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Abstract

We explore additive models that combine both parametric and nonparamet-
ric terms and propose a y/n-consistent backfitting estimator for the parametric
component of the model. The theoretical properties of the estimator are devel-
oped for the case with a single nonparametric term and extended to an arbitrary
number of nonparametric additive terms. An estimator for the optimal band-
width making minimal use of asymptotic expressions for bias and variance is
proposed, and a fast implementation algorithm for model fitting and bandwidth
selection is developed. The practical behavior of the estimator and bandwidth
selection is illustrated by simulation experiments.

Key Words: local polynomial regression, bandwidth selection, EBBS, par-
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1 Introduction

Additive models are a popular and flexible class of nonparametric regression methods
(Hastie and Tibshirani (1990)), which assume that the conditional mean function can

be represented as

E(Y|Z1, ceey ZD) = ml(Zl) + ...+ mD(ZD).
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Because they allow multidimensional smoothing to reduce to a sequence of one-
dimensional smoothing steps (Stone (1985), Opsomer (1996)), they allow analysis of
multidimensional problems which would be arduous or even impossible to approach
with “full-dimensional” nonparametric methods. They also maintain the ease of inter-
pretation of univariate nonparametric smooths, since the estimates of the component
functions can be plotted separately. The additive model is particularly useful in cases
where the model underlying the data can be assumed to be (approximately) additive
in the covariates.

An interesting special case of the additive model is the semiparametric additive
model (SAM in what follows), where some of the additive component functions are
parametric terms while the remaining ones are unspecified and are estimated non-

parametrically. Such a model can be written as

P D
E(Y|Xy,....Xp, Z1,...,Zp) = > B X, 4+ > ma(Za). (1)
p=1 d=1

Such semiparametric additive model might occur, for instance, when the main interest
of a study is to precisely quantify the effect of a number of covariates Xi,..., Xp
on the dependent variable Y, but the relationship is observed in the presence of
“nuisance” covariates Zi, ..., Zp. The use of parametric terms for the X, if properly
specified, allows for easily interpretable inference about its effect on Y, while by
modelling the mgy(Z,) nonparametrically, one avoids the potential introduction of
bias in the estimated relationship between the X, and Y. This problem can be
particularly severe when the X, and Z; are correlated. Another case would be when
the researcher is fairly confident about the shape of the relationship between the
X, and Y, but not about that of the other covariates. By modeling some terms by
the appropriate parametric model, the risk of overfitting the model is reduced by
decreasing the overall “degrees of freedom” of the fit (Hastie and Tibshirani (1990)).
A common example of the latter case is when the X, are dummy (0/1) variables, so
that nonparametric regression would be meaningless.

Since SAM is a special case of the additive model, it is highly desirable to be able
to compute estimates of the former with the same method as the latter, i.e., with the
backfitting algorithm of Buja et al. (1989). If D = 1, backfitting is unnecessary, since
an equivalent, non-iterative solution exists for the estimators of a SAM (see Section

2.1 below). This is no longer the case for higher-dimensional models.



For D = 1, the SAM, often called the partially linear model in this case, has
been previously studied by several authors. Early results by Heckman (1986) for the
balanced analysis of covariance case indicated that a penalized likelihood approach
(equivalent to backfitting) indeed resulted in a y/n-consistent estimator for the vec-
tor (B1,...,0p). Rice (1986) showed that this result does not hold in general. In
the case of kernel regression, Speckman (1988) also showed that when the “typical”
rates of convergence are used for the nonparametric terms, /n-consistency cannot
be achieved. The latter author therefore suggests an alternative estimator which
achieves this rate, but is no longer equivalent to a backfitting estimator. The asymp-
totic properties of that alternative estimator are further studied by Gao (1995) and
Linton (1995). The latter author also proposes a plug-in bandwidth selection method.
A drawback of that estimator is that it does not easily generalize to the case D > 1.
Recently, Carroll et al. (1997) studied generalized partially linear single-index mod-
els, a class of models that include the partially linear model as a special case. The
estimator the propose is also different from the backfitting estimator and does not
generalize easily to the case D > 1.

In this article, we show that the reason for the lack of /n-consistency of back-
fitting estimators is due to the wrong choice of bandwidth, and that, by selecting
a more appropriate bandwidth, the optimal convergence rate can be achieved with-
out adjustments to the estimator itself. This same result was found by Carroll et al.
(1997) for their estimator. We also show that traditional bandwidth selection methods
such as cross-validation and plug-in are unable to estimate this optimal bandwidth,
though for unrelated reasons. A different approach is therefore necessary to select the
bandwidth. We propose a bandwidth selection method based on the EFmpirical Bias
Bandwidth Selection (EBBS) method of Ruppert (1997), which is used in conjunction
with backfitting to estimate the parameters in SAM.

Asymptotics suggest that the bandwidth that is optimal for estimating the 3;’s
will be smaller than the bandwidth optimal for estimating m, and this is what we
found in our finite-sample study. In the simple case where P = D = 1, asymptotics
show that the bias of B caused by bias in m depends on the covariance between X
and m"(Z), and this effect was also found in the simulations.

In Section 2, the theoretical properties of the SAM estimator are studied, both
when the nonparametric model term is univariate (Section 2.1) and multivariate (Sec-

tion 2.2). Section 3 describes the proposed bandwidth selection method, and Section



4 reports on a simulation experiment. All proofs are in the Appendix.

2 Asymptotic Properties

2.1 A Simple Case

We first study the case where the Z; are univariate, so that the model under consid-
eration is

Y, = XzTﬁ +m(Z;) + &,
with X; = (Xi1,..., Xip)?, B8 = (B1,...,8p)" and where the errors e; are iid with

mean 0 and variance 0'2

. This is the partially linear model studied by Speckman
(1988). The backfitting estimators for 8 and m = (m(7;),...,m(Z,))! are equiva-

lent to

A

B = (XT1-9)X)'X(1-8)Y
Th’ = S(Y_XTB)v

with X = [X ;... X,]T, Y = (Y1,...,Y,)T and similarly for Z, and S the smoother
matriz for estimating E(-|Z) by backfitting. We will only consider local linear regres-
sion as the smoothing method in what follows. Generalization to local polynomials

of higher degree is straightforward (see Opsomer and Ruppert (1997)).
T

. evaluated

The rows of the smoother matrix correspond to the smoother vectors s
at the observation points, z = Z;,..., Z,. For local linear regression, we write S =
[s7, -+ 82,]%, where
st =el(ztw.z)"'zTw,

z

with el = (1,0), W, = diag{%]&’(%), cee %K(%)} for some kernel function A
and

1 (741 —=2)

z.=|:
1 (Z,—2)

One often overlooked fact about this type of models is that in general, the estima-
tors are not well-defined when one of the parametric terms is taken to be an intercept
(X;, is a constant for all 4, for some variable p). In that case, (X' (I — S)X) is
singular, since it contains a column of zeroes. This is true for any smoothing method

which preserves constants, including local linear regression. Simple solutions to this



problem are to center the smoothers, i.e., replace S by §* = (I — 11/n)S, and/or
center all variables around their sample means. The former is a common adjustment
for additive models, and it is in general necessary to ensure uniqueness of the solu-
tions of the backfitting algorithm (Opsomer and Ruppert (1997)). For simplicity, we
will assume here that the covariates in the model have been centered.

The moments of K are written as p,(K) = [« K(u)du. We make the following

assumptions:

(AS.I) The kernel K is bounded and continuous and has compact support. Also,
1;(K) = [uw K (u)du = 0 for all odd j and jz(K) # 0.

(AS.IT) The density fz(z) is bounded and continuous and has compact support.
Also, fz(z) > 0 for all z € supp(fz).

(AS.III) As n — oo, h — 0 and nh — oo.
(AS.IV) The second derivative of m exists and is bounded and continuous.

These assumptions are standard for local linear regression (see Ruppert and Wand

(1994)). Under these assumptions, we prove in the Appendix:

Theorem 2.1 The conditional bias and variance of[;' can be approximated by:
L3 -8|X,Z) = —Mh2E(VELI’(X'|Z'))_1COV(X' m"(Z;)) + o0,(h?)
9 — 9 1|4 7y 7 D

and
2

Vaf(f3|X,Z) = %E(Var(XAZZ»))_l +0, (% + 1 )

nh

Theorem 2.1 shows that for the “usual” n~'/® rate for the bandwidth, the estimate
of B is not \/n-consistent, since the bias is O,(n~%/%). This is the same result found
by Speckman (1988). It can be remedied by selecting a different bandwidth rate, as

the following corollary makes more precise:
Corollary 2.1 If h o n” for —1 <r < —1/4, then

V(B — B) = N (0,0 E(var(X ] Z:))™") .



Corollary 2.1 shows that for the right choice of bandwidths, the backfitting estima-
tor of B achieves the semiparametric efficiency bound and is in that sense equivalent
to the estimator proposed by Speckman (1988).

Compared to the equivalent expressions from OLS regression, we can see that the
effect of the nonparametrically modelled covariate Z; on VELI’(B ) is to replace var(X;)
by E(var(X;|Z;)) in the denominator. When X; and Z; are independent, the asymp-
totic variance of B is therefore the same as when the model is fully parametric.
Another way to interpret this result is that VELI’(B) for the SAM estimator is asymp-
totically the same as that found when one uses OLS to regress Y; on (X, — E(X,|Z;))
without Z; in the model, which makes sense since 7Z; and (X, — E(X|Z;)) are uncor-
related.

Theorem 2.1 shows that the effect of the correlation between X, and Z; on the
asymptotic bias is through the terms cov(X,;, m"(7;)) and E(var(X,|Z;)). The former
term also depends on the curvature of m through its second derivative. This bias
disappears when X; and Z; are independent.

These asymptotic results are not directly useful to develop a “traditional” plug-
in bandwidth selection method as in Gasser et al. (1991), Ruppert et al. (1995) or
Opsomer and Ruppert (1998), because of the lack of explicit expressions for the
bandwidth-dependent terms in the Mean Squared Error.

In the case of cross-validation, the difficulties involved in selecting a bandwidth

appropriate for B are even more fundamental. The cross-validation function is defined

as

CV(h) = 230 - BTVX - (),

nin
where the superscripts (—¢) denote the ith leave-one-out estimators. In this quantity,
the slowest converging estimator is 72(=9, so that as n — oo, its behavior will domi-
nate that of [3(_2). While this method might therefore be appropriate for estimating

m, it does not provide satisfactory bandwidth choice for 3.

2.2 Extension to General Backfitting Estimators

Consider model (1) with P, D > 1, to be estimated by backfitting with local linear
regression. Since there are now several nonparametric terms, the model is not iden-

tifiable unless restrictions are placed on the functions my. A common assumption

is that E(mg(Zy4)) = 0 for d = 1,..., D, which is achieved by using the centering



adjustment for the smoother matrices (described in Section 2.1) and by explicitly

including an intercept term in the model:
P D
E(Y|X17 s 7XP7 Z17 SRR ZD) =a+ Z ﬁpo + Z md(Zd)‘ (2)
p=1 d=1

While it is not strictly required, we will again assume that the expectation of the
parametric terms is zero, i.e. that E(X,;) =0for p=1,..., P, so that E(Y;) = a. In
practice, this implies replacing the covariates X,; by X,; — X, and estimating o by
Y. To simplify the notation, we assume here that both the X,; and Y; are centered
around 0 and ignore « in the discussion that follows.

Let S7%,d = 1,..., D represent centered local linear smoother matrices with cor-
responding bandwidths h4. The estimators for the SAM are defined as the solutions
of the backfitting algorithm on the following set of equations

(B = gmomxiw s
my = SHY — XB — Ypparin), d=1,...,D,
where 1y = (My(Z41),...,ma(Zn)T. Alternatively, we can define the SAM estima-
tors non-iteratively as follows. Let W, represent the additive model smoother for ad-
ditive component function my, i.e. the matrix which maps Y to m,. Explicit expres-
sions when D = 2 are given in Hastie and Tibshirani (1990), and recursive expressions
for higher-dimensional models can be found in Opsomer (1996). Let Wy, = S0, W,

represent the additive model smoother corresponding to ma; = my + ...+ mp. Then,

B = (XTI -Wy)X)' XTI -wWy)Y,
my = WY — X3).

These expressions are equivalent to the solutions of the backfitting algorithm, when
that solution is unique. Direct computation of the estimators is rarely performed
with these equations, since backfitting is much more efficient. They allow the theory
developed in Opsomer (1996) to be used to find explicit expressions for the asymptotic
bias and variance of B Since these expressions would be recursive as well as very
complicated, and could not be used to develop a bandwidth selection method, we
only derive the asymptotic convergence rates, showing that the leading terms in this

setting generalize those of Section 2.1. In addition to assumption (AS.I), we need:

(AS.IT") The density fz(z) is bounded and continuous and has compact support.
Also, fz(z) > 0 for all z € supp(fz).
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(AS.IIT) Asn — o0, hy = 0 and nhy - oo ford=1,...,D.

(AS.IV’) The second derivatives of mgy,d = 1,..., D exist and are bounded and

continuous.

Theorem 2.2 The leading terms of the conditional bias and variance are of the fol-

lowing orders:

A D A
B(3 — BIX.Z) = 0,(3 1) and var(B|X . Z) = O,(5),

d=1

so that if hy o n” for some —1 <r < —1/4, d=1,...,D, then B is \/n-consistent.

The proof of Theorem 2.2 is in the Appendix. Theorem 2.2 shows that the SAM
estimator achieves the semiparametric efficiency bound for any D. Using the approach
in Opsomer (1996) and this theorem, it is possible to derive the conditional bias
and variance for the nonparametric terms my, d = 1,..., D and show that their

convergence rates are the same as in the fully nonparametric additive model.

3 Implementing a Bandwidth Selection Method

We develop a bandwidth selection method for estimating the parameters 3y,..., Gp
in the general model (2). The optimal choice for the bandwidth parameters is taken
to be the minimizer of MSE(CTB|X,Z), for a given vector of coefficients ¢. The
specification of ¢ is needed to reduce the criterion for optimality of the bandwidth to
a one-dimensional quantity. Possible choices for ¢ are ¢ = e, = (0,...,0,1,0,...,0)T,
if one primarily interested in estimating 3, accurately, or ¢ = X = (Xi,..., Xp)T,
if prediction for the overall parametric portion of the model is considered most im-
portant. Similarly, to predict Y, 11, the next Y, one would use ¢ = X1, the next
X.

The bandwidth selection method is based on the Empirical Bias Bandwidth Se-
lection (EBBS) method of Ruppert (1997). There are two important advantages to
this approach here:

1. No asymptotic approximation to the variance of CTB is required. Instead, the
exact variance expression is used with only o2, the variance of ¢, to be estimated

from the data. This is especially important for estimation of 3, since unlike the



case where m is estimated, the leading term for the variance in Theorem 2.1
does not depend on A. The dependence of the bandwidth on h occurs only in
the remainder terms. (Actually, there is one asymptotic approximation used
to speed computation of the exact variance. At one place in the algorithm, we
assume that W, is symmetric, though, in fact, this smoother matrix is only

approximately symmetric.)

2. The bias-bandwidth function is estimated directly from the data using as a
model the polynomial form predicted by the asymptotic theory in Section 2.
This is similar in principle to the approach of Fan and Gijbels (1995).

Although EBBS requires several recalculations of the SAM estimates and poten-
tially involves a D-dimensional numerical minimization, the overall computational
burden can be significantly decreased by the use of two simplifications.

First, the backfitting algorithm is sped up by computing the local linear fits on
a grid and them interpolating them to the Z-values in the data. See Opsomer and
Ruppert (1998) for discussion. Second, to avoid a D-dimensional minimization, we

let the bandwidth A, for estimating my in the backfitting algorithm be of the form
hd = bSd

where s, is the sample standard deviation of Z; and b is a univariate smoothing pa-
rameter that we call the “bandwidth factor.” We choose b by minimizing an estimate
of the mean square error (MSE) of CTB. Since the main interest in the procedure
is the minimization of the MSE for B, not that for the 1y, this restriction on the
bandwidths is not likely to result in a significant increase in MSE while it dramati-
cally reduces the computational burden, especially for models with high-dimensional
nonparametric components.

Here is how EBBS is implemented. Let B = {b(1),...,b(N)} be a grid of possible
values of b. Typically N is between 10 and 20 and the values in B are equally spaced
on the log scale, i.e., “log-spaced.” For each b(j) € B, we compute B and Mmys, which
we call B(]) and 1ip(+; 7). We then estimate o2 by

67(j) = =" Y2 (Vi — XTB() — ronr(Zis ) - (3)
i=1

A

Next, Var(3(7)) = o?3(j) with

() ={XTT =W)X} HXT (I - W) (I - W) XHXT (I - W)X},
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where the dependence of %(j) on b(j) is through Wy, The smoother matrix Wy,
is not actually computed. Rather, the product W ;X is found by smoothing each
column of X against Zi,...,Zp by backfitting. Also, we use the approximation
(W)X ~ Wy X which is justified by the near symmetry of W, for each d.

To estimate the bias of CTB at b(j), we make use of the approximation

E(c'B) =c [3—|—Zab M o(bT () as b(j) — 0, (4)

where the a; are constants. Although an asymptotic expression could be found for
each a; and estimates of the quantities in this expression could be estimated, we prefer
not to use such a “plug-in” approach. Rather, at each b(j), a;, t = 1,...,T are directly
estimated by fitting the “data” {(b(k), CTB(]C)) ck=j—ki,...,7+ky}. Here ky, ko,
and T are tuning parameters that must be chosen by the user such that ky + ks > T
since we will estimate T' 4+ 1 parameters using k; + ko “data” points. A rather large
simulation experiment reported in the next section shows that the performance of
EBBS is insensitive to the choice of tuning parameters, at least within the range of
values in the experimental region. We recommend N =18, k; =1, k=2, and T =1
as reasonable values within that region.

The estimates of ay,...,ar at b(j), a:(j),t =1,...,T, are found by minimizing

Itk

Z {CTﬁ Z at 1-|—t}2
k= ] kl
over ay(j),7 = 0,...,T. The extra parameter, ao(j), represents ¢ 3 (see (4)) but
ao(7) is not actually used as an estimate of ¢! .
Then the bias of ¢ 3 when b(j) is the bandwidth is estimated by =7, a,(5)b(5)'*.
Thus

D))+ 62020,

M’ﬂ

MSE(b (

t:l

for j = ky,..., M —ky. The final bandwidth factor bis the value of b(y) that minimizes
M/gE(b(])) over {b(ki+1),...,b6(N—Fk2)}. In Ruppert (1997), the first local minimizer
of the estimated MSE is used, rather than the global minimizer. A disadvantage of
using the global minimizer is that very large bandwidths might be selected since the
bias model (4) breaks down at large bandwidths. However, this problem did not occur

in our experiment and we found the global minimizer superior to the local minimizer.
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As an alternative to estimating o with the current trial bandwidth as in (3), one
could use residuals using a bandwidth optimized for estimation of o? as in Opsomer
and Ruppert (1998). One could also adjust the divisor n in (3) to correct for the
bias due to estimation of # and m. However, these refinements would increase the

2

computational cost and do not seem necessary if, as here, o* is merely a nuisance

parameter.

4 Simulations

4.1 A study of the EBBS tuning parameters

EBBS has tuning parameters N, T', ky, and ko. To find good values for these param-
eters, we performed a Monte Carlo experiment. In the experiment we used N, T, ky,
and V as factors. Here we define V = k; + ky — 1" as the excess number of “data”

points over the number of parameters. Data were generated according to the model

Yiziﬁp)(ip—l—Zsin(fZi)—l—q,izl,...,n (5)
p=1

where the ¢; where N(0,0%). The Z; were equally spaced on [0, 1] and X;, = pZ; +
(1 — p)U;, where the U;; where iid Unif(0,1). We consider only estimation of the
first component of 3 so that ¢= (1,0,...). Although the Z; are equally-spaced rather
than random, the theory in Section 2 is the same as if they were iid Unif(0,1). We
chose them equally-spaced in this simulation study so that the minimum possible

bandwidth did not depend on the sample
To study a wide variety of sampling situations, f, n, o, P, and p were varied as
factors, which we will call the “data factors” to distinguish them from N, T', by, and V'
which we will calling “EBBS factors.” The levels of all factors are shown in Table 1.
Each data factor was put at two widely spaced levels to represent rather different
conditions. For the factor f we chose values 3 and 6, because with f = 6 there is
a large covariance between X and m”(Z) while for f = 3 there is little covariance.
Thus, we expect f = 3 and 6 to be low bias and high bias cases, respectively. The
EBBS factors V', N, and T were each set at three levels with the aim that one of the
three levels would be nearly optimal. The factor k; was only set at two levels, 0 and
1, since k; was expected to be of lesser importance. A complete unreplicated design

of 1728 runs was used, with the higher order interactions being used to estimate error.
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Factor Levels

n 50, 250
P 0.2, .6
o 0.5, 2
f 3,6
P 1,4
ky 0,1
V 0,1, 2
N 12, 18, 24
T 1,2,3

Table 1: Factor levels for the study of the EBBS tuning parameters.

The response was 10g(|[§1 — B1] + .001). The log transformation was used with the
hope that it would reduce interactions, since the asymptotic expected absolute error
is multiplicative in n and o.

EBBS used bandwidth factors between a lower limit of .05 (n = 250) or .1 (n = 50)
and an upper limit of 2. We looked at two variations on EBBS, one that used the
bandwidth that globally minimized the estimated MSE and one that selected the
first local minimizer. The globally minimizer proved more accurate, so that global
minimization is recommended in practice and we will only report results for this
method.

Main effects and interactions among the data factors were mostly as expected,
e.g., n, o, and P had large effects and smaller but significant interactions. However,
the effects of p and f were not significant, which was somewhat surprising. Although
these factors affect bias, apparently they do not affect the accuracy ofB when using
EBBS. EBBS merely selects small bandwidths in high bias cases; see the example
below.

We found no main effects or interactions among the EBBS factors and no inter-
actions between the EBBS factors and the data factors. Since we varied five data
factors over wide ranges, this is strong evidence that the choice of tuning parameters
is not important. We feel that any combination of the tuning parameter values in

Table 1 can be recommended.
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n=250,f=6,p=0.4
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Figure 1: Conditional bias, variance, and MSE for five independent samples (dashed)
and their averages (solid).

4.2 An example

We looked in detail at a special case of the above study with n =250, P =1, p = 4,
and o = .5.

First we studied the variability in the conditional bias and variance. Figure 1
shows the exact conditional bias, variance, and MSE for each of five independent
samples (dashed) and their averages over the five samples (solid) for the case f = 6.
One can see that there is considerable variance in the conditional variance and, for
larger bandwidths, in the conditional bias. However, for each sample there is a range
of the bandwidth factor from 0.1 to 0.2 where the exact conditional MSE is nearly
minimized. EBBS does aim to find the bandwidth that minimizes conditional EBBS,
which seems proper, but EBBS should also be finding the bandwidth that minimizes
unconditional MSE.
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We examined the cases f = 3 and 6 to study the effects of bias on EBBS. The
tuning parameters were N = 18, ky = 1, by = 2, and T' = 1. EBBS used 18 bandwidth
factors log-spaced between .05 and 2. Since k; = 1 and ky = 2, the smallest and two
largest bandwidth factor could not be selected by EBBS. Thus, the bandwidth factors
that could be selected ranged from b(ky +1) = 0.062 to b(N — kz) = 1.29. In Figure 2
we show the squared bias, variance, and MSE for estimation of 3 as functions of a
fixed bandwidth as estimated from 500 samples. Panels (a) and (b) are the low and
high bias cases, respectively. In panel (a) we see that bias is negligible. As would
be expected, the variance increases as the bandwidth factor converges to 0. The
variance also increases slightly as the bandwidth factor increases beyond 1; since the
remainder term in the variance expression in Theorem 2.1 is not monotonic in h so
this variance behavior is not so surprising. The variance of B does not depend on
m so that variance function in (b) is the same as in (a). The bias in (b) increases
rapidly as the bandwidth factor increases beyond 0.2.

We applied EBBS to 500 samples each from f = 3 and 6. In Figure 3, histograms
of the EBBS-chosen bandwidth factors are given. Note that in the high bias case,
panel (b), EBBS avoids the high bias region while in panel (a) EBBS tends to select
larger bandwidths but largely avoid the region where the variance begins to increase.

We looked at m in the case f = 6 for various values of the bandwidth factor b. For
b = .1, a value typical of what EBBS chooses and where the MSE of B is essentially
minimized (see Figure 2), m is noticeably undersmoothed. For b = .2, the largest
bandwidth factor that EBBS has much probability of choosing and the point where
the MSE starts to increase, m appears to have the right amount of smoothness. The
bias in m does not become noticeable until b is in the range of .3 to .4. These results
agree with our asymptotics that show that the bandwidth optimal for B converges to
zero more quickly that the bandwidth optimal for m.

4.3 Computation time and performance as n — o

To check the execution time we experimented with P = D = 1 and with 100 values of
n log-spaced between 50 and 40,000. Clock time for execution of a MATLAB routine
on a SPARC Ultra 1 was very nearly linear in n: time (in seconds) ~ .83 + .0142 n.
Thus, when n = 500 execution time is under 8 seconds while execution time is 2.25

seconds for n = 100.
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Figure 2: Fstimated squared bias (dashed), variance (dotted), and mean square error
(solid) OfB as functions of the bandwidth factor for smoothing 7. The estimates are
based on 500 Monte Carlo samples, each of 250 observations. (a) m(z) = 2sin(3z);
the squared bias is nearly zero so the mean square error overprints the variance and
the squared bias overprints the horizontal axis. (b) m(z) = 2sin(62); the squared bias
grows rapidly with the bandwidth.

15



(@) m(z) =2 sin(3z2)
0.35 ‘ ‘

0.251 1 b

o
N
T
|

0.15f b

relative freq.

0.1r

oo M0 La gy

0.062 0.096 0.148 0.228 0.352 0.544 0.84
bandwidth factor

(b) m(z) = 2 sin(62)
0.4 ‘ ‘

relative freq.
o o
N w
T T
L L

©
=

=Ly

0.062 0.096 0.148 0.228 0.352 0.544 0.84
bandwidth factor

Figure 3: Histograms of EBBS selected bandwidth factors from 500 samples each from,
(a) the low bias case of f =3, and (b) the high bias case of f = 6. The bins are of

equal widths, but this is not apparent because the x-axis is logarithmic.
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Figure 4: Plot of loglo(?)) against log o n with a spline smooth (solid) and a linear fit
(dashed) to the data.

We also plotted log,,(b) against log,y(n) to see if the behavior of b was similar
to what asymptotic theory predicts, i.e., whether the plot was linear with a slope of
less than —1/4. Recall from Corollary 2.1 that r < —1/4 is necesary for B to be
\/n-consistent. In Figure 4 we see that the plot is somewhat linear, though a spline
smooth indicates some curvature. A linear fit to the data has a slope of —.27 which is
just below —1/4. If one fits to only the last 70% of the data is slope is nearly —1/3.

Figure 5 is a plot of the logarithms of the conditional biases for five samples
versus the logarithms of the bandwidth factor. There is a reference line with a slope
of 2. One can see that the plots are nearly linear with slopes of 2 as predicted by
asymptotics.

In summary, the results in Figure 4 are roughly consistent with asymptotics.

5 Discussion

Our theoretical work shows that backfitting can provide y/n-consistent estimates of
the parametric part, 3, of a semiparametric additive model (SAM), provided the
bandwidth is chosen properly, i.e., not by traditional methods such as cross-validation.

We proposed a method of bandwidth selection and studied this method in a de-

tailed simulation where five data factors and four tuning parameters were varied. The
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Figure 5: Log of absolute conditional bias versus log of the bandwidth factor. Dashed
curves are for five independent samples and the solid curve is their average. A thick
dashed and dotted line with a slope of 2 is plotted for reference.

method is insensitive to the choice of tuning parameters over the range of the data
factors, indicating that the method can be applied in practice without needing to
specify the tuning parameters carefully. Nonetheless, to provide guidance for data
analysis, we do suggest default values of the tuning parameters.

The estimator B is relatively insensitive to the choice of bandwidth, provided the
bandwidth is not so large that bias becomes a factor. In the simulation study, the
proposed bandwidth methods avoided the high bias region.

The bandwidth selector requires that B be computed on a grid of trial band-
widths, but this is no more computation than required by, say, cross-validation. The
computational burden of our selector is not onerous for data sets less than, say, 1000
observations. If much larger data sets were routinely used for SAM modeling, then a
binned implementation of backfitting might be contemplated.

One feature of the bandwidth selector is that when we are estimating ¢’ 3 for some
fixed vector ¢, then the selected bandwidth depends on ¢. This is to be expected since
the optimal bandwidth will also depend on ¢. In practice, one is usually interested
in many choices of ¢ and computing a separate bandwidth for each is not feasible. In
that case, one could estimate a bandwidth for one interesting value of e, say ¢ = X,

and then use that bandwidth for all other ¢’s as well.
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In this article, we have treated the nonparametric component, m(z), as a nuisance
parameter. Obviously, there will be situations where m is at least as much interest
as 3, but to keep our paper focused we have not considered this case.

As mentioned in Section 2.2, backfitting is more computationally efficient than
direct estimation for the estimators studied in this article. Recently, estimators based
on “marginal integration” have been proposed, e.g., by Linton and Nielsen (1995)
and Fan, Hardle, and Mammen (1998). These estimators can be calculated explicitly
rather than by backfitting. Backfitting has become common in practice, probably
due to the influence of Hastie and Tibshirani’s (1990) book and the availability of
software in Splus. A comparison of backfitting with marginal integration methods

would be quite useful but is beyond the scope of this article.
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A Appendix: Outlines of Proofs

Proof of Theorem 2.1: For the conditional bias, we need to compute

-1 1
— XTI - S)m.

. 1
B(AIX,2)- B = (XTI - $)X)
n n
Consider first the matrix %XT(I - S5)X = %XTX — %XTSX. Using the same
reasoning as in the proof of Theorem 2.1 in Ruppert and Wand (1994), it is straight-

forward to show that

1 1 n n
—XTSX = =3 > X, X[s5];
n n =1 j5=1
1
= BIXEX!17))+0, (1 + ). (6)
n

The O,(h*) term in the approximation comes from the off-diagonal terms in the sum

(¢ # j), while the O,(--) term comes form the diagonal ones (i = j). Hence,

(Axrir-s)x) " = (poxex - soxiz) " <o, (4 L),
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The order of this approximation can be derived using (6) and a cofactor expansion
for the inverse (Horn and Johnson (1985), p.21).

From Opsomer and Ruppert (1997), we know that (I —S)m = —%&hzl)gm +
0,(h?), with D? the rth derivative operator with respect to Z, and hence

lXT(I —S)m = —%ME(XM”(ZZ»)) + 0,(h?),

n

leading immediately to the desired bias approximation, since cov(X,;, m"(Z;)) =
E(X.,m"(Z;)) by centering.
For the conditional variance of B, we need to approximate

1

var(3|1X,2) = o (XT(I- S)X)_l (XTI - 8)(I-8")X)(X"(I-8)X)
= & (XTI-95X)"
+(XT(I-9)X)" (X"S"X - X"55"X) (X"(I-$)X) .

We therefore need to compute %XTSTX and %XTSSTX. The former is approxi-
mated by the same quantity as %XTSX as computed in (6), while for the latter,

1 1 n n n
—XTSSTX = =333 XX [sz]ils7,]k (7)
n ni—q =1 k=1
Let K * K denote convolution of functions the kernel A* with itself. Then, using
the approach as in the proof of Theorem 2.1 in Ruppert and Wand (1994) for the

asymptotic variance, we can show that

n

: kz—:l[szi]k[szj]k = nl_h(K * ) (Zi ; Zj) fz(lzz')

so that the terms in (7) for which i # j # k, converge to E(X;E(X;|Z:)T) + O,(h?).
The rate at which these terms in (7) converge to this result is bounded by the rate

(1+0,(h%)),

of their standard deviation. We can show that

e (xoxtn (A52) 6 (252) i) - o)

so that the standard deviation of the non-diagonal terms in (7) is O,(1/vn3h?). All
1

other terms in the sum (7) can be shown to be of order O,(=). Therefore,

nh
I orar l orear 2 1
—X'S'X —-—-X"8S' X =0,(h*+ —)
n n nh
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and the variance result immediately follows.

Proof of Theorem 2.2: For the bias result, we note
E(B-B8IX.2)=—(X"(I-Wu)X)"' X By,

where By is the bias for fitting an additive model to the D nonparametric terms in
(2). A reasoning analogous to that in the proof of Theorem 3.1 of Opsomer (1996)

shows

1 1
SXTBy = XTmy ZXTI SiWi ) Qi — SiBA ) + oy (k).

where the superscript (—d) indicate the smoother and bias for a (D — 1)-dimensional

additive model with mean function m; — my. Since %XTmM = 0,(1/+/n) and
_ 1
(I - SiW5 ) =T+ 0,(-), (8)
we can show recursively that %XTBM = 0,(X7_, h21p). Similarly,

1 1 2 _
XTI -wWy)X = =S XTI -s;w() (1 - 55X

n n =
D 1
— X EXTI20) (4 0,(1)
For the variance, (8) and the fact that XTSZ = E(X|Z4) (1 + O,(1)) are used

to establish the rate of the leading term.
|
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