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Abstract. Agent-based modelling approaches are usually based on logical 
languages, whereas in many areas dynamical system models based on 
differential equations are used. This paper shows how to model complex agent 
systems, integrating quantitative, numerical and qualitative, logical aspects, and 
how to combine logical and mathematical analysis methods. 

1   Introduction 

Existing models for complex systems are often based on quantitative, numerical 
methods such as Dynamical Systems Theory (DST) [23], and more in particular, 
differential equations. Such approaches often use numerical variables to describe 
global aspects of the system and how they affect each other over time; for example, 
how the number of predators affects the number of preys. An advantage of such 
numerical approaches is that numerical approximation methods and software 
environments are available for simulation. 

The relatively new agent-based modelling approaches to complex systems take into 
account the local perspective of a possibly large number of separate agents and their 
specific behaviours in a system; for example, the different individual predator agents 
and prey agents. These approaches are usually based on qualitative, logical languages. 
An advantage of such logical approaches is that they allow (automated) logical 
analysis of the relationships between different parts of a model, for example 
relationships between global properties of the (multi-agent) system as a whole and 
local properties of the basic mechanisms within (agents of) the system. Moreover, by 
means of logic-based approaches, declarative models of complex systems can be 
specified using knowledge representation languages that are close to the natural 
language. An advantage of such declarative models is that they can be considered and 
analysed at a high abstract level. Furthermore, automated support (e.g., programming 
tools) is provided for manipulation and redesign of models. 

Complex systems, for example organisms in biology or organisations in the socio-
economic area, often involve both qualitative aspects and quantitative aspects. In 
particular, in the area of Cognitive Science, the lower-level cognitive processes of 
agents (e.g., sensory or motor processing) are often modelled using DST-based 
approaches. Furthermore, at the global level the dynamics of the environment, in 
which agents are situated, is often described by continuous models (i.e., models based 
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on differential equations); e.g., dynamic models of markets, or natural environmental 
oscillations. Yet agent-based (logical) languages are often used for describing high-
level cognitive processes of agents (e.g., processes related to reasoning) and agent 
interaction with the environment (e.g., agent actions, execution of tasks).  

It is not easy to integrate both types of approaches in one modelling method. On 
the one hand, it is difficult to incorporate logical aspects in differential equations. For 
example, qualitative behaviour of an agent that depends on whether the value of a 
variable is below or above a threshold is difficult to describe by differential equations. 
On the other hand, quantitative methods based on differential equations are not usable 
in the context of most logical, agent-based modelling languages, as these languages 
are not able to handle real numbers and calculations. 

This paper shows an integrative approach to simulate and analyse complex 
systems, integrating quantitative, numerical and qualitative, logical aspects within one 
expressive temporal specification language. Some initial ideas behind the simulation 
approach proposed in this paper were described in [5, 6]. The current paper elaborates 
upon these ideas by proposing more extensive means to design precise, stable, and 
computationally effective simulation models for hybrid systems (i.e., comprising both 
quantitative and qualitative aspects). Furthermore, it proposes techniques for analysis 
of hybrid systems, which were not previously considered elsewhere. The developed 
simulation and analysis techniques are supported by dedicated tools. 

In Section 2, this language (called LEADSTO) is described in detail, and is applied 
to solve an example differential equation. In Section 3, it is shown how LEADSTO 
can solve a system of differential equations (for the case of the classical Predator-Prey 
model), and how it can combine quantitative and qualitative aspects within the same 
model. Section 4 demonstrates how existing methods for approximation (such as the 
Runge-Kutta methods) can be incorporated into LEADSTO, and Section 5 shows how 
existing methods for simulation with dynamic step size can be incorporated. Section 6 
demonstrates how interlevel relationships can be established between dynamics of 
basic mechanisms (described in LEADSTO) and global dynamics of a process 
(described in a super-language of LEADSTO). Finally, Section 7 is a discussion. 

2   Modelling Dynamics in LEADSTO  

Dynamics can be modelled in different forms. Based on the area within Mathematics 
called calculus, the Dynamical Systems Theory [23] advocates to model dynamics by 
continuous state variables and changes of their values over time, which is also 
assumed continuous. In particular, systems of differential or difference equations are 
used. This may work well in applications where the world states are modelled in a 
quantitative manner by real-valued state variables. The world’s dynamics in such 
application show continuous changes in these state variables that can be modelled by 
mathematical relationships between real-valued variables. However, not for all 
applications dynamics can be modelled in a quantitative manner as required for DST. 
Sometimes qualitative changes form an essential aspect of the dynamics of a process. 
For example, to model the dynamics of reasoning processes usually a quantitative 
approach will not work. In such processes states are characterised by qualitative state 
properties, and changes by transitions between such states. For such applications often 
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qualitative, discrete modelling approaches are advocated, such as variants of modal 
temporal logic, e.g. [20]. However, using such non-quantitative methods, the more 
precise timing relations are lost too. For the LEADSTO language described in this 
paper, the choice has been made to consider the timeline as continuous, described by 
real values, but for state properties both quantitative and qualitative variants can be 
used. The approach subsumes approaches based on simulation of differential or 
difference equations, and discrete qualitative modelling approaches. In addition, the 
approach makes it possible to combines both types of modelling within one model. 
For example, it is possible to model the exact (real-valued) time interval for which 
some qualitative property holds. Moreover, the relationships between states over time 
are described by either logical or mathematical means, or a combination thereof. This 
will be explained in more detail in Section 2.1. As an illustration, in Section 2.2 it will 
be shown how the logistic model for population growth in resource-bounded 
environments [4] can be modelled and simulated in LEADSTO. 

2.1   The LEADSTO Language 

Dynamics is considered as evolution of states over time. The notion of state as used 
here is characterised on the basis of an ontology defining a set of properties that do or 
do not hold at a certain point in time. For a given (order-sorted predicate logic) 
ontology Ont, the propositional language signature consisting of all state ground atoms 
(or atomic state properties) based on Ont is denoted by APROP(Ont). The state 
properties based on a certain ontology Ont are formalised by the propositions that can 
be made (using conjunction, negation, disjunction, implication) from the ground 
atoms. A state S is an indication of which atomic state properties are true and which 
are false, i.e., a mapping S: APROP(Ont) → {true, false}.  

To specify simulation models a temporal language has been developed. This 
language (the LEADSTO language [7]) enables to model direct temporal 
dependencies between two state properties in successive states, also called dynamic 
properties. A specification of dynamic properties in LEADSTO format has as 
advantages that it is executable and that it can often easily be depicted graphically. 
The format is defined as follows. Let α and β be state properties of the form 
‘conjunction of atoms or negations of atoms’, and e, f, g, h non-negative real numbers. 
In the LEADSTO language the notation α →→e, f, g, h β (also see Fig. 1), means: 

 

If state property α holds for a 
certain time interval with duration 
g, then after some delay (between e 
and f) state property β will hold for 
a certain time interval of length h. 

An example dynamic 
property that uses the LEADSTO 
format defined above is the 
following: “observes(agent_A, 

food_present) →→ 2, 3, 1, 1.5  beliefs(agent_A, food_present)”. Informally, this example expresses 
the fact that, if agent A observes that food is present during 1 time unit, then after a 
delay between 2 and 3 time units, agent A will belief that food is present during 1.5 
time units. In addition, within the LEADSTO language it is possible to use sorts, 
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Fig. 1. Timing relationships for LEADSTO 
expressions 
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variables over sorts, real numbers, and mathematical operations, such as in 
“has_value(x, v) →→ e, f, g, h  has_value(x, v*0.25)”. Next, a trace or trajectory γ over a state 
ontology Ont is a time-indexed sequence of states over Ont (where the time frame is 
formalised by the real numbers). A LEADSTO expression α →→e, f, g, h β, holds for a 
trace γ if: 

∀t1 [∀t [t1–g ≤ t < t1 ⇒ α holds in γ at time t ] ⇒ ∃d [e ≤ d ≤ f & ∀t' [t1+d ≤ t' < t1+d+h ⇒ β holds in γ at time t' ] 

To specify the fact that a certain event (i.e., a state property) holds at every state 
(time point) within a certain time interval a predicate holds_during_interval(event, t1, t2) 
is introduced. Here event is some state property, t1 is the beginning of the interval and 
t2 is the end of the interval. 

An important use of the LEADSTO language is as a specification language for 
simulation models. As indicated above, on the one hand LEADSTO expressions can 
be considered as logical expressions with a declarative, temporal semantics, showing 
what it means that they hold in a given trace. On the other hand they can be used to 
specify basic mechanisms of a process and to generate traces, similar to Executable 
Temporal Logic [3]. More details on the semantics of LEADSTO can be found in [7]. 

2.2   Solving the Initial Value Problem in LEADSTO: Euler’s Method 

Often behavioural models in the Dynamical Systems Theory are specified by systems 
of differential equations with given initial conditions for continuous variables and 
functions. A problem of finding solutions to such equations is known as an initial 
value problem in the mathematical analysis. One of the approaches for solving this 
problem is based on discretisation, i.e., replacing a continuous problem by a discrete 
one, whose solution is known to approximate that of the continuous problem. For this 
methods of numerical analysis are usually used [22]. The simplest approach for 
finding approximations of functional solutions for ordinary differential equations is 
provided by Euler’s method. Euler’s method for solving a differential equation of the 
form dy/dt = f(y) with the initial condition y(t0)=y0 comprises the difference equation 
derived from a Taylor series: 
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where only the first member is taken into account: yi+1=yi+h* f(yi), where i≥0 is the step 
number and h>0 is the integration step size. This equation can be modelled in the 
LEADSTO language in the following way: 

• Each integration step corresponds to a state, in which an intermediate value of y 
is calculated.  

• The difference equation is modelled by a transition rule to the successive state in 
the LEADSTO format.  

• The duration of an interval between states is defined by a step size h.  

Thus, for the considered case the LEADSTO simulation model comprises the rule: 

has_value(y, v1) →→ 0, 0, h, h  has_value(y, v1+h* f(v1)) 
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The initial value for the function y is specified by the following LEADSTO rule: 

holds_during_interval(has_value(y, y0), 0, h) 

By performing a simulation of the obtained model in the LEADSTO environment 
an approximate functional solution to the differential equation can be found.  

To illustrate the proposed simulation-based approach based on Euler’s method in 
LEADSTO, the logistic growth model or the Verhulst model [4] which is often used 
to describe the population growth in resource-bounded environments, is considered: 
dP/dt = r*P(1-P/K), where P is the population size at time point t; r and K are some 
constants. This model corresponds to the following LEADSTO simulation model: 
has_value(y, v1) →→ 0, 0, h, h  has_value(y, v1+ h*r* v1*(1-v1/K)). The simulation result of this 
model with the parameters r=0.5 and K=10 and initial value P(0)=1 is given in Figure 2. 

 

Fig. 2. Logistic growth function modelled in LEADSTO with parameters r=0.5, K=10, P(0)=1 

3   Modelling the Predator-Prey Model in LEADSTO 

The proposed simulation-based approach can be applied for solving a system of 
ordinary differential equations. In order to illustrate this, the classical Lotka-Volterra 
model (also known as a Predator-Prey model) [21] is considered. The Lotka-Volterra 
describes interactions between two species in an ecosystem, a predator and a prey. 
The model consists of two equations: the first one describes how the prey population 
changes and the second one describes how the predator population changes. If x(t) and 
y(t) represent the number of preys and predators respectively, that are alive in the 
system at time t, then the Lotka-Volterra model is defined by:   dx/dt = a*x - b*x*y   ;  
dy/dt = c*b*x*y - e*y  where the parameters are defined by: a is the per capita birth rate of 
the prey, b is a per capita attack rate, c is the conversion efficiency of consumed prey 
into new predators, and e is the rate at which predators die in the absence of prey. To 
solve this system, numerical methods derived from a Taylor series up to some order 
can be used. In the following section it will be shown how Euler’s (first-order rough) 
method can be used for creating a LEADSTO simulation model for finding the 
approximate solutions for the Predator-Prey problem. After that, in Section 3.2 it will 
be demonstrated how the generated LEADSTO simulation model can be extended by 
introducing qualitative behavioural aspects in the standard predator-prey model. 
Section 3.3 briefly presents a more elaborated example of a LEADSTO simulation 
model combining quantitative and qualitative aspects of behaviour, addressing 
simulation of human conditioning processes. 
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3.1   The LEADSTO Language 

Using the technique described in Section 2.2, the Lotka-Volterra model is translated 
into a LEADSTO simulation model as follows: 

            has_value(x, v1)  ∧ has_value(y, v2) →→ 0, 0, h, h  has_value(x, v1+h*(a*v1-b*v1*v2)) 
has_value(x, v1)  ∧ has_value(y, v2) →→ 0, 0, h, h  has_value(y, v2+h*(c*b*v1*v2-e*v2)) 

The initial values for variables and functions are specified as for the general case. 
Although Euler’s method offers a stable solution to a stable initial value problem, a 
choice of initial values can significantly influence the model’s behaviour. More 
specifically, the population size of both species will oscillate if perturbed away from 
the equilibrium. The amplitude of the oscillation depends on how far the initial values 
of x and y depart from the equilibrium point. The equilibrium point for the considered 
model is defined by the values x=e/(c*b) and y=a/b. For example, for the parameter 
settings a=1.5, b=0.2, c=0.1 and e=0.5 the equilibrium is defined by x=25 and y=7.5. Yet 
a slight deviation from the equilibrium point in the initial values (x0=25, y0=8) results in 
the oscillated (limit cycle) behaviour. 

3.2   Extending the Standard Predator-Prey Model with Qualitative Aspects 

In this section, an extension of the standard predator-prey model is considered, with 
some qualitative aspects of behaviour. Assume that the population size of both 
predators and preys within a certain eco-system is externally monitored and controlled 
by humans. Furthermore, both prey and predator species in this eco-system are also 
consumed by humans. A control policy comprises a number of intervention rules that 
ensure the viability of both species. Among such rules could be following: 

- in order to keep a prey species from extinction, a number of predators should be 
controlled to stay within a certain range (defined by pred_min and pred_max); 

- if a number of a prey species falls below a fixed minimum (prey_min), a number of 
predators should be also enforced to the prescribed minimum (pred_min); 

- if the size of the prey population is greater than a certain prescribed bound 
(prey_max), then the size of the prey species can be reduced by a certain number 
prey_quota (cf. a quota for fish catch). 

These qualitative rules can be encoded into the LEADSTO simulation model for 
the standard predator-prey case by adding new dynamic properties and changing the 
existing ones in the following way:  

has_value(x, v1) ∧ has_value(y, v2) ∧ v1< prey_max →→ 0, 0, h, h   has_value(x, v1+h*(a*v1-b*v1*v2)) 
has_value(x, v1)  ∧ has_value(y, v2) ∧ v1 ≥ prey_max →→ 0, 0, h, h 

has_value(x, v1+h*(a*v1-b*v1*v2) - prey_quota) 
has_value(x, v1)  ∧ has_value(y, v2) ∧ v1 ≥ prey_min ∧ v2 < pred_max →→ 0, 0, h, h 

has_value(y, v2+h* (c*b*v1*v2-e*v2)) 
has_value(x, v1)  ∧ has_value(y, v2) ∧ v2 ≥ pred_max →→ 0, 0, h, h  has_value(y, pred_min) 
has_value(x, v1)  ∧ has_value(y, v2) ∧ v1 < prey_min →→ 0, 0, h, h  has_value(y, pred_min) 

The result of simulation of this model using Euler’s method with the parameter 
settings: a=4; b=0.2, c=0.1, e=8, pred_min=10, pred_max=30, prey_min=40, prey_max=100, 
prey_quota=20, x0=90, y0=10 is given in Fig. 3.  
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Fig. 3. Simulation results for the Lotka-Volterra model combined some qualitative aspects 

3.3   Example Hybrid LEADSTO Specification - Model for Conditioning 

Research into conditioning is aimed at revealing the principles that govern associative 
learning. An important issue in conditioning processes is the adaptive timing of the 
conditioned response to the appearance of the unconditioned stimulus. This feature is 
most apparent in an experimental procedure called trace conditioning. In this 
procedure, a trial starts with the presentation of a warning stimulus (S1; comparable 
to a conditioned stimulus). After a blank interval, called the foreperiod, an imperative 
stimulus (S2, comparable to an unconditioned stimulus) is presented to which the 
participant responds as fast as possible. The reaction time to S2 is used as an estimate 
of the conditioned state of preparation at the moment S2 is presented. In this case, the 
conditioned response obtains its maximal strength, here called peak level, at a 
moment in time, called peak time, that closely corresponds to the moment the 
unconditioned stimulus occurs. 

Machado developed a basic model that describes the dynamics of these 
conditioning processes in terms of differential equations [18]. The structure of this 
model is shown in Figure 4. The model posits a layer of timing nodes and a single 
preparation node. Each timing node is connected both to the next (and previous) 
timing node and to the preparation node. The connection between each timing node 
and the preparation node (called associative link) has an adjustable weight associated 
to it. Upon the presentation of a warning stimulus, a cascade of activation propagates 
through the timing nodes according to a regular pattern. Owing to this regularity, the 
timing nodes can be likened to an internal clock or pacemaker. At any moment, each 
timing node contributes to the activation of the preparation node in accordance with 
its activation X and its corresponding weight W. The activation of the preparation 
node reflects the participant's preparatory state, and is as such related to reaction time. 

The weights reflect the state of conditioning, and are adjusted by learning rules, of 
which the main principles are as follows. First, during the foreperiod extinction takes 
place, which involves the decrease of weights in real time in proportion to the 
activation of their corresponding timing nodes. Second, after the presentation of the 
imperative stimulus a process of reinforcement takes over, which involves an increase 
of the weights in accordance with the current activation of their timing nodes, to 
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preserve the importance of the imperative moment. Machado describes the more 
detailed dynamics of the process by a mathematical model (based on linear 
differential equations), representing the (local) temporal relationships between the 
variables involved. For example, d/dt X(t,n) = λX(t,n-1) - λX(t,n) expresses how the 
activation level of the n-th timing node X(t+dt,n) at time point t+dt relates to this level 
X(t,n) at time point t and the activation level X(t,n-1) of the (n-1)-th timing node at time 
point t. Similarly, as another example, d/dt W(t,n) = -αX(t,n)W(t,n) expresses how the n-th 
weight W(t+dt,n) at time point t+dt relates to this weight W(t,n) at time point t and the 
activation level X(t,n) of the n-th timing node at time point t. 

 
 
 
 
 
 
 
 
 

Fig. 4. Structure of Machado’s conditioning model (adjusted from [18]) 

In [6], LEADSTO has been used to specify Machado’s mathematical model in a 
logical, declarative manner. Some of the dynamic properties used are shown below: 
 

LP5 (Extinction of associative links) 
LP5 expresses the adaptation of the associative links during extinction, based on their 
own previous state and the previous state of the corresponding timing node. Here, α is 
a learning rate parameter. Formalisation: 
∀u,v:REAL ∀n:INTEGER 
instage(ext) and X(n, u) and W(n, v) →→0,0,1,1 W(n, v*(1-α*u*step)) 
 

LP6 (Reinforcement of associative links) 
LP6 expresses the adaptation of the associative links during reinforcement, based on 
their own previous state and the previous state of X. Here, β is a learning rate parameter.  
∀u,v:REAL ∀n:INTEGER 
instage(reinf) and Xcopy(n, u) and W(n, v) →→0,0,1,1 W(n, v*(1-β*u*step) + β*u*step) 
 

An example simulation trace that has been generated on the basis of this model is 
shown in Figure 5. The upper part of the figure shows conceptual, qualitative 
information (e.g., the state properties that indicate the stage of the process); the lower 
part shows more quantitative concepts, i.e., the state properties involving real 
numbers with changing values over time (e.g., the preparation level of the person). To 
limit complexity, only a selection of important state properties was depicted. In the 
lower part, all instantiations of state property r(X) are shown with different (real) 
values for X (shown on the vertical axis), indicating the participant’s preparation level 
to respond to a stimulus. For example, from time point 1 to 9, the level of preparation 
is 0.0, and from time point 9 to 10, the level of preparation is 0.019. 

S1 

Timing nodes with 
activation level X

Preparation node

Associative links of 
variable weight W

Response strength R
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Figure 5 describes the dynamics of a person that is subject to conditioning in an 
experiment with a foreperiod of 6 time units. As can be seen in the trace, the level of 
response-related activation increases on each trial. Initially, the subject is not prepared 
at all: at the moment of the imperative stimulus (S2), the level of response is 0.0. 
However, already after two trials a peak in response level has developed that 
coincides exactly with the occurrence of S2. Although this example is relatively 
simple, it demonstrates the power of LEADSTO to combine (real-valued) quantitative 
concepts with (conceptual) qualitative concepts. 

 

Fig. 5. Example simulation trace of a conditioning process 

4   Simulating the Predator-Prey Model by the Runge-Kutta 
Method 

As shown in [22], within Euler’s method the local error at each step (of size h) is 
O(h2), while the accumulated error is O(h). However, the accumulated error grows 
exponentially as the integration step size increases. Therefore, in situations in which 
precision of a solution is required, high order numerical methods are used. For the 
purpose of illustration of high-order numerical approaches the fourth-order Runge-
Kutta method is considered. This method is derived from a Taylor expansion up to the 
fourth order. It is known to be very accurate (the accumulated error is O(h4)) and stable 
for a wide range of problems. The Runge-Kutta method for solving a differential 
equation of the form dx/dt = f(t, x) is described by the following formulae:  

xi+1 = xi + h/6 *(k1 + 2*k2 + 2*k3 + k4), 

where i≥0 is the step number, h>0 is the integration step size, and 

k1 = f(ti, xi), k2 = f(ti + h/2, xi + h/2 *k1), k3 = f(ti + h/2, xi + h/2 *k2), k4 = f(ti + h, xi + h* k3). 

Now, using the Runge-Kutta method, the classical Lotka-Volterra model 
considered in the previous section is described in the LEADSTO format as follows: 

has_value(x, v1)  ∧ has_value(y, v2) →→ 0, 0, h, h  has_value(x, v1 + h/6 *(k11 + 2*k12 + 2*k13 + k14)) 

has_value(x, v1)  ∧ has_value(y, v2) →→ 0, 0, h, h  has_value(y, v2 + h/6 *(k21 + 2*k22 + 2*k23 + k24)), 
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where: 

k11 = a*v1-b*v1*v2,  k21 = c*b*v1*v2 - e*v2, k12 = a*(v1 + h/2 *k11) - b*(v1 + h/2 *k11)*(v2 + h/2 *k21), k22 = c*b*(v1 
+ h/2 *k11)*(v2 + h/2 *k21) - e*(v2 + h/2 *k21), k13 = a*(v1 + h/2 *k12) - b*(v1 + h/2 *k12)*(v2 + h/2 *k22), k23 = 
c*b*(v1 + h/2 *k12)*(v2 + h/2 *k22) - e*(v2 + h/2 *k22), k14 = a*( v1 + h *k13) - b*(v1 + h *k13)*(v2 + h *k23),    k24 = 
c*b*(v1 + h *k13)*(v2 + h *k23) - e*(v2 + h *k23). 

5   Simulation with Dynamic Step Size 

Although for most cases the Runge-Kutta method with a small step size provides 
accurate approximations of required functions, this method can still be 
computationally expensive and, in some cases, inaccurate. In order to achieve a higher 
accuracy together with minimum computational efforts, methods that allow the 
dynamic (adaptive) regulation of an integration step size are used. This section shows 
how such methods can be incorporated in LEADSTO. 

To illustrate the use of methods for dynamic step size control, the biochemical 
model of [13], summarised in Table 1, is considered. 

Table 1. Glycolysis model by [13] 

Variables 
W: Fructose 6-phosphate 
X : phosphoenolpyruvate 
Y : pyruvate 
N1 : ATP; N2 : ADP; N3 : AMP 
 

Differential equations 
X'[t] == 2*Vpfk - Vxy 
Y'[t] == Vxy - Vpdc 
N1'[t] == Vxy + Vak - Vatpase 
N2'[t] == -Vxy - 2*Vak + Vatpase 

Moiety conservation 
N1[t] + N2[t] + N3 = 20 
 
Initial conditions 
N1[0] == 10 
N2[0] == 9  
Y[0] == 0 
X[0] == 0 
 
  

Fixed metabolites 
W = 0.0001;  Z = 0 

Rate equations 
Vxy = 343*N2[t]*X[t]/((0.17 +  
          N2[t])*(0.2 + X[t])) 
Vak = -(432.9*N3*N1[t] -  
          133*N2[t]^2) 
Vatpase = 3.2076*N1[t] 
Vpdc = 53.1328*Y[t]/(0.3 + Y[t])  
           (*10.0*Y[t]*) 
Vpfk = 45.4327*W^2/(0.021*(1 + 
          0.15*N1[t]^2/N3^2 + W^2)) 

 

This model describes the process of glycolysis in Saccharomyces cerevisiae, a 
specific species of yeast. This model is interesting to study, because the 
concentrations of some of the substances involved (in particular ATP and ADP) are 
changing at a variable rate: sometimes these concentrations change rapidly, and 
sometimes they change very slowly. Using the technique described in Section 2.2 
(based on Euler’s method), this model can be translated to the following LEADSTO 
simulation model: 

has_value(x, v1) ∧ has_value(y, v2) ∧ has_value(n1, v3) ∧ has_value(n2, v4) →→ 0, 0, h, h   
has_value(x, v1+ (2* (45.4327*w^2/ (0.021* (1+0.15*v3^2/ (20-v3-v4)^2+w^2)))-343*v4*v1/  
((0.17+v4)* (0.2+v1)))*h) 

has_value(x, v1) ∧ has_value(y, v2) ∧ has_value(n1, v3) ∧ has_value(n2, v4) →→ 0, 0, h, h   
has_value(y, v2+ (343*v4*v1/ ((0.17+v4)* (0.2+v1))-53.1328*v2/ (0.3+v2))*h) 

has_value(x, v1) ∧ has_value(y, v2) ∧ has_value(n1, v3) ∧ has_value(n2, v4) →→ 0, 0, h, h   
has_value(n1, v3+ (343*v4*v1/ ((0.17+v4)* (0.2+v1))+ (- (432.9* (20-v3-v4)*v3-133*v4^2))- 
3.2076*v3)*h) 

has_value(x, v1) ∧ has_value(y, v2) ∧ has_value(n1, v3) ∧ has_value(n2, v4) →→ 0, 0, h, h   
has_value(n2, v4+ (-343*v4*v1/ ((0.17+v4)* (0.2+v1))-2* 

(- (432.9* (20-v3-v4)*v3-133*v4^2))+3.2076*v3)*h) 
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The simulation results of this model (with a static step size of 0.00001) are shown 
in Fig. 6. Here the curves for N1 and N2 are initially very steep, but become flat after 
a while. As demonstrated by Figure 6, for the first part of the simulation, it is 
necessary to pick a small step size in order to obtain accurate results. However, to 
reduce computational efforts, for the second part a bigger step size is desirable. To 
this end, a number of methods exist that allow the dynamic adaptation of the step size 
in a simulation. Generally, these approaches are based on the fact that the algorithm 
signals information about its own truncation error. The most straightforward (and 
most often used) technique for this is step doubling and step halving, see, e.g. [Gear 
1971]. The idea of step doubling is that, whenever a new simulation step should be 
performed, the algorithm compares the result of applying the current step twice with 
the result of applying the double step (i.e., the current step * 2) once. If the difference 
between both solutions is smaller than a certain threshold ε, then the double step is 
selected. Otherwise, the algorithm determines whether step halving can be applied: it 
compares the result of applying the current step once with the result of applying the 
half step (i.e., the current step * 0.5) twice. If the difference between both solutions is 
smaller than ε, then the current step is selected. Otherwise, the half step is selected. 

 

Fig. 6. Simulation results of applying Euler’s method to [13]’s glycolysis model 

Since its format allows the modeller to include qualitative aspects, it is not 
difficult to incorporate step doubling and step halving into LEADSTO. To illustrate 
this, consider the general LEADSTO rule shown in Section 2.2 for solving a 
differential equation of the form dy/dt = f(y) using Euler’s method: 

has_value(y, v1) →→ 0, 0, h, h  has_value(y, v1+h* f(v1)) 

Adding step doubling and step halving to this rule yields the following three rules: 

step(h) ∧ has_value(y, v1) ∧ |( v1+2h* f(v1)) - ((v1+h* f(v1))+h* f(v1+h* f(v1)))| ≤ ε 
→→ 0, 0, 2h, 2h  has_value(y, v1+2h* f(v1)) ∧ step(2h) 



 Integrating Agent Models and Dynamical Systems 61 

step(h) ∧ has_value(y, v1) ∧ |( v1+2h* f(v1)) - ((v1+h* f(v1))+h* f(v1+h* f(v1)))| > ε ∧ 
|( v1+h* f(v1)) - ((v1+0.5h* f(v1))+0.5h* f(v1+0.5h* f(v1)))| ≤ ε 

→→ 0, 0, h, h  has_value(y, v1+h* f(v1)) ∧ step(h) 

step(h) ∧ has_value(y, v1) ∧ |( v1+h* f(v1)) - ((v1+0.5h* f(v1))+0.5h* f(v1+0.5h* f(v1)))| ≤ ε 
→→ 0, 0, 0.5h, 0.5h  has_value(y, v1+0.5h* f(v1)) ∧ step(0.5h) 

Besides step doubling, many other techniques exist in the literature for dynamically 
controlling the step size in quantitative simulations. Among these are several 
techniques that are especially aimed at the Runge-Kutta methods, see, e.g., [24], 
Chapter 16 for an overview. Although it is possible to incorporate such techniques 
into LEADSTO, they are not addressed here because of space limitations. 

6   Analysis in Terms of Local-Global Relations 

Within the area of agent-based modelling, one of the means to address complexity is 
by modelling processes at different levels, from the global level of the process as a 
whole, to the local level of basic elements and their mechanisms. At each of these 
levels dynamic properties can be specified, and by interlevel relations they can be 
logically related to each other; e.g., [14], [27]. These relationships can provide an 
explanation of properties of a process as a whole in terms of properties of its local 
elements and mechanisms. Such analyses can be done by hand, but also software tools 
are available to automatically verify the dynamic properties and their interlevel 
relations. To specify the dynamic properties at different levels and their interlevel 
relations, a more expressive language is needed than simulation languages based on 
causal relationships, such as LEADSTO. The reason for this is that, although the latter 
types of languages are well suited to express the basic mechanisms of a process, for 
specifying global properties of a process it is often necessary to formulate complex 
relationships between states at different time points. To this end, the formal language 
TTL has been introduced as a super-language of LEADSTO; cf. [8]. It is based on 
order-sorted predicate logic and, therefore, inherits the standard semantics of this 
variant of predicate logic. That is, the semantics of TTL is defined in a standard way, 
by interpretation of sorts, constants, functions and predicates, and variable 
assignments. Furthermore, TTL allows representing numbers and arithmetical 
functions. Therefore, most methods used in Calculus are expressible in TTL, 
including methods based on derivatives and differential equations. In this section, first 
(in Section 6.1) it is shown how to incorporate differential equations in the predicate-
logical language TTL that is used for analysis. Next, in Section 6.2 a number of 
global dynamic properties are identified, and it is shown how they can be expressed in 
TTL. In Section 6.3 a number of local dynamic properties are identified and expressed 
in TTL. Finally, Section 6.4 discusses how the global properties can be logically 
related to local properties such that a local property implies the global property. 

6.1   The LEADSTO Language 

As mentioned earlier, traditionally, analysis of dynamical systems is often performed 
using mathematical techniques such as the Dynamical Systems Theory. The question  
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may arise whether or not such modelling techniques can be expressed in the Temporal 
Trace Language TTL. In this section it is shown how modelling techniques used in 
the Dynamical Systems approach, such as difference and differential equations, can 
be represented in TTL. First the discrete case is considered. As an example consider 
again the logistic growth model: dP/dt = r*P(1-P/K). This equation can be expressed in 
TTL on the basis of a discrete time frame (e.g., the natural numbers) in a 
straightforward manner: 

∀t ∀v  state(γ , t) |== has_value(P, v)  ⇒   state(γ , t+1) |== has_value(P, v + h • r • v • (1 - v/K)) 

The traces γ satisfying the above dynamic property are the solutions of the difference 
equation. However, it is also possible to use the dense time frame of the real numbers, 
and to express the differential equation directly. To this end, the following relation is 
introduced, expressing that x = dy/dt: 

is_diff_of(γ, x, y)  :  
∀t,w  ∀ε>0 ∃δ>0 ∀t',v,v'   [ 0 < dist(t',t) < δ  &  state(γ, t) |== has_value(x, w) & 
state(γ, t) |== has_value(y, v) &  state(γ, t') |== has_value(y, v')  ⇒     dist((v'-v)/(t'-t),w) < ε ] 

where γ is the trace that describes the change of values of x and y over time, dist(u,v) is 
defined as the absolute value of the difference, i.e. u-v if this is ≥ 0, and v-u otherwise. 
Using this, the differential equation can be expressed by is_diff_of(γ , r • P (1 - P/K), P). 

The traces γ for which this statement is true are (or include) solutions for the 
differential equation. Models consisting of combinations of difference or differential 
equations can be expressed in a similar manner. This shows how modelling constructs 
often used in DST can be expressed in TTL. Thus, TTL on the one hand subsumes 
modelling languages based on differential equations, but on the other hand enables the 
modeller to express more qualitative, logical concepts as well. 

6.2   Mathematical Analysis in TTL: Global Dynamic Properties 

Within Dynamical Systems Theory and Calculus, also for global properties of a 
process more specific analysis methods are known. Examples of such analysis 
methods include mathematical methods to determine equilibrium points, the 
behaviour around equilibrium points, and the existence of limit cycles [10]. Suppose a 
set of differential equations is given, for example a predator prey model: dx/dt  =  f(x, y) 

dy/dt  =  g(x, y), where f(x, y) and g(x, y) are arithmetical expressions in x and y. Within 
TTL the following abbreviation is introduced as a definable predicate: 

point(γ, t, x, v, y, w)  ⇔  state(γ, t) |= has_value(x, v) ∧ has_value(y, w) 

Using this predicate, the following global properties can for example be specified: 

Monotonicity 
monotic_increase_after(γ, t, x) ⇔ 
∀t1, t2  [ t ≤ t1 < t2 & point(γ, t1, x, v1, y, w1)  & point(γ, t2, x, v2, y, w2)  ⇒  v1<v2 ] 

Bounded 
upward_bounded_after_by(γ, t, M)  ⇔ ∀t1  [ t ≤ t1 & point(γ, t1, x, v1, y, w1)  ⇒  v1≤M ] 
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Equilibrium points  
These are points in the (x, y) plane for which, when they are reached by a solution,  
the state stays at this point in the plane for all future time points. This can be 
expressed as a global dynamic property in TTL as follows: 

has_equilibrium(γ, x, v, y, w)  ⇔  ∀t1 [ point(γ, t1, x, v, y, w)  ⇒  ∀t2≥t1  point(γ, t2, x, v, y, w) ] 
occurring_equilibrium(γ, x, v, y, w)  ⇔   ∃t point(γ, t, x, v, y, w) &  has_equilibrium(γ, x, v, y, w) 

 

Behaviour Around an Equilibrium 
attracting(γ, x, v, y, w, ε0)  ⇔  has_equilibrium(γ, x, v, y, w)  &  
ε0>0 ∧ ∀t  [ point(γ, t, x, v1, y, w1) ∧ dist(v1, w1, v, w) < ε0 ⇒  
∀ε>0 ∃t1≥t ∀t2≥t1  [ point(γ, t2, x, v2, y, w2)  ⇒ dist(v2, w2, v, w) < ε ] ] 

Here, dist(v1, w1, v2, w2) denotes the distance between the points (v1, w1) and (v2, 
w2) in the (x, y) plane.  

Limit cycle 
A limit cycle is a set S in the x, y plane such that 
∀t, v, w  point(γ, t, x, v, y, w) & (v, w) ∈ S  ⇒  ∀t'≥t, v', w'   [ point(γ, t', x, v', y, w') ⇒ (v', w') ∈ S ] 

In specific cases the set can be expressed in an implicit manner by a logical and/or 
algebraic formula, e.g., an equation, or in an explicit manner by a parameterisation. 
For these cases it can be logically expressed that a set S is a limit cycle. 

(1)  When S is defined in an implicit manner by a formula ϕ(v, w) with S = { (v, w) | 
ϕ(v, w) }, then it is defined that S is a limit cycle as follows: 

∀t, v, w  point(γ, t, x, v, y, w) & ϕ(v, w) ⇒  ∀t'≥t, v', w'   [ point(γ, t', x, v', y, w') ⇒ ϕ(v', w') ] 
E.g., when S is a circle defined by a formula of the form S = { (v, w) | v2 + w2 = r2 } 

(2)  When a set S in the plane is parameterised by two functions c1, c2: [0, 1] → ℜ, i.e., 
S = { (c1(u), c2(u)) | u ∈ [0, 1] }, then S is a limit cycle if 

∀t, u  point(γ, t, c1(u), c2(u)) ⇒ ∀t'≥t ∃u'  point(γ, t', c1(u'), c2(u')) 

An example of a parameterising for S in the shape of a circle is as follows: 

c1(u) = r cos 2π u, c2(u) = r sin 2π u 

In many cases, however, the set S cannot be expressed explicitly in the form of an 
equation or an explicitly defined parameterisation. What still can be done often is to 
establish the existence of a limit cycle within a certain area, based on the Poincaré-
Bendixson Theorem [16]. 

6.3   Mathematical Analysis in TTL: Local Dynamic Properties 

The global dynamic properties described above can also be addressed from a local 
perspective. For example, the property of monotonicity (which was expressed above 
for a whole trace after a certain time point t), can also be expressed for a certain 
interval (with duration d) around t, as shown below.  

Local monotonicity property 
monotic_increase_around(γ, t, x, d) ⇔  
∀t1, t2  [ t-d ≤ t1 < t < t2≤ t+d  & point(γ, t1, x, v1, y, w1)  & point(γ, t2, x, v2, y, w2)  ⇒  v1< v2 ] 

In terms of f and g:   
monotic_increase_around(γ, t, x, d) ⇔ point(γ, t, x, v1, y, w1)  ⇒  f(v1, w1) > 0 
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Local bounding property 
upward_bounding_around(γ, t, M, δ, d)  ⇔  
[ point(γ, t, x, v1, y, w1) ⇒ ∀t' [ t≤t'≤t+d  & point(γ, t', x, v2, y, w2)  ⇒ M-v2 ≥ (1-δ)*(M-v1) ] 

In terms of f and g from the equations dx/dt  =  f(x, y) and dy/dt  =  g(x, y): 
upward_bounding_around(γ, t, M, δ, d)  ⇔ point(γ, t, x, v1, y, w1)  ⇒  f(v1, w1) ≤  δ/d (M - v1) 

Local equilibrium property 
From the local perspective of the underlying mechanism, equilibrium points are those 
points for which  dx/dt  =  dy/dt  =  0, i.e., in terms of f and g for this case f(x, y) = g(x, y) = 0.  
equilibrium_state(v, w)  ⇔  f(v, w) = 0  &  g(v, w) = 0 

Local property for behaviour around an equilibrium: 
attracting(γ, x, v, y, w, δ, ε0, d)  ⇔ has_equilibrium(γ, x, v, y, w)  &  
ε0>0 ∧ 0< δ <1 ∧ d≥0 ∧ ∀t  [ point(γ, t, x, v1, y, w1) ∧ dist(v1, w1, v, w) < ε0 ⇒  
∀t' [ t+d≤t'≤t+2d  & point(γ, t', x, v2, y, w2)  ⇒  dist(v2, w2, v, w) < δ*dist(v1, w1, v, w) ] ] 

In terms of f and g, this can be expressed by relationships for the eigen values of the 
matrix of derivatives of f and g. 

Local limit cycle property 
Let a set S in the plane be parameterised by two explicitly given functions c1, c2: [0, 1] 
→ ℜ, i.e., S = { (c1(u), c2(u)) | u ∈ [0, 1] }, and d1(u) = dc1(u)/du, d2(u) = dc2(u)/du. Then S is 
a limit cycle if: 

∀t, u  point(γ, t, c1(u), c2(u)) ⇒ d1(u)*g(c1(u), c2(u)) = f(c1(u), c2(u))*d2(u) 

6.4   Logical Relations Between Local and Global Properties 

The properties of local and global level can be logically related to each other by 
general interlevel relations, for example, the following ones: 

∃d>0  ∀t'≥t  monotic_increase_around(γ, t', x, d)    ⇒ monotic_increase_after(γ, t, x) 

∃d>0, δ>0  ∀t'≥t  upward_bounding_around(γ, t, M, δ, d)   ⇒ upward_bounded_after_by(γ, t, M)   

∀t [ state(γ, t) |= equilibrium_state(v, w)     ⇒ has_equilibrium(γ, x, v, y, w)  

∃d>0, δ>0  attracting(γ, x, v, y, w, δ, ε0, d)    ⇒ attracting(γ, x, v, y, w, ε0)   

These interlevel relations are general properties of dynamic systems, as explained, 
e.g., in [10]. Full proofs for these relations fall outside the scope of this paper. 
However, to make them a bit more plausible, the following sketch is given. The first 
interlevel relation involving monotonicity can be based on induction on the number of 
d-intervals of the time axis between two given time points t1 and t2. The second 
interlevel relation, involving boundedness is based on the fact that local bounding 
implies that in any d-interval, if the value at the start of the interval is below M, then 
it will remain below M in that interval. The third interlevel relation, on equilibrium 
points, is based on the fact that if at no time point the value changes, then at all time 
points after this value is reached, the value will be the same. For the fourth interlevel 
relation, notice that local attractiveness implies that for any d-interval the distance of 
the value to the equilibrium value at the end point is less than δ times the value at the 
starting point. By induction over the number of d-intervals the limit definition as used 
for the global property can be obtained. 
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7   Discussion 

The LEADSTO approach discussed in this paper provides means to simulate models 
of dynamic systems that combine both quantitative and qualitative aspects. A 
dynamic system, as it is used here, is a system, which is characterised by states and 
transitions between these states. As such, dynamic systems as considered in [23], 
which are described by differential equations, constitute a subclass of the dynamic 
systems considered in this paper. Systems that incorporate both continuous 
components and discrete components are sometimes called hybrid systems. Hybrid 
systems are studied in both computer science [9], [19] and control engineering [17]. 
They incorporate both continuous components, whose dynamics is described by 
differential equations and discrete components, which are often represented by finite-
state automata. Both continuous and discrete dynamics of components influence each 
other. In particular, the input to the continuous dynamics is the result of some 
function of the discrete state of a system; whereas the input of the discrete dynamics 
is determined by the value of the continuous state. In the control engineering area, 
hybrid systems are often considered as switching systems that represent continuous-
time systems with isolated and often simplified discrete switching events. Yet in 
computer science the main interest in hybrid systems lies in investigating aspects of 
the discrete behaviour, while the continuous dynamics is often kept simple. 

Our LEADSTO approach provides as much place for modelling the continuous 
constituent of a system, as for modelling the discrete one. In contrast to many studies 
on hybrid systems in computer science (e.g., [25]), in which a state of a system is 
described by assignment of values to variables, in the proposed approach a state of a 
system is defined using a rich ontological basis (i.e., typed constants, variables, 
functions and predicates). This provides better possibilities for conceptualising and 
formalising different kinds of systems (including those from natural domains). 
Furthermore, by applying numerical methods for approximation of the continuous 
behaviour of a system, all variables in a generated model become discrete and are 
treated equally as finite-state transition system variables. Therefore, it is not needed to 
specify so-called control points [19], at which values of continuous variables are 
checked and necessary transitions or changes in a mode of a system’s functioning are 
made. Moreover, using TTL, a super-language of LEADSTO, dynamical systems can 
be analysed by applying formalised standard techniques from mathematical calculus. 

Since LEADSTO has a state-based semantics and allows a high ontological 
expressivity for defining state properties, many action-based languages (A, B, C [12], 
 L [2] and their extensions) can be represented in (or mapped to) the LEADSTO 
format. In particular, trajectories that define the world evolution in action languages 
correspond to traces in LEADSTO, fluents evaluated in each state can be represented 
by state properties, and transitions between states due to actions can be specified by 
LEADSTO rules that contain the corresponding actions within the antecedents. 
Furthermore, to represent actions, observations, and goals of agents and facts about 
the world, the state ontology of LEADSTO includes corresponding sorts, functions 
and predicates. LEADSTO allows representing both static and dynamic laws as they 
are defined in [12], and non-deterministic actions with probabilities. To represent and 
reason about temporal aspects of actions, LEADSTO includes the sort TIME, which is 
a set of linearly ordered time points.  
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The expressions of query languages used to reason about actions [2], [12] can be 
represented in TTL, of which LEADSTO is a sublanguage. TTL formulae can express 
causality relations of query languages by implications and may include references to 
multiple states (e.g., histories of temporally ordered sequences of states). Using a 
dedicated tool [8], TTL formulae can be automatically checked on traces (or 
trajectories) that represent the temporal development of agent systems. 

Concerning other related work, in [26], a logic-based approach to simulation-based 
modelling of ecological systems is introduced. Using this approach, continuous 
dynamic processes in ecological systems are conceptualised by system dynamics 
models (i.e., sets of compartments with flows between them). For formalising these 
models and performing simulations, the logical programming language Prolog is 
used. In contrast to this, the LEADSTO approach provides a more abstract (or high-
level) logic-based language for knowledge representation. 

Also within the area of cognitive modelling, the idea to combine qualitative and 
quantitative aspects within one modelling approach is not uncommon. A number of 
architectures have been developed in that area, e.g., ACT-R [1] and SOAR [15]. Such 
cognitive architectures basically consist of a number of different modules that reflect 
specific parts of cognition, such as memory, rule-based processes, and communication. 
They have in common with LEADSTO that they are hybrid approaches, supporting 
both qualitative (or symbolic) and quantitative (or subsymbolic) structures. However, in 
LEADSTO these qualitative and quantitative concepts can be combined within the 
same expressions, whereas in ACT-R and SOAR separate modules exist to express 
them. In these cognitive architectures, often the role of the subsymbolic processes is to 
control the symbolic processes. For example, the subsymbolic part of ACT-R is 
represented by a large set of parallel processes that can be summarised by a number of 
mathematical equations, whereas its symbolic part is fulfilled by a production system. 
Here, the subsymbolic equations control many of the symbolic processes. For instance, 
if multiple production rules in ACT-R’s symbolic part are candidates to be executed, a 
subsymbolic utility equation may estimate the relative cost and benefit associated with 
each rule and select the rule with the highest utility for execution. 

Accuracy and efficiency of simulation results for hybrid systems provided by the 
proposed approach to a great extend depend on the choice of a numerical 
approximation method. Although the proposed approach does not prescribe usage of 
any specific approximation method (even the most powerful of them can be modelled 
in LEADSTO), for most of the cases the fourth-order Runge-Kutta method can be 
recommended, especially when the highest level of precision is not required. For 
simulating system models, for which high precision is demanded, higher-order 
numerical methods with an adaptive step size can be applied. 
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