
Fragment Allocation in Distributed Database
Systems

Reza Basseda

Faculty of Electrical and Computer Eng., School of Engineering, University of Tehran
Database Research Group
R.Basseda@ece.ut.ac.ir

Abstract
Choosing appropriate fragment allocation in
Distributed Database Systems is an important
issue in design of Distributed Database
Management System .Several fragment-
allocation algorithms have been suggested in the
area of DDBMS design. Each algorithm has its
own strengths and shortcomings. Therefore,
providing an appropriate algorithm is too
critical in DDBMS design and may lead to an
increase in Distributed Database Performance.
This article presents an overview of research
works on fragment allocation algorithms in
Database Research Group of University of
Tehran during last year. In order to clarify the
suggested algorithms and improvements in this
area, we conclude discussion with a summary on
our evaluations.

1. Introduction
Developments in database and networking
technologies in the past two decades led to
advances in distributed database systems. A
DDS is a collection of sites connected by a
communication network, in which each site is a
database system in its own right, but the sites
have agreed to work together, so that a user at
any site can access data anywhere in the network
exactly as if the data were all stored at the user’s
own site [11]. The primary concern of a DDS is
to design the fragmentation and allocation of the
underlying data. Fragmentation unit can be a file
where allocation issue becomes the file
allocation problem. File allocation problem is
studied extensively in the literature, started by
Chu [12] and continued for non-replicated and
replicated models [13, 14]. Some studies
considered dynamic file allocation [15, 16].
Various approaches have already been described
the data allocation technique in distributed
systems [1], [4], [5], [6]. Some methods are

limited in their theoretical and implementation
parts [8], [9]. Other strategies are ignoring the
optimization of the transaction response time.
The other approaches present exponential time of
complexity and test their performance on
specific types of network connectivity [2].
Data allocation problem was introduced when
Eswaran [17] first proposed the data
fragmentation. Studies on vertical fragmentation
[18, 19]; horizontal fragmentation [20] and
mixed fragmentation [21] were conducted. The
allocation of the fragments is also studied
extensively.
In these studies, data allocation has been
proposed prior to the design of a database
depending on some static data access patterns
and/or static query patterns. In a static
environment, where the access probabilities of
nodes to the fragments never change, a static
allocation of fragments provides the best
solution. However, in a dynamic environment
where these probabilities change over time, the
static allocation solution would degrade the
database performance. Initial studies on dynamic
data allocation give a framework for data
redistribution and demonstrate how to perform
the redistribution process in a minimum possible
time. In [3] a dynamic data allocation algorithm
for non-replicated database systems is proposed
named optimal algorithm, but no modeling is
done to analyze the algorithm. In [5] the
threshold algorithm is proposed for dynamic data
allocation algorithm, which reallocates data with
respect to changing data access patterns. It
focused on load balancing issues.
A major cost in executing queries in a distributed
database system is the data transfer cost incurred
in transferring relations (fragments) accessed by
a query from different sites to the site where the
query is initiated. The objective of a data
allocation algorithm is to determine the
assignment of fragments at different sites so as to

minimize the total data transfer cost incurred in
executing a set of queries. This is equivalent to
minimizing the average query execution time,
which is of primary importance in a wide class of
distributed conventional or multimedia database
systems.

2. Near Neighborhood Allocation
The NNA algorithm is basically a variation of
the optimal algorithm [3]. In optimal algorithm,
all fragments are initially distributed over the
nodes according to any static method but
afterwards, any node j, runs the optimal
algorithm described as follows for every
fragment I, that it stores.
(1) For each (locally) stored fragment, initialize
the access counter rows to zero. (Sij = 0
were i ε fragment indexes and j ε nodes)
(2) Process an access request for the stored
fragment
(3) Increase the corresponding access counter of
the accessing node for the stored fragment. (If
node (x) accesses fragment i, set Six = Six +1)
(4) If the accessing node is the current owner, go
to step 2. (i.e Local access, otherwise it is a
remote access)
(5) If the counter of a remote node is greater than
the counter of the current owner node, transfer
the ownership of the fragment together with the
access counter array to the remote node. (i.e
fragment migrates) (If node x accesses fragment
i and Six > Sij , send fragment i to node (x))
(6) Repeat from step 2.
The problem of this approach is that if the
changing frequency of access pattern for each
fragment is high, it will spend a lot of time for
transferring fragments to different nodes. So, the
response time and delay will be increased.
In our algorithm, we are going to address the
problem of optimal algorithm:
In NNA algorithm, the requirement for moving a
fragment is obtained as in optimal algorithm.
But, the destination of the moving data is
different. In our method we consider the network
topology and routing for specifying destination.
In other words the destination of the moved
fragment is the neighbor of the source, which is
in the path from the source to the node with
highest access pattern. We have chosen link state
routing algorithm for its simplicity of
implementation . Any routing algorithm can be
used equally.

By using this approach we avoid moving data
too frequently because since the fragment will be
placed finally in a node which has the average
access cost for nodes that use it. So, the delay of
movement will be reduced and the response time
will also be improved.
Another aspect of NNA algorithm is that the
fragments, which are used by a node or
neighbors of a node, can be clustered. Using this
clustering approach, we can respond to the data
requests more effectively.

Evaluation of Algorithm
In our experiments, we consider two factors:
average delay for receiving the response
(response time) for a fragment request and
average time spent for moving data from one
node to another (fragment data migration time).
We will investigate the effect of different
parameters on these factors.
We examined the effect of different parameters
on these factors. Findings of our experiments
indicated that, the NNA algorithm performs
better for larger fragment size and query
production rate, but for small fragment size and
query production rate, the optimal algorithm
performs better. The threshold for fragment size
is almost 8000 bytes. For larger networks, by
using NNA algorithm we can decrease the delay
of response to a fragment regarding to optimal
algorithm.

3. BGBR: A variation of NNA which
looking for appropriate location
In this algorithm, we proposed an approach
based on NNA, but we are going to predicate
perfect position of fragment to have less
response time and fragment data migration time.
BGBR dynamically determine the location of a
fragment that provides an overall optimal system
performance. This approaches contribution
compared to the optimal algorithm is that the
optimal algorithm does not consider the
complete topology, it only considers the node the
fragment is located and any other node with
higher access to that fragment. Although it does
make sense to move a fragment close to nodes
with frequent access to that fragment, the
optimal choice is not necessarily determined by
selecting a node with higher access to that
fragment, a complete analysis of the topology is
required to obtain the optimal node. Failure to
consider the complete topology will result in
frequent oscillation. Although, the NNA
algorithm shows improvement in respect to the

optimal algorithm by preventing heavy
oscillation, it too does not consider the complete
topology and takes too long to converge. The
NNA algorithm moves fragments from its
located node to a node with higher access in the
direction of the shortest path one hop at a time;
however, there is no assurance that the shortest
path is the best path to be moving a node when
considering the global topology and access
patterns. Assuming the shortest path is best path,
unlike BGBR, NNA converges slowly by taking
many hops to find the optimal location. As a
fragment is moving along the shortest path
towards the optimal location the access patterns
could be completely changed, resulting in wasted
effort.
The BGBR algorithm is performed in three
steps:
1. Determination of Shortest Paths

2. Aggregate Bottom Up

3. Determination of the Minimum Cost

Initially at startup or after a topology change the
algorithm begins by running Dijkstra’s algorithm
to obtain the shortest path from one node to
every other node. This algorithm is continuously
repeated until we have a shortest path matrix that
determines the shortest path from every node to
every other node. The BGBR algorithm keeps
track of the number of times a fragment has been
accessed by each and every node. This is simply
implemented with the use of counters. However,
once a fragment is relocated then its counters all
become zero. The idea in this step is to
determine the highest priority fragment to be
relocated. This is an important step due to the
limited physical hardware space in typical
systems. If two fragments want to reside in a
location that only has space for one of these
fragments, it is important to choose the fragment
with higher priority. Algorithms normally define
the priority of a fragment based on individually
assessing which object has been accessed the
most by which node without considering the
relationship among the various nodes accessing
the same object Once we have determined and
sorted the objects based on their priority we need
to dequeue objects from the priority queue and
select the optimal location for each. The optimal
location can be calculated by selecting the
location that provides the minimum cost. More
importantly to determining the minimal cost, is
to determine the cost of placing an object on a
node. The idea behind determining the cost is to

place objects so that they are close to the nodes
that access them.

Evaluation of Algorithm
BGBR outperforms both NNA and the optimal
algorithm when considering the Total Query
Cost. Comparing the NNA algorithm with
Optimal you will notice that NNA starts to
perform better when the fragment sizes are
greater than 9MB. However, BGBR outperforms
both in all fragment sizes. This is precisely
because fragments are placed in a location that
provides the overall minimum access cost.
BGBR has better performance than both NNA
and Optimal when considering the Total
Fragmentation Migration Cost. The problem
with the optimal algorithm is that fragments
continuously are moved from one node to the
other as the access patterns change. Optimal does
not consider moving fragments in a location
which is beneficial to all nodes that have
accessed a specific object. It only considers the
owner of a fragment and the node who has
accessed an object more times than the owner.
Evidently, this algorithm results in a lot of
fragment mobility. NNA on the other hand tries
to resolve this problem by not making drastic
changes. Fragments are moved hop by hop. The
reason that BGBR is much better than the other
two is precisely because BGBR picks a location
that will not lead to much fragment mobility.
This location is determined based on the overall
access patterns

4. A Fuzzy approach to improve NNA
performance
All of above mentioned algorithms using crisp
method to move data along network paths.
Estimating time and place (destination) of a data
fragment depends on various parameters such as
access pattern, bandwidth of network links and
etc. The FNA algorithm is basically a variation
of the NNA [3].
As mentioned above, detecting oscillation is
important in DDBMS. Rapid changing of access
pattern for a single fragment may cause problems
in DDB system. Fragment migration between
two sites leads high delay in accessing fragment.
Migrating fragment is inaccessible during
fragment migration because fragment is locked
when it moves from one site to another. We are
going to solve this problem by detection
oscillation state and avoiding from moving
fragment. In this way, we consider access pattern
of site and recognize oscillation state through

differentiation of access pattern. After degrading
of access pattern with using mean factor, we use
a fuzzy and operator between smoothed access
pattern and fuzzy compliment of differentiation
of access pattern. The result show revised access
pattern, which can be used in deciding of
fragment migration. We trace access counts in 20
time sluts. Each time slut comprises of 50-clock
cycle. Designed fragment allocation system’s
architecture is as bellow:

Figure 1 Architecture of Fuzzy Fragment Allocator

Evaluation of Algorithm

We examined the effect of different parameters
on these factors. Findings of our experiments
indicated that, the FNA algorithm performs
better for larger fragment size and query
production rate, but for small fragment size and
query production rate, the NNA and optimal
algorithm performs better. For larger networks,
by using FNA algorithm we can decrease the
delay of response to a fragment regarding to
optimal algorithm.

5. Conclusion
In this article, we introduce some method to
distribute data fragment of Distributed Database
Systems over the sites. As mentioned above,
NNA algorithm is a simple variation of optimal
algorithm which can be used in a simple design
of Distributed Database Systems.
BGBR is more complicated variation of NNA
which shows better results but it requires more

calculations and it needs to capture more data.
Consequently, it can be used in systems which
less response time is more vital.
FNA needs more space to capture history of
access pattern than other algorithms and it
requires complicated calculations such as
fuzzification of access pattern and detection of
oscillation in access pattern. Despite of these
complexities in space and time of Fuzzy
approach, it seems better than other algorithms in
oscillation conditions.
We compared these algorithms in detail. We
developed software to simulate algorithms and
compare them. This simulator is configurable for
testing different network topologies and different
data requests and/or allocation conditions. In our
simulator we mark each packet’s send and
receive time. Using time stamp, we could
compare algorithms in different factors. Detailed
information regarding to the implementation of
this software is available in [24] and [25].
In our experiments, we consider two factors:
average delay for receiving the response
(response time) for a fragment request and
average time spent for moving data from one
node to another (fragment data migration time).
We will investigate the effect of different
fragment size on these factors. Figures 2 and 3
show the effect of fragment size on these factors.
According to Figure 2, for small fragment size,
the average time spent for response in FNA and
BGBR algorithms is larger than NNA and for
larger fragments this is reversed. In larger
fragments, BGBR acts better than FNA. The
reason is that for small fragments the cost of
moving data to destination node is low and so,
the movement cost does not exceed the access
cost. In the case of large fragments the
movement of fragments takes more time and also
increase the network traffic. So, less movement
will produce some advantages that overcome the
access cost. Avoidance of oscillation condition
in FNA leads to have less traffic and saving in
network resources such as bandwidths. In
BGBR, we predicate an appropriate location for
fragment and this fact prevents unnecessary
fragment migration and leads to have less traffic.
In FNA destination of a data fragment is chosen
according to access pattern of over all system.
So, we direct our fragments more effective and
this will be valuable in larger fragments. Results
have been reported in different conferences.

0

50

100

150

200

250

500
1500

2500
3500

4500
5500

6500
7500

8500
9500

10500
11500

Fragment Size(Bytes)

D
el

ay
 o

f R
es

po
ns

e

FNA

NNA

BGBR

0

50

100

150

200

250

500
1500

2500
3500

4500
5500

6500
7500

8500
9500

10500
11500

Fragment Size(Bytes)

Ti
m

e
Sp

en
t f

or
 F

ra
gm

m
en

t M
ov

em
en

t

FNA

NNA

BGBR

Figure 3 shows that time spent for fragment movement
is larger in NNA and BGBR than FNA. This is caused
by preventing unnecessary fragment movement
especially in oscillation conditions.

 Here we just studied these algorithms on non-
replicated distributed database systems. Further
studies are needed to test FNA, BGBR, NNA and
optimal algorithms in replicated distributed database
systems.

References
[1] Berkan, R. C., Trubatch, S. L., Fuzzy Systems Design

Principles, IEEE Press, New York, 1997

[2] Basseda, R., Tasharofi, S., Rahgozar, M., Near
Neighborhood Allocation (NNA): A Novel Dynamic Data
Allocation Algorithm in DDB, In proceedings of 11th
Computer Society of Iran Computer Conference
(CSICC2006), Tehran, 2006

[3] John, L. C., A Generic Algorithm for Fragment
Allocation in Distributed Database Systems, ACM, 1994.

[4] Ahmad, I., Karlapalem, K., Kwok, Y. K., and So, S. K.
Evolutionary Algorithms for Allocating Data in
Distributed Database Systems, International Journal of
Distributed and Parallel Databases, 11: 5-32, The
Netherlands, 2002.

[5] Brunstroml, A., Leutenegger, S. T. and Simhal, R.,
Experimental Evaluation of Dynamic Data Allocation
Strategies in a Distributed Database with changing
Workloads, ACM Transactions on Database Systems,
1995.

[6] Chin, A. G., Incremental Data Allocation and
ReAllocation in Distributed Database Systems, Journal of
Database Management; Jan-Mar 2001; 12, 1;
ABI/INFORM Global pg. 35.

[7] Ulus, T., and Uysal, M., Heuristic Approach to Dynamic
Data Allocation in Distributed Database Systems,
Pakistan Journal of Information and Technology 2 (3),
2003, ISSN 1682-6027, 231-239.

[8] Voulgaris, S., Steen, M. V., Baggio, A., and Ballintjn, G.,
Transparent Data Relocation in Highly Available
Distributed Systems. Studia Informatica Universalis.
2002.

[9] Navathe, S. B., Ceri, S., Wiederhold, G. and Dou, J.,
Vertical Partitioning Algorithms for Database Design,
ACM Transaction on Database Systems, 1984, 680-710.

[10] Apers, P. M. G. , “Data allocation in distributed database
systems,” ACM Transactions on Database Systems, vol.
13, no. 3, 1988, 263–304.

[11] Huang, Y. F. and Chen, J. H., Fragment Allocation in
Distributed Database Design, Journal of Information
Science and Engineering 17, 2001, 491-506.

[12] Hababeh, I. O., A Method for Fragment Allocation
Design in the Distributed Database Systems, The Sixth
Annual U.A.E. University Research Conference, 2005.

[13] Özsu, T., and Valduriez, P., Principles of Distributed
Database Systems. Prentice-Hall Book Co., Englewood
Cliff, USA, 1991.

[14] Chu, W. W., Optimal File Allocation in a Multiple
Computer System, IEEE Transactions on Computers, C-
18, 1969, 885-889.

[15] Morgan, H.L., and Levin, K. D., Optimal Program and
Data Locations in Computer Networks, Communications
of ACM, 20, 1977, 315-321.

[16] Azoulay-Schwartz, R., and Kraus, S., Negotiation on
Data Allocation in Multi-Agent Environments,
Autonomous Agents and Multi-Agent Systems, 5, 2002,
123-172.

[17] Wah, B. W., Data Management in Distributed Systems
and Distributed Data Bases, Ph.D. Dissertation,
University of California, Berkeley, CA, USA, 1979.

[18] Smith, A. J., Long-term File Migration: Development
and Evaluation of Algorithms, Communications of ACM,
24, 1981, 512-532.

[19] Eswaran, K. P., Placement of Records in a File and File
Allocation in a Computer Network, in Proceedings of
IFIP Congress on Information Processing, Stockholm,
Sweden, 1974, 304-307.

[20] Navathe, S. B., Ceri, S., Wiederhold, G., and Dou, J.,
Vertical Partitioning Algorithms for Database Design,
ACM Transaction on Database Systems, 9, 1984, 680-
710.

[21] Ceri, S., Pernici, B., and Wiederhold, G., Optimization
Problems and Solution Methods in the Design of Data
Distribution, Information Systems, 14, 1989, 261-272.

[22] Ceri, S., Navathe, S. B., and Wiederhold, G.,
Distribution Design of Logical Database Schemas, IEEE
Transactions on Software Engineering, 9 , 1983, 487-
503.

[23] Zhang, Y., and Orlowska, M. E., On Fragmentation
Approaches for Distributed Database Design,
Information Sci., 1, 1994, 117-132.

[24] Basseda, R. and Tasharofi, S., Design and
Implementation of an Environment for Simulation and
Evaluation of Data Allocation Models in Distributed
Database Systems, Technical Report No. DBRG.RB-
ST.A50701, 2005.

[25] Basseda, R. and Tasharofi, S., Data Allocation in
Distributed Database Systems, Technical Report No.
DBRG.RB-ST.A50715, 2005.

	Fragment Allocation in Distributed Database Systems
	Abstract

