
M. Baldoni et al. (Eds.): DALT 2007, LNAI 4897, pp. 50–68, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Integrating Agent Models and Dynamical Systems

Tibor Bosse, Alexei Sharpanskykh, and Jan Treur

Vrije Universiteit Amsterdam, Department of Artificial Intelligence,
De Boelelaan 1081a, 1081 HV, The Netherlands
{tbosse, sharp, treur}@cs.vu.nl

http://www.cs.vu.nl/~{tbosse, sharp, treur}

Abstract. Agent-based modelling approaches are usually based on logical
languages, whereas in many areas dynamical system models based on
differential equations are used. This paper shows how to model complex agent
systems, integrating quantitative, numerical and qualitative, logical aspects, and
how to combine logical and mathematical analysis methods.

1 Introduction

Existing models for complex systems are often based on quantitative, numerical
methods such as Dynamical Systems Theory (DST) [23], and more in particular,
differential equations. Such approaches often use numerical variables to describe
global aspects of the system and how they affect each other over time; for example,
how the number of predators affects the number of preys. An advantage of such
numerical approaches is that numerical approximation methods and software
environments are available for simulation.

The relatively new agent-based modelling approaches to complex systems take into
account the local perspective of a possibly large number of separate agents and their
specific behaviours in a system; for example, the different individual predator agents
and prey agents. These approaches are usually based on qualitative, logical languages.
An advantage of such logical approaches is that they allow (automated) logical
analysis of the relationships between different parts of a model, for example
relationships between global properties of the (multi-agent) system as a whole and
local properties of the basic mechanisms within (agents of) the system. Moreover, by
means of logic-based approaches, declarative models of complex systems can be
specified using knowledge representation languages that are close to the natural
language. An advantage of such declarative models is that they can be considered and
analysed at a high abstract level. Furthermore, automated support (e.g., programming
tools) is provided for manipulation and redesign of models.

Complex systems, for example organisms in biology or organisations in the socio-
economic area, often involve both qualitative aspects and quantitative aspects. In
particular, in the area of Cognitive Science, the lower-level cognitive processes of
agents (e.g., sensory or motor processing) are often modelled using DST-based
approaches. Furthermore, at the global level the dynamics of the environment, in
which agents are situated, is often described by continuous models (i.e., models based

 Integrating Agent Models and Dynamical Systems 51

on differential equations); e.g., dynamic models of markets, or natural environmental
oscillations. Yet agent-based (logical) languages are often used for describing high-
level cognitive processes of agents (e.g., processes related to reasoning) and agent
interaction with the environment (e.g., agent actions, execution of tasks).

It is not easy to integrate both types of approaches in one modelling method. On
the one hand, it is difficult to incorporate logical aspects in differential equations. For
example, qualitative behaviour of an agent that depends on whether the value of a
variable is below or above a threshold is difficult to describe by differential equations.
On the other hand, quantitative methods based on differential equations are not usable
in the context of most logical, agent-based modelling languages, as these languages
are not able to handle real numbers and calculations.

This paper shows an integrative approach to simulate and analyse complex
systems, integrating quantitative, numerical and qualitative, logical aspects within one
expressive temporal specification language. Some initial ideas behind the simulation
approach proposed in this paper were described in [5, 6]. The current paper elaborates
upon these ideas by proposing more extensive means to design precise, stable, and
computationally effective simulation models for hybrid systems (i.e., comprising both
quantitative and qualitative aspects). Furthermore, it proposes techniques for analysis
of hybrid systems, which were not previously considered elsewhere. The developed
simulation and analysis techniques are supported by dedicated tools.

In Section 2, this language (called LEADSTO) is described in detail, and is applied
to solve an example differential equation. In Section 3, it is shown how LEADSTO
can solve a system of differential equations (for the case of the classical Predator-Prey
model), and how it can combine quantitative and qualitative aspects within the same
model. Section 4 demonstrates how existing methods for approximation (such as the
Runge-Kutta methods) can be incorporated into LEADSTO, and Section 5 shows how
existing methods for simulation with dynamic step size can be incorporated. Section 6
demonstrates how interlevel relationships can be established between dynamics of
basic mechanisms (described in LEADSTO) and global dynamics of a process
(described in a super-language of LEADSTO). Finally, Section 7 is a discussion.

2 Modelling Dynamics in LEADSTO

Dynamics can be modelled in different forms. Based on the area within Mathematics
called calculus, the Dynamical Systems Theory [23] advocates to model dynamics by
continuous state variables and changes of their values over time, which is also
assumed continuous. In particular, systems of differential or difference equations are
used. This may work well in applications where the world states are modelled in a
quantitative manner by real-valued state variables. The world’s dynamics in such
application show continuous changes in these state variables that can be modelled by
mathematical relationships between real-valued variables. However, not for all
applications dynamics can be modelled in a quantitative manner as required for DST.
Sometimes qualitative changes form an essential aspect of the dynamics of a process.
For example, to model the dynamics of reasoning processes usually a quantitative
approach will not work. In such processes states are characterised by qualitative state
properties, and changes by transitions between such states. For such applications often

52 T. Bosse, A. Sharpanskykh, and J. Treur

qualitative, discrete modelling approaches are advocated, such as variants of modal
temporal logic, e.g. [20]. However, using such non-quantitative methods, the more
precise timing relations are lost too. For the LEADSTO language described in this
paper, the choice has been made to consider the timeline as continuous, described by
real values, but for state properties both quantitative and qualitative variants can be
used. The approach subsumes approaches based on simulation of differential or
difference equations, and discrete qualitative modelling approaches. In addition, the
approach makes it possible to combines both types of modelling within one model.
For example, it is possible to model the exact (real-valued) time interval for which
some qualitative property holds. Moreover, the relationships between states over time
are described by either logical or mathematical means, or a combination thereof. This
will be explained in more detail in Section 2.1. As an illustration, in Section 2.2 it will
be shown how the logistic model for population growth in resource-bounded
environments [4] can be modelled and simulated in LEADSTO.

2.1 The LEADSTO Language

Dynamics is considered as evolution of states over time. The notion of state as used
here is characterised on the basis of an ontology defining a set of properties that do or
do not hold at a certain point in time. For a given (order-sorted predicate logic)
ontology Ont, the propositional language signature consisting of all state ground atoms
(or atomic state properties) based on Ont is denoted by APROP(Ont). The state
properties based on a certain ontology Ont are formalised by the propositions that can
be made (using conjunction, negation, disjunction, implication) from the ground
atoms. A state S is an indication of which atomic state properties are true and which
are false, i.e., a mapping S: APROP(Ont) → {true, false}.

To specify simulation models a temporal language has been developed. This
language (the LEADSTO language [7]) enables to model direct temporal
dependencies between two state properties in successive states, also called dynamic
properties. A specification of dynamic properties in LEADSTO format has as
advantages that it is executable and that it can often easily be depicted graphically.
The format is defined as follows. Let α and β be state properties of the form
‘conjunction of atoms or negations of atoms’, and e, f, g, h non-negative real numbers.
In the LEADSTO language the notation α →→e, f, g, h β (also see Fig. 1), means:

If state property α holds for a
certain time interval with duration
g, then after some delay (between e
and f) state property β will hold for
a certain time interval of length h.

An example dynamic
property that uses the LEADSTO
format defined above is the
following: “observes(agent_A,

food_present) →→ 2, 3, 1, 1.5 beliefs(agent_A, food_present)”. Informally, this example expresses
the fact that, if agent A observes that food is present during 1 time unit, then after a
delay between 2 and 3 time units, agent A will belief that food is present during 1.5
time units. In addition, within the LEADSTO language it is possible to use sorts,

α
β

t1

e

g h

t2

time

f
t0

Fig. 1. Timing relationships for LEADSTO
expressions

 Integrating Agent Models and Dynamical Systems 53

variables over sorts, real numbers, and mathematical operations, such as in
“has_value(x, v) →→ e, f, g, h has_value(x, v*0.25)”. Next, a trace or trajectory γ over a state
ontology Ont is a time-indexed sequence of states over Ont (where the time frame is
formalised by the real numbers). A LEADSTO expression α →→e, f, g, h β, holds for a
trace γ if:

∀t1 [∀t [t1–g ≤ t < t1 ⇒ α holds in γ at time t] ⇒ ∃d [e ≤ d ≤ f & ∀t' [t1+d ≤ t' < t1+d+h ⇒ β holds in γ at time t']

To specify the fact that a certain event (i.e., a state property) holds at every state
(time point) within a certain time interval a predicate holds_during_interval(event, t1, t2)
is introduced. Here event is some state property, t1 is the beginning of the interval and
t2 is the end of the interval.

An important use of the LEADSTO language is as a specification language for
simulation models. As indicated above, on the one hand LEADSTO expressions can
be considered as logical expressions with a declarative, temporal semantics, showing
what it means that they hold in a given trace. On the other hand they can be used to
specify basic mechanisms of a process and to generate traces, similar to Executable
Temporal Logic [3]. More details on the semantics of LEADSTO can be found in [7].

2.2 Solving the Initial Value Problem in LEADSTO: Euler’s Method

Often behavioural models in the Dynamical Systems Theory are specified by systems
of differential equations with given initial conditions for continuous variables and
functions. A problem of finding solutions to such equations is known as an initial
value problem in the mathematical analysis. One of the approaches for solving this
problem is based on discretisation, i.e., replacing a continuous problem by a discrete
one, whose solution is known to approximate that of the continuous problem. For this
methods of numerical analysis are usually used [22]. The simplest approach for
finding approximations of functional solutions for ordinary differential equations is
provided by Euler’s method. Euler’s method for solving a differential equation of the
form dy/dt = f(y) with the initial condition y(t0)=y0 comprises the difference equation
derived from a Taylor series:

y(t) = n

n

n

tt
n

ty
)(*

!
)(

0
0

0
)(

−∑
∞

=

,

where only the first member is taken into account: yi+1=yi+h* f(yi), where i≥0 is the step
number and h>0 is the integration step size. This equation can be modelled in the
LEADSTO language in the following way:

• Each integration step corresponds to a state, in which an intermediate value of y
is calculated.

• The difference equation is modelled by a transition rule to the successive state in
the LEADSTO format.

• The duration of an interval between states is defined by a step size h.

Thus, for the considered case the LEADSTO simulation model comprises the rule:

has_value(y, v1) →→ 0, 0, h, h has_value(y, v1+h* f(v1))

54 T. Bosse, A. Sharpanskykh, and J. Treur

The initial value for the function y is specified by the following LEADSTO rule:

holds_during_interval(has_value(y, y0), 0, h)

By performing a simulation of the obtained model in the LEADSTO environment
an approximate functional solution to the differential equation can be found.

To illustrate the proposed simulation-based approach based on Euler’s method in
LEADSTO, the logistic growth model or the Verhulst model [4] which is often used
to describe the population growth in resource-bounded environments, is considered:
dP/dt = r*P(1-P/K), where P is the population size at time point t; r and K are some
constants. This model corresponds to the following LEADSTO simulation model:
has_value(y, v1) →→ 0, 0, h, h has_value(y, v1+ h*r* v1*(1-v1/K)). The simulation result of this
model with the parameters r=0.5 and K=10 and initial value P(0)=1 is given in Figure 2.

Fig. 2. Logistic growth function modelled in LEADSTO with parameters r=0.5, K=10, P(0)=1

3 Modelling the Predator-Prey Model in LEADSTO

The proposed simulation-based approach can be applied for solving a system of
ordinary differential equations. In order to illustrate this, the classical Lotka-Volterra
model (also known as a Predator-Prey model) [21] is considered. The Lotka-Volterra
describes interactions between two species in an ecosystem, a predator and a prey.
The model consists of two equations: the first one describes how the prey population
changes and the second one describes how the predator population changes. If x(t) and
y(t) represent the number of preys and predators respectively, that are alive in the
system at time t, then the Lotka-Volterra model is defined by: dx/dt = a*x - b*x*y ;
dy/dt = c*b*x*y - e*y where the parameters are defined by: a is the per capita birth rate of
the prey, b is a per capita attack rate, c is the conversion efficiency of consumed prey
into new predators, and e is the rate at which predators die in the absence of prey. To
solve this system, numerical methods derived from a Taylor series up to some order
can be used. In the following section it will be shown how Euler’s (first-order rough)
method can be used for creating a LEADSTO simulation model for finding the
approximate solutions for the Predator-Prey problem. After that, in Section 3.2 it will
be demonstrated how the generated LEADSTO simulation model can be extended by
introducing qualitative behavioural aspects in the standard predator-prey model.
Section 3.3 briefly presents a more elaborated example of a LEADSTO simulation
model combining quantitative and qualitative aspects of behaviour, addressing
simulation of human conditioning processes.

 Integrating Agent Models and Dynamical Systems 55

3.1 The LEADSTO Language

Using the technique described in Section 2.2, the Lotka-Volterra model is translated
into a LEADSTO simulation model as follows:

 has_value(x, v1) ∧ has_value(y, v2) →→ 0, 0, h, h has_value(x, v1+h*(a*v1-b*v1*v2))
has_value(x, v1) ∧ has_value(y, v2) →→ 0, 0, h, h has_value(y, v2+h*(c*b*v1*v2-e*v2))

The initial values for variables and functions are specified as for the general case.
Although Euler’s method offers a stable solution to a stable initial value problem, a
choice of initial values can significantly influence the model’s behaviour. More
specifically, the population size of both species will oscillate if perturbed away from
the equilibrium. The amplitude of the oscillation depends on how far the initial values
of x and y depart from the equilibrium point. The equilibrium point for the considered
model is defined by the values x=e/(c*b) and y=a/b. For example, for the parameter
settings a=1.5, b=0.2, c=0.1 and e=0.5 the equilibrium is defined by x=25 and y=7.5. Yet
a slight deviation from the equilibrium point in the initial values (x0=25, y0=8) results in
the oscillated (limit cycle) behaviour.

3.2 Extending the Standard Predator-Prey Model with Qualitative Aspects

In this section, an extension of the standard predator-prey model is considered, with
some qualitative aspects of behaviour. Assume that the population size of both
predators and preys within a certain eco-system is externally monitored and controlled
by humans. Furthermore, both prey and predator species in this eco-system are also
consumed by humans. A control policy comprises a number of intervention rules that
ensure the viability of both species. Among such rules could be following:

- in order to keep a prey species from extinction, a number of predators should be
controlled to stay within a certain range (defined by pred_min and pred_max);

- if a number of a prey species falls below a fixed minimum (prey_min), a number of
predators should be also enforced to the prescribed minimum (pred_min);

- if the size of the prey population is greater than a certain prescribed bound
(prey_max), then the size of the prey species can be reduced by a certain number
prey_quota (cf. a quota for fish catch).

These qualitative rules can be encoded into the LEADSTO simulation model for
the standard predator-prey case by adding new dynamic properties and changing the
existing ones in the following way:

has_value(x, v1) ∧ has_value(y, v2) ∧ v1< prey_max →→ 0, 0, h, h has_value(x, v1+h*(a*v1-b*v1*v2))
has_value(x, v1) ∧ has_value(y, v2) ∧ v1 ≥ prey_max →→ 0, 0, h, h

has_value(x, v1+h*(a*v1-b*v1*v2) - prey_quota)
has_value(x, v1) ∧ has_value(y, v2) ∧ v1 ≥ prey_min ∧ v2 < pred_max →→ 0, 0, h, h

has_value(y, v2+h* (c*b*v1*v2-e*v2))
has_value(x, v1) ∧ has_value(y, v2) ∧ v2 ≥ pred_max →→ 0, 0, h, h has_value(y, pred_min)
has_value(x, v1) ∧ has_value(y, v2) ∧ v1 < prey_min →→ 0, 0, h, h has_value(y, pred_min)

The result of simulation of this model using Euler’s method with the parameter
settings: a=4; b=0.2, c=0.1, e=8, pred_min=10, pred_max=30, prey_min=40, prey_max=100,
prey_quota=20, x0=90, y0=10 is given in Fig. 3.

56 T. Bosse, A. Sharpanskykh, and J. Treur

Fig. 3. Simulation results for the Lotka-Volterra model combined some qualitative aspects

3.3 Example Hybrid LEADSTO Specification - Model for Conditioning

Research into conditioning is aimed at revealing the principles that govern associative
learning. An important issue in conditioning processes is the adaptive timing of the
conditioned response to the appearance of the unconditioned stimulus. This feature is
most apparent in an experimental procedure called trace conditioning. In this
procedure, a trial starts with the presentation of a warning stimulus (S1; comparable
to a conditioned stimulus). After a blank interval, called the foreperiod, an imperative
stimulus (S2, comparable to an unconditioned stimulus) is presented to which the
participant responds as fast as possible. The reaction time to S2 is used as an estimate
of the conditioned state of preparation at the moment S2 is presented. In this case, the
conditioned response obtains its maximal strength, here called peak level, at a
moment in time, called peak time, that closely corresponds to the moment the
unconditioned stimulus occurs.

Machado developed a basic model that describes the dynamics of these
conditioning processes in terms of differential equations [18]. The structure of this
model is shown in Figure 4. The model posits a layer of timing nodes and a single
preparation node. Each timing node is connected both to the next (and previous)
timing node and to the preparation node. The connection between each timing node
and the preparation node (called associative link) has an adjustable weight associated
to it. Upon the presentation of a warning stimulus, a cascade of activation propagates
through the timing nodes according to a regular pattern. Owing to this regularity, the
timing nodes can be likened to an internal clock or pacemaker. At any moment, each
timing node contributes to the activation of the preparation node in accordance with
its activation X and its corresponding weight W. The activation of the preparation
node reflects the participant's preparatory state, and is as such related to reaction time.

The weights reflect the state of conditioning, and are adjusted by learning rules, of
which the main principles are as follows. First, during the foreperiod extinction takes
place, which involves the decrease of weights in real time in proportion to the
activation of their corresponding timing nodes. Second, after the presentation of the
imperative stimulus a process of reinforcement takes over, which involves an increase
of the weights in accordance with the current activation of their timing nodes, to

 Integrating Agent Models and Dynamical Systems 57

preserve the importance of the imperative moment. Machado describes the more
detailed dynamics of the process by a mathematical model (based on linear
differential equations), representing the (local) temporal relationships between the
variables involved. For example, d/dt X(t,n) = λX(t,n-1) - λX(t,n) expresses how the
activation level of the n-th timing node X(t+dt,n) at time point t+dt relates to this level
X(t,n) at time point t and the activation level X(t,n-1) of the (n-1)-th timing node at time
point t. Similarly, as another example, d/dt W(t,n) = -αX(t,n)W(t,n) expresses how the n-th
weight W(t+dt,n) at time point t+dt relates to this weight W(t,n) at time point t and the
activation level X(t,n) of the n-th timing node at time point t.

Fig. 4. Structure of Machado’s conditioning model (adjusted from [18])

In [6], LEADSTO has been used to specify Machado’s mathematical model in a
logical, declarative manner. Some of the dynamic properties used are shown below:

LP5 (Extinction of associative links)
LP5 expresses the adaptation of the associative links during extinction, based on their
own previous state and the previous state of the corresponding timing node. Here, α is
a learning rate parameter. Formalisation:
∀u,v:REAL ∀n:INTEGER
instage(ext) and X(n, u) and W(n, v) →→0,0,1,1 W(n, v*(1-α*u*step))

LP6 (Reinforcement of associative links)
LP6 expresses the adaptation of the associative links during reinforcement, based on
their own previous state and the previous state of X. Here, β is a learning rate parameter.
∀u,v:REAL ∀n:INTEGER
instage(reinf) and Xcopy(n, u) and W(n, v) →→0,0,1,1 W(n, v*(1-β*u*step) + β*u*step)

An example simulation trace that has been generated on the basis of this model is
shown in Figure 5. The upper part of the figure shows conceptual, qualitative
information (e.g., the state properties that indicate the stage of the process); the lower
part shows more quantitative concepts, i.e., the state properties involving real
numbers with changing values over time (e.g., the preparation level of the person). To
limit complexity, only a selection of important state properties was depicted. In the
lower part, all instantiations of state property r(X) are shown with different (real)
values for X (shown on the vertical axis), indicating the participant’s preparation level
to respond to a stimulus. For example, from time point 1 to 9, the level of preparation
is 0.0, and from time point 9 to 10, the level of preparation is 0.019.

S1

Timing nodes with
activation level X

Preparation node

Associative links of
variable weight W

Response strength R

58 T. Bosse, A. Sharpanskykh, and J. Treur

Figure 5 describes the dynamics of a person that is subject to conditioning in an
experiment with a foreperiod of 6 time units. As can be seen in the trace, the level of
response-related activation increases on each trial. Initially, the subject is not prepared
at all: at the moment of the imperative stimulus (S2), the level of response is 0.0.
However, already after two trials a peak in response level has developed that
coincides exactly with the occurrence of S2. Although this example is relatively
simple, it demonstrates the power of LEADSTO to combine (real-valued) quantitative
concepts with (conceptual) qualitative concepts.

Fig. 5. Example simulation trace of a conditioning process

4 Simulating the Predator-Prey Model by the Runge-Kutta
Method

As shown in [22], within Euler’s method the local error at each step (of size h) is
O(h2), while the accumulated error is O(h). However, the accumulated error grows
exponentially as the integration step size increases. Therefore, in situations in which
precision of a solution is required, high order numerical methods are used. For the
purpose of illustration of high-order numerical approaches the fourth-order Runge-
Kutta method is considered. This method is derived from a Taylor expansion up to the
fourth order. It is known to be very accurate (the accumulated error is O(h4)) and stable
for a wide range of problems. The Runge-Kutta method for solving a differential
equation of the form dx/dt = f(t, x) is described by the following formulae:

xi+1 = xi + h/6 *(k1 + 2*k2 + 2*k3 + k4),

where i≥0 is the step number, h>0 is the integration step size, and

k1 = f(ti, xi), k2 = f(ti + h/2, xi + h/2 *k1), k3 = f(ti + h/2, xi + h/2 *k2), k4 = f(ti + h, xi + h* k3).

Now, using the Runge-Kutta method, the classical Lotka-Volterra model
considered in the previous section is described in the LEADSTO format as follows:

has_value(x, v1) ∧ has_value(y, v2) →→ 0, 0, h, h has_value(x, v1 + h/6 *(k11 + 2*k12 + 2*k13 + k14))

has_value(x, v1) ∧ has_value(y, v2) →→ 0, 0, h, h has_value(y, v2 + h/6 *(k21 + 2*k22 + 2*k23 + k24)),

 Integrating Agent Models and Dynamical Systems 59

where:

k11 = a*v1-b*v1*v2, k21 = c*b*v1*v2 - e*v2, k12 = a*(v1 + h/2 *k11) - b*(v1 + h/2 *k11)*(v2 + h/2 *k21), k22 = c*b*(v1
+ h/2 *k11)*(v2 + h/2 *k21) - e*(v2 + h/2 *k21), k13 = a*(v1 + h/2 *k12) - b*(v1 + h/2 *k12)*(v2 + h/2 *k22), k23 =
c*b*(v1 + h/2 *k12)*(v2 + h/2 *k22) - e*(v2 + h/2 *k22), k14 = a*(v1 + h *k13) - b*(v1 + h *k13)*(v2 + h *k23), k24 =
c*b*(v1 + h *k13)*(v2 + h *k23) - e*(v2 + h *k23).

5 Simulation with Dynamic Step Size

Although for most cases the Runge-Kutta method with a small step size provides
accurate approximations of required functions, this method can still be
computationally expensive and, in some cases, inaccurate. In order to achieve a higher
accuracy together with minimum computational efforts, methods that allow the
dynamic (adaptive) regulation of an integration step size are used. This section shows
how such methods can be incorporated in LEADSTO.

To illustrate the use of methods for dynamic step size control, the biochemical
model of [13], summarised in Table 1, is considered.

Table 1. Glycolysis model by [13]

Variables
W: Fructose 6-phosphate
X : phosphoenolpyruvate
Y : pyruvate
N1 : ATP; N2 : ADP; N3 : AMP

Differential equations
X'[t] == 2*Vpfk - Vxy
Y'[t] == Vxy - Vpdc
N1'[t] == Vxy + Vak - Vatpase
N2'[t] == -Vxy - 2*Vak + Vatpase

Moiety conservation
N1[t] + N2[t] + N3 = 20

Initial conditions
N1[0] == 10
N2[0] == 9
Y[0] == 0
X[0] == 0

Fixed metabolites
W = 0.0001; Z = 0

Rate equations
Vxy = 343*N2[t]*X[t]/((0.17 +
 N2[t])*(0.2 + X[t]))
Vak = -(432.9*N3*N1[t] -
 133*N2[t]^2)
Vatpase = 3.2076*N1[t]
Vpdc = 53.1328*Y[t]/(0.3 + Y[t])
 (*10.0*Y[t]*)
Vpfk = 45.4327*W^2/(0.021*(1 +
 0.15*N1[t]^2/N3^2 + W^2))

This model describes the process of glycolysis in Saccharomyces cerevisiae, a
specific species of yeast. This model is interesting to study, because the
concentrations of some of the substances involved (in particular ATP and ADP) are
changing at a variable rate: sometimes these concentrations change rapidly, and
sometimes they change very slowly. Using the technique described in Section 2.2
(based on Euler’s method), this model can be translated to the following LEADSTO
simulation model:

has_value(x, v1) ∧ has_value(y, v2) ∧ has_value(n1, v3) ∧ has_value(n2, v4) →→ 0, 0, h, h
has_value(x, v1+ (2* (45.4327*w^2/ (0.021* (1+0.15*v3^2/ (20-v3-v4)^2+w^2)))-343*v4*v1/
((0.17+v4)* (0.2+v1)))*h)

has_value(x, v1) ∧ has_value(y, v2) ∧ has_value(n1, v3) ∧ has_value(n2, v4) →→ 0, 0, h, h
has_value(y, v2+ (343*v4*v1/ ((0.17+v4)* (0.2+v1))-53.1328*v2/ (0.3+v2))*h)

has_value(x, v1) ∧ has_value(y, v2) ∧ has_value(n1, v3) ∧ has_value(n2, v4) →→ 0, 0, h, h
has_value(n1, v3+ (343*v4*v1/ ((0.17+v4)* (0.2+v1))+ (- (432.9* (20-v3-v4)*v3-133*v4^2))-
3.2076*v3)*h)

has_value(x, v1) ∧ has_value(y, v2) ∧ has_value(n1, v3) ∧ has_value(n2, v4) →→ 0, 0, h, h
has_value(n2, v4+ (-343*v4*v1/ ((0.17+v4)* (0.2+v1))-2*

(- (432.9* (20-v3-v4)*v3-133*v4^2))+3.2076*v3)*h)

60 T. Bosse, A. Sharpanskykh, and J. Treur

The simulation results of this model (with a static step size of 0.00001) are shown
in Fig. 6. Here the curves for N1 and N2 are initially very steep, but become flat after
a while. As demonstrated by Figure 6, for the first part of the simulation, it is
necessary to pick a small step size in order to obtain accurate results. However, to
reduce computational efforts, for the second part a bigger step size is desirable. To
this end, a number of methods exist that allow the dynamic adaptation of the step size
in a simulation. Generally, these approaches are based on the fact that the algorithm
signals information about its own truncation error. The most straightforward (and
most often used) technique for this is step doubling and step halving, see, e.g. [Gear
1971]. The idea of step doubling is that, whenever a new simulation step should be
performed, the algorithm compares the result of applying the current step twice with
the result of applying the double step (i.e., the current step * 2) once. If the difference
between both solutions is smaller than a certain threshold ε, then the double step is
selected. Otherwise, the algorithm determines whether step halving can be applied: it
compares the result of applying the current step once with the result of applying the
half step (i.e., the current step * 0.5) twice. If the difference between both solutions is
smaller than ε, then the current step is selected. Otherwise, the half step is selected.

Fig. 6. Simulation results of applying Euler’s method to [13]’s glycolysis model

Since its format allows the modeller to include qualitative aspects, it is not
difficult to incorporate step doubling and step halving into LEADSTO. To illustrate
this, consider the general LEADSTO rule shown in Section 2.2 for solving a
differential equation of the form dy/dt = f(y) using Euler’s method:

has_value(y, v1) →→ 0, 0, h, h has_value(y, v1+h* f(v1))

Adding step doubling and step halving to this rule yields the following three rules:

step(h) ∧ has_value(y, v1) ∧ |(v1+2h* f(v1)) - ((v1+h* f(v1))+h* f(v1+h* f(v1)))| ≤ ε
→→ 0, 0, 2h, 2h has_value(y, v1+2h* f(v1)) ∧ step(2h)

 Integrating Agent Models and Dynamical Systems 61

step(h) ∧ has_value(y, v1) ∧ |(v1+2h* f(v1)) - ((v1+h* f(v1))+h* f(v1+h* f(v1)))| > ε ∧
|(v1+h* f(v1)) - ((v1+0.5h* f(v1))+0.5h* f(v1+0.5h* f(v1)))| ≤ ε

→→ 0, 0, h, h has_value(y, v1+h* f(v1)) ∧ step(h)

step(h) ∧ has_value(y, v1) ∧ |(v1+h* f(v1)) - ((v1+0.5h* f(v1))+0.5h* f(v1+0.5h* f(v1)))| ≤ ε
→→ 0, 0, 0.5h, 0.5h has_value(y, v1+0.5h* f(v1)) ∧ step(0.5h)

Besides step doubling, many other techniques exist in the literature for dynamically
controlling the step size in quantitative simulations. Among these are several
techniques that are especially aimed at the Runge-Kutta methods, see, e.g., [24],
Chapter 16 for an overview. Although it is possible to incorporate such techniques
into LEADSTO, they are not addressed here because of space limitations.

6 Analysis in Terms of Local-Global Relations

Within the area of agent-based modelling, one of the means to address complexity is
by modelling processes at different levels, from the global level of the process as a
whole, to the local level of basic elements and their mechanisms. At each of these
levels dynamic properties can be specified, and by interlevel relations they can be
logically related to each other; e.g., [14], [27]. These relationships can provide an
explanation of properties of a process as a whole in terms of properties of its local
elements and mechanisms. Such analyses can be done by hand, but also software tools
are available to automatically verify the dynamic properties and their interlevel
relations. To specify the dynamic properties at different levels and their interlevel
relations, a more expressive language is needed than simulation languages based on
causal relationships, such as LEADSTO. The reason for this is that, although the latter
types of languages are well suited to express the basic mechanisms of a process, for
specifying global properties of a process it is often necessary to formulate complex
relationships between states at different time points. To this end, the formal language
TTL has been introduced as a super-language of LEADSTO; cf. [8]. It is based on
order-sorted predicate logic and, therefore, inherits the standard semantics of this
variant of predicate logic. That is, the semantics of TTL is defined in a standard way,
by interpretation of sorts, constants, functions and predicates, and variable
assignments. Furthermore, TTL allows representing numbers and arithmetical
functions. Therefore, most methods used in Calculus are expressible in TTL,
including methods based on derivatives and differential equations. In this section, first
(in Section 6.1) it is shown how to incorporate differential equations in the predicate-
logical language TTL that is used for analysis. Next, in Section 6.2 a number of
global dynamic properties are identified, and it is shown how they can be expressed in
TTL. In Section 6.3 a number of local dynamic properties are identified and expressed
in TTL. Finally, Section 6.4 discusses how the global properties can be logically
related to local properties such that a local property implies the global property.

6.1 The LEADSTO Language

As mentioned earlier, traditionally, analysis of dynamical systems is often performed
using mathematical techniques such as the Dynamical Systems Theory. The question

62 T. Bosse, A. Sharpanskykh, and J. Treur

may arise whether or not such modelling techniques can be expressed in the Temporal
Trace Language TTL. In this section it is shown how modelling techniques used in
the Dynamical Systems approach, such as difference and differential equations, can
be represented in TTL. First the discrete case is considered. As an example consider
again the logistic growth model: dP/dt = r*P(1-P/K). This equation can be expressed in
TTL on the basis of a discrete time frame (e.g., the natural numbers) in a
straightforward manner:

∀t ∀v state(γ , t) |== has_value(P, v) ⇒ state(γ , t+1) |== has_value(P, v + h • r • v • (1 - v/K))

The traces γ satisfying the above dynamic property are the solutions of the difference
equation. However, it is also possible to use the dense time frame of the real numbers,
and to express the differential equation directly. To this end, the following relation is
introduced, expressing that x = dy/dt:

is_diff_of(γ, x, y) :
∀t,w ∀ε>0 ∃δ>0 ∀t',v,v' [0 < dist(t',t) < δ & state(γ, t) |== has_value(x, w) &
state(γ, t) |== has_value(y, v) & state(γ, t') |== has_value(y, v') ⇒ dist((v'-v)/(t'-t),w) < ε]

where γ is the trace that describes the change of values of x and y over time, dist(u,v) is
defined as the absolute value of the difference, i.e. u-v if this is ≥ 0, and v-u otherwise.
Using this, the differential equation can be expressed by is_diff_of(γ , r • P (1 - P/K), P).

The traces γ for which this statement is true are (or include) solutions for the
differential equation. Models consisting of combinations of difference or differential
equations can be expressed in a similar manner. This shows how modelling constructs
often used in DST can be expressed in TTL. Thus, TTL on the one hand subsumes
modelling languages based on differential equations, but on the other hand enables the
modeller to express more qualitative, logical concepts as well.

6.2 Mathematical Analysis in TTL: Global Dynamic Properties

Within Dynamical Systems Theory and Calculus, also for global properties of a
process more specific analysis methods are known. Examples of such analysis
methods include mathematical methods to determine equilibrium points, the
behaviour around equilibrium points, and the existence of limit cycles [10]. Suppose a
set of differential equations is given, for example a predator prey model: dx/dt = f(x, y)

dy/dt = g(x, y), where f(x, y) and g(x, y) are arithmetical expressions in x and y. Within
TTL the following abbreviation is introduced as a definable predicate:

point(γ, t, x, v, y, w) ⇔ state(γ, t) |= has_value(x, v) ∧ has_value(y, w)

Using this predicate, the following global properties can for example be specified:

Monotonicity
monotic_increase_after(γ, t, x) ⇔
∀t1, t2 [t ≤ t1 < t2 & point(γ, t1, x, v1, y, w1) & point(γ, t2, x, v2, y, w2) ⇒ v1<v2]

Bounded
upward_bounded_after_by(γ, t, M) ⇔ ∀t1 [t ≤ t1 & point(γ, t1, x, v1, y, w1) ⇒ v1≤M]

 Integrating Agent Models and Dynamical Systems 63

Equilibrium points
These are points in the (x, y) plane for which, when they are reached by a solution,
the state stays at this point in the plane for all future time points. This can be
expressed as a global dynamic property in TTL as follows:

has_equilibrium(γ, x, v, y, w) ⇔ ∀t1 [point(γ, t1, x, v, y, w) ⇒ ∀t2≥t1 point(γ, t2, x, v, y, w)]
occurring_equilibrium(γ, x, v, y, w) ⇔ ∃t point(γ, t, x, v, y, w) & has_equilibrium(γ, x, v, y, w)

Behaviour Around an Equilibrium
attracting(γ, x, v, y, w, ε0) ⇔ has_equilibrium(γ, x, v, y, w) &
ε0>0 ∧ ∀t [point(γ, t, x, v1, y, w1) ∧ dist(v1, w1, v, w) < ε0 ⇒
∀ε>0 ∃t1≥t ∀t2≥t1 [point(γ, t2, x, v2, y, w2) ⇒ dist(v2, w2, v, w) < ε]]

Here, dist(v1, w1, v2, w2) denotes the distance between the points (v1, w1) and (v2,
w2) in the (x, y) plane.

Limit cycle
A limit cycle is a set S in the x, y plane such that
∀t, v, w point(γ, t, x, v, y, w) & (v, w) ∈ S ⇒ ∀t'≥t, v', w' [point(γ, t', x, v', y, w') ⇒ (v', w') ∈ S]

In specific cases the set can be expressed in an implicit manner by a logical and/or
algebraic formula, e.g., an equation, or in an explicit manner by a parameterisation.
For these cases it can be logically expressed that a set S is a limit cycle.

(1) When S is defined in an implicit manner by a formula ϕ(v, w) with S = { (v, w) |
ϕ(v, w) }, then it is defined that S is a limit cycle as follows:

∀t, v, w point(γ, t, x, v, y, w) & ϕ(v, w) ⇒ ∀t'≥t, v', w' [point(γ, t', x, v', y, w') ⇒ ϕ(v', w')]
E.g., when S is a circle defined by a formula of the form S = { (v, w) | v2 + w2 = r2 }

(2) When a set S in the plane is parameterised by two functions c1, c2: [0, 1] → ℜ, i.e.,
S = { (c1(u), c2(u)) | u ∈ [0, 1] }, then S is a limit cycle if

∀t, u point(γ, t, c1(u), c2(u)) ⇒ ∀t'≥t ∃u' point(γ, t', c1(u'), c2(u'))

An example of a parameterising for S in the shape of a circle is as follows:

c1(u) = r cos 2π u, c2(u) = r sin 2π u

In many cases, however, the set S cannot be expressed explicitly in the form of an
equation or an explicitly defined parameterisation. What still can be done often is to
establish the existence of a limit cycle within a certain area, based on the Poincaré-
Bendixson Theorem [16].

6.3 Mathematical Analysis in TTL: Local Dynamic Properties

The global dynamic properties described above can also be addressed from a local
perspective. For example, the property of monotonicity (which was expressed above
for a whole trace after a certain time point t), can also be expressed for a certain
interval (with duration d) around t, as shown below.

Local monotonicity property
monotic_increase_around(γ, t, x, d) ⇔
∀t1, t2 [t-d ≤ t1 < t < t2≤ t+d & point(γ, t1, x, v1, y, w1) & point(γ, t2, x, v2, y, w2) ⇒ v1< v2]

In terms of f and g:
monotic_increase_around(γ, t, x, d) ⇔ point(γ, t, x, v1, y, w1) ⇒ f(v1, w1) > 0

64 T. Bosse, A. Sharpanskykh, and J. Treur

Local bounding property
upward_bounding_around(γ, t, M, δ, d) ⇔
[point(γ, t, x, v1, y, w1) ⇒ ∀t' [t≤t'≤t+d & point(γ, t', x, v2, y, w2) ⇒ M-v2 ≥ (1-δ)*(M-v1)]

In terms of f and g from the equations dx/dt = f(x, y) and dy/dt = g(x, y):
upward_bounding_around(γ, t, M, δ, d) ⇔ point(γ, t, x, v1, y, w1) ⇒ f(v1, w1) ≤ δ/d (M - v1)

Local equilibrium property
From the local perspective of the underlying mechanism, equilibrium points are those
points for which dx/dt = dy/dt = 0, i.e., in terms of f and g for this case f(x, y) = g(x, y) = 0.
equilibrium_state(v, w) ⇔ f(v, w) = 0 & g(v, w) = 0

Local property for behaviour around an equilibrium:
attracting(γ, x, v, y, w, δ, ε0, d) ⇔ has_equilibrium(γ, x, v, y, w) &
ε0>0 ∧ 0< δ <1 ∧ d≥0 ∧ ∀t [point(γ, t, x, v1, y, w1) ∧ dist(v1, w1, v, w) < ε0 ⇒
∀t' [t+d≤t'≤t+2d & point(γ, t', x, v2, y, w2) ⇒ dist(v2, w2, v, w) < δ*dist(v1, w1, v, w)]]

In terms of f and g, this can be expressed by relationships for the eigen values of the
matrix of derivatives of f and g.

Local limit cycle property
Let a set S in the plane be parameterised by two explicitly given functions c1, c2: [0, 1]
→ ℜ, i.e., S = { (c1(u), c2(u)) | u ∈ [0, 1] }, and d1(u) = dc1(u)/du, d2(u) = dc2(u)/du. Then S is
a limit cycle if:

∀t, u point(γ, t, c1(u), c2(u)) ⇒ d1(u)*g(c1(u), c2(u)) = f(c1(u), c2(u))*d2(u)

6.4 Logical Relations Between Local and Global Properties

The properties of local and global level can be logically related to each other by
general interlevel relations, for example, the following ones:

∃d>0 ∀t'≥t monotic_increase_around(γ, t', x, d) ⇒ monotic_increase_after(γ, t, x)

∃d>0, δ>0 ∀t'≥t upward_bounding_around(γ, t, M, δ, d) ⇒ upward_bounded_after_by(γ, t, M)

∀t [state(γ, t) |= equilibrium_state(v, w) ⇒ has_equilibrium(γ, x, v, y, w)

∃d>0, δ>0 attracting(γ, x, v, y, w, δ, ε0, d) ⇒ attracting(γ, x, v, y, w, ε0)

These interlevel relations are general properties of dynamic systems, as explained,
e.g., in [10]. Full proofs for these relations fall outside the scope of this paper.
However, to make them a bit more plausible, the following sketch is given. The first
interlevel relation involving monotonicity can be based on induction on the number of
d-intervals of the time axis between two given time points t1 and t2. The second
interlevel relation, involving boundedness is based on the fact that local bounding
implies that in any d-interval, if the value at the start of the interval is below M, then
it will remain below M in that interval. The third interlevel relation, on equilibrium
points, is based on the fact that if at no time point the value changes, then at all time
points after this value is reached, the value will be the same. For the fourth interlevel
relation, notice that local attractiveness implies that for any d-interval the distance of
the value to the equilibrium value at the end point is less than δ times the value at the
starting point. By induction over the number of d-intervals the limit definition as used
for the global property can be obtained.

 Integrating Agent Models and Dynamical Systems 65

7 Discussion

The LEADSTO approach discussed in this paper provides means to simulate models
of dynamic systems that combine both quantitative and qualitative aspects. A
dynamic system, as it is used here, is a system, which is characterised by states and
transitions between these states. As such, dynamic systems as considered in [23],
which are described by differential equations, constitute a subclass of the dynamic
systems considered in this paper. Systems that incorporate both continuous
components and discrete components are sometimes called hybrid systems. Hybrid
systems are studied in both computer science [9], [19] and control engineering [17].
They incorporate both continuous components, whose dynamics is described by
differential equations and discrete components, which are often represented by finite-
state automata. Both continuous and discrete dynamics of components influence each
other. In particular, the input to the continuous dynamics is the result of some
function of the discrete state of a system; whereas the input of the discrete dynamics
is determined by the value of the continuous state. In the control engineering area,
hybrid systems are often considered as switching systems that represent continuous-
time systems with isolated and often simplified discrete switching events. Yet in
computer science the main interest in hybrid systems lies in investigating aspects of
the discrete behaviour, while the continuous dynamics is often kept simple.

Our LEADSTO approach provides as much place for modelling the continuous
constituent of a system, as for modelling the discrete one. In contrast to many studies
on hybrid systems in computer science (e.g., [25]), in which a state of a system is
described by assignment of values to variables, in the proposed approach a state of a
system is defined using a rich ontological basis (i.e., typed constants, variables,
functions and predicates). This provides better possibilities for conceptualising and
formalising different kinds of systems (including those from natural domains).
Furthermore, by applying numerical methods for approximation of the continuous
behaviour of a system, all variables in a generated model become discrete and are
treated equally as finite-state transition system variables. Therefore, it is not needed to
specify so-called control points [19], at which values of continuous variables are
checked and necessary transitions or changes in a mode of a system’s functioning are
made. Moreover, using TTL, a super-language of LEADSTO, dynamical systems can
be analysed by applying formalised standard techniques from mathematical calculus.

Since LEADSTO has a state-based semantics and allows a high ontological
expressivity for defining state properties, many action-based languages (A, B, C [12],
 L [2] and their extensions) can be represented in (or mapped to) the LEADSTO
format. In particular, trajectories that define the world evolution in action languages
correspond to traces in LEADSTO, fluents evaluated in each state can be represented
by state properties, and transitions between states due to actions can be specified by
LEADSTO rules that contain the corresponding actions within the antecedents.
Furthermore, to represent actions, observations, and goals of agents and facts about
the world, the state ontology of LEADSTO includes corresponding sorts, functions
and predicates. LEADSTO allows representing both static and dynamic laws as they
are defined in [12], and non-deterministic actions with probabilities. To represent and
reason about temporal aspects of actions, LEADSTO includes the sort TIME, which is
a set of linearly ordered time points.

66 T. Bosse, A. Sharpanskykh, and J. Treur

The expressions of query languages used to reason about actions [2], [12] can be
represented in TTL, of which LEADSTO is a sublanguage. TTL formulae can express
causality relations of query languages by implications and may include references to
multiple states (e.g., histories of temporally ordered sequences of states). Using a
dedicated tool [8], TTL formulae can be automatically checked on traces (or
trajectories) that represent the temporal development of agent systems.

Concerning other related work, in [26], a logic-based approach to simulation-based
modelling of ecological systems is introduced. Using this approach, continuous
dynamic processes in ecological systems are conceptualised by system dynamics
models (i.e., sets of compartments with flows between them). For formalising these
models and performing simulations, the logical programming language Prolog is
used. In contrast to this, the LEADSTO approach provides a more abstract (or high-
level) logic-based language for knowledge representation.

Also within the area of cognitive modelling, the idea to combine qualitative and
quantitative aspects within one modelling approach is not uncommon. A number of
architectures have been developed in that area, e.g., ACT-R [1] and SOAR [15]. Such
cognitive architectures basically consist of a number of different modules that reflect
specific parts of cognition, such as memory, rule-based processes, and communication.
They have in common with LEADSTO that they are hybrid approaches, supporting
both qualitative (or symbolic) and quantitative (or subsymbolic) structures. However, in
LEADSTO these qualitative and quantitative concepts can be combined within the
same expressions, whereas in ACT-R and SOAR separate modules exist to express
them. In these cognitive architectures, often the role of the subsymbolic processes is to
control the symbolic processes. For example, the subsymbolic part of ACT-R is
represented by a large set of parallel processes that can be summarised by a number of
mathematical equations, whereas its symbolic part is fulfilled by a production system.
Here, the subsymbolic equations control many of the symbolic processes. For instance,
if multiple production rules in ACT-R’s symbolic part are candidates to be executed, a
subsymbolic utility equation may estimate the relative cost and benefit associated with
each rule and select the rule with the highest utility for execution.

Accuracy and efficiency of simulation results for hybrid systems provided by the
proposed approach to a great extend depend on the choice of a numerical
approximation method. Although the proposed approach does not prescribe usage of
any specific approximation method (even the most powerful of them can be modelled
in LEADSTO), for most of the cases the fourth-order Runge-Kutta method can be
recommended, especially when the highest level of precision is not required. For
simulating system models, for which high precision is demanded, higher-order
numerical methods with an adaptive step size can be applied.

References

1. Anderson, J.R., Lebiere, C.: The atomic components of thought. Lawrence Erlbaum
Associates, Mahwah, NJ (1998)

2. Baral, C., Gelfond, M., Provetti, A.: Representing Actions: Laws, Observation and
Hypothesis. Journal of Logic Programming 31(1-3), 201–243 (1997)

 Integrating Agent Models and Dynamical Systems 67

3. Barringer, H., Fisher, M., Gabbay, D., Owens, R., Reynolds, M.: The Imperative Future:
Principles of Executable Temporal Logic. Research Studies Press Ltd. and John Wiley &
Sons (1996)

4. Boccara, N.: Modeling Complex Systems. In: Graduate Texts in Contemporary Physics
series, Springer, Heidelberg (2004)

5. Bosse, T., Delfos, M.F., Jonker, C.M., Treur, J.: Modelling Adaptive Dynamical Systems
to analyse Eating Regulation Disorders. Simulation Journal: Transactions of the Society
for Modeling and Simulation International 82, 159–171 (2006)

6. Bosse, T., Jonker, C.M., Los, S.A., van der Torre, L., Treur, J.: Formalisation and Analysis
of the Temporal Dynamics of Conditioning. In: Müller, J.P., Zambonelli, F. (eds.) AOSE
2005. LNCS, vol. 3950, pp. 157–168. Springer, Heidelberg (2006)

7. Bosse, T., Jonker, C.M., Meij, L., van der, L., Treur, J.: LEADSTO: A Language and
Environment for Analysis of Dynamics by Simulation. In: Eymann, T., Klügl, F.,
Lamersdorf, W., Klusch, M., Huhns, M.N. (eds.) MATES 2005. LNCS (LNAI), vol. 3550,
pp. 165–178. Springer, Heidelberg (2005) Extended version in: International Journal of
Artificial Intelligence Tools (to appear, 2007)

8. Bosse, T., Jonker, C.M., Meij, L., van der Sharpanskykh, A., Treur, J.: Specification and
Verification of Dynamics in Cognitive Agent Models. In: Nishida, T. (ed.) IAT 2006, pp.
247–254. IEEE Computer Society Press, Los Alamitos (2006)

9. Davoren, J.M., Nerode, A.: Logics for Hybrid Systems. Proceedings of the IEEE 88(7),
985–1010 (2000)

10. Edwards, C.H., Penney, D.L.: Calculus with Analytic Geometry, 5th edn. Prentice-Hall,
London (1998)

11. Gear, C.W.: Numerical Initial Value Problems in Ordinary Differential Equations.
Prentice-Hall, Englewood Cliffs (1971)

12. Gelfond, M., Lifschitz, V.: Action languages. Electronic Transactions on AI 3(16) (1998)
13. Hynne, F., Dano, S., Sorensen, P.G.: Full-scale model of glycolysis in Saccharomyces

cerevisiae. Biophys. Chem. 94(1-2), 121–163 (2001)
14. Jonker, C.M., Treur, J.: Compositional Verification of Multi-Agent Systems: A Formal

Analysis of Pro-activeness and Reactiveness. International Journal of Cooperative
Information Systems 11, 51–92 (2002)

15. Laird, J.E., Newell, A., Rosenbloom, P.S.: Soar: An architecture for general intelligence.
Artificial Intelligence 33(1), 1–64 (1987)

16. Lefschetz, S.: Differential equations: Geometric theory. Dover Publications, Mineola
(2005)

17. Liberzon, D., Morse, A.S.: Basic problems in stability and design of switched systems.
IEEE Control Systems Magazine 19(5), 59–70 (1999)

18. Machado, A.: Learning the Temporal Dynamics of Behaviour. Psychological Review 104,
241–265 (1997)

19. Manna, Z., Pnueli, A.: Verifying Hybrid Systems. In: Grossman, R.L., Ravn, A.P.,
Rischel, H., Nerode, A. (eds.) Hybrid Systems. LNCS, vol. 736, pp. 4–35. Springer,
Heidelberg (1993)

20. Meyer, J.J.C., Treur, J.: Agent-based Defeasible Control in Dynamic Environments. In:
Gabbay, D., Smets, P. (eds.) Defeasible Reasoning and Uncertainty Management Systems,
vol. 7, Kluwer Academic Publishers, Dordrecht (2002)

21. Morin, P.J.: Community Ecology. Blackwell Publishing, USA (1999)
22. Pearson, C.E.: Numerical Methods in Engineering and Science. CRC Press, Boca Raton

(1986)

68 T. Bosse, A. Sharpanskykh, and J. Treur

23. Port, R.F., van Gelder, T. (eds.): Mind as Motion: Explorations in the Dynamics of
Cognition. MIT Press, Cambridge, Mass (1995)

24. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes in C:
The art of scientific computing, 2nd edn. Cambridge university press, Cambridge (1992)

25. Rajeev, A., Henzinger, T.A., Wong-Toi, H.: Symbolic analysis of hybrid systems. In:
CDC. Proceedings of the 36th Annual Conference on Decision and Control, pp. 702–707.
IEEE Computer Society Press, Los Alamitos (1997)

26. Robertson, D., Bundy, A., Muetzelfeldt, R., Haggith, M., Ushold, M.: Eco-Logic: Logic-
Based Approaches to Ecological Modelling. MIT Press, Cambridge (1991)

27. Sharpanskykh, A., Treur, J.: Verifying Interlevel Relations within Multi-Agent Systems.
In: Brewka, G., Coradeschi, S., Perini, A., Traverso, P. (eds.) ECAI 2006. Proc. of the 17th
European Conference on Artificial Intelligence, pp. 290–294. IOS Press, Amsterdam
(2006)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

