there is little covariance.Thus, we expect f = 3 and 6 to be low bias and high bias cases, respectively. TheEBBS factors V , N , and T were each set at three levels with the aim that one of thethree levels would be nearly optimal. The factor k1 was only set at two levels, 0 and1, since k1 was expected to be of lesser importance. A complete unreplicated designof 1728 runs was used, with the higher order interactions being used to estimate error.11



Factor Levelsn 50, 250� 0.2, .6� 0.5, 2f 3, 6P 1, 4k1 0, 1V 0, 1, 2N 12, 18, 24T 1, 2, 3Table 1: Factor levels for the study of the EBBS tuning parameters.The response was log(j�̂1 � �1j + :001). The log transformation was used with thehope that it would reduce interactions, since the asymptotic expected absolute erroris multiplicative in n and �.EBBS used bandwidth factors between a lower limit of .05 (n = 250) or .1 (n = 50)and an upper limit of 2. We looked at two variations on EBBS, one that used thebandwidth that globally minimized the estimated MSE and one that selected the�rst local minimizer. The globally minimizer proved more accurate, so that globalminimization is recommended in practice and we will only report results for thismethod.Main e�ects and interactions among the data factors were mostly as expected,e.g., n, �, and P had large e�ects and smaller but signi�cant interactions. However,the e�ects of � and f were not signi�cant, which was somewhat surprising. Althoughthese factors a�ect bias, apparently they do not a�ect the accuracy of �̂ when usingEBBS. EBBS merely selects small bandwidths in high bias cases; see the examplebelow.We found no main e�ects or interactions among the EBBS factors and no inter-actions between the EBBS factors and the data factors. Since we varied �ve datafactors over wide ranges, this is strong evidence that the choice of tuning parametersis not important. We feel that any combination of the tuning parameter values inTable 1 can be recommended. 12
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seFigure 1: Conditional bias, variance, and MSE for �ve independent samples (dashed)and their averages (solid).4.2 An exampleWe looked in detail at a special case of the above study with n = 250, P = 1, � = :4,and � = :5.First we studied the variability in the conditional bias and variance. Figure 1shows the exact conditional bias, variance, and MSE for each of �ve independentsamples (dashed) and their averages over the �ve samples (solid) for the case f = 6.One can see that there is considerable variance in the conditional variance and, forlarger bandwidths, in the conditional bias. However, for each sample there is a rangeof the bandwidth factor from 0.1 to 0.2 where the exact conditional MSE is nearlyminimized. EBBS does aim to �nd the bandwidth that minimizes conditional EBBS,which seems proper, but EBBS should also be �nding the bandwidth that minimizesunconditional MSE. 13



We examined the cases f = 3 and 6 to study the e�ects of bias on EBBS. Thetuning parameters wereN = 18, k1 = 1, k2 = 2, and T = 1. EBBS used 18 bandwidthfactors log-spaced between .05 and 2. Since k1 = 1 and k2 = 2, the smallest and twolargest bandwidth factor could not be selected by EBBS. Thus, the bandwidth factorsthat could be selected ranged from b(k1+1) = 0:062 to b(N �k2) = 1:29. In Figure 2we show the squared bias, variance, and MSE for estimation of � as functions of a�xed bandwidth as estimated from 500 samples. Panels (a) and (b) are the low andhigh bias cases, respectively. In panel (a) we see that bias is negligible. As wouldbe expected, the variance increases as the bandwidth factor converges to 0. Thevariance also increases slightly as the bandwidth factor increases beyond 1; since theremainder term in the variance expression in Theorem 2.1 is not monotonic in h sothis variance behavior is not so surprising. The variance of �̂ does not depend onm so that variance function in (b) is the same as in (a). The bias in (b) increasesrapidly as the bandwidth factor increases beyond 0.2.We applied EBBS to 500 samples each from f = 3 and 6. In Figure 3, histogramsof the EBBS-chosen bandwidth factors are given. Note that in the high bias case,panel (b), EBBS avoids the high bias region while in panel (a) EBBS tends to selectlarger bandwidths but largely avoid the region where the variance begins to increase.We looked at m̂ in the case f = 6 for various values of the bandwidth factor b. Forb = :1, a value typical of what EBBS chooses and where the MSE of �̂ is essentiallyminimized (see Figure 2), m̂ is noticeably undersmoothed. For b = :2, the largestbandwidth factor that EBBS has much probability of choosing and the point wherethe MSE starts to increase, m̂ appears to have the right amount of smoothness. Thebias in m̂ does not become noticeable until b is in the range of .3 to .4. These resultsagree with our asymptotics that show that the bandwidth optimal for �̂ converges tozero more quickly that the bandwidth optimal for m̂.4.3 Computation time and performance as n!1To check the execution time we experimented with P = D = 1 and with 100 values ofn log-spaced between 50 and 40,000. Clock time for execution of a MATLAB routineon a SPARC Ultra 1 was very nearly linear in n: time (in seconds) � :83 + :0142n.Thus, when n = 500 execution time is under 8 seconds while execution time is 2.25seconds for n = 100. 14
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Figure 2: Estimated squared bias (dashed), variance (dotted), and mean square error(solid) of �̂ as functions of the bandwidth factor for smoothing Z. The estimates arebased on 500 Monte Carlo samples, each of 250 observations. (a) m(z) = 2 sin(3z);the squared bias is nearly zero so the mean square error overprints the variance andthe squared bias overprints the horizontal axis. (b) m(z) = 2 sin(6z); the squared biasgrows rapidly with the bandwidth.
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(a) m(z) = 2 sin(3z)

Figure 3: Histograms of EBBS selected bandwidth factors from 500 samples each from,(a) the low bias case of f = 3, and (b) the high bias case of f = 6. The bins are ofequal widths, but this is not apparent because the x-axis is logarithmic.
16



1.5 2 2.5 3 3.5 4 4.5 5
−2.5

−2

−1.5

−1

−0.5

lo
g 10

(b
an

dw
id

th
)

log
10

(sample size)Figure 4: Plot of log10(b̂) against log10 n with a spline smooth (solid) and a linear �t(dashed) to the data.We also plotted log10(b̂) against log10(n) to see if the behavior of b̂ was similarto what asymptotic theory predicts, i.e., whether the plot was linear with a slope ofless than �1=4. Recall from Corollary 2.1 that r < �1=4 is necesary for �̂ to bepn-consistent. In Figure 4 we see that the plot is somewhat linear, though a splinesmooth indicates some curvature. A linear �t to the data has a slope of �:27 which isjust below �1=4. If one �ts to only the last 70% of the data is slope is nearly �1=3.Figure 5 is a plot of the logarithms of the conditional biases for �ve samplesversus the logarithms of the bandwidth factor. There is a reference line with a slopeof 2. One can see that the plots are nearly linear with slopes of 2 as predicted byasymptotics.In summary, the results in Figure 4 are roughly consistent with asymptotics.5 DiscussionOur theoretical work shows that back�tting can provide pn-consistent estimates ofthe parametric part, �, of a semiparametric additive model (SAM), provided thebandwidth is chosen properly, i.e., not by traditional methods such as cross-validation.We proposed a method of bandwidth selection and studied this method in a de-tailed simulation where �ve data factors and four tuning parameters were varied. The17



−3 −2.5 −2 −1.5 −1 −0.5
−7

−6

−5

−4

−3

−2

−1

0

log bandwidth factor

lo
g 

ab
s.

 c
on

d.
 b

ia
s
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In this article, we have treated the nonparametric component, m(z), as a nuisanceparameter. Obviously, there will be situations where m is at least as much interestas �, but to keep our paper focused we have not considered this case.As mentioned in Section 2.2, back�tting is more computationally e�cient thandirect estimation for the estimators studied in this article. Recently, estimators basedon \marginal integration" have been proposed, e.g., by Linton and Nielsen (1995)and Fan, H�ardle, and Mammen (1998). These estimators can be calculated explicitlyrather than by back�tting. Back�tting has become common in practice, probablydue to the in
uence of Hastie and Tibshirani's (1990) book and the availability ofsoftware in Splus. A comparison of back�tting with marginal integration methodswould be quite useful but is beyond the scope of this article.AcknowledgmentWe thank the reviewers and associate editor for many very helpful suggestionsthat pushed us to clarify our ideas. Ruppert's research was supported by NSF GrantsDMS-9626762 and DMS-9804058.A Appendix: Outlines of ProofsProof of Theorem 2.1: For the conditional bias, we need to computeE(�̂jX;Z)� � = �1nXT (I � S)X��1 1nXT (I � S)m:Consider �rst the matrix 1nXT (I � S)X = 1nXTX � 1nXTSX. Using the samereasoning as in the proof of Theorem 2.1 in Ruppert and Wand (1994), it is straight-forward to show that1nXTSX = 1n nXi=1 nXj=1X iXTj [sZi]j= E(X iE(XTi jZi)) +Op �h2 + 1nh� : (6)The Op(h2) term in the approximation comes from the o�-diagonal terms in the sum(i 6= j), while the Op( 1nh ) term comes form the diagonal ones (i = j). Hence,�1nXT (I � S)X��1 = �E(X i(X i � E(X ijZi))T )��1 +Op �h2 + 1nh� :19



The order of this approximation can be derived using (6) and a cofactor expansionfor the inverse (Horn and Johnson (1985), p.21).From Opsomer and Ruppert (1997), we know that (I �S)m = ��2(K)2 h2D2zm+op(h2), with Drz the rth derivative operator with respect to Z, and hence1nXT (I �S)m = ��2(K)2 h2E(X im00(Zi)) + op(h2);leading immediately to the desired bias approximation, since cov(X i;m00(Zi)) =E(X im00(Zi)) by centering.For the conditional variance of �̂, we need to approximatevar(�̂jX;Z) = �2 �XT (I � S)X��1 (XT (I �S)(I � ST )X) �XT (I � S)X��1= �2 �XT (I � S)X��1+ �XT (I � S)X��1 �XTSTX �XTSSTX� �XT (I �S)X��1 :We therefore need to compute 1nXTSTX and 1nXTSSTX. The former is approxi-mated by the same quantity as 1nXTSX as computed in (6), while for the latter,1nXTSSTX = 1n nXi=1 nXj=1 nXk=1X iXTj [sZi]k[sZj ]k: (7)Let K � K denote convolution of functions the kernel K with itself. Then, usingthe approach as in the proof of Theorem 2.1 in Ruppert and Wand (1994) for theasymptotic variance, we can show that1n nXk=1[sZi]k[sZj ]k = 1nh(K �K)�Zi � Zjh � 1fZ(Zi)(1 +Op(h2));so that the terms in (7) for which i 6= j 6= k, converge to E(X iE(XijZi)T ) + Op(h2).The rate at which these terms in (7) converge to this result is bounded by the rateof their standard deviation. We can show thatE X iXTj 1h2K �Zi � Zkh �K �Zj � Zkh � 1fZ(Zi) 1fZ(Zj)!2 = Op( 1h2 );so that the standard deviation of the non-diagonal terms in (7) is Op(1=pn3h2). Allother terms in the sum (7) can be shown to be of order Op( 1nh). Therefore,1nXTSTX � 1nXTSSTX = Op(h2 + 1nh)20



and the variance result immediately follows.Proof of Theorem 2.2: For the bias result, we noteE(�̂ � �jX;Z) = �(XT (I �WM )X)�1XTBM ;where BM is the bias for �tting an additive model to the D nonparametric terms in(2). A reasoning analogous to that in the proof of Theorem 3.1 of Opsomer (1996)shows1nXTBM = 1nXT �mM + 1n DXd=1XT (I � S�dW (�d)M )�1(Q�d � S�dB(�d)M ) + op(h2d);where the superscript (�d) indicate the smoother and bias for a (D� 1)-dimensionaladditive model with mean function mM �md. Since 1nXT �mM = op(1=pn) and(I � S�dW (�d)M )�1 = I +Op( 1n); (8)we can show recursively that 1nXTBM = Op(PDd=1 h2d1P ). Similarly,1nXT (I �WM )X = 1n DXd=1XT (I �S�dW (�d)M )�1(I � S�d)X= E(X i DXd=1E(XTi jZdi)) (1 +Op( 1n)):For the variance, (8) and the fact that XTS�d = E(X ijZdi) (1 + Op(1)) are usedto establish the rate of the leading term.References[1] A. BUJA, T.J. HASTIE, and R.J. TIBSHIRANI (1989). Linear smoothers andadditive models. Annals of Statistics 17, 453{555.[2] R.J. CARROLL, J. FAN, I. GIJBELS and M.P. WAND (1997). Generalized par-tially linear single-index models. Journal of the American Statistical Association92, 477{489. 21
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