
Robust Recognition of 1-D Barcodes Using Camera Phones

Steffen Wachenfeld, Sebastian Terlunen, Xiaoyi Jiang
Computer Vision and Pattern Recognition Group,

Department of Computer Science, University of Münster, Germany
{wachi, terlunen, xjiang}@uni-muenster.de

Abstract

In this paper we present an algorithm for the recog-
nition of 1D barcodes using camera phones, which is
highly robust regarding the the typical image distor-
tions. We have created a database of barcode im-
ages, which covers typical distortions, such as inho-
mogeneous illumination, reflections, or blurriness due
to camera movement. We present results from exper-
iments with over 1,000 images from this database us-
ing a Matlab implementation of our algorithm, as well
as experiments on the go, where a Symbian C++ im-
plementation running on a camera phone is used to
recognize barcodes in daily life situations. The pro-
posed algorithm shows a close to 100% accuracy in real
life situations and yields a very good resolution depen-
dent performance on our database, ranging from 90.5%
(640× 480) up to 99.2% (2592× 1944). The database
is freely available for other researchers.

1. Introduction

Barcodes are ubiquitously used to identify products,
goods or deliveries. Devices to read barcodes are all-
around, in the form of pen type readers, laser scan-
ners, or LED scanners. Camera-based readers, as a new
kind of barcode reader, have recently gained much at-
tention. The interest in camera-based barcode recog-
nition is build on the fact, that numerous mobile de-
vices are already in use, which provide the capability
to take images of a fair quality. In combination with
Bluetooth or WLAN connectivity, many applications
become possible, e.g. an instant barcode-based identi-
fication of products and the online retrieval of product
information. Such applications allow for the display of
warnings for people with allergies, results of product
tests or price comparisons in shopping situations.

Efforts concerning the recognition of 1D barcodes
using camera phones have already been made. Adel-

mann et al. [1] have presented two prototypical ap-
plications: the display of literature information about
scanned books, and the display of ingredient informa-
tion about scanned food for allergic persons. They did
not report recognition performances, but showed proof
of concept for new applications. Wang et al. from Nokia
[7, 8] have presented an algorithm which seems very
fast but very simple as well. They report a recognition
rate of 85,6% on an unpublished image database. From
its description we consider the algorithm to be much
less robust than the algorithm proposed in this paper.
Further, Ohbuchi et al. [4] have presented a real-time
recognizer for mobile phones, which is assembler-based
and kept very simple. Chai and Hock [2] have also
presented an algorithm, but without specifying recog-
nition results. Early barcode recognition algorithms
(e.g. Muniz et al. [5], and Jospeh and Pavlidis [3])
and parts of the mentioned approaches achieve their
goal by applying techniques like Hough transformation,
wavelet-based barcode localization, or morphological
operations. Using such techniques leads to computa-
tionally expensive implementations, which may be not
well suited for the use with mobile devices.

In this paper, we present an algorithm to recognize
1D barcodes, which works for the widely used stan-
dards UPC-A, EAN-13 and ISBN-13. Our algorithm
uses image analysis and pattern recognition methods
which rely on knowledge about structure and appear-
ance of 1D barcodes. Given the computational power
and the image quality of today’s camera phones, our
contribution is an algorithm which is both fast and ro-
bust.

The details of our algorithm are explained in Sec-
tion 2. In Section 3 we present results of experiments
using our database of over 1,000 images and of experi-
ments on the go, where a Symbian C++ implementation
running on a camera phone is used to recognize bar-
codes in daily life situations. Finally, Section 4 gives a
conclusion and outlines future work.

978-1-4244-2175-6/08/$25.00 ©2008 IEEE

2. Recognition algorithm

The goal of our algorithm is to be both fast and ro-
bust. As input we expect an image containing a 1D bar-
code which covers the image center. The barcode does
not need to be centered, may be upside down, or may
have the usual perspective distortions and rotations (ap-
prox. ±15 degrees) that occur when images are taken
by camera phones.

2.1. Preprocessing and binarization

Other approaches start with global smoothing,
wavelet-based barcode area location [7] or even mor-
phological operations [2]. We consider this as being
too time-consuming and thus use a scanline-based ap-
proach.

We assume that a horizontal scanline in the middle
of the image will cover the barcode. If this is not the
case, or parts of the barcode which lay on the scanline
are dirty, occluded or affected by strong reflections, we
will detect this in a very early stage and will repeat our
algorithm for alternate scanlines above and below.

Without searching for the barcode boundaries, we bi-
narize all pixels on the scanline in a fast manner, starting
from a seed point in the middle. For the binarization
a dynamic threshold is required, to be robust against
dirt, badly printed barcodes or illumination changes.
First, we smooth the scanline pixels and compute the
luminance valueY (x) ∈ [0..1] for each positionx
on the scanline (Y (x) = 0.299R(x) + 0.587G(x) +
0.114B(x)). Then we search for local minima and max-
ima along the scanline, so that neighbored minima and
maxima have a luminance difference∆Y ≥ 0.01. The
last step before the threshold computation is a pruning
step, where we remove unusually dark maxima as well
as unusually light minima.

For each positionx from the middle of the scanline
to the image border, the thresholdt(x) for binarization
is computed by evaluating a function depending on the
last inward seven minima/maxima. We do not consider
the outer minima/maxima, as we do not want regions
outside the barcode to impact thresholds within the bar-
code area. Figure 1 shows the profile, minima and max-
ima, pruned extrema and the resulting threshold. The
evaluated function averages the luminance value of the
second lowest maxima and of the second highest min-
ima to achieve a good robustness against local errors
like dirt or heavy noise.

scanline

seedpoint

Figure 1. Dynamic threshold for binariza-
tion.

2.2. Barcode boundary detection

In the following, we use some knowledge about
the UPC-A/EAN-13/ISBN-13 barcode. These barcodes
consists of 13 digits. The last digit is a checksum which
is computed from the first 12 digits.

The barcode starts by a left-hand guard bar A (black-
white-black) and ends with a right-hand guard bar E
(black-white-black). Between the guard bars, there are
two blocks B and D of 6 encoded digits each, separated
by a center bar C (white-black-white-black-white).

A module is the smallest unit. Bars and spaces can
cover one to four modules of the same color. Each
digit is encoded using seven modules (two bars and two
spaces with a total width of 7 modules). The width of a
complete EAN-13 barcode is 59 black and white areas
(3 + 6 ∗ 4 + 5 + 6 ∗ 4 + 3) which consist of 95 modules
(3 + 6 ∗ 7 + 5 + 6 ∗ 7 + 3).

Two alphabets can be used to encode a digit, the even
alphabet or the odd alphabet. While the last 12 digits are
directly coded using these two alphabets, the first of the
13 digits is determined by the alphabets that have been
used to encode the first six digits. Thus, the first digit is
called meta-number or induced digit.

The barcode boundary detection also starts at a seed
point in the middle of the profile line. Our starting posi-
tion is wanted to be a bar-pixel, so either the seed point
is black (Y (x) < t(x)) or we start with the closest point
left or right which is black. From this starting bar we

1

3

5

7

0
IterationEAN-13 Barcode

51

53

55

57

59

Figure 2. Barcode bounds detection.

successively add spaces and bar to the left and to the
right. By adding smaller ’space-bar’-pairs first, we pre-
vent to add non-barcode areas. By remembering the
sizes of added bars, we can determine candidates for
guard bars. We found the guard bars if the number of
bars and spaces between is 59.

2.3. Digit classification

The bars and spaces found in the previous step, have
to be classified as digits. As already mentioned, there
are two alphabets of 10 digits each, which results in 20
classesci. Each digits is encoded using two black and
white areas having a total width of 7 modules.

As preparation for the classification, we generate an
image specific prototype for each class. To do this, we
investigate the two guard bars on the left and right as
well as the center bar. Since we know that their black
and white areas have the width of one module each,
we can compute the average width of single black and
white modules. From the width of single modules we
can compute the width of the double, triple and quadru-
ple modules. Please note that in contrast to what could
be expected, the binarized area of a double module is
not twice as large as the area of a single module. Fur-
ther, the width of a single black module is not the bar-
code’s total width divided by 95. Due to brighter or
darker illumination the widths of single whiteww1 and
blackwb1 modules may differ by∆wb1 = ww1 − wb1.
This has to be taken into account for the computation of
the widths of double, triple and quadruple modules and
requires to separately determine the widths of black and
white single modules.

Based on the widths of bars and spaces in the guard
and center bars, we compute a reference patternrk for
each classck. The digitss from the barcode are then
presented to a distance based classifier which assigns
normalized similarity valuesp(ck, s) for all classesck.

Since each digit is encoded by four black and white
areas, the patternr can be represented as 4-tupelsr ∈
IR4. The similarityp(ck, s) is based on the squared dis-
tanced(rk, rs) between the corresponding patternrk

1odd

2odd

3odd

4odd

5odd

6odd

7odd

8odd

9odd

0odd

1even

2even

3even

4even

5even

6even

7even

8even

9even

0even

6 6

9 9

3

0

1

4

4

2

0

0

12th 11th 10th 9th 8th 7th 6th 5th 1th2th3th4th

6Code read
backwards: 6 9 9 3 0 1 4 4 2 0 0

Parity: 1 1 1 1 1 1 0 0 1 101

Code read
forwards:

0

0 2 4 4 1 0 3 9 9 6 6

Parity:

0

1 0 0 1 1 0 0 0 0 00

4Meta-
number:

Figure 3. Code hypothesis as path.

andrs:

p′(ck, s) = 1− d(rk, rs)
max

i
(d(ri, rs))

(1)

p(ck, s) =
p′(ck, s)

20∑
i=1

p′(ci, s)
(2)

2.4. Search for the most similar code

We now have a similarity for each digits to each
classck. By combining the results of the twelve en-
coded digitss(1), s(2), . . . , s(12) we can successively
generate code hypotheses(m, c(1), c(2), . . . , c(12)). m
is the induced meta number and encoded by the choice
of alphabets used to encode digitss7, . . . , s13 (see Fig-
ure 3).

If we consider the similarity values of the digits to
be independent of each other and to be probability-like,
we can consider the probability of a hypothesis to be:

p(c(1), . . . , c(12)|s(1), . . . , s(12)) =
12∏

i=1

p(c(i)|s(i))1/12

Starting with the code hypothesis that consists of the
most similar classes for each digit, we successively in-
vestigate hypotheses with decreasing probability. For
images of good quality the first hypothesis is the correct
one. In case of strong distortions the first hypotheses

may be wrong. Digits13 is a checksum, which allows
to detect and to reject wrong hypotheses.

3. Experimental results

Here, we distinguish between two kinds of experi-
ments. First, experiments based on a database, where
a Matlab based algorithm is applied to a fixed number
of images, taken by a camera phone. And second, ex-
periments on the go, where a Symbian C++ implemen-
tation running on a camera phone is used to recognize
barcodes in daily life situations.

3.1. Experiments on our barcode database

We took over 1,000 images of barcodes using a
Nokia N95 camera phone and stored them in a database
which is freely available to other researchers [6]. Us-
ing this fixed set of images, which includes heavily dis-
torted, shaky and out-of-focus pictures, we developed
our algorithm using Matlab. To investigate the im-
pact of resolution on the recognition performance, the
images were taken in the highes supported resolution
(2592 × 1944) and scaled down to typical resolutions
of camera phones (1024 × 768 and640 × 480). The
recognition performance of our Matlab implementation
is 90.5% at640×480, 93.7% at1024×768, and 99.2%
at2592× 1944 pixels.

The execution time changes with resolution, im-
age quality, and with the varying time for the gener-
ation of hypotheses. For the recognition of one bar-
code, our Matlab implementation needs between 25ms
(640 × 480) and 50ms (2592 × 1944) on a 1,7 GHz
single-core notebook.

3.2. Experiments on the go

To perform experiments on the go, we implemented
our algorithm in Symbian C++. The execution time of
our current implementation for Symbian OS is between
50ms (640 × 480) and 70ms (1024 × 768) on a Nokia
N95 camera phone. Our code is not yet optimized, but
the recognition speed is already sufficient for real-time
recognition on a video stream with about 20fps.

We used the camera phone to recognize barcodes in
daily life situations. At a resolution of1024× 768 pix-
els, we took pictures of 150 barcodes and all barcodes
were recognized correctly without using the macro
mode. One barcode was recognized at the second try,
as the first image was totally out of focus. All images
from the experiments on the go are collected, stored,
and can be found on our website [6].

4. Conclusion and future work

In this paper we presented an algorithm for the
recognition of 1-D barcodes using camera phones. We
have performed experiments on a large database using
a Matlab implementation and experiments on the go us-
ing a Symbian C++ implementation on a Nokia camera
phone. Our results show, that our algorithm is very ro-
bust and moreover very fast.

Our next step is to use the network connectivity of
current camera phones or PDAs to allow for useful ap-
plications. Further, we will extend our database of bar-
codes taken with camera phones and PDAs. Based on
our database, we want to compare approaches of other
researchers. Perhaps a barcode reading competition can
be realized in the short future.

References

[1] R. Adelmann, M. Langheinrich, C. Flörkemeier:
Toolkit for Bar Code Recognition and Resolving
on Camera Phones – Jump Starting the Internet of
Things. Workshop on Mobile and Embedded Inter-
active Systems (MEIS’06) at Informatik, GI LNI,
2006.

[2] D. Chai, F. Hock: Locating and Decoding EAN-13
Barcodes from Images Captured by Digital Cam-
eras. 5th Int. Conf. on Information, Communica-
tions and Signal Processing, 1595–1599, 2005.

[3] E. Joseph, T. Pavlidis: Bar Code Waveform Recog-
nition Using Peak Locations. IEEE Trans. on
PAMI, 16(6):630–640, 1998.

[4] E. Ohbuchi, H. Hanaizumi, L. A. Hock: Bar-
code Readers Using the Camera Device in Mobile
Phones. In Proc. of the Int. Conf. on Cyberworlds,
260–265, 2004.

[5] R. Muniz, L. Junco, A. Otero: A Robust Software
Barcode Reader Using the Hough Transform. In
Proc. of the Int. Conf. on Information Intelligence
and Systems, 313–319, 1999.

[6] S. Wachenfeld, S. Terlunen, X. Jiang:
http://cvpr.uni-muenster.de/research/barcode

[7] K. Wang, Y. Zou, H. Wang: Bar Code Reading from
Images Captured by Camera Phones. 2nd Int. Conf.
on Mobile Technology, Applications and Systems,
6–12, 2005.

[8] K. Wang, Y. Zou, H. Wang: 1D Bar Code Read-
ing on Camera Phones. Int. Journal of Image and
Graphics, 7(3):529–550, 2007.

